
Kylo Documentation
Release 0.9.1

Think Big, a Teradata Company

Dec 06, 2018

About

1 Features 3

2 FAQ 5

3 Terminology 15

4 Release Notes 19

5 Downloads 89

6 Overview 93

7 Review Dependencies 95

8 Prepare Install Checklist 99

9 Create Service Accounts 101

10 Prepare Offline TAR 103

11 Install Kylo 105

12 Install Additional Components 107

13 Enable Kerberos 117

14 Additional Configuration 119

15 Kylo Application Properties 121

16 Grant HDFS Privileges 135

17 Start Services 139

18 Import Templates 141

19 Create Sample Feed 143

20 Validate Configuration 147

i

21 HDP 2.5 Kerberos/Ranger Cluster Deployment Guide 151

22 Overview 165

23 Adjust Memory 167

24 Change Java Home 169

25 Log Files 171

26 Yarn Cluster Mode Configuration 173

27 Kylo Spark Properties 175

28 Postgres Metastore Configuration 181

29 Overview 183

30 Encrypting Configuration Properties 185

31 Enable Kerberos for Kylo 187

32 Enable Kerberos for NiFi 191

33 Enable Ranger Authorization 197

34 Enable Sentry Authorization 201

35 Kylo UI and SSL 205

36 NiFi and SSL 209

37 Authentication 217

38 Kylo Kerberos SPNEGO 225

39 Access Control 229

40 Enable Hive User Impersonation 235

41 Setup A NiFi Cluster in a Kylo Sandbox 239

42 Clustering Kylo 241

43 NiFi & Kylo Provenance 249

44 NiFi Processor Guide 251

45 Kylo Templates Guide 259

46 Connecting Reusable Templates 263

47 Remote Process Groups 271

48 Kylo Datasources Guide 275

49 Feed Lineage Configuration 281

50 Custom Provenance Events 287

ii

51 Accessing S3 from the Data Wrangler 291

52 S3 Standard Ingest Template 293

53 Azure Standard Ingest Template 301

54 SUSE Configuration Changes 305

55 Configuration Properties 307

56 Validator Tuning 311

57 Configure Kylo & Global Search 313

58 Service Monitor Plugins 319

59 JMS Providers 321

60 Database Upgrades 325

61 Icons and Icon Colors 327

62 Twitter Sentiment with Kafka and Spark Streaming Tutorial 329

63 Ambari Service Monitor Plugin 337

64 Reindex Historical Feed Data 339

65 Entity Access Control For Elasticsearch 343

66 Service Level Agreements (SLA) 345

67 Configuration Inspector App 349

68 Data Ingest - Teradata - TDCH 353

69 Contributing to Kylo 361

70 Developer Getting Started Guide 365

71 Plugin APIs 371

72 Kylo REST API 375

73 Cleanup Scripts 377

74 Cloudera Docker Sandbox Deployment Guide 379

75 Hortonworks Sandbox Configuration 383

76 Kerberos Installation Example - Cloudera 385

77 Kerberos Installation Example - HDP 2.4 393

78 Events 401

79 Operations Guide 405

80 Troubleshooting & Tips 433

iii

81 Best Practices 449

iv

Kylo Documentation, Release 0.9.1

Kylo website:

The documentation for the site is organized into a few sections:

• About

• Installation

• Installation Examples

• Common Configuration

• Security

• How to guides

• Developer guides

• User guides

• Tips and tricks

About 1

Kylo Documentation, Release 0.9.1

2 About

CHAPTER 1

Features

Kylo is a full-featured Data Lake platform built on Apache Hadoop and Spark. Kylo provides a turn-key, business-
friendly Data Lake solution enabling data ingest, data preparation, and data discovery.

Features Description

License Apache 2.0
Major Features

Data Ingest Users can easily configure feeds in guided UI
Data Preparation Visual sql builder and data wrangling
Operations dashboard Feed health and service monitoring
Global search Lucene search against data and metadata
Data Processing

Data Ingest Guided UI for data ingest into Hive (extensible)
Data Export Export data to RDBMS or other targets
Data Wrangling Visually wrangle data and build/schedule recipes
PySpark, Spark Jobs Execute Spark jobs
Custom Pipelines Build and templatize new pipelines
Feed Chaining Trigger feeds based on dependencies and rules
Ingest Features

Batch Batch processing
Streaming Streaming processing
Snapshot/Incremental Loads Track highwater using date field or replace target
Schema Discovery Infer schema from source file samples
Data Validation Configure field validation in UI
Data Profile Automatically profile statistics
Data Cleanse/Standardization Easily configure field standardization rules
Custom Partitioning Configure Hive partitioning
Ingest Sources

Continued on next page

3

Kylo Documentation, Release 0.9.1

Table 1 – continued from previous page

FTP, SFTP Source from FTP, SFTP
Filesystem Poll files from a filesystem
HDFS, S3 Extract files from HDFS and S3
RDBMS Efficiently extract RDBMS data
JMS, KAFKA Source events from queues
REST, HTTP Source data from messages
Ingest Targets

HDFS Store data in HDFS
HIVE Store data in Hive tables
HBase Store data in HBase
Ingest Formats

ORC, Parquet, Avro, RCFile, Text Store data in popular table formats
Format Compression Specify compression for ORC and Parquet types
Extensible source formats Ability to define custom schema plug-in Serdes
Metadata

Tag/Glossary Add tags to feeds for searchability
Business Metadata (extended properties) Add business-defined fields to feeds
REST API Powerful REST APIs for automation and integration
Visual Lineage Explore process lineage
Profile History View history of profile statistics
Search/Discover Lucene syntax search against data and metadata
Operational Metadata Extensive metadata capture
Security

Keberos Support Supports Kerberized clusters
Obfuscation Configure field-level data protection
Encryption at Rest Compatible with HDFS encryption features
Access Control (LDAP, KDC, AD, SSO) Flexible security options
Data Protection UI configurable data protection policies
Application Groups, Roles Admin configured roles
Operations

Dashboard KPIs, alerts, performance, troubleshooting
Scheduler Timer, Cron-style based on Quartz engine
SLA Monitoring Service level agreements tied to feed performance
Alerts Alerts with integration options to enterprise
Health Monitoring Quickly identify feed and service health issues
Performance Reporting Pivot on performance statistics
Scalability

Edge Clustering Scale edge resources

4 Chapter 1. Features

CHAPTER 2

FAQ

2.1 About Kylo

2.1.1 What is Kylo?

Kylo is a feature-rich data lake platform built on Apache Hadoop and Spark. Kylo provides a turn-key, business-
friendly, data lake solution enabling self-service data ingest, data preparation, and data discovery.

Kylo’s web application layer offers features oriented to business users, including data analysts, data stewards, data sci-
entists, and IT operations personnel. Kylo integrates best practices around metadata capture, security, and data quality.
Furthermore, Kylo provides a flexible data processing framework (leveraging Apache NiFi) for building batch or
streaming pipeline templates, and for enabling self-service features without compromising governance requirements.

2.1.2 What are Kylo’s origins?

Kylo was developed by (a Teradata company) and it is in use at a dozen major corporations globally. Think Big
provides big data and analytics consulting to the world’s largest organizations, working across every industry in per-
forming 150 successful big data projects over the last seven years. Think Big has been a major beneficiary of the
open-source Hadoop ecosystem and elected to open-source Kylo in order to contribute back to the community and
improve value.

2.1.3 What does Kylo mean?

Kylo is a play on the Greek word meaning “flow”.

2.1.4 What software license is Kylo provided under?

(a Teradata company) has released Kylo under the Apache 2.0 license.

5

Kylo Documentation, Release 0.9.1

2.1.5 Who uses Kylo?

Kylo is being used in beta and production at a dozen major multi-national companies worldwide across industries
such as manufacturing, banking/financial, retail, and insurance. Teradata is working with legal departments of these
companies to release names in upcoming press releases.

2.1.6 What skills are required for a Kylo-based Data Lake implementation?

Many organizations have found implementing big data solutions on the Hadoop stack to be a complex endeavor. Big
data technologies are heavily oriented to software engineering and system administrators, and even organizations with
deep engineering capabilities struggle to staff teams with big data implementation experience. This leads to multi-year
implementation efforts that unfortunately can lead to data swamps and fail to produce business value. Furthermore,
the business-user is often overlooked in features available for in-house data lake solutions.

Kylo attempts to change all this by providing out-of-the-box features and patterns critical to an enterprise-class data
lake. Kylo provides an IT framework for delivering powerful pipelines as templates and enabling user self-service to
create feeds from these data processing patterns. Kylo provides essential Operations capabilities around monitoring
feeds, troubleshooting, and measuring service levels. Designed for extensibility, software engineers will find Kylo’s
APIs and plug-in architecture flexible and easy to use.

2.2 Enterprise Support

2.2.1 Is enterprise support available for Kylo?

Yes, (a Teradata company) offers support subscription at the standard and enterprise level. Please visit the website for
more information.

2.2.2 Are professional services and consulting available for Kylo?

(a Teradata company) provides global consulting services with expertise in implementing Kylo-based solutions. It is
certainly possible to install and learn Kylo using internal resources. Think Big’s Data Lake Foundation provides a
quick start to installing and delivering on your first set of data lake use cases. Think Big’s service includes hands-on
training to ensure that your business is prepared to assume operations.

2.2.3 Is enterprise training available for Kylo?

Yes, (a Teradata company) offers training on Kylo, Hadoop, and Spark.

2.2.4 Are commercial managed services available for Kylo?

Yes, (a Teradata company) can provide managed operations for your Hadoop cluster, including Kylo, whether it is
hosted on-premise or in the cloud. The managed services team is trained specifically on Kylo and they have operations
experience with major Hadoop distributions.

6 Chapter 2. FAQ

Kylo Documentation, Release 0.9.1

2.3 Architecture

2.3.1 What is the deployment architecture?

Kylo is a modern web application installed on a Linux “edge node” of a Spark & Hadoop cluster. Kylo contains a
number of special purposed routines for data lake operations leveraging Spark and Apache Hive.

Kylo utilizes Apache NiFi as its scheduler and orchestration engine, providing an integrated framework for designing
new types of pipelines with 200 processors (data connectors and transforms). Kylo has an integrated metadata server
currently compatible with databases such as MySQL and Postgres.

Kylo can integrate with Apache Ranger or Sentry and CDH Navigator or Ambari for cluster monitoring.

Kylo can optionally be deployed in the cloud.

2.3.2 What are the individual component/technologies involved in a Kylo deploy-
ment?

• Kylo UI. AngularJS browser app with Google Material Design running in a Tomcat container

• Kylo Services. Services, REST APIs, and plug-ins perform the backbone of Kylo. All features and integrations
with other technologies are managed through the services layer.

• Kylo Spark Shell. Manages Spark sessions for data wrangling.

• Kylo Metadata Server. Combination of JBoss ModeShape and MySQL (or Postgres) store all metadata generated
by Kylo.

• Apache NiFi. Pipeline orchestration engine and scheduler.

• ActiveMQ. JMS queue for inter-process communication.

• Apache Spark. Executes Kylo jobs for data profiling, data validation, and data cleansing. Also supports data
wrangling and schema detection.

• ElasticSearch. Provides the index for search features in Kylo such as free-form data and metadata

• Apache Hadoop. All Hadoop technologies are available but most notably YARN, HDFS, Hive

2.3.3 Is Kylo compatible with Cloudera, Hortonworks, Map R, EMR, and vanilla
Hadoop distributions?

Yes. Kylo generally relies on standard Hadoop APIs and common Hadoop technologies like HDFS, Hive, and Spark.
NiFi operates on the “edge” so isn’t bound to any particular Hadoop distribution. It is therefore compatible with most
Hadoop distributions, although we currently only provide install instructions for Cloudera and Hortonworks.

2.3.4 Does Kylo support either Apache NiFi or Hortonworks DataFlow (HDF)? What
is the difference?

Yes, Kylo supports vanilla Apache NiFi or NiFi bundled with Hortonworks DataFlow. HDF bundles Apache NiFi,
Storm, and Kafka within a distribution. Apache NiFi within HDF may contain minor differences with the the open-
source project. For example, Hortonworks bundles their own versions of Hadoop client libraries in NiFi Hadooop
NAR library. HDF may not bundle the latest version of Apache NiFi and Hortonworks only performs Q/A against
NiFi versions bundled into HDF. NiFi is a core component of the Kylo solution. Kylo is an HDF-certified technology.

2.3. Architecture 7

Kylo Documentation, Release 0.9.1

2.3.5 Can Kylo be used in the cloud?

Absolutely. Kylo is used in production on Azure and AWS and can take advantage of many of the cloud native
technologies such as Azure blob or AWS S3-backed Hive tables.

2.3.6 Does Kylo support high-availability (HA) features?

Yes, Kylo clustering is possible via a load-balancer. In addition, current data processing running under NiFi will not
be impacted if Kylo becomes unavailable or during upgrades.

2.4 Metadata

2.4.1 What type of metadata does Kylo capture?

Kylo captures extensive business and technical (for example, schema) metadata defined during the creation of feeds and
categories. Kylo processes lineage as relationships between feeds, sources, and sinks. Kylo automatically captures
all operational metadata generated by feeds. In addition, Kylo stores job and feed performance metadata and SLA
metrics. We also generate data profile statistics and samples.

2.4.2 How does Kylo support metadata exchange with 3rd party metadata servers

Kylo’s metadata server has REST APIs that could be used for metadata exchange and documented directly in the
application through Swagger.

2.4.3 What is Kylo’s metadata server?

A key part of Kylo’s metadata architecture relies on the open-source JBoss ModeShape framework. ModeShape is a
JCR compliant store. Modeshape supports dynamic schemas providing the ability to easily extend Kylo’s own data
model.

Some core features:

• Dynamic schemas - provide extensible features for extending schema towards custom business metadata in the
field

• Versioning - ability to track changes to metadata over time

• Text Search - flexible searching metastore

• Portability - can run on sql and nosql databases

See:

2.4.4 How extensible is Kylo metadata model?

Very extensible due our use of ModeShape (see above).

In addition, the Kylo application allows an administrator to define standard business metadata fields that users will be
prompted to enter when creating feeds and categories.

8 Chapter 2. FAQ

Kylo Documentation, Release 0.9.1

2.4.5 Are there any business-related data captured, or are they all operational meta-
data?

Business metadata fields can be defined by the user and will appear in the UI during the feed setup process.

2.4.6 What does the REST API look like?

Please access the REST documentation through a running Kylo instance: http://kylo-host:8400/api-docs/index.html

2.4.7 Does the Kylo application provide a visual lineage?

Yes, Kylo provides a visual process lineage feature for exploring relationships between feeds and shared sources and
sinks. Job instance level lineage is stored as “steps” visible in the feed job history.

2.4.8 What type of process metadata do we capture?

Kylo captures job and step level information on the status of the process, with some information on the number
of records loaded, how long it took, when it was started and finished, and what errors or warnings may have been
generated. We capture operational metadata at each step, which can include record counts, dependent upon the type
of step.

2.5 Development Lifecycle

2.5.1 What’s the pipeline development process using Kylo?

Pipeline templates developed with Apache NiFi and registered with Kylo can be developed and tested in a sandbox
environment, exported from Kylo, and then imported into Kylo in a UAT and production environment after testing.
Once the NiFi template is registered with Kylo, a business user can configure new feeds through Kylo’s step-guided
user interface.

Existing Kylo feeds can be exported from one environment into a zip file that contains a combination of the underlying
template and metadata. The package can then be imported to the production NiFi environment by an administrator.

2.5.2 Does deployment of new templates or feeds require restart?

No restart is required to deploy new pipeline templates or feeds.

2.5.3 Can new feeds be created in automated fashion instead of manually through
the UI?

Yes, via Kylo’s REST API. See the section on Swagger documentation (above).

2.5.4 Does Kylo leverage automated testing?

Kylo is a large project which can make QA testing challenging. We built a Docker based automated testing infrastruc-
ture to test Kylo deployment with as many different integration points as possible. This runs multiple times per day in
addition to our large number of unit tests

2.5. Development Lifecycle 9

Kylo Documentation, Release 0.9.1

2.6 Tool Comparisons

2.6.1 Is Kylo similar to any commercial products?

Kylo has similar capabilities to Podium and Zaloni Bedrock. Kylo is an open-source option. One differentiator is
Kylo’s extensibility. Kylo provides a plug-in architecture with a variety of extensions available to developers, and the
use of NiFi templates provides incredible flexibility for batch and streaming use cases.

2.6.2 Is Kylo’s operations dashboard similar to Cloudera Manager and Apache Am-
bari?

Kylo’s dashboard is feed-health centric. Health of a feed is determined by job completion status, service level agree-
ment violations, and rules that measure data quality. Kylo provides the ability to monitor feed performance and
troubleshoot issues with feed job failures.

Kylo monitors services in the cluster and external dependencies to provide a holistic view of services your data lake
depends on. Kylo provides a simple plugin for adding enterprise services to monitor. Kylo includes plugins for pulling
service status from Ambari and Cloudera Navigator. This is useful for correlating service issues with feed health
problems.

2.6.3 Is Kylo’s metadata server similar to Cloudera Navigator, Apache Atlas?

In some ways. Kylo is not trying to compete with these and could certainly imagine integration with these tools.
Kylo includes its own extensible metadata server. Navigator is a governance tool that comes as part of the Cloudera
Enterprise license. Among other features, it provides data lineage of your Hive SQL queries. We think this is useful but
only provides part of the picture. Kylo’s metadata framework is really the foundation of an entire data lake solution. It
captures both business and operational metadata. It tracks lineage at the feed-level. Kylo provides IT Operations with
a useful dashboard, providing the ability to track/enforce Service Level Agreements, and performance metrics. Kylo’s
REST APIs can be used to do metadata exchange with tools like Atlas and Navigator.

2.6.4 How does Kylo compare to traditional ETL tools like Talend, Informatica, Data
Stage?

Kylo uses Apache NiFi to orchestrate pipelines. NiFi can connect to many different sources and perform lightweight
transformations on the edge using 180+ built-in processors. Generally workload is delegated to the cluster where the
bulk of processing power is available. Kylo’s NiFi processor extensions can effectively invoke Spark, Sqoop, Hive,
and even invoke traditional ETL tools (for example: wrap 3rd party ETL jobs).

Many ETL (extract-transform-load) tools are focused on SQL transformations using their own proprietary technology.
Data warehouse style transformations tend to be focused on issues such as loading normalized relational schemas
such as a star or snowflake. Hadoop data patterns tend to follow ELT (extract and load raw data, then transform). In
Hadoop, source data is often stored in raw form, or flat denormalized structures. Powerful transformation techniques
are available via Hadoop technologies, including Kylo’s leveraging of Spark. We don’t often see the need for expensive
and complicated ETL technologies for Hadoop.

Kylo provides a user interface for an end-user to configure new data feeds including schema, security, validation, and
cleansing. Kylo provides the ability to wrangle and prepare visual data transformations using Spark as an engine.

10 Chapter 2. FAQ

Kylo Documentation, Release 0.9.1

2.6.5 What is Kylo’s value-add over plain Apache NiFi?

NiFi acts as Kylo’s pipeline orchestration engine, but NiFi itself does not provide all of the tooling required for a data
lake solution. Some of Kylo’s distinct benefits over vanilla NiFi and Hadoop:

• Write-once, use many times. NiFi is a powerful IT tool for designing pipelines, but most data lake feeds utilize
just a small number of unique flows or “patterns”. Kylo allows IT the flexibility to design and register a NiFi
template as a data processing model for feeds. This enables non-technical business users to configure dozens,
or even hundreds of new feeds through Kylo’s simple, guided stepper-UI. In other words, our UI allows users to
setup feeds without having to code them in NiFi. As long as the basic ingestion pattern is the same, there is no
need for new coding. Business users will be able to bring in new data sources, perform standard transformations,
and publish to target systems.

• Operations Dashboard UI can be used for monitoring data feeds. It provides centralized health monitoring of
feeds and related infrastructure services, Service Level Agreements, data quality metrics reporting, and alerts.

• Web modules offer key data lake features such as metadata search, data discovery, data wrangling, data browse,
and event-based feed execution (to chain together flows).

• Rich metadata model with integrated governance and best practices.

• Kylo adds a set of data lake specific NiFi extensions around Data Profile, Data Cleanse, Data Validate,
Merge/Dedupe, High-water. In addition, general Spark and Hive processors not yet available with vanilla NiFi.

• Pre-built templates that implement data lake best practices: Data Ingest, ILM, and Data Processing.

2.7 Scheduler

2.7.1 How does Kylo manage job priority?

Kylo exposes the ability to control which yarn queue a task executes on. Typically scheduling this is done through the
scheduler. There are some advanced techniques in NiFi that allow further prioritization for shared resources.

2.7.2 Can Kylo support complicated ETL scheduling?

Kylo supports cron-based scheduling, but also timer-based, or event-based using JMS and an internal Kylo ruleset.
NiFi embeds the Quartz.

2.7.3 What’s the difference between “timer” and “cron” schedule strategies?

Timer is fixed interval, “every 5 minutes or 10 seconds”. Cron can be configured to do that as well, but can handle
more complex cases like “every tues at 8AM and 4PM”.

2.7.4 Does Kylo support 3rd party schedulers

Yes, feeds can be triggered via JMS or REST.

2.7. Scheduler 11

Kylo Documentation, Release 0.9.1

2.7.5 Does Kylo support chaining feeds? One data feed consumed by another data
feed?

Kylo supports event-based triggering of feeds based on preconditions or rules. One can define rules in the UI that
determine when to run a feed, such as “run when data has been processed by feed a and feed b and wait up to an hour
before running anyway”. We support simple rules up to very complicated rules requiring use of our API.

2.8 Security

2.8.1 Does Kylo support roles?

Kylo supports the definition of roles (or groups), and the specific permissions a user with that role can perform, down
to the function level.

2.8.2 What authentication methods are available?

Kylo uses Spring Security. Using pluggable login-modules, it can integrate with Active Directory, Kerberos, LDAP,
or most any authentication provider. See Developer Getting Started Guide.

2.8.3 What security features does Kylo support?

Kylo provides plugins that integrate with Apache Ranger or Apache Sentry, depending on the distribution that you
are running. These can be used to configure feed-based security and impersonating users properly to enforce user
permissions. Kylo fully supports Kerberized clusters and built-in features, such as HDFS encryption.

2.8.4 Is Kylo PCI compliant?

Kylo can be configured to use TLSv1.2 for all network communication it uses internally or externally. We are testing
running NiFi repositories on encrypted disk with a client. v0.8 will include some improvements required for full PCI
compliance.

2.9 Data Ingest

2.9.1 What is Kylo’s standard batch ingest workflow?

Kylo includes a sample pipeline template that implements many best practices around data ingest, mostly utilizing
Spark. Kylo makes it very simple for a business user to configure ingest of new source files and RDMBS tables into
Hive. Data can be read from a filesystem attached to the edge node, or directly using Kylo’s sqoop processor into
Hadoop. Original data is archived into a distinct location. Small files are optionally merged and headers stripped, if
needed. Data is cleansed, standardized, and validated based on user-defined policies. Invalid records are binned into
a separate table for later inspection. Valid records are inserted into a final Hive table with options such as (append,
snapshot, merge with dedupe, upsert, etc). Target format can differ from the raw source, contain custom partitions,
and group-based security. Finally each batch of valid data is automatically profiled.

12 Chapter 2. FAQ

Kylo Documentation, Release 0.9.1

2.9.2 Does Kylo support batch and streaming?

Yes, either types of pipelines can configured with Kylo. Kylo tracks performance statistics of streaming-style feeds in
activity over units of time. Kylo tracks performance of batch feeds in jobs and steps.

2.9.3 Which raw formats does Kylo support?

Kylo has a pluggable architecture for adding support for new types. Currently Kylo supports delimited-text formats
(for example: csv, tab, pipe) and all Hadoop formats, such as ORC, Parquet, RCFile, AVRO, and JSON.

2.9.4 Which target formats for Hive does Kylo support?

Kylo supports text-file, Parquet and ORC (default) with optional block compression, AVRO, text, and RCFile.

2.9.5 How does “incremental” loading strategy of a data feed work?

Kylo supports a simple incremental extract component. We maintain a high-water mark for each load using a date
field in the source record.

2.9.6 Can Kylo ingest from relational databases?

Yes, Kylo allows a user to select tables from RDBMS sources and easily configure ingest feeds choosing the target
table structure, cleansing and validation rules, and target format. Kylo invokes Sqoop via NiFi to avoid IO through the
edge node.

Kylo’s RDBMS ingest support requires configuring a type-specific JDBC driver. It has been tested with data sources
such as Teradata, SQL Server, Oracle, Postgres, and MySQL.

2.9. Data Ingest 13

Kylo Documentation, Release 0.9.1

14 Chapter 2. FAQ

CHAPTER 3

Terminology

There are a lot of new terms with Kylo and NiFi, and trying to learn them all, including distinctions between Kylo
and NiFi usage, can be overwhelming. The goal of this document is to detail the semantics of these terms within the
context of Kylo and NiFi. This document does not aim to write a definition for every term you will encounter in Kylo
and Apache NiFi.

Additional Resources:

• NiFi has documentation on its on their website. However, some of the terms will be outlined here in the context
of Kylo.

3.1 Apache NiFi Terminology

3.1.1 Processor

Refer to the NiFi document for NiFi-specific terminology.

• A processor has properties that are configured. The values for these properties can be hard-coded, or they can
be made dynamic by using the NiFi expression language, which will allow you to access the attributes of a
FlowFile as they go through the processor. They can also be set or overridden through Kylo.

3.1.2 FlowFile

Immutable NiFi object that encapsulates the data that moves through a NiFi flow. It consists of the data (content) and
some additional properties (attributes)

• NiFi wraps data in FlowFiles. FlowFiles can contain a piece of data, an entire dataset, and batches of data,.
depending upon which processors are used, and their configurations. A NiFi flow can have multiple FlowFiles
running through it at one time, and the FlowFiles can move from processor to processor independently of one
another. It is important to note that FlowFiles only conceptually “contain” the data. For scalability reasons,
FlowFiles actually have a pointer to the data in the NiFi Content Repository.

15

Kylo Documentation, Release 0.9.1

3.1.3 Connection

A connection between two processors, between input/output ports, or between both

• FlowFiles move from processor to processor through connections. A connection houses a queue. If a processor
on the receiving end of a connection is stopped or disabled, the FlowFiles will sit in that queue/connection until
the receiving processor is able to receive FlowFiles again.

3.1.4 Relationship

Closely tied to NiFi connections, see definition in NiFi terminology document

• When a processor is done with a FlowFile, it will route it to one or more relationships. These relationships
can either be set to auto-terminate (this would mark the end of the journey for FlowFiles that get routed to
auto-terminating relationships), or they can be attached to NiFi connections. The most common example is the
success and failure relationships. Processors, when finished with a FlowFile, determine which relationship(s)
to route the FlowFile to. This can create diverging paths in a flow, and can be used to represent conditional
business logic. For example: a flow can be designed so that when processor A routes to the success relationship
it goes to processor B, and when processor A routes to the failure relationship it routes to processor C.

3.1.5 Flow/Dataflow

A logically grouped sequence of connected processors and NiFi components

• You could also think of a flow as a program or a pipeline.

3.1.6 Controller Service

Refer to the NiFi document for NiFi-specific terminology.

• An example is the Hive Thrift Service of type ThriftConnectionPool, which is a controller service that lets the
ExecuteHQL and ExecuteHQLStatement processor types connect to a HiveServer2 instance.

3.1.7 NAR files

Similar to an uber JAR, a NiFi archive which may contain custom NiFi processors, controllers and all library depen-
dencies

• NAR files are bundles of code that you use to extend NiFi. If you write a custom processor or other custom
extension for NiFi, you must package it up in a NAR file and deploy it to NiFi.

3.1.8 Template

Refer to the NiFi document for NiFi-specific terminology.

• A template is a flow that has been saved for reuse. You can use a template to model a common pattern, and then
create useful flows out of that by configuring the processors to your specific use case. They can be exported and
imported as XML. The term “template” becomes overloaded with the introduction of Kylo, so it is important
when thinking and talking about Kylo to specify which kind of “template” you are referring to.

16 Chapter 3. Terminology

Kylo Documentation, Release 0.9.1

3.2 Kylo Terminology

3.2.1 Registered Template

The blueprint from which Kylo feeds are created.

• In Kylo, a template typically refers to a registered template. A registered template is a NiFi template that has
been registered through Kylo. When trying to register a NiFi template, there are multiple courses of action.
The first option is to upload a NiFi template that has been previously exported from NiFi as XML. This option
does not actually add the NiFi template to the list of registered templates in Kylo. Instead, this will upload the
NiFi template to the running instance of NiFi, which is futile if you already have that template available in the
running instance of NiFi. The second option is to register a NiFi template directly through NiFi. This will allow
you to choose from the NiFi templates that are available in the running instance of NiFi and register it. This
does add it to the list of registered templates. The third option is to upload a template that has been exported
from Kylo as a zip. Registered templates can be exported from one running instance of Kylo and registered in
other instances of Kylo by uploading the archive file (zip). An archive of a registered template will also have
the NiFi template in it. It is easiest to think of Kylo templates (a.k.a., registered templates) as being a layer on
top of NiFi templates.

3.2.2 Category

A container for grouping feeds

• Each feed must belong to a category. A feed cannot belong to multiple categories, but a category can contain
multiple feeds. A category is used as metadata in Kylo, and also manifests itself as a process group in the
running instance of NiFi

3.2.3 Input Processor or Source

The processor in a feed’s underlying flow that is at the beginning of the flow and generates FlowFiles rather than
transforming incoming ones

• There are processors that do not take incoming connections, and instead generate FlowFiles from external
sources. An example is the GetFile processor, which runs at a configured interval to check a specified di-
rectory for data. While these processors don’t necessarily “kick off” a flow, as a flow is always running (unless
the components are stopped or disabled), these processors are the origin for a flow and are considered the source
or input processors of a feed.

3.2.4 Feed

Typically will represent the key movement of data between a source (flat file) and sink (e.g. Hive)

• An instantiation of a Kylo template

• Feeds are created from templates. The idea is that NiFi templates are created to be reusable and generic. Then,
the NiFi templates are registered in Kylo, and the technical configurations of the NiFi template are hidden and
default values are set so that it is prepared for the end user. Then, the end user, equipped with their domain
knowledge, creates feeds from the Kylo templates.

3.2.5 Job

A single run of a feed

3.2. Kylo Terminology 17

Kylo Documentation, Release 0.9.1

• When an input processor generates a FlowFile, a new job for that feed starts. The job follows the FlowFile
through its feed’s underlying flow, capturing metadata along the way. Jobs can be of two types, FEED or
CHECK. By default, all jobs are of type FEED. They can be set to type CHECK by configuring one of the
processors to set the tb.jobType attribute to CHECK.

3.2.6 Step

A stage in a job

• Steps are specific to jobs in Kylo, and correlate directly to the processors that the FlowFile goes through for
that job. Flows can have conditional logic and multiple relationships, so each FlowFile that goes through a flow
may not follow the same path every time. A job follows a FlowFile, and has a step for each processor that the
FlowFile goes through.

3.2.7 Service

A service that Kylo has been configured to monitor

• Services in Kylo are not NiFi controller services. They are simply services, such as HDFS and Kafka, that Kylo
will monitor using either Ambari’s API or Cloudera’s REST client.

18 Chapter 3. Terminology

CHAPTER 4

Release Notes

4.1 Latest Stable Release

4.1.1 Release 0.9.1.3 (October 08, 2018)

Highlights

• Various issues fixed.

Download Links

• Visit the Downloads page for links.

Upgrade Instructions from v0.9.1

1. Backup any Kylo plugins

When Kylo is uninstalled it will backup configuration files, but not the /plugin jar files. If you have any
custom plugins in either kylo-services/plugin or kylo-ui/plugin then you will want to manually back them
up to a different location.

2. Stop and uninstall Kylo

2.1 Stop Kylo

/opt/kylo/stop-kylo-apps.sh

2.2 Uninstall Kylo

/opt/kylo/remove-kylo.sh

3. Install the new RPM:

19

Kylo Documentation, Release 0.9.1

rpm -ivh <RPM_FILE>

4. Restore previous application.properties files. If you have customized the the application.properties, copy the
backup from the 0.9.1 install.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/conf/application.properties /opt/kylo/
→˓kylo-services/conf/application.properties.0_9_1_1_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

4.3 If you copied the backup version of application.properties in step 4.2 you will need to make the
below changes based on the 0.9.1.1 version of the properties file

vi /opt/kylo/kylo-services/conf/application.properties

protocol for absolute hdfs url's (change to s3 or azure specific
→˓if needed)
config.hdfs.protocol=hdfs

4.4 Copy the /bkup-config/TIMESTAMP/kylo-ui/application.properties file to /opt/kylo/kylo-ui/conf

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-ui/conf/application.properties /opt/kylo/kylo-ui/
→˓conf/application.properties.0_9_1_1_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-ui/
→˓application.properties /opt/kylo/kylo-ui/conf

4.5 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. The property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties

security.jwt.key=

5. NOTE IF UPGRADING FROM 0.8.3 (or below): Kylo no longer ships with the default dladmin user. You
will need to re-add this user only if you’re using the default authentication configuration:

• Uncomment the following line in /opt/kylo/kylo-services/conf/application.
properties and /opt/kylo/kylo-ui/conf/application.properties :

security.auth.file.users=file:///opt/kylo/users.properties
security.auth.file.groups=file:///opt/kylo/groups.properties

20 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

• Create a file called users.properties file that is owned by kylo and replace dladmin with a
new username and thinkbig with a new password:

echo "dladmin=thinkbig" > /opt/kylo/users.properties
chown kylo:users /opt/kylo/users.properties
chmod 600 /opt/kylo/users.properties

• Create a file called groups.properties file that is owned by kylo and set the default groups:

vi /opt/kylo/groups.properties

dladmin=admin,user
analyst=analyst,user
designer=designer,user
operator=operations,user

chown kylo:users /opt/kylo/groups.properties
chmod 600 /opt/kylo/groups.properties

6. To enable reindexing of a feed’s historical data:

(a) Verify option in /opt/kylo/kylo-services/conf/application.properties for Kylo ser-
vices. This is true by default.

search.history.data.reindexing.enabled=true

(b) If using Solr instead of Elasticsearch as the search engine, add one property to /opt/kylo/
kylo-services/conf/solrsearch.properties file.

config.http.solr.url=http://${search.host}:${search.port}

7. Update the NiFi nars.

Stop NiFi

service nifi stop

Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and
services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

Start NiFi

service nifi start

8. Start Kylo

/opt/kylo/start-kylo-apps.sh

4.1. Latest Stable Release 21

Kylo Documentation, Release 0.9.1

4.2 Previous Releases

4.2.1 Release 0.9.1.2 (September 24, 2018)

Highlights

• Various issues fixed.

Download Links

• Visit the Downloads page for links.

Upgrade Instructions from v0.9.1

1. Backup any Kylo plugins

When Kylo is uninstalled it will backup configuration files, but not the /plugin jar files. If you have any
custom plugins in either kylo-services/plugin or kylo-ui/plugin then you will want to manually back them
up to a different location.

2. Stop and uninstall Kylo

2.1 Stop Kylo

/opt/kylo/stop-kylo-apps.sh

2.2 Uninstall Kylo

/opt/kylo/remove-kylo.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>

4. Restore previous application.properties files. If you have customized the the application.properties, copy the
backup from the 0.9.1 install.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/conf/application.properties /opt/kylo/
→˓kylo-services/conf/application.properties.0_9_1_1_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

4.3 If you copied the backup version of application.properties in step 4.2 you will need to make the
below changes based on the 0.9.1.1 version of the properties file

22 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

vi /opt/kylo/kylo-services/conf/application.properties

protocol for absolute hdfs url's (change to s3 or azure specific
→˓if needed)
config.hdfs.protocol=hdfs

4.4 Copy the /bkup-config/TIMESTAMP/kylo-ui/application.properties file to /opt/kylo/kylo-ui/conf

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-ui/conf/application.properties /opt/kylo/kylo-ui/
→˓conf/application.properties.0_9_1_1_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-ui/
→˓application.properties /opt/kylo/kylo-ui/conf

4.5 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. The property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties

security.jwt.key=

5. NOTE IF UPGRADING FROM 0.8.3 (or below): Kylo no longer ships with the default dladmin user. You
will need to re-add this user only if you’re using the default authentication configuration:

• Uncomment the following line in /opt/kylo/kylo-services/conf/application.
properties and /opt/kylo/kylo-ui/conf/application.properties :

security.auth.file.users=file:///opt/kylo/users.properties
security.auth.file.groups=file:///opt/kylo/groups.properties

• Create a file called users.properties file that is owned by kylo and replace dladmin with a
new username and thinkbig with a new password:

echo "dladmin=thinkbig" > /opt/kylo/users.properties
chown kylo:users /opt/kylo/users.properties
chmod 600 /opt/kylo/users.properties

• Create a file called groups.properties file that is owned by kylo and set the default groups:

vi /opt/kylo/groups.properties

dladmin=admin,user
analyst=analyst,user
designer=designer,user
operator=operations,user

chown kylo:users /opt/kylo/groups.properties
chmod 600 /opt/kylo/groups.properties

6. To enable reindexing of a feed’s historical data:

(a) Verify option in /opt/kylo/kylo-services/conf/application.properties for Kylo ser-
vices. This is true by default.

4.2. Previous Releases 23

Kylo Documentation, Release 0.9.1

search.history.data.reindexing.enabled=true

(b) If using Solr instead of Elasticsearch as the search engine, add one property to /opt/kylo/
kylo-services/conf/solrsearch.properties file.

config.http.solr.url=http://${search.host}:${search.port}

7. Update the NiFi nars.

Stop NiFi

service nifi stop

Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and
services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

Start NiFi

service nifi start

8. Start Kylo

/opt/kylo/start-kylo-apps.sh

4.2.2 Release 0.9.1.1 (July 6, 2018)

Highlights

• Various issues fixed.

Download Links

• Visit the Downloads page for links.

Upgrade Instructions from v0.9.1

1. Backup any Kylo plugins

When Kylo is uninstalled it will backup configuration files, but not the /plugin jar files. If you have any
custom plugins in either kylo-services/plugin or kylo-ui/plugin then you will want to manually back them
up to a different location.

2. Stop and uninstall Kylo

2.1 Stop Kylo

/opt/kylo/stop-kylo-apps.sh

2.2 Uninstall Kylo

24 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

/opt/kylo/remove-kylo.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>

4. Restore previous application.properties files. If you have customized the the application.properties, copy the
backup from the 0.9.1 install.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/conf/application.properties /opt/kylo/
→˓kylo-services/conf/application.properties.0_9_1_1_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

4.3 If you copied the backup version of application.properties in step 4.2 you will need to make the
below changes based on the 0.9.1.1 version of the properties file

vi /opt/kylo/kylo-services/conf/application.properties

protocol for absolute hdfs url's (change to s3 or azure specific
→˓if needed)
config.hdfs.protocol=hdfs

4.4 Copy the /bkup-config/TIMESTAMP/kylo-ui/application.properties file to /opt/kylo/kylo-ui/conf

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-ui/conf/application.properties /opt/kylo/kylo-ui/
→˓conf/application.properties.0_9_1_1_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-ui/
→˓application.properties /opt/kylo/kylo-ui/conf

4.5 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. The property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties

security.jwt.key=

5. NOTE: Kylo no longer ships with the default dladmin user. You will need to re-add this user only if you’re
using the default authentication configuration:

• Uncomment the following line in /opt/kylo/kylo-services/conf/application.
properties and /opt/kylo/kylo-ui/conf/application.properties :

4.2. Previous Releases 25

Kylo Documentation, Release 0.9.1

security.auth.file.users=file:///opt/kylo/users.properties
security.auth.file.groups=file:///opt/kylo/groups.properties

• Create a file called users.properties file that is owned by kylo and replace dladmin with a
new username and thinkbig with a new password:

echo "dladmin=thinkbig" > /opt/kylo/users.properties
chown kylo:users /opt/kylo/users.properties
chmod 600 /opt/kylo/users.properties

• Create a file called groups.properties file that is owned by kylo and set the default groups:

vi /opt/kylo/groups.properties

dladmin=admin,user
analyst=analyst,user
designer=designer,user
operator=operations,user

chown kylo:users /opt/kylo/groups.properties
chmod 600 /opt/kylo/groups.properties

6. To enable reindexing of a feed’s historical data:

(a) Verify option in /opt/kylo/kylo-services/conf/application.properties for Kylo ser-
vices. This is true by default.

search.history.data.reindexing.enabled=true

(b) If using Solr instead of Elasticsearch as the search engine, add one property to /opt/kylo/
kylo-services/conf/solrsearch.properties file.

config.http.solr.url=http://${search.host}:${search.port}

7. Update the NiFi nars.

Stop NiFi

service nifi stop

Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and
services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

Start NiFi

service nifi start

8. Start Kylo

/opt/kylo/start-kylo-apps.sh

26 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

4.2.3 Release 0.9.1 (May 23, 2018)

Highlights

• Various issues fixed -

• NiFi 1.6.0 support

• Spark Shell default is now managed mode

• Manually start a feed, irrespective of its schedule

• NiFi Remote Process Group support

• New wrangler transformation features, profiling, performance, and improved user interface

• Hive to Teradata Ingest via TDCH

• New advanced ingest templates for batch and streaming sources

• XML ingest with nested struct and array transformation

Download Links

• Visit the Downloads page for links.

Upgrade Instructions from v0.9.0

Note: A bug was found that in v0.9.1 that causes upgrades to fail when starting from a version earlier than v0.8.3.
The workaround is to first install and upgrade to v0.9.0 (or any version earlier than v0.9.1) then install v0.9.1. This
bug will be fixed in v0.9.1.1 and v0.9.2.

1. Backup any Kylo plugins

When Kylo is uninstalled it will backup configuration files, but not the /plugin jar files. If you have any
custom plugins in either kylo-services/plugin or kylo-ui/plugin then you will want to manually back them
up to a different location.

2. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>

4. Restore previous application.properties files. If you have customized the the application.properties, copy the
backup from the 0.9.0 install.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

4.2. Previous Releases 27

Kylo Documentation, Release 0.9.1

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/conf/application.properties /opt/kylo/
→˓kylo-services/conf/application.properties.0_9_1_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

4.3 If you copied the backup version of application.properties in step 4.2 you will need to make a
couple of other changes based on the 0.9.1 version of the properties file

vi /opt/kylo/kylo-services/conf/application.properties

Add the auth-spark profile
spring.profiles.include=native,nifi-v1.2,auth-kylo,auth-file,
→˓search-esr,jms-activemq,auth-spark

Add the new property
kylo.feed.mgr.hive.target.syncColumnDescriptions=true

Add the new property to support the updated templates
config.nifi.kylo.applicationJarDirectory=/opt/nifi/current/lib/app

Add new property to support remote process groups in a NiFi non-
→˓clustered environment
kylo.template.remote-process-groups.enabled=false

Add this section to support Teradata ingest via Kylo template
→˓(using TDCH)
################################ Teradata Ingest via Kylo Template
→˓##
When using data_ingest__teradata.template.zip, set these
→˓properties, start Kylo, and import the template
These values are defaults. Modify them as per your environment.
#
StandardTdchConnectionService parameters
Ensure that the TDCH and Hive paths are correct
nifi.service.standardtdchconnectionservice.jdbc_driver_class=com.
→˓teradata.jdbc.TeraDriver
nifi.service.standardtdchconnectionservice.jdbc_connection_
→˓url=jdbc:teradata://localhost
nifi.service.standardtdchconnectionservice.username=dbc
nifi.service.standardtdchconnectionservice.password=
nifi.service.standardtdchconnectionservice.tdch_jar_path=/usr/lib/
→˓tdch/1.5/lib/teradata-connector-1.5.4.jar
nifi.service.standardtdchconnectionservice.hive_conf_path=/usr/hdp/
→˓current/hive-client/conf
nifi.service.standardtdchconnectionservice.hive_lib_path=/usr/hdp/
→˓current/hive-client/lib

Kylo-Teradata-DBC connection parameters
Ensure that the driver paths are correct
nifi.service.kylo-teradata-dbc.database_driver_location(s)=file:///
→˓opt/nifi/teradata/terajdbc4.jar,file:///opt/nifi/teradata/
→˓tdgssconfig.jar

(continues on next page)

28 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

(continued from previous page)

The below parameters will use the values supplied for
→˓StandardTdchConnectionService above. Update them if needed (by
→˓default, you can leave them as such)
nifi.service.kylo-teradata-dbc.database_connection_url=${nifi.
→˓service.standardtdchconnectionservice.jdbc_connection_url}
nifi.service.kylo-teradata-dbc.database_driver_class_name=${nifi.
→˓service.standardtdchconnectionservice.jdbc_driver_class}
nifi.service.kylo-teradata-dbc.database_user=${nifi.service.
→˓standardtdchconnectionservice.username}
nifi.service.kylo-teradata-dbc.password=${nifi.service.
→˓standardtdchconnectionservice.password}
###
→˓##

4.4 Repeat previous copy step for other relevant backup files to the /opt/kylo/kylo-services/conf
folder. Some examples of files:

• spark.properties

• ambari.properties

• elasticsearch-rest.properties

• log4j.properties

• sla.email.properties

NOTE: Be careful not to overwrite configuration files used exclusively by Kylo

4.5 Copy the /bkup-config/TIMESTAMP/kylo-ui/application.properties file to /opt/kylo/kylo-ui/conf

4.6 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties

security.jwt.key=

5. NOTE IF UPGRADING FROM 0.8.3 (or below): Kylo no longer ships with the default dladmin user. You will
need to re-add this user only if you’re using the default authentication configuration:

• Uncomment the following line in /opt/kylo/kylo-services/conf/application.
properties and /opt/kylo/kylo-ui/conf/application.properties :

security.auth.file.users=file:///opt/kylo/users.properties
security.auth.file.groups=file:///opt/kylo/groups.properties

• Create a file called users.properties file that is owned by kylo and replace dladmin with a
new username and thinkbig with a new password:

echo "dladmin=thinkbig" > /opt/kylo/users.properties
chown kylo:users /opt/kylo/users.properties
chmod 600 /opt/kylo/users.properties

• Create a file called groups.properties file that is owned by kylo and set the default groups:

vi /opt/kylo/groups.properties

4.2. Previous Releases 29

Kylo Documentation, Release 0.9.1

dladmin=admin,user
analyst=analyst,user
designer=designer,user
operator=operations,user

chown kylo:users /opt/kylo/groups.properties
chmod 600 /opt/kylo/groups.properties

6. Update the NiFi nars.

Stop NiFi

service nifi stop

Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and
services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

Start NiFi

service nifi start

8. Remove kylo-service script. It has been moved

rm /opt/kylo/kylo-service

9. Start Kylo

kylo-service start

10. (Optional) Re-import default templates:

• Data Ingest

• Data Transformation

• Import via (Admin | Templates -> + icon -> Import from a file -> Choose file -> Check yes to ‘overwrite’ feed
template -> Check yes to ‘Replace the reusable template’ -> Import template)

11. (Optional) Import new templates:

• XML Ingest

• Import via (Admin | Templates -> + icon -> Import from a file -> Choose file -> Check yes to ‘overwrite’ feed
template -> Check yes to ‘Replace the reusable template’ -> Import template)

12. (Optional) Import new batch and streaming ingest templates (NiFi 1.5+ required):

• Advanced Ingest

• Streaming Ingest

• Import via (Admin | Templates -> + icon -> Import from a file -> Choose file -> Check yes to ‘overwrite’ feed
template -> Check yes to ‘Replace the reusable template’ -> Import template)

NOTE: You will no longer see the kylo-spark-shell service start. The spark shell is now launched by kylo-services
(managed mode)

30 Chapter 4. Release Notes

https://github.com/Teradata/kylo/blob/release/0.9.1/samples/templates/nifi-1.0/data_ingest.zip
https://github.com/Teradata/kylo/blob/release/0.9.1/samples/templates/nifi-1.0/data_transformation.template.zip
https://github.com/Teradata/kylo/blob/release/0.9.1/samples/templates/nifi-1.0/xml_ingest.template.zip
https://github.com/Teradata/kylo/blob/release/0.9.1/samples/templates/nifi-1.5/advanced_ingest.template.zip
https://github.com/Teradata/kylo/blob/release/0.9.1/samples/templates/nifi-1.5/streaming_ingest.template.zip

Kylo Documentation, Release 0.9.1

Highlight Details

• NiFi 1.6.0 support

– Kylo now works with NiFi 1.6.0. If you have NiFi 1.6.0, You should still use the spring profile nifi-v1.
2 in the kylo-services/conf/application.properties file.

• Spark Shell Service

– The spark shell process has been removed and managed mode is now the default mode

• Wrangler/Visual Query improvements

– Ability to upload a file from the desktop. In data source list, see upload file option.

– New server-side paging provides improved user experience and ability to work with very large datasets

– New column analysis (column dropdown) provides categorical and histogram statistics (numeric)

– Many new functions available from column dropdown: Explode array, Flatten Struct, Impute Missing,
Replace Missing,Crosstab,Array to Cols,One hot encode, index labels, Vectorize,and more.

– New context menu options for operating on text selections and values (clear, split, strip, delete, etc)

• XML Ingest

– New XML Ingest template provides the ability to setup a feed to ingest and transform XML into a tabular
layout

• Advanced Batch Ingest template

– Adds additional datasources Azure Blob, S3, HDFS, REST, SFTP, Filesystem, and RDBMS

– Uses new savepoint and retry features to improve restartability and robustness of pipelines

• Streaming Ingest template

– Streaming sources such as JMS, Kafka, HTTP Listener, MQTT, RELP, SQS

– Streams into HBase with a Hive table access

– JSON formats flattened into schema, otherwise stpred as key, clob value

– Hive/HBase configuration required (An example of a guide: hbase-via-hive)

• Manually start a feed irrespective of its schedule

4.2.4 Release 0.9.0.2 (March 29, 2018)

Highlights

• Improved Initialize Feed NiFi Processor performance

• Various issues fixed -

Download Links

• Visit the Downloads page for links.

4.2. Previous Releases 31

https://hortonworks.com/blog/hbase-via-hive-part-1/

Kylo Documentation, Release 0.9.1

Upgrade Instructions from v0.9.x

1. Backup any Kylo plugins

When Kylo is uninstalled it will backup configuration files, but not the /plugin jar files. If you have any
custom plugins in either kylo-services/plugin or kylo-ui/plugin then you will want to manually back them
up to a different location.

2. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>

4. Restore previous application.properties files. If you have customized the the application.properties, copy the
backup from the 0.8.3 install.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/conf/application.properties /opt/kylo/
→˓kylo-services/conf/application.properties.0_8_3_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

4.3 Copy the /bkup-config/TIMESTAMP/kylo-ui/application.properties file to /opt/kylo/kylo-ui/conf

4.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties

security.jwt.key=

5. NOTE: Kylo no longer ships with the default dladmin user. You will need to re-add this user only if you’re
using the default authentication configuration:

• Uncomment the following line in /opt/kylo/kylo-services/conf/application.
properties and /opt/kylo/kylo-ui/conf/application.properties :

security.auth.file.users=file:///opt/kylo/users.properties
security.auth.file.groups=file:///opt/kylo/groups.properties

• Create a file called users.properties file that is owned by kylo and replace dladmin with a
new username and thinkbig with a new password:

32 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

echo "dladmin=thinkbig" > /opt/kylo/users.properties
chown kylo:users /opt/kylo/users.properties
chmod 600 /opt/kylo/users.properties

• Create a file called groups.properties file that is owned by kylo and set the default groups:

vi /opt/kylo/groups.properties

dladmin=admin,user
analyst=analyst,user
designer=designer,user
operator=operations,user

chown kylo:users /opt/kylo/groups.properties
chmod 600 /opt/kylo/groups.properties

6. To enable reindexing of a feed’s historical data:

(a) Verify option in /opt/kylo/kylo-services/conf/application.properties for Kylo ser-
vices. This is true by default.

search.history.data.reindexing.enabled=true

(b) If using Solr instead of Elasticsearch as the search engine, add one property to /opt/kylo/
kylo-services/conf/solrsearch.properties file.

config.http.solr.url=http://${search.host}:${search.port}

7. Update the NiFi nars.

Stop NiFi

service nifi stop

Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and
services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

Start NiFi

service nifi start

8. Start Kylo

/opt/kylo/start-kylo-apps.sh

4.2.5 Release 0.9.0.1 (March 2, 2018)

Highlights

• Various issues fixed -

4.2. Previous Releases 33

Kylo Documentation, Release 0.9.1

Download Links

• Visit the Downloads page for links.

Upgrade Instructions from v0.9.0

1. Backup any Kylo plugins

When Kylo is uninstalled it will backup configuration files, but not the /plugin jar files. If you have any
custom plugins in either kylo-services/plugin or kylo-ui/plugin then you will want to manually back them
up to a different location.

2. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>

4. Restore previous application.properties files. If you have customized the the application.properties, copy the
backup from the 0.8.3 install.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/conf/application.properties /opt/kylo/
→˓kylo-services/conf/application.properties.0_8_3_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

4.3 Copy the /bkup-config/TIMESTAMP/kylo-ui/application.properties file to /opt/kylo/kylo-ui/conf

4.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties

security.jwt.key=

5. NOTE: Kylo no longer ships with the default dladmin user. You will need to re-add this user only if you’re
using the default authentication configuration:

• Uncomment the following line in /opt/kylo/kylo-services/conf/application.
properties and /opt/kylo/kylo-ui/conf/application.properties :

security.auth.file.users=file:///opt/kylo/users.properties
security.auth.file.groups=file:///opt/kylo/groups.properties

34 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

• Create a file called users.properties file that is owned by kylo and replace dladmin with a
new username and thinkbig with a new password:

echo "dladmin=thinkbig" > /opt/kylo/users.properties
chown kylo:users /opt/kylo/users.properties
chmod 600 /opt/kylo/users.properties

• Create a file called groups.properties file that is owned by kylo and set the default groups:

vi /opt/kylo/groups.properties

dladmin=admin,user
analyst=analyst,user
designer=designer,user
operator=operations,user

chown kylo:users /opt/kylo/groups.properties
chmod 600 /opt/kylo/groups.properties

6. To enable reindexing of a feed’s historical data:

(a) Verify option in /opt/kylo/kylo-services/conf/application.properties for Kylo ser-
vices. This is true by default.

search.history.data.reindexing.enabled=true

(b) If using Solr instead of Elasticsearch as the search engine, add one property to /opt/kylo/
kylo-services/conf/solrsearch.properties file.

config.http.solr.url=http://${search.host}:${search.port}

7. Update the NiFi nars.

Stop NiFi

service nifi stop

Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and
services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

Start NiFi

service nifi start

8. Start Kylo

/opt/kylo/start-kylo-apps.sh

4.2. Previous Releases 35

Kylo Documentation, Release 0.9.1

4.2.6 Release 0.9.0 (February 19, 2018)

Highlights

• UI improvements with large data feeds

• Improved Datasource Browsing

• Wrangler enhancements with data type conversions and domain type detection

• Exporting Visual Query to file or Hive table

• Kylo Localization support

• NiFi 1.5.0 support

• Connect Reusable templates together

• Improved Provenance handling for streaming feeds

• Security enhancements

• Entity Access Control for Elasticsearch

• Ability to reindex historical feed data for Elasticsearch and Solr

• New high-water mark policy to automatically cancel unreleased water marks

• Feed Versioning

• Save Point processor

• Numerous issues fixed.

Download Links

• Visit the Downloads page for links.

Upgrade Instructions from v0.8.4.1

1. Backup any Kylo plugins

When Kylo is uninstalled it will backup configuration files, but not the /plugin jar files. If you have any
custom plugins in either kylo-services/plugin or kylo-ui/plugin then you will want to manually back them
up to a different location.

2. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>

4. Restore previous application.properties files. If you have customized the the application.properties, copy the
backup from the 0.8.3 install.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

36 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/conf/application.properties /opt/kylo/
→˓kylo-services/conf/application.properties.0_8_3_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

4.3 Copy the /bkup-config/TIMESTAMP/kylo-ui/application.properties file to /opt/kylo/kylo-ui/conf

4.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. The property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties

security.jwt.key=

5. NOTE: Kylo no longer ships with the default dladmin user. You will need to re-add this user only if you’re
using the default authentication configuration:

• Uncomment the following line in /opt/kylo/kylo-services/conf/application.
properties and /opt/kylo/kylo-ui/conf/application.properties :

security.auth.file.users=file:///opt/kylo/users.properties
security.auth.file.groups=file:///opt/kylo/groups.properties

• Create a file called users.properties file that is owned by kylo and replace dladmin with a
new username and thinkbig with a new password:

echo "dladmin=thinkbig" > /opt/kylo/users.properties
chown kylo:users /opt/kylo/users.properties
chmod 600 /opt/kylo/users.properties

• Create a file called groups.properties file that is owned by kylo and set the default groups:

vi /opt/kylo/groups.properties

dladmin=admin,user
analyst=analyst,user
designer=designer,user
operator=operations,user

chown kylo:users /opt/kylo/groups.properties
chmod 600 /opt/kylo/groups.properties

6. To enable reindexing of a feed’s historical data:

(a) Verify option in /opt/kylo/kylo-services/conf/application.properties for Kylo ser-
vices. This is true by default.

search.history.data.reindexing.enabled=true

(b) If using Solr instead of Elasticsearch as the search engine, add one property to /opt/kylo/
kylo-services/conf/solrsearch.properties file.

4.2. Previous Releases 37

Kylo Documentation, Release 0.9.1

config.http.solr.url=http://${search.host}:${search.port}

7. Start Kylo

/opt/kylo/start-kylo-apps.sh

8. Once Kylo is up, to enable reindexing of a feed’s historical data, complete these remaining steps:

(a) Import the updated Index Text Service feed via these steps:

i. Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

ii. Pick the index_text_service_hs_v<version_number>.feed.zip file available at /
opt/kylo/setup/data/feeds/nifi-1.3/history-reindexing/

iii. Leave Change the Category field blank (It defaults to System)

iv. Click Yes for these three options (1) Overwrite Feed (2) Replace Feed Template (3) Replace Reusable
Template

v. Click Import Feed.

vi. Verify that the feed imports successfully.

(b) Import the History Reindex Text Service feed via these steps:

i. Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

ii. Pick the history_reindex_text_service_hs_v<version_number>.feed.zip file
available at /opt/kylo/setup/data/feeds/nifi-1.3/history-reindexing/

iii. Leave Change the Category field blank (It defaults to System)

iv. Click Yes for these three options (1) Overwrite Feed (2) Replace Feed Template (3) Replace Reusable
Template

v. Click Import Feed.

vi. Verify that the feed imports successfully.

Highlight Details

• UI improvements with large data feeds

– Kylo’s user interface now handles feeds with large column sets during feed creation, editing, and
table/profile browsing

• Improved Datasource Browsing

– The Tables link on the left is now called Catalog. You can browse data from Hive as well as other Data
Sources you have registered.

38 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

• Wrangler enhancements

– Ability to quickly convert data types to other types

– Detect domain types by column name as well as data

• Exporting Visual Query to file or Hive table

• Kylo Localization support

– Kylo’s UI is capable of supporting localization. Contact for translation options available under Kylo’s
Enterprise subscription support.

• NiFi 1.5.0 support

– Kylo now works with NiFi 1.5.0. If you have NiFi 1.5.0, You should still use the spring profile nifi-v1.
2 in the kylo-services/conf/application.properties file.

• Connect Reusable templates together

• Improved Provenance handling for streaming feeds

– Streaming feed evetns will process much faster in JMS. Streaming feeds are now derived within NiFi and
the events will no longer be sent to the thinkbig.feed-manager batch JMS queue.

• Security enhancements

• Entity Access Control for Elasticsearch

• Ability to reindex historical feed data for Elasticsearch and Solr

• Improved Release Highwatermark so flows wont get stuck

• Compare feed versions

– You can now compare the current feed version against other saved versions and see what prop-
erties have changed over time.

4.2. Previous Releases 39

Kylo Documentation, Release 0.9.1

• Save Point processor

– A newly added Savepoint NiFi processor and ControllerService allows you to configure flows and retry
failures within Kylo Operations Manager.

4.2.7 Release 0.8.4.1 (December 21, 2017)

Highlights

• Enhanced feed stepper plugin capabilities (Documentation & Examples)

• 11 Issues fixed.

Download Links

• Visit the Downloads page for links.

Upgrade Instructions from v0.8.4

1. Backup any Kylo plugins

When Kylo is uninstalled it will backup configuration files, but not the /plugin jar files. If you have any
custom plugins in either kylo-services/plugin or kylo-ui/plugin then you will want to manually back them
up to a different location.

2. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>

40 Chapter 4. Release Notes

https://github.com/Teradata/kylo/tree/master/samples/plugins/example-ui-feed-stepper-plugin

Kylo Documentation, Release 0.9.1

4. Restore previous application.properties files. If you have customized the the application.properties, copy the
backup from the 0.8.3 install.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/conf/application.properties /opt/kylo/
→˓kylo-services/conf/application.properties.0_8_3_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

4.3 Copy the /bkup-config/TIMESTAMP/kylo-ui/application.properties file to /opt/kylo/kylo-ui/conf

4.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties

security.jwt.key=

5. NOTE: Kylo no longer ships with the default dladmin user. You will need to re-add this user only if you’re
using the default authentication configuration:

• Uncomment the following line in /opt/kylo/kylo-services/conf/application.
properties and /opt/kylo/kylo-ui/conf/application.properties :

security.auth.file.users=file:///opt/kylo/users.properties
security.auth.file.groups=file:///opt/kylo/groups.properties

• Create a file called users.properties file that is owned by kylo and replace dladmin with a
new username and thinkbig with a new password:

echo "dladmin=thinkbig" > /opt/kylo/users.properties
chown kylo:users /opt/kylo/users.properties
chmod 600 /opt/kylo/users.properties

• Create a file called groups.properties file that is owned by kylo and set the default groups:

vi /opt/kylo/groups.properties

dladmin=admin,user
analyst=analyst,user
designer=designer,user
operator=operations,user

chown kylo:users /opt/kylo/groups.properties
chmod 600 /opt/kylo/groups.properties

6. Start Kylo

4.2. Previous Releases 41

Kylo Documentation, Release 0.9.1

/opt/kylo/start-kylo-apps.sh

4.2.8 Release 0.8.4 (November 29, 2017)

Highlights

• NiFi-1.4.0 support

• Enhanced Operations Manager dashboard with better performance

• SLA improvements including customizable SLA email templates

• Enhanced operations streaming statistics supporting more viewing options

• Ability to clone an existing Feed

• Visual query enhancements. The Transform Data step has been improved with UI enhancements including a
context menu when clicking on a row or highlighting text.

• Preview validation errors. Apply domain types in a Data Transformation feed and preview which rows are
invalid.

• Secure installation. Default usernames and passwords can be customized during installation to ensure a secure
environment.

• Global search enhancements. Deleting a feed will remove its data from search results. Re-processing same data
via a feed will not duplicate search results.

• 136 Issues fixed

Download Links

• Visit the Downloads page for links.

Upgrade Instructions from v0.8.3

1. Stop NiFi:

service nifi stop

2. Backup any Kylo plugins

When Kylo is uninstalled it will backup configuration files, but not the /plugin jar files. If you have any
custom plugins in either kylo-services/plugin or kylo-ui/plugin then you will want to manually back them
up to a different location.

3. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

4. Install the new RPM:

rpm -ivh <RPM_FILE>

5. Global search configuration (only applicable if using Elasticsearch):

42 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

5.1. This step to create kylo indexes may already have been performed as part of v0.8.3 installation.
If indexes already exist, Elasticsearch will report an index_already_exists_exception. It
is safe to ignore this and continue.

Change the host and port if necessary. The last two parameters define num-shards and num-replicas,
and can be kept as 1 for development environment.

/opt/kylo/bin/create-kylo-indexes-es.sh localhost 9200 1 1

5.2. If using Elasticsearch v5, update the Index Text Service feed. This step should be done once
Kylo services are started and Kylo is up and running. [Note: This requires NiFi 1.3 or later]

Import the feed index_text_service_v2.feed.zip file available at /opt/kylo/
setup/data/feeds/nifi-1.3. Click ‘Yes’ for these options during feed import (a) Overwrite
Feed (b) Replace Feed Template (c) Replace Reusable Template.

5.3. If using Elasticsearch v2, install an additional plugin to support deletes. If required, change the
location to where Elasticsearch is installed.

sudo /usr/share/elasticsearch/bin/plugin install delete-by-query
service elasticsearch restart

6. Restore previous application.properties files. If you have customized the the application.properties, copy the
backup from the 0.8.3 install.

6.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

6.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/conf/application.properties /opt/kylo/
→˓kylo-services/conf/application.properties.0_8_3_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

6.3 Copy the /bkup-config/TIMESTAMP/kylo-ui/application.properties file to /opt/kylo/kylo-ui/conf

6.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties

security.jwt.key=

7. JMS configuration:

It was previously possible to provide ActiveMQ and AmazonSQS configuration in their respective configuration files
called activemq.properties and amazon-sqs.properties. It is no longer possible and these proper-
ties should be moved over to standard Kylo configuration file found in <KYLO_HOME>/kylo-services/conf/
application.properties.

4.2. Previous Releases 43

Kylo Documentation, Release 0.9.1

8. NOTE: Kylo no longer ships with the default dladmin user. You will need to re-add this user only if you’re
using the default authentication configuration:

• Uncomment the following line in /opt/kylo/kylo-services/conf/application.
properties and /opt/kylo/kylo-ui/conf/application.properties :

security.auth.file.users=file:///opt/kylo/users.properties
security.auth.file.groups=file:///opt/kylo/groups.properties

• Create a file called users.properties file that is owned by kylo and replace dladmin with a
new username and thinkbig with a new password:

echo "dladmin=thinkbig" > /opt/kylo/users.properties
chown kylo:users /opt/kylo/users.properties
chmod 600 /opt/kylo/users.properties

• Create a file called groups.properties file that is owned by kylo and set the default groups:

vi /opt/kylo/groups.properties

dladmin=admin,user
analyst=analyst,user
designer=designer,user
operator=operations,user

chown kylo:users /opt/kylo/groups.properties
chmod 600 /opt/kylo/groups.properties

9. Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to
NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

10. Start NiFi and Kylo

service nifi start

/opt/kylo/start-kylo-apps.sh

10.1 Once Kylo is up and running, refer back to step 5.2 to update the Index Text Service feed
if using Elasticsearch v5.

4.2.9 Release 0.8.3.3 (October 16, 2017)

Highlights

• New configuration option added to the auth-ad security profile to control user details filtering (addresses Win-
dows 365 issues)

• Fixes KYLO-1281 missing Kylo Upgrade Version

44 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

Download Links

• RPM : http://bit.ly/2yMUbjb

• Debian : http://bit.ly/2yrdL1o

• TAR : http://bit.ly/2ylM5NR

Upgrade Instructions from v0.8.3 & v0.8.3.1

1. Install the new RPM:

rpm -ivh <RPM_FILE>

2. If using the auth-ad profile and having problems with accessing user info in AD (experienced by some Win-
dows 365 deployments), add the following property to the existing AD properties in both kylo-services and kylo-ui
application.properties files:

security.auth.ad.server.searchFilter=(&(objectClass=user)(sAMAccountName={1}
→˓))

4.2.10 Release 0.8.3.2 (October 10, 2017)

Note: A later version, 0.8.3.3 exists that fixes an issue with this release. Please visit Release 0.8.3.3 (October 16,
2017) for the latest version

Highlights

• New configuration option added to the auth-ad security profile to control user details filtering (addresses Win-
dows 365 issues)

Download Links

Please visit Release 0.8.3.3 (October 16, 2017) for download links

Upgrade Instructions from v0.8.3 & v0.8.3.1

Please visit Release 0.8.3.3 (October 16, 2017) for download links and install instructions

4.2.11 Release 0.8.3.1 (September 20, 2017)

Highlights

• Optimize feed creation in NiFi and improve NiFi usability when there is a large number of feeds

• Ability to skip NiFi auto alignment when saving feeds

• Fix bug in operations manager that didn’t correctly fail jobs

• Support for ‘failure connection’ detection in feeds that contain sub process groups

4.2. Previous Releases 45

http://bit.ly/2yMUbjb
http://bit.ly/2yrdL1o
http://bit.ly/2ylM5NR

Kylo Documentation, Release 0.9.1

• Fixes KYLO-823, KYLO-1202 setting controller service properties in feed/reusable templates

• Follow targetURL when logging in

• Fix Hive impersonation bug

• Additional metadata indexing to increase Kylo performance

Download Links

• RPM : http://bit.ly/2xgHsUM

• Debian : http://bit.ly/2hhqKOG

• TAR : http://bit.ly/2xT9ExY

Upgrade Instructions from v0.8.3

Build or download the RPM

1. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

2. Install the new RPM:

rpm -ivh <RPM_FILE>

3. Copy the application.properties file from the 0.8.2 install. If you have customized the application.properties file
you will want to copy the 0.8.2 version and add the new properties that were added for this release.

3.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

3.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/application.properties application.
→˓properties.0_8_2_2_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

3.3 Optional: If you want to skip the auto alignment after saving feeds then add in the new properties
to the /opt/kylo/kylo-services/application.properties file

skip auto alignment after you create a feed.
##You can always manually align your flows in NiFi via a
→˓Kylo Rest Endpoint
nifi.auto.align=false

Optional: At startup Kylo inspects NiFi to build a cache of NiFi flow data. It now does this
with multiple threads. By default it uses 10 threads. You can modify this by setting the
following property:

46 Chapter 4. Release Notes

http://bit.ly/2xgHsUM
http://bit.ly/2hhqKOG
http://bit.ly/2xT9ExY
http://bit.ly/2xgHsUM

Kylo Documentation, Release 0.9.1

Modify the number of threads used by Kylo at startup to
→˓inspect and build the NiFi flow cache. Default is 10 if
→˓not specified
nifi.flow.inspector.threads=10

3.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

4. Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to
NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

5. After you startup you may need to re-index the Kylo metadata. You can do this via a REST endpoint after you
login to Kylo at the following url:

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

4.2.12 Release 0.8.3 (Aug 30, 2017)

Highlights

• Pluggable JMS implementation with out-of-the-box support for ActiveMQ and Amazon SQS. Refer to JMS
Providers for details

• Pluggable REST client for Elasticsearch. This is now used by default in lieu of transport client.

• Cloudera Services Monitor as Kylo plugin. Refer to Service Monitor Plugins for details

• Business domain types for columns. Define rules to auto-apply domain types during feed creation or manually
select the domain type to apply predefined standardization and validation rules.

• Column-level tagging. Apply tags to columns and search column tags using Global Search.

• Schema changes for column descriptions. The Hive schema is updated when modifying the column description
of a feed. The column description is also available on the Visual Query page when hovering over a column
name.

• Alerts improvement. User Interface enhancements and additional alerts capabilities. The Alerts page has been
improved and the alerts on the dashboard are now in sync with the alerts page and adhere to entity access controls

• Category-level feed role memberships. Ability to manage feed access control of all feeds under a category by
assigning feed role memberships at the category level

• Ability to query/filter Service Level Assessments against the Service Level Agreements

• IE & Safari browser support

• Elasticsearch 5 support

4.2. Previous Releases 47

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

Kylo Documentation, Release 0.9.1

• New angular UI module plugin support. Ability to create entirely new user interface modules and plug them
into the UI navigation. Refer to

• Spark Jobserver processors for NiFi. Reuse a SparkContext between multiple Spark jobs for increased perfor-
mance. Requires an existing .

• Pluggable Spark functions. Custom Spark functions can be added to the Visual Query page by providing a json
file with the function definitions. Refer to Writing Spark Function Definitions.

• MS SQL support

• Maven Central support

Download Links

Visit the Downloads page for links.

Upgrade Instructions from v0.8.2

1. Stop NiFi:

service nifi stop

2. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>

4. Copy the application.properties file from the 0.8.2 install. If you have customized the application.properties file
you will want to copy the 0.8.2 version and add the new properties that were added for this release.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/conf/application.properties /opt/kylo/
→˓kylo-services/conf/application.properties.0_8_3_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

4.3 Add in the new properties to the /opt/kylo/kylo-services/conf/application.properties file

• The following properties allow Kylo to inspect the database schema when creating database
feeds

48 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

#Kylo MySQL controller service configuration
nifi.service.kylo_mysql.database_user=root
nifi.service.kylo_mysql.password=hadoop

• Flow Aggregation Stats

##when getting aggregate stats back for flows if errors are
→˓detected kylo will query NiFi in attempt to capture matching
→˓bulletins.
by default this data is stored in memory. Setting this to
→˓true will store the data in the MySQL table
kylo.ops.mgr.stats.nifi.bulletins.persist=false
if not perisiting (above flag is false) this is the limit to
→˓the number of error bulletins per feed.
this is a rolling queue that will keep the last # of errors
→˓per feed
kylo.ops.mgr.stats.nifi.bulletins.mem.size=30

• New NiFi version 1.1 profile

Previous versions of Kylo were compatible with Nifi v110 when using the nifiv1.0 pro-
file. If you are using NiFi v1.1 in your environment then going forward you should use
the nifi-1.1 profile.

spring.profiles.include=<other-profiles-as-required>,nifi-v1.1

• New configuration for JMS

Previous versions of Kylo did not have a profile based method of configured the queue
services. With new SQS support, the profile must be stated explicitly. See section 8 for
more info.

spring.profiles.include=<other-profiles-as-required>,jms-
→˓activemq

4.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties

security.jwt.key=

5. Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to
NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

6. Backup the Kylo database. Run the following code against your kylo database to export the ‘kylo’ schema to a
file. Replace the PASSWORD with the correct login to your kylo database.

mysqldump -u root -pPASSWORD --databases kylo > kylo-0_8_2_backup.sql

7. Database updates. Kylo uses liquibase to perform database updates. Two modes are supported.

4.2. Previous Releases 49

Kylo Documentation, Release 0.9.1

• Automatic updates

By default Kylo is set up to automatically upgrade its database on Kylo services startup. As such,
there isn’t anything specific an end user has to do. When Kylo services startup the kylo database
will be automatically upgraded to latest version if required. This is configured via an applica-
tion.properties setting

liquibase.enabled=true

• Manual updates

Sometimes, however you may choose to disable liquibase and manually apply the upgrade scripts.
By disabling liquibase you are in control of how the scripts are applied. This is needed if the kylo
database user doesnt have priviledges to make schema changes to the kylo database. Please follow
this Database Upgrades on how to manually apply the additional database updates.

8. Update NiFi to use default ActiveMQ JMS provider. Kylo now supports two JMS providers out-of-the-box:
ActiveMQ and Amazon SQS. A particular provider is selected by active Spring profile in /opt/nifi/
ext-config/config.properties.

8.1. Edit /opt/nifi/ext-config/config.properties

8.2. Add following line to enable ActiveMQ

spring.profiles.active=jms-activemq

Please follow this JMS Providers on how to switch active JMS Provider.

9. If using Elasticsearch as the search engine, go through steps 9.1 to 9.5. If using Solr, go to step 10 and also refer
to Solr plugin section.

9.1. Modify Elasticsearch rest client configuration (if required) in /opt/kylo/kylo-services/conf/
elasticsearch-rest.properties. The defaults are provided below.

search.rest.host=localhost
search.rest.port=9200

9.2. Verify search-esr profile in existing list of profiles in /opt/kylo/kylo-services/conf/
application.properties

spring.profiles.include=<other-profiles-as-required>,search-esr

9.3. Create Kylo Indexes

Execute a script to create kylo indexes. If these already exist, Elasticsearch will report an
index_already_exists_exception. It is safe to ignore this and continue. Change the host and port if
necessary.

/opt/kylo/bin/create-kylo-indexes-es.sh localhost 9200 1 1

9.4. Import updated Index Text Service feed. This step should be done once Kylo services are started and Kylo
is up and running.

9.4.1. [Elasticsearch version 2] Import the feed index_text_service_elasticsearch.
feed.zip file available at /opt/kylo/setup/data/feeds/nifi-1.0

9.4.2. [Elasticsearch version 5] [This requires NiFi 1.3 or later] Import the feed
index_text_service_v2.feed.zip file available at /opt/kylo/setup/data/
feeds/nifi-1.3

9.5. For additional details, refer to this document under Rest Client section.

50 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

10. If using Solr as the search engine, go through steps 10.1 to 10.5. Also refer to Solr plugin section

10.1. Create the collection in Solr

bin/solr create -c kylo-datasources -s 1 -rf 1

10.2. Navigate to Solr’s

10.3. Select the kylo-datasources collection from the drop down in the left nav area

10.4. Click Schema on bottom left of nav area

10.5. Click Add Field on top of right nav pane

• name: kylo_collection

• type: string

• default value: kylo-datasources

• index: no

• store: yes

11. If Kerberos has been enabled in spark.properties then make the below edits and disable the kylo-spark-
shell service. The service will be started as needed by kylo-services.

Changes for kylo-services/conf/spark.properties with Kylo 0.8.3
#spark.shell.server.host = localhost
#spark.shell.server.port = 8450
spark.shell.deployMode = local

RedHat: disable kylo-spark-shell service
chkconfig kylo-spark-shell off

Debian: disable kylo-spark-shell service
update-rc.d kylo-spark-shell disable

12. Start NiFi and Kylo

service nifi start

/opt/kylo/start-kylo-apps.sh

13. Migrate Hive schema indexing to Kylo. The indexing of Hive schemas is now handled internally by Kylo instead
of using a special feed.

12.1. Remove the Register Index processor from the standard_ingest and
data_transformation reusable templates

12.2. Delete the Index Schema Service feed

14. Import updated Index Text Service feed as mentioned in earlier step 9.4. At this point, Kylo should be up and
running and hence 9.4 can be completed.

4.2.13 Release 0.8.2.6 (October 16, 2017)

Highlights

• New configuration option added to the auth-ad security profile to control user details filtering (addresses Win-
dows 365 issues)

4.2. Previous Releases 51

Kylo Documentation, Release 0.9.1

• Fixed KYLO-1264 ExecuteHQLStatement does not route to failure

• Fixed KYLO-940 ThriftConnectionPool doesn’t reconnect on Hive restart

• Fixes KYLO-1281 missing Kylo Upgrade Version

Download Links

• RPM : http://bit.ly/2xK1Z0k

• Debian : http://bit.ly/2yqtlup

• TAR : http://bit.ly/2yn7y9c

Upgrade Instructions from v0.8.2

1. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

2. Install the new RPM:

rpm -ivh <RPM_FILE>

3. Copy the application.properties file from the 0.8.2 install. If you have customized the application.properties file
you will want to copy the 0.8.2 version and add the new properties that were added for this release.

3.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

3.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/application.properties application.
→˓properties.0_8_2_2_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

3.3 If using the auth-ad profile and having problems with accessing user info in AD (experienced
by some Windows 365 deployments), add the following property to the existing AD properties in
both kylo-services and kylo-ui application.properties files:

security.auth.ad.server.searchFilter=(&
→˓(objectClass=user)(sAMAccountName={1}))

4. Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to
NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users (continues on next page)

52 Chapter 4. Release Notes

http://bit.ly/2xK1Z0k
http://bit.ly/2yqtlup
http://bit.ly/2yn7y9c

Kylo Documentation, Release 0.9.1

(continued from previous page)

5. Optional: To increase performance in Kylo you can choose to add indexes to the metadata-repository.
json file. Add the following json snippet to the /opt/kylo/kylo-services/conf/
metadata-repository.json

5.1 make a directory that kylo has read/write acess to:

mkdir -p /opt/kylo/modeshape/modeshape-local-index/

5.2. Edit the /opt/kylo/kylo-services/conf/metadata-repository.json
and add in this snippet of JSON. Please ensure the “directory” in the json is the same that you
created above.

"indexProviders": {
"local": {

"classname": "org.modeshape.jcr.index.local.
→˓LocalIndexProvider",

"directory": "/opt/kylo/modeshape/modeshape-
→˓local-index/"

}
},
"indexes": {

"feedModificationDate": {
"kind": "value",
"provider": "local",
"nodeType": "tba:feed",
"columns": "jcr:lastModified(DATE)"

},
"feedState": {

"kind": "value",
"provider": "local",
"nodeType": "tba:feedData",
"columns": "tba:state(NAME)"

},
"categoryName": {

"kind": "value",
"provider": "local",
"nodeType": "tba:category",
"columns": "tba:systemName(STRING)"

},
"titleIndex": {

"kind": "value",
"provider": "local",
"nodeType": "mix:title",
"columns": "jcr:title(STRING)"

},
"nodesByName": {

"kind": "value",
"provider": "local",
"synchronous": "true",
"nodeType": "nt:base",
"columns": "jcr:name(NAME)"

},
"nodesByDepth": {

"kind": "value",
"provider": "local",

(continues on next page)

4.2. Previous Releases 53

Kylo Documentation, Release 0.9.1

(continued from previous page)

"synchronous": "true",
"nodeType": "nt:base",
"columns": "mode:depth(LONG)"

},
"nodesByPath": {

"kind": "value",
"provider": "local",
"synchronous": "true",
"nodeType": "nt:base",
"columns": "jcr:path(PATH)"

},
"nodeTypes": {

"kind": "nodeType",
"provider": "local",
"nodeType": "nt:base",
"columns": "jcr:primaryType(STRING)"

}
},

Note: After you start you may need to re-index kylo. You can do this via a REST
endpoint after you login to Kylo at the following url:

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

4.2.14 Release 0.8.2.5 (October 11, 2017)

Note: A later version, 0.8.2.6 exists that fixes an issue with this release. Please visit Release 0.8.2.6 (October 16,
2017) for the latest version

Highlights

• New configuration option added to the auth-ad security profile to control user details filtering (addresses Win-
dows 365 issues)

• Fixed KYLO-1264 ExecuteHQLStatement does not route to failure

• Fixed KYLO-940 ThriftConnectionPool doesn’t reconnect on Hive restart

Download Links

Please visit Release 0.8.2.6 (October 16, 2017) for download links

Upgrade Instructions from v0.8.2

Please visit Release 0.8.2.6 (October 16, 2017) for download links and install instructions

54 Chapter 4. Release Notes

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

Kylo Documentation, Release 0.9.1

4.2.15 Release 0.8.2.4 (September 18, 2017)

Highlights

• Fixes KYLO-1214 Feed Lineage

• Refer to previous 0.8.2.x releases for additional notes.

Additional Features in the 0.8.2.x Patch Releases

• Optimize feed creation in NiFi and improve NiFi usability when there is a large number of feeds

• Ability to skip NiFi auto alignment when saving feeds

• Fix bug in operations manager that didn’t correctly fail jobs

• Support for ‘failure connection’ detection in feeds that contain sub process groups

• Fixes KYLO-823, KYLO-1202 setting controller service properties in feed/reusable templates

Download Links

• RPM : http://bit.ly/2xeDCcx

• Debian : http://bit.ly/2hfIiHm

• TAR : http://bit.ly/2f81QNv

Upgrade Instructions from v0.8.2

Build or download the rpm

1. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

2. Install the new RPM:

rpm -ivh <RPM_FILE>

3. Copy the application.properties file from the 0.8.2 install. If you have customized the application.properties file
you will want to copy the 0.8.2 version and add the new properties that were added for this release.

3.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

3.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/application.properties application.
→˓properties.0_8_2_2_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf(continues on next page)

4.2. Previous Releases 55

http://bit.ly/2xeDCcx
http://bit.ly/2hfIiHm
http://bit.ly/2f81QNv
http://bit.ly/2xeDCcx

Kylo Documentation, Release 0.9.1

(continued from previous page)

3.3 Optional: If you want to skip the auto alignment after saving feeds then add in the new properties
to the /opt/kylo/kylo-services/application.properties file

skip auto alignment after you create a feed.
##You can always manually align your flows in NiFi via a
→˓Kylo Rest Endpoint
nifi.auto.align=false

Optional: At startup Kylo inspects NiFi to build a cache of NiFi flow data. It now does this
with multiple threads. By default it uses 10 threads. You can modify this by setting the
following property:

Modify the number of threads used by Kylo at startup to
→˓inspect and build the NiFi flow cache. Default is 10 if
→˓not specified
nifi.flow.inspector.threads=10

3.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

4. Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to
NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

5. Optional: To increase performance in Kylo you can choose to add indexes to the metadata-repository.
json file. Add the following json snippet to the /opt/kylo/kylo-services/conf/
metadata-repository.json

5.1 make a directory that kylo has read/write acess to:

mkdir -p /opt/kylo/modeshape/modeshape-local-index/

5.2. Edit the /opt/kylo/kylo-services/conf/metadata-repository.json
and add in this snippet of JSON. Please ensure the “directory” in the json is the same that you
created above.

"indexProviders": {
"local": {

"classname": "org.modeshape.jcr.index.local.
→˓LocalIndexProvider",

"directory": "/opt/kylo/modeshape/modeshape-
→˓local-index/"

}
},

(continues on next page)

56 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

(continued from previous page)

"indexes": {
"feedModificationDate": {

"kind": "value",
"provider": "local",
"nodeType": "tba:feed",
"columns": "jcr:lastModified(DATE)"

},
"feedState": {

"kind": "value",
"provider": "local",
"nodeType": "tba:feedData",
"columns": "tba:state(NAME)"

},
"categoryName": {

"kind": "value",
"provider": "local",
"nodeType": "tba:category",
"columns": "tba:systemName(STRING)"

},
"titleIndex": {

"kind": "value",
"provider": "local",
"nodeType": "mix:title",
"columns": "jcr:title(STRING)"

},
"nodesByName": {

"kind": "value",
"provider": "local",
"synchronous": "true",
"nodeType": "nt:base",
"columns": "jcr:name(NAME)"

},
"nodesByDepth": {

"kind": "value",
"provider": "local",
"synchronous": "true",
"nodeType": "nt:base",
"columns": "mode:depth(LONG)"

},
"nodesByPath": {

"kind": "value",
"provider": "local",
"synchronous": "true",
"nodeType": "nt:base",
"columns": "jcr:path(PATH)"

},
"nodeTypes": {

"kind": "nodeType",
"provider": "local",
"nodeType": "nt:base",
"columns": "jcr:primaryType(STRING)"

}
},

Note: After you start you may need to re-index kylo. You can do this via a REST
endpoint after you login to Kylo at the following url:

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

4.2. Previous Releases 57

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

Kylo Documentation, Release 0.9.1

4.2.16 Release 0.8.2.3 (September 15, 2017)

Highlights

• This releases further optimizes Kylo and NiFi integration.

• Fixes KYLO-823, KYLO-1202 setting controller service properties in feed/reusable templates

• Reduces the verbose logging output (in 0.8.2.2) to debug when creating feeds

Download Links

• RPM : http://bit.ly/2x7BB3q

• Debian : http://bit.ly/2wuQgSA

• TAR : http://bit.ly/2h81kiK

Upgrade Instructions from v0.8.2

Build or download the rpm

1. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

2. Install the new RPM:

rpm -ivh <RPM_FILE>

3. Copy the application.properties file from the previous install If you have customized the application.properties
file you will want to copy the 0.8.2 version and add the new properties that were added for this release.

3.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

3.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/application.properties application.
→˓properties.0_8_2_2_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

3.3 Optional: At startup Kylo inspects NiFi to build a cache of NiFi flow data. It now does this with
multiple threads. By default it uses 10 threads. You can modify this by setting the following property:

Modify the number of threads used by Kylo at startup to inspect
→˓and build the NiFi flow cache. Default is 10 if not specified
nifi.flow.inspector.threads=10

58 Chapter 4. Release Notes

http://bit.ly/2x7BB3q
http://bit.ly/2wuQgSA
http://bit.ly/2h81kiK
http://bit.ly/2x7BB3q

Kylo Documentation, Release 0.9.1

3.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

4. Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to
NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

5. Optional: To increase performance in Kylo you can choose to add indexes to the metadata-repository.
json file. Add the following json snippet to the /opt/kylo/kylo-services/conf/
metadata-repository.json

5.1 make a directory that kylo has read/write acess to:

mkdir -p /opt/kylo/modeshape/modeshape-local-index/

5.2. Edit the /opt/kylo/kylo-services/conf/metadata-repository.json
and add in this snippet of JSON. Please ensure the “directory” in the json is the same that you
created above.

"indexProviders": {
"local": {

"classname": "org.modeshape.jcr.index.local.
→˓LocalIndexProvider",

"directory": "/opt/kylo/modeshape/modeshape-
→˓local-index/"

}
},
"indexes": {

"feedModificationDate": {
"kind": "value",
"provider": "local",
"nodeType": "tba:feed",
"columns": "jcr:lastModified(DATE)"

},
"feedState": {

"kind": "value",
"provider": "local",
"nodeType": "tba:feedData",
"columns": "tba:state(NAME)"

},
"categoryName": {

"kind": "value",
"provider": "local",
"nodeType": "tba:category",
"columns": "tba:systemName(STRING)"

},
"titleIndex": {

(continues on next page)

4.2. Previous Releases 59

Kylo Documentation, Release 0.9.1

(continued from previous page)

"kind": "value",
"provider": "local",
"nodeType": "mix:title",
"columns": "jcr:title(STRING)"

},
"nodesByName": {

"kind": "value",
"provider": "local",
"synchronous": "true",
"nodeType": "nt:base",
"columns": "jcr:name(NAME)"

},
"nodesByDepth": {

"kind": "value",
"provider": "local",
"synchronous": "true",
"nodeType": "nt:base",
"columns": "mode:depth(LONG)"

},
"nodesByPath": {

"kind": "value",
"provider": "local",
"synchronous": "true",
"nodeType": "nt:base",
"columns": "jcr:path(PATH)"

},
"nodeTypes": {

"kind": "nodeType",
"provider": "local",
"nodeType": "nt:base",
"columns": "jcr:primaryType(STRING)"

}
},

Note: After you start you may need to re-index kylo. You can do this via a REST
endpoint after you login to Kylo at the following url:

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

4.2.17 Release 0.8.2.2 (September 12, 2017)

Highlights

• Optimize feed creation in NiFi and improve NiFi usability when there is a large number of feeds

• Ability to skip NiFi auto alignment when saving feeds

• Fix bug in operations manager that didn’t correctly fail jobs

• Support for ‘failure connection’ detection in feeds that contain sub process groups

• For a complete list of issues resolved visit: ReleaseNotes8.2.2.issues

Download Links

• RPM : http://bit.ly/2fhpVSq

60 Chapter 4. Release Notes

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex
http://bit.ly/2fhpVSq

Kylo Documentation, Release 0.9.1

• Debian : http://bit.ly/2eUBtKA

• TAR : http://bit.ly/2x0g7FD

Upgrade Instructions from v0.8.2

Build or download the rpm

1. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

2. Install the new RPM:

rpm -ivh <RPM_FILE>

3. Copy the application.properties file from the 0.8.2 install. If you have customized the application.properties file
you will want to copy the 0.8.2 version and add the new properties that were added for this release.

3.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

3.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/application.properties application.
→˓properties.0_8_2_2_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

3.3 Optional: If you want to skip the auto alignment after saving feeds then add in the new properties
to the /opt/kylo/kylo-services/application.properties file

skip auto alignment after you create a feed.
##You can always manually align your flows in NiFi via a Kylo Rest
→˓Endpoint
nifi.auto.align=false

3.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

4. Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to
NiFi processors and services.

4.2. Previous Releases 61

http://bit.ly/2eUBtKA
http://bit.ly/2x0g7FD
http://bit.ly/2fhpVSq

Kylo Documentation, Release 0.9.1

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

5. Optional: To increase performance in Kylo you can choose to add indexes to the metadata-repository.
json file. Add the following json snippet to the /opt/kylo/kylo-services/conf/
metadata-repository.json

5.1 make a directory that kylo has read/write acess to:

mkdir -p /opt/kylo/modeshape/modeshape-local-index/

5.2. Edit the /opt/kylo/kylo-services/conf/metadata-repository.json
and add in this snippet of JSON. Please ensure the “directory” in the json is the same that you
created above.

"indexProviders": {
"local": {

"classname": "org.modeshape.jcr.index.local.
→˓LocalIndexProvider",

"directory": "/opt/kylo/modeshape/modeshape-
→˓local-index/"

}
},
"indexes": {

"feedModificationDate": {
"kind": "value",
"provider": "local",
"nodeType": "tba:feed",
"columns": "jcr:lastModified(DATE)"

},
"feedState": {

"kind": "value",
"provider": "local",
"nodeType": "tba:feedData",
"columns": "tba:state(NAME)"

},
"categoryName": {

"kind": "value",
"provider": "local",
"nodeType": "tba:category",
"columns": "tba:systemName(STRING)"

},
"titleIndex": {

"kind": "value",
"provider": "local",
"nodeType": "mix:title",
"columns": "jcr:title(STRING)"

},
"nodesByName": {

"kind": "value",
"provider": "local",
"synchronous": "true",
"nodeType": "nt:base",
"columns": "jcr:name(NAME)"

(continues on next page)

62 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

(continued from previous page)

},
"nodesByDepth": {

"kind": "value",
"provider": "local",
"synchronous": "true",
"nodeType": "nt:base",
"columns": "mode:depth(LONG)"

},
"nodesByPath": {

"kind": "value",
"provider": "local",
"synchronous": "true",
"nodeType": "nt:base",
"columns": "jcr:path(PATH)"

},
"nodeTypes": {

"kind": "nodeType",
"provider": "local",
"nodeType": "nt:base",
"columns": "jcr:primaryType(STRING)"

}
},

Note: After you start you may need to re-index kylo. You can do this via a REST
endpoint after you login to Kylo at the following url:

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

4.2.18 Release 0.8.2 (July 12, 2017)

Highlights

• 109 issues resolved

• NiFi 1.3.0 support

• Global search enhancements. Auto-indexing of feed, category, tags, and improved UI.

• Ability to use Solr vs ElasticSearch (ES default)

• Streaming visualization improvements. New Ops UI for monitoring streaming feeds.

• Provenance event performance tune-up. Fixed lag that could occur for high throughput streaming feeds.

• Pluggable UI. Ability to add dynamic new user interface components. See: Plugin APIs

• Wrangler support for Spark yarn-cluster mode

• Wrangler supports user impersonation. There are a few different run modes depending on which configuration
properties are specified.

• TAR file installation support. This allows installation in different folder locations and to be ran as different linux
users/groups

• Example S3 data ingest template. Ability to process data without bringing the data into the edge node. See: S3
Standard Ingest Template

• SPNEGO bug fixes and improvements with Active Directory integration

4.2. Previous Releases 63

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

Kylo Documentation, Release 0.9.1

Download Links

• RPM : http://bit.ly/2uT8bTo

• Debian : http://bit.ly/2uSTvUv

• TAR : http://bit.ly/2ug8ZUz

Upgrade Instructions from v0.8.1

Build or download the RPM

1. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

2. Install the new RPM:

rpm -ivh <RPM_FILE>

3. Update NiFi to use the new KyloPersistentProvenanceRepository. Kylo no longer uses the NiFi reporting task
to capture provenance events. Instead it uses a modified ProvenanceRepository.

3.1. In NiFi stop and delete the Kylo Reporting Task and its associated Controller Service.

3.2. Stop NiFi

3.3. Follow the guide NiFi & Kylo Provenance to setup the KyloPersistentProvenanceRepository

4. Copy the application.properties file from the 0.8.1 install. If you have customized the application.properties file
you will want to copy the 0.8.1 version and add the new properties that were added for this release.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/application.properties application.
→˓properties.0_8_2_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

4.3 Add in the new properties to the /opt/kylo/kylo-services/application.properties file

• ActiveMQ properties: Redelivery processing properties are now available for configuration. If
Kylo receives provenance events and they have errors are are unable to attach NiFi feed infor-
mation (i.e. if NiFi goes down and Kylo doesnt have the feed information in its cache) then
the JMS message will be returned for redelivery based upon the following parameters. Refer to
the ActiveMQ documentation, http://activemq.apache.org/redelivery-policy.html, for assigning
these values:

64 Chapter 4. Release Notes

http://bit.ly/2uT8bTo
http://bit.ly/2uSTvUv
http://bit.ly/2ug8ZUz
http://bit.ly/2uT8bTo
http://activemq.apache.org/redelivery-policy.html

Kylo Documentation, Release 0.9.1

retry for xx times before sending to DLQ (Dead Letter Queue)
→˓set -1 for unlimited redeliveries
jms.maximumRedeliveries=100
##The initial redelivery delay in milliseconds.
jms.initialRedeliveryDelay=1000
##retry every xx seconds
jms.redeliveryDelay=5000
##Sets the maximum delivery delay that will be applied if the
→˓useExponentialBackOff option is set (use value -1 for no max)
jms.maximumRedeliveryDelay=600000
##The back-off multiplier.
jms.backOffMultiplier=5
##Should exponential back-off be used, i.e., to exponentially
→˓increase the timeout.
jms.useExponentialBackOff=false

• NiFi 1.3 support If you are using NiFi 1.2 or 1.3 you need to update the spring profile to point
to the correct nifi version.

Example NiFi 1.2 or 1.3 support

Indicate the NiFi version you are using with the correct
→˓spring profile.
- For NiFi 1.0.x or 1.1.x: nifi-v1
- For NiFi 1.2.x or 1.3.x: nifi-v1.2
spring.profiles.include=native,nifi-v1.2,auth-kylo,auth-file

Example NiFi 1.0 or 1.1 support

spring.profiles.include=native,nifi-v1,auth-kylo,auth-file

• Global search support Elasticsearch is the default search provider. Add search-es to
spring profiles:

spring.profiles.include=<all your existing profiles>,search-es

4.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

5. Backup the Kylo database. Run the following code against your kylo database to export the ‘kylo’ schema to a
file. Replace the PASSWORD with the correct login to your kylo database.

mysqldump -u root -pPASSWORD --databases kylo >kylo-0_8_1_backup.sql

6. Database updates. Kylo uses liquibase to perform database updates. Two modes are supported.

• Automatic updates

By default Kylo is set up to automatically upgrade its database on Kylo services startup. As such,
there isn’t anything specific an end user has to do. When Kylo services startup the kylo database
will be automatically upgraded to latest version if required. This is configured via an applica-
tion.properties setting

4.2. Previous Releases 65

Kylo Documentation, Release 0.9.1

liquibase.enabled=true

• Manual updates

Sometimes, however you may choose to disable liquibase and manually apply the upgrade scripts.
By disabling liquibase you are in control of how the scripts are applied. This is needed if the kylo
database user doesnt have priviledges to make schema changes to the kylo database. Please follow
this Database Upgrades on how to manually apply the additional database updates.

7. Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to
NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi
→˓users

8. Update configuration for using Elasticsearch as the search engine

(a) Provide cluster properties

i. Update cluster properties in /opt/kylo/kylo-services/conf/
elasticsearch.properties if different from the defaults provided below.

search.host=localhost
search.clusterName=demo-cluster
search.restPort=9200
search.transportPort=9300

Kylo services must be restarted if the above file has been changed to pick up the new values.

service kylo-services restart

(b) Steps to import updated Index Schema Service feed

i. Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

ii. Pick the index_schema_service_elasticsearch.feed.zip file available at /opt/
kylo/setup/data/feeds/nifi-1.0

iii. Leave Change the Category field blank (It defaults to System)

iv. Click Yes for these two options (1) Overwrite Feed (2) Replace Feed Template

v. (optional) Click Yes for option (3) Disable Feed upon import only if you wish to keep the indexing
feed disabled upon import (You can explicitly enable it later if required)

vi. Click Import Feed.

vii. Verify that the feed imports successfully.

viii. If your Hive metastore is in a schema named something other than hive, edit the feed and set hive.
schema to the schema name. This configuration value may be available with the key config.
hive.schema in /opt/kylo/kylo-services/conf/application.properties

(c) Steps to import updated Index Text Service feed

i. Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

ii. Pick the index_text_service_elasticsearch.feed.zip file available at /opt/kylo/
setup/data/feeds/nifi-1.0

66 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

iii. Leave Change the Category field blank (It defaults to System)

iv. Click Yes for these two options (1) Overwrite Feed (2) Replace Feed Template

v. (optional) Click Yes for option (3) Disable Feed upon import only if you wish to keep the indexing
feed disabled upon import (You can explicitly enable it later if required)

vi. Click Import Feed.

vii. Verify that the feed imports successfully.

9. Re-import the templates.

• Re-import Data Ingest template (data_ingest.zip)

• Re-import Data Transformation template (data_transformation.zip)

• Re-import Data Confidence template (data_confidence_invalid_records.zip)

10. NiFi 1.2/1.3 breaking change.

• NiFi introduced a change to their UpdateAttributes processor that prevents empty strings from being set to the
dynamic properties unless the state is saved.

• The templates (in step 7 above) already have this change made. Any feeds you have from a previous NiFi version
that have empty strings in the UpdateAttributes processors will be broken and need fixed. You can fix them by
importing the new templates and then saving the feed, or you will neeed to manually fix the feed/template. If
you need to manually fix feed flows in NiFi do the following:

1. Modify the UpdateAttributes processors and change the “Store State” property to be “Store state
locally”

2. Change the “Stateful Variables Initial Value” and check the box “Set empty string”

3. Go to the Settings for the processor and Auto terminate the “set state fail” route.

4.2. Previous Releases 67

Kylo Documentation, Release 0.9.1

68 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

4.2.19 Release 0.8.1 (May 24, 2017)

Highlights

• 140+ issues resolved

• You can now assign users and groups access to feeds, categories, and templates giving you fine grain control of
what users can see and do. Refer to the Access Control for more information.

• Kylo can now be clustered for high availability. Refer to Clustering Kylo for more information.

• You now mix and match the order of standardizers and validators giving you more control over the processing
of your data.

• The wrangler has been improved with a faster transformation grid and now shows column level profile statistics
as you transform your data.

Download Links

• RPM : http://bit.ly/2r4P47A

• Debian : http://bit.ly/2rYObgz

Upgrade Instructions from v0.7.1

• If upgrading directly from v0.7.1, run the database update to enable Liquibase.

/opt/kylo/setup/sql/mysql/kylo/0.8.0/update.sh <db-hostname> <db-user> <db-password>

Upgrade Instructions from v0.8.0

Build or download the RPM

1. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>

4. Copy the application.properties file from the 0.8.0.1 install. If you have customized the application.properties
file you will want to copy the 0.8.0.1 version and add the new properties that were added for this release.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/application.properties application.
→˓properties.0_8_1_template

(continues on next page)

4.2. Previous Releases 69

http://bit.ly/2r4P47A
http://bit.ly/2rYObgz
http://bit.ly/2r4P47A

Kylo Documentation, Release 0.9.1

(continued from previous page)

copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

4.3 Two new properties were added. Add in the 2 new properties to the /opt/kylo/kylo-
services/conf/application.properties file

Entity-level access control. To enable, uncomment below line and
→˓set value as true
#security.entity.access.controlled=false

optional. If added you can control the timeout when you delete
→˓a feed
kylo.feed.mgr.cleanup.timeout=60000

Refer to the Access Control document for more information about entity level ac-
cess control. To enable entity access control ensure the property above is set to
true.

4.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

5. Backup the Kylo database. Run the following code against your kylp database to export the ‘kylo’ schema to a
file. Replace the PASSWORD with the correct login to your kylo database.

mysqldump -u root -pPASSWORD --databases kylo >kylo-0_8_0_1_backup.sql

6. Database updates. Kylo uses liquibase to perform database updates. Two modes are supported.

• Automatic updates

By default Kylo is set up to automatically upgrade its database on Kylo services startup. As such,
there isn’t anything specific an end user has to do. When Kylo services startup the kylo database
will be automatically upgraded to latest version if required. This is configured via an applica-
tion.properties setting

liquibase.enabled=true

• Manual updates

Sometimes, however you may choose to disable liquibase and manually apply the upgrade scripts.
By disabling liquibase you are in control of how the scripts are applied. This is needed if the kylo
database user doesnt have priviledges to make schema changes to the kylo database. Please follow
this Database Upgrades on how to manually apply the additional database updates.

7. Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to
NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh

8. Re-import Data Ingest template (data_ingest.zip).

70 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

• Kylo now allows converting data ingested from a database into AVRO format, and then running it further through
the flow.

• To enable this, re-import the data_ingest.zip file (Templates -> + icon -> Import from a file -> Choose file ->
Check yes to ‘overwrite’ feed template -> Check yes to ‘Replace the reusable template’ -> Import template)

4.2.20 Release 0.8.0 (Apr 19, 2017)

Highlights

• 90+ issues resolved

• Automatic and manual database upgrades. See Database Upgrades

• Support for PostgreSQL as Kylo metadata store

• Join Hive and any JDBC tables in Data Transformation feeds by creating a new Data Source.

• Wrangler can now use standardization and validation functions, and be merged, profiled, and indexed.

• The Feed/Template import provides visual feedback and progress

• Kylo will now encrypt ‘sensitive’ properties and enforce ‘required’ properties.

Upgrade Instructions from v0.7.1

Build or download the RPM

1. Shut down NiFi:

service nifi stop

2. Uninstall Kylo:

/opt/kylo/remove-kylo.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>

4. Copy the application.properties file from the 0.7.1 install. If you have customized the application.properties file
you will want to copy the 0.7.1 version and add the new properties that were added for this release.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

• Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-
config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the
“YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a
→˓backup file
mv /opt/kylo/kylo-services/application.properties application.
→˓properties.0_8_0_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_
→˓millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/
→˓application.properties /opt/kylo/kylo-services/conf

4.2. Previous Releases 71

http://bit.ly/2oVaQJE

Kylo Documentation, Release 0.9.1

4.3 Add in the 2 new properties to the /opt/kylo/kylo-services/conf/application.properties file

liquibase.enabled=true
liquibase.change-log=classpath:com/thinkbiganalytics/db/master.xml

4.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui applica-
tion.properties file match. They property below needs to match in both of these files:

• /opt/kylo/kylo-ui/conf/application.properties

• /opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

4.5 If using Spark 2 then add the following property to the /opt/kylo/kylo-
services/conf/application.properties file

config.spark.version=2

5. Backup the Kylo database. Run the following code against your kylp database to export the ‘kylo’ schema to a
file. Replace the PASSWORD with the correct login to your kylo database.

mysqldump -u root -pPASSWORD --databases kylo >kylo-0_7_1_backup.sql

6. Upgrade Kylo database:

/opt/kylo/setup/sql/mysql/kylo/0.8.0/update.sh localhost root <password or
→˓blank>

7. Additional Database updates. Kylo now uses liquibase to perform database updates. Two modes are supported.

• Automatic updates

By default Kylo is set up to automatically upgrade its database on Kylo services startup. As such,
there isn’t anything specific an end user has to do. When Kylo services startup the kylo database will
be automatically upgraded to latest version if required.

• Manual updates

Sometimes, however you may choose to disable liquibase and manually apply the upgrade scripts.
By disabling liquibase you are in control of how the scripts are applied. This is needed if the kylo
database user doesnt have priviledges to make schema changes to the kylo database. Please follow
this Database Upgrades on how to manually apply the additional database updates.

8. Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to
NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh

9. Update the NiFi Templates.

• The Data Transformation template now allows you to apply standardization and validation rules
to the feed. To take advantage of this you will need to import the new template. The new data
transformation template can be found:

If you import the new Data Transformation template, be sure to re-initialize your existing Data
Transformation feeds if you update them.

72 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

Data Transformation Enhancement Changes

New to this release is the ability for the data wrangler to connect to various JDBC data sources, allowing you to join
Hive tables with, for example, MySQL or Teradata. The JDBC drivers are automatically read from /opt/nifi/mysql/
when Kylo is starting up. When Kylo Spark Shell is run in yarn-client mode then these jars need to be added manually
to the run-kylo-spark-shell.sh script:

• Edit /opt/kylo/kylo-services/bin/run-kylo-spark-shell.sh and append –jars to the
spark-submit command-line:

spark-submit --jars /opt/nifi/mysql/mariadb-java-client-1.5.7.jar ...

Additional driver locations can be added separating each location with a comma

spark-submit --jars /opt/nifi/mysql/mariadb-java-client-1.5.7.jar,/opt/nifi/
→˓teradata/terajdbc4.jar ...

Ambari Service Monitor Changes

The Ambari Service Monitor is now a Kylo plugin jar. In order for Kylo to report status on Ambari services you will
need to do the following:

1. Modify/Ensure the connection properties are setup. The ambari connection parameters need to be moved out of
the main kylo-services application.properties to a new file called ambari.properties

• Create a new file /opt/kylo/kylo-services/conf/ambari.properties. Ensure the owner
of the file is kylo

• Add and configure the following properties in that file:

ambariRestClientConfig.host=127.0.0.1
ambariRestClientConfig.port=8080
ambariRestClientConfig.username=admin
ambariRestClientConfig.password=admin
ambari.services.status=HDFS,HIVE,MAPREDUCE2,SQOOP

2. Copy the /opt/kylo/setup/plugins/kylo-service-monitor-ambari-0.8.0.jar to /
opt/kylo/kylo-services/plugin

cp /opt/kylo/setup/plugins/kylo-service-monitor-ambari-0.8.0.jar /opt/kylo/kylo-
→˓services/plugin/

4.2.21 Release 0.7.1 (Mar 13, 2017)

Highlights

• 64 issues resolved

• UI performance. Modules combined in a single page application and many other optimizations.

• Lineage auto-alignment. Correctly aligns feeds, sources, and destinations.

• Wrangle and machine learning. Added over 50 machine learning functions to the data wrangler. The data
wrangler now supports over 600 functions!

• Test framework. Initial groundwork for automated integration testing.

4.2. Previous Releases 73

Kylo Documentation, Release 0.9.1

• Notable issues resolved:

– Multiple Spark validation and profiler issues resolved

– Login issues when using https

– Race condition on startup of Kylo and Modeshape service

• For a complete list of resolved issues see here: ReleaseNotes7.1.resolvedIssues

RPM

Upgrade Instructions from v0.7.0

Build or download the RPM:

1. Uninstall the RPM, run:

/opt/kylo/remove-kylo.sh

2. Install the new RPM:

rpm -ivh <RPM_FILE>

3. Update the Database:

/opt/kylo/setup/sql/mysql/kylo/0.7.1/update.sh localhost root <password or blank>

4. Start kylo apps:

/opt/kylo/start-kylo-apps.sh

4.2.22 Release 0.7.0 (Feb. 13, 2017)

Highlights

• Renamed thinkbig artifacts to kylo

• Our REST API documentation has been updated and reorganized for easier reading. If you have Kylo running
you can open http://localhost:8400/api-docs/index.html to view the docs.

• Kylo is now available under the Apache 2 open-source license. Visit our new GitHub page!

• Login to Kylo with our new form-based authentication. A logout option has been added to the upper-right menu
in both the Feed Manager and the Operations Manager.

RPM

http://bit.ly/2l5p1tK

Upgrade Instructions from v0.6.0

Build or download the rpm.

1. Shut down NiFi:

74 Chapter 4. Release Notes

http://localhost:8400/api-docs/index.html
https://github.com/KyloIO
http://bit.ly/2l5p1tK

Kylo Documentation, Release 0.9.1

service nifi stop

2. Run:

useradd -r -m -s /bin/bash kylo

3. Run:

usermod -a -G hdfs kylo

4. Run:

/opt/thinkbig/remove-kylo-datalake-accelerator.sh to uninstall
the RPM

5. Install the new RPM:

rpm -ivh <RPM_FILE>

6. Migrate the “thinkbig” database schema to “kylo”.

Kylo versions 0.6 and below use the thinkbig schema in MySQL. Starting from version 0.7, Kylo uses the kylo
schema. This guide is intended for installations that are already on Kylo 0.6, and want to upgrade to Kylo 0.7.
It outlines the procedure for migrating the current thinkbig schema to kylo schema, so that Kylo 0.7 can work.

Migration Procedure

6a. Uninstall Kylo 0.6 (Refer to deployment guide and release notes for details).

6b. Install Kylo 0.7 (Refer to deployment guide and release notes for details).

Do not yet start Kylo services.

6c. Log into MySQL instance used by Kylo, and list the schemas:

mysql> show databases

6d. Verify that:

• thinkbig schema exists

• kylo schema does not exist

6e. Navigate to Kylo’s setup directory for MySQL.

cd /opt/kylo/setup/sql/mysql

6f. Execute the migration script. It takes 3 parameters. For no password, provide the 3rd parameter as
‘’../migrate-schema-thinkbig-to-kylo-mysql.sh <host> <user> <password>

• Step 1 of migration: kylo schema is set up.

• Step 2 of migration: thinkbig schema is migrated to kylo schema.

6g. Start Kylo services. Verify that Kylo starts and runs successfully. At this point, there are two schemas in
MySQL: kylo and thinkbig.

Once Kylo is running normally and migration is verified, the thinkbig schema can be dropped.

6h. Navigate to Kylo’s setup directory for MySQL.

4.2. Previous Releases 75

Kylo Documentation, Release 0.9.1

cd /opt/kylo/setup/sql/mysql

6i. Execute the script to drop thinkbig schema. It takes 3 parameters. For no password, provide the 3rd parameter
as:

../drop-schema-thinkbig-mysql.sh <host> <user> <password>

6j. Verify that only kylo schema now exists in MySQL.

mysql> show databases

This completes the migration procedure.

7. Update the database:

/opt/kylo/setup/sql/mysql/kylo/0.7.0/update.sh localhost root <password or
→˓blank>

8. Run:

/opt/kylo/setup/nifi/update-nars-jars.sh

9. Edit:

/opt/nifi/current/conf/bootstrap.conf

Change “java.arg.15=Dthinkbig.nifi.configPath=/opt/nifi/ext-config” to
“java.arg.15=Dkylo.nifi.configPath=/opt/nifi/ext-config”.

10. Run:

mv /opt/thinkbig/bkup-config /opt/kylo
chown -R kylo:kylo bkup-config

11. Run:

mv /opt/thinkbig/encrypt.key /opt/kylo

If prompted for overwrite, answer ‘yes’.

12. Run:

chown kylo:kylo /opt/kylo/encrypt.key

13. Copy the mariadb driver to access MySQL database.

14. Run:

> cp /opt/kylo/kylo-services/lib/mariadb-java-client-*.jar /opt/nifi/mysql

> chown nifi:users /opt/nifi/mysql/mariadb-java-client-*.jar

15. Start NiFi (wait to start):

service nifi start

16. In the standard-ingest template, update the”Validate and Split Records” processor and change the Application-
JAR value to:

76 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

/opt/nifi/current/lib/app/kylo-spark-validate-cleanse-jar-with-dependencies.
→˓jar

17. In the standard-ingest template update the”Profile Data” processor and change the ApplicationJAR value to:

/opt/nifi/current/lib/app/kylo-spark-job-profiler-jar-with-dependencies.jar

18. For the MySQL controller service (type: DBCPConnectionPool), update the properties to use the mariadb driver:

• Database Driver Class Name: org.mariadb.jdbc.Driver

• Database Driver Location(s): file:///opt/nifi/mysql/mariadb-java-client-1.5.7.jar

19. For the JMSConnectionFactoryProvider controller service, set the MQ Client Libraries path property value to:

/opt/kylo/kylo-services/lib

20. For the StandardSqoopConnectionService, copy the value of Source Driver to Source Driver (Avoid providing
value) then delete the Source Driver property.

21. Update, with your custom configuration, the configuration files at:

/opt/kylo/kylo-ui/conf/, /opt/kylo/kylo-services/conf/

/opt/kylo/kylo-spark shell/conf/

A backup of the previous version’s configuration is available from /opt/kylo/bkup-config/.

22. Modify both of the metadata controller services in NiFi with the new REST endpoint.

• The first one should be under the root process group and is used by our processors. The REST Client URL
property should be changed to http://localhost:8400/proxy/v1/metadata.

• The second is under the right-hand menu and is used by our reporting task. The REST Client URL property
should be changed to http://localhost:8400/proxy/v1/metadata.

23. If using NiFi v0.7 or earlier, modify:

/opt/kylo/kylo-services/conf/application.properties

Change spring.profiles.active from nifi-v1 to nifi-v0.

24. Modify permissions to allow existing NiFi flows to use /tmp/kylo directory.

Note:

After re-importing data_ingest.zip in a later step, any new feeds created will use the /tmp/kylo-nifi folder.
The below command will allow existing flows to continue using the /tmp/kylo folder.

> chmod 777 /tmp/kylo

25. Start kylo apps:

/opt/kylo/start-kylo-apps.sh

26. Re-import the data_ingest.zip template. (New feeds will use the temp location /tmp/kylo-nifi.)

27. (Optional) If unused, the mysql driver in /opt/nifi/mysql can be deleted.

28. Run:

4.2. Previous Releases 77

file:///opt/nifi/mysql/mariadb-java-client-1.5.7.jar
http://localhost:8400/proxy/v1/metadata
http://localhost:8400/proxy/v1/metadata

Kylo Documentation, Release 0.9.1

> rm /opt/nifi/mysql/mysql-connector-java-*.jar

4.2.23 Release 0.6.2 (Feb. 7, 2017)

Highlights

• Support for triggering multiple dependent feeds

• Added a flag to allow operations manager to query and display NiFi bulletins on feed failure to help show any
logs NiFi generated during that execution back in operations manager

• Fixed NiFi provenance reporting to support manual emptying of flow files which will now fail the job in ops
manager

• The Audit Log table in Kylo will now track feed updates

Upgrade Instructions from v0.6.0

Build or download the RPM.

1. Shut down NiFi:

service nifi stop

2. To uninstall the RPM, run:

/opt/kylo/remove-kylo-datalake-accelerator.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>

4. Run:

/opt/thinkbig/setup/nifi/update-nars-jars.sh

5. Start NiFi: (wait to start)

service nifi start

6. Update, using your custom configuration, the configuration files at:

/opt/thinkbig/thinkbig-ui/conf/
/opt/thinkbig/thinkbig-services/conf/
/opt/thinkbig/thinkbig-spark-shell/conf/

A backup of the previous version’s configuration is available from /opt/thinkbig/bkup-config/.

7. If using NiFi v0.7 or earlier, modify /opt/thinkbig/thinkbig-services/conf/application.properties by changing
spring.profiles.active from nifi-v1 to nifi-v0.

8. Start thinkbig apps:

/opt/thinkbig/start-thinkbig-apps.sh

78 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

9. Ensure the reporting task is configured A ReportingTask is now used for communication between NiFi and
Operations Manager. In order to see Jobs and Steps in Ops Manager, you will need to configure this following
instructions found here:

../how-to-guides/NiFiKyloProvenanceReportingTask

Whats coming in 0.7.0?

The next release will be oriented to public open-source release and select issues identified by the field for client
projects.

The approximate release date is February 13, 2017.

4.2.24 Release 0.6.1 (Jan. 26, 2017)

Highlights

• Improved NiFi provenance reporting performance

• Added timeout option to the NiFi ExecuteSparkJob processor

• Fixed missing Cloudera dependency

– To build for Cloudera, substitute “thinkbig-service-monitor-ambari” with “thinkbig-service-monitor-
cloudera-service” in services/service-app/pom.xml

Potential Impacts

Upon upgrading the ExecuteSparkJob processors will be marked as invalid saying: “Max wait time is invalid prop-
erty”. You will need to stop these processors and delete the “Max wait time” property.

Upgrade Instructions from v0.6.0

Build or download the RPM:

1. Shut down NiFi:

service nifi stop

2. To uninstall the RPM, run:

/opt/thinkbig/remove-thinkbig.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>

4. Run:

/opt/thinkbig/setup/nifi/update-nars-jars.sh

5. Start NiFi: (wait to start)

service nifi start

4.2. Previous Releases 79

Kylo Documentation, Release 0.9.1

6. Update, using your custom configuration, the configuration files at:

/opt/thinkbig/thinkbig-ui/conf/
/opt/thinkbig/thinkbig-services/conf/
/opt/thinkbig/thinkbig-spark-shell/conf/

A backup of the previous version’s configuration is available from /opt/thinkbig/bkup-config/.

7. If using NiFi v0.7 or earlier, modify /opt/thinkbig/thinkbig-services/conf/application.properties by changing
spring.profiles.active from nifi-v1 to nifi-v0.

8. Start thinkbig apps: -

/opt/thinkbig/start-thinkbig-apps.sh

9. Update the ExecuteSparkJob processors (Validate and Profile processors) fixing the error: “Max wait time is
invalid property” by removing that property.

10. Ensure the reporting task is configured A ReportingTask is now used for communication between NiFi and
Operations Manager. In order to see Jobs and Steps in Ops Manager you will need to configure this following
the instructions found here:

../how-to-guides/NiFiKyloProvenanceReportingTask

4.2.25 Release 0.6.0 (Jan. 19, 2017)

Highlights

• 90+ issues resolved

• NiFi clustering support. Ability to cluster NiFi with Kylo.

• Streaming enhancements. New streaming UI plots and higher throughput performance between Kylo and NiFi.
Ability to specify a feed as a streaming type to optimize display.

• Improved schema manipulation. Ability for feeds and target Hive tables to diverge (for example: drop fields,
rename fields, and change data types for fields the exist in raw files regardless of raw type).

• Alert persistence. Ability for alert panel to store alerts (and clear) including and APIs for plugging in custom
alert responder and incorporate SLA alerts.

• Configurable data profiling. Profiled columns can be toggled to avoid excessive Spark processing.

• Tags in search. Ability to search tags in global search.

• Legacy NiFi version cleanup. Deletes retired version of NiFi feed flows.

• Avro format option for database fetch. GetTableData processor has been updated to allow writing rows in Avro
format and to allow setting a custom column delimiter when the output type is a delimited text file.

• Feed file upload. Ability to upload a file directly to a feed and have it trigger immediately (for feeds using
filesystem).

• Tutorials. New admin tutorial videos.

Potential Impacts

• JMS topics switch to queues in order to support NiFi clustering. Check your ActiveMQ Topics page (http:
//localhost:8161/admin/topics.jsp) to ensure that there are no pending messages before shutting down NiFi. The
number of enqueued and dequeued messages should be the same.

80 Chapter 4. Release Notes

http://localhost:8161/admin/topics.jsp
http://localhost:8161/admin/topics.jsp

Kylo Documentation, Release 0.9.1

• Apache NiFi versions 0.6 and 0.7 are no longer supported. Some features may continue to function normally
but haven’t been properly tested. These will stop working in future releases. Upgrading to the latest version of
Apache NiFi is recommended.

• (for VirtualBox sandbox upgrades) The default password for MySQL has changed. If you are using default
config files deployed via RPM, modify your MySQL password to match or alter the configuration files.

Upgrade Instructions from v0.5.0

Build or download the RPM:

1. Shut down NiFi:

service nifi stop

2. Run the following to uninstall the RPM:

/opt/thinkbig/remove-thinkbig.sh

3. Install the new RPM:

rpm -ivh <RPM_FILE>"

4. Run:

/opt/thinkbig/setup/nifi/update-nars-jars.sh

5. Update /opt/nifi/current/conf/nifi.properties file and change it to use the default PersistentProvenanceRepository:

nifi.provenance.repository.implementation=org.apache.nifi.provenance.
→˓PersistentProvenanceRepository

6. Execute the database upgrade script:

/opt/thinkbig/setup/sql/mysql/thinkbig/0.6.0/update.sh localhost root <password or
→˓blank>

7. Create the “/opt/nifi/activemq” folder and copy the jars:

$ mkdir /opt/nifi/activemq

$ cp /opt/thinkbig/setup/nifi/activemq/*.jar
/opt/nifi/activemq

$ chown -R nifi /opt/nifi/activemq/

8. Add a service account for thinkbig application to nifi group. (This will allow Kylo to upload files to the dropzone
location defined in NiFi). This step will differ per operating system. Note also that these may differ depending
on how the service accounts where created.

$ sudo usermod -a -G nifi thinkbig

Note: All dropzone locations must allow the thinkbig service account to write.

9. Start NiFi: (wait to start)

4.2. Previous Releases 81

Kylo Documentation, Release 0.9.1

service nifi start

Note: If errors occur, try removing the transient provenance data: rm -fR /PATH/TO/NIFI/provenance_repository/.

10. Update, using your custom configuration, the configuration files at:

/opt/thinkbig/thinkbig-ui/conf/
/opt/thinkbig/thinkbig-services/conf/
/opt/thinkbig/thinkbig-spark-shell/conf/

A backup of the previous version’s configuration is available from /opt/thinkbig/bkup-config/.

11. If using NiFi v0.7 or earlier, modify /opt/thinkbig/thinkbig-services/conf/application.properties by changing
spring.profiles.active from nifi-v1 to nifi-v0.

12. Start thinkbig apps:

/opt/thinkbig/start-thinkbig-apps.sh

13. Update the re-usable standard-ingest template, index_schema_service, and the index_text_service.

1. The standard-ingest template can be updated through the templates page.
(/opt/thinkbig/setup/data/templates/nifi-1.0/) The upgrade will:

(a) Add “json field policy file” path as one of the parameters to Profiler processor to support selective column
profiling. See “Configurable data profiling” in highlights.

(b) Add feed field specification to support UI ability to modify feeds. See “Improved schema manipulation”
in highlights above.

(c) Adds shared library path to activemq libraries required going forward.

2. The index_schema_service and index_text_service templates are feed templates and should be updated through
the feeds page. (/opt/thinkbig/setup/data/feeds/nifi-1.0/.

(a) Go to the feeds page.

(b) Click the Plus icon.

(c) Click on the “import from file” link.

(d) Choose one of the Elasticsearch templates and check the overwrite box.

14. A ReportingTask is now used for communication between NiFi and Operations Manager. In order to see Jobs
and Steps in Ops Manager you will need to configure this following these instructions:

../how-to-guides/NiFiKyloProvenanceReportingTask

4.2.26 Release 0.5.0 (Dec. 14, 2016)

Highlights

• 65 issues resolved

• Audit tracking. All changes in Kylo are tracked for audit logging.

• Spark 2.0 support!

• PySparkExec support. New NiFi processor for executing Spark Python scripts

82 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

• Plug-in API for adding raw formats. Ability to plug-in support for new raw file formats and introspect schema

• New raw formats: Parquet, ORC, Avro, JSON

• Customize partition functions. Ability to add custom UDF functions to dropdown for deriving partition keys

• Feed import enhancements. Allow users to change target category on feed import

• Sqoop improvements. Improved compatibility with Kylo UI and behavior

• JPA conversion. Major conversion away from legacy Spring Batch persistence to JPA for Ops Mgr

• Date/time standardization. Storage of all dates and times will be epoch time to preserve the ability to apply
timezones

• New installation document showing an example on how to install Kylo on AWS in an HDP 2.5 cluster. Refer to
HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

• Ranger enabled

• Kerberos enabled

• Minimal admin privileges

• NiFi and Kylo on separate edge nodes

Known Issues

Modeshape versioning temporarily disabled for feeds due to rapid storage growth. We will have a fix for this issue
and re-introduce it in 0.5.1.

Potential Impacts

• JPA conversion requires one-time script (see install instructions)

• Spark Shell moved into Think Big services /opt directory

• Date/time modification Timestamp fields converted to Java time for portability and timezone consistency. Any
custom reports will need to be modified

4.2.27 Release 0.4.3 (Nov. 18, 2016)

Highlights

• 67 issues resolved

• Hive user impersonation. Ability to restrict Hive table access throughout Kylo based on permissions of logged-in
user.

• Visual data lineage. Visualization of relationship between feeds, data sources, and sinks. Refer to Feed Lineage
Configuration

• Auto-layout NiFi feeds. Beautified display of Kylo-generated feeds in NiFi.

• Sqoop export. Sqoop export and other Sqoop improvements from last release.

• Hive table formats. Final Hive table format extended to: RCFILE, CSV, AVRO (in addition to ORC, PAR-
QUET).

• Hive change tracking. Batch timestamp (processing_dttm partition value) carried into final table for change
tracking.

4.2. Previous Releases 83

Kylo Documentation, Release 0.9.1

• Delete, disable, reorder templates. Ability to disable and/or remove templates as well as change their order in
Kylo.

• Spark yarn-cluster support. ExecuteSparkJob processor now supports yarn-cluster mode (thanks Prav!).

• Kylo logo replaces Teradata Thinkbig logo (note: this is not our final approved logo).

Known Issues

Hive impersonation is not supported with CDH if using Sentry.

Wrangler does not yet support user impersonation.

Potential Impacts

• Existing wrangler feed tables will need to ALTER TABLE to add a processing_dttm field to table in order to
work.

• Processing_dttm field is now java epoch time instead of formatted date to be timezone independent. Older feeds
will now have partition keys in two different formats.

• All non-feed tables will now be created as managed tables.

4.2.28 Release 0.4.2 (Nov. 4, 2016)

Highlights

• 70-plus issues resolved

• NiFi version 1.0 and HDF version 2.0 support

• Encrypted properties and passwords in configuration files. Refer to “Encrypting Configuration Property Values”
in the Encrypting Configuration Properties

• SSL support. SSL between services. Refer to NiFi and SSL

• Feed-chaining context. Context can be passed from dependent feeds. Refer to the Trigger Feed section in NiFi
Processor Guide

• Lineage tracking. Schema, feed, and preconditions.

• UI/UX improvements

• CSVSerde support and improved schema discovery for text files

• NiFi Template upgrades

• Procedure for relocating install locations of Kylo and dependencies.

4.2.29 Release 0.4.1 (Oct. 20, 2016)

Highlights

• Resolved approximately 65 issues

• Ranger and Sentry integration (ability to assign groups to feed tables)

84 Chapter 4. Release Notes

Kylo Documentation, Release 0.9.1

• NEW Sqoop import processor for efficient database ingest (tested with Sqoop version 1.4.6, Databases-
Teradata,Oracle, and MySQL)

• Watermark service provides support for incremental loads

• Hive merge on Primary Key option

• Skip header support

• Configurable root paths for Hive and HDFS folders (multi-tenancy phase I)

• New and simplified standard ingest and re-usable wrangler flows

• Support for Hive decimal type

• Support for choosing existing field as partition

• Documentation updates

• UI usability improvements (validation, etc)

Known Issues

Creating a feed using standard data ingest with Database as the input may fail on initial run. There are 2 workarounds
you can do to resolve this:

1. Go to the “Feed Details” screen for the feed and disable and then enable the feed; or,

2. During creation of the feed on the last “Schedule” step you can uncheck the “Enable Feed Immediately”. This
will save the feed in a “disabled state”. Once the feed has been created on the Success screen click “View
Details” then enable the feed.

4.2.30 Release 0.4.0 (Oct. 4, 2016)

Highlights

• Support Streaming/Rapid Fire feeds from NiFi

Note: Operations Manager User Interfaces for viewing Streaming feeds will come in a near future release.

• Security enhancements including integration with LDAP and administration of users and groups through the
web UI

• Business metadata fields can be added to categories and feeds

• Category and feed metadata can be indexed with Elasticsearch, Lucene, or Solr for easier searching

• Fixed bug with kylo init.d service scripts not support the startup command

• Fixed issues preventing preconditions or cleanup feeds from triggering

• Fixed usability issues with the visual query

• Better error notification and bug fixes when importing templates

• Service level agreement assessments are now stored in our relational metadata store

• Spark Validator and Profiler Nifi processors can now handle additional Spark arguments

• Redesign of job details page in operations manager to view steps/details in vertical layout

4.2. Previous Releases 85

Kylo Documentation, Release 0.9.1

• Allow injection of properties for any processor or controller service in the application.properties file. The
feed properties will be overridden when importing a template. This includes support to auto fill all kerberos
properties.

Known Issues

• The Data Ingest and Data Transformation templates may fail to import on a new install. You will need to manu-
ally start the SpringContextLoaderService and the Kylo Cleanup Service in NiFi, then re-import the template in
the Feed Manager.

• When deleting a Data Transformation feed, a few Hive tables are not deleted as part of the cleanup flow and
must be deleted manually.

Running in the IDE

• If you are running things via your IDE (Eclipse or IntelliJ) you will need to run the following command under
the core/operational-metadata/operational-metadata-jpa module

• mvn generate-sources

This is because it is now using JPA along with QueryDSL(http://www.querydsl.com/), which gen-
erates helper Query classes for the JPA entities. Once this runs you will notice it generates
a series of Java classes prefixed with “Q” (i.e. QNifiJobExecution) in the core/operational-
metadata/operational-metadata-jpa/target/generated-sources/java/

Optionally you could just run a mvn install on this module which will also trigger the generate-
sources.

• Additionally, if you havent done so, you need to ensure the latest nifi-provenance-repo.nar file is in the
/opt/nifi/data/lib folder.

4.2.31 Release 0.3.2 (Sept. 19, 2016)

Highlights

• Fixes a few issues found in version 0.3.1.

• Removed thinkbig, nifi, and activemq user creation from RPM install and installation scripts. Creating those
users are now a manual process to support clients who use their own user management tools.

• Kerberos support for the UI features (data wrangling, hive tables, feed profiling page). Data wrangling uses the
thinkbig user keytab and the rest uses the hive user keytab.

• Fixed bug introduced in 0.3.1 where the nifi symbolic link creation is broken during a new installation.

• Added support for installation Elasticsearch on SUSE.

Note: The activemq download URL was changed. To manually update the installation script edit:
/opt/thinkbig/setup/activemq/install-activemq.sh and change the URL on line 25 to be https://archive.apache.org/dist/
activemq/5.13.3/apache-activemq-5.13.3-bin.tar.gz

86 Chapter 4. Release Notes

http://www.querydsl.com/
https://archive.apache.org/dist/activemq/5.13.3/apache-activemq-5.13.3-bin.tar.gz
https://archive.apache.org/dist/activemq/5.13.3/apache-activemq-5.13.3-bin.tar.gz

Kylo Documentation, Release 0.9.1

4.2.32 Release 0.3.1 (Aug. 17, 2016)

Highlights

• Fixes a few issues found in version 0.3.0.

• Fixes the download link to NiFi for generating an offline tar file.

• Compatibility with MySQL 5.7.

• Installs a stored procedure required for deleting feeds.

• PC-393 Automatically reconnects to the Hive metastore.

• PC-396 Script to update NiFi plugins and required JARs.

Note: A bug was introduced with installation of NiFi from the setup wizard (Fixed in the 0.4.0-SNAPSHOT). If
installing a new copy of PCNG, make the following change:

Edit /opt/kylo/setup/nifi/install-kylo-components.sh and change “./create-symbolic-links.sh” to
“$NIFI_SETUP_DIR/create-symbolic-links.sh”

4.2.33 Release 0.3.0 (Aug. 10, 2016)

Highlights

• 65 issues resolved by the team

• Feed migration. Import/export feeds across environments

• Feed delete. Delete a feed (including tables and data)

• Business metadata. Ability to add user-defined business metadata to categories and feeds

• Feed chaining. Chain feeds using UI-driven precondition rules

• SLA support. Create Service Level Agreements in UI

• Alerting. Alert framework and built-in support for JIRA and email

• Profiling UI. New graphical UI for viewing profile statistics

• Wrangler XML support. Wrangler enhancements including improved XML support

• Authentication. Pluggable authentication support

4.2.34 Release 0.2.0 (June 22, 2016)

Whats New

Release data: June 22, 2016

R&D is pleased to announce the release of version 0.2.0 of the framework, which represents the last three weeks of
sprint development.

• Over 60 issues were resolved by the team working in collaboration with our International teams using the
framework for client projects.

• Dependency on Java 8

4.2. Previous Releases 87

Kylo Documentation, Release 0.9.1

• Updated metadata server to ModeShape framework, which supports many of our underlying architectural re-
quirements:

– Dynamic schemas - provides extensible features for extending schema towards custom business metadata
in the field

– Versioning - ability to track changes to metadata over time

– Text Search - flexible searching metastore

– Portability - can run on sql and nosql databases

– See: http://modeshape.jboss.org/

88 Chapter 4. Release Notes

http://modeshape.jboss.org/

CHAPTER 5

Downloads

This page contains links to the commons files you might want to download

5.1 Kylo Distribution (0.9.1.3)

Type Link
RPM http://bit.ly/2RAtzs9
DEB http://bit.ly/2RFHc98
TAR http://bit.ly/2A0ox11
Offline TAR http://bit.ly/2A0Vr1B

5.2 Kylo Distribution (0.9.1.2)

Type Link
RPM http://bit.ly/2O9Tg3y
DEB http://bit.ly/2pxEsOv
TAR http://bit.ly/2Idp4zm
Offline TAR http://bit.ly/2IcVf1R

5.3 Kylo Distribution (0.9.1.1)

Type Link
RPM http://bit.ly/2KDX4cy
DEB http://bit.ly/2KDzKfc
TAR http://bit.ly/2J4aVDl
Offline TAR http://bit.ly/2KXsREU

89

http://bit.ly/2RAtzs9
http://bit.ly/2RFHc98
http://bit.ly/2A0ox11
http://bit.ly/2A0Vr1B
http://bit.ly/2O9Tg3y
http://bit.ly/2pxEsOv
http://bit.ly/2Idp4zm
http://bit.ly/2IcVf1R
http://bit.ly/2KDX4cy
http://bit.ly/2KDzKfc
http://bit.ly/2J4aVDl
http://bit.ly/2KXsREU

Kylo Documentation, Release 0.9.1

5.4 Kylo Distribution (0.9.1)

Type Link
RPM http://bit.ly/2IDdwJ0
DEB http://bit.ly/2s4Lgou
TAR http://bit.ly/2LqxXH5
Offline TAR http://bit.ly/2IG1dMa

5.5 Kylo Distribution (0.9.0.2)

Type Link
RPM http://bit.ly/2Ig7b1C
DEB http://bit.ly/2pTwWNx
TAR http://bit.ly/2Gq0wkL
Offline TAR http://bit.ly/2E64o8S

5.6 Kylo Distribution (0.9.0.1)

Type Link
RPM http://bit.ly/2oAHVMg
DEB http://bit.ly/2t9JYeX
TAR http://bit.ly/2CVuvhU

5.7 Kylo Distribution (0.9.0)

Type Link
RPM http://bit.ly/2EPLQho
DEB http://bit.ly/2BH7jXI
TAR http://bit.ly/2odPjwE

5.8 Kylo Distribution (0.8.4.1)

Type Link
RPM http://bit.ly/2DrO9Ur
DEB http://bit.ly/2DrLXfz
TAR http://bit.ly/2kEwFfU

90 Chapter 5. Downloads

http://bit.ly/2IDdwJ0
http://bit.ly/2s4Lgou
http://bit.ly/2LqxXH5
http://bit.ly/2IG1dMa
http://bit.ly/2Ig7b1C
http://bit.ly/2pTwWNx
http://bit.ly/2Gq0wkL
http://bit.ly/2E64o8S
http://bit.ly/2oAHVMg
http://bit.ly/2t9JYeX
http://bit.ly/2CVuvhU
http://bit.ly/2EPLQho
http://bit.ly/2BH7jXI
http://bit.ly/2odPjwE
http://bit.ly/2DrO9Ur
http://bit.ly/2DrLXfz
http://bit.ly/2kEwFfU

Kylo Documentation, Release 0.9.1

5.9 Kylo Distribution (0.8.3.3)

Type Link
RPM http://bit.ly/2yMUbjb
DEB http://bit.ly/2yrdL1o
TAR http://bit.ly/2ylM5NR

5.10 Kylo Distribution (0.8.3)

Type Link
RPM http://bit.ly/2xOA8wd
DEB http://bit.ly/2gkYmr1
TAR http://bit.ly/2wk1kVH

5.11 Plugins

Plugins can be downloaded from the maven central repository https://search.maven.org/

5.9. Kylo Distribution (0.8.3.3) 91

http://bit.ly/2yMUbjb
http://bit.ly/2yrdL1o
http://bit.ly/2ylM5NR
http://bit.ly/2xOA8wd
http://bit.ly/2gkYmr1
http://bit.ly/2wk1kVH
https://search.maven.org/

Kylo Documentation, Release 0.9.1

92 Chapter 5. Downloads

CHAPTER 6

Overview

The best way to get started with Kylo is to keep it simple at first. Get Kylo up and running with a single node and test
a simple feed before enabling features such as clustering, SSL, encryption,etc. This installation section will help you
get Kylo up and running, then give you some guidance on where to go from there.

6.1 Installation Methods

Kylo has 3 build distributions:

• RPM - An easy and opinionated way of installing Kylo on Redhat based systems

• DEB - An easy and opinionated way of installing Kylo on Debian based systems

• TAR File – Available for those who want to install Kylo in a folder other than /opt/kylo, or want to run Kylo as
a different user.

Once the binary is installed Kylo can be configured a few different ways:

• Setup Wizard - For local development and single node development boxes, the Setup Wizard Deployment Guide
can be used to quickly bootstrap your environment to get you up and running.

• Manually Run Shell Scripts - In a test and production environment, you will likely be installing on multiple
nodes. The Manual Deployment Guide provides detailed instructions on how to install each individual compo-
nent.

• Configuration Management Tools – Kylo installation is designed to be automated. You can leverage tools
such as Ansible, Chef, Puppet, and Salt Stack

6.2 Installation Components

Installing Kylo inlcudes the following software:

93

Kylo Documentation, Release 0.9.1

• Kylo Applications: Kylo provides services to produce Hive tables, generate a schema based on data brought into
Hadoop, perform Spark-based transformations, track metadata, monitor feeds and SLA policies, and publish to
target systems.

• Java 8: Kylo uses the Java 8 development platform.

• NiFi: Kylo uses Apache NiFi for orchestrating data pipelines.

• ActiveMQ: Kylo uses Apache ActiveMQ to manage communications with clients and servers.

• Elasticsearch/SOLR: Kylo can use either Elasticsearch or SOLR, as a distributed, multi-tenant capable full-text
search engine.

6.3 Default Installation Locations

Installing Kylo installs the following software at these Linux file system locations:

• Kylo Applications - /opt/kylo

• Java 8 - /opt/java/current

• NiFi - /opt/nifi/current

• ActiveMQ - /opt/activemq

• Elasticsearch - RPM installation default location

6.4 Demo Sandbox

If you are interested in running a working example of Kylo you might consider running one of our demo sandboxes
located on the http://kylo.io/quickstart.html website

94 Chapter 6. Overview

http://kylo.io/quickstart.html

CHAPTER 7

Review Dependencies

This page can be used as a guide to prepare you environment for installation.

7.1 Supported Operating Systems

Operating System Versions
RHEL,CentOs 6.x, 7.x
SUSE v11
Ubuntu 16.x,17.x

7.2 Supported Hadoop Distributions

Platform Sandbox URL Version
Hortonworks https://hortonworks.com/products/sandbox/ HDP 2.3+
Cloudera https://www.cloudera.com/downloads/quickstart_vms/5-12.html 5.8+

7.3 Edge Node Hardware Requirements

Although the hardware requirements depend on the volume of data that will be processed here are some general
recommendations:

• Minimum production recommendation is 4 cores CPU, 16 GB RAM.

• Preferred production recommendation is 8 cores CPU, 32 GB RAM.

95

https://hortonworks.com/products/sandbox/
https://www.cloudera.com/downloads/quickstart_vms/5-12.html

Kylo Documentation, Release 0.9.1

Note: Kylo and Apache NiFi can be installed on a single edge node, however it is recommended that they run on
separate edge nodes.

7.4 Kylo Stack Dependencies

Below is a list of some of the major components Kylo uses along with the version that Kylo currently supports:

Cate-
gory

Item Version Description

Persis-
tence

MySQL 5.x (tested with
5.1.73)

Used to store both the Modeshape (JCR 2.0) metadata and the Opera-
tional Relational (Kylo Ops Manager) metadata

Persis-
tence

Postgres 9.x Used to store both the Modeshape (JCR 2.0) metadata and the Opera-
tional Relational (Kylo Ops Manager) metadata

Persis-
tence

MS SQL
Server

Azure Used to store both the Modeshape (JCR 2.0) metadata and the Opera-
tional Relational (Kylo Ops Manager) metadata

JMS Ac-
tiveMq

5.x (tested
with 5.13.3)

Used to send messages between different modules and to send Prove-
nance from NiFi to Kylo

NiFi NiFi 1.0 - 1.6,(HDF
2.0)

Either HDF or open source NiFi work.

Spark Spark
Client

1.5.x, 1.6.x,
2.x

NiFi and Kylo have routines that leverage Spark.

Hive Hive 1.2.x+ Required if using Hive and the standard ingest template
Hadoop HDFS 2.7.x+ Required if using Hive and the standard ingest template
Java Java Java 8_92+ The Kylo install will setup its own Java Home so it doesn’t affect any

other Java versions running on the machine.
Search Elastic-

search
2.3.x, 5.x For index and search of Hive metadata and indexing feed data when se-

lected as part of creating a feed
Search Solr 6.5.1 (Solr-

Cloud mode)
For index and search of Hive metadata and indexing feed data when se-
lected as part of creating a feed

7.5 Linux Tools

Below are tools required to be installed on the Linux box before installing the Kylo components

Tool
Curl (for downloading installation files)
RPM or dpkg(for install)

7.6 Service Accounts

Required new linux service accounts are listed below. Within enterprises there are often approvals required and long
lead times to obtain service accounts. Kerberos principals are required where the service interacts with a Kerberized
Hadoop cluster. These services are not typically deployed to control and data nodes. The Nifi, activemq, Elastic
services and Kylo metastore databases (mysql or postgres) are IO intensive.

96 Chapter 7. Review Dependencies

Kylo Documentation, Release 0.9.1

Ser-
vice

Purpose Local
Linux
Users

Local
Linux
Groups

Keytab file upn spn

kylo-
services

Kylo API Server kylo kylo, hdfs
or super-
group

/etc/security/keytabs/kylo.service.keytab*kylo@EXAMPLE.COM*

kylo-ui Provides Kylo feed and op-
erations user interface

kylo kylo, hdfs
or super-
group

nifi Orchestrate data flows nifi nifi, hdfs or
supergroup

/etc/security/keytabs/nifi.service.keytab*nifi@EXAMPLE.COM*

ac-
tivemq

Broker messages between
components

activemq activemq

elastic-
search

Manages searchable index elastic-
search

elastic-
search

mysql
or
postgres

Metastore for Kylo feed
manager and operational
metadata

mysql or
postgres

mysql or
postgres

Note: You have the flexibility to change the installation locations and service accounts when using the TAR installa-
tion method

7.7 Network Ports

Kylo relies heavily on integration with other services. Below is a list of network ports that are required for the standard
ingest to work

Required

Port From Service To Service
8400 Browser/NiFi kylo-ui
8079 Browser/kylo-services NiFi
61616 kylo-services/NiFi ActiveMQ
3306 kylo-services/NiFi MySQL
9200 kylo-services/NiFi Elasticsearch
9300 kylo-services/NiFi Elasticsearch 2.x
8983 kylo-services/NiFi SOLR
9983 kylo-services/NiFi SOLR
10000 kylo-services/NiFi HiveServer2
ALL kylo-spark-shell Yarn, data nodes

Optional

Port From Service To Service
8420 REST Client kylo-services
8161 Browser ActiveMQ Admin

7.7. Network Ports 97

mailto:kylo@EXAMPLE.COM
mailto:nifi@EXAMPLE.COM

Kylo Documentation, Release 0.9.1

7.8 Default HDFS Locations (for standard ingest)

The below locations are configurable. If you plan on using the default locations they will be create here.

HDFS Location | Description
/archive Archive original files
/etl Feed processing file location
/model.db Hive feed, invalid, valid, profile location
/app/warehouse Hive feed table final location

98 Chapter 7. Review Dependencies

CHAPTER 8

Prepare Install Checklist

This checklist will help you prepare for an enterprise deployment and is valuable if you require approvals ahead of
time. Please refer to the Review Dependencies guide for more details in each section

• Pre-installation

– [] Determine data throughput requirements based on expected feeds

– [] Will I use an existing Elasticsearch/SOLR instance?

– [] Will I use an existing ActiveMQ instance?

– [] Review library dependencies to ensure HDFS/Hive/Spark is current enough

– [] Obtain approvals for Linux service users (If not, you must install using TAR method)

– [] Obtain approvals for network ports

– [] Determine if I want to leverage liquibase to automatically install database scripts and upgrades for
Kylo

– [] Request or generate SSL certificates if required

• Hardware/OS Provisioning

– [] Provision Edge Nodes

– [] Install supported operating system

• General Configuration Preparation

– [] Hive Hostname/IP Address:

– [] Ambari/Cloudera Manager IP Hostname/IP Address (if used):

– [] Ambari/Cloudera Manager “kylo” user username/password (if used):

– [] Kylo Edge Hostname/IP Address:

– [] NiFi Edge Hostname/IP Address:

– [] MySQL Kylo Hostname/IP Address:

99

Kylo Documentation, Release 0.9.1

– [] Kylo MySQL Installation User username/password (Create Schema Required):

– [] Kylo MySQL application username/password (For the kylo-services application and Hive metadata
access):

– [] MySQL Hive Hostname/IP Address:

– [] Hive MySQL application username/password:

– [] HDFS root folder location (if different than default:

• Kerberos Configuration Preparation

– [] KDC Hostname/IP Address (if used):

– [] Kerberos Principal for “kylo”:

– [] Kerberos Principal for “nifi”:

– [] Kerberos Principal for “hive” on the Hive Server2 Host:

100 Chapter 8. Prepare Install Checklist

CHAPTER 9

Create Service Accounts

Creation of users and groups is done manually because many organizations have their own user and group management
system. Therefore we cannot script it as part of the RPM install.

Note: Each of these should be run on the node on which the software will be installed. If a machine will run nifi,
kylo and activemq, all users/groups should be created. If running individual services, only the appropriate user/group
for that service should be created, not all of them.

9.1 Option 1: Install all users/groups on single node

To create all the users and groups on a single machine, run the following command:

useradd -r -m -s /bin/bash nifi && useradd -r -m -s /bin/bash kylo && useradd -r -m -
→˓s /bin/bash activemq

9.2 Option 2: Run individual useradd commands

If you are installing the Kylo components on different nodes you will need to run the commands individually. To
create individual users, run the following commands on the appropriate machines:

useradd -r -m -s /bin/bash nifi
useradd -r -m -s /bin/bash kylo
useradd -r -m -s /bin/bash activemq

The following command can be used to confirm if the user and group creation was successful:

grep 'nifi\|kylo\|activemq' /etc/group /etc/passwd

101

Kylo Documentation, Release 0.9.1

This command should give two results per user, one for the user in /etc/passwd and one in /etc/group. For example, if
you added all the users to an individual machine, there should be six lines of output. If you just added an individual
user, there will be two lines of output.

If the groups are missing, they can be added individually:

groupadd -f kylo
groupadd -f nifi
groupadd -f activemq

If all groups are missing, they can be all added with the following command:

groupadd -f kylo && groupadd -f nifi && groupadd -f activemq

102 Chapter 9. Create Service Accounts

CHAPTER 10

Prepare Offline TAR

The OPTIONAL offline TAR file can be useful in two scenarios:

1. You are installing ActiveMQ, Elasticsearch, Java, or NiFi on nodes with no external network access.

2. You plan on installing ActiveMQ, Elasticsearch, Java, or NiFi on separate nodes than Kylo and want to take
advantage of the setup files you will want to generate an

The offline TAR file will include the binaries required to install the 4 services mentioned above.

10.1 Generate the TAR file

1. Install the Kylo RPM on a node that has internet access.

$ rpm -ivh kylo-<version>.rpm

2. Run the script, which will download all application binaries and put them in their respective directory in the
setup folder.

$ /opt/kylo/setup/generate-offline-install.sh

Note If installing the Debian packages make sure to change the Elasticsearch download from RPM to DEB

3. Copy the /opt/kylo/setup/kylo-install.tar file to the node you install the RPM on. This can be copied to a temp
directory. It doesn’t have to be put in the /opt/kylo/setup folder.

4. Run the command to tar up the setup folder.

tar -xvf kylo-install.tar

5. Note the directory name where you untar’d the files. You will need to reference the setup location when manually
running the shell scripts

103

Kylo Documentation, Release 0.9.1

104 Chapter 10. Prepare Offline TAR

CHAPTER 11

Install Kylo

Choose one of the installation methods below to install Kylo.

11.1 RPM Install

Download the latest RPM (Downloads) , and place it on the host Linux machine that you want to install Kylo services
on.

Note: To use wget instead, right-click the download link and copy the url.

$ rpm -ivh kylo-<version>.rpm

11.2 DEB Install

Download the latest DEB file (Downloads) , and place it on the host Linux machine that you want to install Kylo
services on.

Note: To use wget instead, right-click the download link and copy the url.

$ dpkg -i kylo-<version>.deb

11.3 TAR File Install

The TAR file method is useful when you need more control over where you can install Kylo and you need the flexibility
to run Kylo as a different service user. In this example we will assume you want to install Kylo in the /apps folder, run

105

Kylo Documentation, Release 0.9.1

it as the “ad_kylo” user and “users” group

1. Download the latest TAR (Downloads) , and place it on the host Linux machine that you want to install Kylo
services on.

2. Untar the file

$ sudo mkdir /apps/kylo
$ sudo tar -xvf /tmp/kylo-<version>-dependencies.tar.gz -C /apps/kylo

3. Run the post-install script

$ sudo /apps/kylo/setup/install/post-install.sh /apps/kylo ad_kylo users

11.4 TAR File Upgrade

If you are performing an upgrade please see the TAR file upgrade page for instructions

../installation/TarFileUpgrade

106 Chapter 11. Install Kylo

CHAPTER 12

Install Additional Components

Now that Kylo has been installed you have a few different option to install the database scripts, ActiveMQ, Elastic-
search, Java, and NiFi

Note: The setup wizard currently doesnt autodetect that its on a SUSE. Therefore you should skip the Elasticsearch
installation step and download/install the DEB distribution manually.

12.1 Database Preparation

If you would like to run Kylo as a non-privileged user you should create a kylo database user and configure the
appropriate permissions.

12.1.1 Create Kylo Database and User

If you prefer to run Kylo as a non-privileged user and want to create the database schema yourself please do the
following.

Note: These commands need to be ran as a database administrator

Create the kylo database

This must be done as a database administrator

Postgres

$ sudo -u postgres psql

> CREATE DATABASE kylo;

107

Kylo Documentation, Release 0.9.1

Create the kylo database user

Postgres

$ sudo -u postgres psql

> CREATE USER kylo WITH PASSWORD 'abc123';

Grant Kylo user access to DB

Postgres

$ sudo -u postgres psql -d kylo

> grant usage on schema public to kylo;
> GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA PUBLIC TO kylo;
> GRANT ALL PRIVILEGES ON ALL SEQUENCES IN SCHEMA PUBLIC TO kylo;
> grant execute on all functions in schema public to kylo;
> alter default privileges in schema public grant execute on functions to kylo;

If you plan to generate and run the SQL scripts manually (turn off liquibase), please see the “Manual Upgrades”
section in Database Upgrades

12.2 Option 1: Setup Wizard Installation

This is the easiest method and will allow you to choose which components to install on that node.

12.2.1 Setup Wizard Deployment Guide

Note that you will need a database user with schema create privileges if allowing the setup wizard to create the
database. If you prefer to create the “kylo” database yourself and/or create a “kylo” user please refer to Create Kylo
Database and User first

Step 1: Run the Setup Wizard

Warning: If Java 8 is not the system Java choose option #2 on the Java step to download and install Java in the
/opt/java/current directory.

1. From the /opt/kylo/setup directory

$ /opt/kylo/setup/setup-wizard.sh

2. Offline mode from another directory (using TAR file)

$ <PathToSetupFolder>/setup/setup-wizard.sh -o

Note: Both -o and -O work.

108 Chapter 12. Install Additional Components

Kylo Documentation, Release 0.9.1

Follow the directions to install the following: - MySQL or Postgres scripts into the local database

• Elasticsearch

• ActiveMQ

• Java 8 (If the system Java is 7 or below)

• NiFi and the Kylo dependencies

The Elasticsearch and ActiveMQ services start when the wizard is finished.

12.3 Option 2: Manual Installation

This option shows you how to run the scripts manually and will allow you to make customizations as you go.

12.3.1 Manual Deployment Guide

This document explains how to install each component of the Kylo framework manually. This is useful when you
are installing across multiple edge nodes. Use this link to the install wizard (Setup Wizard Deployment Guide) if you
would prefer not to do the installation manually.

Note: Many of the steps below are similar to running the wizard-based install. If you want to take advantage of the
same scripts as the wizard, you can tar up the /opt/kylo/setup folder and untar it to a temp directory on each node.

Installation

For each step below, you will need to login to the target machine with root access permissions. Installation commands
will be executed from the command line

Step 1: Setup Directory

Kylo is most often installed on one edge node. If you are deploying everything to one node, the setup directory would
typically be:

SETUP_DIR=/opt/kylo/setup

You might install some of these components on a differnet edge node than where Kylo is installed. In this case, copy
the setup folder or offline TAR file to those nodes that do not have the Kylo applications installed. In that case, use
this SETUP_DIR command:

SETUP_DIR=/tmp/kylo-install

Step 2: Create the “dladmin” user

Before logging into Kylo for the first time you must create a password for the “dladmin” user. To created the password
please do the following:

1. Create a users.properties file and add the username/password

12.3. Option 2: Manual Installation 109

Kylo Documentation, Release 0.9.1

$ vi /opt/kylo/users.properties
dladmin=myPassword

2. Modify the /opt/kylo/kylo-ui/conf/application.properties file

$ vi /opt/kylo/kylo-ui/conf/application.properties

uncomment this line
security.auth.file.users=file:///opt/kylo/users.properties

3. Modify the /opt/kylo/kylo-services/conf/application.properties file

$ vi /opt/kylo/kylo-services/conf/application.properties

uncomment this line
security.auth.file.users=file:///opt/kylo/users.properties

Please see Configure Access Control for information about configuring users and groups

Step 3: Install Java 8

Note: If you are installing NiFi and the kylo services on two separate nodes, you may need to perform this step on
each node.

There are 3 scenarios for configuring the applications with Java 8.

Scenario 1: Java 8 is installed on the system and is already in the classpath.

In this case you need to remove the default JAVA_HOME used as part of the install. Run the following script:

For kylo-ui and kylo-services
$ <SETUP_DIR>/java/remove-default-kylo-java-home.sh

To test this you can look at each file referenced in the scripts for kylo-ui and kylo-services to validate the 2 lines setting
and exporting the JAVA_HOME are gone.

Scenario 2: Install Java in the default /opt/java/current location.

Note: You can modify and use the following script to unstall Java 8:

Online Mode

$ <SETUP_DIR>/java/install-java8.sh <KYLO_HOME_DIR>

Offline Mode

$ <OFFLINE_SETUP_DIR>/java/install-java8.sh <KYLO_HOME_DIR> <OFFLINE_SETUP_DIR> -o

Example: /tmp/kylo-install/setup/java/install-java8.sh /opt/kylo /tmp/kylo-install/
→˓setup -o

Scenario 3: Java 8 is installed on the node, but it’s not in the default JAVA_HOME path.

If you already have Java 8 installed, and want to reference that installation, there is a script to remove the existing path
and another script to set the new path for the kylo apps.

110 Chapter 12. Install Additional Components

Kylo Documentation, Release 0.9.1

For kylo-ui and kylo-services
$ /opt/kylo/setup/java/remove-default-kylo-java-home.sh <KYLO_HOME>
$ /opt/kylo/setup/java/change-kylo-java-home.sh <JAVA_HOME> <KYLO_HOME>

Step 4: Install Java Cryptographic Extension

The Java 8 install script above will automatically download and install the Java Cryptographic Extension. This ex-
tension is required to allow encrypted property values in the Kylo configuration files. If you already have a Java 8
installed on the system, you can install the Java Cryptographic Extension by running the following script:

$ <SETUP_DIR>/java/install-java-crypt-ext.sh <PATH_TO_JAVA_HOME>

This script downloads the extension zip file and extracts the replacement jar files into the JRE security directory
($JAVA_HOME/jre/lib/security). It will first make backup copies of the original jars it is replacing.

Step 5: Install and Configure Elasticsearch

To get Kylo installed and up and running quickly, a script is provided to stand up a single node Elasticsearch instance.
You can also leverage an existing Elasticsearch instance. For example, if you stand up an ELK stack you will likely
want to leverage the same instance.

Option 1: Install Elasticsearch from our script.

Note: The included Elasticsearch script was meant to speed up installation in a sandbox or DEV environment.

1. Online Mode

$ <SETUP_DIR>/elasticsearch/install-elasticsearch.sh <KYLO_SETUP_FOLDER> <JAVA_8_HOME>

2. Offline Mode

$ <OFFLINE_SETUP_DIR>/elasticsearch/install-elasticsearch.sh <OFFLINE_SETUP_DIR>
→˓<JAVA_8_HOME> -o

Example: /tmp/kylo-install/setup/elasticsearch/install-elasticsearch.sh /tmp/kylo-
→˓install/setup /opt/java/current -o

Option 2: Use an existing Elasticsearch.

• To leverage an existing Elasticsearch instance, you must update all feed templates that you created with
the correct Elasticsearch URL.You can do this by going to the “Additional Properties” tab for that feed. If
you added any reusable flow templates you will need to modify the Elasticsearch processors in NiFI.

• Execute a script to create kylo indexes. If these already exist, Elasticsearch will report an
index_already_exists_exception. It is safe to ignore this and continue. Change the host and
port if necessary.

/opt/kylo/bin/create-kylo-indexes-es.sh localhost 9200 1 1

Note: Tip: To test that Elasticsearch is running type “curl localhost:9200”. You should see a JSON response.

12.3. Option 2: Manual Installation 111

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

Kylo Documentation, Release 0.9.1

Step 6: Install ActiveMQ

Another script has been provided to stand up a single node ActiveMQ instance. You can also leverage an existing
ActiveMQ instance.

Option 1: Install ActiveMQ from the script

Note: The included ActiveMQ script was meant to speed up installation in a sandbox or DEV environment. It is not
a production ready configuration.

1. Online Mode

$ <SETUP_DIR>/activemq/install-activemq.sh <INSTALLATION_FOLDER> <LINUX_USER> <LINUX_
→˓GROUP> <JAVA_8_HOME>

2. Offline Mode

$ <OFFLINE_SETUP_DIR>/activemq/install-activemq.sh <INSTALLATION_FOLDER> <LINUX_USER>
→˓ <LINUX_GROUP> <JAVA_8_HOME> <OFFLINE_SETUP_DIR> -o

Example: /tmp/kylo-install/setup/activemq/install-activemq.sh /opt/activemq activemq
→˓activemq /opt/java/current /tmp/kylo-install/setup -o

Note: If installing on a different node than NiFi and kylo-services you will need to update the following properties

1. /opt/nifi/ext-config/config.properties

jms.activemq.broker.url
(Perform this configuration update after installing NiFi, which is step 9 in

→˓this guide)

2. /opt/kylo/kylo-services/conf/application.properties

jms.activemq.broker.url
(By default, its value is tcp://localhost:61616)

Option 2: Leverage an existing ActiveMQ instance

Update the below properties so that NiFI and kylo-services can communicate with the existing server.

1. /opt/nifi/ext-config/config.properties

spring.activemq.broker-url

2. /opt/kylo/kylo-services/conf/application.properties

jms.activemq.broker.url

Step 7: Install NiFi

You can leverage an existing NiFi installation or follow the steps in the setup directory that are used by the wizard.

Option 1: Install NiFi from our scripts.

112 Chapter 12. Install Additional Components

Kylo Documentation, Release 0.9.1

This method downloads and installs NiFi, and also installs and configures the Kylo-specific libraries. This instance of
NiFi is configured to store persistent data outside of the NiFi installation folder in /opt/nifi/data. This makes it easy to
upgrade since you can change the version of NiFi without migrating data out of the old version.

1. Install NiFi in either online or offline mode:

Online Mode

$ <SETUP_DIR>/nifi/install-nifi.sh <NIFI_VERSION> <NIFI_BASE_FOLDER> <NIFI_LINUX_USER>
→˓ <NIFI_LINUX_GROUP>

Offline Mode

$ <OFFLINE_SETUP_DIR>/nifi/install-nifi.sh <NIFI_VERSION> <NIFI_BASE_FOLDER> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP> <OFFLINE_SETUP_DIR> -o

2. Update JAVA_HOME (default is /opt/java/current).

$ <SETUP_DIR>/java/change-nifi-java-home.sh <JAVA_HOME> <NIFI_BASE_FOLDER>/current

3. Install Kylo specific components.

Online Mode

$ <SETUP_DIR>/nifi/install-kylo-components.sh <NIFI_BASE_FOLDER> <KYLO_HOME> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP>

Offline Mode

$ <SETUP_DIR>/nifi/install-kylo-components.sh <NIFI_BASE_FOLDER> <KYLO_HOME> <NIFI_
→˓LINUX_USER> <NIFI_LINUX_GROUP> <OFFLINE_SETUP_DIR> -o

Option 2: Leverage an existing NiFi instance

In some cases you may want to leverage separate instances of NiFi or Hortonworks Data Flow. Follow the steps below
to include the Kylo resources.

Note: If Java 8 isn’t being used for the existing instance, then you will be required to change it.

1. Copy the <SETUP_DIR>/nifi/kylo-.nar and kylo-spark-.jar files to the node NiFi is running on. If it’s on the
same node you can skip this step.

2. Shutdown the NiFi instance.

3. Create folders for the jar files. You may choose to store the jars in another location if you want.

$ mkdir -p <NIFI_HOME>/current/lib

4. Copy the kylo-*.nar files to the <NIFI_HOME>/current/lib directory.

5. Create a directory called “app” in the <NIFI_HOME>/current/lib directory.

$ mkdir <NIFI_HOME>/current/lib/app

6. Copy the kylo-spark-*.jar files to the <NIFI_HOME>/current/lib/app directory.

7. Create symbolic links for all of the .NARs and .JARs. Below is an example of how to create it for one NAR file
and one JAR file. At the time of this writing there are eight NAR files and three spark JAR files.

12.3. Option 2: Manual Installation 113

Kylo Documentation, Release 0.9.1

$ ln -s <NIFI_HOME>/current/lib/kylo-nifi-spark-nar-*.nar <NIFI_HOME>/lib/kylo-nifi-
→˓spark-nar.nar

$ ln -s <NIFI_HOME>/current/lib/app/kylo-spark-interpreter-*-jar-with-dependencies.jar
<NIFI_HOME>/lib/app/kylo-spark-interpreter-jar-with-dependencies.jar

8. Modify <NIFI_HOME>/conf/nifi.properties and update the port NiFi runs on.

nifi.web.http.port=8079
nifi.provenance.repository.implementation=com.thinkbiganalytics.nifi.provenance.repo.
→˓KyloPersistentProvenanceEventRepository

Note: If you decide to leave the port number set to the current value, you must update the “nifi.rest.port” property in
the kylo-services application.properties file.

Note: See NiFi & Kylo Provenance for more information on provenance.

9. There is a controller service that requires a MySQL database connection. You will need to copy the driver jar to
a location on the NiFi node. The pre-defined templates have the default location set to /opt/nifi/mysql.

(a) Create a folder to store the driver jar in.

(b) Copy the /opt/kylo/kylo-services/lib/mariadb-java-client-<version>.jar to the folder in step #1.

(c) If you created a folder name other than the /opt/nifi/mysql default folder you will need to update the
“MySQL” controller service and set the new location. You can do this by logging into NiFi and going to
the Controller Services section at root process group level.

10. Create an ext-config folder to provide JMS information and location of cache to store running feed flowfile data
if NiFi goes down.

Note: Right now the plugin is hard coded to use the /opt/nifi/ext-config directory to load the properties file.

11. Add additional System Property to NiFi boostrap.conf for the kylo ext-config location.

(a) Add the next java.arg.XX in <NIFI_HOME>/conf/bootstrap.conf set to: -
Dkylo.nifi.configPath=<NIFI_INSTALL>/ext-config

Example: java.arg.15=-Dkylo.nifi.configPath=/opt/nifi/ext-config

Configure the ext-config folder

1. Create the folder.

$ mkdir /opt/nifi/ext-config

2. Copy the /opt/kylo/setup/nifi/config.properties file to the /opt/nifi/ext-config folder.

3. Change the ownership of the above folder to the same owner that nifi runs under. For example, if nifi runs as the
“nifi” user:

$ chown -R nifi:users /opt/nifi

114 Chapter 12. Install Additional Components

Kylo Documentation, Release 0.9.1

11. Create an activemq folder to provide JARs required for the JMS processors.

Configure the activemq folder

1. Create the folder.

$ mkdir /opt/nifi/activemq

2. Copy the /opt/kylo/setup/nifi/activemq/*.jar files to the /opt/nifi/activemq folder.

$ cp /opt/kylo/setup/nifi/activemq/*.jar /opt/nifi/activemq

3. Change the ownership of the folder to the same owner that nifi runs under. For example, if nifi runs as the “nifi”
user:

$ chown -R nifi:users /opt/nifi/activemq

OPTIONAL: The /opt/kylo/setup/nifi/install-kylo-components.sh contains steps to install NiFi as a service so that NiFi
can startup automatically if you restart the node. This might be useful to add if it doesn’t already exist for the NiFi
instance.

12.3. Option 2: Manual Installation 115

Kylo Documentation, Release 0.9.1

116 Chapter 12. Install Additional Components

CHAPTER 13

Enable Kerberos

If the cluster Kylo and NiFi will talk to has Kerberos enabled you will need to make a few additional configuration
changes before starting Kylo for the first time.

13.1 Enable Kerberos for NiFi

Enable Kerberos for NiFi

13.2 Enable Kerberos for Kylo

Enable Kerberos for Kylo

13.3 Test Client

If your cluster is Kerberized its a good idea to test the keytabs generated for Kylo and NiFi to make sure they work in
the JVM. Kylo provides a test client to make this easy.

1. Download the Test Client

Downloads

2. Run the test client

Follow the instructions in the test client to validate connectivity in the JVM

$ java -jar /opt/kylo-kerberos-test-client-VERSION.jar

117

Kylo Documentation, Release 0.9.1

118 Chapter 13. Enable Kerberos

CHAPTER 14

Additional Configuration

Before starting Kylo you will want to make sure the configuration is correct. Some common cases of when you would
want to change the defaults is

1. Database configuration

2. Hive thrift connection configuration

3. Set all required passwords

Note: Kylo no longer includes default passwords

14.1 Edit the Properties Files

There are 3 main properties files for Kylo

$ vi /opt/kylo/kylo-services/conf/application.properties

$ vi /opt/kylo/kylo-services/conf/spark.properties

$ vi /opt/kylo/kylo-ui/conf/application.properties

For more details on the properties please see Configuration Properties

14.2 Kylo HDP Demo Sandbox Example

Here is an example of the properties that need to be changed to work on the Kylo HDP demo sandbox

spring.datasource.username=<REPLACE_ME_WITH_USERNAME>
spring.datasource.password=<REPLACE_ME_WITH_PASSWORD>

hive.datasource.username=<REPLACE_ME_WITH_USERNAME>

(continues on next page)

119

Kylo Documentation, Release 0.9.1

(continued from previous page)

hive.metastore.datasource.username=<REPLACE_ME_WITH_USERNAME>
hive.metastore.datasource.password=<REPLACE_ME_WITH_PASSWORD>

nifi.service.mysql.database_user=<REPLACE_ME_WITH_USERNAME>
nifi.service.mysql.password=<REPLACE_ME_WITH_PASSWORD>
nifi.service.kylo_mysql.database_user=<REPLACE_ME_WITH_USERNAME>
nifi.service.kylo_mysql.password=<REPLACE_ME_WITH_PASSWORD>

#Note: The value for this property is the password for the dladmin user.
nifi.service.kylo_metadata_service.rest_client_password=<REPLACE_ME_WITH_PASSWORD>

modeshape.datasource.username=${spring.datasource.username}
modeshape.datasource.password=${spring.datasource.password}
metadata.datasource.username=${spring.datasource.username}
metadata.datasource.password=${spring.datasource.password}

14.3 Kylo Cloudera Demo Sandbox Example

The configuration is setup to work out of the box with the Kylo Hortonworks sandbox. There are a few differences
that require configuration changes for Cloudera.

1. /opt/kylo/kylo-services/conf/application.properties

spring.datasource.username=<REPLACE_ME_WITH_USERNAME>
spring.datasource.password=<REPLACE_ME_WITH_PASSWORD>

hive.datasource.username=<REPLACE_ME_WITH_PASSWORD>
hive.metastore.datasource.username=REPLACE_ME_WITH_USERNAME
hive.metastore.datasource.password=<REPLACE_ME_WITH_PASSWORD>
hive.metastore.datasource.url=jdbc:mysql://localhost:3306/metastore
config.hive.schema=metastore

nifi.service.mysql.database_user=REPLACE_ME_WITH_USERNAME
nifi.service.mysql.password=<REPLACE_ME_WITH_PASSWORD>
nifi.service.kylo_mysql.database_user=REPLACE_ME_WITH_USERNAME
nifi.service.kylo_mysql.password=<REPLACE_ME_WITH_PASSWORD>
nifi.service.kylo_metadata_service.rest_client_password=<REPLACE_ME_WITH_PASSWORD>
nifi.executesparkjob.sparkhome=/usr/lib/spark
config.spark.validateAndSplitRecords.extraJars=/usr/lib/hive-hcatalog/share/hcatalog/
→˓hive-hcatalog-core.jar

modeshape.datasource.username=${spring.datasource.username}
modeshape.datasource.password=${spring.datasource.password}
metadata.datasource.username=${spring.datasource.username}
metadata.datasource.password=${spring.datasource.password}

2. Spark configuration

cp /etc/hive/conf/hive-site.xml /etc/spark/conf/hive-site.xml

Snappy isn't working well for Spark on Cloudera
echo "spark.io.compression.codec=lz4" >> /etc/spark/conf/spark-defaults.conf

120 Chapter 14. Additional Configuration

CHAPTER 15

Kylo Application Properties

Below you can find all the properties used for the kylo-services application

121

Kylo Documentation, Release 0.9.1

15.1 Common Configuration Properties

Property Default Value Description
spring.profiles.include native,nifi-v1.2,auth-kylo,auth-

file,search-esr,jms-activemq
Profiles that should be used.
Different profiles will enable
certain behaviors in Kylo.
Indicate the NiFi version you are
using with the correct spring
profile.
- For NiFi 1.0.x: nifi-v1
- For NiFi 1.1.x: nifi-v1.1
- For NiFi 1.2.x or 1.3.x: nifi-v1.2
Additionally you can separate
properties into separate files with
the notation
application-<ProfileName>.You
can separate properties into
separate files and load them
Then add the ProfileName to the
active profile property to
use/override properties.

server.port 8420 The port Kylo runs on
liquibase.enabled true Liquibase allows Kylo to automati-

cally update the database to ensure
the Kylo metastore is current. If this
is set to false you will need to man-
ually run any SQL scripts when up-
grading Kylo.

liquibase.change-log classpath:com/thinkbiganalytics/db/master.xmlthe location of the liquibase scripts

122 Chapter 15. Kylo Application Properties

Kylo Documentation, Release 0.9.1

15.1. Common Configuration Properties 123

Kylo Documentation, Release 0.9.1

15.2 Kylo Operations

Property Default Value Description
kylo.cluster.jgroupsConfigFile

Only for Clustered Kylo
The name of the kylo jgroups
configuration file (i.e.
‘kylo.cluster.jgroupsConfigFile=kylo-
cluster-jgroups-config.xml’
)

kylo.feed.mgr.cleanup.timeout 60000 The amount of time to wait when re-
moving feeds before issuing a Time-
out error. Sometimes it can take a
while to remove a feed and its data.
Increase this value if you need more
time to cleanup a feed.

kylo.ops.mgr.query.nifi.bulletins true If a failure event is detected query
NiFi for any related bulletins and
add them to the Job details

kylo.ops.mgr.stats.nifi.bulletins.mem.size30

The limit to the number of bulletins
to store for streaming feed failures.
If statistics for streaming feeds
detects a failure it will store any
related NiFi bulletins in memory.
This is a rolling queue that will
keep the last # of errors per feed
Since 0.8.3

kylo.ops.mgr.stats.nifi.bulletins.persist false

When getting aggregate stats back
for flows if errors are detected Kylo
will query NiFi in attempt to
capture matching bulletins.
By default this data is stored in
memory. Setting this to true will
store the data in the MySQL table
Since 0.8.3

kylo.provenance.retry.unregistered.events.enabledtrue

Only for Clustered Kylo
When receiving provenance data
when Kylo is clustered, sometimes
the JMS message will come
through before the Cluster
notification is sent to all nodes.
When receiving JMS provenance
events if the events are not found to
match a Kylo feed set this to true to
have it retry and process the events
again.
Since 0.8.4

kylo.provenance.retry.unregistered.events.maxRetries3

Only for Clustered Kylo
The number of times to retry
unregistered provenance events
from JMS that dont match a Kylo
feed.
Since 0.8.4

kylo.provenance.retry.unregistered.events.waitTimeSec5

Only for Clustered Kylo
The wait time in seconds to retry
unregistered provenance events
from JMS that dont match a Kylo
feed.
Since 0.8.4

nifi.auto.align true When saving a feed Kylo will auto
align processors in NiFi to make the
canvas clean and readable. You can
set this property to false and man-
ually align the processors via a rest
endpoint.

nifi.flow.inspector.threads 1

When starting Kylo it will scan
NiFi to get processors and
connections. Usually 1 thread is
sufficient in inspecting NiFi. Only
under rare circumstances should
you increase this.
Since 0.8.2.4 and 0.8.3.3

nifi.flow.max.retries 100 If Kylo fails to inspect the NiFi
flows it will retry this many times.

nifi.flow.retry.wait.time.seconds 5 If Kylo fails to inspect the NiFi
flows it will wait this many seconds
before retrying.

nifi.remove.inactive.versioned.feeds true When Kylo saves a feed it will ver-
sion off the older feed. If the save
is successful and nothing is running
in the older feed and this property is
true, Kylo will remove the old pro-
cess group in NiFi

sla.cron.default 0 0/5 * 1/1 * ? * Interval for when SLA’s should be
checked. Default is every 5 min-
utes. Use http://cronmaker.com for
help in creating a cron expression

kylo.template.remote-process-
groups.enabled

false

By default Kylo will allow you to
use Remote Process groups and
reusable flows only in a NiFi
clustered environment.
Set this property to true if you want
to use kylo with remote process
groups in a non NiFi clustered
environment.
This will provide additional options
when registering the reusable
template in kylo.
Since 0.9.1

124 Chapter 15. Kylo Application Properties

http://cronmaker.com

Kylo Documentation, Release 0.9.1

15.3 Database Connection

15.3.1 Kylo

Property Default Value Description
spring.datasource.driverClassNameorg.mariadb.jdbc.DriverThe database driver to use. The default is for MariaDB. Be sure this

matches your database (i.e. Postgres: org.postgresql.Driver, MySQL:
com.mysql.jdbc.Driver)

spring.datasource.maxActive30 Max number of connections that can be allocated by the pool at a given
time

spring.datasource.username the user name to connect to the database
spring.datasource.password the database password
spring.datasource.testOnBorrowtrue true/false if the connection should be validated before connecting
spring.datasource.urljdbc:mysql:

//localhost:
3306/kylo

URL for the database

spring.datasource.validationQuerySELECT 1 Query used to validate the connection is valid.
spring.jpa.database-
platform

org.hibernate.dialect.MySQL5InnoDBDialectPlatform to use. Default uses MySQL. Change this to
the specific database platform (i.e. for Postgres use:
org.hibernate.dialect.PostgreSQLDialect

spring.jpa.open-
in-view

true true/false if spring should attempt to keep the connection open while in
the view

meta-
data.datasource.driverClassName

${spring.datasource.driverClassName}Connection to Modeshape database. This defaults to the standard Kylo
spring.datasource property

meta-
data.datasource.testOnBorrow

true Connection to Modeshape database. This defaults to the standard Kylo
spring.datasource property

meta-
data.datasource.url

${spring.datasource.url}Connection to Modeshape database. This defaults to the standard Kylo
spring.datasource property

meta-
data.datasource.validationQuery

SELECT 1 Query used to validate the connection is valid.

mode-
shape.datasource.driverClassName

${spring.datasource.driverClassName}Connection to Modeshape database. This defaults to the standard Kylo
spring.datasource property

mode-
shape.datasource.url

${spring.datasource.url}Connection to Modeshape database. This defaults to the standard Kylo
spring.datasource property

mode-
shape.index.dir

/opt/kylo/modeshape/modeshape-
local-index

Directory on this node that will store the Modeshape index files. Indexing
Modeshape speeds up access to the metadata. The indexes are defined in
the metadata-repository.json file

15.3. Database Connection 125

jdbc:mysql://localhost:3306/kylo
jdbc:mysql://localhost:3306/kylo
jdbc:mysql://localhost:3306/kylo

Kylo Documentation, Release 0.9.1

15.3.2 Hive

Property Default Value Description
hive.datasource.driverClassName org.apache.hive.jdbc.HiveDriver The driver used to connect to Hive
hive.datasource.url jdbc:hive2://localhost:10000/

default
The Hive Url

hive.datasource.username The username used to connect to
Hive

hive.datasource.password The password used to connect to
Hive

hive.datasource.validationQuery show tables ‘test’ Validation Query for Hive.
hive.userImpersonation.enabled false true/false to indicate if user imper-

sonation is enabled
hive.userImpersonation.cache.expiry.duration4 time units to wait before expiring

cached catalog queries
hive.userImpersonation.cache.expiry.time-
unit

HOURS can be one of TimeUnit.java val-
ues, e.g. SECONDS, MINUTES,
HOURS, DAYS

kerberos.hive.kerberosEnabled false true/false to indicate if kerberos is
enabled

hive.metastore.datasource.driverClassNameorg.mariadb.jdbc.Driver The driver used to connect to the
Hive metastore

hive.metastore.datasource.url jdbc:mysql://localhost:3306/hive The Hive metastore location
hive.metastore.datasource.username the username used to connect to the

Hive metastore
hive.metastore.datasource.password the password used to connect to the

Hive metastore
hive.metastore.datasource.testOnBorrowtrue true/false if the connection should

be validated before connecting
hive.metastore.datasource.validationQuerySELECT 1 Query used to validate the connec-

tion is valid.
kylo.feed.mgr.hive.target.syncColumnDescriptionstrue

true/false. If true Kylo will update
the target Hive table with comments
matching the kylo field column
description. If false it will not add
the comment to the Hive fields.
Since 0.9.1

15.4 JMS

More details about these properties can be found here JMS Providers

126 Chapter 15. Kylo Application Properties

jdbc:hive2://localhost:10000/default
jdbc:hive2://localhost:10000/default
jdbc:mysql://localhost:3306/hive

Kylo Documentation, Release 0.9.1

Property Default Value Description
jms.activemq.broker.url tcp://localhost:61616 The JMS url
jms.connections.concurrent 1-1

The MIN-MAX threads to have
listening for events. By default its
set to 1 thread. Example. A value
of 3-10 would create a minimum of
3 threads, and if needed up to 10
threads
Since: 0.8.1

jms.client.id thinkbig.feedmgr The name of the client connecting to
JMS

15.4.1 JMS - ActiveMQ

More detail about the ActiveMQ redelivery properties can be found here: http://activemq.apache.org/redelivery-policy.
html

15.4. JMS 127

tcp://localhost:61616
http://activemq.apache.org/redelivery-policy.html
http://activemq.apache.org/redelivery-policy.html

Kylo Documentation, Release 0.9.1

Property Default Value Description
jms.activemq.broker.username

The username to connect to JMS
Since: 0.8

jms.activemq.broker.password

The password to connect to JMS
Since: 0.8

jms.backOffMultiplier 5

The back-off multiplier
Since: 0.8.2

jms.maximumRedeliveries 100

Sets the maximum number of times
a message will be redelivered
before it is considered a poisoned
pill and returned to the broker so it
can go to a Dead Letter Queue.
Set to -1 for unlimited redeliveries.
Since: 0.8.2

jms.maximumRedeliveryDelay 600000L

Sets the maximum delivery delay
that will be applied if the
useExponentialBackOff option is
set. (use value -1 to define that no
maximum be applied) (v5.5).
Since: 0.8.2

jms.redeliveryDelay 1000

Redeliver policy for the Listeners
when they fail (http://activemq.
apache.org/redelivery-policy.html)
Since: 0.8.2

jms.useExponentialBackOff false

Should exponential back-off be
used, i.e., to exponentially increase
the timeout.
Since: 0.8.2

15.4.2 JMS - Amazon SQS

Note: To use SQS you need to replace the spring profile, jms-activemq, with jms-amazon-sqs

128 Chapter 15. Kylo Application Properties

http://activemq.apache.org/redelivery-policy.html
http://activemq.apache.org/redelivery-policy.html

Kylo Documentation, Release 0.9.1

spring.profiles.include=[other profiles],jms-amazon-sqs

Property Default Value Description
sqs.region.name

the sqs region, example: eu-west-1
Since: 0.8.2.2

15.5 Kylo SSL

The following should be set if you are running Kylo under SSL

Property Default Value Description
server.ssl.key-store
server.ssl.key-store-password
server.ssl.key-store-type jks
server.ssl.trust-store
server.ssl.trust-store-password
server.ssl.trust-store-type JKS

15.6 Security

Property Default Value Description
security.entity.access.controlled false

To enable entity level access
control change this to “true”.
WARNING: Enabling entity access
control is a one-way operation; you
will not be able to set this poperty
back to “false” once Kylo is started
with this value as “true”.

security.jwt.algorithm HS256 JWT algorithm
security.jwt.key <insert-256-bit-secret-key-here> The encrypted jwt key. This needs

to match the same key in the kylo-
ui/conf/application.properties file

security.rememberme.alwaysRememberfalse
security.rememberme.cookieDomain localhost
security.rememberme.cookieName remember-me
security.rememberme.parameter remember-me
security.rememberme.tokenValiditySeconds1209600 How long to keep the token active.

Defaults to 2 weeks.
security.rememberme.useSecureCookie

15.5. Kylo SSL 129

Kylo Documentation, Release 0.9.1

15.6.1 Security - Authentication

Below are properties for the various authentication options that Kylo supports. Using an option below requires you to
use the correct spring profile and configure the associated properties. More information on the different authentication
settings can be found here: Authentication

Security - auth-simple

The following should be set if using the auth-simple profile

Property Default Value Description
authenticationService.username
authenticationService.password

Security - auth-file

Property Default Value Description
security.auth.file.password.hash.algorithm MD5
security.auth.file.password.hash.enabled false
security.auth.file.password.hash.encoding base64
security.auth.file.groups file:///opt/kylo/groups.properties Location of the groups file
security.auth.file.users file:///opt/kylo/users.properties Location of the users file

Security - auth-ldap

Property Default Value Description
security.auth.ldap.authenticator.userDnPatternsuid={0},ou=people user DN patterns are separated

by ‘|’
security.auth.ldap.server.authDn
security.auth.ldap.server.password
security.auth.ldap.server.uri ldap://localhost:52389/dc=example,

dc=com
security.auth.ldap.user.enableGroups true
security.auth.ldap.user.groupNameAttr ou
security.auth.ldap.user.groupsBase ou=groups

Security - auth-ad

Property Default Value Description
security.auth.ad.server.domain test.example.com
secu-
rity.auth.ad.server.searchFilter

(&(object-
Class=user)(sAMAccountName={1}))

security.auth.ad.server.uri ldap://example.com/
secu-
rity.auth.ad.user.enableGroups

true

secu-
rity.auth.ad.user.groupAttributes

group attribute patterns are sepa-
rated by ‘|’

130 Chapter 15. Kylo Application Properties

file:///opt/kylo/groups.properties
file:///opt/kylo/users.properties
ldap://localhost:52389/dc=example,dc=com
ldap://localhost:52389/dc=example,dc=com
ldap://example.com/

Kylo Documentation, Release 0.9.1

15.7 NiFi Rest

These properties allow Kylo to interact with NiFi

Prop-
erty

Default
Value

Description

nifi.rest.hostlocalhost The hose NiFi is running on
nifi.rest.port8079 The port NiFi is running on. The port should match the port found in the

/opt/nifi/current/conf/nifi.properties (nifi.web.https.port)

15.7.1 NiFi Rest SSL

The following properties need to be set if you interact with NiFi under SSL Follow the document NiFi and SSL for
more information on setting up NiFi to run under SSL

Property Default
Value

Description

nifi.rest.https false Set this to true if NiFi is running under SSL
nifi.rest.keystorePassword
nifi.rest.keystorePath
nifi.rest.keystoreType The keystore type i.e. PKCS12
nifi.rest.truststorePassword the truststore password needs to match that found in the nifi.properties file

(nifi.security.truststorePasswd)
nifi.rest.truststorePath
nifi.rest.truststoreType The truststore type i.e JKS
nifi.rest.useConnectionPoolingfalse Use the Apache Http Connection Pooling client instead of the Jersey Rest

Client when connecting.

15.8 NiFi Flow/Template Injection

Kylo will inject/populate NiFi Processor and Controller Service properties using Kylo environment properties. Refer
to this document Configuration Properties for details as Kylo has a number of options allowing it to interact and set
properties in NiFi. Below are the default settings Kylo uses.

Property Default Value Description
config.category.system.prefix

A constant string that is used to
prefex the category reference.
This is useful if you have separate
dev,qa,prod that might use the same
hadoop cluster and want to prefex
the locations with the environment.

Continued on next page

15.7. NiFi Rest 131

Kylo Documentation, Release 0.9.1

Table 1 – continued from previous page
Property Default Value Description
config.elasticsearch.jms.url tcp://localhost:61616 the JMS url that will be used

to send/receive notification when
something should be indexed in
Elastic Search

config.hdfs.archive.root /archive Location used by the standard-
ingest template to archive the data

config.hdfs.ingest.root /etl Location used by the standard-
ingest template to land the data

config.hive.ingest.root /model.db Location used by the standard-
ingest template for the Hive tables

config.hive.master.root /app/warehouse description
config.hive.profile.root /model.db Location used by the standard-

ingest template for the Hive _profile
table

config.hive.schema hive Schema used to query the JDBC
Hive metastore. Note for Cloudera
this is metastore

config.metadata.url http://localhost:8400/proxy/v1/
metadata

JDBC url for the Hive Metastore

config.nifi.home /opt/nifi Location of NiFi
config.nifi.kylo.applicationJarDirectory/opt/nifi/current/lib/app Location of the NiFi jar files used in

NiFi templates for processors such
as ExecuteSpark

config.spark.validateAndSplitRecords.extraJars/usr/hdp/current/hive-
webhcat/share/hcatalog/hive-
hcatalog-core.jar

Location of the extra jars needed for
the Spark Validate/Split processor in
standard-ingest template

config.spark.version 1 The spark version. Used in the Data
Transformation template

nifi.executesparkjob.driver_memory 1024m Memory setting for all ExecuteS-
parkJob processors

nifi.executesparkjob.executor_cores 1 Spark Executor Cores for all Exe-
cuteSparkJob processors

nifi.executesparkjob.number_of_executors1 Spark Number of Executors for all
ExecuteSparkJob processors

nifi.executesparkjob.sparkhome /usr/hdp/current/spark-client Spark Home for all ExecuteS-
parkJob processors

nifi.executesparkjob.sparkmaster local Spark master setting for all Exe-
cuteSparkJob processors

nifi.service.hive_thrift_service.database_connection_urljdbc:hive2://localhost:10000/
default

Controller Service named, Hive
Thirft Service, default url

nifi.service.kylo_metadata_service.rest_client_password Controller Service named, Kylo
Metadata Service, Rest client pass-
word. This controller service is used
for NiFi to talk to Kylo

nifi.service.kylo_metadata_service.rest_client_urlhttp://localhost:8400/proxy/v1/
metadata

Controller Service named, Kylo
Metadata Service, Rest Url. This
controller service is used for NiFi to
talk to Kylo

nifi.service.kylo_mysql.database_user Controller Service named, Kylo
Mysql, database user

Continued on next page

132 Chapter 15. Kylo Application Properties

tcp://localhost:61616
http://localhost:8400/proxy/v1/metadata
http://localhost:8400/proxy/v1/metadata
jdbc:hive2://localhost:10000/default
jdbc:hive2://localhost:10000/default
http://localhost:8400/proxy/v1/metadata
http://localhost:8400/proxy/v1/metadata

Kylo Documentation, Release 0.9.1

Table 1 – continued from previous page
Property Default Value Description
nifi.service.kylo_mysql.password Controller Service named, Kylo

Mysql, database password
nifi.service.mysql.database_user Controller Service named, Mysql,

database user
nifi.service.mysql.password Controller Service named, Mysql,

database password
nifi.service.standardtdchconnectionservice.jdbc_driver_classcom.teradata.jdbc.TeraDriver Controller Service named, Stan-

dardTdchConnectionService, jdbc
driver class

nifi.service.standardtdchconnectionservice.jdbc_connection_urljdbc:teradata://localhost Controller Service named, Stan-
dardTdchConnectionService, con-
nection url

nifi.service.standardtdchconnectionservice.usernamedbc Controller Service named, Stan-
dardTdchConnectionService, user

nifi.service.standardtdchconnectionservice.password Controller Service named, Stan-
dardTdchConnectionService, pass-
word

nifi.service.standardtdchconnectionservice.tdch_jar_path/usr/lib/tdch/1.5/lib/teradata-
connector-1.5.4.jar

Controller Service named, Stan-
dardTdchConnectionService, loca-
tion for the TDCH jar

nifi.service.standardtdchconnectionservice.hive_conf_path/usr/hdp/current/hive-client/conf Controller Service named, Stan-
dardTdchConnectionService, loca-
tion for the Hive client configuration

nifi.service.standardtdchconnectionservice.hive_lib_path/usr/hdp/current/hive-client/lib Controller Service named, Stan-
dardTdchConnectionService, loca-
tion for the have library

nifi.service.kylo-teradata-
dbc.database_driver_location(s) file:///opt/nifi/teradata/terajdbc4.jar,

file:
///opt/nifi/teradata/tdgssconfig.jar

Controller Service named, Stan-
dardTdchConnectionService, Tera-
data drivers

nifi.service.kylo-teradata-
dbc.database_connection_url

${nifi.service.standardtdchconnectionservice.jdbc_connection_url}Controller Service named, Kylo-
Teradata-DBC, connection url. This
references the another property
(above) resolving to ‘jdbc:teradata:
//localhost’

nifi.service.kylo-teradata-
dbc.database_driver_class_name

${nifi.service.standardtdchconnectionservice.jdbc_driver_class}Controller Service named, Kylo-
Teradata-DBC, jdbc driver class.
This references the another
property (above) resolving to
‘com.teradata.jdbc.TeraDriver’

nifi.service.kylo-teradata-
dbc.database_user

${nifi.service.standardtdchconnectionservice.username}Controller Service named, Kylo-
Teradata-DBC, user. This refer-
ences the another property (above)
resolving to ‘dbc’

nifi.service.kylo-teradata-
dbc.password=

${nifi.service.standardtdchconnectionservice.password}Controller Service named, Kylo-
Teradata-DBC, password. This
references the another property
(above).

15.8. NiFi Flow/Template Injection 133

jdbc:teradata://localhost
file:///opt/nifi/teradata/terajdbc4.jar
file:///opt/nifi/teradata/tdgssconfig.jar
file:///opt/nifi/teradata/tdgssconfig.jar
jdbc:teradata://localhost
jdbc:teradata://localhost

Kylo Documentation, Release 0.9.1

15.9 Schema Detection

These properties affect Kylo’s sample file schema detection.

Property De-
fault
Value

Description

schema.parser.csv.buffer.size32765 Size of the internal buffer for reading the first 100 lines of CSV files. If you receive a
“Marker invalid” error when uploading a sample file then try increasing this value.

15.10 Unused properties

Property Default Value Description
application.debug true
application.mode STANDALONE
spring.batch.job.enabled false
spring.batch.job.names

134 Chapter 15. Kylo Application Properties

CHAPTER 16

Grant HDFS Privileges

Kylo and NiFi requires access to HDFS and Hive. NiFi needs to write to both Hive and HDFS. There are three
approaches for granting the required access to Kylo and NiFi

1. Grant the “kylo” and “nifi” service users super user privileges to access resources on the cluster

2. Control access through Ranger or Sentry

3. Manage the HDFS permissions yourself

16.1 Option 1: Grant super user privileges

This is useful in a sandbox environment where you do not need security enabled. This allows Kylo and NiFi the ability
to create/edit HDFS and Hive objects.

16.1.1 Grant Superuser HDFS Privileges

NiFi Node

Add nifi user to the HDFS supergroup or the group defined in hdfs-site.xml, for example:

Hortonworks (HDP)

$ usermod -a -G hdfs nifi

Cloudera (CDH)

$ groupadd supergroup
Add nifi and hdfs to that group:
$ usermod -a -G supergroup nifi
$ usermod -a -G supergroup hdfs

135

Kylo Documentation, Release 0.9.1

Note: If you want to perform actions as a root user in a development environment, run the below command.

$ usermod -a -G supergroup root

Kylo Node

Add kylo user to the HDFS supergroup or the group defined in hdfs-site.xml, for example:

Hortonworks (HDP)

$ usermod -a -G hdfs kylo

Cloudera (CDH)

$ groupadd supergroup
Add kylo and hdfs to that group:
$ usermod -a -G supergroup kylo
$ usermod -a -G supergroup hdfs

Note: If you want to perform actions as a root user in a development environment run the below command.

$ usermod -a -G supergroup root

Clusters

In addition to adding the nifi and kylo users to the supergroup on the edge node you also need to add the users/groups
to the NameNodes and Data Nodes on a cluster.

Hortonworks (HDP)

$ useradd kylo

$ useradd nifi

$ usermod -G hdfs nifi

$ usermod -G hdfs kylo

Cloudera (CDH)

$ groupadd supergroup
Add nifi and hdfs to that group:
$ usermod -a -G supergroup kylo
$ usermod -a -G supergroup nifi
$ usermod -a -G supergroup hdfs

16.2 Option 2: Control access through Ranger or Sentry

Instructions coming soon !!

136 Chapter 16. Grant HDFS Privileges

Kylo Documentation, Release 0.9.1

16.3 Option 3: Manage the HDFS permissions yourself

This option is rarely used and we do not have documentation at this time

16.3. Option 3: Manage the HDFS permissions yourself 137

Kylo Documentation, Release 0.9.1

138 Chapter 16. Grant HDFS Privileges

CHAPTER 17

Start Services

17.1 Start NiFi

$ service nifi start

At this point all services should be running. Verify by running:

$ service nifi status
$ service elasticsearch status
$ service activemq status

17.2 Optionally Inspect Kylo Configuration

You can now optionally inspect Kylo configuration for errors with Kylo Config Inspector App, otherwise you proceed
to start Kylo services

17.3 Start Kylo Services

$ kylo-service start
$ kylo-service status

17.4 Test Services

Feed Manager and Operations UI
http://127.0.0.1:8400
username: dladmin

139

http://127.0.0.1:8400

Kylo Documentation, Release 0.9.1

password: thinkbig

NiFi UI
http://127.0.0.1:8079/nifi

Elasticsearch REST API
curl localhost:9200

ActiveMQ Admin
http://127.0.0.1:8161/admin

140 Chapter 17. Start Services

http://127.0.0.1:8079/nifi
http://127.0.0.1:8161/admin

CHAPTER 18

Import Templates

The Kylo installation includes some sample ingestion templates to get you started. You can import them either through
the command line or in the UI

18.1 Import from the command line

The setup folder includes a script to import the templates locally.

$ <KYLO_HOME>/setup/data/install-templates-locally.sh

18.2 Import from the Kylo UI

1. Import the data ingest template.

(a) Locate the data_ingest.zip file. You will need the file locally to upload it. You can find it in one of two
places:

- <kylo_project>/samples/templates/nifi-1.0/data_ingest.zip
- /opt/kylo/setup/data/templates/nifi-1.0/data_ingest.zip

(b) Go to the templates page in the Admin section

(c) Click on the plus icon on the top left

(d) Click on “Import from file” and choose the data_ingest.zip

(e) If this is the first time you are importing the template you do not need to check any of the additional options

(f) Click “Import Template”

2. Import Index Text Template (For Elasticsearch or SOLR).

(a) Locate the file. You will need the file locally to upload it. You can find it in one of two places:

141

Kylo Documentation, Release 0.9.1

If you are using a version of NiFi prior to 1.3:

- <kylo_project>/samples/feeds/nifi-1.0/index_text_service_<TYPE>.zip
- /opt/kylo/setup/data/feeds/nifi-1.0/index_text_service_<TYPE>.zip

If you are using NiFi 1.3 or later:

- <kylo_project>/samples/feeds/nifi-1.3/index_text_service_v2.feed.zip
- /opt/kylo/setup/data/feeds/nifi-1.3/index_text_service_v2.feed.zip

(b) Go to the the Feeds page in Kylo.

(c) Click on the plus icon to add a feed.

(d) Select “Import from a file”.

(e) Choose the file from above.

(f) Click “Import Feed”.

3. Import the data transformation template.

(a) Locate the data_transformation.zip file. You will need the file locally to upload it. You can find it in one
of two places:

- <kylo_project>/samples/templates/nifi-1.0/data_transformation.zip
- /opt/kylo/setup/data/templates/nifi-1.0/data_transformation.zip

(b) Go to the templates page in the Admin section

(c) Click on the plus icon on the top left

(d) Click on “Import from file” and choose the data_transformation.zip

(e) If this is the first time you are importing the template you do not need to check any of the additional options

(f) Click “Import Template”

4. Import the data confidence template.

(a) Locate the data_confidence_invalid_records.zip file. You will need the file locally to upload it. You can
find it in one of two places:

- <kylo_project>/samples/templates/nifi-1.0/data_confidence_invalid_
→˓records.zip
- /opt/kylo/setup/data/templates/nifi-1.0/data_confidence_invalid_records.
→˓zip

(b) Go to the templates page in the Admin section

(c) Click on the plus icon on the top left

(d) Click on “Import from file” and choose the data_confidence_invalid_records.zip

(e) If this is the first time you are importing the template you do not need to check any of the additional options

(f) Click “Import Template”

142 Chapter 18. Import Templates

CHAPTER 19

Create Sample Feed

Before performing any more configuration with Kylo you should create and test a simple feed to make sure all of the
integration configuration is correct

Below is an example on how to create a simple feed using one of the provided CSV files.

19.1 Create a dropzone folder on the edge node for file ingest

Perform the following step on the node on which NiFI is installed:

$ mkdir -p /var/dropzone

$ chown nifi /var/dropzone

Note: Files should be copied into the dropzone such that user nifi can read and remove. Do not copy files with
permissions set as root.

19.2 Create a category in Kylo

If you have not created a category in Kylo you can do so by going to the “Categories” page in the Feed Manager

1. Click on the plus icon.

2. Create a category called “users” and save it.

19.3 Create a data ingest feed

Next we need to create a feed under the “users” category.

143

Kylo Documentation, Release 0.9.1

1. Go to the “Feeds” page in Feed Manager

2. Click the plus icon and choose the “Data Ingest” feed type.

3. Under “General Info” give the feed a name. For example, “Test Feed 1”.

4. Choose the “users” category then click “Continue to Step 2”.

5. Leave the source type as “Filesystem” but change the file filter to be “userdata1.csv”. The click
“Continue to Step 3”.

6. “Sample File” should be selected. Click on “Choose File” and find the userdata1.csv file. It is
located in two places:

• <kylo_project>/samples/sample-data/csv/userdata1.csv

• /opt/kylo/setup/data/sample-data/csv/userdata1.csv

7. Click the upload button to upload the file

8. Change the data type for the “registration_dttm” field name to be “timestamp” instead of “string”.

9. Change the data type for the “cc” field name to be “String”. Then continue to Step 4 .

10. Under field policies check the “index” box for the “id”, “first_name”, and “last_name” fields to
index the data in Elasticsearch. Click “Continue to Step 6”

11. Continue to step 7. Change the Timer to be 5 seconds instead of 5 minutes. Then click the “Create”
button

19.4 Run the sample feed

Now lets try running the feed.

1. Copy the file to the drop zone folder

cp -p <PATH_TO_FILE>/userdata1.csv /var/dropzone/

2. You can watch the feed from both the Operations Manger page in Kylo and in NiFi to verify the file
is being processed.

144 Chapter 19. Create Sample Feed

Kylo Documentation, Release 0.9.1

Next we will show you can to validate all of the integration is configured correctly in Kylo

19.4. Run the sample feed 145

Kylo Documentation, Release 0.9.1

146 Chapter 19. Create Sample Feed

CHAPTER 20

Validate Configuration

Kylo has many integration points. For example, Hive, NiFi, MySQL, Spark, ActiveMQ, Elasticsearch, etc. Now that
we ran a feed through we can test Kylo’s integration with all of these components.

By successfully running Kylo you have validated the MySQL configuration, as well as integration with ActiveMQ and
NiFi.

20.1 Validate Hive Thrift Connection

1. Test profile statistics:

(a) Go to the “Feeds” page in feed manager and click on your test feed.

(b) Go to the “PROFILE” tab and click “view” for one of the rows.

(c) Go to the “VALID” and “INVALID” tabs and verify data is being returned.

2. Test the Tables page:

(a) Go to the “Tables” page in Feed Manager.

(b) Click on the table for your test feed. In our example it is “test_feed_1”.

(c) Click the “PREVIEW” and “QUERY” tabs to ensure data is being returned.

20.2 Validate Spark Shell

1. Go to the “Visual Query” page in Feed Manager.

2. In the search box type “test_feed_1” then click “add table”.

3. Click “Continue to step 2”. Validate you can see data.

4. Apply a transformation. An easy way to do this is to click on the “id” column, choose Filter -> “> 600”. Validate
you only see numbers greater than 600

147

Kylo Documentation, Release 0.9.1

20.3 Validate Search

1. Validate the schema information is there:

(a) Enter the feed name in the global search box at the top. For example, “test_feed_1”. Then click
enter

(b) Verify the schema metadata exists.

2. Validate the indexed data is there:

(a) Enter the feed name in the global search box at the top. For example, “test_feed_1”. Then click
enter.

(b) Verify the data you selected to index exists. If you remember we chose the id, first_name, and
last_name columns.

148 Chapter 20. Validate Configuration

Kylo Documentation, Release 0.9.1

20.3. Validate Search 149

Kylo Documentation, Release 0.9.1

150 Chapter 20. Validate Configuration

CHAPTER 21

HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

21.1 About

This guide will help you understand the steps involved with deploying Kylo to a Kerberos cluster with minimal admin
privileges. No super user privileges will be provided to the “nifi” or “kylo” user. The only usage for an administrative
account will be for kylo-services to access the Ranger REST API.

There are two ways you can configure Hive to manage users on the cluster.

1. You can configure it to run Hive jobs as the end user, but all HDFS access is done as the Hive user.

2. Run Hive jobs and HDFS commands as the end user.

Note: For detailed information on refer to Best Practices for Hive Authorization Using Apache Ranger in HDP 2.2
on the Hortonworks website.

This document will configure option #2 to show how you can configure Kylo to grant appropriate access to both Hive
and HDFS for the end user.

21.2 Cluster Topography

The cluster used in this example contains the following:

• 3 master nodes

• 3 data nodes

• 1 Kylo edge node

• 1 NiFi edge node

There are a couple of things to notes about the cluster:

• The cluster is leveraging the MIT KDC for Kerberos.

151

Kylo Documentation, Release 0.9.1

• The cluster uses Linux file system-based authorization (not LDAP or AD).

21.3 Known Issues

Kylo does not support Hive HA Thrift URL connections yet. If the cluster is configured for HA and zookeeper, you
will need to connect directly to the thrift server.

You may see an error similar to the following:

Error: Requested user nifi is not whitelisted and has id 496, which is below the minimum allowed 500”.

If you do, do the following to change the user ID or lower the minimum ID:

1. Login to Ambari and edit the yarn “Advanced yarn-env”.

2. Set the “Minimum user ID for submitting job” = 450.

21.4 Prepare a Checklist

Leverage the deployment checklist to take note of information you will need to speed up configuration.

Prepare Install Checklist

21.5 Prepare the HDP Cluster

Before installing the Kylo stack, prepare the cluster by doing the following:

1. Ensure that Kerberos is enabled.

2. Enable Ranger, including the HDFS and Hive plugin.

3. Change Hive to run both Hive and HDFS as the end user.

(a) Login to Ambari.

(b) Go to Hive -→ Config.

(c) Change “Run as end user instead of Hive user” to true.

(d) Restart required applications.

4. Create an Ambari user for Kylo to query the status REST API’s.

(a) Login to Ambari.

(b) Got to “Manage Ambari” → Users.

(c) Click on “Create Local User”.

(d) Create a user called “kylo” and save the password for later.

(e) Go to the “Roles” screen.

(f) Assign the “kylo” user to the “Cluster User” role.

5. If your Spark job fails when running in HDP 2.4.2 while interacting with an empty ORC table, you will get this
error message:

152 Chapter 21. HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

Kylo Documentation, Release 0.9.1

Error: “ExecuteSparkJob[id=1fb1b9a0-e7b5-4d85-87d2-90d7103557f6] java.util.NoSuchElementException:
next on empty iterator “

This is due to a change Hortonworks added to change how it loads the schema for the table. To fix the
issue you can modify the following properties:

1. On the edge node edit /usr/hdp/current/spark-client/conf/spark-defaults.conf.

2. Add this line to the file “spark.sql.hive.convertMetastoreOrc false”

Optionally, rather than editing the configuration file you can add this property in Ambari:

1. Login to Ambari.

2. Go to the Spark config section.

3. Go to “custom Spark defaults”.

4. Add the property “spark.sql.hive.convertMetastoreOrc” and set to “false”.

6. Create the “nifi” and “kylo” user on the master and data nodes.

Note: If the operations team uses a user management tool then create the users that way.

If you are using linux /etc/group based authorization in your cluster you are required to create any users
that will have access to HDFS or Hive on the following:

Master Nodes:

$ useradd -r -m -s /bin/bash nifi
$ useradd -r -m -s /bin/bash kylo

Data Nodes: In some cases this is not required on data nodes.

$ useradd -r -m -s /bin/bash nifi
$ useradd -r -m -s /bin/bash kylo

21.6 Prepare the Kylo Edge Node

1. Install the MySQL client on the edge node, if not already there:

$ yum install mysql

2. Create a MySQL admin user or use root user to grant “create schema” access from the Kylo edge node.

This is required to install the “kylo” schema during Kylo installation.

Example:

GRANT ALL PRIVILEGES ON *.* TO 'root'@'KYLO_EDGE_NODE_HOSTNAME' IDENTIFIED BY 'abc123
→˓' WITH GRANT OPTION; FLUSH PRIVILEGES;

3. Create the “kylo” MySQL user.

21.6. Prepare the Kylo Edge Node 153

Kylo Documentation, Release 0.9.1

CREATE USER 'kylo'@'<KYLO_EDGE_NODE>' IDENTIFIED BY 'abc123';
grant create, select, insert, update, delete, execute ON kylo.* to kylo'@'KYLO_EDGE_
→˓NODE_HOSTNAME';
FLUSH PRIVILEGES;

4. Grant kylo user access to the hive MySQL metadata.

GRANT select ON hive.SDS TO 'kylo'@'KYLO_EDGE_NODE_HOSTNAME';
GRANT select ON hive.TBLS TO 'kylo'@'KYLO_EDGE_NODE_HOSTNAME';
GRANT select ON hive.DBS TO 'kylo'@'KYLO_EDGE_NODE_HOSTNAME';
GRANT select ON hive.COLUMNS_V2 TO 'kylo'@'KYLO_EDGE_NODE_HOSTNAME';

Note: If the Hive database is installed in a separate MySQL instance, you will need to create the “kylo” non privileged
user in that database before running the grants.

5. Make sure the Spark client and Hive client is installed.

6. Create the “kylo” user on edge node.

Kylo Edge Node:
$ useradd -r -m -s /bin/bash kylo
$ useradd -r -m -s /bin/bash activemq

7. Optional - Create offline TAR file for an offline Kylo installation.

[root]# cd /opt/kylo/setup/
[root setup]# ./generate-offline-install.sh

Copy the TAR file to both the Kylo edge node as well as the NiFi edge node.

8. Prepare a list of feed categories you wish to create.

This is required due to the fact that we are installing Kylo without privileged access. We will create Ranger
policies ahead of time to all Kylo access to the Hive Schema and HDFS folders.

9. Create “kylo” home folder in HDFS. This is required for Hive queries to work in HDP.

[root]$ su - hdfs
[hdfs]$ kinit -kt /etc/security/keytabs/hdfs.headless.keytab <hdfs_principal_name>
[hdfs]$ hdfs dfs -mkdir /user/kylo
[hdfs]$ hdfs dfs -chown kylo:kylo /user/kylo
[hdfs]$ hdfs dfs -ls /user

Tip: If you do not know the HDFS Kerberos principal name run “klist -kt/etc/security/keytabs/hdfs.headless.keytab”.

21.7 Prepare the NiFi Edge Node

1. Install the MySQL client on the edge node, if not already there.

$ yum install mysql

2. Grant MySQL access from the NiFi edge node.

Example:

154 Chapter 21. HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

Kylo Documentation, Release 0.9.1

GRANT ALL PRIVILEGES ON *.* TO 'kylo'@'nifi_edge_node' IDENTIFIED BY 'abc123';
FLUSH PRIVILEGES;

3. Make sure the Spark client and Hive client is installed.

4. Create the “nifi” user on edge node, master nodes, and data nodes.

Edge Nodes:

$ useradd -r -m -s /bin/bash nifi

5. Optional - Copy the offline TAR file created above to this edge node, if necessary.

6. Create the “nifi” home folders in HDFS.

This is required for Hive queries to work in HDP.

[root]$ su - hdfs
[hdfs]$ kinit -kt /etc/security/keytabs/hdfs.headless.keytab <hdfs_principal_name>
[hdfs]$ hdfs dfs -mkdir /user/nifi
[hdfs]$ hdfs dfs -chown nifi:nifi /user/nifi
[hdfs]$ hdfs dfs -ls /user

Tip: If you don’t know the HDFS Kerberos principal name, run:

“klist -kt /etc/security/keytabs/hdfs.headless.keytab”

21.8 Create the Keytabs for “nifi” and “kylo” Users

1. Login to the host that is running the KDC and create the keytabs.

[root]# kadmin.local
kadmin.local: addprinc -randkey "kylo/<KYLO_EDGE_HOSTNAME>@US-WEST-2.COMPUTE.INTERNAL"
kadmin.local: addprinc -randkey "nifi/<NIFI_EDGE_HOSTNAME>@US-WEST-2.COMPUTE.INTERNAL"
kadmin.local: xst -k /tmp/kylo.service.keytab kylo/<KYLO_EDGE_HOSTNAME>@US-WEST-2.
→˓COMPUTE.INTERNAL
kadmin.local: xst -k /tmp/nifi.service.keytab nifi/<NIFI_EDGE_HOSTNAME>@US-WEST-2.
→˓COMPUTE.INTERNAL

2. Note the Hive principal name for the thrift connection later.

Write down the principal name for Hive for the KDC node
kadmin.local: listprincs

kadmin.local: exit

3. Move the keytabs to the correct edge nodes.

4. Configure the Kylo edge node. This step assumes that, to configure the keytab, you SCP’d the files to:

/tmp

Configure the edge node:

21.8. Create the Keytabs for “nifi” and “kylo” Users 155

Kylo Documentation, Release 0.9.1

[root opt]# mv /tmp/kylo.service.keytab /etc/security/keytabs/
[root keytabs]# chown kylo:kylo /etc/security/keytabs/kylo.service.keytab
[root opt]# chmod 400 /etc/security/keytabs/kylo.service.keytab

5. Test the keytab on the Kylo edge node.

[root keytabs]# su - kylo
[kylo ~]$ kinit -kt /etc/security/keytabs/kylo.service.keytab kylo/<KYLO_EDGE_
→˓HOSTNAME>@US-WEST-2.COMPUTE.INTERNAL
[kylo ~]$ klist
[kylo ~]$ klist
Ticket cache: FILE:/tmp/krb5cc_496
Default principal: kylo/ip-172-31-42-133.us-west-2.compute.internal@US-WEST-2.COMPUTE.
→˓INTERNAL
Valid starting Expires Service principal
11/29/2016 22:37:57 11/30/2016 22:37:57 krbtgt/US-WEST-2.COMPUTE.INTERNAL@US-WEST-2.
→˓COMPUTE.INTERNAL

[kylo ~]$ hdfs dfs -ls /
Found 10 items

Now try hive
[kylo ~]$ hive

6. Configure the NiFi edge node.

root opt]# mv /tmp/nifi.service.keytab /etc/security/keytabs/
[root keytabs]# chown nifi:nifi /etc/security/keytabs/nifi.service.keytab
[root opt]# chmod 400 /etc/security/keytabs/nifi.service.keytab

7. Test the keytab on the NiFi edge node.

[root keytabs]# su - nifi
[nifi ~]$ kinit -kt /etc/security/keytabs/nifi.service.keytab nifi/i<NIFI_EDGE_
→˓HOSTNAME>@US-WEST-2.COMPUTE.INTERNAL
[nifi ~]$ klist
Ticket cache: FILE:/tmp/krb5cc_497
Default principal: nifi/<NIFI_EDGE_HOSTNAME>@US-WEST-2.COMPUTE.INTERNAL
Valid starting Expires Service principal
11/29/2016 22:40:08 11/30/2016 22:40:08 krbtgt/US-WEST-2.COMPUTE.INTERNAL@US-WEST-2.
→˓COMPUTE.INTERNAL

[nifi ~]$ hdfs dfs -ls /
Found 10 items

[nifi ~]$ hive

156 Chapter 21. HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

Kylo Documentation, Release 0.9.1

8. Test with Kerberos test client.

Kylo provides a kerberos test client to ensure the keytabs work in the JVM. There have been cases where kinit
works on the command line but getting a kerberos ticket breaks in the JVM.

https://github.com/kyloio/kylo/tree/master/core/kerberos/kerberos-test-client

9. Optional - Test Beeline connection.

21.9 Install NiFi on the NiFi Edge Node

1. SCP the kylo-install.tar tar file to /tmp (if running in offline mode).

2. Run the setup wizard (example uses offline mode) [root tmp]# cd /tmp

[root tmp]# mkdir tba-install
[root tmp]# mv kylo-install.tar tba-install/
[root tmp]# cd tba-install/
[root tba-install]# tar -xvf kylo-install.tar

[root tba-install]# /tmp/tba-install/setup-wizard.sh -o

3. Install the following using the wizard.

• NiFi

• Java (Option #2 most likely)

4. Stop NiFi.

$ service nifi stop

5. Edit nifi.properties to set Kerberos setting.

[root]# vi /opt/nifi/current/conf/nifi.properties

nifi.kerberos.krb5.file=/etc/krb5.conf

6. Edit the config.properties file.

[root]# vi /opt/nifi/ext-config/config.properties

jms.activemq.broker.url=tcp://<KYLO_EDGE_HOST>:61616

7. Start NiFi.

[root]# service nifi start

8. Tail the logs to look for errors.

21.9. Install NiFi on the NiFi Edge Node 157

Kylo Documentation, Release 0.9.1

tail -f /var/log/nifi/nifi-app.log

21.10 Install the Kylo Application on the Kylo Edge Node

1. Install the RPM.

$ rpm -ivh /tmp/kylo-<VERSION>.noarch.rpm

2. SCP the kylo-install.tar tar file to /tmp (if running in offline mode).

3. Run the setup wizard (example uses offline mode)

[root tmp]# cd /tmp
[root tmp]# mkdir tba-install
[root tmp]# mv kylo-install.tar tba-install/
[root tmp]# cd tba-install/
[root tba-install]# tar -xvf kylo-install.tar

[root tba-install]# /tmp/tba-install/setup-wizard.sh -o

4. Install the following using the wizard (everything but NiFi).

• MySQL database scripts

• Elasticsearch

• ActiveMQ

• Java (Option #2 most likely)

5. Update Elasticsearch configuration.

In order for Elasticsearch to allow access from an external server you need to specify the hostname in addition
to localhost.

$ vi /etc/elasticsearch/elasticsearch.yml
network.host: localhost,<KYLO_EDGE_HOST>

$ service elasticsearch restart

6. Edit the thinbig-spark-shell configuration file.

[root kylo]# vi /opt/kylo/kylo-services/conf/spark.properties

kerberos.kylo.kerberosEnabled=true
kerberos.kylo.hadoopConfigurationResources=/etc/hadoop/conf/core-site.xml,/etc/hadoop/
→˓conf/hdfs-site.xml
kerberos.kylo.kerberosPrincipal=<kylo_principal_name>
kerberos.kylo.keytabLocation=/etc/security/keytabs/kylo.service.keytab

158 Chapter 21. HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

Kylo Documentation, Release 0.9.1

7. Edit the kylo-services configuration file.

[root /]# vi /opt/kylo/kylo-services/conf/application.properties

spring.datasource.url=jdbc:mysql://<MYSQL_HOSTNAME>:3306/kylo?
→˓noAccessToProcedureBodies=true
spring.datasource.username=kylo
spring.datasource.password=password

ambariRestClientConfig.host=<AMBARI_SERVER_HOSTNAME>
ambariRestClientConfig.username=kylo
ambariRestClientConfig.password=password

metadata.datasource.url=jdbc:mysql://<MYSQL_HOSTNAME>:3306/kylo?
→˓noAccessToProcedureBodies=true
metadata.datasource.username=kylo
metadata.datasource.password=password

hive.datasource.url=jdbc:hive2://<HIVE_SERVER2_HOSTNAME>:10000/default;principal=
→˓<HIVE_PRINCIPAL_NAME>

hive.metastore.datasource.url=jdbc:mysql://<MYSQL_HOSTNAME>:3306/hive
hive.metastore.datasource.username=kylo
hive.metastore.datasource.password=password

modeshape.datasource.url=jdbc:mysql://<MYSQL_HOSTNAME>:3306/kylo?
→˓noAccessToProcedureBodies=true
modeshape.datasource.username=kylo
modeshape.datasource.password=password

nifi.rest.host=<NIFI_EDGE_HOST>

kerberos.hive.kerberosEnabled=true
kerberos.hive.hadoopConfigurationResources=/etc/hadoop/conf/core-site.xml,/etc/hadoop/
→˓conf/hdfs-site.xml
kerberos.hive.kerberosPrincipal=<KYLO_PRINCIPAL_NAME>
kerberos.hive.keytabLocation=/etc/security/keytabs/kylo.service.keytab

(continues on next page)

21.10. Install the Kylo Application on the Kylo Edge Node 159

Kylo Documentation, Release 0.9.1

(continued from previous page)

nifi.service.mysql.database_user=kylo
nifi.service.mysql.password=password
nifi.service.mysql.database_connection_url=jdbc:mysql://<MYSQL_HOSTNAME>

nifi.service.hive_thrift_service.database_connection_url=jdbc:hive2://<HIVE_SERVER2_
→˓HOSTNAME>:10000/default;principal=<HIVE_PRINCIPAL_NAME>
nifi.service.hive_thrift_service.kerberos_principal=<NIFI_PRINCIPAL_NAME>
nifi.service.hive_thrift_service.kerberos_keytab=/etc/security/keytabs/nifi.service.
→˓keytab
nifi.service.hive_thrift_service.hadoop_configuration_resources=/etc/hadoop/conf/core-
→˓site.xml,/etc/hadoop/conf/hdfs-site.xml

nifi.service.think_big_metadata_service.rest_client_url=http://<KYLO_EDGE_HOSTNAME>
→˓:8400/proxy/metadata

nifi.executesparkjob.sparkmaster=yarn-cluster
nifi.executesparkjob.extra_jars=/usr/hdp/current/spark-client/lib/datanucleus-api-jdo-
→˓3.2.6.jar,/usr/hdp/current/spark-client/lib/datanucleus-core-3.2.10.jar,/usr/hdp/
→˓current/spark-client/lib/datanucleus-rdbms-3.2.9.jar
nifi.executesparkjob.extra_files=/usr/hdp/current/spark-client/conf/hive-site.xml

nifi.all_processors.kerberos_principal=<NIFI_PRINCIPAL_NAME>
nifi.all_processors.kerberos_keytab=/etc/security/keytabs/nifi.service.keytab
nifi.all_processors.hadoop_configuration_resources=/etc/hadoop/conf/core-site.xml,/
→˓etc/hadoop/conf/hdfs-site.xml

Set the JMS server hostname for the Kylo hosted JMS server:

config.elasticsearch.jms.url=tcp://<KYLO_EDGE_HOST>:61616

8. Install the Ranger Plugin.

(a) SCP Ranger plugin to /tmp.

(b) Install the Ranger plugin.

[root plugin]# mv /tmp/kylo-hadoop-authorization-ranger-<VERSION>.jar /opt/kylo/kylo-
→˓services/plugin
[root plugin]# chown kylo:kylo /opt/kylo/kylo-services/plugin/kylo-hadoop-
→˓authorization-ranger-<VERSION>.jar
[root plugin]# touch /opt/kylo/kylo-services/conf/authorization.ranger.properties
[root plugin]# chown kylo:kylo /opt/kylo/kylo-services/conf/authorization.ranger.
→˓properties

160 Chapter 21. HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

Kylo Documentation, Release 0.9.1

3. Edit the properties file.

vi /opt/kylo/kylo-services/conf/authorization.ranger.properties

ranger.hostName=<RANGER_HOST_NAME>
ranger.port=6080
ranger.userName=admin
ranger.password=admin
hdfs.repository.name=Sandbox_hadoop
hive.repository.name=Sandbox_hive

9. Start the Kylo applications.

[root]# /opt/kylo/start-kylo-apps.sh

10. Check the logs for errors.

/var/log/kylo-services.log
/var/log/kylo-ui/kylo-ui.log
/var/log/kylo-services/kylo-spark-shell.err

11. Login to the Kylo UI.

http://<KYLO_EDGE_HOSTNAME>:8400

21.11 Create Folders for NiFi standard-ingest Feed

1. Create the dropzone directory on the NiFi edge node.

$ mkdir -p /var/dropzone
$ chown nifi /var/dropzone

2. Create the HDFS root folders.

This will be required since we are running under non-privileged users.

[root]# su - hdfs
[hdfs ~]$ kinit -kt /etc/security/keytabs/hdfs.service.keytab
<HDFS_PRINCIPAL_NAME>
[hdfs ~]$ hdfs dfs -mkdir /etl
[hdfs ~]$ hdfs dfs -chown nifi:nifi /etl
[hdfs ~]$ hdfs dfs -mkdir /model.db
[hdfs ~]$ hdfs dfs -chown nifi:nifi /model.db
[hdfs ~]$ hdfs dfs -mkdir /archive
[hdfs ~]$ hdfs dfs -chown nifi:nifi /archive
[hdfs ~]$ hdfs dfs -mkdir -p /app/warehouse
[hdfs ~]$ hdfs dfs -chown nifi:nifi /app/warehouse
[hdfs ~]$ hdfs dfs -ls /

21.12 Create Ranger Policies

1. Add the “kylo” and “nifi user to Ranger if they don’t exist.

2. Create the HDFS NiFi policy.

21.11. Create Folders for NiFi standard-ingest Feed 161

Kylo Documentation, Release 0.9.1

(a) Click into the HDFS repository

(b) Click on “Add New Policy”

name: kylo-nifi-access
Resource Path:

/model.db/*
/archive/*
/etl/*
/app/warehouse/*

user: nifi
permissions: all

3. Create the Hive NiFi policy.

(a) Click into the Hive repository.

(b) Click on “Add New Policy”.

Policy Name: kylo-nifi-access
Hive Database: userdata, default (required for access for some reason)
table: *
column: *
user: nifi
permissions: all

4. Create the Hive Kylo policy.

Grant Hive access to “kylo” user for Hive tables, profile, and wrangler.

Note: Kylo supports user impersonation (add doc and reference it).

1. Click into the Hive repository.

2. Click on “Add New Policy”.

Policy Name: kylo-kylo-access
Hive Database: userdata
table: *
column: *
user: kylo
permissions: select

21.13 Import Kylo Templates

1. Import Index Text Template (For Elasticsearch).

(a) Locate the index_text_service.zip file. You will need the file locally to upload it. You can find it in one of
two places:

• <kylo_project>/samples/feeds/nifi-1.0/

• /opt/kylo/setup/data/feeds/nifi-1.0

(b) Go to the the Feeds page in Kylo.

(c) Click on the plus icon to add a feed.

(d) Select “Import from a file”.

162 Chapter 21. HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

Kylo Documentation, Release 0.9.1

(e) Choose the index_text_service.zip file.

(f) Click “Import Feed”.

2. Update the Index Text processors.

(a) Login to NiFi.

(b) Go to the system → index_text_service process group.

i. Edit the “Receive Index Request” processor and set the URL value to
<KYLO_EDGE_HOSTNAME>.

ii. In addition to the URL field you might have to edit the jms-subscription property file as instructed
above.

iii. Edit the “Update Elasticsearch” processor and set the HostName value to
<KYLO_EDGE_HOSTNAME>.

Note: An issue was found with the getJmsTopic processor URL. If you import the template using localhost and need
to change it there is a bug that won’t allow the URL to be changed. The value is persisted to a file.

[root@ip-10-0-178-60 conf]# pwd
/opt/nifi/current/conf
[root@ip-10-0-178-60 conf]# ls -l
total 48
-rw-rw-r-- 1 nifi users 3132 Dec 6 22:05 bootstrap.conf
-rw-rw-r-- 1 nifi users 2119 Aug 26 13:51 bootstrap-notification-services.xml
-rw-rw-r-- 1 nifi nifi 142 Dec 7 00:36 jms-subscription-2bd64d8a-2b1f-1ef0-e961-
→˓e50680e34686
-rw-rw-r-- 1 nifi nifi 142 Dec 7 00:54 jms-subscription-2bd64d97-2b1f-1ef0-7fc9-
→˓279eacf076dd
-rw-rw-r-- 1 nifi users 8243 Aug 26 13:51 logback.xml
-rw-rw-r-- 1 nifi users 8701 Dec 7 00:52 nifi.properties
-rw-rw-r-- 1 nifi users 3637 Aug 26 13:51 state-management.xml
-rw-rw-r-- 1 nifi users 1437 Aug 26 13:51 zookeeper.properties

1. Edit the file named named “jms-subscription-<processor_id>”.

2. Change the hostname.

3. Restart NiFi.

3. Import the data ingest template.

(a) Locate the data_ingest.zip file. You will need the file locally to upload it. You can find it in one of two
places:

i. <kylo_project>/samples/templates/nifi-1.0/

ii. /opt/kylo/setup/data/templates/nifi-1.0

(b) Go to the templates page and import the data ingest template.

(c) Manually update the Spark validate processor.

Add this variable to the ${table_field_policy_json_file}. It should look like this:

${table_field_policy_json_file},/usr/hdp/current/spark-client/conf/hive-site.xml

4. Edit the “Upload to HDFS” and remove “Remote Owner” and “Remote Group” (since we aren’t using supe-
ruser).

21.13. Import Kylo Templates 163

Kylo Documentation, Release 0.9.1

4. Update NiFi processors for Kylo template versions prior to 0.5.0.

We need to update a few settings in the elasticsearch and standard ingest template. This is not required with
0.5.0 or greater since they will be set during import.

(a) Login to NiFi.

(b) Go to the reusable_templates → standard-ingest process group.

i. Edit the “Register Index” processor and set the URL to the <KYLO_EDGE_HOSTNAME>.

ii. Edit the “Update Index” processor and set teh URL to the <KYLO_EDGE_HOSTNAME>.

5. Import the transform feed (Optional).

21.14 Create Data Ingest Feed Test

1. Create a userdata feed to test.

2. Test the feed.

cp -p <PATH_TO_FILE>/userdata1.csv /var/dropzone/

164 Chapter 21. HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

CHAPTER 22

Overview

Now that Kylo is installed and you can run a simple feed successfully, you can now get famliar wtih some of the
common configuration. Some of the common configuration changes include

• Adding memory

• Changing the Java home

• Starting and stopping services

• Viewing log files

• Common cluster changes required for feeds

• Enabling yarn cluster mode

• Configure Kylo Spark Mode

• Configure to use Postgres database

165

Kylo Documentation, Release 0.9.1

166 Chapter 22. Overview

CHAPTER 23

Adjust Memory

23.1 Optimizing Performance

You can adjust the memory setting for each services using the below environment variables:

/opt/kylo/kylo-ui/bin/run-kylo-ui.sh
export KYLO_UI_OPTS= -Xmx4g

/opt/kylo/kylo-services/bin/run-kylo-services.sh
export KYLO_SERVICES_OPTS= -Xmx4g

167

Kylo Documentation, Release 0.9.1

168 Chapter 23. Adjust Memory

CHAPTER 24

Change Java Home

By default, the kylo-services and kylo-ui application set the JAVA_HOME location to /opt/java/current. This can easily
be changed by editing the JAVA_HOME environment variable in the following two files:

/opt/kylo/kylo-ui/bin/run-kylo-ui.sh
/opt/kylo/kylo-services/bin/run-kylo-services.sh

In addition, if you run the script to modify the NiFI JAVA_HOME variable you will need to edit:

/opt/nifi/current/bin/nifi.sh

169

Kylo Documentation, Release 0.9.1

170 Chapter 24. Change Java Home

CHAPTER 25

Log Files

25.1 Configuring Log Output

Log output for the services mentioned above are configured at:

/opt/kylo/kylo-ui/conf/log4j.properties
/opt/kylo/kylo-services/conf/log4j.properties
/opt/kylo/kylo-services/conf/log4j-spark.properties

You may place logs where desired according to the ‘log4j.appender.file.File’ property. Note the configuration line:

log4j.appender.file.File=/var/log/<app>/<app>.log

The default log locations for the various applications are located at:

/var/log/<service_name>

171

Kylo Documentation, Release 0.9.1

172 Chapter 25. Log Files

CHAPTER 26

Yarn Cluster Mode Configuration

26.1 Overview

In order for the yarn cluster mode to work to validate the Spark processor, the JSON policy file has to be passed to the
cluster. In addition the hive-site.xml file needs to be passed. This should work for both HDP and Cloudera clusters.

26.2 Requirements

You must have Kylo installed.

26.3 Step 1: Add the Data Nucleus Jars

Note: This step is required only for HDP and is not required on Cloudera.

If using Hive in your Spark processors, provide Hive jar dependencies and hive-site.xml so that Spark can connect to
the right Hive metastore. To do this, add the following jars into the “Extra Jars” parameter:

/usr/hdp/current/spark-client/lib (/usr/hdp/current/spark-client/lib/datanucleus-api-
→˓jdo-x.x.x.jar,/usr/hdp/current/spark-client/lib/datanucleus-core-x.x.x.jar,/usr/hdp/
→˓current/spark-client/lib/datanucleus-rdbms-x.x.x.jar)

26.4 Step 2: Add the hive-site.xml File

Specify “hive-site.xml”. It should be located in the following location:

Hortonworks

173

Kylo Documentation, Release 0.9.1

/usr/hdp/current/spark-client/conf/hive-site.xml

Cloudera

/etc/hive/conf.cloudera.hive/hive-site.xml

Add this file location to the “Extra Files” parameter. To add multiple files, separate them with a comma.

26.4.1 Step 3: Validate and Split Records Processor

If using the “Validate and Split Records” processor in the standard-ingest template, pass the JSON policy file as well.

174 Chapter 26. Yarn Cluster Mode Configuration

CHAPTER 27

Kylo Spark Properties

27.1 Overview

The kylo-spark-shell process compiles and executes Scala code for schema detection and data transformations. It is
started in the background by kylo-services as needed.

There will be at least two processes. The first process is used for schema detection of sample files. The second process
is used for executing data transformations and may start additional processes if user impersonation is enabled.

Once the process has started it will call back to kylo-services and register itself. This allows Spark to run in yarn-cluster
mode as the driver can run on any node in the cluster.

The auth-spark Spring profile must be enabled in kylo-services for the Spark client to start.

27.2 Configuration

The default location of the configuration file is at /opt/kylo/kylo-services/conf/spark.properties.

27.2.1 Spark Properties

The default property values should work on most systems. An error will be logged if Kylo is unable to determine the
correct value from the environment.

175

Kylo Documentation, Release 0.9.1

Property Type De-
fault

Description

spark.shell.appResourceString Path to the kylo-spark-shell-client jar file. This is only needed if Kylo is unable to
determine the location automatically. The default location for Spark 1.x is /opt/
kylo/kylo-services/lib/app/kylo-spark- shell-client-v1-*.
jar. There is a v2 jar for Spark 2.x.

spark.shell.deployModeString Whether to launch a kylo-spark-shell process locally (client) or on one of the
worker machines inside the cluster (cluster). Set to cluster when enabling
user impersonation.

spark.shell.filesString Additional files to be submitted with the Spark application. Multiple files should be
separated with a comma.

spark.shell.javaHomeString The JAVA_HOME for launching the Spark application.
spark.shell.idleTimeoutNum-

ber
900 Indicates the amount of time in seconds to wait for a user request before terminating a

kylo-spark-shell process. Any user request sent to the process will reset this timeout.
This is only used in yarn-cluster mode.

spark.shell.jars String Additional jars to be submitted with the Spark application. Multiple jars should be
separated with a comma.

spark.shell.masterString Where to run Spark executors locally (local) or inside a YARN cluster (yarn). Set
to yarn when enabling user impersonation.

spark.shell.portMinNum-
ber

45000 Minimum port number that a kylo-spark-shell process may listen on.

spark.shell.portMaxNum-
ber

45999 Maximum port number that a kylo-spark-shell process may listen on.

spark.shell.propertiesFileString A custom properties file with Spark configuration for the application.
spark.shell.proxyUserBooleanfalse Set to true to enable Multi-User mode.
spark.shell
.registra-
tionKey-
storePass-
word

String Password to keystore when registrationUrl uses SSL.

spark.shell
.registra-
tionKey-
storePath

String Path to keystore when registrationUrl uses SSL.

spark.shell.registrationUrlString Kylo Services URL for registering the Spark application once it has started. This de-
faults to http://<server-address>:8400/ proxy/v1/spark/shell/
register

spark.shell.sparkArgsString Additional arguments to include in the Spark invocation.
spark.shell.sparkHomeString A custom Spark installation location for the application.
spark.shell.verboseBooleanfalse Enables verbose reporting for Spark Submit.

Example spark.properties configuration for yarn-cluster mode:

spark.shell.deployMode = cluster
spark.shell.master = yarn
spark.shell.files = /opt/kylo/kylo-services/conf/log4j-spark.properties,/opt/kylo/
→˓kylo-services/conf/spark.properties
spark.shell.jars = /opt/kylo/kylo-services/lib/mariadb-java-client-1.5.7.jar
spark.shell.sparkArgs = --driver-memory 512m --executor-memory 512m --driver-java-
→˓options -Dlog4j.configuration=log4j-spark.properties

Example spark.properties configuration for local mode:

176 Chapter 27. Kylo Spark Properties

Kylo Documentation, Release 0.9.1

spark.shell.master = local[1]
spark.shell.sparkArgs = --driver-memory 512m --executor-memory 512m --driver-class-
→˓path /opt/kylo/kylo-services/conf:/opt/kylo/kylo-services/lib/mariadb-java-client-1.
→˓5.7.jar --driver-java-options -Dlog4j.configuration=log4j-spark.properties

If user impersonation (spark.shell.proxyUser) is enabled then Hadoop must be configured to allow the kylo
user to proxy users:

$ vim /etc/hadoop/conf/core-site.xml

<property>
<name>hadoop.proxyuser.kylo.groups</name>
<value>*</value>

</property>
<property>

<name>hadoop.proxyuser.kylo.hosts</name>
<value>*</value>

</property>

27.2.2 Kerberos

If user impersonation (spark.shell.proxyUser) is disabled then the Kerberos principal and keytab are passed
to Spark which will acquire the Kerberos ticket.

If user impersonation is enabled then Kylo will periodically execute kinit to ensure there is an active Kerberos ticket.
This prevents the impersonated user from having access to the keytab file. See Enable Hive User Impersonation for
more information on configuring user impersonation in a Kerberized environment.

Property Description
ker-
beros.spark.kerberosEnabled

Indicates that an active Kerberos ticket is needed to start a kylo-spark-shell process. Type:
Boolean Default: false

ker-
beros.spark.kerberosPrincipal

Name of the principal for acquiring a Kerberos ticket. Type: String

ker-
beros.spark.keytabLocation

Local path to the keytab for acquiring a Kerberos ticket. Type: String

ker-
beros.spark.initInterval

Indicates the amount of time in seconds to cache a Kerberos ticket before acquiring a new one.
Only used when user impersonation is enabled. A value of 0 disables calling kinit. Type: Number
Default: 43200

ker-
beros.spark.initTimeout

Indicates the amount of time in seconds to wait for kinit to acquire a ticket before killing the
process. Only used when user impersonation is enabled. Type: Number Default: 10

ker-
beros.spark.retryInterval

Indicates the amount of time in seconds to wait before retrying to acquire a Kerberos ticket if the
last try failed. Only used when user impersonation is enabled. Type: Number Default: 120

ker-
beros.spark.realm

Name of the Kerberos realm to append to usernames. Type: String

Example spark.properties configuration:

spark.shell.deployMode = cluster
spark.shell.master = yarn
spark.shell.proxyUser = true
spark.shell.sparkArgs = --driver-java-options -Djavax.security.auth.
→˓useSubjectCredsOnly=false

(continues on next page)

27.2. Configuration 177

Kylo Documentation, Release 0.9.1

(continued from previous page)

kerberos.spark.kerberosEnabled = true
kerberos.spark.kerberosPrincipal = kylo
kerberos.spark.keytabLocation = /etc/security/keytabs/kylo.headless.keytab

27.2.3 Logging

Spark application logs are written to the kylo-services.log file by default. This can be customized with the following
properties added to /opt/kylo/kylo-services/conf/log4j.properties:

log4j.additivity.org.apache.spark.launcher.app.SparkShellApp=false
log4j.logger.org.apache.spark.launcher.app.SparkShellApp=INFO, sparkShellLog

log4j.appender.sparkShellLog=org.apache.log4j.DailyRollingFileAppender
log4j.appender.sparkShellLog.File=/var/log/kylo-services/kylo-spark-shell.log
log4j.appender.sparkShellLog.append=true
log4j.appender.sparkShellLog.layout=org.apache.log4j.PatternLayout
log4j.appender.sparkShellLog.Threshold=INFO
log4j.appender.sparkShellLog.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %t:
→˓%c{1}:%L - %m%n

27.2.4 Deprecated Properties

The kylo-spark-shell process can be run independently of kylo-services by setting the spark.shell.server.
host and spark.shell.server.port properties. In this mode, the other spark.shell. properties are
ignored and should be passed to spark-submit when starting kylo-spark-shell.

Property Description
server.port Port for kylo-spark-shell to listen on. Type: Number Default: 8450
spark.shell.server.host Host name or address where the kylo-spark-shell process is running as a server. Type:

String
spark.shell.server.port Port where the kylo-spark-shell process is listening. Type: Number Default: 8450
spark.ui.port Port for the Spark UI to listen on. Type: Number Default: 8451

Advanced options are available by using .

Example spark.properties configuration:

spark.shell.server.host = localhost
spark.shell.server.port = 8450

27.3 Wrangler Properties

These properties are used by the Data Transformation feed and the Visual Query page.

178 Chapter 27. Kylo Spark Properties

Kylo Documentation, Release 0.9.1

Property Description
spark.shell.datasources.excludeA comma-separated list of Spark datasources to exclude when saving a Visual Query transfor-

mation. May either be the short name or the class name. Type: String
spark.shell.datasources.includeA comma-separated list of Spark datasource classes to include when saving a Visual Query

transformation. Type: String
spark.shell.datasources.exclude.downloadsA comma-separated list used to fine tune the datasources available for download by excluding

from the master set of sources specified with the spark.shell.datasources root properties above.
Uses short name only. Type: String

spark.shell.datasources.include.tablesA comma-separated list used to fine tune the datasources available for saving to a table by
excluding from the master set of sources specified with ithe spark.shell.datasources root prop-
erties above. Type: String

27.3. Wrangler Properties 179

Kylo Documentation, Release 0.9.1

180 Chapter 27. Kylo Spark Properties

CHAPTER 28

Postgres Metastore Configuration

28.1 Introduction

Kylo currently requires MySQL for the kylo schema. However, you can configure Kylo to work with a cluster that
uses Postgres. We need to make some modifications to support Hive.

28.2 Kylo Services Configuration

28.2.1 Step 1: Ensure the Postgres driver is on the classpath

Ensure the postgres jdbc driver jar file is included in the kylo-services classpath. Copy the driver jar file to the
kylo-services/lib folder.

28.2.2 Step 2: Update the application.properties

For Kylo to connect to a Postgres databases for the Hive metadata you need to change the following section of the
kylo-services application.properties file.

hive.metastore.datasource.driverClassName=org.postgresql.Driver
hive.metastore.datasource.url=jdbc:postgresql://<hostname>:5432/hive
hive.metastore.datasource.username=hive
hive.metastore.datasource.password=
hive.metastore.datasource.validationQuery=SELECT 1
hive.metastore.datasource.testOnBorrow=true

181

Kylo Documentation, Release 0.9.1

28.3 Elasticsearch NiFi Template Changes

The index_schema_service template is used to query out feed metadata from the Hive tables, which is then stored
in elasticsearch so it can be searched for in Kylo. The following steps need to be taken to the template to support
Postgres:

28.3.1 Step 1: Copy the Postgres JAR file to NiFi

mkdir /opt/nifi/postgres
cp /opt/kylo/kylo-services/lib/postgresql-9.1-901-1.jdbc4.jar
/opt/nifi/postgres
chown -R nifi:users /opt/nifi/postgres

28.3.2 Step 2: Create a Controller Service for Postgres Connection

You will need to create an additional database controller services to connect to the second database.

Controller Service Properties:

Controller Service Type: DBCPConnectionPool
Database Connection URL: jdbc:postgresql://<host>:5432/hive
Database Driver Class Name: org.postgresql.Driver
Database Driver Jar URL:
file:///opt/nifi/postgres/postgresql-9.1-901-1.jdbc4.jar Database
User: hive
Password: <password>

Enable the Controller Service.

28.3.3 Step 3: Update “Query Hive Table Metadata” Processor

Edit the “Query Hive Table Schema” processor and make two changes:

1. Disable the “Query Hive Table Metadata” processor.

2. Change the Database Connection Pooling Service to the Postgres Hive controller service created above.

3. Update the “SQL select Query” to be a Postgres query.

SELECT d."NAME", d."OWNER_NAME", t."CREATE_TIME", t."TBL_NAME",
t."TBL_TYPE",

c."COLUMN_NAME", c."TYPE_NAME"
FROM "COLUMNS_V2" c
JOIN "SDS" s on s."CD_ID" = c."CD_ID"
JOIN "TBLS" t ON s."SD_ID" =t."SD_ID"
JOIN "DBS" d on d."DB_ID" = t."DB_ID"
where d."NAME" = '${category}' and t."TBL_NAME" like '${feed}';

4. Enable the “Query Hive Table Metadata” processor.

5. Test a feed to make sure the data is getting indexed.

182 Chapter 28. Postgres Metastore Configuration

CHAPTER 29

Overview

Kylo can be configured to run as a super user in a non-secure cluster or can be configured to work with secure
clusters in order meet certain compliance guidelines (ex, PCI). This section includes guides on how to secure different
components of the Kylo stack. We recommend following the list in order to configure security.

183

Kylo Documentation, Release 0.9.1

184 Chapter 29. Overview

CHAPTER 30

Encrypting Configuration Properties

By default, a new Kylo installation does not have any of its configuration properties encrypted. Once you have started
Kylo for the first time, the easiest way to derive encrypted versions of property values is to post values to the Kylo
services/encrypt endpoint to have it generate an encrypted form for you. You could then paste the encrypted value back
into your properties file and mark it as encrypted by prepending the values with {cipher}. For instance, if you wanted
to encrypt the Hive datasource password specified in application.properties (assuming the password is “mypassword”),
you can get its encrypted form using the curl command like this:

$ curl -u dladmin:thinkbig -H "Content-Type: text/plain; charset=UTF-8"
→˓localhost:8400/proxy/v1/feedmgr/util/encrypt -d mypassword
29fcf1534a84700c68f5c79520ecf8911379c8b5ef4427a696d845cc809b4af0

You then copy that value and replace the clear text password string in the properties file with the encrypted value:

hive.datasource.password={cipher}
→˓29fcf1534a84700c68f5c79520ecf8911379c8b5ef4427a696d845cc809b4af0

The benefit of this approach is that you will be getting a value that is guaranteed to work with the encryption settings
of the server where that configuration value is being used. Once you have replaced all properties you wish to have
encrypted in the properties files, you can restart the Kylo services to use them.

30.1 Encrypting Configuration Property Values with Spring CLI

1. Install the Spring CLI client Mac example. In this example we will use Home Brew to install it on a Mac:

• Install JCE: http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

• Install Homebrew: http://brew.sh/

• Install Spring Boot CLI:

$ brew tap pivotal/tap
$ brew install springboot
$ spring install org.springframework.cloud:spring-cloud-cli:1.0.0.BUILD-SNAPSHOT

185

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://brew.sh/

Kylo Documentation, Release 0.9.1

2. Install the Spring CLI client Linux example:

$ wget http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.5.3.
→˓RELEASE/spring-boot-cli-1.5.3.RELEASE-bin.tar.gz
$ sudo mkdir /apps/spring-boot
$ sudo tar -xvf /tmp/spring-boot-cli-1.5.3.RELEASE-bin.tar.gz -C /apps/spring-boot/

$ sudo vi /etc/profile
export SPRING_HOME=/apps/spring-boot/spring-1.5.3.RELEASE
export JAVA_HOME=/usr/lib/jvm/jre-1.8.0
export PATH=$SPRING_HOME/bin:$JAVA_HOME/bin:$PATH

$ source /etc/profile

$ sudo chown -R centos:centos /apps/spring-boot/
$ spring install org.springframework.cloud:spring-cloud-cli:1.3.1.RELEASE

3. Copy the /apps/kylo/encrypt.key file to the computer with the Spring CLI client (if different)

4. Encrypt the values. Note: Make sure to use single quotes around the password. If not special characters like $
will cause issues:

$ spring encrypt 'Pretend$Password' --key ./encrypt.key
dda0202d65ac03d250b1bc77afcf1097954wee08fc118b0f804a66xx286f61ae

5. Decrypt values

$ spring decrypt dda0202d65ac03d250b1bc77afcf1097954wee08fc118b0f804a66xx286f61ae --
→˓key encrypt.key

186 Chapter 30. Encrypting Configuration Properties

CHAPTER 31

Enable Kerberos for Kylo

The Kylo applications contain features that leverage the thrift server connection to communicate with the cluster. In
order for them to work in a Kerberos cluster, some configuration is required. Some examples are:

• Profiling statistics

• Tables page

• Wrangler

31.1 Prerequisites

Below are the list of prerequisites for enabling Kerberos for the Kylo data lake platform.

1. Running Hadoop cluster

2. Kerberos should be enabled

3. Running Kylo 0.4.0 or higher

31.2 Configuration Steps

1. Create a Headless Keytab File for the Hive and Kylo User.

Note: Perform the following as root. Replace “sandbox.hortonworks.com” with your domain.

[root]$ kadmin.local

kadmin.local: addprinc -randkey "kylo@sandbox.hortonworks.com"

kadmin.local: xst -norandkey -k /etc/security/keytabs/kylo.headless.keytab
→˓kylo@sandbox.hortonworks.com

(continues on next page)

187

Kylo Documentation, Release 0.9.1

(continued from previous page)

kadmin.local: xst -norandkey -k /etc/security/keytabs/hive-kylo.headless.keytab hive/
→˓sandbox.hortonworks.com@sandbox.hortonworks.com

kadmin.local: exit

[root]$ chown kylo:hadoop /etc/security/keytabs/kylo.headless.keytab

[root]$ chmod 440 /etc/security/keytabs/kylo.headless.keytab

[root]$ chown kylo:hadoop /etc/security/keytabs/hive-kylo.headless.keytab

[root]$ chmod 440 /etc/security/keytabs/hive-kylo.headless.keytab

2. Validate that the Keytabs Work.

[root]$ su - kylo

[kylo]$ kinit -kt /etc/security/keytabs/kylo.headless.keytab kylo

[kylo]$ klist

[root]$ su - hive

[hive]$ kinit -kt /etc/security/keytabs/hive-kylo.headless.keytab hive/sandbox.
→˓hortonworks.com

[hive]$ klist

3. Modify the kylo-spark-shell configuration. If the spark.shell.server properties are set in spark.properties then
the run-kylo-spark-shell.sh script will also need to be modified.

[root]$ vi /opt/kylo/kylo-services/conf/spark.properties

kerberos.spark.kerberosEnabled = true
kerberos.spark.keytabLocation = /etc/security/keytabs/kylo.headless.keytab
kerberos.spark.kerberosPrincipal = kylo@sandbox.hortonworks.com

[root]$ vi /opt/kylo/kylo-services/bin/run-kylo-spark-shell.sh

spark-submit --principal 'kylo@sandbox.hortonworks.com' --keytab /etc/security/
→˓keytabs/kylo.headless.keytab ...

4. Modify the kylo-services configuration.

Tip: Replace “sandbox.hortonworks.com” with your domain.

To add Kerberos support to kylo-services, you must enable the feature and update the Hive connection URL to support
Kerberos.

[root]$ vi /opt/kylo/kylo-services/conf/application.properties

This property is for the hive thrift connection used by kylo-services
hive.datasource.url=jdbc:hive2://localhost:10000/default;principal=hive/sandbox.
→˓hortonworks.com@sandbox.hortonworks.com

(continues on next page)

188 Chapter 31. Enable Kerberos for Kylo

Kylo Documentation, Release 0.9.1

(continued from previous page)

This property will default the URL when importing a template using the thrift
→˓connection
nifi.service.hive_thrift_service.database_connection_url=jdbc:hive2://localhost:10000/
→˓default;principal=hive/sandbox.hortonworks.com@sandbox.hortonworks.com

Set Kerberos to true for the kylo-services application and set the 3 required
→˓properties

kerberos.hive.kerberosEnabled=true
kerberos.hive.hadoopConfigurationResources=/etc/hadoop/conf/core-site.xml,/etc/hadoop/
→˓conf/hdfs-site.xml
kerberos.hive.kerberosPrincipal=hive/sandbox.hortonworks.com
kerberos.hive.keytabLocation=/etc/security/keytabs/hive-kylo.headless.keytab

uncomment these 3 properties to default all NiFi processors that have these fields.
→˓Saves time when importing a template

nifi.all_processors.kerberos_principal=nifi
nifi.all_processors.kerberos_keytab=/etc/security/keytabs/nifi.headless.keytab
nifi.all_processors.hadoop_configuration_resources=/etc/hadoop/conf/core-site.xml,/
→˓etc/hadoop/conf/hdfs-site.xml

5. Restart the kylo-services and kylo-spark-shell.

[root]$ service kylo-services restart
[root]$ service kylo-spark-shell restart

Kylo is now configured for a Kerberos cluster. You can test that it is configured correctly by looking at profile statistics
(if applicable): go to the Tables page and drill down into a Hive table, and go to the Wrangler feature and test that it
works.

31.2. Configuration Steps 189

Kylo Documentation, Release 0.9.1

190 Chapter 31. Enable Kerberos for Kylo

CHAPTER 32

Enable Kerberos for NiFi

32.1 Prerequisites

Below are the list of prerequisites to enable Kerberos for the NiFi data lake platform:

• A Hadoop cluster must be running.

• NiFi should be running with latest changes.

• Kerberos should be enabled.

• Keytabs should be created and accessible.

32.2 Types of Processors to be Configured

32.2.1 HDFS

• IngestHDFS

• CreateHDFSFolder

• PutHDFS

32.2.2 Hive

• TableRegister

• ExecuteHQLStatement

• TableMerge

191

Kylo Documentation, Release 0.9.1

32.2.3 Spark

• ExecuteSparkJob

32.3 Configuration Steps

1. Create a Kerberos keytab file for Nifi user.

kadmin.local

addprinc -randkey nifi@sandbox.hortonworks.com

xst -norandkey -k /etc/security/keytabs/nifi.headless.keytab nifi@sandbox.hortonworks.com

exit

chown nifi:hadoop /etc/security/keytabs/nifi.headless.keytab

chmod 440 /etc/security/keytabs/nifi.headless.keytab

Test that the keytab works. You can initialize your keytab file using below command.

su - nifi

kinit -kt /etc/security/keytabs/nifi.headless.keytab nifi

klist

2. Make sure nifi.properties file is available in conf directory of NiFi installed location.

3. Open nifi.properties file and set location of krb5.conf file to property nifi.kerberos.krb5.file.

vi nifi.properties

nifi.kerberos.krb5.file=/etc/krb5.conf

4. HDFS Processor Configuration : Log in to NiFi UI and select HDFS processor and set properties which is
highlighted in red box.

Hadoop Configuration Resource : /etc/hadoop/conf/core-site.xml,/etc/hadoop/conf/hdfs-site.xml

Kerberos Principal: nifi

Kerberos Keytab : /etc/security/keytabs/nifi.headless.keytab

192 Chapter 32. Enable Kerberos for NiFi

mailto:nifi@sandbox.hortonworks.com
mailto:nifi@sandbox.hortonworks.com

Kylo Documentation, Release 0.9.1

5. SPARK Processor Configuration : Log in to NiFi UI and select HDFS processor and set properties which is
highlighted in red box.

6. Hive Processor Configuration : Log in to NiFi UI and go to toolbar.

7. Go to Controller Service Tab and disable Thrift Controller Services if already running which highlighted in red
box.

32.3. Configuration Steps 193

Kylo Documentation, Release 0.9.1

8. Make sure everything has stopped properly like below.

9. Update HiveServer2 hostname and Hive principal name.

Database Connection URL:
'jdbc:hive2://:<HOSTNAME>:10000/default;principal=hive/<HOSTNAME>@HOSTNAME'

ex.
'jdbc:hive2://localhost:10000/default;principal=hive/sandbox.hortonworks.com@sandbox.
→˓hortonworks.com'

194 Chapter 32. Enable Kerberos for NiFi

Kylo Documentation, Release 0.9.1

10. Update Kerberos user information and Hadoop Configuration. Apply Changes and start controller services.

You have successfully configured NiFi DataLake Platform with Kerberos.

32.3. Configuration Steps 195

Kylo Documentation, Release 0.9.1

196 Chapter 32. Enable Kerberos for NiFi

CHAPTER 33

Enable Ranger Authorization

33.1 Prerequisite

33.2 Java

Java must be installed on all client nodes.

$ java -version
$ java version "1.8.0_92"

$ OpenJDK Runtime Environment (rhel-2.6.4.0.el6_7-x86_64 u95-b00)
$ OpenJDK 64-Bit Server VM (build 24.95-b01, mixed mode)

$ echo $JAVA_HOME
$ /opt/java/jdk1.8.0_92/

33.3 Kylo

This documentation assumes that you have Kylo installed and running on a cluster.

33.4 Optional: Delete/Disable HDFS/HIVE Global Policy

If you are using HDP sandbox, remove all HDFS/HIVE global policy.

Disable the HDFS Policy.

197

Kylo Documentation, Release 0.9.1

Disable the HIVE policy.

33.5 Create a NiFi Super User Policy in Hive

1. Login to Ranger UI.

2. Select Hive Repository.

3. Click on Add Policy.

4. Create a policy as shown in image below.

Policy Name : ranger_superuser_policy Select user : nifi Permission : All

198 Chapter 33. Enable Ranger Authorization

Kylo Documentation, Release 0.9.1

33.6 Create a Hive User Policy in the HDFS Repository

1. Login to Ranger UI.

2. Select HDFS Repository.

3. Click on Add Policy.

4. Create a policy as shown in the image below.

Policy Name : hive_user_policy_kylo
Resource Path : /model.db/

/app/warehouse/
/etl/

Ranger authorization is configured successfully. Now create a feed from the Kylo UI and create feed for testing.

33.6. Create a Hive User Policy in the HDFS Repository 199

Kylo Documentation, Release 0.9.1

200 Chapter 33. Enable Ranger Authorization

CHAPTER 34

Enable Sentry Authorization

34.1 Prerequisite

34.1.1 Java

Java must be installed on all client nodes.

$ java -version
$ java version "1.8.0_92"

$ OpenJDK Runtime Environment (rhel-2.6.4.0.el6_7-x86_64 u95-b00)
$ OpenJDK 64-Bit Server VM (build 24.95-b01, mixed mode)

$ echo $JAVA_HOME
$ /opt/java/jdk1.8.0_92/

34.1.2 Cluster Requirements

• This documentation assumes that you have Kylo installed and running on a cluster.

• Kerberos is mandatory. For testing purposes, set sentry.hive.testing.mode to true.

• You must be running Hive Server2.

• In order to define policy for a role, you should have the user-group created on all nodes of a cluster, and you
must then map each role to user-group.

• Only Sentry Admin can grant all access (create role, grant, revoke) to a user. You can add a normal user to
Sentry admin group via Cloudera Manager.

34.1.3 Grant Sentry Admin Access to NiFi User

1. Create a sentryAdmin group and assign a NiFi user to it.

201

Kylo Documentation, Release 0.9.1

groupadd sentryAdmin usermod -a -G sentryAdmin nifi

2. Add sentryAdmin group to Sentry Admin List.

(a) Log in to Cloudera Manager.

(b) Select Sentry Service.

(c) Go to Configuration tab.

(d) Select Sentry(Service-Wide) from Scope.

(e) Select Main from Category.

(f) Look for sentry.service.admin.group property.

(g) Add sentryAdmin to list.

(h) Click Save and Restart Service.

34.2 Enabling Sentry for Hive

34.2.1 Change Hive Warehouse Ownership

The Hive warehouse directory (/user/hive/warehouse or any path you specify as hive.metastore.warehouse.dir in your
hive-site.xml) must be owned by the Hive user and group.

$ sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

If you have a Kerberos-enabled cluster:

$ sudo -u hdfs kinit -kt <hdfs.keytab> hdfs
$ sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

34.2.2 Disable Impersonation for HiveServer2

1. Go to the Hive service.

2. Click the Configuration tab.

202 Chapter 34. Enable Sentry Authorization

Kylo Documentation, Release 0.9.1

3. Select Scope > HiveServer2.

4. Select Category > Main.

5. Uncheck the HiveServer2 Enable Impersonation checkbox.

6. Click Save Changes to commit the changes.

34.2.3 Yarn Setting For Hive User

1. Open the Cloudera Manager Admin Console and go to the YARN service.

2. Click the Configuration tab.

3. Select Scope > NodeManager.

4. Select Category > Security.

5. Ensure the Allowed System Users property includes the Hive user. If not, add Hive.

6. Click Save Changes to commit the changes.

7. Repeat steps 1-6 for every NodeManager role group for the YARN service that is associated with Hive.

8. Restart the YARN service.

34.2.4 Enabled Sentry

1. Go to the Hive service.

2. Click the Configuration tab.

3. Select Scope > Hive (Service-Wide).

4. Select Category > Main.

5. Locate the Sentry Service property and select Sentry.

6. Click Save Changes to commit the changes.

7. Restart the Hive service.

34.2. Enabling Sentry for Hive 203

Kylo Documentation, Release 0.9.1

34.2.5 Administrative Privilege

Once the sentryAdmin group is part of Sentry Admin list, it will be able to create policies in Sentry but sentryAdmin
will not be allowed to read/write any tables. To do that, privileges must be granted to the sentryAdmin group.

CREATE ROLE admin_role GRANT ALL ON SERVER server1 TO ROLE admin_role; GRANT ROLE
admin_role TO GROUP sentryAdmin;

34.2.6 Enabled HDFS ACL

1. Go to the Cloudera Manager Admin Console and navigate to the HDFS service.

2. Click the Configuration tab.

3. Select Scope > HDFS-1 (Service-Wide).

4. Select Category > Security.

5. Locate the Enable Access Control Lists property and select its checkbox to enable HDFS ACLs.

6. Click Save Changes to commit the changes.

Sentry authorization is configured successfully. Now create a feed from the Kylo UI and test it.

204 Chapter 34. Enable Sentry Authorization

CHAPTER 35

Kylo UI and SSL

35.1 Overview

This guide provides details on what configuration changes are required to enable Kylo UI to use SSL. Broadly, the
changes will be two-fold:

1. Changes to Kylo UI

2. Changes to Nifi

35.1.1 1. Changes to Kylo UI

1.1 Create Self-Signed Certificate in a Keystore

Lets assume you are in a development mode and you want to try out Kylo UI on SSL. You will need a self-signed
certificate which is stored in a keystore. Make note of the kylo-ui.jks path, which we will refer to in the following
section when updating Kylo UI properties.

If you are in production, you would have your certificate issued by a trusted certificate authority. You can then import
it to your keystore.

mkdir /opt/kylo/ssl

Generate keys and keystore
keytool -genkeypair -alias kylo-ui -dname cn=kylo-ui -validity 10000 -keyalg RSA -
→˓keysize 2048 -keystore kylo-ui.jks -keypass changeit -storepass changeit

Create certificate sign request
keytool -certreq -alias kylo-ui -file localhost.csr -keystore kylo-ui.jks -keypass
→˓changeit -storepass changeit

Create certificate
keytool -gencert -alias kylo-ui -infile localhost.csr -outfile localhost.crt -ext
→˓SubjectAlternativeName=dns:localhost -keystore kylo-ui.jks -keypass changeit -
→˓storepass changeit

(continues on next page)

205

Kylo Documentation, Release 0.9.1

(continued from previous page)

Import certificate into keystore
keytool -importcert -alias kylo-ui -file localhost.crt -keystore kylo-ui.jks -keypass
→˓changeit -storepass changeit

chown -R kylo /opt/kylo/ssl

1.2 Kylo UI Application Properties

Add following properties to /opt/kylo/kylo-ui/conf/application.properties. Change the port to your liking and update
path to keystore ‘kylo-ui.jks’ we generated in previous section.

server.ssl.enabled=true
server.port=8444
server.ssl.key-store=/opt/kylo/ssl/kylo-ui.jks
server.ssl.key-store-password=changeit
server.ssl.key-store-type=jks
server.ssl.key-alias=kylo-ui

1.3 Restart Kylo UI

You can now restart Kylo UI and browse to https://localhost:8444/ops-mgr/index.html. The note protocol and port
number have changed from default configuration and now are HTTPS and 8444 respectively. Since we are using a
self-signed certificate, expect browsers to complain about inadequate security. That is okay for development purposes.

service kylo-ui restart

35.1.2 2. Changes to Nifi

2.1 Import Kylo UI’s Certificate into a Truststore

You can either import Kylo UI’s certificate ‘localhost.crt’, generated in step 1.1 Create Self-Signed Certificate in a
Keystore, into a new truststore; or, if you are in a hurry, simply re-use Kylo UI’s keystore as Nifi’s truststore.

Create a new truststore and import the cert to keep things clean. Make sure ‘nifi’ user has access to this truststore, e.g.
keep the truststore in /opt/nifi/data/ssl directory, which belongs to ‘nifi’ user.

mkdir /opt/nifi/data/ssl

Import certificate into keystore
keytool -importcert -alias kylo-ui -file localhost.crt -keystore kylo-ui-truststore.
→˓jks -keypass changeit -storepass changeit

chown -R nifi /opt/nifi/data/ssl

2.2 Setup StandardSSLContextService in Nifi

Add StandardSSLContextService in Nifi at the root level next to all other controller services.

Set following properties on SSL Context Service:

206 Chapter 35. Kylo UI and SSL

https://localhost:8444/ops-mgr/index.html

Kylo Documentation, Release 0.9.1

Truststore Filename /opt/nifi/data/ssl/kylo-ui-truststore.jks

Truststore Password changeit

Truststore Type JKS

2.3 Update MetadataProviderSelectorService

Update MetadataProviderSelectorService. Set the following properties on MetadataProviderSelectorService, making
sure host and port correspond to where Kylo UI is running:

REST Client URL https://localhost:8444/proxy/metadata

SSL Context Service StandardSSLContextService

35.1. Overview 207

https://localhost:8444/proxy/metadata

Kylo Documentation, Release 0.9.1

208 Chapter 35. Kylo UI and SSL

CHAPTER 36

NiFi and SSL

This link provides additional instruction for enabling SSL for NiFi:

Creating a Self-signed Cert

1. Download the NiFi toolkit from https://nifi.apache.org/download.html

2. Unzip it to a directory.

/opt/nifi/nifi-toolkit-1.0.0

3. Go into that directory.

cd /opt/nifi/nifi-toolkit-1.0.0/bin

4. Update the “tls-toolkit.sh” file and add the current version of JAVA_HOME.

(a) Add this line to the start of the script:

export JAVA_HOME=/opt/java/current

5. Make an SSL directory under /opt/nifi/data as the nifi owner:

mkdir /opt/nifi/data/ssl
chown nifi /opt/nifi/data/ssl

6. Change to that directory and generate certs using the tls-toolkit.

cd /opt/nifi/data/ssl
/opt/nifi/nifi-toolkit-1.0.0/bin/tls-toolkit.sh standalone -n 'localhost' -C

→˓'CN=kylo, OU=NIFI' -o .

.. note:: Use the hostname of the NiFi node if running Kylo and NiFi on different
→˓servers to prevent certificate issues (continues on next page)

209

https://nifi.apache.org/download.html

Kylo Documentation, Release 0.9.1

(continued from previous page)

This will generate one client cert and password file along with a server keystore and trust store:

-rwxr-xr-x 1 nifi root 1675 Apr 26 21:28 nifi-key.key
-rwxr-xr-x 1 nifi root 1200 Apr 26 21:28 nifi-cert.pem
-rwxr-xr-x 1 nifi root 43 Apr 26 21:28 CN=kylo_OU=NIFI.password
-rwxr-xr-x 1 nifi root 3434 Apr 26 21:28 CN=kylo_OU=NIFI.p12
drwxr-xr-x 2 nifi root 4096 Apr 26 21:46 localhost

Note: The client cert is the p.12 (PKCS12) file along with its respective password. This will be needed
later when you add the client cert to the browser/computer.

The directory ‘localhost’ is for the server side keystore and truststore .jks files.

-rwxr-xr-x 1 nifi root 3053 Apr 26 21:28 keystore.jks
-rwxr-xr-x 1 nifi root 911 Apr 26 21:28 truststore.jks
-rwxr-xr-x 1 nifi root 8921 Apr 26 21:28 nifi.properties

7. Change permissions on files.

chown nifi -R /opt/nifi/data/ssl/*
chmod 755 -R /opt/nifi/data/ssl/*

8. Merge the generated properties (/opt/nifi/data/ssl/localhost) with the the NiFi configuration properties
(/opt/nifi/current/conf/nifi.properties).

(a) Open the /opt/nifi/data/ssl/localhost/nifi.properties file.

(b) Compare and update the below properties

Note: Below is an example. Do not copy this text directly, as your keystore/truststore passwords
will be different!

Site to Site properties
nifi.remote.input.host=localhost
nifi.remote.input.secure=true
nifi.remote.input.socket.port=10443
nifi.remote.input.http.enabled=true
nifi.remote.input.http.transaction.ttl=30 sec

web properties
nifi.web.war.directory=./lib
nifi.web.http.host=
nifi.web.http.port=
nifi.web.https.host=0.0.0.0
nifi.web.https.port=9443
nifi.web.jetty.working.directory=./work/jetty
nifi.web.jetty.threads=200

security properties
nifi.sensitive.props.key=
nifi.sensitive.props.key.protected=
nifi.sensitive.props.algorithm=PBEWITHMD5AND256BITAES-CBC-OPENSSL

(continues on next page)

210 Chapter 36. NiFi and SSL

Kylo Documentation, Release 0.9.1

(continued from previous page)

nifi.sensitive.props.provider=BC
nifi.sensitive.props.additional.keys=

nifi.security.keystore=/opt/nifi/data/ssl/localhost/keystore.jks
nifi.security.keystoreType=jks
nifi.security.keystorePasswd=fCrusEdGOKdik7P5UORRegQOILoZTBQ+9kyhf8D+PUU
nifi.security.keyPasswd=fCrusEdGOKdik7P5UORRegQOILoZTBQ+9kyhf8D+PUU
nifi.security.truststore=/opt/nifi/data/ssl/localhost/truststore.jks
nifi.security.truststoreType=jks
nifi.security.truststorePasswd=DHJS0+HIaUMRkhrbqlK/ys5j7iL/ef9mnGJIDRlFokA
nifi.security.needClientAuth=
nifi.security.user.authorizer=file-provider
nifi.security.user.login.identity.provider=
nifi.security.ocsp.responder.url=
nifi.security.ocsp.responder.certificate=

9. Edit the /opt/nifi/data/conf/authorizers.xml file to add the initial admin identity. This entry needs to match the
phrase you used to generate the certificates in step 6.

<property name="Initial Admin Identity">CN=kylo,OU=NIFI</property>

Here is an example:

<authorizer>
<identifier>file-provider</identifier>
<class>org.apache.nifi.authorization.FileAuthorizer</class>
<property name="Authorizations File">./conf/authorizations.xml</property>
<property name="Users File">./conf/users.xml</property>
<property name="Initial Admin Identity">CN=kylo, OU=NIFI</property>
<property name="Legacy Authorized Users File"></property>

<!-- Provide the identity (typically a DN) of each node when clustered, see above
→˓description of Node Identity.

<property name="Node Identity 1"></property>
<property name="Node Identity 2"></property>
-->

</authorizer>

For reference: This will create a record in the /opt/nifi/current/conf/users.xml. Should you need to
regenerate your SSL file with a different CN, you will need to modify the users.xml file for that entry.

10. Set the following parameters in the kylo-services “application.properties” file for the NiFi connection.

nifi.rest.host=localhost
nifi.rest.https=true
The port should match the port found in the /opt/nifi/current/conf/nifi.
→˓properties (nifi.web.https.port)
nifi.rest.port=9443
nifi.rest.useConnectionPooling=false
nifi.rest.truststorePath=/opt/nifi/data/ssl/localhost/truststore.jks
##the truststore password below needs to match that found in the nifi.properties file
→˓(nifi.security.truststorePasswd)
nifi.rest.truststorePassword=UsqLPVksIe/taZbfpVIsYElF8qFLhXbeVGRgB0pLjKE
nifi.rest.truststoreType=JKS
nifi.rest.keystorePath=/opt/nifi/data/ssl/CN=kylo_OU=NIFI.p12
###value found in the .password file /opt/nifi/data/ssl/CN=kylo_OU=NIFI.password

(continues on next page)

211

Kylo Documentation, Release 0.9.1

(continued from previous page)

nifi.rest.keystorePassword=mw5ePri
nifi.rest.keystoreType=PKCS12

Importing the Client Cert on the Mac

1. Copy the .p12 file that you created above (/opt/nifi/data/ssl/CN=kylo_OU=NIFI.p12) in step 6 to your Mac.

2. Open Keychain Access.

3. Create a new keychain with a name. The client cert is copied into this new keychain, which in the example here
is named “nifi-cert”. If you add it directly to the System, the browser will ask you for the login/pass every time
NiFi does a request.

(a) In the left pane, right-click “Keychains” and select “New Keychain”.

(b) Give it the name “nifi-cert” and a password.

4. Once the keychain is created, click on it and select File -> import Items, and then find the .p12 file that you
copied over in step 1.

212 Chapter 36. NiFi and SSL

Kylo Documentation, Release 0.9.1

Once complete you should have something that looks like this:

Accessing NiFi under SSL

Open the port defined in the NiFi.properties above: 9443.

The first time you connect to NiFi (https://localhost:9443/nifi) you will be instructed to verify the certificate. This will
only happen once.

1. Click OK at the dialog prompt.

213

https://localhost:9443/nifi

Kylo Documentation, Release 0.9.1

2. Enter the Password that you supplied for the keychain. This is the password that you created for the keychain
in “Importing the Client Cert on the Mac” Step 3b.

3. Click Always Verify.

4. Click AdvancKyloConfiguration.rsted and then Click Proceed. It will show up as “not private” because it is a
self-signed cert.

5. NiFi under SSL. Notice the User name matches the one supplied via the certificate that we created: “CN=kylo,
OU=NIFI”.

214 Chapter 36. NiFi and SSL

Kylo Documentation, Release 0.9.1

Refer to the Hortonworks documentation on Enabling SSL for NiFi:

215

Kylo Documentation, Release 0.9.1

216 Chapter 36. NiFi and SSL

CHAPTER 37

Authentication

37.1 Overview

Kylo supports a pluggable authentication architecture that allows customers to integrate their existing infrastructure
when authenticating a user. The pluggability is built around , which delegates authentication to one or more configured
that all collaborate in an authentication attempt.

Kylo supplies LoginModule implementations for the most common authentication scenarios, though customers will
be able to provide their own modules to replace or augment the modules provided by Kylo.

In addition to performing authentication, LoginModules may, upon successful login, associate the logged-in user
with a set of principals (user ID and groups/roles) that can be used to make authorization checks. For instance, a
LoginModule that authenticates a user’s credentials using LDAP may also load any groups defined in the LDAP store
for that user, and these groups can have permissions granted to them in Kylo.

37.2 Built-In Pluggable Authentication Profiles

Kylo comes with some pre-built authentication configurations that may be activated by adding the appropriate Spring
profiles to the UI and server configuration application.properties files. By default, whenever any of these profiles are
added to the configuration it is equivalent to adding their associated LoginModules to the overall JAAS configuration
using the “required” control flag.

Note: More than one profile may be activated at one time. If multiple profiles are used, authentication in Kylo will
only occur if all of the login requirements of each of the profiles are satisfied.

The table below lists all of the profiles currently supported by Kylo out-of-the-box. When any of these profiles are
activated certain properties are expected to be present in the application.properties files.

217

Kylo Documentation, Release 0.9.1

Login
Method

Spring
Profile

Description

Kylo
User

auth-
kylo

Authenticates users against the Kylo user/group store

LDAP auth-
ldap

Authenticates users stored in LDAP

Active
Direc-
tory

auth-ad Authenticates users stored in Active Directory

Users file auth-file Authenticates users in a file users.properies (typically used in development only)
Simple auth-

simple
Allows only one admin user defined in the configuration properties (development only)

Cached
creden-
tials

auth-
cache

Short-cicuit, temporary authentication after previous user authentication by other means

Kylo
User
Groups

auth-
kylo-
groups

Limits user groups of other profiles to only those which also exist in Kylo. This is use-
ful when user is part of many groups in other profiles which may cause JTW token size
overflow.

37.2.1 auth-kylo

When this profile is active, a LoginModule will be added to the configuration that validates whether the authenticating
user is present in the Kylo user store.

Note: This profile is typically used in conjunction with other profiles (such as auth-ldap) as this configuration does
not perform any password validation.

Properties Re-
quired

Ex-
am-
ple

Description

secu-
rity.auth.kylo.login.services

No requiredCorresponds to the control flag for LoginModule configurations: required, req-
uisite, sufficient, and optional. Possible values are required, requisite, sufficient,
and optional

37.2.2 auth-file

When this profile is active, a LoginModule will be added to the configuration that authenticates a username/password
using user information within specific files on the file system. For validating the credentials it looks by default,
unless configured otherwise, for a file called users.properties on the classpath containing a mapping of usernames top
passwords in the form:

user1=pw1
user2=pw2

If authentication is successful it will then look for a groups.properties file on the classpath to load the groups that have
been assigned to the authenticated user. The format of this file is:

user1=groupA,groupB
user2=groupA,groupC

218 Chapter 37. Authentication

Kylo Documentation, Release 0.9.1

Note that use of the groups.properties file is optional when used in conjunction with other authentication profiles. For
instance, it would be redundant (but not invalid) to have a groups file when auth-file is used with auth-kylo, as the
latter profile will load any user assigned groups from the Kylo store as well as those defined in the group file. It would
likely be confusing to have to manage groups from two different sources.

Note: The auth-file profile should generally not be used in a production environment unless the passwords are
encrypted (see below.) The default is to expect the user passwords to be unencrypted.

Properties Re-
quired

Example Description

security.auth.file.users No users.
properties

The value is either a name of a resource found on the class-
path or, if prepended by file:///, a direct file path

security.auth.file.groups No groups.
properties

The same as security.auth.file.users but for the groups file

secu-
rity.auth.file.password.hash.enabled

No false Indicates whether the passwords in users.properties
are hashed

secu-
rity.auth.file.password.hash.algorithm

No MD5 Specifies the java.security.MessageDigest algorithm used to
hash the passwords

secu-
rity.auth.file.password.hash.encoding

No base64 Specifies the byte encoding used for the hashed passwords
(hex, base64, rfc2617)

To configure auth-file to use hashed passwords with the digest and encoding settings of SHA-256 and hex, for example,
you would set the properties:

security.auth.file.password.hash.enabled=true
security.auth.file.password.hash.algorithm=SHA-256
security.auth.file.password.hash.encoding=hex

Then you could generate password values on the command line of most *nix systems using:

$ echo -n "mypassword" | shasum -a 256 | cut -d' ' -f1

If auth-file is active and no users file property is specified in the configuration then these implicit username/password
properties will be assumed:

dladmin=thinkbig
analyst=analyst
designer=designer
operator=operator

37.2.3 auth-ldap

This profile configures a LoginModule that authenticates the username and password against an LDAP server.

37.2. Built-In Pluggable Authentication Profiles 219

Kylo Documentation, Release 0.9.1

Property Re-
quired

Example Description

secu-
rity.auth.ldap.server.uri

Yes ldap://
localhost:52389/
ou=people,
dc=example,
dc=com

The URI to the LDAP server and root context

secu-
rity.auth.ldap.authenticator.userDnPatterns

Yes uid={0} The DN filter patterns, minus the root context portion, that iden-
tifies the entry for the user. The username is substitued forthe
{0} tag. If more than one pattern is supplied they should be
separated by vertical bars

secu-
rity.auth.ldap.user.enableGroups

No true Activates user group loading; default: false

secu-
rity.auth.ldap.user.groupsBase

No ou=groups The filter pattern that identifies group entries

secu-
rity.auth.ldap.user.groupNameAttr

No ou The attribute of the group entry containing the group name

secu-
rity.auth.ldap.server.authDn

No uid=admin,
ou=people,
dc=example,
dc=com

The LDAP account with the privileges necessary to access user
or group entries; usually only needed (if at all) when group load-
ing is activated

secu-
rity.auth.ldap.server.password

No The password for the account with the privileges necessary to
access user or group entries

If connecting to an LDAP server over SSL please make the following changes

1. Change the “security.auth.ldap.server.uri” to use “ldaps” and the correct port

2. You need to install the SSL certificates in the Kylo trust store. If you have not setup a trust store for Kylo please
do the following:

• Create a Java keystore and add the certificates

• Modify /opt/kylo/kylo-services/bin/run-kylo-services.sh file and append the truststore location and pass-
word to the KYLO_SERVICES_OPTS environment variable

export KYLO_SERVICES_OPTS='-Xmx768m -Djavax.net.ssl.trustStore=/opt/
→˓kylo/truststore.jks -Djavax.net.ssl.trustStorePassword=xxxxxx'

• Modify /opt/kylo/kylo-ui/bin/run-kylo-ui.sh file and append the truststore location and password to the
KYLO_UI_OPTS environment variable

export KYLO_UI_OPTS='-Xmx768m -Djavax.net.ssl.trustStore=/opt/kylo/
→˓truststore.jks -Djavax.net.ssl.trustStorePassword=xxxxxx'

3. Restart the kylo-ui and kylo-services application

37.2.4 auth-ad

This profile configures a LoginModule that authenticates the username and password against an Active Directory
server. If the properties security.auth.ad.server.serviceUser and security.auth.ad.server.
servicePassword are set then those credentials will be used to autheticate with the AD server and only the
username will be validated to exist in AD; loading the user’s groups load (when configured) if the user is present.

220 Chapter 37. Authentication

Kylo Documentation, Release 0.9.1

Property Re-
quired

Example Value Description

secu-
rity.auth.ad.server.uri

Yes ldap://example.
com/

The URI to the AD server

secu-
rity.auth.ad.server.domain

Yes test.example.com The AD domain of the users to authenticate

secu-
rity.auth.ad.server.searchFilter

No (&(objectClass=user)(sAMAccountName={1}))Specifies the filter to use to find AD
entries for the login user; default:
(&(objectClass=user)(userPrincipalName={0}))

secu-
rity.auth.ad.server.serviceUser

No admin A service account used to authenticate with AD rather than
the user logging in (typically used with auth-spnego)

secu-
rity.auth.ad.server.servicePassword

No A service account password used to authenticate with AD
rather than that of the user logging in (typically used with
auth-spnego)

secu-
rity.auth.ad.user.enableGroups

No true Activates user group loading; default: false

37.2.5 auth-simple

This profile configures a LoginModule that authenticates a single user as an administrator using username and pass-
word properties specified in application.properties. The specified user will be the only one able to login to Kylo.
Obviously, this profile should only be used in development.

Property Required Example Value Description
authenticationService.username Yes dladmin The username of the administrator
authenticationService.password Yes thinkbig The password of the administrator

37.2.6 auth-cache

Kylo’s REST API is stateless and every request must be authenticated. In cases where the REST API is heavily used
and/or the primary means of authetication is expensive, this profile can be used to reduce the amount of times the
primary authentication mechanism is consulted. This is achieved by inserting a LoginModule a the head of the login
sequence, flagged as Sufficient, that reports a login success if the user credential for the current request is present in
its cache. Another LoginModule, flagged as Optional, is inserted at the end of the sequence to add the credential to
the cache whenever a successful login is committed.

Property Re-
quired

Example Value Description

secu-
rity.auth.cache.spec

No expireAfterWrite=30s,
maximumSize=512

The cache specification (entry expire time,
cache size, etc.)

37.2.7 auth-kylo-groups

This profile will limit user groups to only those which also exist in Kylo. It is expected to be used only in combination
with other profiles where user store is external to Kylo, e.g. Active Directory. This profile is useful to prevent JWT
token size overflow when user is part of many groups in other stores. Lets consider following example where a user is
part of following groups in Active Directory and following groups exist in Kylo:

37.2. Built-In Pluggable Authentication Profiles 221

http://docs.oracle.com/javase/7/docs/api/javax/security/auth/login/Configuration.html
http://docs.oracle.com/javase/7/docs/api/javax/security/auth/login/Configuration.html
https://google.github.io/guava/releases/19.0/api/docs/com/google/common/cache/CacheBuilderSpec.html

Kylo Documentation, Release 0.9.1

User store Groups
Active Directory Group A, Group B, Group C, Group D, Group E
Kylo Group B, Group D, Group F

Then having auth-kylo-groups profile will limit user groups to: Group B, Group D

37.3 User Group Handling

Kylo access control is governed by permissions assigned to user groups, so upon successful authentication any groups
to which the user belongs must be loaded and associated with the current authenticated request being processed. JAAS
LoginModules have two responsibilities:

1. Authenticate a login attempt

2. Optionally, associate principals (user and group identifiers) with the security context of the request

A number of authentication profiles described above support loading of user groups at login time. For auth-kylo this
is done automatically, for others (auth-ldap, ‘auth-file‘, etc.) this must be configured. If more than one group-loading
profile is configured, the result is additive. For example, if your configuration activates the profiles auth-kylo and
auth-LDAP, and the LDAP properties enable groups, then any groups associated with the user in both LDAP and the
Kylo user store will be combined and associated with the user’s security context.

37.4 JAAS Application Configuration

Currently, there are two applications (from a JAAS perspective) for which LoginModules may be configured for
authentication: the Kylo UI and Services REST API. Kylo provides an API that allows plugins to easily integrate
custom login modules into the authentication process.

37.4.1 Creating a Custom Authentication Plugin

The first step is to create Kylo plugin containing a that performs whatever authentication is required and then adds any
username/group principals upon successful authentication. This module will be added to whatever other LoginMod-
ules may be associated with the target application (Kylo UI and/or Services.)

The service-auth framework provides an API to make it easy to integrate a new LoginModule into the authentication
of the Kylo UI or services REST API. The easiest way to integrate your custom LoginModule is to create a Spring
configuration class, which will be bundled into your plugin jar along with your custom LoginModule. That then
uses the framework-provided LoginConfigurationBuilder to incorporate your LoginModule into the authentication
sequence. The following is an example of a configuration class that adds a new module to the authentication sequence
of both the Kylo UI and Services; each with different configuration options:

@Configuration
public class MyCustomAuthConfig {

@Bean
public LoginConfiguration myLoginConfiguration(LoginConfigurationBuilder builder)

→˓{
return builder

.loginModule(JaasAuthConfig.JAAS_UI)
.moduleClass(MyCustomLoginModule.class)
.controlFlag("required")
.option("customOption", "customValue1")

(continues on next page)

222 Chapter 37. Authentication

Kylo Documentation, Release 0.9.1

(continued from previous page)

.add()
.loginModule(JaasAuthConfig.JAAS_SERVICES)

.moduleClass(MyCustomLoginModule.class)

.controlFlag("required")

.option("customOption", "customValue2")

.option("anotherOption", "anotherValue")

.add()
.build();

}
}

As with any Kylo plugin, to deploy this configuration you would create a jar file containing the above configuration
class, your custom login module class, and a plugin/plugin-context.xml file to bootstrap your plugin con-
figuration. Dropping this jar into the plugin directories of the UI and Services would allow your custom LoginModule
to participate in their login process.

37.4. JAAS Application Configuration 223

Kylo Documentation, Release 0.9.1

224 Chapter 37. Authentication

CHAPTER 38

Kylo Kerberos SPNEGO

38.1 Configuration

38.1.1 auth-krb-spnego

Kerberos SPNEGO is activated in Kylo by adding the profile auth-krb-spnego to the list of active profiles in the
UI and services properties files.

Currently, if SPNEGO is activated, then either the auth-kylo or auth-ad profile must be used as well. This is
because requests reaching Kylo when SPNEGO is used will already be authenticated but the groups associated with the
requesting user must still be associated during Kylo authentication. Both the configurations activated by auth-kylo
and auth-ad are SPNEGO-aware and allow serice accounts properties to be set for use in looking up the groups of
user from the Kylo user store or Active Directory.

Once SPNEGO is configured in kylo-services the services’ REST API will begin to accept SPNEGO
Authorization: Negotiate headers for authentication. The REST API will continue to accept HTTP BASIC
authentication requests as well.

When auth-krb-spnego is activated, the following properties are required to configure Kerberos SPNEGO:

Property Description Example
security.auth.krb.service-
principal

Names the service principal used to access Kylo HTTP/kylo.domain.com@EXAMPLE.COM

security.auth.krb.keytab Specifies path to the keytab file containing the
service principal

/opt/kylo/kylo.keytab

38.1.2 auth-kylo

If the auth-kylo profile is activated with SPNEGO then the kylo-ui/conf/appplication.properties file must contain
the credential properties specified in the table below to allow access to the Kylo user store via the kylo-services’ REST
API using BASIC auth. The authentication configuration for kylo-services can be anything that accepts the credentials
specified in these properties.

225

mailto:HTTP/kylo.domain.com@EXAMPLE.COM

Kylo Documentation, Release 0.9.1

Property Description
secu-
rity.auth.kylo.login.username

Specifies a Kylo username with the rights to retrieve all of the Kylo groups of which
the authenticating user is a member

secu-
rity.auth.kylo.login.password

Specifies the password of the above username retrieving the authenticating user’s
groups

38.1.3 auth-ad

If the auth-ad profile is activated with SPNEGO then the properties in the table below must be set in kylo-
ui/conf/appplication.properties and kylo-services/conf/appplication.properties (if the profile is used in kylo-services).

Property Description
secu-
rity.auth.ad.user.enableGroups

This should be set to true as group loading would be the only purpose of activating
auth-ad with SPNEGO

secu-
rity.auth.ad.server.serviceUser

Specifies a username in AD with the rights to retrieve all of the groups of which the
authenticating user is a member

secu-
rity.auth.ad.server.servicePassword

Specifies the password of the above AD username retrieving the authenticating
user’s groups

38.1.4 Kerberos Configuration

In addition to having a principal for every user present in your Kerberos KDC, you will also need to have a
service principal of the form HTTP/<Kylo host domain name>/@<YOUR REALM> registered. This ser-
vice principal should be exported into a keytab file and placed on file system of the host running Kylo (typically
/opt/kylo/kylo.keytab). These values would then be used in the Kylo configuration properties as specified above.

38.2 Verifying Access

Once Kylo is configured for Kerberos SPNEGO, you can use curl to verify access. See the curl —negotiate option
documentation (https://curl.haxx.se/docs/manual.html) to see the library requirements to support SPNEGO. Use the
-V option to verify whether these requirements are met.

In these examples we will be accessing Kylo using URLs in the form: http://localhost:8420/. There-
fore, curl will be requesting tickets from Kerberos for access to the service principle: HTTP/localhost.
localdomain@YOUR_REALM.

If you use a different URL, say http://host.example.com:8400/, then the requested service principal will
look like: HTTP/host.example.com@YOUR_REALM. In either case these service principals must be present
in your KDC, exported into the keytab file, and the service principal name added to Kylo’s configuration property
security.auth.krb.service-principal.

First, log into Kerberos with your username (“myname” here) using kinit. The @YOUR_REALM part is optional if
your KDC configuration has a default realm:

$ kinit myname@YOUR_REALM

Attempt to access the feeds API of kylo-services directly:

$ curl -v --negotiate -u : http://localhost:8420/api/v1/metadata/feed/

Attempt to access the same feeds API through the kylo-ui proxy:

226 Chapter 38. Kylo Kerberos SPNEGO

https://curl.haxx.se/docs/manual.html

Kylo Documentation, Release 0.9.1

$ curl -v --negotiate -u : http://localhost:8400/proxy/v1/metadata/feed/

Attempt to access the feeds HTML page on the kylo-ui:

$ curl -v --negotiate -u : http://localhost:8400/feed-mgr/index.html

Using the -v option causes curl to output the headers and status info exchanged with Kylo during the processing
of the request before writing out the response. If Kerberos SPNEGO authentication was successful for each curl
command, the output should include lines such as these:

> GET /proxy/v1/metadata/feed/ HTTP/1.1

< HTTP/1.1 401 Unauthorized

< WWW-Authenticate: Negotiate

> GET /proxy/v1/metadata/feed/ HTTP/1.1
> Authorization: Negotiate YII...

< HTTP/1.1 200 OK

This shows curl:

1. Attempt to get the feed resource

2. Receive an unauthorized response (401) and a challenge to negotiate authentication

3. Retry the request, but this time supplying the Kerberos ticket in an authorization header

4. Finally receiving a successful response (200)

38.3 Test Environment

The following links provide useful information on setting up your own KDC in a test environment:

• Appendices of the Spring Kerberos Reference Documentation

• MIT Kerberos Admin Guide

38.3. Test Environment 227

http://docs.spring.io/spring-security-kerberos/docs/1.0.1.RELEASE/reference/htmlsingle/#setup-kerberos-environments
http://web.mit.edu/kerberos/krb5-current/doc/admin/index.html

Kylo Documentation, Release 0.9.1

228 Chapter 38. Kylo Kerberos SPNEGO

CHAPTER 39

Access Control

39.1 Overview

A goal is to support authentication and authorization seamlessly between the Kylo applications and the Hadoop cluster.

39.2 Authorization

Authorization within Kylo uses access control lists (ACL) to control what users can do and see. A permission in Kylo
is the granting to a user or group the right to perform some action, such as see the description of a template, create and
edit a category, enable/disable a feed, etc. These actions are organized into a hierarchies and permission to perform an
action may be granted at any level in that hierarchy.

Authorization in Kylo is divided into two layers: service-level (Kylo-wide) permissions and (when enabled) entity-
level permissions. Access to these functions can often be controlled at both the service-level and entity-level.

Users and Groups can be updated using the Users and Groups pages under the Admin section in Kylo.

Note: If groups are enabled only by an external authentication source (such as LDAP) via a plugin module then user
groups may not be visible in the Users page.

39.2.1 Default Users and Groups

When Kylo is newly installed, it will be pre-configured with a few default users and groups defined; with varying
permissions assigned to each group. The default groups are:

• Administrators

• Operations

• Designers

229

Kylo Documentation, Release 0.9.1

• Analysts

• Users

The default users and their assigned groups are:

• Data Lake Administrator - Administrators, Users

• Analyst - Analysts, Users

• Designer - Designers, Users

• Operator - Operations, Users

The initial installation will also have the auth-kylo and auth-file included in the active profiles configured in the
conf/application.properties file of both the UI and Services. With these profiles active the authentication process will
use both the built-in Kylo user store and a username/password file to authenticate requests. In this configuration, all
activated login modules will have to successfully authenticate a request before access will be granted.

39.3 Service-Level Authorization

Service-level access controla what functions are permitted kylo-wide. Access is controlled by granting permissions to
groups to perform a set of actions. A logged in user would then be authorized to perform any actions permitted to the
groups to which the user is a member.

At the service-level, the heirarchical actions available for granting to groups are organized as follows:

• Access Kylo Metadata - Allows the ability to view and query directly the data in the Kylo metadata store,
including extensible types

– Administer Kylo Metadata - Allows the ability to directly manage the data in the Kylo metadata store
(edit raw metadata, create/update/delete extensible types, update feed status events)

• Access Feed Support - Allows access to feeds and feed-related functions

– Access Feeds - Allows access to feeds and their metadata

* Edit Feeds - Allows creating, updating, enabling and disabling feeds

* Import Feeds - Allows importing of previously exported feeds (.zip files)

* Export Feeds - Allows exporting feeds definitions (.zip files)

* Administer Feeds - Allows deleting feeds and editing feed metadata

– Access Tables - Allows listing and querying Hive tables

– Access Visual Query - Allows access to visual query data wrangler

– Access Categories - Allows access to categories and their metadata

* Edit Categories - Allows creating, updating and deleting categories

* Administer Categories - Allows updating category metadata

– Access Templates - Allows access to feed templates

* Edit Templates - Allows creating, updating, deleting and sequencing feed templates

* Import Templates - Allows importing of previously exported templates (.xml and .zip files)

* Export Templates - Allows exporting template definitions (.zip files)

* Administer Templates - Allows enabling and disabling feed templates

230 Chapter 39. Access Control

Kylo Documentation, Release 0.9.1

– Access Data Sources - Allows (a) access to data sources (b) viewing tables and schemas from a data
source (c) using a data source in transformation feed

* Edit Data Sources - Allows creating and editing data sources

* Administer Data Sources - Allows getting data source details with sensitive info

– Access Service Level Agreements - Allows access to service level agreements

* Edit Service Level Agreements - Allows creating and editing service level agreements

– Access Global Search - Allows access to search all indexed columns

• Access Users and Groups Support - Allows access to user and group-related functions

– Access Users - Allows the ability to view existing users

* Administer Users - Allows the ability to create, edit and delete users

– Access Groups - Allows the ability to view existing groups

* Administer Groups - Allows the ability to create, edit and delete groups

• Access Operational Information - Allows access to operational information like active feeds, execution history,
job and feed stats, health status, etc.

– Administer Operations - Allows administration of operations, such as creating/updating alerts,
restart/stop/abandon/fail jobs, start/pause scheduler, etc.

• Access Encryption Services - Allows the ability to encrypt and decrypt values

The above actions are hierarchical, in that being permitted a lower level action (such as Edit Feeds) implies being
granted the higher-level actions (Access Feeds & Access Feed Support).

Note: Although permissions to perform the above actions are currently granted to groups, a future Kylo version may
switch to a role-based mechanism similar to the entity-level access control (see below.)

39.4 Entity-Level Authorization

Entity-level authorization is an additional, optional form of access control that applies to individual entities: templates,
feeds, categories, etc. Entity-level access control is similar to service-level in that it involves granting permissions to
perform a hierarchical set of actions. These actions, though, would apply only to an individual entity.

Entity-level access control is turned off by default. To activate this feature you must set this property to true in
kylo-services/conf/application.properties and then restart Kylo:

security.entity.access.controlled=true

Warning: Turning on entity-level access control is a one-way operation; you cannot reset the above property back
to false to deactivate this feature

39.4.1 Roles

Entity-level access control differs from service-level access control in that permissions are not granted to individual
groups, rather they are granted to one or more roles. A role is a named, pre-configured set of granted permissions
that may be applied to a group or individual user for a particular entity instance. Roles are defined and associated

39.4. Entity-Level Authorization 231

Kylo Documentation, Release 0.9.1

with each kind of entity and may be granted permission to perform any of the actions defined for that entity type. The
actual members (users or groups) of a role are associated at the entity-level, though, and grant permissions to perform
actions on that entity only.

For instance, there might be the roles Editor, Admin, and Read-Only defined that grant varying sets of permissions for
feeds. Adding a user, or any group that user belongs to, as a member of the Editors role of a specific feed will permit
that user to make changes to it. A particular user might be a member of the Editor role for one feed, an Admin member
of another feed, but only a Read-Only member of a third feed.

Default Roles

Kylo comes with a set of default roles for each kind of entity as described below.

Note: As of Kylo verion 0.8.1, entity roles and their granted permissions are fixed. Future versions of Kylo will allow
for creation and management of custom roles and assigned permissions.

Template Roles
Editor Allows a user to edit and export a template
Admin All capabilities defined in the ‘Editor’ role along with the ability to change the permissions
Read-Only Allows a user to view, but not modify, the template

Category Roles
Editor Allows a user to edit and delete feeds using this category
Admin All capabilities defined in the ‘Editor’ role along with the ability to change the permissions
Read-Only Allows a user to view the category
Feed Creator Allows a user to create a new feed using this category

Feed Roles
Editor Allows a user to edit, enable/disable, delete, export, and access job operations of the feed
Admin All capabilities defined in the ‘Editor’ role along with the ability to change the permissions
Read-Only Allows a user to view the feed and access job operations

Data Source Roles
Editor Allows a user to edit and delete the datasource
Admin All capabilities defined in the ‘Editor’ role along with the ability to change the permissions
Read-Only Allows a user to view the datasource

Category-Wide Feed Role Memberships

Kylo supports adding users and groups to feed roles at the category level that apply to all feeds under that category.
This is useful when you wish to organize your feed access control around feeds grouped by category and apply all feed
access control changes in one place. Assigning feed role memberships at the category level does not prevent adding
additional memberships on each individual feed however. The members of the roles of a particular feed are the union
of all memberships assigned at the individual feed level and at the level of the category containing that feed.

In Kylo feed role memberships are managed by editing them in the category details page just below where the category
role memberships are managed.

232 Chapter 39. Access Control

Kylo Documentation, Release 0.9.1

39.5 Why Two Levels of Access Control?

Kylo support two levels acces control because not all installations require the fine-grained control of entity-level
authorization. Service-level authorization is generally easier to manage if your security requirements are not very
selective or stringent. If you only need the ability to restrict some Kylo actions to certain select groups of users then
service-level might be sufficient.

If your installation deals with sensitive information, and you need to be very selective of what data certain users and
groups can see and manipulate, then you should use entity-level authorization to provide tight controls over that data.

Having two security schemes can pose management challenges as there is a bit of an overlap between the service-level
and entity-level permissions, and both levels of access control must be satisfied for a user’s action to be successful. If
you choose to use entity-level control then it may be helpful to loosen up the service-level access a bit more where the
entity and service permissions are redundant. To help determine what permissions are needed to perform common Kylo
activities, the next section describes both kinds of access requirements depending upon what actions are attempted in
Kylo.

39.6 Roles and Permissions Required for Common Activities

To help understand and manage permissions required by users when using Kylo, the following tables show:

1. Common actions in Kylo

2. The default entity-level roles that permit those actions

3. Additional service-level permissions reqired to perform those actions

39.6.1 Template Actions

Action Roles Permitted Service-level Permissions
View template and its summary Editor, Admin, Read-

Only
Access Templates

Edit template and its details Editor, Admin Edit Templates
Delete template Editor, Admin Edit Templates
Export template Editor, Admin Export Templates
Grant permissions on template to
users/groups

Admin Edit Templates

Import template (new) N/A Import Templates
Import template (existing) Editor, Admin Import Templates, Edit Tem-

plates
Enable template N/A Admin Templates
Disable template N/A Admin Templates

39.6.2 Category Actions

39.5. Why Two Levels of Access Control? 233

Kylo Documentation, Release 0.9.1

Action Roles Permitted Service-level Permis-
sions

View category and its summary Editor, Admin, Feed Creator,
Read-Only

Access Categories

Edit category summary Editor, Admin Edit Categories
View category and its details Editor, Admin, Feed Creator Access Categories
Edit category details Editor, Admin Edit Categories
Edit set user fields Editor, Admin Admin Categories
Delete category Editor, Admin Edit Categories
Create feeds under category Feed Creator Edit Categories
Grant permissions on category to
users/groups

Admin Edit Categories

39.6.3 Feed Actions

Action Roles Permitted Service-level Permis-
sions

View feed and its details Editor, Admin, Read-
Only

Access Feeds

Edit feed summary Editor, Admin Edit Feeds
Edit feed details Editor, Admin Edit Feeds
Edit feed user fields Editor, Admin Admin Feeds
Delete feed Editor, Admin Admin Feeds
Enable feed Editor, Admin Edit Feeds
Disable feed Editor, Admin Edit Feeds
Export feed Editor, Admin Export Feeds
Import feed (new) N/A Import Feeds
Import feed (existing) Editor, Admin Import Feeds
View operational history of feed Editor, Admin, Read-

Only
Access Feeds

Grant permissions on feed to users/groups Admin Edit Feeds

39.6.4 Data Source Actions

Action Roles Permitted Service-level Permis-
sions

View data source summary and use in data trans-
formations

Editor, Admin, Read-
Only

Access Data Sources

Edit data source summary Editor, Admin Edit Data Sources
View data source and its details Editor, Admin Access Data Sources
View data source details, including sensitive in-
formation

Editor, Admin Admin Data Sources

Edit data source details Editor, Admin Edit Data Sources
Delete data source Editor, Admin Edit Data Sources
Grant permissions on data source to users/groups Admin Edit Data Sources

234 Chapter 39. Access Control

CHAPTER 40

Enable Hive User Impersonation

40.1 Overview

Users in Kylo have access to all Hive tables accessible to the kylo user by default. By configuring Kylo for a secure
Hadoop cluster and enabling user impersonation, users will only have access to the Hive tables accessible to their
specific account. A local spark shell process is still used for schema detection when uploading a sample file.

40.2 Requirements

This guide assumes that Kylo has already been setup with Kerberos authentication and that each user will have an
account in the Hadoop cluster.

40.3 Kylo Configuration

Kylo will need to launch a separate spark shell process for each user that is actively performing data transformations.
This means that the kylo-spark-shell service should no longer be managed by the system.

1. Stop and disable the system process.

$ service kylo-spark-shell stop
$ chkconfig kylo-spark-shell off

2. Add the auth-spark profile in application.properties. This will enable Kylo to create temporary cre-
dentials for the spark shell processes to communicate with the kylo-services process. Also, kylo must be in-
formed to impersonate users when querying hive. To do so, configure the hive.userImperonation.* properties
below.

Edit the application.properties file:

235

Kylo Documentation, Release 0.9.1

$ vim /opt/kylo/kylo-services/conf/application.properties

Add, or ensure, the following properties:

spring.profiles.include = auth-spark, ...

hive.userImpersonation.enabled=true
hive.userImpersonation.cache.expiry.duration=4
hive.userImpersonation.cache.expiry.time-unit=HOURS

3. Enable user impersonation in spark.properties. It is recommended that the yarn-cluster master be used
to ensure that both the Spark driver and executors run under the user’s account. Using the local or yarn-client
masters are possible but not recommended due the Spark driver running as the kylo user.

Edit the spark.properties file:

vim /opt/kylo/kylo-services/conf/spark.properties

Add, or ensure, the following properties:

Ensure these two properties are commented out
#spark.shell.server.host
#spark.shell.server.port

Executes both driver and executors as the user
spark.shell.deployMode = cluster
spark.shell.master = yarn
Enables user impersonation
spark.shell.proxyUser = true
Reduces memory requirements and allows Kerberos user impersonation
spark.shell.sparkArgs = --driver-memory 512m --executor-memory 512m --driver-java-
→˓options -Djavax.security.auth.useSubjectCredsOnly=false

kerberos.spark.kerberosEnabled = true
kerberos.spark.kerberosPrincipal = kylo
kerberos.spark.keytabLocation = /etc/security/keytabs/kylo.headless.keytab

4. Redirect logs to kylo-spark-shell.log. By default the logs will be written to kylo-services.log
and include the output of every spark shell process. The below configuration instead redirects this output to the
kylo-spark-shell.log file.

Edit the log4j.properties file:

$ vim /opt/kylo/kylo-services/conf/log4j.properties

Add the following properties:

log4j.additivity.org.apache.spark.launcher.app.SparkShellApp=false
log4j.logger.org.apache.spark.launcher.app.SparkShellApp=INFO, sparkShellLog

log4j.appender.sparkShellLog=org.apache.log4j.DailyRollingFileAppender
log4j.appender.sparkShellLog.File=/var/log/kylo-services/kylo-spark-shell.log
log4j.appender.sparkShellLog.append=true
log4j.appender.sparkShellLog.layout=org.apache.log4j.PatternLayout
log4j.appender.sparkShellLog.Threshold=INFO
log4j.appender.sparkShellLog.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %t:
→˓%c{1}:%L - %m%n

236 Chapter 40. Enable Hive User Impersonation

Kylo Documentation, Release 0.9.1

5. Configure Hadoop to allow Kylo to proxy users.

Edit via Ambari at (HDFS-> Configs -> Advanced -> Custom core-site), or manually edit the hadoop configuration
file /etc/hadoop/conf/core-site.xml

<property>
<name>hadoop.proxyuser.kylo.groups</name>
<value>*</value>

</property>
<property>

<name>hadoop.proxyuser.kylo.hosts</name>
<value>*</value>

</property>

40.3. Kylo Configuration 237

Kylo Documentation, Release 0.9.1

238 Chapter 40. Enable Hive User Impersonation

CHAPTER 41

Setup A NiFi Cluster in a Kylo Sandbox

41.1 Purpose

This document is intended for advanced NiFi users who wish to run a NiFi cluster in their Kylo sandbox. The NiFi
cluster is intended for testing of failover scenarios only.

41.2 Prerequisite

You will need to have set up a Kylo sandbox according to the Setup Wizard Deployment Guide.

41.3 Install a Second NiFi Node

Each new node in a NiFi cluster should be a fresh install to ensure that the new node starts with an empty repository.
You will then configure the new node and enable NiFi clustering.

1. Rename the existing NiFi directory to make room for the new install:

service nifi stop
mv /opt/nifi /opt/nifi-temp

2. Reinstall NiFi using the Kylo install wizard:

/opt/kylo/setup/nifi/install-nifi.sh
/opt/kylo/setup/java/change-nifi-java-home.sh /opt/java/current
/opt/kylo/setup/nifi/install-kylo-components.sh

3. Rename the new NiFi directory and restore the old NiFi directory:

239

Kylo Documentation, Release 0.9.1

service nifi stop
mv /opt/nifi /opt/nifi-2
mv /opt/nifi-temp /opt/nifi

4. Create a new init.d script for nifi-2 by changing the NiFi path:

sed 's#/opt/nifi#/opt/nifi-2#' /etc/init.d/nifi > /etc/init.d/nifi-2
chmod 744 /etc/init.d/nifi-2

5. Create a log directory for nifi-2:

mkdir /var/log/nifi-2
chown nifi:nifi /var/log/nifi-2
sed -i 's#NIFI_LOG_DIR=".*"#NIFI_LOG_DIR="/var/log/nifi-2"#' /opt/nifi-2/current/bin/
→˓nifi-env.sh

6. Edit /opt/nifi-2/current/conf/nifi.properties and replace all references to /opt/nifi with /opt/nifi-2:

sed -i 's#/opt/nifi#/opt/nifi-2#' /opt/nifi-2/current/conf/nifi.properties

41.4 Enable NiFi Clustering

Each node in the NiFi cluster will need to be configured to connect to the cluster.

1. Edit the /opt/nifi/current/conf/nifi.properties file:

nifi.cluster.is.node=true
nifi.cluster.node.address=localhost
nifi.cluster.node.protocol.port=8078
nifi.zookeeper.connect.string=localhost:2181

2. Edit the /opt/nifi-2/current/conf/nifi.properties file:

nifi.web.http.port=8077
nifi.cluster.is.node=true
nifi.cluster.node.address=localhost
nifi.cluster.node.protocol.port=8076
nifi.zookeeper.connect.string=localhost:2181

41.5 Start Each Node

Now that your cluster is created and configured, start the services:

service nifi start
service nifi-2 start

Don’t forget to open up the nifi.web.http.port property’s port number in your VM.

You should be able to open the NiFi UI under either http://localhost:8079 or http://localhost:8077 and see in the upper
left a cluster icon and 2/2.

240 Chapter 41. Setup A NiFi Cluster in a Kylo Sandbox

http://localhost:8079
http://localhost:8077

CHAPTER 42

Clustering Kylo

Kylo Clustering is now available starting with version v0.8.1.

Kylo uses jgroups, http://jgroups.org/index.html, for cluster configuration. This is chosen because Kylo’s metadata
engine, Modeshape (http://modeshape.jboss.org/) uses jgroups internally for its cluster management.

Two jgroups configuration files are needed to be setup (One for ModeShape and one for Kylo)

42.1 ModeShape Configuration

1. Update the metadata-repository.json file and add the “clustering” section

"clustering": {
"clusterName":"kylo-modeshape-cluster",
"configuration":"modeshape-jgroups-config.xml",
"locking":"db"

},

Make sure the name of the jgroups-config.xml file is in the /kylo-services/conf folder. Refer sample files for
setting up a jgroups configuration at /opt/kylo/setup/config/kylo-cluster. Note if working in Amazon you need
to refer to the “s3” jgroups configuration as it needs to use an S3Ping to have the nodes communicate with each
other.

42.2 Kylo Configuration

We also have another jgroups configuration setup for Kylo nodes. We cannot use the ModeShape cluster configuration
since that is internal to ModeShape.

1. Create a similar jgroup-config.xml file and add it to the /kylo-services/conf file. Refer sample files for setting up
a jgroups configuration at /opt/kylo/setup/config/kylo-cluster. Ensure the ports are different between this xml file and
the ModeShape xml file

241

http://jgroups.org/index.html
http://modeshape.jboss.org/

Kylo Documentation, Release 0.9.1

2. Add a property to the kylo-services/conf/application.properties to reference this file

kylo.cluster.jgroupsConfigFile=kylo-cluster-jgroups-config.xml

3. Startup Kylo

When starting up you should see 2 cluster configurations in the logs. One for the modeshape cluster and
one for the kylo cluster

GMS: address=Kylo - MUSSR186054-918-31345, cluster=kylo-modeshape-cluster,
→˓physical address=127.0.0.1:7800

GMS: address=Kylo - MUSSR186054-918-31345, cluster=internal-kylo-cluster,
→˓physical address=127.0.0.1:7900

2017-05-04 06:17:06 INFO pool-5-thread-1:JGroupsClusterService:120 -
→˓Cluster membership changed: There are now 1 members in the cluster. [Kylo -
→˓ MUSSR186054-918-31345]
2017-05-04 06:17:06 INFO pool-5-thread-1:JGroupsClusterService:155 - ***
→˓Channel connected Kylo - MUSSR186054-918-31345,[Kylo - MUSSR186054-918-
→˓31345]
2017-05-04 06:17:06 INFO pool-5-thread-1:NifiFlowCacheClusterManager:205 -
→˓on connected 1 members exist. [Kylo - MUSSR186054-918-31345]

42.3 Quartz Scheduler Configuration

When running in clustered mode you need to configure the Quartz SLA scheduler to be backed by the database and
run it in clustered mode. Do the following:

1. Download and extract the Quartz distribution to a machine. http://d2zwv9pap9ylyd.cloudfront.net/quartz-2.2.
3-distribution.tar.gz You just need this to get the database scripts.

2. Run the Quartz database scripts for your database found in the docs/dbTables

3. Create a quartz.properties file and put it in the /opt/kylo/kylo-services/conf folder. Refer to a sample file
/opt/kylo/setup/kylo-cluster/quartz-cluster-example.properties

(a) Do not specify datasource connection information in this file. The system will use the default
spring.datasource property information found in the application.properties for the database connection

42.4 Service Monitoring

You can monitor the health of the kylo cluster by adding the kylo-service-monitor-kylo-cluster.jar to the /opt/kylo/kylo-
services/plugins folder.

1. Copy the file in the /opt/kylo/setup/plugins/kylo-service-monitor-kylo-cluster-VERSION.jar to the
/opt/kylo/kylo-services/plugins‘ folder

2. Add a new property to the application.properties to indicate the expected number of nodes you are running in
your cluster. Below is an example expecting 2 nodes in the cluster

242 Chapter 42. Clustering Kylo

http://d2zwv9pap9ylyd.cloudfront.net/quartz-2.2.3-distribution.tar.gz
http://d2zwv9pap9ylyd.cloudfront.net/quartz-2.2.3-distribution.tar.gz

Kylo Documentation, Release 0.9.1

kylo.cluster.nodeCount=2

3. Now a new Kylo Cluster service will appear in the Kylo dashboard and show you cluster health status

42.4. Service Monitoring 243

Kylo Documentation, Release 0.9.1

42.5 Testing - (as of Kylo 0.8.4)

Starting with Kylo 0.8.4 you can test your cluster configuration in the Kylo application.

1. Start your Kylo Cluster (both services and ui on all your nodes)

2. In a new web browser (i.e. Chrome), connect to a specific node in your cluster. Go to this webpage
http://localhost:8400/index.html#!/admin/cluster (replace localhost and port with the direct host and port)

• This page will show you Cluster information and allow you to send/receive test messages

3. In a new web browser (i.e. Firefox), connect to another node in your cluster. Follow the steps above and connect
to a different node/port.

4. Send a message from one of the nodes. You should see the message appear in the other web browser. See
screenshots below.

The screenshots below are from a 2 node Kylo cluster.

• Node 1: kylo-sandbox-43958

• Node 2: kylo-sandbox-59542

Screenshot from Node 1: kylo-sandbox-43958

244 Chapter 42. Clustering Kylo

Kylo Documentation, Release 0.9.1

Screenshot from Node 2: kylo-sandbox-59542

42.5. Testing - (as of Kylo 0.8.4) 245

Kylo Documentation, Release 0.9.1

• If this page correctly shows your cluster members, but fails to send the message or receive it follow the Trou-
bleshooting tips below. Most likely cause of this is the system parameter -Dava.net.preferIPv4Stack=true needs
to be configured.

• If the cluster is not configured correctly this page will indicate and provide you with information on trou-
bleshooting.

42.6 Troubleshooting

• If you are having issues identifying if the clustering is working you can modify the log4j.properties and have it
show cluster events. This is especially useful for modeshape. Note: by doing this logs will be very verbose, so
its recommended this is only done for initial setup/debugging

log4j.logger.org.modeshape.jcr.clustering.ClusteringService=DEBUG
log4j.logger.org.jgroups=DEBUG

• If you get a Network is unreachable error, below, you may need to do the following:

– Network unreachable error

SEVERE: JGRP000200: failed sending discovery request
java.io.IOException: Network is unreachable

at java.net.PlainDatagramSocketImpl.send(Native Method)
at java.net.DatagramSocket.send(DatagramSocket.java:693)
at org.jgroups.protocols.MPING.sendMcastDiscoveryRequest(MPING.

→˓java:295)
at org.jgroups.protocols.PING.sendDiscoveryRequest(PING.java:62)

(continues on next page)

246 Chapter 42. Clustering Kylo

Kylo Documentation, Release 0.9.1

(continued from previous page)

at org.jgroups.protocols.PING.findMembers(PING.java:32)
at org.jgroups.protocols.Discovery.findMembers(Discovery.java:244)

– Modify the /opt/kylo/kylo-services/bin/run-kylo-services.sh

– Add -Djava.net.preferIPv4Stack=true

java $KYLO_SERVICES_OPTS -Djava.net.preferIPv4Stack=true -cp /opt/kylo/
→˓kylo-services/conf

• Multicast

– Enabling multicast is done via the <MPING .. /> xml node in the jgroups-configuration xml file. Multicast
may not work in your environment. If you have issues you can remove the <MPING ../> node and ensure
your host names are configured propertly in the <TCPPING ../> node. Refer to the jgroups documentation
around MPING for more information: http://jgroups.org/manual-3.x/html/protlist.html#d0e4760

• Running the Multicast test program

– Run the following to test 2 node communication. The below was taken from http://www.jgroups.
org/manual/html/ch02.html#ItDoesntWork

1. Stop kylo-services on both nodes

2. On 1 node run the code below to act as a receiver. Replace the bind_addr and port argu-
ments with your specific values

java -Djava.net.preferIP4Stack=true -cp /opt/kylo/kylo-services/
→˓conf:/opt/kylo/kylo-services/lib/*:/opt/kylo/kylo-services/plugin/*
→˓org.jgroups.tests.McastReceiverTest -bind_addr 127.0.0.1 -port 7900

3. On another node run the code below to act as a sender. Replace the bind_addr and port
arguments to match the values above

java -Djava.net.preferIP4Stack=true -cp /opt/kylo/kylo-services/
→˓conf:/opt/kylo/kylo-services/lib/*:/opt/kylo/kylo-services/plugin/*
→˓org.jgroups.tests.McastSenderTest -bind_addr 127.0.0.1 -port 7900

As a Sender you will get a prompt. Type in some string and then verify its received on the
other node.

Sender:

org.jgroups.tests.McastSenderTest -bind_addr 127.0.0.1 -
→˓port 7900
Socket #1=0.0.0.0/0.0.0.0:7900, ttl=32, bind interface=/127.
→˓0.0.1
> this is a test message

Receiver:

this is a test message [sender=127.0.0.1:7900]

42.6. Troubleshooting 247

http://jgroups.org/manual-3.x/html/protlist.html#d0e4760
http://www.jgroups.org/manual/html/ch02.html#ItDoesntWork
http://www.jgroups.org/manual/html/ch02.html#ItDoesntWork

Kylo Documentation, Release 0.9.1

248 Chapter 42. Clustering Kylo

CHAPTER 43

NiFi & Kylo Provenance

43.1 Introduction

Kylo uses a custom ProvenanceRepository (KyloPersistentProvenanceEventRepository) to send data from NiFi
to Kylo. A custom NiFi nar file https://github.com/Teradata/kylo/tree/master/integrations/nifi/nifi-nar-bundles/
nifi-provenance-repo-bundle is used for the ProvenanceRepository.

43.2 Setup

1. Edit the nifi.properties file (/opt/nifi/current/conf/nifi.properties) and change the nifi.
provenance.repository.implementation property as below:

Provenance Repository Properties
#nifi.provenance.repository.implementation=org.apache.nifi.provenance.
→˓PersistentProvenanceRepository
nifi.provenance.repository.implementation=com.thinkbiganalytics.nifi.
→˓provenance.repo.KyloPersistentProvenanceEventRepository

2. Ensure the correct nars are available in the NiFi classpath. Depending upon the NiFi version there are 2 different
nar files that are used. If you use the kylo wizard it will copy the nar files and setup the symlinks to point to the
correct nar version for your NiFi installation.

• For NiFi 1.0 or 1.1

– kylo-nifi-provenance-repo-v1-nar-<version>.nar

• For NiFi 1.2 or 1.3

– kylo-nifi-provenance-repo-v1.2-nar-<version>.nar

3. Configure the KyloPersistentProvenanceEventRepository properties: The Provenance Repository uses properties found in the /opt/nifi/ext-config/config.properties file.
Note: this location is configurable via the System Property kylo.nifi.configPath passed into NiFi
when it launches. Below are the defaults which are automatically set if the file/properties are not found.

249

https://github.com/Teradata/kylo/tree/master/integrations/nifi/nifi-nar-bundles/nifi-provenance-repo-bundle
https://github.com/Teradata/kylo/tree/master/integrations/nifi/nifi-nar-bundles/nifi-provenance-repo-bundle

Kylo Documentation, Release 0.9.1

Note: the config.properties marked with ## Supports dynamic update below can be updated without restart-
ing NiFi. Every 30 seconds a check is made to see if the config.properties file has been updated.

###
jms.activemq.broker.url=tcp://localhost:61616

Back up location to write the Feed stats data if NiFi goes down
Supports dynamic update
kylo.provenance.cache.location=/opt/nifi/feed-event-statistics.gz

The maximum number of starting flow files per feed during the given
→˓run interval to send to ops manager
Supports dynamic update
kylo.provenance.max.starting.events=5

The number of starting flow files allowed to be sent through until
→˓the throttle mechanism in engaged.
if the feed starting processor gets more than this number of events
→˓during a rolling window based upon the kylo.provenance.event.
→˓throttle.threshold.time.millis timefame events will be throttled
→˓back to 1 per second until its slowed down
kylo.provenance.event.count.throttle.threshold=15

Throttle timefame used to check the rolling window to determine if
→˓rapid fire is occurring
kylo.provenance.event.throttle.threshold.time.millis=1000

run interval to gather stats and send to ops manager
Supports dynamic update
kylo.provenance.run.interval.millis=3000

JSON string of the Event Type to Array of Processor classes
These processors produce orphan child flow files that dont send
→˓DROP provenance events for the children.
Child flow files produced by events matching the EventType and
→˓processor class will not be processed
Supports dynamic update
kylo.provenance.orphan.child.flowfile.processors={"CLONE":[
→˓"ConvertCSVToAvro"]}

43.3 Event Processing

When NiFi runs the processors will send provenance events to JMS Queues. Kylo listens on these JMS queues and
creates Jobs/Steps and Streaming statistics about each feed and job execution. These are displayed in the Operations
Manager.

250 Chapter 43. NiFi & Kylo Provenance

CHAPTER 44

NiFi Processor Guide

44.1 ImportSqoop Processor

44.1.1 About

The ImportSqoop processor allows loading data from a relational system into HDFS. This document discusses the
setup required to use this processor.

44.1.2 Starter template

A starter template for using the processor is provided at:

samples/templates/nifi-1.0/template-starter-sqoop-import.xml

44.1.3 Configuration

For use with Kylo UI, configure values for the two properties (nifi.service.<controller service name in
NiFi>.password, config.sqoop.hdfs.ingest.root) in the below section in the properties file: /opt/kylo/kylo-
services/conf/application.properties

Sqoop import
DB Connection password (format: nifi.service.<controller service name in NiFi>.
→˓password=<password>
#nifi.service.sqoop-mysql-connection.password=hadoop
Base HDFS landing directory
#config.sqoop.hdfs.ingest.root=/sqoopimport

Note: The DB Connection password section will have the name of the key derived from the controller service name
in NiFi. In the above snippet, the controller service name is called sqoop-mysql-connection.

251

Kylo Documentation, Release 0.9.1

44.1.4 Drivers

Sqoop requires the JDBC drivers for the specific database server in order to transfer data. The processor has been
tested on MySQL, Oracle, Teradata and SQL Server databases, using Sqoop v1.4.6.

The drivers need to be downloaded, and the .jar files must be copied over to Sqoop’s /lib directory.

As an example, consider that the MySQL driver is downloaded and available in a file named: mysql-connector-
java.jar.

This would have to be copied over into Sqoop’s /lib directory, which may be in a location similar to:
/usr/hdp/current/sqoop-client/lib.

The driver class can then be referred to in the property Source Driver in StandardSqoopConnectionService con-
troller service configuration. For example: com.mysql.jdbc.Driver.

Tip: Avoid providing the driver class name in the controller service configuration. Sqoop will try to infer the
best connector and driver for the transfer on the basis of the Source Connection String property configured for
StandardSqoopConnectionService controller service.

44.1.5 Passwords

The processor’s connection controller service allows three modes of providing the password:

1. Entered as clear text

2. Entered as encrypted text

3. Encrypted text in a file on HDFS

For modes (2) and (3), which allow encrypted passwords to be used, details are provided below:

Encrypt the password by providing the:

1. Password to encrypt

2. Passphrase

3. Location to write encrypted file to

The following command can be used to generate the encrypted password:

/opt/kylo/bin/encryptSqoopPassword.sh

The above utility will output a base64 encoded encrypted password, which can be entered directly in the controller
service configuration via the SourcePassword and Source Password Passphrase properties (mode 2).

The above utility will also output a file on disk that contains the encrypted password. This can be used with mode 3 as
described below:

Say, the file containing encrypted password is named: /user/home/sec-pwd.enc.

Put this file in HDFS and secure it by restricting permissions to be only read by nifi user.

Provide the file location and passphrase via the Source Password File and Source Password Passphrase properties
in the StandardSqoopConnectionService controller service configuration.

During the processor execution, password will be decrypted for modes 2 and 3, and used for connecting to the source
system.

252 Chapter 44. NiFi Processor Guide

Kylo Documentation, Release 0.9.1

44.2 TriggerFeed

44.2.1 Trigger Feed Overview

In Kylo, the TriggerFeed Processor allows feeds to be configured in such a way that a feed depending upon other feeds
is automatically triggered when the dependent feed(s) complete successfully.

44.2.2 Obtaining the Dependent Feed Execution Context

To get dependent feed execution context data, specify the keys that you are looking for. This is done through the
“Matching Execution Context Keys” property. The dependent feed execution context will only be populated the
specified matching keys.

For example:

Feed_A runs and has the following attributes in the flow-file as it runs:

-property.name = "first name"
-property.age=23
-feedts=1478283486860
-another.property= "test"

Feed_B depends on Feed A and has a Trigger Feed that has “Matching Execution Context Keys” set to
“property”.

It will then get the ExecutionContext for Feed A populated with 2 properties:

"Feed_A":{property.name:"first name", property.age:23}

44.2.3 Trigger Feed JSON Payload

The FlowFile content of the Trigger feed includes a JSON string of the following structure:

44.2. TriggerFeed 253

Kylo Documentation, Release 0.9.1

{
"feedName":"string",
"feedId":"string",
"dependentFeedNames":[

"string"
],
"feedJobExecutionContexts":{

},
"latestFeedJobExecutionContext":{

}
}

JSON structure with a field description:

{
"feedName":"<THE NAME OF THIS FEED>",
"feedId":"<THE UUID OF THIS FEED>",
"dependentFeedNames":[<array of the dependent feed names],
"feedJobExecutionContexts":{<dependent_feed_name>:[

{
"jobExecutionId":<Long ops mgr job id>,

"startTime":<millis>,
"endTime":<millis>,
"executionContext":{

<key,value> matching any of the keys defined as being "exported" in
this trigger feed

}
}

]
},
"latestFeedJobExecutionContext":{

<dependent_feed_name>:{
"jobExecutionId":<Long ops mgr job id>,

"startTime":<millis>,
"endTime":<millis>,
"executionContext":{

<key,value> matching any of the keys defined as being "exported" in
this trigger feed

}
}
}
}

Example JSON for a Feed:

{
"feedName":"companies.check_test",
"feedId":"b4ed909e-8e46-4bb2-965c-7788beabf20d",
"dependentFeedNames":[

"companies.company_data"
],
"feedJobExecutionContexts":{

"companies.company_data":[
{

"jobExecutionId":21342,

(continues on next page)

254 Chapter 44. NiFi Processor Guide

Kylo Documentation, Release 0.9.1

(continued from previous page)

"startTime":1478275338000,
"endTime":1478275500000,
"executionContext":{
}

}
]

},
"latestFeedJobExecutionContext":{

"companies.company_data":{
"jobExecutionId":21342,
"startTime":1478275338000,
"endTime":1478275500000,

"executionContext":{
}

}
}

}

44.2.4 Example Flow

The screenshot shown here is an example of a flow in which the inspection of the payload triggers dependent feed
data.

The EvaluateJSONPath processor is used to extract JSON content from the flow file.

Refer to the Data Confidence Invalid Records flow for an example:

44.3 High-Water Mark Processors

The high-water mark processors are used to manage one or more high-water marks for a feed. High-water marks
support incremental batch processing by storing the highest value of an increasing field in the source records (such as
a timestamp or record number) so that subsequent batches can pick up where the previous one left off.

The water mark processors have two roles:

1. To load the current value of a water mark of a feed as a flow file attribute, and to later commit (or rollback on
error) the latest value of that attribute as the new water mark value

2. To bound a section of a flow so that only one flow file at a time is allowed to process data for the latest water
mark value

There are two water mark processors: LoadHighWaterMark and ReleaseHighWaterMark. The section of a NiFi flow
where a water mark becomes active is starts when a flow file passes through a LoadHighWaterMark processor and ends
when it passes through a ReleaseHighWaterMark. After a flow file passes through a LoadHighWaterMark processor
there must be a ReleaseHighWaterMark present to release that water mark somewhere along every possible subsequent
route in the flow.

44.3. High-Water Mark Processors 255

Kylo Documentation, Release 0.9.1

44.3.1 LoadHighWaterMark Processor

This processor is used, when a flow files is created by it or passes through it, to load the value of a single high-water
mark for the feed and to store that value in a particular attribute in the flow file. It also marks that water mark as active;
preventing other flow files from passing through this processor until the active water mark is released (committed or
rolled back.) It is up to other processors in the flow to make use of the water mark value stored in the flow file and to
update it to some new high-water value as data is successfully processed.

Processor Properties:

Property Default Description
High-Water Mark highWaterMark The unique name of the high-water

mark as stored in the feed’s meta-
data

High-Water Mark Value Property
Name

water.mark The name of the flow file attribute to
be set to the value of the high-water
mark

Active Water Mark Strategy Yield The strategy to follow when a flow
file arrives and the water mark is still
active for a previous flow file:

• Yield - returns the flow file
to the queue (or removes it if
the first processor in the flow)
and yields the processor

• Penalize - penalizes the
flow file and returnes it to the
queue (performs a yield if the
first processor in the flow)

• Route - routes the flow file
immediately to the activeFail-
ure relationship

Max Yield Count If set, the maximum number of
yields to perform, if Yield or
Penalize strategy is selected, be-
fore the Max Yield Count Strategy is
followed

Max Yield Count Strategy Canel previous The strategy to follow when the Max
Yield Count is reached:

• Route to
activeFailure - routes
the flow file to the activeFail-
ure relationship

• Canel previous - can-
cels any update of the wa-
ter mark of the previous flow
file, activates the water mark
for the current flow file, and
routes to success

Initial Value The initial value of the water mark
if it has never been set on the feed

Processor Relationships:

256 Chapter 44. NiFi Processor Guide

Kylo Documentation, Release 0.9.1

Rela-
tion-
ship

Description

success Flow files are routed here when a high-water mark is activated for for them
failure Flow files are routed here if there is an error occurs attempting to access the high-water mark
active-
Failure

Flow files are rounted here when the maximum attempts to activate the high-water mark for them has
been reached and the Max Yield Count Strategy is set to Route to activeFailure

44.3.2 ReleaseHighWaterMark Processor

This processor is used to either commit or reject the latest high-water value of a water mark (or the values of all water
marks) for a feed, and to release that water mark so that other flow files can activate it and make use of the latest
high-water value in their incremental processing.

Since other flow files are blocked from entering the section of the flow while the current flow file is using the active
water mark, it is very important to make sure that ever possible path a flow may take after passing through a Load-
HighWaterMark processor also passes through a ReleaseHighWaterMark processor. For the successful path it should
pass through a ReleaseHighWaterMark processor in Commit mode, and any failure paths should pass through Re-
leaseHighWaterMark processor in Reject mode. It is also necessary for some processor in the flow to have updated
the water mark attribute value in the flow file to the latest high-water value reached during data processing. Whatever
that value happens to be is written to the feed’s metadata when it is committed by ReleaseHighWaterMark.

Processor Properties:

Property Default Description
High-Water Mark high-

Water-
Mark

The unique name of the high-water mark as stored in the feed’s metadata that is
being released

High-Water Mark
Value Property
Name

wa-
ter.mark

(Optional) The name of the flow file attribute containing the current value of the
high-water mark - not needed if the Release All flag bellow is set to true

Mode Commit The mode, either Commit or Reject, indicating whether the current high-
water mark value should be committed (due to successful processing) or rolled
back

Release All true A flag indicating whether all high-water marks in the flow file should be com-
mitted/rolled back or just the one named above

Processor Relationships:

Relationship Description
success Flow files are routed here when a high-water mark successfully committed or rolled back
failure Flow files are routed here if an error occurs attempting to commit or rollback the high-water

mark
cancelledWater-
Mark

Flow files are routed here if their high-water mark activation has been cancelled

44.3.3 Example

Say you have a feed that will wake up periodically and process any new records in a data source that have arrived since
it last ran based a timestamp column marking when each record was created. This feed can make use of the high-water
mark processors to accomplish this task. A successful flow of the feed would perform the following steps:

44.3. High-Water Mark Processors 257

Kylo Documentation, Release 0.9.1

1. The flow might start with LoadHighWaterMark processor scheduled to periodically load the feed’s latest water
mark timestamp value, store that value in a new flow file, and set the water mark to the active state

2. Subsequent processors will query the data source for all records with a timestamp that is greater than the water
mark value in the flow file and process those records

3. A processor (such as UpdateAttribute) will reset the water mark flow file attribute to the highest timestamp value
found in the records that were processed

4. A ReleaseHighWaterMark processor which will commit the updated water mark attribute value as the new
high-water mark in the feed’s metadata and release the active state of the water mark

If at step #1 the LoadHighWaterMark processor sees that the water mark is already active for a prior flow file then
processing is delayed by yielding the processor.

If processing failure occurs anytime after step #1 then the flow would route through a different ReleaseHighWaterMark
processor configured to reject any updates to the water mark attribute and simply release the active state of the water
mark.

258 Chapter 44. NiFi Processor Guide

CHAPTER 45

Kylo Templates Guide

Templates facilitate the creation of data flows. They can be:

• normal (1 template for the whole flow)

• reusable (1 reusable template and 1 flow template)

Important: More on reusable flows here

45.1 Setup templates

45.1.1 Import Kylo template

1. Import template from file

2. Select file

3. Select overwrite + replace the reusable template option

4. Register the template

Note: The following sections apply only if you didn’t import yet a template in Kylo, or are lacking a Kylo template
archive.

45.1.2 Import reusable template

1. Import template from file.

259

../tips-tricks/KyloBestPractices.html#use-reusable-flows

Kylo Documentation, Release 0.9.1

Warning: You can’t import the reusable template from NiFi environment, as it has input/output ports which need
to be connected.

2. Select file and select overwrite + replace the reusable template option

3. Register the template

45.1.3 Import flow template

1. Import template from NiFi environment (as we want to customize it)

2. Enable/Customize the available fields (steps 2 - 4)

3. Under Connection Options (step 5) - connect the output ports from the flow template to the input ports from
reusable template

4. Customize the Feed Lineage Datasources

5. Register the template

45.2 Update template

1. Remember the template name <template_name> from NiFi

2. Create a new flow from the template <template_name>

3. Modify your flow for <template_name>

4. Delete <template_name> in NiFi template registry

5. Save flow with name <template_name>

6. In Kylo (if exists), from the Template menu, go through the edit wizard (click on the template name), so that it’s
reinitialized properly

45.3 Indicating Flow Failures

When Data is sent to Kylo Operations Manager it indicates if the flow file has been successful or has failed. Failures
are indicated two ways

1. When the flow file passes through an ‘Auto terminate on failure’ relationship. In a processor in NiFi if you check
the box ‘Auto terminate on failure’ and the flow file passes through this relationships and fails it will send the
failure message to Kylo Operations Manager and fail the job/step.

260 Chapter 45. Kylo Templates Guide

Kylo Documentation, Release 0.9.1

2. If the NiFi connection has the word ‘failure’ in it and the flow files pass through that connection. The ‘failure’
connection name will be automatically applied by NiFi if you have a ‘failure’ relationship between your two
processors. You can right click on a connection and edit it and change the name to include the word ‘failure’ if
you want to always ensure that flow files which travel along that path fail the job in Kylo.

Additionally if you manually ‘Empty the Queue’ in NiFi it will fail those corresponding jobs in Kylo.

45.4 Available templates

Kylo provides some ready to be used templates in the Kylo repository

45.4.1 Data Ingest

Data Ingest template is used to import data from with various formats (CSV, JSON, AVRO, Parquet, ORC) into Hive
tables.

S3

S3 Standard Ingest Template

JSON

There is a limitation with the JSON file format:

1. Ensure ‘skip header’ is turned OFF. This will allow all of the JSON data in file to be processed. Otherwise the
first record will be skipped.

45.4. Available templates 261

https://github.com/Teradata/kylo/tree/master/samples/templates

Kylo Documentation, Release 0.9.1

2. Ensure that this jar file is provided to the Validator step via the ‘Extra JARs’ parameter (HDP location shown for
reference): /usr/hdp/current/hive-webhcat/share/hcatalog/hive-hcatalog-core.jar. Otherwise, an exception will
be thrown: “java.lang.ClassNotFoundException Class org.apache.hive.hcatalog.data.JsonSerDe not found”

3. The JSON data in the file should be on one row per line.

Example: .. code-block:

{"id":"978-0641723445","cat":["book","hardcover"],"name":"The Lightning Thief","author
→˓":"Rick Riordan","series_t":"Percy Jackson and the Olympians","sequence_i":1,"genre_
→˓s":"fantasy","inStock":true,"price":12.50,"pages_i":384} {"id":"978-1423103349","cat
→˓":["book","paperback"],"name":"The Sea of Monsters","author":"Rick Riordan","series_
→˓t":"Percy Jackson and the Olympians","sequence_i":2,"genre_s":"fantasy","inStock
→˓":true,"price":6.49,"pages_i":304}

45.4.2 Data Transformation

Data Transformation is used to transform/wrangle data with various operations from Spark ML.

Several tables can be taken from a data source and be joined, denormalized or transformed together, to result a new
data table.

Accesing S3 and other distributed filesystems

Accessing S3 from the Data Wrangler

262 Chapter 45. Kylo Templates Guide

CHAPTER 46

Connecting Reusable Templates

As of Kylo 0.9.0, you can have reusable flows reference other reusable flows. This allows for you to develop a common
flow that is shared among feeds. For example you may wish to handle all feed failures the same and thus want to route
all flows to the same failure template.

46.1 Pre-requisites

1. In order to have a reusable template that is able to connect to another reusable template, that flow needs to have
1 or more output ports.

2. Kylo needs to have another reusable template registered that it can connect to.

263

Kylo Documentation, Release 0.9.1

264 Chapter 46. Connecting Reusable Templates

Kylo Documentation, Release 0.9.1

46.2 Example

1. Below is a sample reusable template, common failure that is registered in Kylo. This will be the flow that we connect

to.

46.2. Example 265

Kylo Documentation, Release 0.9.1

2. For the flow other flow we need to add an output port so Kylo can make the
connection when registering the reusable template. Below is an example template.

266 Chapter 46. Connecting Reusable Templates

Kylo Documentation, Release 0.9.1

46.2. Example 267

Kylo Documentation, Release 0.9.1

3. When you register the second reusable template with the output
port you will be prompted to make the connection to the output port.

268 Chapter 46. Connecting Reusable Templates

Kylo Documentation, Release 0.9.1

4. Make the connection and then import.

5. Kylo will connect the two flows together

Note: You can always re-register any of the reusable templates and Kylo will recreate the connections, allowing you
to add/modify/update the output ports and connections

46.2. Example 269

Kylo Documentation, Release 0.9.1

270 Chapter 46. Connecting Reusable Templates

CHAPTER 47

Remote Process Groups

Kylo supports Remote Process Groups starting with Kylo 0.9.1. Remote Process Group’s allow flows to transfer data
from one NiFi instance to another. This is useful when you want to parallelize leverage more processing in your NiFi
Cluster.

Kylo allows you to link a given Feed Template http://kylo.readthedocs.io/en/latest/tips-tricks/KyloBestPractices.
html#template-re-use that has a Remote Process Group to any reusable template http://kylo.readthedocs.io/en/latest/
tips-tricks/KyloBestPractices.html#reusable-flows in your NiFi cluster.

Flows that use Remote Process Group’s require two templates

1. A reusable flow with an Input Port

2. A feed template that contains the Remote Process Group. Once registered with Kylo this template will be
able to transfer its running flow data to another NiFi node

Remote Process Group configuration options exist with you either have NiFi clustered, or if you set the following
kylo-services/conf/application.properties property to true:

By default Kylo will allow you to use Remote Process groups and reusable
→˓flows only in a NiFi clustered environment.
Set this property to true if you want to use kylo with remote process
→˓groups in a non NiFi clustered environment.
This will provide additional options when registering the reusable
→˓template in kylo.
kylo.template.remote-process-groups.enabled=true

If you have a NiFi clustered or the property aboe set to true then when you register a Reusable Template you will see a
third option Remote Process Group Aware appear when you are importing the template. NiFi Remote Process Groups
work by connecting the Remote Process Group to a specific Input Port that is located on the root NiFi Flow canvas.
When you check this box Kylo will import the flow, create the reusable instance, and also create the Remote Input
Port on the root NiFi Flow canvas that connect to this reusable flow instance.

271

http://kylo.readthedocs.io/en/latest/tips-tricks/KyloBestPractices.html#template-re-use
http://kylo.readthedocs.io/en/latest/tips-tricks/KyloBestPractices.html#template-re-use
http://kylo.readthedocs.io/en/latest/tips-tricks/KyloBestPractices.html#reusable-flows
http://kylo.readthedocs.io/en/latest/tips-tricks/KyloBestPractices.html#reusable-flows

Kylo Documentation, Release 0.9.1

Upon importing the reusable template you will be prompted to select the input ports from the flow that you wish to
make available for the Remote Process Group(s) in the feed templates.

The Input Port’s you select will be created as Remote Input Ports on the root NiFi Flow canvas and connect into this
reusable template

Once you have the reusable template created with the Remote Input Port you can then import the feed template with
the Remote Process Group that connects to the Remote Input Port. During registration of the Feed Template the
Additional Inputs step will have your Remote Process Group(s) visible and let you modify the properties. This is
where you can change the targetUris, username, transport protocol, etc.

272 Chapter 47. Remote Process Groups

Kylo Documentation, Release 0.9.1

When you are registering the template it will validate to ensure it is able to make the connection from the Remote
Process Group(s) to its connecting input port. If it’s not able to make the connection it will notify you with an error
message.

Now that the two templates are registered and wired to communicate with each other you can start creating feeds.

47.1 Useful Links

Please refer to the following links to obtain more information about Remote Process Groups

https://community.hortonworks.com/articles/16461/nifi-understanding-how-to-use-process-groups-and-r.html

47.1. Useful Links 273

https://community.hortonworks.com/articles/16461/nifi-understanding-how-to-use-process-groups-and-r.html

Kylo Documentation, Release 0.9.1

274 Chapter 47. Remote Process Groups

CHAPTER 48

Kylo Datasources Guide

48.1 Introduction

Kylo can manage the creation and usage of Nifi RDBMS data source configurations, through a simple Data Source
UI.

275

http://localhost:8400/index.html#!/datasources
http://localhost:8400/index.html#!/datasources

Kylo Documentation, Release 0.9.1

To create a new Data Source:

1. Click on Data Sources link in left-hand panel

2. Click on orange + button to add a new Data Source

276 Chapter 48. Kylo Datasources Guide

Kylo Documentation, Release 0.9.1

Provide following details for the Data Source

1. Name - data source name. This name will be given to Controller Service in Nifi. This name can be used in
application.properties to automatically provide the rest of the properties, e.g. Password, just like you would
for other Nifi Controller Services

2. Description - any description

3. Datasource Connection URL - JDBC connection string. In this example we used Postgres connection
string, you should of course replace this with connection string for your JDBC source

4. Datasource Driver Class Name - JDBC driver classname for the type of your store

5. Datasource Driver Location - this currently refers only to a location readable by Nifi. However refer
to following table for complete list of locations and permissions where driver jar is expected by Kylo

Location Purpose Accessible
by user

$NIFI_HOME/data/lib or any
path accessible by NiFi

Needed by Nifi for the DBCPConnectionPool. The path
might be erased at Nifi upgrade time.

nifi

$KYLO_HOME/kylo-
services/plugin

Needed by Kylo in the schema discovery (Data Ingestion).
Need to restart Kylo if added post-start

kylo

$KYLO_HOME/kylo-
services/lib

Needed by Kylo wrangler (Visual Query / Data Transfor-
mation)

kylo

6. Datasource User - user name which will be used to access data

48.1. Introduction 277

ConfigurationProperties.html#setting-controller-service-properties
ConfigurationProperties.html#setting-controller-service-properties

Kylo Documentation, Release 0.9.1

7. Password - password for datasource user

8. Test Connection - Kylo will create and test a new connection. Note that currently this only validates
Kylo’s access to data store and does not validate Nifi’s access.

9. Kylo will display error messages here if connection test fails

10. Change Icon to select an icon for your data source

11. Save

48.1.1 Spark configuration

While using the Visual Query / Data Transformation, you will need to make available the datasource jar. Recom-
mended is to keep the datasource jar with the application (Kylo/Nifi), and pass it along to spark.

Depending on the Spark setup (server mode or the others), you will need to do different changes.

Server mode / Sandbox

• edit $KYLO_HOME/kylo-services/bin/run-kylo-spark-shell.sh

• update KYLO_DRIVER_CLASS_PATH with the path to the datasource jar (can be under $NIFI_HOME)

OR (not so recommended)

• update/append $SPARK_HOME/conf/spark-defaults.conf with the path value. Values can be appended with “:”
.This file should be referenced by spark-submit, or it’s referenced by /opt/kylo/kylo-services/bin/run-kylo-spark-
shell.sh, which passes the values like spark-submit . . . –driver-class-path /path-to-oracle-jdbc/:/path-to-other-
jars/

Non-server mode

• edit $KYLO_HOME/kylo-services/spark.properties

• add to spark.shell.sparkArgs the –jar /path-to-datasource-jdbc/

You can find more information here

48.2 Configuration examples

48.2.1 Oracle

Database Connection URL = jdbc:oracle:thin:@oracle:1521
Database Driver Class Name = oracle.jdbc.OracleDriver
User = <user>
Password = <password>
Database Driver Location = /opt/nifi/oracle/oracle-jdbc.jar (needs to be accesible by
→˓Nifi)

Note: Oracle tables are only in UPPERCASE

278 Chapter 48. Kylo Datasources Guide

../common-config/KyloSparkProperties.html

Kylo Documentation, Release 0.9.1

48.2.2 MariaDB / MySQL

Database Connection URL = jdbc:mariadb://mariadb:3306
Database Driver Class Name = org.mariadb.jdbc.Driver
User = <user>
Password = <password>
Database Driver Location = /opt/nifi/mysql/maria-jdbc.jar (needs to be accesible by
→˓Nifi)

(OPT) Specify the password in the Kylo application properties file Update /opt/kylo/kylo-
services/conf/application.properties with nifi.service.<datasource_name>.password=<password>

48.3 Performance considerations while importing data

Consider to use the Sqoop import processor for performance gains

48.3. Performance considerations while importing data 279

../tips-tricks/TroubleshootingandTips.html#gettabledata-vs-importsqoop-processor

Kylo Documentation, Release 0.9.1

280 Chapter 48. Kylo Datasources Guide

CHAPTER 49

Feed Lineage Configuration

49.1 Introduction

Feeds track and display dependencies to other feeds and also their connections through their datasources.

The Lineage view on the Feed Details page is an interactive canvas that allows the user to analyze and inspect the
feeds relationships.

The Designer must indicate NiFi processors that represent a source or sink to be tracked. The following guide describes
how lineage is tracked and the role of designers.

281

Kylo Documentation, Release 0.9.1

282 Chapter 49. Feed Lineage Configuration

Kylo Documentation, Release 0.9.1

49.2 Feed Connections

49.3 Connected by Preconditions

When a feed depends upon another feed(s) via a precondition (a TriggerFeed), then it will be assigned as “depends
on” relationship in the Feed Lineage graph.

49.4 Connected through Datasources

Feeds are also connected through their datasources. If FeedA writes to a table and FeedB uses that same table as its
source than it will be connected.

49.5 Getting Started

In order to get your feed to see its lineage you will need to do 2 things.

1. Assign the datasources to the template. See the section Registering Datasources with a Template below.

2. Save the Feed. Once the template has been registered you will need to save the feed. Go to the feed details.
Click the Pencil icon on any section. Click Save.

49.6 How it works

49.6.1 Datasource Definitions

NiFi processors and their properties are defined as datasources in the system. These definitions are stored in the Kylo
metadata repository and they can be registered 2 ways.

49.6.2 Registration on Startup

Kylo read the file datasource-definitions.json found in the classpath on startup and will update the datasource defini-
tions. This will be in the /opt/kylo/kylo-services/conf directory. Kylo ships with many of the NiFi processors defined,
but you may find you want to alter or add new ones.

49.6.3 Registration via REST

If you need to update or add new datasource definitions there is a REST endpoint that allows you to post the new
definition data.

To list the metadata store of defined datasources you can use this REST call

http://localhost:8400/proxy/v1/metadata/datasource/datasource-definitions

49.2. Feed Connections 283

http://localhost:8400/proxy/v1/metadata/datasource/datasource-definitions

Kylo Documentation, Release 0.9.1

49.6.4 Datasource Definition Structure

A datasource definition is defined with the following attributes in JSON:

{
"processorType": "The Path to the NiFi processor Class Name",
"datasourcePropertyKeys":["Array of NiFi Property Names that identify Uniqueness"],
"datasourceType":"A Common String identifying the Type. See the section Datasource
→˓Types below",
"connectionType":"Either SOURCE or DESTINATION",
"identityString":"<optional> <supports expressions> A string identifying uniqueness.
You reference any 'datasourcePropertyKey' above via expressions ${key}
(see the example GetFile below), If not defined it will use all the
→˓'datasourcePropertyKeys' for its identityString",
"description":"<optional> <supports expressions> A string describing this source",
"title":"<optional> <supports expressions> A Title that will be displayed on the Feed
→˓Lineage page.
If not supplied it will use the 'identityString' property"
}

Example for the GetFile processor in NiFi:

{
"processorType": "org.apache.nifi.processors.standard.GetFile",
"datasourcePropertyKeys":["Input Directory","File Filter"],
"datasourceType":"DirectoryDatasource",
"connectionType":"SOURCE",
"identityString":"${Input Directory}/${File Filter}",
"description":" Directory or File source"
}

49.6.5 Datasource Types

A datasource is made unique by using its ‘identityString’ and its ‘datasourceType’. The predefined types shipping
with Kylo are:

• “HiveDatasource”

• “JMSDatasource”

• “KafkaDatasource”

• “DirectoryDatasource”

• “HDFSDatasource”

• “S3Datasource”

• “FTPDatasource”

• “HBaseDatasource”

• “HTTPDatasource”

• “DatabaseDatasource”

Refer to the datasource-definitions.json file for more details.

284 Chapter 49. Feed Lineage Configuration

Kylo Documentation, Release 0.9.1

49.7 Registering Datasources with a Template

Templates need to be configured to identify the datasources that it should track. When registering a template that
last step will show the available datasources it found in your flow. Kylo reads the template and then matches each
processor with the datasource definition (see above). You will then need to select the datasources you wish to track.

This step is necessary because you may have a variety of processors in the flow that match a processor type in the
datasource definition (i.e. PutFile for failed flows), but those don’t define the true destination of the flow.

49.8 Styling the Feed Lineage User Interface

Feed Lineage uses a JavaScript framework *http://visjs.org/* to build the interactive canvas.

If needed you can adjust the styles of the feeds and each type of datasource. Kylo reads styles on startup from the
/opt/kylo/kylo-services/conf/datasource-styles.json This file can be found in /opt/kylo/kylo-services/conf. Styles are
not stored in the metadata. They are read from this file on startup. You can alter styles using the REST endpoint
below, but to persist it for the next time you will want to update this JSON file.

@TODO: image of REST ENDPOINTS

49.7. Registering Datasources with a Template 285

http://visjs.org/

Kylo Documentation, Release 0.9.1

286 Chapter 49. Feed Lineage Configuration

CHAPTER 50

Custom Provenance Events

You can use Kylo’s Provenance API to create custom Provenance Events that result in Jobs/Steps in Kylo Operations
Manager.

The API allows you to programmatically create Provenance events. Kylo ships with 3 implementations:

• provenance-jms - A JMS implementation

• provenance-kafka - A Kafka implementation

• provenance-rest - A REST implementation

There is also a sample Spark application that uses this api

50.1 Example Usage

1. Add the provenance api implementation as a dependency.

To create a new Provenance event you need to include one of the kylo-provenance implemen-
tation’s in your project

<dependency>
<groupId>com.thinkbiganalytics.kylo.integrations</groupId>
<artifactId>kylo-provenance-jms</artifactId>
<version>0.9.1-SNAPSHOT</version>

</dependency>

<dependency>
<groupId>com.thinkbiganalytics.kylo.integrations</groupId>
<artifactId>kylo-provenance-kafka</artifactId>
<version>0.9.1-SNAPSHOT</version>

</dependency>

<dependency>
<groupId>com.thinkbiganalytics.kylo.integrations</groupId>

(continues on next page)

287

https://github.com/Teradata/kylo/tree/master/integrations/provenance
https://github.com/Teradata/kylo/tree/master/integrations/provenance/provenance-jms
https://github.com/Teradata/kylo/tree/master/integrations/provenance/provenance-kafka
https://github.com/Teradata/kylo/tree/master/integrations/provenance/provenance-rest
https://github.com/Teradata/kylo/tree/master/samples/provenance-samples/spark-provenance-app

Kylo Documentation, Release 0.9.1

(continued from previous page)

<artifactId>kylo-provenance-rest</artifactId>
<version>0.9.1-SNAPSHOT</version>

</dependency>

2. An example Program might look like the following. Complete example code can be found here.

//Get the proper ProvenanceService based upon some configuration
ProvenanceEventService provenanceEventService =
→˓ProvenanceServiceFactory.getProvenanceEventService(params);

try {
//Store all the events we want to send to the api in a list
List<ProvenanceEventRecordDTO> events = new ArrayList<>();

//build an event using the ProvenanceEventDtoBuilder
ProvenanceEventRecordDTO event = new

→˓ProvenanceEventDtoBuilder(params.getFeedName(),params.
→˓getFlowFileId(),componentName)

.jobFlowFileId(params.getJobFlowFileId())

.startTime(System.currentTimeMillis())

.startingEvent(false)

.build();

/// do some work

//record the end time and some attributes to be displayed on
→˓the step in Operations Manager

event.getAttributeMap().put("databases", df.toJSON().
→˓collectAsList().toString());

event.setEventTime(System.currentTimeMillis());

//add the event to the list
events.add(event);

// when ready send the events off to the api to be processed
provenanceEventService.sendEvents(events);

} finally {
//When done close the connection to the service
provenanceEventService.closeConnection();

}

50.2 Spark Kafka Example

1. build and copy the spark-provenance-app

2. copy this and make available to NiFi (i.e. copy it to the /opt/nifi/data/lib/app)

ln -s /opt/nifi/data/lib/app/kylo-spark-provenance-app-0.9.1-SNAPSHOT-jar-with-
→˓dependencies.jar kylo-spark-provenance-app-with-dependencies.jar

3. Import the Sample Spark App with Provenance template This is an example template that will call the
spark-provenance-app in step 1 and write out 2 additional steps/provenance events

4. Import the kafka_provenance_to_jms feed. kafka_provenance_to_jms.feed.zip This is a system wide template
that is listening to 2 kafka topics for batch and streaming data and publish the events to JMS.

288 Chapter 50. Custom Provenance Events

https://github.com/Teradata/kylo/blob/master/samples/provenance-samples/spark-provenance-app/src/main/java/com/example/spark/provenance/SparkProvenance.java
https://github.com/Teradata/kylo/tree/master/samples/provenance-samples/spark-provenance-app
https://github.com/Teradata/kylo/blob/master/samples/templates/nifi-1.0/sample_spark_app_with_provenance.template.zip
https://github.com/Teradata/kylo/blob/master/samples/templates/nifi-1.0/kafka_provenance_to_jms.feed.zip

Kylo Documentation, Release 0.9.1

5. Create a feed using the Sample Spark App with Provenance template. Note this is a Spark2 applica-
tion so set the spark home property accordingly

• The Sample Spark App with Provenance Feed is below and only has 4 processors in the template and thus will only create 4 steps for the job execution in Kylo.

– GenerateFlowFile

– Initialize Feed Parameters

– Spark Provenance

– Winner Winner

• The actual Spark application has provenance code that will create 2 additional steps after the Spark Provenance step for each job.

– Databases

– Another Step

50.2. Spark Kafka Example 289

https://github.com/Teradata/kylo/blob/master/samples/provenance-samples/spark-provenance-app/src/main/java/com/example/spark/provenance/SparkProvenance.java

Kylo Documentation, Release 0.9.1

290 Chapter 50. Custom Provenance Events

CHAPTER 51

Accessing S3 from the Data Wrangler

51.1 Problem

You would like to access S3 or another Hadoop-compatible filesystem from the data wrangler.

51.2 Solution

The Spark configuration needs to be updated with the path to the JARs for the filesystem.

To access S3 on HDP, the following must be added to the spark-env.sh file:

export SPARK_DIST_CLASSPATH=$(hadoop classpath)

Additional information is available from the Apache Spark project:

https://spark.apache.org/docs/latest/hadoop-provided.html

291

https://spark.apache.org/docs/latest/hadoop-provided.html

Kylo Documentation, Release 0.9.1

292 Chapter 51. Accessing S3 from the Data Wrangler

CHAPTER 52

S3 Standard Ingest Template

Table of Contents

• S3 Standard Ingest Template

– Problem

– Introduction

– 1. S3 Data Ingest Template Overview

* 1.1 Template processors pull defaults from application.properties

* 1.2 Non-reusable portion of template

· 1.2.1 List S3

· 1.2.2 Initialize Feed Parameters

· 1.2.3 DropInvalidFlowFile

· 1.2.4 Initialize Cleanup Parameters

* 1.3 Reusable portion of Template

· 1.3.1 Register Tables

· 1.3.2 Route if Data to Create ES Table

· 1.3.3 CreateElasticsearchBackedHiveTable

· 1.3.4 Set Feed Defaults

· 1.3.5 Create Feed Partition

· 1.3.6 ExecuteHQLStatement

· 1.3.5 Merge Table

· 1.3.4.1 Sync Merge Strategy

293

Kylo Documentation, Release 0.9.1

· 1.3.6 DeleteS3Object

– 2. Sandbox Walk-Through

* 2.1 Prerequisites

* 2.2 Launch an EC2 instance using the Sandbox AMI

* 2.3 Configuring core-site.xml and hive-site.xml

* 2.4 Get Nifi Ready

* 2.5 Get Kylo Ready

* 2.6 Import the Template

* 2.7 Create the Data Ingest Feed

* 2.8 Test the Feed

– 3. Helpful Tips

* 3.1 SQL Exceptions from Hive unable to reach Elastic Search

– 4. Further Reference

52.1 Problem

You would like to ingest data from a S3 data source into Hive tables backed by S3 external folders without the data
files traveling through the NiFi edge nodes.

52.2 Introduction

The Data Ingest S3 template is a variation of the standard Data Ingest template within Kylo. The standard template
utilizes HDFS backed hive tables, accepts inputs from local files, and is designed to run on a Cloudera or Hortonworks
sandbox. By contrast, the Data Ingest S3 template utilizes S3 backed hive tables, accepts inputs from an S3 bucket
and is designed for use on an AWS stack utilizing EC2 and EMR. You can also use it with hadoop distributions other
than EMR. For simplicity’s sake, this document shows starting in section 2 how to use the HDP cluster that comes on
our AWS Kylo Sandbox. The S3 ingest template has improved performance in that data on s3 is not brought into the
Nifi node. In order to accommodate these changes, the ExecuteHQLStatement processor has been updated and a new
processor, CreateElasticsearchBackedHiveTable, has been created.

52.3 1. S3 Data Ingest Template Overview

The template has two parts. The first is a non-reusable part that is created for each feed. This is responsible for getting
the input location of the data in S3 as well as setting properties that will be used by the reusable portion of the template.
The second is the reusable template. The reusable template creates the hive tables. It also merges, validates, profiles,
and indexes the data.

The template is very similar to the HDFS standard ingestion template. The differences are outlined in the following
sections.

294 Chapter 52. S3 Standard Ingest Template

Kylo Documentation, Release 0.9.1

52.3.1 1.1 Template processors pull defaults from application.properties

Creating feeds from the S3 template is simplified by adding default values into Kylo’s /opt/kylo/kylo-
services/conf/application.properties.

config.s3ingest.s3.protocol The protocol to use for your system. e.g. The hortonworks sandbox typically uses “s3a”,
EMR using an EMRFS may use “s3”

config.s3ingest.es.jar_url The location of the elasticsearch-hadoop jar. Use an S3 location accessible to the cluster.

config.s3ingest.apach-commons.jar_url The location of the commons-httpclient-3.1.jar. Use an S3 location acces-
sible to the cluster.

config.s3ingest.hiveBucket This property is the name output bucket where the data ends up. Hive will generate the
folder structure within it. Note: This bucket must have something in it. Hive cannot create folders within an
empty S3 bucket.

config.s3ingest.es.nodes A comma separated list of Elasticsearch nodes that will be connected to.

For Example settings see below.

52.3.2 1.2 Non-reusable portion of template

1.2.1 List S3

Rather than fetching the data and bringing it into the Nifi node the first few properties get the location of the input data
and pass the data location to subsequent processors.

Bucket This is the S3 bucket where the input data is located. Note: The data files should be in a folder at the root
level of the bucket.

Region The region of the input S3 bucket.

Prefix The “path” or “sub directory” within the bucket that will receive input files. Be sure the value ends with a
trailing slash.

1.2.2 Initialize Feed Parameters

Just like in the Standard ingestion template, this processor sets the attributes that will be used by the reusable portion
of the template. There are several parameters that have been added to accommodate changes made to the template for
S3 integration:

InputFolderName:=<the path portion of the filename> The input folder name will be used by the create feed par-
tition processor in the reusable flow.

s3ingest.apache-commons.jar_url:=${config.s3ingest.apache-commons.jar_url} The location of the commons-
httpclient.jar. Use an S3 location accessible to the cluster.

s3ingest.es.jar_url:=${config.s3ingest.es.jar_url} The location of the elasticsearch-hadoop.jar. Use an S3 location
accessible to the cluster.

s3ingest.hiveBucket:=${config.3ingest.hiveBucket} This property is the name output bucket where the data ends
up. Hive will generate the folder structures within it. Note: Hive cannot create folders into a fresh bucket that
has not had objects written to it before. Prime the pump on new S3 buckets by uploading and deleting a file.

s3ingest.es.nodes:=${config.s3ingest.es.nodes} The comma separated list of node names for your elasticsearch
nodes.

s3ingest.s3.protocol:=${config.s3ingest.s3.protocol} The protocol your cluster will use to access the S3 bucket. (e.g.
‘s3a’)

52.3. 1. S3 Data Ingest Template Overview 295

Kylo Documentation, Release 0.9.1

1.2.3 DropInvalidFlowFile

When ListS3 scans a bucket, the first time it sees an object that represents the folder you specified in the Prefix it
creates a flow file. Since this flow file is not a data file it will not process correctly in the flow and should be removed.

1.2.4 Initialize Cleanup Parameters

The clean up flow needs to know the name of the Hive bucket in order to clean it so the s3ingest.hiveBucket property
has been added to this processor.

52.3.3 1.3 Reusable portion of Template

1.3.1 Register Tables

This processor creates S3 backed hive tables for storing valid, invalid, feed, profile, and master data. Feed Root Path,
Profile Root Path, and Master Root Path define the location of their respective tables. Each of these properties will
use the protocol you specified in s3ingest.protocol (s3, s3n, or s3a). The protocol must be supported by you cluster
distribution.

1.3.2 Route if Data to Create ES Table

This processor routes the flow to the CreateElastisearchBackedHiveTable processor if the meta-
data.table.fieldIndexString property has been set. Otherwise, the CreateElastisearchBackedHiveTable processor
is skipped.

1.3.3 CreateElasticsearchBackedHiveTable

This processor creates an elasticsearch backed hive table for indexing data that will be searchable from with in the
Kylo UI. A description of this processor and it’s properties can be found here: CreateElasticsearchBackedHiveTable
Create Feed Partition In the statement for this processor the protocol for the s3 location may need to be updatad to use
a protocol supported by the distribution being used.

1.3.4 Set Feed Defaults

The following property has been modified:

filename The filename property will later be used by Failed Flow processor when the flowfile is placed into the temp
location. Since filename coming from S3List in the feed flow includes path information, it is stripped of that
here.

1.3.5 Create Feed Partition

The ALTER TABLE statement has been modified to include the InputFolderName

296 Chapter 52. S3 Standard Ingest Template

Kylo Documentation, Release 0.9.1

1.3.6 ExecuteHQLStatement

We have updated the ExecuteHQLStatement processor to run Hive statements they just need to be separated by a
semi-colon (“;”). This allows us to add the elasticsearch-hadoop jar using the config.s3ingest.es.jar_url property. This
particular processor inserts the data to be indexed into the elasticsearch backed hive table. It executes the following
statements:

ADD JAR ${config.s3ingest.es.jar_url};
ADD JAR ${config.s3ingest.apache-commons.jar_url};
INSERT INTO TABLE ${category}.${feed}_index SELECT ${metadata.table.fieldIndexString},
→˓processing_dttm FROM ${category}.${feed}_valid

1.3.5 Merge Table

The Merge Table processor will merge the incoming data with the master table, based on the merge strategy you
choose.

1.3.4.1 Sync Merge Strategy

If you encounter an error similar to:

2017-06-21 20:50:42,430 ERROR [Timer-Driven Process Thread-4] c.t.ingest.
→˓TableMergeSyncSupport Failed to execute alter table `category_name`.`feed_name_
→˓1498078145646` RENAME TO `catgeory_name`.`feed_name` with error
java.sql.SQLException: Error while processing statement: FAILED: Execution Error,
→˓return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. Unable to alter table.
→˓Alter Table operation for <category_name>.<feed_name>_1498078145646 failed to move
→˓data due to: 'Renaming s3a://${hiveS3Bucket}/${hive.root.master}/<category_name>/
→˓<feed_name>_1498078145646 to s3a://hiveS3Bucket/${hive.metastore.warehouse.dir}/$
→˓{category_name}.db/<feed_name> failed' See hive log file for details.

Note that hive.root.master is a feed property and that hive.metastore.warehouse.dir is a property from your hive-
site.xml. In versions of Hive prior to 2.2.0 the HDFS location of a managed table, with a LOCATION clause, will be
moved and that Hive derives the new location using the hive.metastore.warehouse.dir and the schema_name with a .db
suffix. Be sure that you have set the properties mapred.input.dir.recursive=true and hive.mapred.
supports.subdirectories=true in your hive-site.xml.

1.3.6 DeleteS3Object

This processor replaces the RemoveHDFSFolder processor in standard ingest. It is analgous in that it takes the at-
tributes from earlier in the flow and uses them to calculate the objects in the S3bucket that need to be removed and
performs the delete operation.

52.4 2. Sandbox Walk-Through

52.4.1 2.1 Prerequisites

Download the required JARS for Hive to write table data to ElasticSearch. You can find these in Maven Central at
Maven Central: Elasticsearch Hadoop 5.5.0 Jars and Maven Central: Apache Commons HTTP 3.1 Jars. Once you’ve
downloaded thema you should place them in a folder within your hive bucket. In the end you should have jars available

52.4. 2. Sandbox Walk-Through 297

https://mvnrepository.com/artifact/org.elasticsearch/elasticsearch-hadoop/5.5.0
https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient/3.1

Kylo Documentation, Release 0.9.1

in S3 and the following commands should produce a good result (see Install the AWS Command Line Interface on
Linux to install AWS CLI on your edge node) :

aws s3 ls s3://hive-bucket/jars/elasticsearch-hadoop-5.5.0.jar
aws s3 ls s3://hive-bucket/jars/commons-httpclient-3.1.jar

52.4.2 2.2 Launch an EC2 instance using the Sandbox AMI

The S3 template was developed using the 0.8.1 sandbox but relies on code changes released in the 0.8.2
release. Go to AWS Market place and find the 0.8.2 or later sandbox for your region and launch the in-
stance (refer to https://kylo.io/quickstart-ami.html for the AMI id of the latest sandbox). Wait 15 minutes
or more for nifi service and kylo services to start. Now shut down Nifi so we can change cluster configs
and will need to refresh the NiFi connections to the cluster. Shut down Kylo and Nifi so we can configure
these services in later sections.

service nifi stop
/opt/kylo/stop-kylo-apps.sh

52.4.3 2.3 Configuring core-site.xml and hive-site.xml

In the core-site.xml where your data is to be processed make sure that your fs.s3 properties are set.

Note:

• for s3 use fs.s3.awsAccessKeyId and fs.s3.awsSecretAccessKey

• for s3n use fs.s3n.awsAccessKeyId and fs.s3n.awsSecretAccessKey

• for s3a use fs.s3a.access.key and fs.s3a.secret.key

Depending on what distribution you are using the supported protocol may be different (s3, s3n) in which case you
would need to use the equivalent property for that protocol.

Warning: There are times when AWS SDK will consult the ‘s3’ properties for the keys, regardless of the protocol
you use. To work around the problem define s3 properties in addition to your protocol properties.

Open Ambari and go to HDFS -> Configs -> Advanced -> Custom core-site section. Add the fs.s3a access properties.

fs.s3.awsAccessKeyId=XXX
fs.s3.awsSecretAccessKey=YYY
fs.s3a.access.key=XXX
fs.s3a.secret.key=YYY

Go to Hive -> Configs -> Advanced -> Custom hive-site section. Add the mapred.input.dir.recursive and
hive.mapred.supports.subdirectories properties.

mapred.input.dir.recursive=true
hive.mapred.supports.subdirectories=true

Stop all services in the cluster. Start all services.

298 Chapter 52. S3 Standard Ingest Template

https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-linux.html
https://docs.aws.amazon.com/cli/latest/userguide/awscli-install-linux.html
https://kylo.io/quickstart-ami.html

Kylo Documentation, Release 0.9.1

52.4.4 2.4 Get Nifi Ready

service nifi start

Go into Nifi UI and open up the Process Group Configuration and create a new AWSCredentialsProviderControllerSer-
vice under the Controller Services tab. This service will be utilized by the various S3 processors to access the config-
ured S3 buckets. Add your Access Key and Secret Key to the named parameters.

52.4.5 2.5 Get Kylo Ready

Edit /opt/kylo/kylo-services/conf/application.properties and edit your settings. Append your template defaults. Exam-
ple settings:

config.s3ingest.s3.protocol=s3a
config.s3ingest.hiveBucket=hive-bucket
config.s3ingest.es.jar_url=s3a://hive-bucket/jars/elasticsearch-hadoop-5.4.0.jar
config.s3ingest.apache-commons.jar_url=s3a://hive-bucket/jars/commons-httpclient-3.1.
→˓jar
config.s3ingest.es.nodes=localhost

Start Kylo

/opt/kylo/start-kylo-apps.sh

52.4.6 2.6 Import the Template

Go to Admin -> Templates section of Kylo. Import the ‘S3 Data Ingest’ bundle from the kylo source repo path:
samples/templates/nifi-1.0/s3_data_ingest.template.zip, making sure to import the reusable portion as well as over-
writing any previous versions of the template.

52.4.7 2.7 Create the Data Ingest Feed

Create a category called “S3 Feeds” to place your new feed. Create a feed and provide the following feed inputs:

Bucket This is the name of your S3 bucket for input data. e.g. “myInputBucket”

Region This is the region where your servers operate. e.g. us-east-1

s3ingest.hiveBucket This is the name of your S3 bucket for the various hive tables e.g. “myHiveBucket”. It appears
twice as it will be initilaized for the feed flow and the cleanup flow. It should be defaulted to the value you set
in application.properties.

prefix This is the folder in the S3 input bucket to search for input files. The default bucket will look in a folder with
the same system name as the feed you are creating: “${metadata.systemFeedName}/”

52.4.8 2.8 Test the Feed

In the S3 bucket you configured for the feed, manually create an input folder with the name you provided for ‘prefix’
in the feed. This is where the inputs for the feed should be placed. Put a data file in this folder and check Kylo to
ensure your feed ran successfully!

52.4. 2. Sandbox Walk-Through 299

Kylo Documentation, Release 0.9.1

52.5 3. Helpful Tips

52.5.1 3.1 SQL Exceptions from Hive unable to reach Elastic Search

If you used a value other than localhost for config.s3ingest.es.nodes then be sure your elastic search server has been
configured to listen on that interface or you may see an error like:

2018-07-10 17:54:52,150 ERROR [Timer-Driven Process Thread-6] c.t.n.v.i.CreateElasticsearchBackedHiveTable
CreateElasticsearchBackedHiveTable[id=609d71e2-015c-1000-dae6-aa4f4b1be180] Unable to execute SQL DDL
[ADD JAR s3a://<..snip..>, CREATE EXTERNAL TABLE IF NOT EXISTS <..snip..> for
StandardFlowFileRecord[uuid=<..snip..>] due to java.sql.SQLException: Error while processing statement:
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask.
org.elasticsearch.hadoop.EsHadoopIllegalArgumentException: Cannot detect ES version - typically this happens if
the network/Elasticsearch cluster is not accessible or when targeting a WAN/Cloud instance without the proper
setting ‘es.nodes.wan.only’; routing to failure

This error comes from Hive attempting to write data to an Elastic Search index. You can modify the interfaces that
elastic will respond on by editing your elasticsearch.yml config (e.g. vim /etc/elasticsearch/elasticsearch.yml) and
change network.host: 0.0.0.0, which will instruct elastic to listen on all interfaces (often this is safe to do if you have
used AWS VPC rules to restrict network between edge and cluster nodes, otherwise consider carefully the ramifications
of opening your server to listen on interfaces other than just localhost). Be sure to restart elastic after the configs have
been modified service elasticsearch restart.

Test your connection from your cluster’s nodes before running your next feed e.g. telnet 172.X.X.X 9200

52.6 4. Further Reference

• Configure Apache Hive to Recursively Search Directories for Files

• Hadoop-AWS module: Integration with Amazon Web Services

• LanguageManual DDL: Rename Table

• Maven Central: Elasticsearch Hadoop Jars

• Maven Central: Apache Commons HTTP Jars

300 Chapter 52. S3 Standard Ingest Template

https://joshuafennessy.com/2015/06/30/configure-apache-hive-to-recursively-search-directories-for-files/
https://hadoop.apache.org/docs/r2.8.0/hadoop-aws/tools/hadoop-aws/index.html#S3A_Authentication_methods
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-RenameTable
https://mvnrepository.com/artifact/org.elasticsearch/elasticsearch-hadoop
https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient

CHAPTER 53

Azure Standard Ingest Template

Table of Contents

• Azure Standard Ingest Template

– Problem

– Intro

– Configuration

– Modify HDFS processor in template

* Known Limitations

* Default FS

* Single container

53.1 Problem

You need to modify Kylo’s standard ingest template for Hive tables backed by the Azure Blob (WASB) store.

53.2 Intro

This guide provides the basics for modifying Kylo’s existing standard ingest template for use with the Azure Blob
(WASB) store. For details on how to modify an existing template, please see the video tutorials on http://kylo.io.

301

http://kylo.io

Kylo Documentation, Release 0.9.1

53.3 Configuration

The resulting Data Ingest template will be a slightly modified version of the standard Data Ingest template included
with Kylo.

Note:

• HD Insight clusters with Azure Blob Storage as a default storage has all the necessary properties set so default
resource file, i.e. /etc/hadoop/conf/core-site.xml, can be used.

=============================-

To access Azure Blob Storage from HDFS, create an Hadoop Configuration XML file which, at minimum, will contain
following properties:

Property Value Note
fs.azure.account.key.<your-
account>.blob.core.windows.net

access key to your Azure Blob Stor-
age’s account (MSDN documenta-
tion)

See Hadoop Azure documentation for
more options for how to specific access
keys

fs.defaultFS wasb://@.blob.core.windows.net
fs.wasb.impl org.apache.hadoop.fs.azure.NativeAzureFileSystem

53.4 Modify HDFS processor in template

Load the existing reusable Data Ingest template into NiFi, locate the HDFS processor and modify the following
properties and reimport the template into Kylo:

Property Note
Hadoop Configura-
tion Resources

Comma separated paths to XML configuration files. See Hadoop Azure documentation
for more options for how to specific access keys

Directory absolute / relative path, within default FS, for writing / reading files
Additional Classpath
Resources

path to directory containing additional JARs needed by WASB (usually hadoop-azure-
2.7.3.jar,azure-storage-2.0.0.jar

53.4.1 Known Limitations

53.4.2 Default FS

Because HDFS processors are using value of fs.defaultFS property in connection with processor’s Directory property
to figure out where to write/read files, this functionality can be limiting in terms when you need to copy/move files
between various distributed file systems (DFS), using HDFS processors, within a single NiFi flow.

To overcome this limitation you can create minimal Hadoop configuration resource for the other FS and specify it in
the list of files in Hadoop Configuration Resources property of HDFS processor. This will change the default FS for
this single processor and thus allows to use a different DFS.

302 Chapter 53. Azure Standard Ingest Template

Kylo Documentation, Release 0.9.1

53.4.3 Single container

With previous limitation, Default FS, is a closely related a limitation on a single container - fs.defaultFS property
contains also the container name. Way to overcome this limitation is the same as for default FS, i.e. create a copy of
minimal Hadoop Configuration Resource file and change the fs.defaultFS property. Troubleshooting Server failed to
authenticate the request. Make sure the value of Authorization header is formed correctly including the signature.

1. check that access keys are valid and you set them correctly in XML file (including the blob.core.windows.net
after the storage account name)

2. if you run the NiFi on virtual machine make sure your OS time is synchronised (e.g. using NTP)

53.4. Modify HDFS processor in template 303

Kylo Documentation, Release 0.9.1

304 Chapter 53. Azure Standard Ingest Template

CHAPTER 54

SUSE Configuration Changes

54.1 Overview

The deployment guide currently addresses installation in a Red Hat Enterprise Linux (RHEL or variant, CentOS,
Fedora) based environment. There are a couple of issues installing Elasticsearch and ActiveMQ on SUSE. Below are
some instructions on how to install these two on SUSE.

54.2 ActiveMQ

When installing ActiveMQ you might see the following error.

Error: Configuration variable JAVA_HOME or JAVACMD is not defined correctly.

(JAVA_HOME=’‘, JAVACMD=’java’)

For some reason ActiveMQ isn’t properly using the system Java that is set. To fix this issue I had to set the
JAVA_HOME directly.

1. Edit /etc/default/activemq and set JAVA_HOME at the bottom

2. Restart ActiveMQ (service activemq restart)

54.3 Elasticsearch

RPM installation isn’t supported on SUSE. To work around this issue we created a custom init.d service script and
wrote up a manual procedure to install Elasticsearch on a single node.

https://www.elastic.co/support/matrix

305

https://www.elastic.co/support/matrix

Kylo Documentation, Release 0.9.1

We have created a service script to make it easy to start and stop Elasticsearch, as well as leverage chkconfig to
automatically start Elasticsearch when booting up the machine. Below are the instructions on how we installed Elas-
ticsearch on a SUSE box.

1. Make sure Elasticsearch service user/group exists

2. mkdir /opt/elasticsearch

3. cd /opt/elasticsearch

4. mv /tmp/elasticsearch-2.3.5.tar.gz

5. tar -xvf elasticsearch-2.3.5.tar.gz

6. rm elasticsearch-2.3.5.tar.gz

7. ln -s elasticsearch-2.3.5 current

8. cp elasticsearch.yml elasticsearch.yml.orig

9. Modify elasticsearch.yml if you want to change the cluster name. Our copy that is installed the wizard scripts is
located in /opt/kylo/setup/elasticsearch

10. chown -R elasticsearch:elasticsearch /opt/elasticsearch/

11. vi /etc/init.d/elasticsearch - paste in the values from /opt/kylo/setup/elasticsearch/init.d/teradata-sles-11-
hadoop/elasticsearch

12. Uncomment and set the java home on line 44 of the init.d file in step #10

13. chmod 755 /etc/init.d/elasticsearch

14. chkconfig elasticsearch on

15. service elasticsearch start

306 Chapter 54. SUSE Configuration Changes

CHAPTER 55

Configuration Properties

55.1 Overview

This guide provides details on how to configure Kylo Templates and Feeds with properties from different sources. The
sources can be the following:

1. Configuration from application.properties

2. Configuration from Feed Metadata

3. Configuration from Nifi environment variables

There are two property resolution options:

1. Design-time resolution

2. Runtime resolution

55.1.1 1. Configuration Sources

1.1 Configuration from application.properties

When creating Kylo feeds and templates one can refer to configuration properties which appear in /opt/kylo/
kylo-services/conf/application.properties file. Property names must begin with word config.
and they should be referenced by following notation in Kylo UI ${config.<property-name>}

Here is an example of how we use this in application.properties

config.hive.schema=hive
config.props.max-file-size=3 MB

Here is how you would refer to config.props.max-file-size in Kylo template:

307

Kylo Documentation, Release 0.9.1

Setting NiFi Processor Properties

There is a special property naming convention available for Nifi Processors and Services in application.
properties too.

For Processor properties four notations are available:

1. nifi.<processor_type>.<property_key>

2. nifi.all_processors.<property_key>

3. nifi.<processor_type>[<processor_name>].<property_key> (Available in Kylo 0.8.1)

4. $nifi{nifi.property} will inject the NiFi property expression into the value. (Available in Kylo 0.8.1)

where <processor_type>, <property_key>, <processor_name> should be all lowercase with spaces
replaced by underscores. The <processor_name> is the display name of the processor set in NiFi. Starting in
Kylo 0.8.1 you can inject a property that has NiFi Expression Language as the value. Since Spring and NiFi EL
use the same notation (${property}) Kylo will detect any nifi expression in the property value if it start with
$nifi{property}

• Setting properties matching the NiFi Processor Type. Here is an example of how to set ‘Spark Home’ and
‘Driver Memory’ properties on all ‘Execute Spark Job’ Processors:

nifi.executesparkjob.sparkhome=/usr/hdp/current/spark-client
nifi.executesparkjob.driver_memory=1024m

• Setting properties for a named NiFi Processor (starting in Kylo 0.8.1). Here is an example setting the property
for just the ExecuteSparkJob processor named “Validate and Split Records”:

nifi.executesparkjob[validate_and_split_records].number_of_executors=3
nifi.executesparkjob[validate_and_split_records].driver_memory=1024m

• Setting a property with NiFi expression language as a value (starting in Kylo 0.8.1). Here is an example of
injecting a value which refers to a NiFi expression

nifi.updateattributes[my_processor].my_property=/path/to/$nifi{my.nifi.
→˓expression.property}

The “my property” on the UpdateAttribute processor named “My Processor” will get resolved to
/path/to/${my.nifi.expression.property} in NiFi.

• Setting all properties matching the property key. Here is an example of how to set Kerberos configuration for all
processors which support it:

308 Chapter 55. Configuration Properties

Kylo Documentation, Release 0.9.1

nifi.all_processors.kerberos_principal=nifi
nifi.all_processors.kerberos_keytab=/etc/security/keytabs/nifi.headless.
→˓keytab

Setting Controller Service Properties

For Services use following notation: nifi.service.<service_name>.<property_name>. Anything pre-
fixed with nifi.service will be used by the UI. Replace spaces in Service and Property names with underscores
and make it lowercase. Here is an example of how to set ‘Database User’ and ‘Password’ properties for MySql Service:

nifi.service.mysql.database_user=root
nifi.service.mysql.password=hadoop

1.2 Configuration from Feed Metadata

When creating Kylo feeds and templates you can also refer to Feed Metadata, i.e. set property values based
on known information about the feed itself. These properties start with word ‘metadata’, e.g. ${metadata.
<property-name>}

Here is how you would refer to Category name and Feed name in Kylo template:

1.3 Configuration from Nifi environment variables

TODO - Help us complete this section

55.1.2 2. Property Resolution Options

2.1 Design-time Resolution

These properties will be resolved at design-time during Feed creation from Template. They use the fol-
lowing notation ${property-name}. If you had property-name=value in application.properties and
${property-name} in Template then static value would be placed into Processor field in Nifi on Feed creation.

You can also provide nested properties or properties which refer to other properties ${property-name2.
${property-name1}} If you had property-name1=value1 and property-name2.value1=value2
in application.properties and ${property-name1.${property-name2}} in Template then static value2
would be placed into Processor field in Nifi on Feed creation.

55.1. Overview 309

Kylo Documentation, Release 0.9.1

Note: This type of resolution is great for properties which do not support Nifi’s Expression Language.

2.2 Runtime or Partial Resolution

If you don’t want to resolve properties at design time and would rather take advantage of property resolution at
runtime by Nifi’s Expression Language then you can still refer to properties in Kylo Feeds and Template, just escape
them with a dollar sign $ like so: $${config.${metadata.feedName}.input-dir}. Notice the double
dollar sign at the start. This property will be resolved at design-time to ${config.<feed-name>.input-dir}
and will be substituted at runtime with a value from application.properties file. So if you had a feed called
users and config.users.input-dir=/var/dropzone/users in application.properties then
at runtime the feed would take its data from /var/dropzone/users directory.

Note: This type of resolution is great for creating separate configurations for multiple feeds created from the same
template

310 Chapter 55. Configuration Properties

CHAPTER 56

Validator Tuning

56.1 Setting RDD Persistence Level

The Validator allows specifying the RDD persistence level via command line argument.

To use this feature in the standard ingest flow, perform these steps:

1. In NiFi, navigate to ‘reusable_templates -> standard_ingest’.

2. Stop ‘Validate And Split Records’ processor.

3. Open configuration for ‘Validate And Split Records’ processor. Add two arguments at the end for the MainArgs
property.

<existing_args>,--storageLevel,<your_value>

<your_value> can be any valid Spark persistence level (e.g. MEMORY_ONLY, MEMORY_ONLY_
→˓SER)

4. Start ‘Validate And Split Records’ processor.

Note: If not specified, the default persistence level used is MEMORY_AND_DISK.

56.2 Specifying Number of RDD Partitions

The Validator allows specifying the number of RDD partitions via command line argument. This can be useful for
processing large files.

To use this feature in the standard ingest flow, perform these steps:

1. In NiFi, navigate to ‘reusable_templates -> standard_ingest’.

2. Stop ‘Validate And Split Records’ processor.

311

Kylo Documentation, Release 0.9.1

3. Open configuration for ‘Validate And Split Records’ processor. Add two arguments at the end for the MainArgs
property.

<existing_args>,--numPartitions,<your_value>

<your_value> should be positive integer.

4. Start ‘Validate And Split Records’ processor.

Note: If not specified, Spark will automatically decide the partitioning level.

312 Chapter 56. Validator Tuning

CHAPTER 57

Configure Kylo & Global Search

Kylo supports Global search via a plugin-based design. Three plugins are provided out of the box:

1. Elasticsearch (rest client) [default]

2. Elasticsearch (transport client)

3. Solr

57.1 Elasticsearch 5 support

Elasticsearch 5 is supported when using NiFi 1.3 (or later) and rest client. Kylo has been tested with version 5.5.1.
Please refer to the rest client configuration for additional details.

57.2 Elasticsearch (rest client) [default]

Plugin Jar:

• Name: kylo-search-elasticsearch-rest-<version>.jar

• Default location: /opt/kylo/kylo-services/plugin/

Plugin Property File:

• Name: elasticsearch-rest.properties

• Default location: /opt/kylo/kylo-services/conf/

Steps to configure Kylo with Elasticsearch engine (using rest client) are below. Both Elasticsearch versions 2 and 5
are supported via this plugin.

1. Include search-esr profile in existing list of profiles in /opt/kylo/kylo-services/conf/
application.properties

313

Kylo Documentation, Release 0.9.1

spring.profiles.include=native,nifi-v1,auth-kylo,auth-file,search-esr

2. Ensure that the plugin is available in /opt/kylo/kylo-services/plugin. This comes out-of-the-box
at this location by default. It should have ownership as kylo:users and permissions 755.

kylo-search-elasticsearch-rest-<version>.jar

Note: It is recommended to have only one search plugin in the /opt/kylo/kylo-services/plugin/
directory. If there is another search plugin (for example, kylo-search-elasticsearch-<version>.jar),
move it along with its property file to /opt/kylo/setup/plugins/<plugin-name>/ for later use.

3. Provide elasticsearch-rest properties

Update cluster properties in /opt/kylo/kylo-services/conf/elasticsearch-rest.
properties if different from the defaults provided below.

search.rest.host=localhost
search.rest.port=9200

4. Create Kylo Indexes

Execute a script to create kylo indexes. If these already exist, Elasticsearch will report an
index_already_exists_exception. It is safe to ignore this and continue. Change the host
and port if necessary.

/opt/kylo/bin/create-kylo-indexes-es.sh localhost 9200 1 1

4. Restart Kylo Services

service kylo-services restart

5. Steps to import updated Index Text Service feed

(a) Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

2a. [Elasticsearch version 2] Pick the index_text_service_elasticsearch.feed.zip
file available at /opt/kylo/setup/data/feeds/nifi-1.0

2b. [Elasticsearch version 5] [This requires NiFi 1.3 or later] Pick the
index_text_service_v2.feed.zip file available at /opt/kylo/setup/data/
feeds/nifi-1.3

(c) Leave Change the Category field blank (It defaults to System)

(d) Click Yes for these two options (1) Overwrite Feed (2) Replace Feed Template

(e) (optional) Click Yes for option (3) Disable Feed upon import only if you wish to keep the index-
ing feed disabled upon import (You can explicitly enable it later if required)

(f) Click Import Feed.

(g) Verify that the feed imports successfully.

57.3 Elasticsearch (transport client)

Plugin Jar:

314 Chapter 57. Configure Kylo & Global Search

Kylo Documentation, Release 0.9.1

• Name: kylo-search-elasticsearch-<version>.jar

• Default location: /opt/kylo/setup/plugins/search-elasticsearch-transport-client/

Plugin Property File:

• Name: elasticsearch.properties

• Default location: /opt/kylo/setup/plugins/search-elasticsearch-transport-client/

Steps to configure Kylo with Elasticsearch engine (using transport client) are below. Only Elasticsearch version 2 is
supported via this plugin.

1. Include search-es profile in existing list of profiles in /opt/kylo/kylo-services/conf/
application.properties

spring.profiles.include=native,nifi-v1,auth-kylo,auth-file,search-es

2. Ensure that the plugin is available in /opt/kylo/kylo-services/plugin. The
plugin comes out-of-the-box at another location /opt/kylo/setup/plugins/
search-elasticsearch-transport-client/. It should have ownership as kylo:users
and permissions 755.

kylo-search-elasticsearch-<version>.jar

Note: It is recommended to have only one search plugin in the /opt/kylo/kylo-services/plugin/
directory. If there is another search plugin (for example, kylo-search-solr-<version>.jar), move it
along with its property file to to /opt/kylo/setup/plugins/<plugin-name>/ for later use.

Reference commands to get the plugin, and change ownership and permissions:

cp /opt/kylo/setup/plugins/search-elasticsearch-transport-client/kylo-
→˓search-elasticsearch-<version>.jar /opt/kylo/kylo-services/plugin/
cp /opt/kylo/setup/plugins/search-elasticsearch-transport-client/
→˓elasticsearch.properties /opt/kylo/kylo-services/conf/
cd /opt/kylo/kylo-services/plugin/
chown kylo:users kylo-search-elasticsearch-<version>.jar
chmod 755 kylo-search-elasticsearch-<version>.jar
cd /opt/kylo/kylo-services/conf/
chown kylo:users elasticsearch.properties
chmod 755 elasticsearch.properties

3. Provide elasticsearch properties

Update cluster properties in /opt/kylo/kylo-services/conf/elasticsearch.
properties if different from the defaults provided below.

search.host=localhost
search.clusterName=demo-cluster
search.restPort=9200
search.transportPort=9300

4. Restart Kylo Services

service kylo-services restart

57.3. Elasticsearch (transport client) 315

Kylo Documentation, Release 0.9.1

5. Steps to import updated Index Text Service feed

(a) Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

(b) Pick the index_text_service_elasticsearch.feed.zip file available at /opt/kylo/
setup/data/feeds/nifi-1.0

(c) Leave Change the Category field blank (It defaults to System)

(d) Click Yes for these two options (1) Overwrite Feed (2) Replace Feed Template

(e) (optional) Click Yes for option (3) Disable Feed upon import only if you wish to keep the indexing feed
disabled upon import (You can explicitly enable it later if required)

(f) Click Import Feed.

(g) Verify that the feed imports successfully.

57.4 Solr

Plugin Jar:

• Name: kylo-search-solr-<version>.jar

• Default location: /opt/kylo/setup/plugins/search-solr/

Plugin Property File:

• Name: solrsearch.properties

• Default location: /opt/kylo/setup/plugins/search-solr/

Kylo is designed to work with Solr (SolrCloud mode) and tested with v6.5.1. This configuration assumes that you
already have a running Solr instance. You can also get it from the official download page.

Steps to configure Kylo with Solr are below:

1. Include search-solr profile in existing list of profiles in /opt/kylo/kylo-services/conf/
application.properties

spring.profiles.include=native,nifi-v1,auth-kylo,auth-file,search-solr

2. Ensure that the plugin is available in /opt/kylo/kylo-services/plugin. The plugin comes out-of-
the-box at another location /opt/kylo/setup/plugins/search-solr/. It should have ownership as
kylo:users and permissions 755.

kylo-search-solr-<version>.jar

Note: It is recommended to have only one search plugin in the /opt/kylo/kylo-services/plugin/
directory. If there is another search plugin (for example, kylo-search-elasticsearch-<version>.jar),
move it along with its property file to /opt/kylo/setup/plugins/<plugin-name>/ for later use.

Reference commands to get the plugin, and change ownership and permissions:

cp /opt/kylo/setup/plugins/search-solr/kylo-search-solr-<version>.jar /
→˓opt/kylo/kylo-services/plugin/
cp /opt/kylo/setup/plugins/search-solr/solrsearch.properties /opt/kylo/
→˓kylo-services/conf/
cd /opt/kylo/kylo-services/plugin/

(continues on next page)

316 Chapter 57. Configure Kylo & Global Search

http://lucene.apache.org/solr/downloads.html

Kylo Documentation, Release 0.9.1

(continued from previous page)

chown kylo:users kylo-search-solr-<version>.jar
chmod 755 kylo-search-solr-<version>.jar
cd /opt/kylo/kylo-services/conf/
chown kylo:users solrsearch.properties
chmod 755 solrsearch.properties

3. Create a folder on the box where Kylo is running to store indexes for Kylo metadata. Ensure that Kylo can write
to this folder.

Reference commands to create this folder and give full permissions:

mkdir /tmp/kylosolr
chmod 777 /tmp/kylosolr

4. Provide solr properties

Update cluster properties in /opt/kylo/kylo-services/conf/solrsearch.
properties if different from the defaults provided below. The search.
indexStorageDirectory should match with the folder location created in previous step.

search.host=localhost
search.port=8983
search.indexStorageDirectory=/tmp/kylosolr
search.zooKeeperPort=9983

5. Create collections in Solr that Kylo will use.

Reference commands:

bin/solr create -c kylo-datasources -s 1 -rf 1
bin/solr create -c kylo-data -s 1 -rf 1

6. Configure Kylo collections created in previous step via Admin UI

Reference steps:

Navigate to Admin UI

• http://localhost:8983/solr

Configure collection for datasources

(a) Select kylo-datasources collection from the drop down on left nav area

(b) Click Schema on bottom left of nav area

(c) Click Add Field on top of right nav pane

• name: kylo_collection

• type: string

• default value: kylo-datasources

• index: no

• store: yes

Configure collection for data

(a) Select kylo-data collection from the drop down on left nav area

(b) Click Schema on bottom left of nav area

57.4. Solr 317

http://localhost:8983/solr

Kylo Documentation, Release 0.9.1

(c) Click Add Field on top of right nav pane

• name: kylo_collection

• type: string

• default value: kylo-data

• index: no

• store: yes

7. Restart Kylo Services

service kylo-services restart

8. Steps to import updated Index Text Service feed

(a) Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

(b) Pick the index_text_service_solr.feed.zip file available at /opt/kylo/setup/data/
feeds/nifi-1.0

(c) Leave Change the Category field blank (It defaults to System)

(d) Click Yes for these two options (1) Overwrite Feed (2) Replace Feed Template

(e) (optional) Click Yes for option (3) Disable Feed upon import only if you wish to keep the indexing feed
disabled upon import (You can explicitly enable it later if required)

(f) Click Import Feed.

(g) Verify that the feed imports successfully.

9. Ensure that the box running Kylo can connect to the box running Solr (if they are on separate machines). If
required, open up these ports:

• 8983

• 9983

318 Chapter 57. Configure Kylo & Global Search

CHAPTER 58

Service Monitor Plugins

58.1 Introduction

Kylo supports pluggable Service Monitor implementations. There are a number of them available out-of-the-box, for
example:

•

•

•

•

is available to implement additional Service Monitors

58.2 Monitor Services via Cloudera Manager

58.2.1 Installation

After you have installed Kylo, copy /opt/kylo/setup/plugins/kylo-service-monitor-cloudera-service-<version>.
jar to Kylo plugins directory /opt/kylo/kylo-services/plugin and make sure plugin jar belongs to user
Kylo runs with:

cp /opt/kylo/setup/plugins/kylo-service-monitor-cloudera-service-<version>.
→˓jar /opt/kylo/kylo-services/plugin
chown kylo:kylo /opt/kylo/kylo-services/plugin/kylo-service-monitor-cloudera-
→˓service-<version>.jar

319

Kylo Documentation, Release 0.9.1

58.2.2 Configuration

Create service configuration file /opt/kylo/kylo-services/conf/cloudera.properties which be-
longs to user Kylo runs with and contains following properties. Do substitute values with what your Cloudera Manager
is configured with:

clouderaRestClientConfig.username=cloudera
clouderaRestClientConfig.password=cloudera
clouderaRestClientConfig.serverUrl=127.0.0.1
clouderaRestClientConfig.port=7180
cloudera.services.status=HDFS/[DATANODE,NAMENODE,SECONDARYNAMENODE],HIVE/
→˓[HIVEMETASTORE,HIVESERVER2],YARN,SQOOP

58.2.3 Restart Kylo

service kylo-services restart

58.3 Monitor Services via Ambari

58.3.1 Installation

After you have installed Kylo, copy /opt/kylo/setup/plugins/kylo-service-monitor-ambari-<version>.
jar to Kylo plugins directory /opt/kylo/kylo-services/plugin and make sure plugin jar belongs to user
Kylo runs with:

cp /opt/kylo/setup/plugins/kylo-service-monitor-ambari-<version>.jar /opt/
→˓kylo/kylo-services/plugin
chown kylo:kylo /opt/kylo/kylo-services/plugin/kylo-service-monitor-ambari-
→˓<version>.jar

58.3.2 Configuration

Create service configuration file /opt/kylo/kylo-services/conf/ambari.properties which belongs
to user Kylo runs with and contains following properties. Do substitute values with what your Ambari is configured
with:

ambariRestClientConfig.host=127.0.0.1
ambariRestClientConfig.port=8080
ambariRestClientConfig.username=admin
ambariRestClientConfig.password=admin
ambari.services.status=HDFS/[DATANODE,NAMENODE,SECONDARYNAMENODE],HIVE/
→˓[HIVEMETASTORE,HIVESERVER2],YARN,SQOOP

58.3.3 Restart Kylo

service kylo-services restart

320 Chapter 58. Service Monitor Plugins

CHAPTER 59

JMS Providers

59.1 Introduction

Kylo supports pluggable JMS implementations. There are two JMS implementations supported out-of-the-box: Ac-
tiveMQ and Amazon SQS. Both Kylo and Nifi should be configured with the same JMS implementation.

59.2 Kylo Configuration

59.2.1 ActiveMQ

ActiveMQ profile is selected by default. If you switched away from ActiveMQ and now want to restore default
Kylo settings you can edit /opt/kylo/kylo-services/conf/application.properties and select Ac-
tiveMQ JMS implementation by adding jms-activemq profile to spring.profiles.include property, e.g.

spring.profiles.include=[other profiles],jms-activemq

In addition to selected profile, ActiveMQ configuration properties should be provided in /opt/kylo/
kylo-services/conf/application.properties. Redelivery processing properties are now available
for configuration. If Kylo receives provenance events and they have errors or are unable to attach NiFi feed in-
formation (i.e. if NiFi goes down and Kylo doesnt have the feed information in its cache) then the JMS mes-
sage will be returned for redelivery based upon the following parameters. Refer to the ActiveMQ documentation,
http://activemq.apache.org/redelivery-policy.html, for assigning these values

jms.activemq.broker.url=tcp://localhost:61616
#jms.activemq.broker.username=admin
#jms.activemq.broker.password=admin
##Redeliver policy for the Listeners when they fail (http://activemq.apache.
→˓org/redelivery-policy.html)
#jms.maximumRedeliveries=100
#jms.redeliveryDelay=1000
#jms.maximumRedeliveryDelay=600000L

(continues on next page)

321

http://activemq.apache.org/redelivery-policy.html

Kylo Documentation, Release 0.9.1

(continued from previous page)

#jms.backOffMultiplier=5
#jms.useExponentialBackOff=false

59.2.2 Amazon SQS

ActiveMQ profile is selected by default. But you can switch over to Amazon SQS by replacing jms-activemq
profile with jms-amazon-sqs in /opt/kylo/kylo-services/conf/application.properties, e.g.

spring.profiles.include=[other profiles],jms-amazon-sqs

In addition to that Amazon SQS specific properties should be provided in /opt/kylo/kylo-services/conf/
application.properties.

sqs.region.name=eu-west-1

Amazon SQS uses DefaultAWSCredentialsProviderChain class to look for AWS credentials in the follow-
ing order:

• Environment Variables - AWS_ACCESS_KEY_ID and AWS_SECRET_KEY

• Java System Properties - aws.accessKeyId and aws.secretKey

• Credential profiles file at the default location (~/.aws/credentials) shared by all AWS SDKs and the AWS CLI

• Instance profile credentials delivered through the Amazon EC2 metadata service

For example, add your AWS credentials to /home/kylo/.aws/credentials

[default]
aws_access_key_id=...
aws_secret_access_key=...

59.3 Nifi Configuration

59.3.1 Active MQ

Select jms-activemq profile and provide ActiveMQ specific configuration properties in /opt/nifi/
ext-config/config.properties, e.g.

spring.profiles.active=jms-activemq

jms.activemq.broker.url=tcp://localhost:61616
#jms.activemq.broker.username=admin
#jms.activemq.broker.password=admin
##Redeliver policy for the Listeners when they fail (http://activemq.apache.
→˓org/redelivery-policy.html)
#jms.maximumRedeliveries=100
#jms.redeliveryDelay=1000
#jms.maximumRedeliveryDelay=600000L
#jms.backOffMultiplier=5
#jms.useExponentialBackOff=false

322 Chapter 59. JMS Providers

Kylo Documentation, Release 0.9.1

59.3.2 Amazon SQS

Select jms-amazon-sqs profile and provide Amazon SQS specific configuration properties in /opt/nifi/
ext-config/config.properties, e.g.

spring.profiles.active=jms-amazon-sqs

sqs.region.name=eu-west-1

Amazon SQS uses DefaultAWSCredentialsProviderChain class to look for AWS credentials in the follow-
ing order:

• Environment Variables - AWS_ACCESS_KEY_ID and AWS_SECRET_KEY

• Java System Properties - aws.accessKeyId and aws.secretKey

• Credential profiles file at the default location (~/.aws/credentials) shared by all AWS SDKs and the AWS CLI

• Instance profile credentials delivered through the Amazon EC2 metadata service

For example, add your AWS credentials to /home/nifi/.aws/credentials

[default]
aws_access_key_id=...
aws_secret_access_key=...

There are four places where standard Kylo feeds need updating in Nifi to route JMS messages via Amazon SQS
instead of ActiveMQ. Replace JMS processors with their Amazon SQS equivalents. Replace PublishJMS processors
with PutSQS processors and ConsumeJMS processors with GetSQS processors in following feeds:

• reusable_templates -> standard-ingest

– Register Index (PublishJMS)

– Update Index (PublishJMS)

• system

– index_schema_service -> Receive Schema Index Request (ConsumeJMS)

– index_text_service -> Receive Index Request (ConsumeJms)

59.3. Nifi Configuration 323

Kylo Documentation, Release 0.9.1

324 Chapter 59. JMS Providers

CHAPTER 60

Database Upgrades

60.1 Overview

This guide provides details on how to update your database with each new Kylo version. Kylo supports two ways to
upgrade your database:

1. Automatic upgrades

2. Manual upgrades

60.1.1 1. Automatic Upgrades

By default Kylo is set up to automatically upgrade its database on Kylo services startup. As such, there isn’t anything
specific an end user has to do. Just start Kylo services as normal and your database will be automatically upgraded to
latest version if required.

60.1.2 2. Manual Upgrades

By default Kylo is set up to automatically upgrade its database. To manually upgrades your database:

1. Turn off automatic database upgrades

2. Generate update SQL script

3. Run generated SQL manually on your database

2.1 Turn off automatic database upgrades

Set liquibase.enabled to false in /opt/kylo/kylo-services/conf/application.
properties if you don’t want to automatically upgrade Kylo database. Also make sure your database
connection properties are correct:

325

Kylo Documentation, Release 0.9.1

liquibase.enabled=false

spring.datasource.url=
spring.datasource.username=
spring.datasource.password=
spring.datasource.driverClassName=

2.2 Generate upgrade SQL script

Make sure that required database driver is on classpath in /opt/kylo/kylo-services/lib directory and run
/opt/kylo/setup/sql/generate-update-script.sh.

/opt/kylo/setup/sql/generate-update-script.sh

This will generate database update SQL in your current directory called kylo-db-update-script.sql. This
SQL script will contain all required SQL statements to update your database to next Kylo version.

2.3 Run generated SQL manually on your database

The process of executing kylo-db-update-script.sql SQL script will differ for each database vendor. Please
consult documentation for your database on how to execute an SQL script.

326 Chapter 60. Database Upgrades

CHAPTER 61

Icons and Icon Colors

Icons and the colors can be configured using 2 JSON files found in the /opt/kylo/kylo-services/conf directory.

icons.json

This is an array of valid icon names. Valid names that can be used can be found here: https://klarsys.github.io/
angular-material-icons/.

icon-colors.json

This is an array of objects indicating the display name and respective Hex color code.

327

https://klarsys.github.io/angular-material-icons/
https://klarsys.github.io/angular-material-icons/

Kylo Documentation, Release 0.9.1

328 Chapter 61. Icons and Icon Colors

CHAPTER 62

Twitter Sentiment with Kafka and Spark Streaming Tutorial

62.1 About

This advanced tutorial will enable Kylo to perform near real-time sentiment analysis for tweets. Our Kylo template
will enable user self-service to configure new feeds for sentiment analysis. The user will simply enter the list of twitter
keywords to analyze (e.g. famous list of music artists). Tweets will be classified as positive, negative, or neutral
based on analysis of the text. The tweet and sentiment results will be written to Hive. We will be able to monitor the
streaming process in the Kylo Ops Manager module and explore the results.

62.2 How it Works

Once the user configures the new feed in Kylo, a pipeline will be generated in Apache NiFi. The tweet text will be
extracted and published to a Kafka topic. A Spark streaming job will consume the message tweet from Kafka, performs
sentiment analysis using an embedded machine learning model and API provided by the Stanford NLP project. The
Spark streaming job then inserts result into Hive and publishes a Kafka message to a Kafka response topic monitored
by Kylo to complete the flow.

In order to track processing though Spark, Kylo will pass the NiFi flowfile ID as the Kafka message key. Kylo passes
the FlowFile ID to Spark and Spark will return the message key on a separate Kafka response topic. The latter utilizes
the new Notify and Wait processors in NiFi 1.3.0+ which we will introduce with this tutorial.

62.3 Prerequisites

1. Download the latest Kylo sandbox. This tutorial requires NiFi 1.3.

2. Install/enable Kafka (if needed)

3. Create a twitter application account. and document your consumer key/secret and access token/secret pairs.

4. Download Stanford corenlp libraries. The specific library files are shown in the Spark configuration section (below).
This tutorial used v3.7.0.

329

https://stanfordnlp.github.io/CoreNLP
https://kylo.io/quickstart.html
http://docs.inboundnow.com/guide/create-twitter-application
https://stanfordnlp.github.io/CoreNLP

Kylo Documentation, Release 0.9.1

5. Download and build this useful Twitter Sentiment analysis utility. The specific library files needed are shown in the
Spark configuration section (below).

62.4 Configuration

Your Twitter consumer key/secret and access token/secret pairs are needed in order to provision the template with
the correct Twitter credentials. Add the following block to your Kylo application .properties file (typically located in
/opt/kylo/kylo-services/conf/application.properties). Note that Kylo will automatically injects these properties into the
NiFi pipeline when a new feed is provisioned:

Twitter
nifi.gettwitter.consumer_key={REPLACE_WITH_YOUR_TWITTER_CONSUMER_KEY}
nifi.gettwitter.consumer_secret={REPLACE_WITH_YOUR_TWITTER_CONSUMER_SECRET}
nifi.gettwitter.access_token={REPLACE_WITH_YOUR_TWITTER_ACCESS_TOKEN}
nifi.gettwitter.access_secret={REPLACE_WITH_YOUR_TWITTER_ACCESS_SECRET}

Restart Kylo after applying changes to the property file.

62.5 Spark Configuration

The following JARs need to be available on the Spark2 classpath. There are different ways to achieve this but one way
is to simply modify the /etc/spark2/conf/spark-defaults.conf as shown here:

Add to /etc/spark2/conf/spark-defaults.conf
spark.driver.extraClassPath /path/to/lib.jar:/path/to/lib2.jar:/path/to/lib3.jar

The extra classpath libraries needed will depend on your specific Hadoop and Kafka installation. The following are
required jar files for readability:

From local machine
kafka-streams-0.10.0.2.5.5.0-157.jar
spark-examples_2.11-2.0.2.2.5.5.0-157.jar
spark-streaming-kafka-0-10_2.11-2.1.1.jar
spark-streaming_2.11-2.0.2.2.5.5.0-157.jar
ejml-0.23.jar

From github.com/vspiewak/
twitter-sentiment-analysis_3.7.0.jar (must be built from source)
jsonic-1.2.0.jar (available in lib)
langdetect.jar (available in lib)

From Stanford NLP
stanford-corenlp-3.7.0-models-english.jar
stanford-parser-3.7.0.jar
stanford-corenlp-3.7.0.jar

62.6 Twitter Sentiment template

The feed template for this tutorial is provided in Kylo github. This template will allow you to create a feed to monitor
tweets based on keywords and write the sentiment results to a Hive table. Download and import the Twitter Sentiment
template. into the Kylo templates UI.

330 Chapter 62. Twitter Sentiment with Kafka and Spark Streaming Tutorial

https://github.com/vspiewak/twitter-sentiment-analysis
https://github.com/Teradata/kylo/blob/master/samples/templates/nifi-1.0/twitter_sentiment.template.zip
https://github.com/Teradata/kylo/blob/master/samples/templates/nifi-1.0/twitter_sentiment.template.zip

Kylo Documentation, Release 0.9.1

62.7 Kafka response feed

This system feed will monitor a Kafka topic for flowfile ids that have been processed by our Spark job.

Download and import the Kafka Notifier feed. into the Kylo feeds.

62.8 Scripts

Create the following shell scripts in /opt/spark-receiver/ and ensure NiFi has execute permissions on the files:

1. The following shell script will start/stop our streaming application. It will only start the application if it is not
currently running. Name the file: stream-submit-kafka.sh

#!/bin/bash

#extract script file then shift remaining args will be pased to scala script
arg_count="$#"
command=$1
app_name=$2
scala_file=$3
shift 3
arguments=$@

export SPARK_MAJOR_VERSION=2
spark_regex=".*SparkSubmit.*\s$app_name.*"

start() {
if ["$arg_count" -lt 10]; then

echo "Illegal parameters. Usage ./stream-submit-kafka.sh start sentiment-app
→˓path/to/script.scala {window secs} {hive table} {twitter keywords,comma-delim}
→˓{kafka read topic} {kafka write topic} {broker} {zookeeper} {kafka group}

echo "Example: ./stream-submit-kafka.sh start sentiment-app /opt/spark-
→˓receiver/sentiment-job-kafka.scala 15 sentiment_17 @ArianaGrande,@justinbieber,
→˓@MileyCyrus topicC topicB sandbox.kylo.io:6667 sandbox.kylo.io:2181 groupA

exit 1
fi

echo "Starting process $app_name with $arguments"
if pgrep -f "$spark_regex" > /dev/null
then

echo "$app_name already running"
else

nohup spark-shell --name "$app_name" --master local[2] --deploy-mode client \
--queue default \
--driver-memory 4G --executor-memory 4G \
-i <(echo 'val args = "'$arguments'".split("\\s+")' ; cat $scala_file) &>

→˓$app_name.out &
fi

}

stop() {
if ["$arg_count" -lt 2]; then

echo "Illegal parameters. Usage ./stream-submit.sh kill appName"
exit 1

fi
if pgrep -f "$spark_regex" > /dev/null
then

(continues on next page)

62.7. Kafka response feed 331

https://github.com/Teradata/kylo/blob/master/samples/feeds/nifi-1.3/kafka_notifier_service.feed.zip

Kylo Documentation, Release 0.9.1

(continued from previous page)

echo "Killing $app_name"
pkill -f "$spark_regex"

else
echo "$app_name not running"

fi
}

status() {
if ["$arg_count" -lt 2]; then

echo "Illegal parameters. Usage ./stream-submit.sh status appName"
exit 1

fi

if pgrep -f "$spark_regex" > /dev/null
then echo "$app_name running"
else echo "$app_name not running"

fi
}

case "$command" in
status)

status
;;
start)

start
;;
stop)

stop
;;
restart)

echo "Restarting $app_name"
stop
sleep 2
start
echo "$app_name started"

;;

*)
echo $"Usage: $0 {start|stop|restart|status|"
exit 1

esac
exit 0

2. The following Scala script is our sentiment analysis Spark job. Please name the file: sentiment-job-kafka.scala

import java.util.HashMap

import org.apache.spark.examples.streaming._
import kafka.serializer.StringDecoder

import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka010._
import org.apache.spark.SparkConf

import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization._
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent

(continues on next page)

332 Chapter 62. Twitter Sentiment with Kafka and Spark Streaming Tutorial

Kylo Documentation, Release 0.9.1

(continued from previous page)

import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe

import java.util.HashMap

import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig,
→˓ProducerRecord}

import org.apache.spark.SparkConf
import org.apache.spark.streaming._
import java.io._

import java.nio.charset.StandardCharsets
import scala.collection.mutable.ListBuffer

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SQLContext
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext, Time}
import com.github.vspiewak.util._
import edu.stanford.nlp.sentiment._
import java.io.IOException
import java.util.Properties

case class TweetRecord(time: Integer, topic: String, sentiment: String, tweet:
→˓String)

val durationSecs = args(0).toLong
val tableName = args(1)
val keywords = args(2)
val readerTopic = args(3)
val writerTopic = args(4)
val brokers = args(5)
val zookeeper = args(6)
val group = args(7)
println("durationSecs: " + durationSecs)
println("tableName: " + tableName)
println("keywords: " + keywords)

val bKeywords = sc.broadcast(keywords.split(","))

val clientParams = Map[String, Object](
"bootstrap.servers" -> brokers,
"zookeeper.connect" -> zookeeper,
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> group,
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)

)

val producerProps = new java.util.Properties()

producerProps.put("bootstrap.servers", brokers)
producerProps.put("zookeeper.connect", zookeeper)
producerProps.put("key.serializer", classOf[StringSerializer])
producerProps.put("value.serializer", classOf[StringSerializer])
producerProps.put("key.deserializer", classOf[StringDeserializer])

(continues on next page)

62.8. Scripts 333

Kylo Documentation, Release 0.9.1

(continued from previous page)

producerProps.put("value.deserializer", classOf[StringDeserializer])

StreamingExamples.setStreamingLogLevels()

val producer = new KafkaProducer[String, String](producerProps)

spark.sql("CREATE TABLE IF NOT EXISTS "+tableName+" (`time` int, `topic` string,
→˓`sentiment` string, `tweet` string)")

// Create direct kafka stream with brokers and topics
// Create context with specified batch interval
@transient val ssc = new StreamingContext(sc, Seconds(durationSecs))

val topics = Array(readerTopic)
@transient val tweetStream = KafkaUtils.createDirectStream[String, String](

ssc,
PreferConsistent,
Subscribe[String, String](topics, clientParams)

)

@transient val uuids = tweetStream.map(_.key)

@transient val tweetStreamMapped = tweetStream.map { record: org.apache.kafka.
→˓clients.consumer.ConsumerRecord[String,String] =>

val tweet = record.value
println(tweet)
// Create record for each match so tweets with

→˓multiple matches will be counted multiple times
val keywords = bKeywords.value
val matches = keywords.filter { (term) => (tweet.

→˓contains(term)) }
val matchArray = matches.map { (keyword) =>

→˓(keyword, tweet) }
// Convert to listbuffer so we can flatten
val matchLB = ListBuffer(matchArray: _ *)
matchLB.toList

}.
flatMap(identity).
map { (tuple) =>

val topic = tuple._1
val tweet = tuple._2
// Clean hashtags, emoji's, hyperlinks, and

→˓twitter tags which can confuse the model. Replace @mention with generic word Foo
val tweet_clean = tweet.replaceAll(

→˓"(\\b\\w*RT)|[^a-zA-Z0-9\\s\\.\\,\\!,\\@]", "").replaceAll("(http\\S+)","").
→˓replaceAll("(@\\w+)","Foo").replaceAll("^(Foo)","")

try {
val sentiment = SentimentAnalysisUtils.

→˓detectSentiment(tweet_clean).toString.toLowerCase
(topic, sentiment,tweet)

} catch {
case e: IOException => e.

→˓printStackTrace(); (tuple._1, "unknown", tweet)
}

}

(continues on next page)

334 Chapter 62. Twitter Sentiment with Kafka and Spark Streaming Tutorial

Kylo Documentation, Release 0.9.1

(continued from previous page)

println("Writing results to Hive "+tableName)
tweetStreamMapped.foreachRDD { (rdd: RDD[(String, String, String)], time: org.

→˓apache.spark.streaming.Time) => rdd.map(t => TweetRecord((time.milliseconds /
→˓1000).toInt, t._1, t._2, t._3))

.toDF()

.filter(
→˓"sentiment is not null")

.write

.
→˓insertInto(tableName)

}
println("Sending results to Kafka topic:"+writerTopic)
uuids.foreachRDD { rdd =>

rdd.collect().foreach { key =>
producer.send(new ProducerRecord[String, String](writerTopic, key, "done"))

}
}

ssc.start()
ssc.awaitTermination()

ssc.stop()

62.9 Create your feed

After importing the template in Kylo, you are ready to create a feed. Create a new feed and select ‘Sentiment Analysis’.
Now provide the keywords as comma separated strings. Note that because the Twitter account used by the template
is a free account, you are limited to filtering on specific keywords. This template has hardcoded a set of keywords of
common twitter accounts: @katyperry, @justinbieber,@taylorswift13,@rihanna,@realDonaldTrump. Your feed may
include any subset or combination of these. You can alter the superset of keywords in the template. If you have a full
Twitter account, you could use the Firehose endpoint and then perform your filtering in Spark.

62.10 Monitor your feed in Kylo

From the Ops Manager, your feed will appear as a Streaming feed.

62.9. Create your feed 335

Kylo Documentation, Release 0.9.1

336 Chapter 62. Twitter Sentiment with Kafka and Spark Streaming Tutorial

CHAPTER 63

Ambari Service Monitor Plugin

63.1 Purpose

The Ambari Service Monitor reports the status of Ambari services in Kylo Operations Manager.

63.2 Enable Plugin

To enable the plugin please do the following

1. Create a new file /opt/kylo/kylo-services/conf/ambari.properties. Ensure the owner of the file is kylo

2. Add the following to the ambari.properties file.

ambariRestClientConfig.host=127.0.0.1
ambariRestClientConfig.port=8080
ambariRestClientConfig.username=admin
ambariRestClientConfig.password=admin
ambari.services.status=HDFS,HIVE,MAPREDUCE2,SQOOP

3. Copy the /opt/kylo/setup/plugins/kylo-service-monitor-ambari-<<VERSION>>.jar to /opt/kylo/kylo-
services/plugin

cp /opt/kylo/setup/plugins/kylo-service-monitor-ambari-<<VERSION>>.jar /opt/kylo/kylo-
→˓services/plugin/

4. Restart kylo-services

337

Kylo Documentation, Release 0.9.1

338 Chapter 63. Ambari Service Monitor Plugin

CHAPTER 64

Reindex Historical Feed Data

Note: This feature requires NiFi version 1.3 or above. If using Elasticsearch, version 5 or up is required.

A feed definition can be edited to change the columns that are indexed in a search engine, and available for querying
via Kylo’s Global Search. The change will take effect for future runs of the feed, and the updated list of columns will
get indexed going forward.

At time of saving the updated feed definition, Kylo will detect any change in indexing options and prompt for reindex-
ing historical data as per the updated indexing options. This prompt will only be provided if Kylo is configured to
support this functionality.

This provides the feed editor an option to:

• add missing columns for indexing that can be used for search

• remove sensitive/non-required columns for indexing that should be not be searchable

You can choose to ignore or perform history indexing of feed data by choosing Yes or No when Kylo prompts for it.

While a feed’s history data is being re-indexed, changes to indexing options for the feed will be disabled. The feed
details page provides status of history re-indexing via the Reindexing In Progress and Reindexing Last Status fields.

To enable this functionality, perform the following steps:

64.1 A. Update Kylo Services properties

1. Enable option in /opt/kylo/kylo-services/conf/application.properties for Kylo services.
This is enabled by default when Kylo is installed.

search.history.data.reindexing.enabled=true

339

Kylo Documentation, Release 0.9.1

64.2 B. (Optional) Update Solr plugin properties

1. If using Solr instead of Elasticsearch as the search engine:

(a) Add one property to /opt/kylo/kylo-services/conf/solrsearch.properties
file.

config.http.solr.url=http://${search.host}:${search.port}

64.3 C. Restart Kylo Services

1. Restart Kylo services.

service kylo-services stop
service kylo-services start

2. Ensure that Kylo UI and Kylo Spark Shell are running. If not, start them.

service kylo-ui status
if stopped, start it
service kylo-ui start

service kylo-spark-shell status
if stopped, start it
service kylo-spark-shell start

64.4 D. Update Index Text Service Feed

1. Once Kylo is up, import the updated Index Text Service feed via these steps:

(a) Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

(b) Pick the index_text_service_hs_v<version_number>.feed.zip file available at /opt/
kylo/setup/data/feeds/nifi-1.3/history-reindexing/

(c) Leave Change the Category field blank (It defaults to System)

(d) Click Yes for these three options (1) Overwrite Feed (2) Replace Feed Template (3) Replace Reusable
Template

(e) Click Import Feed.

(f) Verify that the feed imports successfully.

64.5 E. Import History Reindex Text Service Feed

1. Import the History Reindex Text Service feed via these steps:

(a) Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

(b) Pick the history_reindex_text_service_hs_v<version_number>.feed.zip file avail-
able at /opt/kylo/setup/data/feeds/nifi-1.3/history-reindexing/

(c) Leave Change the Category field blank (It defaults to System)

340 Chapter 64. Reindex Historical Feed Data

Kylo Documentation, Release 0.9.1

(d) Click Yes for these three options (1) Overwrite Feed (2) Replace Feed Template (3) Replace Reusable
Template

(e) Click Import Feed.

(f) Verify that the feed imports successfully.

Now, you can choose to reindex a feed’s history when updating the columns to index. The History Reindex Text
Service feed runs every 10 minutes (default schedule) and performs the job.

64.5. E. Import History Reindex Text Service Feed 341

Kylo Documentation, Release 0.9.1

342 Chapter 64. Reindex Historical Feed Data

CHAPTER 65

Entity Access Control For Elasticsearch

By default, Kylo indexes category metadata, and feed schema & metadata in Elasticsearch that can be searched via
Kylo’s Global Search. This behavior can be turned off, for situations where:

• Entity metadata is considered sensitive

• Entity metadata is not allowed to be searchable

65.1 Category metadata index control

1. Click a category to open its details.

2. Edit the Access Control section.

3. Scroll down to Index Control.

4. Mark YES in checkbox to enable indexing, and NO to disable it.

65.2 Feed schema and metadata index control

1. Click a feed to open its details.

2. Click the three dots in the Feed Summary section on top right of page.

3. Click Access Control menu item.

4. Mark YES in checkbox to enable indexing of feed schema and metadata, and NO to disable it.

343

Kylo Documentation, Release 0.9.1

344 Chapter 65. Entity Access Control For Elasticsearch

CHAPTER 66

Service Level Agreements (SLA)

66.1 Creating a new SLA

There are two ways you can create an SLA

66.1.1 The feed SLA tab

1. Click on a Feed

2. Click on the SLA Tab

3. Click Add SLA

66.1.2 The SLA side navigation link

1. Click on the SLA link

2. Click the (+) to add a new SLA

An SLA is made up of 3 parts, Conditions and Actions, and a Description Both the Conditions and
Actions are plugins to Kylo and you can develop your own custom ones. To learn more view the Developer Guide
below.

Conditions

An SLA starts with 1 or more conditions. These are things you wish Kylo to Check or do as
part of your SLA. If any of these conditions are violated then the Actions associated with this
SLA will get called. Kylo comes with 2 default conditions (again you can create new ones via
a plugin)

• Feed Processing Deadline This allows you to select a feed and define when you
expect data to arrive for that feed in the form of a cron expression (i.e. Every

345

Kylo Documentation, Release 0.9.1

day at 12pm). If Kylo doesnt get data for the feed by the specified time then it
will be an SLA violation and Kylo will call the associated actions. Note: For
help in writing cron expressions refer to the website http://cronmaker.com.

• Feed Failure Notification This allows you to be notified if a feed fails. When
a failure is detected it is considered a violation of the SLA and will call the
associated actions

Note: You can chain multiple conditions together. An SLA with multiple conditions will only fire its
respective Actions if all the conditions are met.

Actions

Actions are called if the conditions are met. The default action is to always generate an alert in operations
manager. Additional actions can be added. Kylo comes with 2 default actions. Note: These need to be
installed by the Kylo administrator into the kylo-services/plugin folder. (again you can create
new/custom SLA actions via a plugin)

• Email Kylo will send an email to a user or set of users. Details can be found here.

• Jira Kylo will create a JIRA issue.

Description

All SLA’s require a name and description. These fields are auto populated based upon the users Condi-
tions/Actions, however you are free to change this to whatever you like.

66.2 SLA Schedule

All SLA’s are assessed the same schedule. This is defined in the kylo-services applica-
tion.properties file, defaulting to every 5 minutes.

how often should SLAs be checked
sla.cron.default=0 0/5 * 1/1 * ? *

You always choose to manually assess an SLA in Kylo -> Operations -> SLA Schedule and click the
Fire Now button

66.3 SLA Assessment

When an SLA is assessed, it will use/derive values that define the uniqueness of that assessment and determine if it is
a new violation to generate an alert and email or not.

For example the Feed Processing Deadline condition identifies the uniqueness by the feed, and the expected
date.

Kylo will assess the SLA and see if it passes/fails.

346 Chapter 66. Service Level Agreements (SLA)

http://cronmaker.com

Kylo Documentation, Release 0.9.1

• If it fails the SLA it will determine if the failure is new based upon the unique properties resolved for that
SLA (as described above)

• If this failure is new it will create the new Alert and then call the SLA violation actions (i.e. email, jira,
etc).

• If the failure already has an alert associated with it that is Unhandled it will not generate a new
alert/violation.

All assessments are persisted in Kylo’s metastore and can be queried from the SLA Assessments link, or from the
SLA.

Clicking into an assessment lets you see its details and why it failed/succeeded. Each assessment also lets you navigate
back to the actual SLA from the right panel.

66.4 Alerts

All SLA violations will generate an alert in Kylo. Alerts can be viewd under the Operations section and filtered to just
show SLA Violation alerts.

Clicking into an alert shows its detail and lets you navigate back to the assessment that generated this alert.

66.5 SLA Email

66.5.1 Installation and Configuration

If you use the kylo rpm installation the email plugin can be found in the /opt/kylo/
setup/plugins/sla-email. 1. Copy the kylo-sla-email-VERSION.jar to the /opt/kylo/
kylo-services/plugin folder 2. Copy and configure the sla.email.properties to the /
opt/kylo/kylo-services/conf folder. Below is an example set of properties that connects to
gmail. Modify this file with your email settings

sla.mail.protocol=smtp
sla.mail.host=smtp.gmail.com
sla.mail.port=587
sla.mail.smtpAuth=true
sla.mail.starttls=true
optional properties

(continues on next page)

66.4. Alerts 347

Kylo Documentation, Release 0.9.1

(continued from previous page)

##sla.mail.sslEnable=true
##sla.mail.smptAuthNtmlDomain=
##replace value below with a valid email address. this is the
→˓from email that will appear when a user receives a sla
→˓violation email
sla.mail.from=sla-violation@thinkbiganalytics.com
##replace value below with a valid email address that will
→˓use the sla.mail.host above
sla.mail.username=user@gmail.com
##replace with a valid password for the email address
→˓assigned above
sla.mail.password=
debug flag
sla.mail.debug=false

3. Once you do this and modify the jar/properties a restart of kylo-services is required. It
will then be available as an Action when creating the SLA

66.5.2 Email Templates

As of Kylo 0.8.4.1 SLA email templates can be customized in Kylo using the Admin -> SLA
Email.

This lets you craft an email template. Assessment variables will be injected into the email. You can
preview in the browser and also send a test email to verify the template prior to saving.

66.6 Developer Guide

SLA Conditions and Actions are pluggable and Kylo lets you create your own by writing a Java Plugin. Details on
how to do this can be found here: https://github.com/Teradata/kylo/tree/master/core/sla

You can also use the default sla-email plugin provided by Kylo as an example: https://github.com/Teradata/kylo/tree/
master/plugins/sla-email

348 Chapter 66. Service Level Agreements (SLA)

https://github.com/Teradata/kylo/tree/master/core/sla
https://github.com/Teradata/kylo/tree/master/plugins/sla-email
https://github.com/Teradata/kylo/tree/master/plugins/sla-email

CHAPTER 67

Configuration Inspector App

67.1 Overview

Configuration Inspector App is a standalone application, separate from Kylo UI and Services and its purpose is to
check whether Kylo UI and Kylo Services are configured correctly or not. It comes with a number of Configuration
Inspections out-of-the-box and is designed to be easily extensible.

Here is a screenshot of how it may look like:

349

Kylo Documentation, Release 0.9.1

67.2 Pre-requisites

• Java 8 installed. Kylo installs Java 8 into /opt/java directory. We will assume this directory for our examples.

350 Chapter 67. Configuration Inspector App

Kylo Documentation, Release 0.9.1

• kylo user privileges because this application will access Kylo UI and Services application.
properties and their lib directories

67.3 Run Application

Inspector App is distributed with Kylo and can be found in <KYLO_INSTALL_PATH>/lib/
install-inspector directory. We will assume default /opt/kylo/lib/install-inspector directory
for this example. Since this application requires Java 8 and needs to be ran as kylo user here is how you would run
it:

sudo su kylo
/opt/java/current/bin/java -jar /opt/kylo/lib/install-inspector/kylo-install-
→˓inspector-app-<version>.war --inspections.path=/opt/kylo/lib/install-inspector/lib

Now that the application is running, open your browser and find it at http://localhost:8099.

67.4 Custom Logging

Currently application logs to console. If you prefer to change that provide path to you custom logback.xml like
so:

sudo su kylo
/opt/java/current/bin/java -jar /opt/kylo/lib/install-inspector/kylo-install-
→˓inspector-app-<version>.war --inspections.path=/opt/kylo/lib/install-inspector/lib
→˓--logging.config=<absolute-path-to-custom-logback.xml>

67.5 Download Report

Click the circular “Download Report” button closer to the right top corner just above the Inspections list to download
and share the inspection report produced by Inspector App.

67.6 Add Custom Configuration Inspections

• Extend Inspection or AbstractInspection class found in kylo-install-inspector-api
module. At minimum you will need to implement three methods where the one which does the work
looks like this: public InspectionStatus inspect(Configuration configuration). Via
Configuration class you get access to Kylo UI and Services properties, e.g. Configuration.
getServicesProperty(String propertyName). You can either directly @Inject Kylo classes into
your Inspections or you first create Spring configuration which defines the beans, e.g. see and which uses custom
Spring configuration to get JerseyClient which can talk to Nifi.

• Package your custom Inspections into a jar

• Add your jar and its dependencies to Inspector App classpath, i.e. drop them into /opt/kylo/lib/
install-inspector/lib directory.

• Run Inspector App as usual

67.3. Run Application 351

Kylo Documentation, Release 0.9.1

352 Chapter 67. Configuration Inspector App

CHAPTER 68

Data Ingest - Teradata - TDCH

Kylo supports ingesting data into Teradata via TDCH (Teradata Connector For Hadoop). This is enabled via Kylo’s
TdchExportHiveToTeradata NiFi processor.

To use this functionality, please follow these steps. These are documented for HDP, please follow similar approach for
CDH.

1. Get TDCH

• Download TDCH from Teradata’s website. Kylo has been tested with TDCH version 1.5.4.

• Link: https://downloads.teradata.com/download/connectivity/teradata-connector-for-hadoop-command-line-edition

• Download from this or a more recent section: Teradata Connector for Hadoop 1.5.4 (Command Line
Edition)

2. Install TDCH

• This installs the connector at /usr/lib/tdch/1.5

• The JDBC drivers to access Teradata are also provided as part of the install.

$ rpm -ivh teradata-connector-1.5.4-hadoop2.x.noarch.rpm

$ ls /usr/lib/tdch/1.5/lib
tdgssconfig.jar
teradata-connector-1.5.4.jar
terajdbc4.jar

3. Copy JDBC drivers to a folder under NiFi

$ mkdir /opt/nifi/teradata
$ cp /usr/lib/tdch/1.5/lib/tdgssconfig.jar /opt/nifi/teradata
$ cp /usr/lib/tdch/1.5/lib/terajdbc4.jar /opt/nifi/teradata
$ chown -R nifi:nifi /opt/nifi/teradata

4. Update Kylo Services configuration

353

https://downloads.teradata.com/download/connectivity/teradata-connector-for-hadoop-command-line-edition

Kylo Documentation, Release 0.9.1

$ vi /opt/kylo/kylo-services/conf/application.properties

Set values for these properties under the section in the file named Teradata Ingest via Kylo Template

#default: jdbc:teradata://localhost
nifi.service.standardtdchconnectionservice.jdbc_connection_
→˓url=jdbc:teradata://<hostname-of-box-running-teradata-db>

#default: dbc
nifi.service.standardtdchconnectionservice.username=<teradata-db-username>

#default: <empty-value>
nifi.service.standardtdchconnectionservice.password=<teradata-db-user-
→˓password>

#default: /usr/lib/tdch/1.5/lib/teradata-connector-1.5.4.jar
nifi.service.standardtdchconnectionservice.tdch_jar_path=</path/to/
→˓teradata-connector-jar>

#defaut: /usr/hdp/current/hive-client/conf
nifi.service.standardtdchconnectionservice.hive_conf_path=<path-to-hive-
→˓conf-dir>

#default: /usr/hdp/current/hive-client/lib
nifi.service.standardtdchconnectionservice.hive_lib_path=<path-to-hive-
→˓lib-dir>

#default: file:///opt/nifi/teradata/terajdbc4.jar,file:///opt/nifi/
→˓teradata/tdgssconfig.jar
nifi.service.kylo-teradata-dbc.database_driver_location(s)=<path-to-
→˓teradata-jdbc-driver-jars>

5. Restart Kylo Services

$ service kylo-services restart

6. Import Kylo template for Teradata Ingest

• Locate the teradata ingest template. You can find it at one of these locations:

#Kylo installation:
/opt/kylo/setup/data/templates/nifi-1.0/data_ingest__teradata.template.zip

#Kylo codebase:
/opt/kylo/setup/data/templates/nifi-1.0/data_ingest__teradata.template.zip

• In Kylo UI:

– Click in left nav pane: Admin

– Click Templates

– Click + Button

– Choose import method -> Select Import from a file

– Click Choose File

– Select data_ingest__teradata.template.zip from location identified in earlier step

– Tick Yes for Overwrite

354 Chapter 68. Data Ingest - Teradata - TDCH

Kylo Documentation, Release 0.9.1

– Tick Yes for Import the reusable template

– Click Import Template

– Ensure template is imported without errors.

– If any errors, fix them and re-import.

7. Verify import of template

• In Kylo UI:

– Click in left nav pane: Admin

– Click Templates

– In the list of Templates in the main window, a template with name Data Ingest - Teradata should be
available.

8. Create a Teradata Ingest Feed

• (optional) Create a new category for Teradata Ingest feeds (Feed Manager -> Categories)

• Create a new feed

– Click Feed Manager

– Click Feeds

– Click + Button

– Select template Data Ingest - Teradata

– Step through the feed create tabs as mentioned below.

Feed Creation Stepper

• Tab 1: General Info

– Enter Display Name

– Select Category

– Enter Description (optional)

• Tab 2: Feed Details

– Select Data Source and provide its details as prompted on form

• Tab 3: Table

– Define the target table schema for Hive.

– Teradata ingest will first land the data in Hive, and then export it to Teradata DB

– Define partitioning strategy for Hive table

– Define additional feed options

• Tab 4: Data Processing

– Define field policies for indexing, profiling, standardization, validation

– Define merge strategy for Hive table

– Define target format for Hive table

• Tab 5: Properties

– Provide business metadata via properties and tags

355

Kylo Documentation, Release 0.9.1

• Tab 6: Access Control (if enabled in Kylo)

– Provide Kylo access control policies for feed

• Tab 7: Schedule

– Define a feed schedule

Click Create and ensure feed gets created successfully.

9. When the feed runs, it will ingest the data in Hive, and then export data from the final Hive table to Teradata.
The job status can be tracked via Kylo Operations Manager.

68.1 Advanced configuration

The template designer can override the default Teradata ingest parameters, and (optionally) allow feed creators to
supply their own. To do this, perform steps 1 to 7 as listed above. This would ensure the default teradata ingest
template is available in Kylo. Then, proceed as below:

7a. Override the default ingest parameters.

• In Kylo UI:

– Click in left nav pane: Admin

– Click Templates

– Click Data Ingest - Teradata

– Click Continue to Step 2 on Step 1: Select Template step.

– Click Continue to Step 3 on Step 2: Input Properties step.

– Click Initialize Teradata Feed Parameters menu item in Filter section on right side of page on Step 3:
Additional Properties. Details below:

68.1.1 Initialize Teradata Feed Parameters

• Target Database:

– Determines target database to load data into

– Default value: Teradata

– Currently, only one option is supported.

– Tick Yes for Allow user input? to allow users to provide a value

* Render as: Select

* If ingest to Teradata is to be skipped for any reason, users can select Not Set from dropdown
during feed creation

• Teradata Database Create Options

– Defines database create parameters if it does not exist. The database will take the name of the feed’s
category.

– Default value: FROM dbc AS PERMANENT = 60000000, SPOOL = 120000000

– Modify the default value if needed.

– Tick Yes for Allow user input? to allow users to provide a value

356 Chapter 68. Data Ingest - Teradata - TDCH

Kylo Documentation, Release 0.9.1

* Render as: Text

• Teradata Export Batch Size

– Number of rows submitted in a batch, for insert into the DB.

– Default value: 10000

– Modify the default value if needed. A positive integer is required.

– Tick Yes for Allow user input? to allow users to provide a value

* Render as: Number

• Teradata Export Force Staging

– Specify whether a staging table will always be used for export

– Default value: false

– Template provides an additional true option.

– Tick Yes for Allow user input? to allow users to provide a value

* Render as: Select

• Teradata Export Method

– Purpose: Specifies the export method. Two methods are supported: batch.insert and internal.fastload

– Default value: batch.insert

– Template provides an additional internal.fastload option.

– Tick Yes for Allow user input? to allow users to provide a value

* Render as: Select

• Teradata Export Number of Mappers

– Specify the number of mappers used by the export job

– Default value: 4

– Modify the default value if needed. A positive integer is required.

– Tick Yes for Allow user input? to allow users to provide a value

* Render as: Number

• Teradata Export Query Band

– Set session level query band. Specified by a string in the format: key=value;

– Default value: (blank)

– Modify the default value if needed.

– Tick Yes for Allow user input? to allow users to provide a value

* Render as: Text

• Teradata Export Truncate Strings

– If true, strings in source data that are larger than target column width will be truncated to match
column width. If false, such strings will cause job to fail.

– Default value: true

– Template provides an additional false option.

68.1. Advanced configuration 357

Kylo Documentation, Release 0.9.1

– Tick Yes for Allow user input? to allow users to provide a value

* Render as: Select

• Teradata Export Use XViews

– Specifies if Teradata XViews will be used to get system information

– Default value: false

– Template provides an additional true option.

– Tick Yes for Allow user input? to allow users to provide a value

* Render as: Select

• Teradata Export Utility

– Specify the export tool

– Default value: TDCH

– Currently, only one option is supported

– Tick Yes for Allow user input? to allow users to provide a value

* Render as: Select

* If ingest to Teradata is to be skipped for any reason, users can select Not Set from dropdown
during feed creation

• Teradata Merge Strategy

– Specifies how source table is merged into target table

– Default value: SYNC

– Two strategies are supported in the template:

1. SYNC: This will truncate the target table, and populate it with source table data

2. APPEND: This will append source table data to the existing data in target table.

– Tick Yes for Allow user input? to allow users to provide a value

* Render as: Select

• Teradata Table Create Options

– Define table create options if it does not exist. The table will take the name of the feed.

– Default value: NO PRIMARY INDEX

– Modify the default value if needed.

* Note: It is recommended that the table be created with the above default option. Other-
wise, ingests may fail due to constraints.

– Tick Yes for Allow user input? to allow users to provide a value

* Render as: Text

• Teradata Table Default Column Definition

– Define the type for the columns in the target table, it is not existing and thus gets created by this feed.

– Default value: VARCHAR(5000)

– Modify the default value if needed.

358 Chapter 68. Data Ingest - Teradata - TDCH

Kylo Documentation, Release 0.9.1

* Note: The type is recommended to be kept as VARCHAR. The size can be increased or
decreased based upon expected maximum width of the source data.

– Tick Yes for Allow user input? to allow users to provide a value

* Render as: Text

– Click Continue to Step 4 and provide access controls options, if any.

– Click Continue to Step 5 and click Register.

– Ensure template is registered successfully.

– Now continue with step 8 (Create a Teradata Ingest Feed) as documented in regular steps.

68.1. Advanced configuration 359

Kylo Documentation, Release 0.9.1

360 Chapter 68. Data Ingest - Teradata - TDCH

CHAPTER 69

Contributing to Kylo

69.1 Introduction

We gladly welcome contributions to help make Kylo better! This document describes our process for accepting
contributions and the guidelines we adhere to as a team. Please take a moment to review before submitting a pull
request.

69.2 Why Contribute

Think Big originally developed Kylo based on experience gained on over 150 big data projects. Many of the best
improvements came from exercising the technology in the field on the huge variety of situations faced by customers.
Contributing to Kylo allows you to influence the roadmap and evolution of Kylo and contribute back to the community
at large.

69.3 Reporting Issues

We monitor Group Groups for questions. If you’re not sure about something then please search on Group Groups first
and ask a new question if necessary. Bug reports, feature requests, and pull requests can be submitted to our JIRA for
tracking. If you find an issue:

1. Search in JIRA to see if the issue has already been reported. You can add to the existing discussion or see if
someone else is already working on it.

2. If the issue has been fixed then try reproducing the issue using the latest master branch.

3. If the issue persists then try to isolate the cause and create a new JIRA.

• For bug reports, please include a description of the issue, the steps to reproduce, the expected results, and
the actual results.

• For feature requests, please give as much detail as possible including a design document if available.

361

https://groups.google.com/forum/#!forum/kylo-community
https://groups.google.com/forum/#!forum/kylo-community
https://kylo-io.atlassian.net/
https://kylo-io.atlassian.net/projects/KYLO/issues/?filter=allissues

Kylo Documentation, Release 0.9.1

69.4 Introducing New Functionality

Before contributing new functionality or bug fixes please consider how these changes may impact other people using
Kylo, and whether these changes can be considered overall enhancements or merely enhancements needed by your
particular project. New functionality can be introduced either as a plugin or through a pull request.

69.4.1 Plugins

Plugins are the preferred way of adding, swapping, or enhancing functionality that is only relevant to specific users.
Our components and services have well-defined interfaces that can be extended by adding a new JAR to the plugin
directory. Create a new Spring @Configuration class to add your classes to the Spring context.

A separate git repository should be used for your plugins. You can reference Kylo’s API artifacts in Maven.

69.4.2 Pull Requests

Changes that apply to every Kylo user should be submitted as a pull request in GitHub. You should do your work in a
fork of Kylo and submit a request to pull in those changes. Don’t forget to confirm the target branch (master or point
release) before submitting the request. Please continue reading for instructions on creating a pull request.

69.5 Development Guidelines

We adhere to the following guidelines to ensure consistency in our code:

• Source code should be formatted according to our IntelliJ or Eclipse formatter. Formatter markers in comments
are enabled but should be used sparingly.

– To import our standard IntelliJ formatter:

– Download the template from here: thinkbig-googlestyle-intellij-v2-1.xml.

– Preferences -> Editor -> Code Style -> Manage

– Select “Import” and choose the downloaded preferences file

– Make sure the “scheme” shows thinkbig-googlestyle-intellij-vX.Y

– To import our standard Eclipse formatter:

– Download the template from here: thinkbig-googlestyle-eclipse-v2-1.xml.

– Preferences -> Java -> Code Style -> Formatter

– Select “Import” and choose the downloaded preferences file

– Make sure the “Active Profile” shows thinkbig-googlestyle-eclipse-v2-1.xml

• Public API methods should be documented. Use Swagger annotations for REST endpoints.

• Ensure tests are passing for the modified classes. New tests should use JUnit and Mockito.

• Prefer to throw runtime exceptions instead of checked exceptions.

• Dependency versions should be declared in the root pom and can be overridden using pom properties.

• Module names should be in all lowercase. Words should be singular and separated by a hyphen. For example,
kylo-alert is preferred over kylo-alerts.

• Logging should use SLF4j:

362 Chapter 69. Contributing to Kylo

Kylo Documentation, Release 0.9.1

private static final Logger log = LoggerFactory.getLogger(MyClass.class);

69.6 Pull Requests

To get started go to GitHub and fork the Kylo repository.

This will create a copy of the repository under your personal GitHub account. You will have write permissions to your
repository but not to the official Kylo repository.

69.6.1 Before you start

The easiest way to contribute code is to create a separate branch for every feature or bug fix. This will allow you to
make separate pull requests for every contribution. You can create your branch off our master branch to get the latest
code, or off a release branch if you need more stable code.

git clone https://github.com/<your-username>/kylo.git
cd kylo
git checkout -b my-fix-branch master

Every change you commit should refer to a JIRA issue that describes the feature or bug. Please open a JIRA issue if
one does not already exist.

69.6.2 Committing your change

Ensure that your code has sufficient unit tests and that all unit tests pass.

Your commit message should reference the JIRA issue and include a sentence describing what was changed. An
example of a good commit message is “PC-826 Support for schema discovery of Parquet files.”

git commit -a -m "<my-commit-message>"
git push origin my-fix-branch

69.6.3 Submitting a pull request

Once you are ready to have us add your changes to the Kylo repository, go to your repository in GitHub and select the
branch with your changes. Then click the New pull request button.

GitHub will generate a diff for your changes and determine if they can be merged back into Kylo. If your changes
cannot be automatically merged, please try rebasing your changes against the latest master branch.

git fetch --all
git rebase origin/master
git push --force-with-lease origin my-fix-branch

69.6. Pull Requests 363

https://github.com/KyloIO/kylo
https://kylo-io.atlassian.net/

Kylo Documentation, Release 0.9.1

We will review your code and respond with any necessary changes before pulling in your changes. After your pull
request is merged you can safely delete your branch and pull in the changes from the official Kylo repository.

364 Chapter 69. Contributing to Kylo

CHAPTER 70

Developer Getting Started Guide

This guide should help you get your local development environment up and running quickly. Development in an IDE
is usually done in conjunction with a Kylo sandbox in order to have a cluster with which to communicate.

70.1 Dependencies

To run the Kylo project locally the following tools must be installed:

• Maven 3

• RPM (for install)

• Java 1.8 (or greater)

• Kylo 0.9+ Sandbox

• Virtual Box or other virtual machine manager

The assumption is that you are installing on a Mac or Linux box. You can do most activities below on a Windows box,
except to perform a Maven build with the RPM install. At some point, we could add a Maven profile to allow you to
build but skip the final RPM step.

70.2 Install Maven 3

This project requires Maven to execute a build. Use this link to download to the Maven installation file:

Note: For instructions on installing Apache Maven see the Installing Apache Maven docs at the Apache Maven
project site.

365

https://maven.apache.org/install.html

Kylo Documentation, Release 0.9.1

70.3 Optional - Add Java 8 to Bash Profile

To build from the command line, you need to add Java 8 and Maven to your $PATH variable.

Edit ~/.bashrc and add the following:

export MVN_HOME=/Users/<HomeFolderName>/tools/apache-maven-3.3.3
export MAVEN_OPTS="-Xms256m -Xmx512m"
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_45.jdk/Contents/Home
export PATH=$JAVA_HOME/bin:$MVN_HOME/bin:$PATH

To test, run the following:

$ mvn -v
$ java -version

70.4 Install Virtual Box

Use this link to download and install the DMG file to install Virtual Box:

https://www.virtualbox.org/wiki/Downloads

70.5 Install the RPM Tool on your Mac

The RPM library is required for building the RPM file as part of the Maven build. This can be done using Home Brew
or Mac Ports.

$ brew install rpm

70.6 Clone Project from Github

Clone the Kylo project to your host. You can do this in your IDE or from the command line.

1. From the command line,run the “git clone” command.

(a) cd to the directory you want to install the project to.

(b) Type “git clone *https://github.com/kyloio/kylo.git”*.

2. Import from your IDE using the “*https://github.com/kyloio/kylo.git*” URL.

70.7 Import the Project into your IDE

Import the project into your favorite IDE as a Maven project.

Note: Configure the project to use Java 8.

366 Chapter 70. Developer Getting Started Guide

https://www.virtualbox.org/wiki/Downloads
https://github.com/kyloio/kylo.git
https://github.com/kyloio/kylo.git

Kylo Documentation, Release 0.9.1

70.8 Perform a Maven Build

Perform a Maven build to download all of the artifacts and verify that everything is setup correctly.

$ mvn clean install

Note: If you receive an OutOfMemoryError try increasing the Java heap space: $ export
MAVEN_OPTS="-Xms2g -Xmx4g"

Tip: For faster Maven builds you can run in offline mode and skip unit testing: $ mvn clean install -o
-DskipTests

70.9 Install and Configure the Kylo Sandbox

1. Download and install Kylo sandbox. Make sure 10GB RAM is assigned to the VM. The sandbox comes bundled
with Kylo apps, NiFi, ActiveMQ, Elasticsearch and MySQL.

2. Start the VM from VirtualBox.

3. Go to http://localhost:8400. Congratulations! Kylo is up and running. Login with credentials dladmin/thinkbig.

70.10 Running in the IDE

You can run kylo-ui and kylo-services in the IDE. If you plan to run the apps in the IDE, you should shut down the
services in your sandbox so you aren’t running two instances at the same time.

$ service kylo-services stop
$ service kylo-ui stop
$ service kylo-services status
$ service kylo-ui status

The applications are configured using Spring Boot.

70.11 IntelliJ Configuration

1. Install the Spring Boot plugin.

2. Create the kylo-services application run configuration.

(a) Open the Run configurations.

(b) Create a new Spring Boot run configuration.

(c) Give it a name like “KyloServerApplication”.

(d) Set “use classpath of module” property to “kylo-service-app” module.

(e) Set the “Main Class” property to “com.thinkbiganalytics.server.KyloServerApplication”.

(f) Add “dev” to list of Active Profiles.

70.8. Perform a Maven Build 367

https://kylo.io/quickstart.html
http://localhost:8400

Kylo Documentation, Release 0.9.1

(g) Add a file named “application-dev.properties” to kylo-service-app at kylo/services/service-
app/src/main/resources location. Populate properties to override from the standard “applica-
tion.properties”. Some key properties are:

security.entity.access.controlled=<value>
spring.datasource.username=<value>
spring.datasource.password=<value>

hive.datasource.username=<value>
hive.metastore.datasource.username=<value>
hive.metastore.datasource.password=<value>

modeshape.datasource.username=${spring.datasource.username}
modeshape.datasource.password=${spring.datasource.password}

nifi.service.kylo_mysql.database_user=<value>
nifi.service.kylo_mysql.password=<value>

nifi.service.kylo_metadata_service.rest_client_password=<value>

modeshape.index.dir=<value>

(h) The Kylo Spark Shell currently does not run from an IDE. When you run the server you will encounter
error stating: “Unable to determine Spark version.”

(i) If you won’t be uploading sample files or using Data Transformation or Visual Query, then you can ignore
that error and continue development.

(j) If you want to have spark shell started you need to manually run it in your sandbox by running command:

$ /opt/kylo/kylo-services/bin/run-kylo-spark-shell.sh

(k) Enable port forwarding for port 8450 in VirtualBox.

(l) Add the following lines to spark.properties in your IDE:

spark.shell.server.host=localhost
spark.shell.server.port=8450

3. Create the kylo-ui application run configuration.

(a) Open the Run configurations.

(b) Create a new Spring Boot run configuration.

(c) Give it a name like “KyloDataLakeUiApplication”.

(d) Set “use classpath of module” property to “kylo-ui-app” module.

(e) Set the “Main Class” property to “com.thinkbiganalytics.KyloUiApplication”.

(f) Add “native,auth-kylo,dev” to list of Active Profiles.

(g) Add a file named “application-dev.properties” to kylo-ui at kylo/ui/ui-app/src/main/resources location.
Add following properties:

security.auth.file.users=file:///opt/kylo/users.properties
security.auth.file.groups=file:///opt/kylo/groups.properties

4. Create users.properties in /opt/kylo and add following content:

368 Chapter 70. Developer Getting Started Guide

https://www.virtualbox.org/manual/ch06.html

Kylo Documentation, Release 0.9.1

dladmin=thinkbig
analyst=analyst
designer=designer
operator=operator

5. Create empty file groups.properties under /opt/kylo. Add permissions to both files created above: chmod 777

6. Go to Maven Projects view in IntelliJ and under Profiles check nifi.version.override and prod.

7. Run both applications.

70.12 Eclipse Configuration

1. Open Eclipse.

2. Import the Kylo project.

(a) File - Import

(b) Choose “maven” and “Existing Maven Projects” then choose next

(c) Choose the Kylo root folder. You should see all Maven modules checked

(d) Click finish

(e) Import takes a bit - if you get an error about scala plugin, just click finish to ignore it.

3. Find and open the “com.thinkbiganalytics.server.KyloServerApplication” class.

4. Right click and choose to debug as a Java application.

5. Repeat for “com.thinkbiganalytics.KyloUiApplication”.

OPTIONAL: Install the spring tools suite and run as a spring boot option

Note: Consult the Spring Boot documentation for Running Your Application for additional ways to run with spring
boot.

70.13 Web Development

Most of the Kylo UI depends on and but a few parts have been upgraded to and . New plugins should be written in
Typescript and use Angular 2 for future compatibility.

NPM should be used to configure and start your web development environment:

1. Install NPM in your development environment:

• apt-get install npm (Debian / Ubuntu)

• brew install npm (Mac)

2. Install the development packages:

$ cd kylo/ui/ui-app
$ npm install
$ npm run-script reinstall
$ npm run-script build

70.12. Eclipse Configuration 369

http://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-running-your-application.html

Kylo Documentation, Release 0.9.1

3. Start Kylo and the development server:

$ service kylo-services start
$ service kylo-ui start
$ npm run start

4. A new browser window will open showing the Kylo UI. Any changes you make will automatically refresh the
page with the new changes.

70.14 Angular Material Notes

There are a few notes worth mentioning about using AngularJS Material:

1. Do not use layout-row and layout-wrap with percents. It has been broken on Safari for a while now
with current plan to be fixed only in Angular 4.x.

2. Do not refer to Angular model in plain HTML style element, it is broken on IE. Instead use An-
gular ng-style element which works on all browsers like so ng-style="{'fill':controller.
fillColor}"

3. Do not use flex element where you don’t have to. Browsers will usually flex elements correctly. This is to
minimise the occurrence of flex being required by Safari while breaking layout on IE.

370 Chapter 70. Developer Getting Started Guide

https://github.com/angular/material/issues/10516

CHAPTER 71

Plugin APIs

71.1 Kylo UI

71.1.1 Writing Spark Function Definitions

Tern defines the definitions file format for displaying the list of functions, providing auto-completion, and showing
hints. Kylo extends this format by providing additional fields that describe how to convert the function into Scala code.

The definitions are loaded from json files matching *spark-functions.json in the Kylo classpath and merged
into a single document to be used by the Kylo UI. Duplicate functions are ignored.

Data Types

An expression may consist of may different data types but the end result is to produce a DataFrame.

Arrays

An array is a collection of zero or more literals of the same type.

Booleans

A Boolean value is either true or false.

Columns

A Column is an object that represents a DataFrame column. It has an optional alias property which defines the name
of the column.

Numbers

Numbers can be either literal integers or floating-point values. They will be automatically converted to a Column if
required.

Objects

An Object is any Scala class type. No conversions are performed on objects.

371

Kylo Documentation, Release 0.9.1

Strings

Strings should be enclosed in double quotes. They are automatically converted to a Column if required.

Definitions

Function definitions are declared in a JSON document that maps a function name to a definition. Each definition is an
object with special directives indicating the function arguments, return value, documentation, and a Spark conversion
string. The JSON document also has a special directive with the name of the document.

{
"!name": "ExampleDefinition",
"add": {
"!type": "fn(col1: Column, col2: Column) -> Column",
"!doc": "Add two numbers together.",
"!spark": "%c.plus(%c)"
"!sparkType": "column"

}
}

The above document is named ExampleDefinition as declared by the !name directive. It contains a single function
named add and the !type directive indicates it takes two Column arguments and outputs a Column. The strings for
the !doc and !type directives will be displayed in the autocomplete menu. The !spark directive defines the Spark
conversion string for converting the expression to Spark code, and the !sparkType directive indicates is produces a
Column object.

Spark Conversion String Syntax

The conversion string consists of literal characters that are copied as-is to the Spark code and conversion specifications
that either consume one of the function arguments.

The conversion specifications have the following syntax:

%[flags]conversion

Conversion

The following conversions are supported:

Type Spec-
ifier

Description Example Spark
Result

b Expects the argument to be a literal boolean, either true or false. The result
is a literal boolean.

true

c The result is a Column object. All input types are supported. new Col-
umn(“mycol”)

d Expects the argument to be a literal integer. The result is a literal integer. 123
f Expects the argument to be a literal floating-point number. The result is a

literal double.
123.5

o The result is a Scala object.
r The result is a DataFrame object.
s Expects the argument to be a literal of any type. The result is a literal string. “myval”

Flags

The following flags are supported:

372 Chapter 71. Plugin APIs

Kylo Documentation, Release 0.9.1

Flag Description Example Spark Result
? The conversion is optional and will be ignored if there are no more ar-

guments left to consume.
* The conversion should consume all remaining arguments, if any. Useful

for var-arg functions.
new Column(“arg1”), new Col-
umn(“arg2”)

, The conversion should begin with a comma. , new Column(“arg1”)
@ The result is an array of the specified type. Array(“value1”, “value2”)

Spark Types

The !sparkType directive indicates the type produced by the !spark directive.

Type Description
array A Scala array.
column A Spark SQL Column object.
dataframe A Spark SQL DataFrame object.
literal A Scala literal value.
transform A function that takes a DataFrame and returns a DataFrame.

Any other type is assumed to be a class type.

Column Functions

These functions are instance methods of the Column class.

as fn (alias: string) -> Column Gives the column an alias.

cast fn (to: string) -> Column Casts the column to a different type.

over fn (window: WindowSpec) -> Column Define a windowing column.

Resources

Additional information on the Tern JSON format is available in the section of the Tern docs.

71.2 Kylo Services

71.2. Kylo Services 373

Kylo Documentation, Release 0.9.1

374 Chapter 71. Plugin APIs

CHAPTER 72

Kylo REST API

72.1 Documentation

Kylo uses Swagger to document its REST API.

When running Kylo, you can access the documentation at http://localhost:8400/api-docs/index.html.

A sample PDF Kylo REST API Sample shows you some of the operations Kylo exposes..

72.2 Authentication

REST API calls require basic authorization header.

375

http://localhost:8400/api-docs/index.html

Kylo Documentation, Release 0.9.1

376 Chapter 72. Kylo REST API

CHAPTER 73

Cleanup Scripts

For development and sandbox environments you can leverage the cleanup script to remove all of the Kylo services as
well as Elasticsearch, ActiveMQ, and NiFi.

$ /opt/kylo/setup/dev/cleanup-env.sh

Important: Only run this in a DEV environment. This will delete all application and the MySQL schema.

In addition there is a script for cleaning up the Hive schema and HDFS folders that are related to a specific “category”
that is defined in the UI.

$ /opt/kylo/setup/dev/cleanupCategory.sh [categoryName]

Example: /opt/kylo/setup/dev/cleanupCategory.sh customers

377

Kylo Documentation, Release 0.9.1

378 Chapter 73. Cleanup Scripts

CHAPTER 74

Cloudera Docker Sandbox Deployment Guide

74.1 About

In some cases, you may want to deploy a Cloudera sandbox in AWS for a team to perform a simple proof-of-concept,
or to avoid system resource usage on the local computer. Cloudera offers a Docker image, similar to the Cloudera
sandbox, that you download and install to your computer.

Warning: Once you create the docker container called “cloudera” do not remove the container unless you intend
to delete all of your work and start cleanly. There are instructions below on how to start and stop an existing
container to retain your data.

74.2 Prerequisites

You need access to an AWS instance and permission to create an EC2 instance.

74.3 Installation

74.3.1 Step 1: Create an EC2 instance

For this document, we will configure a CoreOS AMI which is optimized for running Docker images.

1. Choose an AMI for the region in which you will configure the EC2 instance.

Note: For detailed procedures for instance, visit Running CoreOS Container Linux on EC2 on the CoreOS website.

2. Create the EC2 instance. You might want to add more disk space than the default 8GB.

379

Kylo Documentation, Release 0.9.1

3. Configure the EC2 security group.

4. After starting up the instance, Login to the EC2 instance:

$ ssh -i <private_key> core@<IP_ADDRESS>

74.3.2 Step 2: Create Script to Start Docker Container

Create a shell script to startup the Docker container. This makes it easier to create a new container if you decided to
delete it at some point and start clean.

1. Create Cloudera docker script:

$ vi startCloudera.sh

2. Add the following:

#!/bin/bash
docker run --name cloudera =

--hostname=quickstart.cloudera \
--privileged=true -t -d \
-p 8888:8888 \
-p 7180:7180 \
-p 80:80 \
-p 7187:7187 \
-p 8079:8079 \
-p 8400:8400 \
-p 8161:8161 \
cloudera/quickstart:5.7.0-0-beta /usr/bin/docker-quickstart

3. Change permissions:

$ chmod 755 startCloudera.sh

4. Start the Container:

$ /startCloudera.sh

It will have to first download the Docker image, which is about 4GB, so give it some time.

74.3.3 Step 3: Login to the Cloudera Container and Start Cloudera Manager

1. Login to the Docker container:

$ docker exec -it cloudera bash

2. Start Cloudera Manager:

$ /home/cloudera/cloudera-manager --express

3. Login to Cloudera Manager:

<EC2_HOST>:7180 (username/password is cloudera/cloudera)

4. Start all services in Cloudera Manager.

380 Chapter 74. Cloudera Docker Sandbox Deployment Guide

Kylo Documentation, Release 0.9.1

74.3.4 Step 4: Install Kylo in the Docker Container

1. Follow the Setup Wizard guide

Setup Wizard Deployment Guide

2. Login to Kylo at <EC2_HOST>:8400, and NiFi at <EC2_HOST>:8079.

74.4 Shutting down the container when not in use

EC2 instance can get expensive to run. If you don’t plan to use the sandbox for a period of time, we recommend
shutting down the EC2 instance. Here are instructions on how to safely shut down the Cloudera sandbox and CoreOS
host.

1. Login to Cloudera Manager and tell it to stop all services.

2. On the CoreOS host, type “docker stop cloudera”.

3. Shutdown the EC2 Instance.

74.5 Starting up an Existing EC2 instance and Cloudera Docker Con-
tainer

1. Start the EC2 instance.

2. Login to the CoreOS host.

3. Type “docker start cloudera” to start the container.

4. SSH into the docker container.

$ docker exec -it cloudera bash

5. Start Cloudera Manager.

$ /home/cloudera/cloudera-manager --express

6. Login to Cloudera Manager and start all services.

74.4. Shutting down the container when not in use 381

Kylo Documentation, Release 0.9.1

382 Chapter 74. Cloudera Docker Sandbox Deployment Guide

CHAPTER 75

Hortonworks Sandbox Configuration

75.1 Introduction

This guide will help you install the Hortonworks sandbox for development and RPM testing.

75.2 Install and Configure the Hortonworks Sandbox

Download the latest HDP sandbox and import it into Virtual Box. We want to change the CPU and and RAM settings:

• CPU - 4

• RAM - 10GB

75.3 Add Virtual Box Shared Folder

Adding a shared folder to Virtual Box will allow you to access the Kylo project folder outside of the VM so you can
copy project artifacts to the sandbox for testing.

Note: This should be done before starting the VM to that you can auto mount the folder.

VBox GUI > Settings > Shared Folders > Add

Folder Path = <pathToProjectFolder>
Folder Name = kylo

Choose Auto-mount so that it remembers next time you start the VM.

383

Kylo Documentation, Release 0.9.1

75.4 Open VM Ports

The following ports needs to be forwarded to the VM:

(On Virtual Box > Settings > Network > Port Forwarding

This table shows the ports to add.

Application
Name

Host
Port

Guest
Port

Comment

Kylo UI 8401 8400 Use 8401 on the HostIP side so that you can run it in your IDE under 8400
and still test in the VM

Kylo Spark
Shell

8450 8450

NiFi 8079 8079
ActiveMQ
Admin

8161 8161

ActiveMQ
JMS

61616 61616

MySQL 3306 3306

Note: HDP 2.5+ sandbox for VirtualBox now uses Docker container, which means configuring port-forwarding in
the VirtualBox UI is not enough anymore. You should do some extra steps described in:

75.5 Startup the Sandbox

1. Start the sandbox.

2. SSH into the sandbox.

$ ssh root@localhost -p 2222 (password is "kylo")

Note: You will be prompted to change your password.

3. Add the Ambari admin password.

$ ambari-admin-password-reset

After setting the password the Ambari server will be started.

384 Chapter 75. Hortonworks Sandbox Configuration

CHAPTER 76

Kerberos Installation Example - Cloudera

Note: This document was developed by going through these steps in a base CDH Sandbox 5.4, not the newer Kylo
sandbox on Cloudera distribution.

Important: This document should only be used for DEV/Sandbox purposes. It is useful to help quickly Kerberize
your Cloudera sandbox so that you can test Kerberos features.

76.1 Prerequisite

76.1.1 Java

All client node should have java installed on it.

$ java -version
version "1.7.0_80"
Java(TM) SE Runtime Environment (build 1.7.0_80-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.80-b11, mixed mode)

$ echo $JAVA_HOME
/usr/java/jdk1.7.0_80

76.1.2 Install Java Cryptography Extensions (JCE)

385

Kylo Documentation, Release 0.9.1

sudo wget -nv --no-check-certificate --no-cookies --header
→˓"Cookie:oraclelicense=accept-securebackup-cookie" http://download.oracle.com/otn-
→˓pub/java/jce/7/UnlimitedJCEPolicyJDK7.zip -O /usr/java/jdk1.7.0_80/jre/lib/security/
→˓UnlimitedJCEPolicyJDK7.zip

cd /usr/java/jdk1.7.0_80/jre/lib/security

sudo unzip UnlimitedJCEPolicyJDK7.zip

sudo cp UnlimitedJCEPolicy/* .

#sudo rm -r UnlimitedJCEPolicy*

ls -l

76.1.3 Test Java Cryptography Extension

Create a java Test.java and paste below mentioned code in it.

$ vi Test.java

import javax.crypto.Cipher;
class Test {
public static void main(String[] args) {
try {

System.out.println("Hello World!");
int maxKeyLen = Cipher.getMaxAllowedKeyLength("AES");
System.out.println(maxKeyLen);

} catch (Exception e){
System.out.println("Sad world :(");

}
}
}

Compile:

$ javac Test.java

Run test, the expected number is: 2147483647

$ java Test
Hello World!
2147483647

76.2 Install Kerberos

On a cluster, go to the master node for installation of Kerberos utilities.

1. Install a new version of the KDC server:

yum install krb5-server krb5-libs krb5-workstation

2. Using a text editor, open the KDC server configuration file, located by default here:

386 Chapter 76. Kerberos Installation Example - Cloudera

Kylo Documentation, Release 0.9.1

vi /etc/krb5.conf

3. Change the [realms] as below to “quickstart.cloudera” . Update KDC and Admin Server Information.

[logging]
default = FILE:/var/log/krb5libs.log
kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmind.log

[libdefaults]
default_realm = quickstart.cloudera
dns_lookup_realm = false
dns_lookup_kdc = false
ticket_lifetime = 24h
renew_lifetime = 7d
forwardable = true

[realms]
quickstart.cloudera = {

kdc = quickstart.cloudera
admin_server = quickstart.cloudera

}

4. Update /var/kerberos/krb5kdc/kdc.conf. Change the [realms] as “quickstart.cloudera”.

[kdcdefaults]
kdc_ports = 88
kdc_tcp_ports = 88

[realms]
quickstart.cloudera = {

#master_key_type = aes256-cts
acl_file = /var/kerberos/krb5kdc/kadm5.acl
dict_file = /usr/share/dict/words
admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab
supported_enctypes = aes256-cts:normal aes128-cts:normal
des3-hmac-sha1:normal arcfour-hmac:normal des-hmac-sha1:normal
des-cbc-md5:normal des-cbc-crc:normal

}

5. Update /var/kerberos/krb5kdc/kadm5.acl and replace EXAMPLE.COM with “quickstart.cloudera”.

*/admin@quickstart.cloudera *

6. Create the Kerberos Database. Use the utility kdb5_util to create the Kerberos database. While asking for
password , enter password as thinkbig.

kdb5_util create -s

7. Start the KDC. Start the KDC server and the KDC admin server.

/etc/rc.d/init.d/krb5kdc start
/etc/rc.d/init.d/kadmin start

Note: When installing and managing your own MIT KDC, it is very important to set up the KDC server to auto start
on boot.

76.2. Install Kerberos 387

Kylo Documentation, Release 0.9.1

chkconfig krb5kdc on
chkconfig kadmin on

8. Create a KDC admin by creating an admin principal. While asking for password , enter password as thinkbig.

kadmin.local -q "addprinc admin/admin"

9. Confirm that this admin principal has permissions in the KDC ACL. Using a text editor, open the KDC ACL
file:

vi /var/kerberos/krb5kdc/kadm5.acl

10. Ensure that the KDC ACL file includes an entry so to allow the admin principal to administer the KDC for your
specific realm. The file should have an entry:

/quickstart.cloudera

11. After editing and saving the kadm5.acl file, you must restart the kadmin process.

/etc/rc.d/init.d/kadmin restart

12. Create a user in the linux by typing below. We will use this user to test whether the Kerberos authentication is
working or not. We will first run the command hadoop fs ls / but switching to this user. And we will run the
same command again when we enable Kerberos.

adduser testUser
su testUser
hadoop fs ls /

76.3 Install Kerberos on Cloudera Cluster

1. Login to Cloudera Manager and Select Security option from Administration tab.

2. Click on Enable Kerberos.

388 Chapter 76. Kerberos Installation Example - Cloudera

Kylo Documentation, Release 0.9.1

3. Select each item and click on continue.

4. The Kerberos Wizard needs to know the details of what the script configured. Fill in the entries as follows and
click continue.

KDC Server Host: quickstart.cloudera
Kerberos Security Realm: quickstart.cloudera
Kerberos Encryption Types: aes256-cts-hmac-sha1-96

5. Select checkbox Manage krb5.conf through cloudera manager.

76.3. Install Kerberos on Cloudera Cluster 389

Kylo Documentation, Release 0.9.1

6. Enter username and password for of KDC admin user.

Username : admin/admin@quickstart.cloudera
Password : thinkbig

The next screen provides good news. It lets you know that the wizard was able to successfully authenticate.

7. Select “I’m ready to restart the cluster now” and click on continue.

390 Chapter 76. Kerberos Installation Example - Cloudera

Kylo Documentation, Release 0.9.1

8. Make sure all services started properly. Kerberos is successfully installed on cluster.

76.4 KeyTab Generation

1. Create a keytab file for Nifi user.

kadmin.local
addprinc -randkey nifi@quickstart.cloudera
xst -norandkey -k /etc/security/nifi.headless.keytab nifi@quickstart.cloudera
exit

chown nifi:hadoop /etc/security/keytabs/nifi.headless.keytab
chmod 440 /etc/security/keytabs/nifi.headless.keytab

[Optional] You can initialize your keytab file using below command.

kinit -kt /etc/security/keytabs/nifi.headless.keytab nifi

76.4. KeyTab Generation 391

Kylo Documentation, Release 0.9.1

392 Chapter 76. Kerberos Installation Example - Cloudera

CHAPTER 77

Kerberos Installation Example - HDP 2.4

Important: This document should only be used for DEV/Sandbox installation purposes. It is useful to help quickly
Kerberize your Hortonworks sandbox so that you can test Kerberos features.

77.1 Prerequisite

77.2 Java

Java must be installed on all client nodes.

$ java -version
java version "1.7.0_80"
Java(TM) SE Runtime Environment (build 1.7.0_80-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.80-b11, mixed mode)

$ echo $JAVA_HOME
/usr/java/jdk1.7.0_80

77.3 Install Java Cryptography Extensions (JCE)

sudo wget -nv --no-check-certificate --no-cookies --header "Cookie:
→˓oraclelicense=accept-securebackup-cookie" http://download.oracle.com/otn-pub/java/
→˓jce/7/UnlimitedJCEPolicyJDK7.zip -O /usr/java/jdk1.7.0_80/jre/lib/security/
→˓UnlimitedJCEPolicyJDK7.zip
cd /usr/java/jdk1.7.0_80/jre/lib/security

sudo unzip UnlimitedJCEPolicyJDK7.zip

(continues on next page)

393

Kylo Documentation, Release 0.9.1

(continued from previous page)

sudo cp UnlimitedJCEPolicy/* .
#sudo rm -r UnlimitedJCEPolicy*

ls -l

77.4 Test Java Cryptography Extension

Create a java Test.java and paste below mentioned code in it.

$ vi Test.java

import javax.crypto.Cipher;
class Test {
public static void main(String[] args) {
try {

System.out.println("Hello World!");
int maxKeyLen = Cipher.getMaxAllowedKeyLength("AES");
System.out.println(maxKeyLen);

} catch (Exception e){
System.out.println("Sad world :(");

}
}
}

Compile:

$ javac Test.java

Run test. The expected number is: 2147483647.

$ java Test

Hello World!

2147483647

77.5 Install Kerberos

On a cluster, go to the master node for installation of Kerberos utilities.

1. Install a new version of the KDC server:

yum install krb5-server krb5-libs krb5-workstation

2. Using a text editor, open the KDC server configuration file, located by default here:

vi /etc/krb5.conf

3. Change the [realms], as below, to sandbox.hortonworks.com. Update KDC and Admin Server Information.

394 Chapter 77. Kerberos Installation Example - HDP 2.4

Kylo Documentation, Release 0.9.1

[logging]
default = FILE:/var/log/krb5libs.log
kdc = FILE:/var/log/krb5kdc.log
admin_server = FILE:/var/log/kadmind.log

[libdefaults]
default_realm = sandbox.hortonworks.com
dns_lookup_realm = false
dns_lookup_kdc = false
ticket_lifetime = 24h
renew_lifetime = 7d
forwardable = true

[realms]
sandbox.hortonworks.com = {
kdc = sandbox.hortonworks.com
admin_server = sandbox.hortonworks.com
}

4. Update /var/kerberos/krb5kdc/kdc.conf. Change the [realms] as sandbox.hortonworks.com.

[kdcdefaults]
kdc_ports = 88
kdc_tcp_ports = 88

[realms]
sandbox.hortonworks.com = {

#master_key_type = aes256-cts
acl_file = /var/kerberos/krb5kdc/kadm5.acl
dict_file = /usr/share/dict/words
admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab
supported_enctypes = aes256-cts:normal aes128-cts:normal
des3-hmac-sha1:normal arcfour-hmac:normal des-hmac-sha1:normal
des-cbc-md5:normal des-cbc-crc:normal

}

5. Update /var/kerberos/krb5kdc/kadm5.acl and replace EXAMPLE.COM with sandbox.hortonworks.com.

*/admin@sandbox.hortonworks.com *

6. Create the Kerberos Database. Use the utility kdb5_util to create the Kerberos database. Enter the password:
thinkbig.

kdb5_util create -s

7. Start the KDC. Start the KDC server and the KDC admin server.

/etc/rc.d/init.d/krb5kdc start
/etc/rc.d/init.d/kadmin start

or

systemctl start krb5kdc.service
systemctl start kadmin.service

8. When installing and managing your own MIT KDC, it is important to set up the KDC server to auto-start on
boot.

77.5. Install Kerberos 395

Kylo Documentation, Release 0.9.1

chkconfig krb5kdc on
chkconfig kadmin on

or

systemctl enable krb5kdc.service
systemctl enable kadmin.service

9. Create a KDC admin by creating an admin principal. Enter the password: thinkbig.

kadmin.local -q "addprinc admin/admin"

10. Confirm that this admin principal has permissions in the KDC ACL. Using a text editor, open the KDC ACL
file:

vi /var/kerberos/krb5kdc/kadm5.acl

11. Ensure that the KDC ACL file includes an entry that allows the admin principal to administer the KDC for your
specific realm. The file should have an entry:

*/admin@sandbox.hortonworks.com *

12. After editing and saving the kadm5.acl file, restart the kadmin process.

/etc/rc.d/init.d/kadmin restart
/etc/rc.d/init.d/krb5kdc restart

or

systemctl restart kadmin.service
systemctl restart krb5kdc.service

13. Create a user in Linux by typing the adduser command as shown below. We will use this user to test whether
the Kerberos authentication is working or not. We will first run the command hadoop fs -ls / but switching to
this user. And we will run the same command again when we enable Kerberos.

adduser testUser
su testUser
hadoop fs -ls /

77.6 Install Kerberos on an HDP Cluster

1. Open Ambari and then go to admin tab and select Kerberos.

396 Chapter 77. Kerberos Installation Example - HDP 2.4

Kylo Documentation, Release 0.9.1

2. Click on enable Kerberos. Then following screen will display. Tick the checkboxes as shown in this screenshot,
then click Next.

3. Put sandbox.hortonworks.com in the KDC tab and click to test the KDC connection. Then, in Kadmin, put sand-
box.hortonworks.com as host and admin principal as *admin/admin@sandbox.hortonworks.com*, and enter the
password created in step 7.

Leave the advanced Kerberos-env and advanced krb5-conf as it is. And click Next.

77.6. Install Kerberos on an HDP Cluster 397

mailto:admin/admin@sandbox.hortonworks.com

Kylo Documentation, Release 0.9.1

4. Download the .csv file and save it.

5. Click Next through the end of the process, until finally you can click Complete.

398 Chapter 77. Kerberos Installation Example - HDP 2.4

Kylo Documentation, Release 0.9.1

Kerberos Installation Example - Cloudera

Make sure all services started properly. Kerberos is successfully installed on the cluster.

77.6. Install Kerberos on an HDP Cluster 399

Kylo Documentation, Release 0.9.1

400 Chapter 77. Kerberos Installation Example - HDP 2.4

CHAPTER 78

Events

Kylo publishes events to a message bus that you can subscribe to and react to changes in the system with custom
plugins.

Below is a listing of the events Kylo publishes.

Event Description
CategoryChangeEvent Called when a Category is created, updated, or deleted
FeedChangeEvent Called when a Feed is created, updated, or deleted
FeedProperty-
ChangeEvent

Called when a user updates the generic set of properties on a feed. See the Nifi processor
PutFeedMetadata

PreconditionTrig-
gerEvent

Called when a precondition is fired for a feed

CleanupTriggerEvent Called when a feed is being cleaned up after a delete
FeedOperationStatu-
sEvent

Called when a Job for a feed has started, stopped, succeeded, failed, or been abandoned

TemplateChangeEvent Called when a Template is created, updated, or deleted
ServiceLevelAgree-
mentEvent

As of Kylo 0.8.4, Called only when an SLA is deleted.

78.1 Event Source

All events extends the AbstractMetadataEvent object. You can find relevant source code for the events here: https://
github.com/Teradata/kylo/tree/master/metadata/metadata-api/src/main/java/com/thinkbiganalytics/metadata/api/event

78.2 Example Feed Change Listener

401

https://github.com/Teradata/kylo/blob/master/integrations/nifi/nifi-nar-bundles/nifi-core-bundle/nifi-core-processors/src/main/java/com/thinkbiganalytics/nifi/v2/metadata/PutFeedMetadata.java
https://github.com/Teradata/kylo/tree/master/metadata/metadata-api/src/main/java/com/thinkbiganalytics/metadata/api/event
https://github.com/Teradata/kylo/tree/master/metadata/metadata-api/src/main/java/com/thinkbiganalytics/metadata/api/event

Kylo Documentation, Release 0.9.1

import com.thinkbiganalytics.metadata.api.event.MetadataChange;
import com.thinkbiganalytics.metadata.api.event.MetadataEventListener;
import com.thinkbiganalytics.metadata.api.event.MetadataEventService;
import com.thinkbiganalytics.metadata.api.event.feed.FeedChangeEvent;
import com.thinkbiganalytics.metadata.api.event.feed.
→˓FeedOperationStatusEvent;
import com.thinkbiganalytics.metadata.api.feed.Feed;
import com.thinkbiganalytics.metadata.api.op.FeedOperation;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Component;

import java.util.Optional;

import javax.annotation.Nonnull;
import javax.annotation.PostConstruct;
import javax.inject.Inject;

@Component
public class ExampleFeedListener {

private static final Logger log = LoggerFactory.
→˓getLogger(ExampleFeedListener.class);

@Inject
private MetadataEventService metadataEventService;

/**
* Listen for when feeds change

*/
private final MetadataEventListener<FeedChangeEvent>

→˓feedPropertyChangeListener = new FeedChangeEventDispatcher();

/**
* Listen for when feed job executions change

*/
private final MetadataEventListener<FeedOperationStatusEvent>

→˓feedJobEventListener = new FeedJobEventListener();

@PostConstruct
public void addEventListener() {

metadataEventService.addListener(feedPropertyChangeListener);
metadataEventService.addListener(feedJobEventListener);

}

private class FeedChangeEventDispatcher implements MetadataEventListener
→˓<FeedChangeEvent> {

@Override
public void notify(@Nonnull final FeedChangeEvent metadataEvent) {

//feedName will be the 'categorySystemName.feedSystemName'
Optional<String> feedName = metadataEvent.getData().

→˓getFeedName();

(continues on next page)

402 Chapter 78. Events

Kylo Documentation, Release 0.9.1

(continued from previous page)

//the id for the feed
Feed.ID feedId = metadataEvent.getData().getFeedId();

//feed state will be NEW, ENABLED, DISABLED, DELETED
Feed.State feedState = metadataEvent.getData().getFeedState();

if (feedName.isPresent()) {
log.info("Feed {} ({}) has been {} ", feedName.get(), feedId,

→˓ metadataEvent.getData().getChange());
Feed.State state = metadataEvent.getData().getFeedState();
if (metadataEvent.getData().getChange() == MetadataChange.

→˓ChangeType.CREATE) {
//Do something on Create

} else if (metadataEvent.getData().getChange() ==
→˓MetadataChange.ChangeType.UPDATE) {

//Do something on Update
} else if (metadataEvent.getData().getChange() ==

→˓MetadataChange.ChangeType.DELETE) {
//Do something on Delete

}

}
}

}

private class FeedJobEventListener implements MetadataEventListener
→˓<FeedOperationStatusEvent> {

@Override
public void notify(FeedOperationStatusEvent event) {

//feedName will be the 'categorySystemName.feedSystemName'
String feedName = event.getData().getFeedName();

//the id for the feed
Feed.ID feedId = event.getData().getFeedId();

//This is the Job Execution Id
FeedOperation.ID jobId = event.getData().getOperationId();

//this is {STARTED, SUCCESS, FAILURE, CANCELED, ABANDONED}
FeedOperation.State jobState = event.getData().getState();

//this is CHECK or FEED. CHECK refers to a Data Confidence
→˓Job

FeedOperation.FeedType feedType = event.getData().getFeedType();

//a string message of what the event is for
String statusMessage = event.getData().getStatus();

if(event.getData().getState() == FeedOperation.State.SUCCESS){
// Do something if a Job successfully completes

}
}

}
(continues on next page)

78.2. Example Feed Change Listener 403

Kylo Documentation, Release 0.9.1

(continued from previous page)

}

404 Chapter 78. Events

CHAPTER 79

Operations Guide

79.1 Purpose

This guide provides instructions for operating and maintaining the Kylo solution. The information is used by the
Operations and Support Team in the deployment, installation, updating, monitoring and support of Kylo.

79.2 Scope

This guide is not a step-by-step process for the Operations Team, but a set of examples that we have assembled from
our previous experiences.

79.3 Audience

This guide assumes its user to be knowledgeable in IT terms and skills. As an operations and maintenance (O&M)
runbook, it describes the information necessary to effectively manage:

• Production processing

• Ongoing maintenance

• Performance monitoring

This document specifically serves to guide those who will be maintaining, supporting, and using the Kylo solution in
day-to-day operational basis.

405

Kylo Documentation, Release 0.9.1

79.4 Abbreviations

Abbreviations/Key term Definition
O&M Operations and Maintenance
CLI Command Line Interface
ES ElasticSearch

79.5 Introduction

Kylo is a software application that provides scheduling, monitoring, and control for data processing jobs. Kylo in-
cludes its own web-based interface intended for an Operations user to visualize status of processing and assist with
troubleshooting problems.

Please note, this Operations Guide is provided in its entirety, despite the fact that not all features may be utilized within
a particular solution.

79.6 Common Definitions

The following terms are used in this document or are relevant to understanding the nature of Kylo processing.

Term Definition
Job A Job consists of a sequence of processing tasks called steps.

A Job has both status and state that indicate its outcome.
Feed A feed is a pipeline, jobs are run for feeds. The “health” status of a feed (regardless of its running state)

can be visualized on the Kylo Dashboard page.
Check
Data
Job

An optional job type employed for independent data quality checks against customer data with results
contributing to a “Data Confidence” metric visible on the Dashboard page.

Step A unit of processing in a job sequence. A job consists of one or more steps. Each step also has both
status and state, similar to that of a job. Steps may capture metadata, stored in Postgres and viewable in
the application.

Job In-
stance
Id

The Job Instance and its corresponding Job Instance Id refer to a logical Job run (i.e. A Job with a set
of Job Parameters).
A Job Instance can have multiple Job Executions, but only one successful Job Execution.

Job Ex-
ecution
Id

The Job Execution and corresponding Job Execution Id refer to a single attempt to run a Job Instance.
A Job Instance can have multiple Job Executions if some fail and are restarted.

79.7 User Interface

Kylo has a web-based user interface designed for an Operations user to monitor and managing data processing. The
default URL is http://<hostname>:8400/, however the port may be configured via the application.properties.

The following sections describe characteristics of the user interface.

406 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

79.7.1 Dashboard Page

The Dashboard tab performs the role of an Operations Dashboard. Content in the page automatically refreshes showing
real-time health and statistics about data feeds and job status.

Kylo Dashboard Page

79.7.2 Key Performance Indicators

The Dashboard page has multiple indicators that help you quickly assess the health of the system:

79.7. User Interface 407

Kylo Documentation, Release 0.9.1

Provides a health status of external dependencies such as MySQL or Postgres, Hadoop
services.

Provides a summary health status of all data feeds. Details of these feeds are shown in a
table, Feed Health, also on the Dashboard Page

Optional. Displays a confidence metric updated by any Data Quality Check jobs.

Displays all running jobs.

Displays alerts for services and feeds. Click on them for more information.

79.7.3 Feed Health

The Feed Health Table provides the state and status of each data feed managed by Kylo. The state is either HEALTHY
or UNHEALTHY. The status is the status of the most recent job of the feed. You can drill into a specific feed and see
its *history* by clicking on the name of the feed in the table.

408 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

79.7.4 Active Jobs

The Active Jobs table shows currently running jobs as well as any failed jobs that require user attention. The table
displays all jobs. A user may drill-in to view *Job Details* by clicking on the corresponding Job Name cell. Jobs
can be controlled via action buttons. Refer to the *Controlling Jobs* section to see the different actions that can be
performed for a Job.

79.7.5 Understanding Job Status

Jobs have two properties that indicate their status and state, Job Status and Exit Code respectively.

79.7.6 Job Status

The Job Status is the final outcome of a Job.

• COMPLETED – The Job finished.

• FAILED – The Job failed to finish.

• STARTED – The Job is currently running.

• ABANDONED – The Job was abandoned.

79.7.7 Job Exit Codes

The Exit Code is the state of the Job.

• COMPLETED – The Job Finished Processing

• EXECUTING - The Job is currently in a processing state

• FAILED – The Job finished with an error

• ABANDONED – The Job was manually abandoned

79.7. User Interface 409

Kylo Documentation, Release 0.9.1

79.7.8 Controlling Jobs

The image below illustrates the different actions that can be performed based on its Job Status:

79.7.9 Feed History Page

Kylo stores history of each time a feed is executed. You can access this data by clicking on the specific feed name in
the Feed Health table on the Dashboard page. Initially the Feeds table provides high-level data about the feed.

You can get more data by clicking on a job in the Feed Jobs table. This will go into the Job Details page for that job.

79.7.10 Job History Page

Job history can be accessed in the Jobs Tab.

410 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

The Job History page provides a searchable table displaying job information, seen below. You can click on the Job
Name to view the *Job Details* for the selected Job.

79.7.11 Job Detail Drill-Down

Clicking on the Job Name from either the Jobs Tab or Feeds Tab accesses the Job Details. It shows all information
about a job including any metadata captured during the Job run.

The detail page is best source for troubleshooting unexpected behavior of an individual job.

79.7. User Interface 411

Kylo Documentation, Release 0.9.1

79.7.12 Job Status Info

Job Status information such as start and run time, along with any control actions, are displayed on the right.

412 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

79.7.13 Job Parameters

A Job has a set of parameters that are used as inputs into that job. The top section of the Job Details page displays these

parameters.

79.7.14 Job Context Data

As a Job runs operational metadata is captured and step status is visible in the Job page.

This metadata is stored in the Job Context section. Access this section by clicking on the Execution Context Data
button next to the Job Parameters button in the previous figure.

79.7.15 Step Context Data

A job can have multiple steps, each of which capture and store metadata as it relates to that step.

79.7. User Interface 413

Kylo Documentation, Release 0.9.1

79.7.16 Scheduler Page

The scheduling of SLAs can be viewed and via the “Scheduler” tab.

This allows a user to pause the entire Scheduler, pause specific SLAs, and even manually trigger SLAs to execute.

414 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

79.7.17 Changing an SLA

To change the schedule of a given SLA :

1. Click on the SLA tab in the Feed Manager site.

2. Select the SLA whose schedule you would like to change.

3. Edit the configurations and click Save SLA.

79.7. User Interface 415

Kylo Documentation, Release 0.9.1

79.7.18 Filtering Job History

The following section describes how to filter the job and feed history tables. Kylo provides a dynamic filter capability
for any table displaying multiple rows of information.

79.7.19 Data Table Operations

Sorting Content

All tables allow for the columns to be sorted. An arrow will appear next to the column indicating the sort direction.
Click on the column header to change the sort.

Filtering Tables

All Tables in Kylo have a Filter bar above them. The rows can be filtered using the search bar at the top.

416 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

Clicking on the icon in the top right of the table will display the table so that you can sort by column.

Click on any of the column headers, or click on the icon in the top right of the table, to sort.

79.7.20 Charts and Pivot Tables

The Charts tab allows you to query and perform data analysis on the Jobs in the system. The right panel allows you to
provide filter input that will drive the bottom Pivot Chart panel.

79.7. User Interface 417

Kylo Documentation, Release 0.9.1

The Pivot Charts panel is a rich drag and drop section that allows you to create custom tables and charts by dragging
attributes around. The drop down at the top left allows you to choose how you want to display the data

The data attributes at the top can be dragged into either Column Header or Row level attributes for the rendered pivot.

418 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

Clicking the down arrow on each attribute allows you to filter out certain fields.

This interface allows you to filter the job data and create many different combinations of tables and charts.

79.8 Software Components

The following provides a basic overview of the components and dependencies for Kylo:

• Web-based UI (tested with Safari, Firefox, Chrome)

• Embedded Tomcat web container (configurable HTTP port)

• Java 8

• Stores job history and metadata in Postgres or MySQL

• NiFi 1.x+

• ActiveMQ

79.8. Software Components 419

Kylo Documentation, Release 0.9.1

• Elasticsearch (optional, but required for full feature set)

79.9 Installation

Please refer to the installation guide for Kylo installation procedures.

79.10 Application Configuration

Configuration files for Kylo are located at:

/opt/kylo/kylo-services/conf/application.properties
/opt/kylo/kylo-ui/conf/application.properties

79.10.1 Application Properties

The application.properties file in kylo-services specifies most of the standard configuration in pipeline.

Note: Any change to the application properties will require an application restart.

Below is a sample properties file with Spring Datasource properties for spring batch and the default data source:

Note: Cloudera default password for root access to mysql is “cloudera”.

spring.datasource.url=jdbc:mysql://localhost:3306/kylo
spring.datasource.username=root
spring.datasource.password=
spring.datasource.maxActive=10
spring.datasource.validationQuery=SELECT 1
spring.datasource.testOnBorrow=true
spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.jpa.database-platform=org.hibernate.dialect.MySQL5InnoDBDialect
spring.jpa.open-in-view=true
#
#Postgres datasource configuration
#
#spring.datasource.url=jdbc:postgresql://localhost:5432/pipeline_db
#spring.datasource.driverClassName=org.postgresql.Driver
#spring.datasource.username=root
#spring.datasource.password=thinkbig
#spring.jpa.database-platform=org.hibernate.dialect.PostgreSQLDialect
###
Current available authentication/authorization profiles:
* auth-simple - Uses authenticationService.username and authenticationService.
→˓password for authentication (development only)
* auth-file - Uses users.properties and roles.properties for authentication and
→˓role assignment
#
spring.profiles.active=auth-simple
authenticationService.username=dladmin

(continues on next page)

420 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

(continued from previous page)

authenticationService.password=thinkbig
###Ambari Services Check
ambariRestClientConfig.username=admin
ambariRestClientConfig.password=admin
ambariRestClientConfig.serverUrl=http://127.0.0.1:8080/api/v1
ambari.services.status=HDFS,HIVE,MAPREDUCE2,SQOOP
###Cloudera Services Check
#clouderaRestClientConfig.username=cloudera
#clouderaRestClientConfig.password=cloudera
#clouderaRestClientConfig.serverUrl=127.0.0.1
#cloudera.services.status=
##HDFS/[DATANODE,NAMENODE,SECONDARYNAMENODE],HIVE/[HIVEMETASTORE,HIVESERVER2],YARN,
→˓SQOOP
Server port
#
server.port=8420
#
General configuration - Note: Supported configurations include STANDALONE, BUFFER_
→˓NODE_ONLY, BUFFER_NODE, EDGE_NODE
#
application.mode=STANDALONE
#
Turn on debug mode to display more verbose error messages in the UI
#
application.debug=true
#
Prevents execution of jobs at startup. Change to true, and the name of the job that
→˓should be run at startup if we want that behavior.
#
spring.batch.job.enabled=false
spring.batch.job.names=
#spring.jpa.show-sql=true
#spring.jpa.hibernate.ddl-auto=validate
NOTE: For Cloudera metadata.datasource.password=cloudera is required
metadata.datasource.driverClassName=com.mysql.jdbc.Driver
metadata.datasource.url=jdbc:mysql://localhost:3306/kylo
metadata.datasource.username=root
metadata.datasource.password=
metadata.datasource.validationQuery=SELECT 1
metadata.datasource.testOnBorrow=true

NOTE: For Cloudera hive.datasource.username=hive is required.

hive.datasource.driverClassName=org.apache.hive.jdbc.HiveDriver
hive.datasource.url=jdbc:hive2://localhost:10000/default
hive.datasource.username=
hive.datasource.password=
NOTE: For Cloudera hive.metastore.datasource.password=cloudera is required.
##Also Clouder url should be /metastore instead of /hive
hive.metastore.datasource.driverClassName=com.mysql.jdbc.Driver
hive.metastore.datasource.url=jdbc:mysql://localhost:3306/hive
#hive.metastore.datasource.url=jdbc:mysql://localhost:3306/metastore
hive.metastore.datasource.username=root
hive.metastore.datasource.password=
hive.metastore.validationQuery=SELECT 1
hive.metastore.testOnBorrow=true
nifi.rest.host=localhost

(continues on next page)

79.10. Application Configuration 421

Kylo Documentation, Release 0.9.1

(continued from previous page)

nifi.rest.port=8079
elasticsearch.host=localhost
elasticsearch.port=9300
elasticsearch.clustername=demo-cluster
used to map Nifi Controller Service connections to the User Interface
naming convention for the property is nifi.service.NIFI_CONTROLLER_SERVICE_NAME.
→˓NIFI_PROPERTY_NAME
##anything prefixed with nifi.service will be used by the UI. Replace Spaces with
→˓underscores and make it lowercase.
nifi.service.mysql.password=
nifi.service.example_mysql_connection_pool.password=
jms.activemq.broker.url:tcp://localhost:61616
jms.client.id=thinkbig.feedmgr
nifi Property override with static defaults
##Static property override supports 2 usecases
1) store properties in the file starting with the prefix defined in the
→˓"PropertyExpressionResolver class" default = config.
2) store properties in the file starting with "nifi.<PROCESSORTYPE>.<PROPERTY_KEY>
→˓where PROCESSORTYPE and PROPERTY_KEY are all lowercase and the spaces are
→˓substituted with underscore
##Below are Ambari configuration options for Hive Metastore and Spark location
config.hive.schema=hive
nifi.executesparkjob.sparkhome=/usr/hdp/current/spark-client
##cloudera config
#config.hive.schema=metastore
#nifi.executesparkjob.sparkhome=/usr/lib/spark
how often should SLAs be checked
sla.cron.default=0 0/5 * 1/1 * ? *

79.10.2 Kylo Metadata

Kylo stores its metadata in the database configured in /opt/kylo/kylo-services/conf/application.properties in the fol-
lowing lines:

metadata.datasource.driverClassName=com.mysql.jdbc.Driver
metadata.datasource.url=jdbc:mysql://localhost:3306/kylo
metadata.datasource.username=root
metadata.datasource.password=

The metadata database needs to be configured in order to have Kylo metadata backed up and recovered.

For example, MySQL backup can be configured using the methods provided at
http://dev.mysql.com/doc/refman/5.7/en/backup-methods.html.

79.10.3 NiFi Data

Data and metadata in NiFi is intended to be transient, and depends on the state of the flows in NiFi. However, NiFi
can be configured to keep metadata and data in certain directories, and those directories can be backed up as seen fit.
For example, in the nifi.properties file, changing

nifi.flow.configuration.file=/opt/nifi/data/conf/flow.xml.gz

will have NiFi store its flows in /opt/nifi/data/conf/flow.xml.gz.

422 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

With a default Kylo installation, NiFi is configured to put all of its flows, templates, data in the content repository, data
in the flowfile repository, and data in the provenance repository in /opt/nifi/data. For more information about these
configurations, the NiFi system administrator’s guide is the authority.

79.11 Startup and Shutdown

Kylo service automatically starts on system boot.

• Manual startup and shutdown from command-line:

$ sudo /etc/init.d/kylo-services start
$ sudo /etc/init.d/kylo-ui start
$ sudo /etc/init.d/kylo-spark-shell start

$ sudo /etc/init.d/kylo-services stop
$ sudo /etc/init.d/kylo-ui stop
$ sudo /etc/init.d/kylo-spark-shell stop

79.12 Log Files

Kylo uses Log4J as its logging provider.

• Default location of application log file is:

/var/log/kylo-<ui, services, or spark-shell>/

• Log files roll nightly with pipeline-application.log.<YYYY-MM-DD>

• Log levels, file rotation, and location can be configured via:

/opt/kylo/kylo-<ui, services, or
spark-shell>/conf/log4j.properties

79.13 Additional Configuration

The following section contains additional configuration that is possible.

79.13.1 Configuring JVM Memory

You can adjust the memory setting of the Kylo Service using the KYLO_SERVICES_OPTS environment variable.
This may be necessary if the application is experiencing OutOfMemory errors. These would appear in the log files.

export KYLO_SERVICES_OPTS="-Xmx2g"

The setting above would set the Java maximum heap size to 2 GB.

79.11. Startup and Shutdown 423

Kylo Documentation, Release 0.9.1

79.13.2 Service Status Configuration

The Dashboard page displays Service Status as a Key Performance Indicator. The list of services is configurable using
the following instructions:

Viewing Service Details

Within Kylo on the Dashboard tab the “Services” indicator box shows the services it is currently monitoring. You can
get details of this by clicking on the Services tab:

424 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

The Services Indicator automatically refreshes every 15 seconds to provide live updates on service status.

Example Service Configuration

The below is the service configuration monitoring 4 services:

ambari.services.status=HDFS,HIVE,MAPREDUCE2,SQOOP

79.14 Migrating Templates and Feeds

79.14.1 Exporting Registered Templates

In Kylo, a template can be exported from one instance of Kylo to another. To export a template, navigate to the Feed
Manager site by clicking Feed Manager on the left pane.

79.14. Migrating Templates and Feeds 425

Kylo Documentation, Release 0.9.1

Then navigate to the Templates tab. All of the templates that have been registered in this instance of Kylo will be listed

here.

To export a template, click the Export button for that template. This will download a zip archive of the template.

79.14.2 Importing Registered Templates

To import a registered template, on the Templates tab click on the button in the top right. Select Import from File.

426 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

Browse for the zip archive of the registered template, select whether or not to overwrite any existing registered tem-
plates with the same name, and click upload.

The template is now in the list of registered templates, and a feed can be created from it. This will also import the
associated NiFi template into NiFi.

79.14.3 Exporting Feeds

To export a feed for deployment in another instance of Kylo, click on the Feeds tab. Similarly to the templates page,
there will be a list, this time with feeds instead of templates. Click the export button to export a feed as a zip archive.

79.14. Migrating Templates and Feeds 427

Kylo Documentation, Release 0.9.1

79.14.4 Importing Feeds

To import a feed, click the button in the top right of the Feeds page. Click “Import” text at the top of the screen.

Browse for the exported feed and then click Import Feed.

428 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

If the import is successful, you should now see a running feed in the Feeds tab.

79.14.5 Altering Feed Configurations

A feed that has been imported may have configurations specific to an environment, depending on its registered tem-
plate. To change configurations on a feed, click on the Feeds tab in the Feed Manager site and then click on the name
of the feed you want to update. A list of configurations will be present.

Click on the icon to allow editing the fields. When done editing the fields for a section, click Save.

79.14. Migrating Templates and Feeds 429

Kylo Documentation, Release 0.9.1

Kylo recreates the flow in NiFi with the new values. Keep in mind that the values that are configurable here are
determined by the registered template, so registered templates need to expose environment-specific properties if they
are to be configured or updated at a feed level.

79.14.6 Updating Sensitive Properties in NiFi

Some NiFi processors and controller services have properties that are deemed sensitive, and are therefore not saved
when exporting from Kylo. Because of this, some Kylo templates and feeds are not directly portable from one instance
of Kylo to another, without some changes in NiFi. In these situations, sensitive values need to be entered directly into
NiFi running on the target environment, and then the changes must be saved in a new NiFi template and used to
overwrite the imported NiFi template. If the sensitive properties are only within controller services for the imported
artifact, then the controller service must be disabled, the sensitive value entered, and the controller service re-enabled,
but a new NiFi template does not need to be made.

It is uncommon for NiFi processors to have sensitive properties, and is most often seen in controller services, such as
a DBCPConnectionPool for connection to a database. If the controller services used by a template or feed are already
in existence in NiFi in the target environment, then Kylo uses those controller services. This issue only exists when
importing a template or feed that has NiFi processors with sensitive properties or that use controller services that do
not exist in the target environment.

79.14.7 Continuous Integration / Continuous Deployment (CICD)

Kylo currently does not have built-in or integrated CICD. However, Kylo allows you to export both templates (along
with any registered properties) and feeds that can then be imported to any environment.

The following approach for CICD should be incorporated:

1. Build a flow in Nifi and get it configured and working in a dev instance of Nifi and Kylo as a Feed.

Once its ready to be tested export that Feed from Kylo. This export is a zip containing the feed metadata along
with the categories and templates used to create the feed.

Have a separate VM running Kylo and NiFi. This would be where the scripts would create, run, and test the
feeds and flows.

Have a separate Script/Maven project running to instantiate this feed and run it. This could look something like
the following: Have a Maven module running that has a TestCase that looks for these exported feed zip files and
then uses NiFi and Kylos Rest apis to create them, run the feed, verify the results, and then tear down the flow.

430 Chapter 79. Operations Guide

Kylo Documentation, Release 0.9.1

Kylo operates over REST and has many rest endpoints that can be called to achieve the same results as you see
in the Kylo UI. For example importing a feed can be done by posting the zip file to the endpoint:

/v1/feedmgr/admin/import-feed

2. Once the tests all are passed you could take that exported Feed/Template, save it in a version control system (i.e.
git), and import it into a different environment.

The graphic below depicts an example of an overall CICD ecosystem that could be implemented with Kylo with
an approach similar to what Think Big R&D has put forward.

79.14.8 Migrating Kylo and NiFi Extensions

If custom NiFi or Kylo plugins/extensions have been built, they must copied to all instances of NiFi and Kylo where
you wish to use them. Custom NiFi extensions are packaged in .nar format, and must be place in NiFi’s lib directory.
With a default Kylo installation, this directory is /opt/nifi/current/lib. Place all custom .nar files there, and restart the
NiFi service.

Custom Kylo plugins belong in the /opt/kylo/kylo-services/plugin directory in a default Kylo installation. Place the
.jar files for custom plugins in this directory and manually start and stop the kylo-services service.

79.15 Operational Considerations

When considering promoting Kylo/NiFi metatdata you will need to restart Kylo:

• Upon changing/adding any new NiFi processors/services (changing code that creates a new Nifi plugin .nar file)
you will need to bounce NiFi

• Upon changing/adding any new Kylo plugin/extension (changing the java jar) you will need to bounce Kylo
(kylo-services)

79.15. Operational Considerations 431

Kylo Documentation, Release 0.9.1

432 Chapter 79. Operations Guide

CHAPTER 80

Troubleshooting & Tips

80.1 Tuning the ExecuteSparkJob Processor

80.1.1 Problem

By default, the ExecuteSparkJob processor is configured to run in local or yarn-client mode. When a Hadoop cluster
is available, it is recommended that the properties be updated to make full use of the cluster.

80.1.2 Solution

Your files and jars should be made available to Spark for distributing across the cluster. Additional configuration may
be required for Spark to run in yarn-cluster mode.

1. Add the DataNucleus jars to the “Extra Jars” parameter:

(a) /usr/hdp/current/spark-client/lib/datanucleus-api-jdo-x.x.x.jar

(b) /usr/hdp/current/spark-client/lib/datanucleus-core-x.x.x.jar

(c) /usr/hdp/current/spark-client/lib/datanucleus-rdbms-x.x.x.jar

2. Add the hive-site.xml file to the “Extra Files” parameter:

(a) For Cloudera, this file is at /etc/hive/conf.cloudera.hive/hive-site.xml.

(b) For Hortonworks, this file is at /usr/hdp/current/spark-client/conf/hive-site.xml.

3. The “Validate and Split Records” and “Profile Data” processors from standard-ingest require access to the json
policy file. Add “${table_field_policy_json_file}” to the “Extra Files” properties to make this file available.

433

Kylo Documentation, Release 0.9.1

4. The “Execute Script” processor from the data-transformation reusable template requires access to the Scala
script.

(a) Change “MainArgs” to: ${transform_script_file:substringAfterLast('/')}

(b) Add the following to “Extra Files”: ${transform_script_file}

Additionally, you can update your Spark configuration with the following:

1. It is ideal to have 3 executors per node minus 1 used by the manager:

(a) num-executor = 3 * (number of nodes) - 1

2. Executor cores should be either 4, 5, or 6 depending on the total number of available cores. This should be
tested. Starting with 6 tends to work well:

(a) spark.executor.cores = 6

3. Determine the total memory using the following equation:

(a) total.memory (GB) = yarn.nodemanager.resource.memory-mb * (spark.executor.cores /
yarn.nodemanager.resource.cpu-vcores)

4. Use total.memory and split it between spark.executor.memory and spark.yarn.executor.memoryOverhead (15-
20% of total memory):

(a) spark.yarn.executor.memoryOverhead = total.memory * (0.15)

(b) spark.executor.memory = total.memory - spark.yarn.executor.memoryOverhead

80.2 Dealing with non-standard file formats

80.2.1 Problem

You need to ingest a file with a non-standard format.

434 Chapter 80. Troubleshooting & Tips

Kylo Documentation, Release 0.9.1

80.2.2 Solution

There are two possible solutions:

1. You may write a custom SerDe and register that SerDe in HDFS. Then specify the use of the SerDe in the source
format field of the schema tab during feed creation.

(a) Here’s an example SerDe that reads ADSB files: https://github.com/gm310509/ADSBSerDe

(b) The dependencies in the pom.xml file may need to be changed to match your Hadoop environment.

2. You can use two feeds: 1) ingest; 2) use the wrangler to manipulate the fields into columns:

(a) Create an ingest field, manually define the schema as a single field of type string. You can just call that
field “data”.

(b) Make sure the format specification doesn’t conflict with data in the file, i.e., tabs or commas which might
cause it to get split.

(c) Once ingested, create a data transform feed to wrangle the data using the transform functionsHi.

(d) Here’s an example of converting the weird ADSB format into JSON then converting into fields:

1 select(regexp_replace(data, "([\\w-.]+)\t([\\w-.]+)", "\"$1\":\"$2\"").as("data"))
2 select(regexp_replace(data, "\" *\t\"", "\",\"").as("data"))
3 select(concat("{", data, "}").as("data"))
4 select(json_tuple(data, "clock", "hexid", "ident", "squawk", "alt", "speed",

→˓"airGround", "lat", "lon", "heading"))
5 select(c0.as("clock"), c1.as("hexid"), c2.as("ident"), c3.as("squawk"), c4.as("alt"),

→˓ c5.as("speed"), c6.as("airGround"), c7.as("lat"), c8.as("lon"), c9.as("heading"))

80.3 Merge Table fails when storing as Parquet using HDP

80.3.1 Problem

There is a bug with Hortonworks where a query against a Parquet backed table fails while using single or double
quotes in the value names. For example:

hive> select * from users_valid where processing_dttm='1481571457830';
OK
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
Failed with exception java.io.IOException:java.lang.IllegalArgumentException: Column
→˓[processing_dttm] was not found in schema!

80.3.2 Solution

You need to set some Hive properties for queries to work in Hive. These forum threads explain how to set the correct
property:

1. https://community.hortonworks.com/questions/47897/illegalargumentexception-when-select-with-where-cl.
html

2. https://community.hortonworks.com/questions/40445/querying-a-partition-table.html

3. On the Hive command line you can set the following property to allow quotes:

80.3. Merge Table fails when storing as Parquet using HDP 435

https://github.com/gm310509/ADSBSerDe
https://community.hortonworks.com/questions/47897/illegalargumentexception-when-select-with-where-cl.html
https://community.hortonworks.com/questions/47897/illegalargumentexception-when-select-with-where-cl.html
https://community.hortonworks.com/questions/40445/querying-a-partition-table.html

Kylo Documentation, Release 0.9.1

set hive.optimize.ppd = false;

80.4 NiFi becomes non-responsive

80.4.1 Problem

NiFi appears to be up but the UI is no longer functioning. NiFi may be running low on memory. There may be PID
files in the /opt/nifi/current directory.

80.4.2 Solution

Increase memory to NiFi by editing /opt/nifi/current/conf/boostrap.conf and setting the following line:

java.arg.3=-Xmx3g

Additionally, it may also be necessary to create swap space but this is not recommended by NiFi for performance
reasons.

80.5 Automated Feed and Template Importing

80.5.1 Problem

Feeds and templates should be automatically imported into the staging or production environment as part of a contin-
uous integration process.

80.5.2 Solution

The Kylo REST API can be used to automate the importing of feeds and templates.

Templates can be imported either as an XML or a ZIP file. Set the overwrite parameter to true to indicate that existing
templates should be replaced otherwise an error will be returned. Set the createReusableFlow parameter to true if the
template is an XML file that should be imported as a reusable template. The importConnectingReusableFlow param-
eter indicates how to handle a ZIP file that contains both a template and its reusable flow. The NOT_SET value will
cause an error to be returned if the template requires a reusable flow. The YES value will cause the reusable flow to
be imported along with the template. The NO value will cause the reusable flow to be ignored and the template to be
imported as normal.

curl -F file=@<path-to-template-xml-or-zip> -F overwrite=false -F
→˓createReusableFlow=false -F importConnectingReusableFlow=NOT_SET -u <kylo-user>:
→˓<kylo-password> http://<kylo-host>:8400/proxy/v1/feedmgr/admin/import-template

Feeds can be imported as a ZIP file containing the feed metadata and NiFi template. Set the overwrite parameter
to true to indicate that an existing feed and corresponding template should be replaced otherwise an error will be
returned. The importConnectingReusableFlow parameter functions the same as the corresponding parameter for im-
porting a template.

curl -F file=@<path-to-feed-zip> -F overwrite=false -F
→˓importConnectingReusableFlow=NOT_SET -u <kylo-user>:<kylo-password> http://<kylo-
→˓host>:8400/proxy/v1/feedmgr/admin/import-feed

436 Chapter 80. Troubleshooting & Tips

Kylo Documentation, Release 0.9.1

80.6 Spark job failing on sandbox with large file

80.6.1 Problem

If running on a sandbox (or small cluster) the spark executor may get killed due to OOM when processing large files
in the standard ingest flow. The flow will route to failed flow but there will be no error message. Look for Exit Code
137 in /var/log/nifi/nifi-app.log. This indicates an OOM issue.

80.6.2 Solution

On a single-node sandbox it is better to run Spark in local mode than yarn-client mode and simply give Spark enough
memory to perform its task. This eliminates all the YARN scheduler complications.

1. In the standard-ingest flow, stop and alter the ExecuteSparkJob processors:

(a) Set the SparkMaster property to local instead of yarn-client.

(b) Increase the Executor Memory property to at least 1024m.

2. Start the processors.

80.7 NiFi hangs executing Spark task step

80.7.1 Problem

Apache NiFi flow appears to be stuck inside the Spark task such as “Validate and Split Records” step. This symptom
can be verified by viewing the YARN jobs. The Spark job appears to be running and there is a Hive job queued to run
but never launched: http://localhost:8088/cluster

So what is happening? Spark is executing a Hive job to insert data into a Hive table but the Hive job never gets YARN
resources. This is a configuration problem that leads to a deadlock. Spark will never complete because the Hive job
will never get launched. The Hive job is blocked by the Spark job.

80.7.2 Solution

First you will need to clean up the stuck job then re-configure the YARN scheduler.

To clean up the stuck job, from the command-line as root:

1. Obtain the PID of the Spark job:

ps -ef | grep Spark | grep Validator

2. Kill the Spark job:

kill <pid>

Configure YARN to handle additional concurrent jobs:

1. Increase the maximum percent with the following parameter (see: https://hadoop.apache.org/docs/r0.23.11/
hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html):

yarn.scheduler.capacity.maximum-am-resource-percent=0.8

80.6. Spark job failing on sandbox with large file 437

http://localhost:8088/cluster
https://hadoop.apache.org/docs/r0.23.11/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r0.23.11/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html

Kylo Documentation, Release 0.9.1

2. Restart the cluster or all affected services.

3. Restart Apache NiFi to re-initialized Thrift connection pool:

service nifi restart

Note: In Ambari, find this under Yarn | Configs (advanced) | Scheduler.

80.8 Spark SQL fails on empty ORC and Parquet tables

80.8.1 Problem

Your spark job fails when running in HDP 2.4 or 2.5 while interacting with an empty ORC table. A likely error that
you will see is:

ExecuteSparkJob[id=1fb1b9a0-e7b5-4d85-87d2-90d7103557f6] java.util.
→˓NoSuchElementException: next on empty iterator

This is due to a change Hortonworks added that modified how it loads the schema for the table.

80.8.2 Solution

To fix the issue, you can take these steps:

1. On the edge node, edit the file: /usr/hdp/current/spark-client/conf/spark-defaults.conf

2. Add these configuration entries to the file:

spark.sql.hive.convertMetastoreOrc false
spark.sql.hive.convertMetastoreParquet false

See

80.9 High Performance NiFi Setup

80.9.1 Problem

The NiFi team published an article on how to extract the most performance from Apache NiFi.

80.9.2 Solution

See

438 Chapter 80. Troubleshooting & Tips

Kylo Documentation, Release 0.9.1

80.10 RPM install fails with ‘cpio: read’ error

80.10.1 Problem

Kylo rpm install fails giving a ‘cpio: read’ error.

80.10.2 Solution

This problem occurs if the rpm file is corrupt or not downloaded properly. Try re-downloading the Kylo rpm from the
Kylo website.

80.11 Accessing Hive tables from Spark

80.11.1 Problem

You receive a NoSuchTableException when trying to access a Hive table from Spark.

80.11.2 Solution

Copy the hive-site.xml file from Hive to Spark.

For Cloudera, run the following command:

cp /etc/hive/conf/hive-site.xml /usr/lib/spark/conf/

80.12 Compression codec not found for PutHDFS folder

80.12.1 Problem

The PutHDFS processor throws an exception like:

java.lang.IllegalArgumentException: Compression codec com.hadoop.compression.lzo.
→˓LzoCodec not found.

80.12.2 Solution

Edit the /etc/hadoop/conf/core-site.xml file and remove the failing codec from the io.compression.codecs property.

80.13 Creating a cleanup flow

80.13.1 Problem

When deleting a feed it is sometimes useful to run a separate NiFi flow that will remove any HDFS folders or Hive
tables that were created by the feed.

80.10. RPM install fails with ‘cpio: read’ error 439

Kylo Documentation, Release 0.9.1

80.13.2 Solution

1. You will need to have a controller service of type JmsCleanupEventService. This service has a Spring Context
Service property that should be connected to another service of type SpringContextLoaderService.

2. In your NiFi template, create a new input processor of type TriggerCleanup. This processor will be run auto-
matically when a feed is deleted.

3. Connect additional processors such as RemoveHDFSFolder or DropFeedTables as needed.

80.14 Accessing S3 from the data wrangler

80.14.1 Problem

You would like to access S3 or another Hadoop-compatible filesystem from the data wrangler.

80.14.2 Solution

The Spark configuration needs to be updated with the path to the JARs for the filesystem.

To access S3 on HDP, the following must be added to the spark-env.sh file:

export SPARK_DIST_CLASSPATH=$(hadoop classpath)

Additional information is available from the .

80.15 Dealing with XML files

80.15.1 Problem

You need to ingest an XML file and parse into Hive columns.

80.15.2 Solution

1. You can use two feeds: 1) ingest; 2) use the wrangler to manipulate the fields into columns:

(a) Create an ingest field and manually define the schema as a single field of type string. You can just call
that field “data”.

(b) Make sure the format specification doesn’t conflict with data in the file, i.e. tabs or commas which might
cause it to get split.

(c) Once ingested, create a data transform feed to wrangle the data using the transform functions.

(d) Here’s an example of converting XML to columns using wrangler functions:

80.15.3 XML Explode

440 Chapter 80. Troubleshooting & Tips

Kylo Documentation, Release 0.9.1

1 select(regexp_replace(contents, "(?s).*<TicketDetails>\\s*<TicketDetail>\\s*", "").
→˓as("xml"))

2 select(regexp_replace(xml, "(?s)</TicketDetails>.*", "").as("xml"))
3 select(split(xml, "<TicketDetail>\\s*").as("TicketDetails"))
4 select(explode(TicketDetails).as("TicketDetail"))
5 select(concat("<TicketDetail>", TicketDetail).as("TicketDetail"))
6 xpath_int(TicketDetail, "//Qty").as("Qty")
7 xpath_int(TicketDetail, "//Price").as("Price")
8 xpath_int(TicketDetail, "//Amount").as("Amount")
9 xpath_int(TicketDetail, "//NetAmount").as("NetAmount")

10 xpath_string(TicketDetail, "//TransDateTime").as("TransDateTime")
11 drop("TicketDetail")

80.16 Dealing with fixed width files

80.16.1 Problem

You need to load a fixed-width text file.

80.16.2 Solution

This is possible to configure with the schema tab of the feed creation wizard. You can set the SerDe and properties:

1. Create an ingest feed.

2. When at the schema tab look for the field (near bottom) specifying the source format.

3. Manually build the schema since Kylo won’t detect the width.

4. Place text as follows in the field substituting regex based on the actual columns:

ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
WITH SERDEPROPERTIES ("input.regex" = "(.{10})(.{20})(.{20})(.{20})(.{5}).*")

80.17 Dealing with custom SerDe or CSV files with quotes and es-
cape characters

80.17.1 Problem

You need to load a CSV file with surrounding quotes and don’t want those quotes removed.

80.17.2 Solution

This is possible to configure within the schema tab of the ingest feed creation, you can set the SerDe and properties:

1. Create an ingest feed.

2. When at the schema tab look for the field (near bottom) specify the source format.

3. See the Apache wiki .

4. Place text as follows in the field:

80.16. Dealing with fixed width files 441

Kylo Documentation, Release 0.9.1

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
WITH SERDEPROPERTIES (

"separatorChar" = ",",
"quoteChar" = "\\\\"",
"escapeChar"="\\\\\\\\");

)

Notice the double escape required!

80.18 Configuration on a Node with Small Root Filesystem

80.18.1 Problem

The node that Kylo will run on has a small root filesystem. There are other mounts that contain larger space but in
particular, the following directories contain 30GB or less.

• /opt which is used for libraries, executables, configs, etc

• /var which is used for logs, storage, etc

• /tmp which is used for processing data

For Kylo, these directories get filled up very quickly and this causes all processes on the edge node to freeze.

80.18.2 Solution

In general, the solution is to move all the large files onto the larger data mount. For this solution, the /data directory is
considered to be the largest and most ideal location to contain Kylo artifacts (logs, storage, etc).

To alleviate the disk space issues, these steps were taken to move items to the /data directory

Relocate MySQL

The default location of MySQL is /var/lib/mysql. MySQL will fill up the root partition with the default configuration
so the storage volumes for MySQL must be migrated to /data/mysql.

1. Stop MySQL: service mysql stop

2. Copy data over to new location: rsync -av /var/lib/mysql /data/

3. Backup the existing data: mv /var/lib/mysql /var/lib/mysql.bak

4. Backup the existing my.cnf: cp /etc/my.cnf /etc/my.cnf.bak

5. Update MySQL config with new location with the values below: vi /etc/my.cnf

(a) Under [mysqld], set datadir = /data/mysql

6. Start MySQL: service mysql start

7. Back up old MySQL directory: tar -zcvf mysql_bak.tar.gz mysql.bak

Change properties to point to /data

1. Kylo

(a) Update /opt/kylo-services/log4j.properties

i. log4j.appender.file.File=/data/log/kylo-services/kylo-services.log

(b) Update /opt/kylo-services/log4j-spark.properties

442 Chapter 80. Troubleshooting & Tips

Kylo Documentation, Release 0.9.1

i. log4j.appender.file.File=/data/log/kylo-services/kylo-spark-shell.log

(c) Update /opt/kylo-ui/log4j.properties

i. log4j.appender.file.File=/data/log/kylo-ui/kylo-ui.log

2. Nifi

(a) Update /opt/nifi/nifi.properties

i. nifi.flow.configuration.file=/data/opt/nifi/data/conf/flow.xml.gz

ii. nifi.flow.configuration.archive.dir=/data/opt/nifi/data/conf/archive/

iii. nifi.authorizer.configuration.file=/data/opt/nifi/data/conf/authorizers.xml

iv. nifi.login.identity.provider.configuration.file=/data/opt/nifi/data/conf/login-identity-providers.xml

v. nifi.templates.directory=/data/opt/nifi/data/conf/templates

vi. nifi.flowfile.repository.directory=/data/opt/nifi/data/flowfile_repository

vii. nifi.content.repository.directory.default=/data/opt/nifi/data/content_repository

viii. nifi.provenance.repository.directory.default=/data/opt/nifi/data/provenance_repository

3. Elasticsearch

(a) Update /opt/elasticsearch/elasticsearch.yml

i. path.data: /data/elasticsearch

ii. path.logs: /data/log/elasticsearch

80.19 GetTableData vs ImportSqoop Processor

80.19.1 Problem

You need to load data from a structured datastore.

80.19.2 Solution

There are two major NiFi processors provided by Kylo for importing data into Hadoop: GetTableData and Import-
Sqoop.

1. GetTableData leverages JDBC to pull data from the source into the flowfile within NiFi. This content will then
need to be pushed to HDFS (via a PutHDFS processor).

2. ImportSqoop executes a Sqoop job to pull the content from the source and place it directly to HDFS. For details
on how this is done, please refer to Apache Sqoop.

In general, it is recommended to use the ImportSqoop processor due to performance. Using the GetTableData pro-
cessors uses the edge node (where NiFi is running) as a middle-man. The ImportSqoop processor runs a MapReduce
job that can be tuned to load the data efficiently. For example, a single mapper will be sufficient if you are loading a
reference table but a table with billions of rows would benefit from multiple mappers.

The GetTableData processor should be used when the data being pulled is small. Other use cases are when certain
pre-processing steps are required that benefit from being on the edge node. For instance, if the edge node resides
behind a firewall and PII (personal identifiable information) fields need to be masked before being pushed to a more
open HDFS environment.

80.19. GetTableData vs ImportSqoop Processor 443

http://sqoop.apache.org/

Kylo Documentation, Release 0.9.1

Kylo’s Data Ingest template comes with out-of-the-box support for the GetTableData processor. To use the Import-
Sqoop processor instead, the following changes should to be made to the Data Ingest template and the standard-ingest
reusable template:

1. Replace the GetTableData processor with the ImportSqoop processor

2. Remove the PutHDFS processor from the flow

3. Update the “Create Feed Partition” processor to point to the target location of the ImportSqoop processor

4. Create a new archive processor which will archive data from HDFS. One option is use the Hadoop streaming
tool to take the files residing in the target location of the ImportSqoop processor and compress then store the
data to the archive directory. For details on this, please refer to Hadoop Streaming.

It is important to note that any other templates that output to standard-ingest would need to be updated because the
changes above assumes data resides in HDFS. In general, adding a PutHDFS processor would be sufficient.

80.20 Using machine learning functions

80.20.1 Problem

You need to use a machine learning function in a data transformation feed.

80.20.2 Solution

Kylo provides many functions from the Spark ML package. Below is an example of using linear regression to estimate
the number of tickets bought based on the price paid. The run() function performs both the fit and transform
operations of the linear regression. It requires a DataFrame as a parameter which is used for the fit operation, in the
case below it uses limit(10).

1 vectorAssembler(["pricepaid"], "features")
2 qtysold.cast("double").as("label")
3 LinearRegression().setMaxIter(10).setRegParam(0.01).run(limit(10))

80.21 Sqoop requires JDK on Kylo sandbox

80.21.1 Problem

This issue is known to exist for Kylo sandbox version 0.7.1. The file name for the sandbox is kylo-hdp-sandbox-
0.7.1.ova. Sqoop job throws an error “Sqoop requires a JDK that can compile Java code.”

80.21.2 Solution

Sqoop requires a JDK to compile Java code. The steps to install a JDK and fix this error are listed below:

1. Install Open JDK 7.

root@sandbox ~# yum install java-1.7.0-openjdk-devel

2. Verify JDK version.

444 Chapter 80. Troubleshooting & Tips

http://hadoop.apache.org/docs/current/hadoop-streaming/HadoopStreaming.html

Kylo Documentation, Release 0.9.1

root@sandbox ~# javac -version
javac 1.7.0_131

3. Verify actual location.

root@sandbox ~# ls -l /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.131-2.6.9.0.el7_3.x86_64/
→˓bin/javac
-rwxr-xr-x 1 root root 7368 Feb 13 17:16 /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.131-2.
→˓6.9.0.el7_3.x86_64/bin/javac

4. Update /etc/hadoop/conf/hadoop-env.sh. (Find existing entry and update it)

root@sandbox ~# vi /etc/hadoop/conf/hadoop-env.sh
export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.131-2.6.9.0.el7_3.x86_64/

5. Re-run Sqoop flow.

Below steps apply for HDP:

6. Now that you have verified that the JDK path is correct per Sqoop, make the change permanent (in Ambari).

(a) Open the Ambari admin UI.

(b) Select the Sqoop client, on the left side navigation list.

(c) Click the Configs tab.

(d) Open the Advanced sqoop-env div.

(e) Add the line from Step 4 above to the section, just below the line that reads Set Hadoop-specific environ-
ment. . . .

(f) Click Save (on the right). Add a comment indicating the nature of the change, when prompted.

(g) Restart the Sqoop client (top right, Restart button).

(h) Wait for the restart to complete successfully.

7. Re-run the Sqoop flow. It should work as it did in Step 5. If you restart the cluster or Sqoop, the changes will be
retained.

80.22 Validator is unable to process policy JSON file

80.22.1 Problem

Validator throws an error while trying to process the policy JSON file. This issue may be caused due to manual editing
of the file in an editor and pasting the result back in NiFi.

80.22.2 Solution

Ensure that the policy file is correctly formatted. External editors can sometimes put in invalid characters. One way to
do this verification is at: JSON Pretty Print. Paste in the policy file in the text box and click ‘Pretty Print JSON’. If the
JSON is valid, it will be shown in a more readable format. Otherwise, a null will be output.

80.22. Validator is unable to process policy JSON file 445

http://jsonprettyprint.com/

Kylo Documentation, Release 0.9.1

80.23 Creating a feed fails due to java.sql.BatchUpdateException

80.23.1 Problem

When using MySQL/MariaDB as the database for Kylo, creating a feed with large number of columns can lead to an
exception in the last step (Setting the feed schedule and saving it). Sample exception below:

java.sql.BatchUpdateException: (conn:330) Could not send query: stream size 1652321
→˓is >= to max_allowed_packet (1048576)

80.23.2 Solution

Increase the max_allowed_packet configuration parameter for the database server.

1. Add this entry to file /etc/my.cnf under the [mysqld] section.

[mysqld]
max_allowed_packet=16M

2. Restart the database server. Choose command as per your database.

service mariadb restart
service mysql restart

3. Verify the change by executing this in the database client console.

show variables like 'max_allowed_packet';

4. Save the feed now.

80.24 When using Solr, indexing schema with large number of fields
throws exception

80.24.1 Problem

When using Solr as the search engine, indexing of the feed schema can throw an exception similar to below. This
happens when the feed contains a large number of columns.

Exception writing document id a1e41cbc-d550-49cc-bc20-49fc981e767e to the index;
→˓possible analysis error: Document contains at least one immense term in field=
→˓"hiveColumns" (whose UTF8 encoding is longer than the max length 32766), all of
→˓which were skipped. Please correct the analyzer to not produce such terms.

80.24.2 Solution

1. Execute this command. Replace localhost if necessary.

446 Chapter 80. Troubleshooting & Tips

Kylo Documentation, Release 0.9.1

curl -X POST -H 'Content-type:application/json' --data-binary '{
"replace-field":{
"name":"hiveColumns",
"type":"text_general" } }' "http://localhost:8983/solr/kylo-datasources/schema?
→˓wt=json&indent=true"

2. Restart Solr server.

3. Create the feed again.

80.25 Prioritize jobs based on an attribute value

80.25.1 Problem

You have many feeds in Kylo that all execute at once but there are a few high-priority feeds that should be executed
before the others.

80.25.2 Solution

The connection to a processor can be configured to prioritize flow files using a few different methods:

• FirstInFirstOutPrioritizer: Given two FlowFiles, the one that reached the connection first will be processed
first.

• NewestFlowFileFirstPrioritizer: Given two FlowFiles, the one that is newest in the dataflow will be processed
first.

• OldestFlowFileFirstPrioritizer: Given two FlowFiles, the one that is oldest in the dataflow will be processed
first. This is the default scheme that is used if no prioritizers are selected.

• PriorityAttributePrioritizer: Given two FlowFiles that both have a “priority” attribute, the one that has the
highest priority value will be processed first. Note that an UpdateAttribute processor should be used to add the
“priority” attribute to the FlowFiles before they reach a connection that has this prioritizer set. Values for the
“priority” attribute may be alphanumeric, where “a” is a higher priority than “z”, and “1” is a higher priority
than “9”, for example.

See the for more information.

80.26 EsIndexException in Kylo services logs

80.26.1 Problem

Kylo services log contains errors similar to this: org.modeshape.jcr.index.elasticsearch.EsIndexException:
java.io.IOException: Not Found

80.26.2 Solution

Pre-create the indexes used by Kylo in Elasticsearch. Execute this script:

/opt/kylo/bin/create-kylo-indexes-es.sh

80.25. Prioritize jobs based on an attribute value 447

Kylo Documentation, Release 0.9.1

The script takes 4 parameters.

<host> <rest-port> <num-shards> <num-replicas>
Examples values:
host: localhost
rest-port: 9200
num-shards: 1
num-replicas: 1
Note: num-shards and num-replicas can be set to 1 for development environment

448 Chapter 80. Troubleshooting & Tips

CHAPTER 81

Best Practices

The following document describes patterns and best practices particularly oriented to IT Designers and System Ad-
ministrators.

81.1 Organizational Roles

Kylo supports the division of responsibility between IT designers, administrators, operations, and end-users.

81.1.1 Role separation

A key tenet of Kylo is IT governed self-service. Most activities such as data ingest and preparation are possible by
data analysts who may have deep understanding of their data but not appreciate the advanced data processing concepts
of Hadoop. It is the responsibility of the Designer to build models that incorporate best practices and maintain the
ability for end-users to easily configure feeds.

Designers are responsible for developing templates for pipelines using Apache NiFi. When configured in Kylo provide
the processing model for feeds created by end-users. System Administrators are responsible for activities such as
install, configuration, connections, security, performance tuning and role-based security.

81.1.2 Designers

Designers should limit the properties exposed to end-users and assume a user has limited knowledge of the internal
working of the pipeline. For example, it is poor practice to expose Spark parameters, paths to libraries, memory
settings, concurrency settings, etc. However, a user creating a feed should would know the name of file(s) to load,
whether they want to do a snapshot or merge, and target table names and business metadata.

Designers use the NiFi expression language and Kylo’s built-in metadata properties to auto-wire processor components
in the NiFi flow to the wizard UI.

449

Kylo Documentation, Release 0.9.1

81.1.3 Administrators

NiFi/Hadoop Administrators are typically system administrators who need to control resource utilization, such as
memory and concurrency. These activities are typically configured directly in NiFi.

The Administrator is also responsible for configuring NiFi Controller Services, which may contain privileged database
and services login configuration.

The Administrator must review new pipelines to understand how shared resources are utilized. For example, a flow
may use excessive resources on the edge node or may need to be properly tuned for the size of the target cluster.
Administrators may modify resource behavior such as concurrency, back-pressure settings, Spark driver memory, and
number of mappers.

The Administrator should also evaluate new flows and understand security implications or security vulnerabilities
introduced as NiFi operates as a privileged user.

81.1.4 Operations

An Operator uses the Operations Manager dashboard to monitor activity in the system and relies on alerts. The
Designer should consider that an Operations user may need to respond to problems and recover from errors.

81.1.5 Users

Users can include data analytics, data scientists, and data stewards who interact with the Kylo application. Administra-
tor determines what features are available to users based on roles. Designers determine how users are able to configure
feeds based on templates.

81.2 Designers

Guidance for designers who design new pipeline templates and enable self-service.

81.2.1 NiFi Template Design

The Designer is responsible for developing Apache NiFi templates, which provide the processing model for feeds in
Kylo. Once a template has been registered with the Kylo framework through the administrative template UI, Kylo
allows end-users to create and configure feeds (based on that template model) through a user-friendly, guided wizard.
The use of templates embodies the principle of “write-once, use-many”.

The Designer determines which parameters are settable by an end-user in the wizard UI, how the field is displayed
(for example: picklist, SQL window, numeric field), and any defaults or constraints. The Designer may also wire
parameters to environment-specific properties and any standard metadata properties provided by the UI wizard used
by end-users.

After a template is registered in Kylo, an end-user will be able to create new feeds based on that template using the
UI-wizard. End-users may only set parameters exposed by the template designer.

A well-written template may support many feeds. It should incorporate best practices and consider security, regulatory
requirements, and error handling.

A good reference model is Kylo’s standard ingest template. This can serve as a model for best practices and can be
adapted to an organization’s individual requirements.

450 Chapter 81. Best Practices

Kylo Documentation, Release 0.9.1

81.2.2 Template re-use

Templates should be designed for maximum re-use and flexibility. Kylo’s standard ingest serves as an example of this.
There are two types of templates Kylo uses this to promote this objective:

• Feed Template. Kylo generates a clone of this template as a unique running instance per feed. This means
for every feed, there is a copy of the pipeline as defined by the template. Kylo uses the template to make the
clone and injects any metadata configured in the feed (e.g. data source selections, schema configuration, etc).
The feed template should be composed of the set of initial datasource connectors, an UpdateAttribute processor
where Kylo can inject common metadata configured by the wizard, and an output port connected to a re-usable
flow (below). The feed-based template should include minimal logic. The bulk of logic should be contained in
the re-usable flow.

• Reusable-flow Template. This template is used to create a single running instance of the flow that can supports
multiple connected feeds through a NiFi input port. The core logic for your pipelines should be centralized into
re-usable flows. This allows one to update the pipeline for many feeds in just one place.

Again, both types of templates are exemplified in Kylo’s standard ingest template included with Kylo. More about
reusable flows is discussed below.

81.2.3 Reusable Flows

When possible, consider using re-usable flows for the majority of pipeline workflow and logic. A reusable flow is a
special template that creates just a single instance of a flow shared by other feed flows through a NiFi process port.
A single instance simplifies administration and future updates. All feeds utilizing a reusable flow will inherit changes
automatically.

A re-usable flow will require at least two templates: 1) The feed flow instance template, and 2) the re-usable flow
template.

The feed flow instance will be generated each time a feed is created and will have the feed-specific configuration
defined by the end-user. The feed-instance defines an output to the re-usable flow. The re-usable flow template will
have an input from the feed-instance flow.

When a Designer registers the re-usable template and the feed instance template, the Designer is prompted to wire
together the input and output. Kylo will take care of auto-wiring these each time a new feed is created.

Please see Kylo’s standard ingest templates for an example of this in action.

81.2.4 Streaming Templates

Kylo can support batch and streaming feeds. In a batch feed, each dataset is processed and tracked as a job from start
to finish. The entire job fails if the dataset is not processed successfully.

Streaming feeds typically involve continuous data processing of very frequent, discrete packets of data. Data can
be flowing through different portions of the pipeline. Tracking each record in a streaming feed as a job would add
significant overhead and could be meaningless. Imagine consuming millions of JMS messages and viewing each
records journey through the pipeline as a job. This would be impractical. Instead, Kylo treats a streaming feed as a
constant running job, gathering aggregate statistics such as success and failure rates, throughput, etc.

A template can be registered as a streaming template by checking the ‘Streaming template” checkbox on the last step
of the template registration wizard.

81.2.5 Error Handling

Error handling is essential to building robust flows.

81.2. Designers 451

Kylo Documentation, Release 0.9.1

NiFi processors have the ability to route to success or failure paths. This allows the Designer to setup standard error
handling. The Designer should ensure that data is never lost and that errors allow an Operator to recover.

Kylo is configured to look for any activity along standard failure paths and trigger alerts in Ops Mgr.

A best practice is to handle errors in consistent ways through a reusable “error flow”. Potentially, a custom NiFi
processor could be developed to make this convenient for Designers.

Some processors automatically support retries, providing a penalty to incoming flowfiles. An example of this case
is when a resource is temporarily unavailable. Rather than failing, the flowfile will be penalized (delayed) and re-
attempted at a later point.

81.2.6 Preserve Edge Resources

The edge node is a limited resource, particularly compared to the Hadoop cluster. The cluster will have a magnitude
greater IO and processing capacity than the edge, so if possible avoid moving data through Apache NiFi. Strive to
move data directly from source to Hadoop and performing any data processing in the cluster.

There may be good arguments to perform data processing through the edge node, in this case a single edge node may
be insufficient and require a small NiFi cluster along the edge.

Note: The advantage of external Hive tables is the ability to simply mount an HDFS file (external partition). This
means data can be moved to HDFS, and then surfaced in a table through a simple DDL (ADD PARTITION).

81.2.7 Generalize Templates

Templates allow the Designer to promote the “write-once,use-many” principle. That is, once a template is registered
with Kylo, any feeds created will utilize the model provided. The Designer should consider parameterizing flows to
support some derivative data use cases, while always striving to maintain ease of use for end-users, who have to create
feeds and ensure their testability.

An example of this type of flexibility is a flow that allows the end-user to select from a set of sources (for example:
kafka, filesystem, database) and write to different targets (for example: HDFS, Amazon S3). A single template could
feasibly provide this capability. There is no need to write nxn templates for each possible case.

It may be necessary to write “exotic templates” that will only be used once by a single feed. This is also fine.
The Designer should still consider other best practices, such as portability. See chaining feeds below for a possible
alternative to this.

81.2.8 Chaining Feeds

Instead of creating long special-purposed pipelines, consider breaking the pipeline into a series of feeds. Each feed
then represents a significant movement of data between source and sink (for example: ingest feed, transform feed A,
transform feed B, export feed).

Kylo provides the ability to chain feeds together via preconditions. Preconditions define a rule for the “event” that will
trigger a feed. Preconditions allow triggering based on the completion of one or more predecessor jobs. The ability to
define preconditions can be enabled by a Designer and configured by a Data Analyst during the feed creation process.
This allows for sophisticated chaining of feeds without resorting to the need to build specially-purpose pipelines.

452 Chapter 81. Best Practices

Kylo Documentation, Release 0.9.1

81.2.9 One-Time Setup and Deletion

The Designer should incorporate any one-time setup, and any processing flow required for deletion of a feed. One time
setup is referred to as registration within a feed. The metadata server can route a flow through a one-time registration
process to setup Hive tables and HDFS paths.

A proper deletion routine should delete all the Hadoop artifacts created by a feed. Delete allows a user to test a feed
and easily delete it if needed. The cleanup-up flow is described below.

81.2.10 Clean-up

When creating a template, ensure you have the appropriate clean-up activity associated. If using the standard ingest,
you can also use the standard clean-up to remove HDFS, Hive tables and the feed itself. This is triggered when the
delete feed option is clicked on the Kylo UI.

Clean up flows should be configured to start with a TriggerCleanup trigger processor and the attribute variables set
to specify that feed. When you register the template in Kylo, be sure to set the attributes for the Trigger Cleanup
processor to take the metadata systemNames of the feed.

For each client, think about what a clean-up best practice will be when you design the template as this may be different
per client.

Clean-ups could also be triggered through a JMS message using the publish and consumeJMS processors. In t this
way you could start a clean-up activity on the completion of a feed for instance

81.2.11 Lineage Tracking

Kylo automatically maintains lineage at the “feed-level” and by any sources and sinks identified by the template
designer when registering the template.

Kylo relies on the designer specifying the roles of processors as sources or sinks when registering the flow. The default
or stereotype role of processors can be defined by a system administrator conf/datasource-definitions.json.

81.2.12 Idempotence

Pipelines and template steps should be idempotent, such that if work is replayed it will produce the same result without
a harmful side effect such as duplicates.

81.2.13 Environment Portability

NiFi Templates and associated Kylo configuration can be exported from one environment and imported into another
environment. The Designer should ensure that Apache NiFi templates are designed to be portable across development,
test and production environments .

Environment-specific settings such as library paths or URLs should be specified in the environment-specific settings
file in Kylo. See documentation. Environment-specific variables can be set through an environment specific properties
file. Kylo provides an expression syntax for a Designer to utilize these properties when registering the template. An
Administrator typically maintains the environment-specific settings.

Application properties override template attribute settings and can be very useful for setting environment specific
settings and also to set specific controller related settings. Application properties can be set encrypted and should be
when setting sensitive information.

Note: You should NOT add your processor attributes to application properties unless they are ENVIRONMENT
specific. It is an anti-pattern to try to bring all attributes out into “configuration property files”.

81.2. Designers 453

Kylo Documentation, Release 0.9.1

81.2.14 Data Confidence

In addition to NiFi templates for feeds, a Designer can and should create templates for performing Data Quality (DQ)
verification of those feeds. Data Quality verification logic can vary but often can be designed to be generalized into a
few common patterns.

Examples of a DQ template might evaluate the profile statistics from the latest run and use those statistics such as ratio
of valid-to-invalid records. Another check could compare aggregates in the source table against Hadoop to verify that
totals match at certain intervals (for example: nightly revenue roll-ups match).

A special field identifies the template as a DQ check related to a feed and used for Data Confidence KPI, alerts, and
feed health by the Ops manager. See Manual.

81.2.15 Data Ingestion

Archival: It is best practice to preserve original raw content and consider regulatory compliance. Also, consider
security and encryption at rest since raw data may contain sensitive information. After a retention period is passed,
information may be deleted. ILM feeds can be created to do this type of house-keeping. Retention policies can
optionally be defined by a feed or business metadata at the category-level.

Make sure to secure intermediate tables and HDFS locations used for data processing. These tables may contain
views of raw, sensitive data. Intermediate tables may require different security requirements than the managed table.
Additionally, the data may need to go on an encryption zone on HDFS. Administrators and Operators may need
visibility for troubleshooting, but typical end-users should not see intermediate data.

Avoid “transformations” to raw. Best practice is to ingest the raw source (although consider protecting sensitive data)
and avoid transformation of the data.

81.2.16 Cleanup Intermediate Data

The intermediate data generated by feed processing should be periodically deleted. It may be useful to have a brief
retention period (for example: 72 hours) for troubleshooting. A single cleanup feed can be created to do this cleanup.

81.2.17 Data Cleansing and Standardization

Kylo includes a number of useful cleansing and standardization functions that can be configured by an end-user in the
feed creation wizard UI.

Avoid using the cleansing and standardization capabilities to do complex “transformation” data. It should be primarily
used for manipulating data into conventional or canonical formats (for example: simple datatype conversion such as
dates, stripping special characters) or data protection (for example: masking credit cards, PII, etc.)

Kylo provides an extensible Java API for developing custom cleansing and standardization routines.

81.2.18 Validation

Hive is extremely tolerant of inconsistencies between source data and the HCatalog schema. Using Hive without
additional validation will allow data quality issues to go unnoticed and extremely difficult to detect.

Kylo automatically provides schema validation, ensuring that source data conforms to target schema. For example, if
a field contains alpha characters and is destined for a numeric column, Kylo will flag the record as invalid.

Additionally users can define field-level validation to protect against data quality issues.

Kylo provides an extensible Java API for developing custom validation routines.

454 Chapter 81. Best Practices

Kylo Documentation, Release 0.9.1

81.2.19 Data Profiling

Kylo’s Data profiling routine generates statistics for each field in an incoming dataset.

Beyond being useful to Data Scientists, profiling is useful for validating data quality (See Data Quality checking).

81.2.20 RDBMS Data

Joins in Hadoop are inefficient. Consider de-normalizing data during ingest. One strategy is to ingest data via views.

81.2.21 File Ingest

One common problem with files is ensuring they are fully written from a source before they are picked up for process-
ing. A strategy for this is to set the process writing the file to either change permissions on the file after the write is
complete, or append a suffix such as DONE.

81.2.22 Character Conversion and Hive

Hive works with UTF-8. Character conversion may be required for any records that should be queried from Hive.
NiFi provides a character conversion processor that can be used for this. Kylo can detect source encoding using Tikka.

81.3 Development Patterns

Best practices and guidance oriented to the development process, release, and testing.

81.3.1 Development Process

NiFi templates should be developed and tested in a personal development environment. Do not develop NiFi templates
in the production NiFi instance used by Kylo.

It is recommended to do initial testing in NiFi. Once the flow has been tested and debugged within NiFi, then register
the template with Kylo in the development environment, where one can test feed creation.

Note: Controller Services that contain service, cluster, and database connection information should be setup by the
Developer using their personal login information. In production, an Administrator manages these controller services,
and they typically operate as an application account with elevated permissions.

81.3.2 Automated Deployment

Building an automated deployment scripts is the best practice approach to deploying feeds and templates and this
should be delivered along with your other deployment scripts. Importing of templates and feeds can be carried out via
the REST API of Kylo.

81.3. Development Patterns 455

Kylo Documentation, Release 0.9.1

81.3.3 Template Export/Import

As stated previously, it is recommended that Apache NiFi template development occur in a development environment.
This is a best practice from a security and operations perspective. Kylo allows templates and the registration metadata
to be exported to a ZIP file. This file can be imported into a new environment.

81.3.4 Feed Export/Import

Although Kylo can be used for self-service feed creation in production, some organizations prefer to lock this ability
down and perform feed development and testing in a separate environment.

81.3.5 Version Control

It is recommended to manage exported templates and feeds through an SCM tool such as git, subversion, or CVS.

81.3.6 General Deployment Guidelines

Regardless of whether deploying manually or using automated scripts, ensure the following:

• Deploy any reusable templates first

• Configure controller services (in NiFi) on the first time a template is imported or if any new controllers are
introduced

• Smoke test your pipeline

81.4 Users

Best practices and guidance oriented to end-users (users of the Kylo application).

81.4.1 When to Use Snapshot

Kylo allows users to configure feeds to do incremental updates or to enable the use of a snapshot (replacing the target
with the entire contents). In the case of RDBMS, where there small source tables, it may be more efficient to simply
overwrite (snapshot) the data each time. Tables with less than 100k records probably fit the snapshot pattern.

81.4.2 When to Use Timer (vs. Cron)

Timer is a good scheduling technique for lightweight polling behavior. Be aware, however, that all timers fire con-
currently when NiFi starts. Avoid using for processors that place heavy demand on a source when triggered. For
example: database sources or launching a transformation workflow. Cron is a more appropriate scheduling option for
these resource-intensive processors.

81.4.3 Wrangling

The wrangling utility allows for users to do visual drag-drop SQL joins and apply transform functions to build complex
transformations in a WYSIWG, Excel-like interface. This is a recommended method for performing transformations
on raw data.

456 Chapter 81. Best Practices

Kylo Documentation, Release 0.9.1

81.4.4 Service Level Agreements

Service level agreements are created by users to enforce service levels, typically related to feeds. An SLA may set
a threshold tolerance for data arrival time or feed processing time. An SLA can enforce ratio of invalid data from a
source.

SLAs are useful for alerting and measuring service level performance over-time.

81.5 Administrators

81.5.1 Back-Pressure

Administrators (and Designers) should understand NiFi capabilities regarding back-pressure. Administrators can con-
figure backpressure limits at the processor level to control how many flow files can be queued before upstream pro-
cessors start to throttle activity. This can assure that a problem with a service doesn’t cause a huge queue or result in a
large number of failed jobs.

81.5.2 Business Metadata

Business metadata is any information that enriches the usefulness of the data, or is potentially helpful for future
processing or error handling.

Kylo allows an Administrator to setup business metadata fields that a user sees when creating a feed. These business
metadata templates can be setup either globally or at the category-level. Once setup, the user is prompted to fill this
information in the Properties step of the Ingest wizard.

81.6 Security

Guidance around security.

81.6.1 Security Vulnerabilities

Designers and Administrators should be aware of introducing a backdoor for malicious users, or even for developers.
Although NiFi components are extremely powerful, be aware of SQL Injection or exposing the ability for a user to
paste script.

Consider issues such a malicious user configuring an ingestion path that accesses secure files on the file system.

When importing feeds from other environments, the Administrator should always ensure that the security group is
appropriate to the environment. A security group that may be appropriate in a development environment might not be
inappropriate for production.

81.5. Administrators 457

	Features
	FAQ
	Terminology
	Release Notes
	Downloads
	Overview
	Review Dependencies
	Prepare Install Checklist
	Create Service Accounts
	Prepare Offline TAR
	Install Kylo
	Install Additional Components
	Enable Kerberos
	Additional Configuration
	Kylo Application Properties
	Grant HDFS Privileges
	Start Services
	Import Templates
	Create Sample Feed
	Validate Configuration
	HDP 2.5 Kerberos/Ranger Cluster Deployment Guide
	Overview
	Adjust Memory
	Change Java Home
	Log Files
	Yarn Cluster Mode Configuration
	Kylo Spark Properties
	Postgres Metastore Configuration
	Overview
	Encrypting Configuration Properties
	Enable Kerberos for Kylo
	Enable Kerberos for NiFi
	Enable Ranger Authorization
	Enable Sentry Authorization
	Kylo UI and SSL
	NiFi and SSL
	Authentication
	Kylo Kerberos SPNEGO
	Access Control
	Enable Hive User Impersonation
	Setup A NiFi Cluster in a Kylo Sandbox
	Clustering Kylo
	NiFi & Kylo Provenance
	NiFi Processor Guide
	Kylo Templates Guide
	Connecting Reusable Templates
	Remote Process Groups
	Kylo Datasources Guide
	Feed Lineage Configuration
	Custom Provenance Events
	Accessing S3 from the Data Wrangler
	S3 Standard Ingest Template
	Azure Standard Ingest Template
	SUSE Configuration Changes
	Configuration Properties
	Validator Tuning
	Configure Kylo & Global Search
	Service Monitor Plugins
	JMS Providers
	Database Upgrades
	Icons and Icon Colors
	Twitter Sentiment with Kafka and Spark Streaming Tutorial
	Ambari Service Monitor Plugin
	Reindex Historical Feed Data
	Entity Access Control For Elasticsearch
	Service Level Agreements (SLA)
	Configuration Inspector App
	Data Ingest - Teradata - TDCH
	Contributing to Kylo
	Developer Getting Started Guide
	Plugin APIs
	Kylo REST API
	Cleanup Scripts
	Cloudera Docker Sandbox Deployment Guide
	Hortonworks Sandbox Configuration
	Kerberos Installation Example - Cloudera
	Kerberos Installation Example - HDP 2.4
	Events
	Operations Guide
	Troubleshooting & Tips
	Best Practices

