

Welcome to the Kylo Project

[image: kylo logo] Kylo website: https://kylo.io

The documentation for the site is organized into a few sections:

	About

	Installation

	Installation Examples

	Common Configuration

	Security

	How to guides

	Developer guides

	User guides

	Tips and tricks

About

	Features

	FAQ

	Terminology

	Release Notes

	Downloads

Installation

	Overview

	Review Dependencies

	Prepare Install Checklist

	Create Service Accounts

	Prepare Offline TAR

	Install Kylo

	Install Additional Components

	Enable Kerberos

	Additional Configuration

	Kylo Application Properties

	Grant HDFS Privileges

	Start Services

	Import Templates

	Create Sample Feed

	Validate Configuration

Installation Examples

	HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

Common Configuration

	Overview

	Adjust Memory

	Change Java Home

	Log File Management

	Yarn Cluster Mode Configuration

	Configure Spark Modes

	Postgres Metastore Configuration

Security

	Overview

	Encrypt Passwords

	Enable Kerberos for Kylo

	Enble Kerberos for NiFi

	Configure Ranger

	Configure Sentry

	Enable SSL for Kylo

	Enable SSL for NiFi

	Configure Authentication

	Configure Kerberos SPNEGO

	Configure Access Control

	Enable Hive User Impersonation

How to guides

	NiFi Cluster

	Kylo Cluster

	NiFi & Kylo Provenance

	Nifi Processors

	Kylo Templates

	Kylo Datasources

	Feed Lineage

	S3 & Data Wrangler

	S3 Data Ingest Template

	Azure Data Ingest Template

	SUSE Configuration

	Configuration Properties

	Validator Tuning

	Kylo & Global Search

	Service Monitor Plugins

	JMS Providers

	Database Upgrades

	Icons and Colors

	Spark Streaming - Twitter Sentiment Analysis

	Ambari Service Monitor Plugin

Developer guides

	Contributing

	Developer Guide

	Plugin APIs

	REST API

	Clean Kylo From Box

	Cloudera Docker Sandbox

	Hortonworks Sandbox Config

	Kerberos Install Cloudera

	Kerberos Install HDP

	Spark Function Definitions

	Metadata Events

User guides

	Operations Guide

Tips and tricks

	Troubleshooting & Tips

	Best Practices

Features

Kylo is a full-featured Data Lake platform built on Apache Hadoop and Spark. Kylo provides a turn-key, business-friendly Data Lake solution enabling data ingest, data preparation, and data discovery.

	Features

	Description

	License

	Apache 2.0

	Major Features

	

	Data Ingest

	Users can easily configure feeds in guided UI

	Data Preparation

	Visual sql builder and data wrangling

	Operations dashboard

	Feed health and service monitoring

	Global search

	Lucene search against data and metadata

	Data Processing

	

	Data Ingest

	Guided UI for data ingest into Hive (extensible)

	Data Export

	Export data to RDBMS or other targets

	Data Wrangling

	Visually wrangle data and build/schedule recipes

	PySpark, Spark Jobs

	Execute Spark jobs

	Custom Pipelines

	Build and templatize new pipelines

	Feed Chaining

	Trigger feeds based on dependencies and rules

	Ingest Features

	

	Batch

	Batch processing

	Streaming

	Streaming processing

	Snapshot/Incremental Loads

	Track highwater using date field or replace target

	Schema Discovery

	Infer schema from source file samples

	Data Validation

	Configure field validation in UI

	Data Profile

	Automatically profile statistics

	Data Cleanse/Standardization

	Easily configure field standardization rules

	Custom Partitioning

	Configure Hive partitioning

	Ingest Sources

	

	FTP, SFTP

	Source from FTP, SFTP

	Filesystem

	Poll files from a filesystem

	HDFS, S3

	Extract files from HDFS and S3

	RDBMS

	Efficiently extract RDBMS data

	JMS, KAFKA

	Source events from queues

	REST, HTTP

	Source data from messages

	Ingest Targets

	

	HDFS

	Store data in HDFS

	HIVE

	Store data in Hive tables

	HBase

	Store data in HBase

	Ingest Formats

	

	ORC, Parquet, Avro, RCFile, Text

	Store data in popular table formats

	Format Compression

	Specify compression for ORC and Parquet types

	Extensible source formats

	Ability to define custom schema plug-in Serdes

	Metadata

	

	Tag/Glossary

	Add tags to feeds for searchability

	Business Metadata (extended properties)

	Add business-defined fields to feeds

	REST API

	Powerful REST APIs for automation and integration

	Visual Lineage

	Explore process lineage

	Profile History

	View history of profile statistics

	Search/Discover

	Lucene syntax search against data and metadata

	Operational Metadata

	Extensive metadata capture

	Security

	

	Keberos Support

	Supports Kerberized clusters

	Obfuscation

	Configure field-level data protection

	Encryption at Rest

	Compatible with HDFS encryption features

	Access Control (LDAP, KDC, AD, SSO)

	Flexible security options

	Data Protection

	UI configurable data protection policies

	Application Groups, Roles

	Admin configured roles

	Operations

	

	Dashboard

	KPIs, alerts, performance, troubleshooting

	Scheduler

	Timer, Cron-style based on Quartz engine

	SLA Monitoring

	Service level agreements tied to feed performance

	Alerts

	Alerts with integration options to enterprise

	Health Monitoring

	Quickly identify feed and service health issues

	Performance Reporting

	Pivot on performance statistics

	Scalability

	

	Edge Clustering

	Scale edge resources

FAQ

About Kylo

What is Kylo?

Kylo is a feature-rich data lake platform built on Apache Hadoop and Spark. Kylo provides a turn-key, business-friendly, data lake solution enabling self-service data ingest, data
preparation, and data discovery.

Kylo’s web application layer offers features oriented to business users, including data analysts, data stewards, data scientists, and IT operations personnel.
Kylo integrates best practices around metadata capture, security, and data quality. Furthermore, Kylo provides a flexible data processing framework
(leveraging Apache NiFi) for building batch or streaming pipeline templates, and for enabling self-service features without compromising governance requirements.

What are Kylo’s origins?

Kylo was developed by Think Big (a Teradata company) and it is in use at a dozen major corporations globally. Think Big provides big data and
analytics consulting to the world’s largest organizations, working across every industry in performing 150 successful big data projects over the last seven years. Think Big has been a
major beneficiary of the open-source Hadoop ecosystem and elected to open-source Kylo in order to contribute back to the community and improve value.

What does Kylo mean?

Kylo is a play on the Greek word meaning “flow”.

What software license is Kylo provided under?

Think Big (a Teradata company) has released Kylo under the Apache 2.0 license.

Who uses Kylo?

Kylo is being used in beta and production at a dozen major multi-national companies worldwide across industries such as manufacturing, banking/financial, retail, and insurance. Teradata is working
with legal departments of these companies to release names in upcoming press releases.

What skills are required for a Kylo-based Data Lake implementation?

Many organizations have found implementing big data solutions on the Hadoop stack to be a complex endeavor. Big data technologies are heavily oriented to software engineering and system
administrators, and even organizations with deep engineering capabilities struggle to staff teams with big data implementation experience. This leads to multi-year implementation efforts that
unfortunately can lead to data swamps and fail to produce business value. Furthermore, the business-user is often overlooked in features available for in-house data lake solutions.

Kylo attempts to change all this by providing out-of-the-box features and patterns critical to an enterprise-class data lake. Kylo provides an IT framework for delivering
powerful pipelines as templates and enabling user self-service to create feeds from these data processing patterns. Kylo provides essential Operations capabilities around monitoring feeds,
troubleshooting, and measuring service levels. Designed for extensibility, software engineers will find Kylo’s APIs and plug-in architecture flexible and easy to use.

Enterprise Support

Is enterprise support available for Kylo?

Yes, Think Big (a Teradata company) offers support subscription at the standard and enterprise level. Please visit the Think Big Analytics
website for more information.

Are professional services and consulting available for Kylo?

Think Big (a Teradata company) provides global consulting services with expertise in implementing Kylo-based solutions. It is certainly possible to install and
learn Kylo using internal resources. Think Big’s Data Lake Foundation provides a quick start to installing and delivering on your first set of data lake use cases. Think Big’s service
includes hands-on training to ensure that your business is prepared to assume operations.

Is enterprise training available for Kylo?

Yes, Think Big (a Teradata company) offers Academy training on Kylo, Hadoop, and Spark.

Are commercial managed services available for Kylo?

Yes, Think Big (a Teradata company) can provide managed operations for your Hadoop cluster, including Kylo, whether it is hosted on-premise or in the cloud. The
managed services team is trained specifically on Kylo and they have operations experience with major Hadoop distributions.

Architecture

What is the deployment architecture?

Kylo is a modern web application installed on a Linux “edge node” of a Spark & Hadoop
cluster. Kylo contains a number of special purposed routines for data lake operations leveraging Spark
and Apache Hive.

Kylo utilizes Apache NiFi as its scheduler and orchestration engine, providing an integrated framework for designing new types of pipelines with 200 processors (data connectors and transforms). Kylo
has an integrated metadata server currently compatible with databases such as MySQL and Postgres.

Kylo can integrate with Apache Ranger or Sentry and CDH Navigator or Ambari for cluster monitoring.

Kylo can optionally be deployed in the cloud.

What are the individual component/technologies involved in a Kylo deployment?

	Kylo UI. AngularJS browser app with Google Material Design running in a Tomcat container

	Kylo Services. Services, REST APIs, and plug-ins perform the backbone of Kylo. All features and integrations with other technologies are managed through the services layer.

	Kylo Spark Shell. Manages Spark sessions for data wrangling.

	Kylo Metadata Server. Combination of JBoss ModeShape and MySQL (or Postgres) store all metadata generated by Kylo.

	Apache NiFi. Pipeline orchestration engine and scheduler.

	ActiveMQ. JMS queue for inter-process communication.

	Apache Spark. Executes Kylo jobs for data profiling, data validation, and data cleansing. Also supports data wrangling and schema detection.

	ElasticSearch. Provides the index for search features in Kylo such as free-form data and metadata

	Apache Hadoop. All Hadoop technologies are available but most notably YARN, HDFS, Hive

Is Kylo compatible with Cloudera, Hortonworks, Map R, EMR, and vanilla Hadoop distributions?

Yes. Kylo generally relies on standard Hadoop APIs and common Hadoop technologies like HDFS, Hive, and Spark. NiFi operates on the “edge” so isn’t bound to any particular
Hadoop distribution. It is therefore compatible with most Hadoop distributions, although we currently only provide install instructions for Cloudera and Hortonworks.

Does Kylo support either Apache NiFi or Hortonworks DataFlow (HDF)? What is the difference?

Yes, Kylo supports vanilla Apache NiFi or NiFi bundled with Hortonworks DataFlow. HDF bundles Apache NiFi, Storm, and Kafka within a distribution. Apache NiFi within HDF contains the same codebase
as the open-source project. NiFi is a critical component of the Kylo solution. Kylo is an HDF-certified technology. Kylo’s commercial support subscription bundles 16 cores of Apache NiFi support.

Can Kylo be used in the cloud?

Absolutely. Kylo is used in production on AWS utilizing EC2, S3, SQS, and other AWS features for at least one major Fortune 100 company. Kylo has also been used with Azure.

Does Kylo support high-availability (HA) features?

Yes, Kylo clustering is possible via a load-balancer. In addition, current data processing running under NiFi will not be impacted if Kylo becomes unavailable or during upgrades.

Metadata

What type of metadata does Kylo capture?

Kylo captures extensive business and technical (for example, schema) metadata
defined during the creation of feeds and categories. Kylo processes lineage
as relationships between feeds, sources, and sinks. Kylo automatically captures all operational
metadata generated by feeds. In addition, Kylo stores job and feed
performance metadata and SLA metrics. We also generate data profile
statistics and samples.

How does Kylo support metadata exchange with 3rd party metadata servers

Kylo’s metadata server has REST APIs that could be used for metadata
exchange and documented directly in the application through Swagger.

What is Kylo’s metadata server?

A key part of Kylo’s metadata architecture relies on the open-source JBoss ModeShape
framework. ModeShape is a JCR compliant store. Modeshape supports dynamic schemas providing the ability to easily extend Kylo’s own data
model.

Some core features:

	Dynamic schemas - provide extensible features for extending schema
towards custom business metadata in the field

	Versioning - ability to track changes to metadata over time

	Text Search - flexible searching metastore

	Portability - can run on sql and nosql databases

See: Modeshape

How extensible is Kylo metadata model?

Very extensible due our use of ModeShape (see above).

In addition, the Kylo application allows an administrator to define standard business metadata
fields that users will be prompted to enter when creating feeds and categories.

Are there any business-related data captured, or are they all operational metadata?

Business metadata fields can be defined by the user and will appear in the UI during the feed setup process.

What does the REST API look like?

Please access the REST documentation through a running Kylo instance: http://kylo-host:8400/api-docs/index.html

Does the Kylo application provide a visual lineage?

Yes, Kylo provides a visual process lineage feature for exploring relationships between feeds and shared sources and sinks. Job instance level lineage is stored as “steps” visible in the feed job
history.

What type of process metadata do we capture?

Kylo captures job and step level information on the status of the process,
with some information on the number of records loaded, how long it took,
when it was started and finished, and what errors or warnings may have been generated. We
capture operational metadata at each step, which can include record
counts, dependent upon the type of step.

Development Lifecycle

What’s the pipeline development process using Kylo?

Pipeline templates developed with Apache NiFi and registered with Kylo can be developed and tested in a sandbox environment, exported from Kylo,
and then imported into Kylo in a UAT and production environment after testing. Once the NiFi template is registered with Kylo, a business
user can configure new feeds through Kylo’s step-guided user interface.

Existing Kylo feeds can be exported from one environment into a zip file that contains a combination of the underlying template and metadata. The
package can then be imported to the production NiFi environment by an administrator.

Does deployment of new templates or feeds require restart?

No restart is required to deploy new pipeline templates or feeds.

Can new feeds be created in automated fashion instead of manually through the UI?

Yes, via Kylo’s REST API. See the section on Swagger documentation (above).

Tool Comparisons

Is Kylo similar to any commercial products?

Kylo has similar capabilities to Podium and Zaloni Bedrock. Kylo is an open-source option. One differentiator is Kylo’s extensibility. Kylo provides a plug-in architecture with a variety of
extensions available to developers, and the use of NiFi templates provides incredible flexibility for batch and streaming use cases.

Is Kylo’s operations dashboard similar to Cloudera Manager and Apache Ambari?

Kylo’s dashboard is feed-health centric. Health of a feed is determined by job completion status, service level agreement violations, and rules that measure data quality.
Kylo provides the ability to monitor feed performance and troubleshoot issues with feed job failures.

Kylo monitors services in the cluster and external dependencies to provide a holistic view of services your data lake depends on. Kylo provides a simple plugin for adding
enterprise services to monitor. Kylo includes plugins for pulling service status from Ambari and Cloudera Navigator. This is useful for correlating service issues with feed health problems.

Is Kylo’s metadata server similar to Cloudera Navigator, Apache Atlas?

In some ways. Kylo is not trying to compete with these and could certainly
imagine integration with these tools. Kylo includes its own extensible
metadata server. Navigator is a governance tool that comes as part of the
Cloudera Enterprise license. Among other features, it provides data
lineage of your Hive SQL queries. We think this is useful but only
provides part of the picture. Kylo’s metadata framework is really the foundation of
an entire data lake solution. It captures both business
and operational metadata. It tracks lineage at the feed-level. Kylo provides IT Operations with a useful dashboard, providing the ability to
track/enforce Service Level Agreements, and performance metrics. Kylo’s REST APIs can be used to do metadata exchange with tools like Atlas and Navigator.

How does Kylo compare to traditional ETL tools like Talend, Informatica, Data Stage?

Kylo uses Apache NiFi to orchestrate pipelines. NiFi can connect to many different sources and perform lightweight transformations on the edge using 180+ built-in processors. Generally workload
is delegated to the cluster where the bulk of processing power is available. Kylo’s NiFi processor extensions can effectively invoke Spark, Sqoop, Hive, and even invoke traditional ETL
tools (for example: wrap 3rd party ETL jobs).

Many ETL (extract-transform-load) tools are focused on SQL transformations using their own proprietary technology. Data warehouse style transformations tend to be focused on issues such as loading
normalized relational schemas such as a star or snowflake. Hadoop data patterns tend to follow ELT (extract and load raw data, then transform). In Hadoop, source data is often stored in raw form, or flat denormalized
structures. Powerful transformation techniques are available via Hadoop technologies, including Kylo’s leveraging of Spark. We don’t often see the need for expensive and complicated ETL technologies for
Hadoop.

Kylo provides a user interface for an end-user to configure new data feeds including schema, security, validation, and cleansing. Kylo provides the ability to wrangle and prepare
visual data transformations using Spark as an engine.

What is Kylo’s value-add over plain Apache NiFi?

NiFi acts as Kylo’s pipeline orchestration engine, but NiFi itself does not provide all of the tooling required for a data lake solution. Some of Kylo’s distinct benefits over vanilla NiFi and Hadoop:

	Write-once, use many times. NiFi is a powerful IT tool for designing
pipelines, but most data lake feeds utilize just a small number of
unique flows or “patterns”. Kylo allows IT the flexibility to
design and register a NiFi template as a data processing model for feeds. This enables
non-technical business users to configure dozens, or even hundreds of
new feeds through Kylo’s simple, guided stepper-UI. In other words, our
UI allows users to setup feeds without having to code them in
NiFi. As long as the basic ingestion pattern is the same, there is no
need for new coding. Business users will be able to bring in new data
sources, perform standard transformations, and publish to target
systems.

	Operations Dashboard UI can be used for monitoring data feeds.
It provides centralized health monitoring of feeds and related infrastructure
services, Service Level Agreements, data quality metrics reporting,
and alerts.

	Web modules offer key data lake features such as metadata search,
data discovery, data wrangling, data browse, and event-based feed
execution (to chain together flows).

	Rich metadata model with integrated governance and best practices.

	Kylo adds a set of data lake specific NiFi extensions around Data Profile,
Data Cleanse, Data Validate, Merge/Dedupe, High-water. In addition, general Spark and Hive
processors not yet available with vanilla NiFi.

	Pre-built templates that implement data lake best practices: Data Ingest, ILM, and Data Processing.

Scheduler

How does Kylo manage job priority?

Kylo exposes the ability to control which yarn queue a task executes on. Typically scheduling this is done through the scheduler. There are some
advanced techniques in NiFi that allow further prioritization for shared
resources.

Can Kylo support complicated ETL scheduling?

Kylo supports cron-based scheduling, but also timer-based, or event-based using JMS and an internal Kylo ruleset. NiFi embeds the Quartz.

What’s the difference between “timer” and “cron” schedule strategies?

Timer is fixed interval, “every 5 minutes or 10 seconds”. Cron can be
configured to do that as well, but can handle more complex cases like
“every tues at 8AM and 4PM”.

Does Kylo support 3rd party schedulers

Yes, feeds can be triggered via JMS or REST.

Does Kylo support chaining feeds? One data feed consumed by another data feed?

Kylo supports event-based triggering of feeds based on preconditions or rules. One can define rules in the UI that determine when to run a
feed, such as “run when data has been processed by feed a and feed b and
wait up to an hour before running anyway”. We support simple rules up to
very complicated rules requiring use of our API.

Security

Does Kylo support roles?

Kylo supports the definition of roles (or groups), and the specific permissions a user with that role can perform, down to the function level.

What authentication methods are available?

Kylo uses Spring Security. Using pluggable login-modules, it can integrate with Active Directory, Kerberos, LDAP,
or most any authentication provider. See Developer Getting Started Guide.

What security features does Kylo support?

Kylo provides plugins that integrate with Apache Ranger or Apache Sentry, depending on the distribution that you are running. These can be used to configure feed-based security and impersonating users
properly to enforce user permissions. Kylo fully supports Kerberized clusters and built-in features, such as HDFS encryption.

Is Kylo PCI compliant?

Kylo can be configured to use TLSv1.2 for all network communication it uses internally or externally. We are testing running NiFi repositories on encrypted disk with a client. v0.8 will
include some improvements required for full PCI compliance.

Data Ingest

What is Kylo’s standard batch ingest workflow?

Kylo includes a sample pipeline template that implements many best practices around data ingest, mostly utilizing Spark. Kylo makes it very simple for a business user to configure ingest of new source
files and RDMBS tables into Hive. Data can be read from a filesystem attached to the edge node, or directly using Kylo’s sqoop processor into Hadoop. Original data is archived into a distinct
location.
Small files are optionally merged and headers stripped, if needed. Data is cleansed, standardized, and validated based on user-defined policies. Invalid records are binned into a
separate table for later inspection. Valid records are inserted into a final Hive table with options such as (append, snapshot, merge with dedupe, upsert, etc). Target format can differ from the
raw source, contain custom partitions, and group-based security. Finally each batch of valid data is automatically profiled.

Does Kylo support batch and streaming?

Yes, either types of pipelines can configured with Kylo. Kylo tracks performance statistics of streaming-style feeds in activity over units of time. Kylo tracks performance of batch feeds in jobs and steps.

Which raw formats does Kylo support?

Kylo has a pluggable architecture for adding support for new types. Currently Kylo supports delimited-text formats (for example: csv, tab, pipe) and all Hadoop formats, such as ORC, Parquet, RCFile, AVRO,
and JSON.

Which target formats for Hive does Kylo support?

Kylo supports text-file, Parquet and ORC (default) with optional block compression, AVRO, text, and RCFile.

How does “incremental” loading strategy of a data feed work?

Kylo supports a simple incremental extract component. We maintain a
high-water mark for each load using a date field in the source record.

Can Kylo ingest from relational databases?

Yes, Kylo allows a user to select tables from RDBMS sources and easily configure ingest feeds choosing the target table structure, cleansing and validation rules, and target format. Kylo invokes
Sqoop via NiFi to avoid IO through the edge node.

Kylo’s RDBMS ingest support requires configuring a type-specific JDBC driver. It has been tested with data sources such as Teradata, SQL Server, Oracle, Postgres, and MySQL.

Terminology

There are a lot of new terms with Kylo and NiFi, and trying to learn
them all, including distinctions between Kylo and NiFi usage, can be
overwhelming. The goal of this document is to detail the semantics of
these terms within the context of Kylo and NiFi. This document does not
aim to write a definition for every term you will encounter in Kylo and
Apache NiFi.

Additional Resources:

	NiFi has documentation on its terminology on their website. However, some of the terms will be outlined here in the context of Kylo.

Apache NiFi Terminology

Processor

Refer to the NiFi terminology document for NiFi-specific terminology.

	A processor has properties that are configured. The values for these
properties can be hard-coded, or they can be made dynamic by using
the NiFi expression language, which will allow you to access the
attributes of a FlowFile as they go through the processor. They can
also be set or overridden through Kylo.

FlowFile

Immutable NiFi object that encapsulates the data that moves through a
NiFi flow. It consists of the data (content) and some additional
properties (attributes)

	NiFi wraps data in FlowFiles. FlowFiles can contain a piece of data,
an entire dataset, and batches of data,. depending upon which
processors are used, and their configurations. A NiFi flow can have
multiple FlowFiles running through it at one time, and the FlowFiles
can move from processor to processor independently of one another. It
is important to note that FlowFiles only conceptually “contain” the
data. For scalability reasons, FlowFiles actually have a pointer to
the data in the NiFi Content Repository.

Connection

A connection between two processors, between input/output ports, or
between both

	FlowFiles move from processor to processor through connections. A
connection houses a queue. If a processor on the receiving end of a
connection is stopped or disabled, the FlowFiles will sit in that
queue/connection until the receiving processor is able to receive
FlowFiles again.

Relationship

Closely tied to NiFi connections, see definition in NiFi terminology
document

	When a processor is done with a FlowFile, it will route it to one or
more relationships. These relationships can either be set to
auto-terminate (this would mark the end of the journey for FlowFiles
that get routed to auto-terminating relationships), or they can be
attached to NiFi connections. The most common example is the success
and failure relationships. Processors, when finished with a FlowFile,
determine which relationship(s) to route the FlowFile to. This can
create diverging paths in a flow, and can be used to represent
conditional business logic. For example: a flow can be designed so
that when processor A routes to the success relationship it goes to
processor B, and when processor A routes to the failure relationship
it routes to processor C.

Flow/Dataflow

A logically grouped sequence of connected processors and NiFi components

	You could also think of a flow as a program or a pipeline.

Controller Service

Refer to the NiFi terminology document for NiFi-specific terminology.

	An example is the Hive Thrift Service of type ThriftConnectionPool,
which is a controller service that lets the ExecuteHQL and
ExecuteHQLStatement processor types connect to a HiveServer2
instance.

NAR files

Similar to an uber JAR, a NiFi archive which may contain custom NiFi
processors, controllers and all library dependencies

	NAR files are bundles of code that you use to extend NiFi. If you
write a custom processor or other custom extension for NiFi, you must
package it up in a NAR file and deploy it to NiFi.

Template

Refer to the NiFi terminology document for NiFi-specific terminology.

	A template is a flow that has been saved for reuse. You can use a
template to model a common pattern, and then create useful flows out
of that by configuring the processors to your specific use case. They
can be exported and imported as XML. The term “template” becomes
overloaded with the introduction of Kylo, so it is important when
thinking and talking about Kylo to specify which kind of “template”
you are referring to.

Kylo Terminology

Registered Template

The blueprint from which Kylo feeds are created.

	In Kylo, a template typically refers to a registered template. A
registered template is a NiFi template that has been registered
through Kylo. When trying to register a NiFi template, there are
multiple courses of action. The first option is to upload a NiFi
template that has been previously exported from NiFi as XML. This
option does not actually add the NiFi template to the list of
registered templates in Kylo. Instead, this will upload the NiFi
template to the running instance of NiFi, which is futile if you
already have that template available in the running instance of NiFi.
The second option is to register a NiFi template directly through
NiFi. This will allow you to choose from the NiFi templates that are
available in the running instance of NiFi and register it. This does
add it to the list of registered templates. The third option is to
upload a template that has been exported from Kylo as a zip.
Registered templates can be exported from one running instance of
Kylo and registered in other instances of Kylo by uploading the
archive file (zip). An archive of a registered template will also
have the NiFi template in it. It is easiest to think of Kylo
templates (a.k.a., registered templates) as being a layer on top of
NiFi templates.

Category

A container for grouping feeds

	Each feed must belong to a category. A feed cannot belong to multiple
categories, but a category can contain multiple feeds. A category is
used as metadata in Kylo, and also manifests itself as a process
group in the running instance of NiFi

Input Processor or Source

The processor in a feed’s underlying flow that is at the beginning of
the flow and generates FlowFiles rather than transforming incoming ones

	There are processors that do not take incoming connections, and
instead generate FlowFiles from external sources. An example is the
GetFile processor, which runs at a configured interval to check a
specified directory for data. While these processors don’t
necessarily “kick off” a flow, as a flow is always running (unless
the components are stopped or disabled), these processors are the
origin for a flow and are considered the source or input processors
of a feed.

Feed

Typically will represent the key movement of data between a source (flat
file) and sink (e.g. Hive)

	An instantiation of a Kylo template

	Feeds are created from templates. The idea is that NiFi templates are
created to be reusable and generic. Then, the NiFi templates are
registered in Kylo, and the technical configurations of the NiFi
template are hidden and default values are set so that it is prepared
for the end user. Then, the end user, equipped with their domain
knowledge, creates feeds from the Kylo templates.

Job

A single run of a feed

	When an input processor generates a FlowFile, a new job for that feed
starts. The job follows the FlowFile through its feed’s underlying
flow, capturing metadata along the way. Jobs can be of two types,
FEED or CHECK. By default, all jobs are of type FEED. They can be set
to type CHECK by configuring one of the processors to set the
tb.jobType attribute to CHECK.

Step

A stage in a job

	Steps are specific to jobs in Kylo, and correlate directly to the
processors that the FlowFile goes through for that job. Flows can
have conditional logic and multiple relationships, so each FlowFile
that goes through a flow may not follow the same path every time. A
job follows a FlowFile, and has a step for each processor that the
FlowFile goes through.

Service

A service that Kylo has been configured to monitor

	Services in Kylo are not NiFi controller services. They are simply
services, such as HDFS and Kafka, that Kylo will monitor using either
Ambari’s API or Cloudera’s REST client.

Release Notes

Latest Stable Release

	Release 0.8.4 (November 29, 2017)

Previous Releases

	Release 0.8.3.3 (October 16, 2017)

	Release 0.8.3.2 (October 10, 2017)

	Release 0.8.3.1 (September 20, 2017)

	Release 0.8.3 (Aug 30, 2017)

	Release 0.8.2.6 (October 16, 2017)

	Release 0.8.2.5 (October 11, 2017)

	Release 0.8.2.4 (September 18, 2017)

	Release 0.8.2.3 (September 15, 2017)

	Release 0.8.2.2 (September 12, 2017)

	Release 0.8.2 (July 12, 2017)

	Release 0.8.1 (May 24, 2017)

	Release 0.8.0 (Apr 19, 2017)

	Release 0.7.1 (Mar 13, 2017)

	Release 0.7.0 (Feb. 13, 2017)

	Release 0.6.2 (Feb. 7, 2017)

	Release 0.6.1 (Jan. 26, 2017)

	Release 0.6.0 (Jan. 19, 2017)

	Release 0.5.0 (Dec. 14, 2016)

	Release 0.4.3 (Nov. 18, 2016)

	Release 0.4.2 (Nov. 4, 2016)

	Release 0.4.1 (Oct. 20, 2016)

	Release 0.4.0 (Oct. 4, 2016)

	Release 0.3.2 (Sept. 19, 2016)

	Release 0.3.1 (Aug. 17, 2016)

	Release 0.3.0 (Aug. 10, 2016)

	Release 0.2.0 (June 22, 2016)

Release 0.8.4 (November 29, 2017)

Highlights

	NiFi-1.4.0 support

	Enhanced Operations Manager dashboard with better performance

	SLA improvements including customizable SLA email templates

	Enhanced operations streaming statistics supporting more viewing options

	Ability to clone an existing Feed

	Visual query enhancements. The Transform Data step has been improved with UI enhancements including a context menu when clicking on a row or highlighting text.

	Preview validation errors. Apply domain types in a Data Transformation feed and preview which rows are invalid.

	Secure installation. Default usernames and passwords can be customized during installation to ensure a secure environment.

	Global search enhancements. Deleting a feed will remove its data from search results. Re-processing same data via a feed will not duplicate search results.

	136 Issues fixed

Download Links

	Visit the Downloads page for links.

Upgrade Instructions from v0.8.3

	Stop NiFi:

service nifi stop

	Backup any Kylo plugins

When Kylo is uninstalled it will backup configuration files, but not the /plugin jar files.
If you have any custom plugins in either kylo-services/plugin or kylo-ui/plugin then you will want to manually back them up to a different location.

	Uninstall Kylo:

/opt/kylo/remove-kylo.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Global search configuration (only applicable if using Elasticsearch):

5.1. This step to create kylo indexes may already have been performed as part of v0.8.3 installation. If indexes already exist, Elasticsearch will report an index_already_exists_exception. It is safe to ignore this and continue.

Change the host and port if necessary. The last two parameters define num-shards and num-replicas, and can be kept as 1 for development environment.

/opt/kylo/bin/create-kylo-indexes-es.sh localhost 9200 1 1

5.2. If using Elasticsearch v5, update the Index Text Service feed. This step should be done once Kylo services are started and Kylo is up and running. [Note: This requires NiFi 1.3 or later]

Import the feed index_text_service_v2.feed.zip file available at /opt/kylo/setup/data/feeds/nifi-1.3. Click ‘Yes’ for these options during feed import (a) Overwrite Feed (b) Replace Feed Template (c) Replace Reusable Template.

5.3. If using Elasticsearch v2, install an additional plugin to support deletes. If required, change the location to where Elasticsearch is installed.

sudo /usr/share/elasticsearch/bin/plugin install delete-by-query
service elasticsearch restart

	Restore previous application.properties files. If you have customized the the application.properties, copy the backup from the 0.8.3 install.

6.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

	Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the “YYYY_MM_DD_HH_MM_millis” with a valid time:

6.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a backup file
mv /opt/kylo/kylo-services/conf/application.properties /opt/kylo/kylo-services/conf/application.properties.0_8_3_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties /opt/kylo/kylo-services/conf

6.3 Copy the /bkup-config/TIMESTAMP/kylo-ui/application.properties file to /opt/kylo/kylo-ui/conf

6.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui application.properties file match. They property below needs to match in both of these files:

	/opt/kylo/kylo-ui/conf/application.properties

	/opt/kylo/kylo-services/conf/application.properties

security.jwt.key=

	JMS configuration:

It was previously possible to provide ActiveMQ and AmazonSQS configuration in their respective configuration files called activemq.properties and amazon-sqs.properties.
It is no longer possible and these properties should be moved over to standard Kylo configuration file found in <KYLO_HOME>/kylo-services/conf/application.properties.

	NOTE: Kylo no longer ships with the default dladmin user. You will need to re-add this user only if you’re using the default authentication configuration:

	Uncomment the following line in /opt/kylo/kylo-services/conf/application.properties and /opt/kylo/kylo-ui/conf/application.properties :

security.auth.file.users=file:///opt/kylo/users.properties
security.auth.file.groups=file:///opt/kylo/groups.properties

	Create a file called users.properties file that is owned by kylo and replace dladmin with a new username and thinkbig with a new password:

echo "dladmin=thinkbig" > /opt/kylo/users.properties
chown kylo:users /opt/kylo/users.properties
chmod 600 /opt/kylo/users.properties

	Create a file called groups.properties file that is owned by kylo and set the default groups:

vi /opt/kylo/groups.properties

dladmin=admin,user
analyst=analyst,user
designer=designer,user
operator=operations,user

chown kylo:users /opt/kylo/groups.properties
chmod 600 /opt/kylo/groups.properties

	Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi users

	Start NiFi and Kylo

service nifi start

/opt/kylo/start-kylo-apps.sh

10.1 Once Kylo is up and running, refer back to step 5.2 to update the Index Text Service feed if using Elasticsearch v5.

Release 0.8.3.3 (October 16, 2017)

Highlights

	New configuration option added to the auth-ad security profile to control user details filtering (addresses Windows 365 issues)

	Fixes KYLO-1281 missing Kylo Upgrade Version

Download Links

	RPM : http://bit.ly/2yMUbjb

	Debian : http://bit.ly/2yrdL1o

	TAR : http://bit.ly/2ylM5NR

Upgrade Instructions from v0.8.3 & v0.8.3.1

	Install the new RPM:

rpm –ivh <RPM_FILE>

2. If using the auth-ad profile and having problems with accessing user info in AD (experienced by some Windows 365 deployments), add the following property to the existing AD properties
in both kylo-services and kylo-ui application.properties files:

security.auth.ad.server.searchFilter=(&(objectClass=user)(sAMAccountName={1}))

Release 0.8.3.2 (October 10, 2017)

Note

A later version, 0.8.3.3 exists that fixes an issue with this release. Please visit Release 0.8.3.3 (October 16, 2017) for the latest version

Highlights

	New configuration option added to the auth-ad security profile to control user details filtering (addresses Windows 365 issues)

Download Links

Please visit Release 0.8.3.3 (October 16, 2017) for download links

Upgrade Instructions from v0.8.3 & v0.8.3.1

Please visit Release 0.8.3.3 (October 16, 2017) for download links and install instructions

Release 0.8.3.1 (September 20, 2017)

Highlights

	Optimize feed creation in NiFi and improve NiFi usability when there is a large number of feeds

	Ability to skip NiFi auto alignment when saving feeds

	Fix bug in operations manager that didn’t correctly fail jobs

	Support for ‘failure connection’ detection in feeds that contain sub process groups

	Fixes KYLO-823, KYLO-1202 setting controller service properties in feed/reusable templates

	Follow targetURL when logging in

	Fix Hive impersonation bug

	Additional metadata indexing to increase Kylo performance

Download Links

	RPM : http://bit.ly/2xgHsUM

	Debian : http://bit.ly/2hhqKOG

	TAR : http://bit.ly/2xT9ExY

Upgrade Instructions from v0.8.3

Build or download the RPM [http://bit.ly/2xgHsUM]

	Uninstall Kylo:

/opt/kylo/remove-kylo.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Copy the application.properties file from the 0.8.2 install. If you have customized the application.properties file you will want to copy the 0.8.2 version and add the new properties that were added for this release.

3.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

	Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the “YYYY_MM_DD_HH_MM_millis” with a valid time:

3.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a backup file
mv /opt/kylo/kylo-services/application.properties application.properties.0_8_2_2_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties /opt/kylo/kylo-services/conf

3.3 Optional: If you want to skip the auto alignment after saving feeds then add in the new properties to the /opt/kylo/kylo-services/application.properties file

skip auto alignment after you create a feed.
##You can always manually align your flows in NiFi via a Kylo Rest Endpoint
nifi.auto.align=false

Optional: At startup Kylo inspects NiFi to build a cache of NiFi flow data. It now does this with multiple threads. By default it uses 10 threads. You can modify this by setting the following property:

Modify the number of threads used by Kylo at startup to inspect and build the NiFi flow cache. Default is 10 if not specified
nifi.flow.inspector.threads=10

3.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui application.properties file match. They property below needs to match in both of these files:

	/opt/kylo/kylo-ui/conf/application.properties

	/opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

	Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi users

	After you startup you may need to re-index the Kylo metadata. You can do this via a REST endpoint after you login to Kylo at the following url:

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

Release 0.8.3 (Aug 30, 2017)

Highlights

	Pluggable JMS implementation with out-of-the-box support for ActiveMQ and Amazon SQS. Refer to JMS Providers for details

	Pluggable REST client for Elasticsearch. This is now used by default in lieu of transport client.

	Cloudera Services Monitor as Kylo plugin. Refer to Service Monitor Plugins for details

	Business domain types for columns. Define rules to auto-apply domain types during feed creation or manually select the domain type to apply predefined standardization and validation rules.

	Column-level tagging. Apply tags to columns and search column tags using Global Search.

	Schema changes for column descriptions. The Hive schema is updated when modifying the column description of a feed. The column description is also available on the Visual Query page when hovering over a column name.

	Alerts improvement. User Interface enhancements and additional alerts capabilities. The Alerts page has been improved and the alerts on the dashboard are now in sync with the alerts page and adhere to entity access controls

	Category-level feed role memberships. Ability to manage feed access control of all feeds under a category by assigning feed role memberships at the category level

	Ability to query/filter Service Level Assessments against the Service Level Agreements

	IE & Safari browser support

	Elasticsearch 5 support

	New angular UI module plugin support. Ability to create entirely new user interface modules and plug them into the UI navigation. Refer to Custom Kylo Module

	Spark Jobserver processors for NiFi. Reuse a SparkContext between multiple Spark jobs for increased performance. Requires an existing Spark Jobserver.

	Pluggable Spark functions. Custom Spark functions can be added to the Visual Query page by providing a json file with the function definitions. Refer to Writing Spark Function Definitions.

	MS SQL support

	Maven Central support

Download Links

Visit the Downloads page for links.

Upgrade Instructions from v0.8.2

	Stop NiFi:

service nifi stop

	Uninstall Kylo:

/opt/kylo/remove-kylo.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Copy the application.properties file from the 0.8.2 install. If you have customized the application.properties file you will want to copy the 0.8.2 version and add the new properties that were added for this release.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

	Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the “YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a backup file
mv /opt/kylo/kylo-services/conf/application.properties /opt/kylo/kylo-services/conf/application.properties.0_8_3_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties /opt/kylo/kylo-services/conf

4.3 Add in the new properties to the /opt/kylo/kylo-services/conf/application.properties file

	The following properties allow Kylo to inspect the database schema when creating database feeds

#Kylo MySQL controller service configuration
nifi.service.kylo_mysql.database_user=root
nifi.service.kylo_mysql.password=hadoop

	Flow Aggregation Stats

##when getting aggregate stats back for flows if errors are detected kylo will query NiFi in attempt to capture matching bulletins.
by default this data is stored in memory. Setting this to true will store the data in the MySQL table
kylo.ops.mgr.stats.nifi.bulletins.persist=false
if not perisiting (above flag is false) this is the limit to the number of error bulletins per feed.
this is a rolling queue that will keep the last # of errors per feed
kylo.ops.mgr.stats.nifi.bulletins.mem.size=30

	New NiFi version 1.1 profile

Previous versions of Kylo were compatible with Nifi v110 when using the nifiv1.0 profile. If you are using NiFi v1.1 in your environment then going forward you should use the nifi-1.1 profile.

spring.profiles.include=<other-profiles-as-required>,nifi-v1.1

	New configuration for JMS

Previous versions of Kylo did not have a profile based method of configured the queue services. With new SQS support, the profile must be stated explicitly. See section 8 for more info.

spring.profiles.include=<other-profiles-as-required>,jms-activemq

4.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui application.properties file match. They property below needs to match in both of these files:

	/opt/kylo/kylo-ui/conf/application.properties

	/opt/kylo/kylo-services/conf/application.properties

security.jwt.key=

	Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi users

	Backup the Kylo database. Run the following code against your kylo database to export the ‘kylo’ schema to a file. Replace the PASSWORD with the correct login to your kylo database.

mysqldump -u root -pPASSWORD --databases kylo > kylo-0_8_2_backup.sql

	Database updates. Kylo uses liquibase to perform database updates. Two modes are supported.

	Automatic updates

By default Kylo is set up to automatically upgrade its database on Kylo services startup. As such,
there isn’t anything specific an end user has to do. When Kylo services startup the kylo database will be automatically upgraded to latest version if required.
This is configured via an application.properties setting

liquibase.enabled=true

	Manual updates

Sometimes, however you may choose to disable liquibase and manually apply the upgrade scripts. By disabling liquibase you are in control of how the scripts are applied. This is needed if the kylo database user doesnt have priviledges to make schema changes to the kylo database.
Please follow this Database Upgrades on how to manually apply the additional database updates.

	Update NiFi to use default ActiveMQ JMS provider. Kylo now supports two JMS providers out-of-the-box: ActiveMQ and Amazon SQS. A particular provider is selected by active Spring profile in /opt/nifi/ext-config/config.properties.

8.1. Edit /opt/nifi/ext-config/config.properties

8.2. Add following line to enable ActiveMQ

spring.profiles.active=jms-activemq

Please follow this JMS Providers on how to switch active JMS Provider.

	If using Elasticsearch as the search engine, go through steps 9.1 to 9.5. If using Solr, go to step 10 and also refer to Solr plugin section.

9.1. Modify Elasticsearch rest client configuration (if required) in /opt/kylo/kylo-services/conf/elasticsearch-rest.properties. The defaults are provided below.

search.rest.host=localhost
search.rest.port=9200

9.2. Verify search-esr profile in existing list of profiles in /opt/kylo/kylo-services/conf/application.properties

spring.profiles.include=<other-profiles-as-required>,search-esr

9.3. Create Kylo Indexes

Execute a script to create kylo indexes. If these already exist, Elasticsearch will report an index_already_exists_exception. It is safe to ignore this and continue.
Change the host and port if necessary.

/opt/kylo/bin/create-kylo-indexes-es.sh localhost 9200 1 1

9.4. Import updated Index Text Service feed. This step should be done once Kylo services are started and Kylo is up and running.

9.4.1. [Elasticsearch version 2] Import the feed index_text_service_elasticsearch.feed.zip file available at /opt/kylo/setup/data/feeds/nifi-1.0

9.4.2. [Elasticsearch version 5] [This requires NiFi 1.3 or later] Import the feed index_text_service_v2.feed.zip file available at /opt/kylo/setup/data/feeds/nifi-1.3

9.5. For additional details, refer to this document under Rest Client section.

	If using Solr as the search engine, go through steps 10.1 to 10.5. Also refer to Solr plugin section

10.1. Create the collection in Solr

bin/solr create -c kylo-datasources -s 1 -rf 1

10.2. Navigate to Solr’s Admin UI

10.3. Select the kylo-datasources collection from the drop down in the left nav area

10.4. Click Schema on bottom left of nav area

10.5. Click Add Field on top of right nav pane

	name: kylo_collection

	type: string

	default value: kylo-datasources

	index: no

	store: yes

	If Kerberos has been enabled in spark.properties then make the below edits and disable the kylo-spark-shell service. The service will be started as needed by kylo-services.

Changes for kylo-services/conf/spark.properties with Kylo 0.8.3
#spark.shell.server.host = localhost
#spark.shell.server.port = 8450
spark.shell.deployMode = local

RedHat: disable kylo-spark-shell service
chkconfig kylo-spark-shell off

Debian: disable kylo-spark-shell service
update-rc.d kylo-spark-shell disable

	Start NiFi and Kylo

service nifi start

/opt/kylo/start-kylo-apps.sh

	Migrate Hive schema indexing to Kylo. The indexing of Hive schemas is now handled internally by Kylo instead of using a special feed.

12.1. Remove the Register Index processor from the standard_ingest and data_transformation reusable templates

12.2. Delete the Index Schema Service feed

	Import updated Index Text Service feed as mentioned in earlier step 9.4. At this point, Kylo should be up and running and hence 9.4 can be completed.

Release 0.8.2.6 (October 16, 2017)

Highlights

	New configuration option added to the auth-ad security profile to control user details filtering (addresses Windows 365 issues)

	Fixed KYLO-1264 ExecuteHQLStatement does not route to failure

	Fixed KYLO-940 ThriftConnectionPool doesn’t reconnect on Hive restart

	Fixes KYLO-1281 missing Kylo Upgrade Version

Download Links

	RPM : http://bit.ly/2xK1Z0k

	Debian : http://bit.ly/2yqtlup

	TAR : http://bit.ly/2yn7y9c

Upgrade Instructions from v0.8.2

	Uninstall Kylo:

/opt/kylo/remove-kylo.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Copy the application.properties file from the 0.8.2 install. If you have customized the application.properties file you will want to copy the 0.8.2 version and add the new properties that were added for this release.

3.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

	Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the “YYYY_MM_DD_HH_MM_millis” with a valid time:

3.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a backup file
mv /opt/kylo/kylo-services/application.properties application.properties.0_8_2_2_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties /opt/kylo/kylo-services/conf

3.3 If using the auth-ad profile and having problems with accessing user info in AD (experienced by some Windows 365 deployments), add the following property to the existing AD properties in both kylo-services and kylo-ui application.properties files:

security.auth.ad.server.searchFilter=(&(objectClass=user)(sAMAccountName={1}))

	Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi users

	Optional: To increase performance in Kylo you can choose to add indexes to the metadata-repository.json file. Add the following json snippet to the /opt/kylo/kylo-services/conf/metadata-repository.json

5.1 make a directory that kylo has read/write acess to:

mkdir -p /opt/kylo/modeshape/modeshape-local-index/

5.2. Edit the /opt/kylo/kylo-services/conf/metadata-repository.json and add in this snippet of JSON. Please ensure the “directory” in the json is the same that you created above.

"indexProviders": {
 "local": {
 "classname": "org.modeshape.jcr.index.local.LocalIndexProvider",
 "directory": "/opt/kylo/modeshape/modeshape-local-index/"
 }
 },
 "indexes": {
 "feedModificationDate": {
 "kind": "value",
 "provider": "local",
 "nodeType": "tba:feed",
 "columns": "jcr:lastModified(DATE)"
 },
 "feedState": {
 "kind": "value",
 "provider": "local",
 "nodeType": "tba:feedData",
 "columns": "tba:state(NAME)"
 },
 "categoryName": {
 "kind": "value",
 "provider": "local",
 "nodeType": "tba:category",
 "columns": "tba:systemName(STRING)"
 },
 "titleIndex": {
 "kind": "value",
 "provider": "local",
 "nodeType": "mix:title",
 "columns": "jcr:title(STRING)"
 },
 "nodesByName": {
 "kind": "value",
 "provider": "local",
 "synchronous": "true",
 "nodeType": "nt:base",
 "columns": "jcr:name(NAME)"
 },
 "nodesByDepth": {
 "kind": "value",
 "provider": "local",
 "synchronous": "true",
 "nodeType": "nt:base",
 "columns": "mode:depth(LONG)"
 },
 "nodesByPath": {
 "kind": "value",
 "provider": "local",
 "synchronous": "true",
 "nodeType": "nt:base",
 "columns": "jcr:path(PATH)"
 },
 "nodeTypes": {
 "kind": "nodeType",
 "provider": "local",
 "nodeType": "nt:base",
 "columns": "jcr:primaryType(STRING)"
 }
 },

Note: After you start you may need to re-index kylo. You can do this via a REST endpoint after you login to Kylo at the following url:

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

Release 0.8.2.5 (October 11, 2017)

Note

A later version, 0.8.2.6 exists that fixes an issue with this release. Please visit Release 0.8.2.6 (October 16, 2017) for the latest version

Highlights

	New configuration option added to the auth-ad security profile to control user details filtering (addresses Windows 365 issues)

	Fixed KYLO-1264 ExecuteHQLStatement does not route to failure

	Fixed KYLO-940 ThriftConnectionPool doesn’t reconnect on Hive restart

Download Links

Please visit Release 0.8.2.6 (October 16, 2017) for download links

Upgrade Instructions from v0.8.2

Please visit Release 0.8.2.6 (October 16, 2017) for download links and install instructions

Release 0.8.2.4 (September 18, 2017)

Highlights

	Fixes KYLO-1214 Feed Lineage

	Refer to previous 0.8.2.x releases for additional notes.

Additional Features in the 0.8.2.x Patch Releases

	Optimize feed creation in NiFi and improve NiFi usability when there is a large number of feeds

	Ability to skip NiFi auto alignment when saving feeds

	Fix bug in operations manager that didn’t correctly fail jobs

	Support for ‘failure connection’ detection in feeds that contain sub process groups

	Fixes KYLO-823, KYLO-1202 setting controller service properties in feed/reusable templates

Download Links

	RPM : http://bit.ly/2xeDCcx

	Debian : http://bit.ly/2hfIiHm

	TAR : http://bit.ly/2f81QNv

Upgrade Instructions from v0.8.2

Build or download the rpm [http://bit.ly/2xeDCcx]

	Uninstall Kylo:

/opt/kylo/remove-kylo.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Copy the application.properties file from the 0.8.2 install. If you have customized the application.properties file you will want to copy the 0.8.2 version and add the new properties that were added for this release.

3.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

	Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the “YYYY_MM_DD_HH_MM_millis” with a valid time:

3.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a backup file
mv /opt/kylo/kylo-services/application.properties application.properties.0_8_2_2_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties /opt/kylo/kylo-services/conf

3.3 Optional: If you want to skip the auto alignment after saving feeds then add in the new properties to the /opt/kylo/kylo-services/application.properties file

skip auto alignment after you create a feed.
##You can always manually align your flows in NiFi via a Kylo Rest Endpoint
nifi.auto.align=false

Optional: At startup Kylo inspects NiFi to build a cache of NiFi flow data. It now does this with multiple threads. By default it uses 10 threads. You can modify this by setting the following property:

Modify the number of threads used by Kylo at startup to inspect and build the NiFi flow cache. Default is 10 if not specified
nifi.flow.inspector.threads=10

3.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui application.properties file match. They property below needs to match in both of these files:

	/opt/kylo/kylo-ui/conf/application.properties

	/opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

	Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi users

	Optional: To increase performance in Kylo you can choose to add indexes to the metadata-repository.json file. Add the following json snippet to the /opt/kylo/kylo-services/conf/metadata-repository.json

5.1 make a directory that kylo has read/write acess to:

mkdir -p /opt/kylo/modeshape/modeshape-local-index/

5.2. Edit the /opt/kylo/kylo-services/conf/metadata-repository.json and add in this snippet of JSON. Please ensure the “directory” in the json is the same that you created above.

"indexProviders": {
 "local": {
 "classname": "org.modeshape.jcr.index.local.LocalIndexProvider",
 "directory": "/opt/kylo/modeshape/modeshape-local-index/"
 }
 },
 "indexes": {
 "feedModificationDate": {
 "kind": "value",
 "provider": "local",
 "nodeType": "tba:feed",
 "columns": "jcr:lastModified(DATE)"
 },
 "feedState": {
 "kind": "value",
 "provider": "local",
 "nodeType": "tba:feedData",
 "columns": "tba:state(NAME)"
 },
 "categoryName": {
 "kind": "value",
 "provider": "local",
 "nodeType": "tba:category",
 "columns": "tba:systemName(STRING)"
 },
 "titleIndex": {
 "kind": "value",
 "provider": "local",
 "nodeType": "mix:title",
 "columns": "jcr:title(STRING)"
 },
 "nodesByName": {
 "kind": "value",
 "provider": "local",
 "synchronous": "true",
 "nodeType": "nt:base",
 "columns": "jcr:name(NAME)"
 },
 "nodesByDepth": {
 "kind": "value",
 "provider": "local",
 "synchronous": "true",
 "nodeType": "nt:base",
 "columns": "mode:depth(LONG)"
 },
 "nodesByPath": {
 "kind": "value",
 "provider": "local",
 "synchronous": "true",
 "nodeType": "nt:base",
 "columns": "jcr:path(PATH)"
 },
 "nodeTypes": {
 "kind": "nodeType",
 "provider": "local",
 "nodeType": "nt:base",
 "columns": "jcr:primaryType(STRING)"
 }
 },

Note: After you start you may need to re-index kylo. You can do this via a REST endpoint after you login to Kylo at the following url:

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

Release 0.8.2.3 (September 15, 2017)

Highlights

	This releases further optimizes Kylo and NiFi integration.

	Fixes KYLO-823, KYLO-1202 setting controller service properties in feed/reusable templates

	Reduces the verbose logging output (in 0.8.2.2) to debug when creating feeds

Download Links

	RPM : http://bit.ly/2x7BB3q

	Debian : http://bit.ly/2wuQgSA

	TAR : http://bit.ly/2h81kiK

Upgrade Instructions from v0.8.2

Build or download the rpm [http://bit.ly/2x7BB3q]

	Uninstall Kylo:

/opt/kylo/remove-kylo.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Copy the application.properties file from the previous install If you have customized the application.properties file you will want to copy the 0.8.2 version and add the new properties that were added for this release.

3.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

	Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the “YYYY_MM_DD_HH_MM_millis” with a valid time:

3.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a backup file
mv /opt/kylo/kylo-services/application.properties application.properties.0_8_2_2_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties /opt/kylo/kylo-services/conf

3.3 Optional: At startup Kylo inspects NiFi to build a cache of NiFi flow data. It now does this with multiple threads. By default it uses 10 threads. You can modify this by setting the following property:

Modify the number of threads used by Kylo at startup to inspect and build the NiFi flow cache. Default is 10 if not specified
nifi.flow.inspector.threads=10

3.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui application.properties file match. They property below needs to match in both of these files:

	/opt/kylo/kylo-ui/conf/application.properties

	/opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

	Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi users

	Optional: To increase performance in Kylo you can choose to add indexes to the metadata-repository.json file. Add the following json snippet to the /opt/kylo/kylo-services/conf/metadata-repository.json

5.1 make a directory that kylo has read/write acess to:

mkdir -p /opt/kylo/modeshape/modeshape-local-index/

5.2. Edit the /opt/kylo/kylo-services/conf/metadata-repository.json and add in this snippet of JSON. Please ensure the “directory” in the json is the same that you created above.

"indexProviders": {
 "local": {
 "classname": "org.modeshape.jcr.index.local.LocalIndexProvider",
 "directory": "/opt/kylo/modeshape/modeshape-local-index/"
 }
 },
 "indexes": {
 "feedModificationDate": {
 "kind": "value",
 "provider": "local",
 "nodeType": "tba:feed",
 "columns": "jcr:lastModified(DATE)"
 },
 "feedState": {
 "kind": "value",
 "provider": "local",
 "nodeType": "tba:feedData",
 "columns": "tba:state(NAME)"
 },
 "categoryName": {
 "kind": "value",
 "provider": "local",
 "nodeType": "tba:category",
 "columns": "tba:systemName(STRING)"
 },
 "titleIndex": {
 "kind": "value",
 "provider": "local",
 "nodeType": "mix:title",
 "columns": "jcr:title(STRING)"
 },
 "nodesByName": {
 "kind": "value",
 "provider": "local",
 "synchronous": "true",
 "nodeType": "nt:base",
 "columns": "jcr:name(NAME)"
 },
 "nodesByDepth": {
 "kind": "value",
 "provider": "local",
 "synchronous": "true",
 "nodeType": "nt:base",
 "columns": "mode:depth(LONG)"
 },
 "nodesByPath": {
 "kind": "value",
 "provider": "local",
 "synchronous": "true",
 "nodeType": "nt:base",
 "columns": "jcr:path(PATH)"
 },
 "nodeTypes": {
 "kind": "nodeType",
 "provider": "local",
 "nodeType": "nt:base",
 "columns": "jcr:primaryType(STRING)"
 }
 },

Note: After you start you may need to re-index kylo. You can do this via a REST endpoint after you login to Kylo at the following url:

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

Release 0.8.2.2 (September 12, 2017)

Highlights

	Optimize feed creation in NiFi and improve NiFi usability when there is a large number of feeds

	Ability to skip NiFi auto alignment when saving feeds

	Fix bug in operations manager that didn’t correctly fail jobs

	Support for ‘failure connection’ detection in feeds that contain sub process groups

	For a complete list of issues resolved visit: Release notes - Kylo - Version 0.8.2.2

Download Links

	RPM : http://bit.ly/2fhpVSq

	Debian : http://bit.ly/2eUBtKA

	TAR : http://bit.ly/2x0g7FD

Upgrade Instructions from v0.8.2

Build or download the rpm [http://bit.ly/2fhpVSq]

	Uninstall Kylo:

/opt/kylo/remove-kylo.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Copy the application.properties file from the 0.8.2 install. If you have customized the application.properties file you will want to copy the 0.8.2 version and add the new properties that were added for this release.

3.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

	Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the “YYYY_MM_DD_HH_MM_millis” with a valid time:

3.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a backup file
mv /opt/kylo/kylo-services/application.properties application.properties.0_8_2_2_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties /opt/kylo/kylo-services/conf

3.3 Optional: If you want to skip the auto alignment after saving feeds then add in the new properties to the /opt/kylo/kylo-services/application.properties file

skip auto alignment after you create a feed.
##You can always manually align your flows in NiFi via a Kylo Rest Endpoint
nifi.auto.align=false

3.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui application.properties file match. They property below needs to match in both of these files:

	/opt/kylo/kylo-ui/conf/application.properties

	/opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

	Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi users

	Optional: To increase performance in Kylo you can choose to add indexes to the metadata-repository.json file. Add the following json snippet to the /opt/kylo/kylo-services/conf/metadata-repository.json

5.1 make a directory that kylo has read/write acess to:

mkdir -p /opt/kylo/modeshape/modeshape-local-index/

5.2. Edit the /opt/kylo/kylo-services/conf/metadata-repository.json and add in this snippet of JSON. Please ensure the “directory” in the json is the same that you created above.

"indexProviders": {
 "local": {
 "classname": "org.modeshape.jcr.index.local.LocalIndexProvider",
 "directory": "/opt/kylo/modeshape/modeshape-local-index/"
 }
 },
 "indexes": {
 "feedModificationDate": {
 "kind": "value",
 "provider": "local",
 "nodeType": "tba:feed",
 "columns": "jcr:lastModified(DATE)"
 },
 "feedState": {
 "kind": "value",
 "provider": "local",
 "nodeType": "tba:feedData",
 "columns": "tba:state(NAME)"
 },
 "categoryName": {
 "kind": "value",
 "provider": "local",
 "nodeType": "tba:category",
 "columns": "tba:systemName(STRING)"
 },
 "titleIndex": {
 "kind": "value",
 "provider": "local",
 "nodeType": "mix:title",
 "columns": "jcr:title(STRING)"
 },
 "nodesByName": {
 "kind": "value",
 "provider": "local",
 "synchronous": "true",
 "nodeType": "nt:base",
 "columns": "jcr:name(NAME)"
 },
 "nodesByDepth": {
 "kind": "value",
 "provider": "local",
 "synchronous": "true",
 "nodeType": "nt:base",
 "columns": "mode:depth(LONG)"
 },
 "nodesByPath": {
 "kind": "value",
 "provider": "local",
 "synchronous": "true",
 "nodeType": "nt:base",
 "columns": "jcr:path(PATH)"
 },
 "nodeTypes": {
 "kind": "nodeType",
 "provider": "local",
 "nodeType": "nt:base",
 "columns": "jcr:primaryType(STRING)"
 }
 },

Note: After you start you may need to re-index kylo. You can do this via a REST endpoint after you login to Kylo at the following url:

http://localhost:8400/proxy/v1/metadata/debug/jcr-index/reindex

Release 0.8.2 (July 12, 2017)

Highlights

	109 issues resolved

	NiFi 1.3.0 support

	Global search enhancements. Auto-indexing of feed, category, tags, and improved UI.

	Ability to use Solr vs ElasticSearch (ES default)

	Streaming visualization improvements. New Ops UI for monitoring streaming feeds.

	Provenance event performance tune-up. Fixed lag that could occur for high throughput streaming feeds.

	Pluggable UI. Ability to add dynamic new user interface components. See: Plugin APIs

	Wrangler support for Spark yarn-cluster mode

	Wrangler supports user impersonation. There are a few different run modes depending on which configuration properties are specified.

	TAR file installation support. This allows installation in different folder locations and to be ran as different linux users/groups

	Example S3 data ingest template. Ability to process data without bringing the data into the edge node. See: S3 Standard Ingest Template

	SPNEGO bug fixes and improvements with Active Directory integration

Download Links

	RPM : http://bit.ly/2uT8bTo

	Debian : http://bit.ly/2uSTvUv

	TAR : http://bit.ly/2ug8ZUz

Upgrade Instructions from v0.8.1

Build or download the RPM [http://bit.ly/2uT8bTo]

	Uninstall Kylo:

/opt/kylo/remove-kylo.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Update NiFi to use the new KyloPersistentProvenanceRepository. Kylo no longer uses the NiFi reporting task to capture provenance events. Instead it uses a modified ProvenanceRepository.

3.1. In NiFi stop and delete the Kylo Reporting Task and its associated Controller Service.

3.2. Stop NiFi

3.3. Follow the guide NiFi & Kylo Provenance to setup the KyloPersistentProvenanceRepository

	Copy the application.properties file from the 0.8.1 install. If you have customized the application.properties file you will want to copy the 0.8.1 version and add the new properties that were added for this release.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

	Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the “YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a backup file
mv /opt/kylo/kylo-services/application.properties application.properties.0_8_2_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties /opt/kylo/kylo-services/conf

4.3 Add in the new properties to the /opt/kylo/kylo-services/application.properties file

	ActiveMQ properties: Redelivery processing properties are now available for configuration. If Kylo receives provenance events and they have errors are are unable to attach NiFi feed information (i.e. if NiFi goes down and Kylo doesnt have the feed information in its cache) then the JMS message will be returned for redelivery based upon the following parameters. Refer to the ActiveMQ documentation, http://activemq.apache.org/redelivery-policy.html, for assigning these values:

retry for xx times before sending to DLQ (Dead Letter Queue) set -1 for unlimited redeliveries
jms.maximumRedeliveries=100
##The initial redelivery delay in milliseconds.
jms.initialRedeliveryDelay=1000
##retry every xx seconds
jms.redeliveryDelay=5000
##Sets the maximum delivery delay that will be applied if the useExponentialBackOff option is set (use value -1 for no max)
jms.maximumRedeliveryDelay=600000
##The back-off multiplier.
jms.backOffMultiplier=5
##Should exponential back-off be used, i.e., to exponentially increase the timeout.
jms.useExponentialBackOff=false

	
	NiFi 1.3 support

	If you are using NiFi 1.2 or 1.3 you need to update the spring profile to point to the correct nifi version.

Example NiFi 1.2 or 1.3 support

Indicate the NiFi version you are using with the correct spring profile.
- For NiFi 1.0.x or 1.1.x: nifi-v1
- For NiFi 1.2.x or 1.3.x: nifi-v1.2
spring.profiles.include=native,nifi-v1.2,auth-kylo,auth-file

Example NiFi 1.0 or 1.1 support

spring.profiles.include=native,nifi-v1,auth-kylo,auth-file

	
	Global search support

	Elasticsearch is the default search provider. Add search-es to spring profiles:

spring.profiles.include=<all your existing profiles>,search-es

4.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui application.properties file match. They property below needs to match in both of these files:

	/opt/kylo/kylo-ui/conf/application.properties

	/opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

	Backup the Kylo database. Run the following code against your kylo database to export the ‘kylo’ schema to a file. Replace the PASSWORD with the correct login to your kylo database.

mysqldump -u root -pPASSWORD --databases kylo >kylo-0_8_1_backup.sql

	Database updates. Kylo uses liquibase to perform database updates. Two modes are supported.

	Automatic updates

By default Kylo is set up to automatically upgrade its database on Kylo services startup. As such,
there isn’t anything specific an end user has to do. When Kylo services startup the kylo database will be automatically upgraded to latest version if required.
This is configured via an application.properties setting

liquibase.enabled=true

	Manual updates

Sometimes, however you may choose to disable liquibase and manually apply the upgrade scripts. By disabling liquibase you are in control of how the scripts are applied. This is needed if the kylo database user doesnt have priviledges to make schema changes to the kylo database.
Please follow this Database Upgrades on how to manually apply the additional database updates.

	Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh <NIFI_HOME> <KYLO_SETUP_FOLDER> <NIFI_LINUX_USER> <NIFI_LINUX_GROUP>

Example: /opt/kylo/setup/nifi/update-nars-jars.sh /opt/nifi /opt/kylo/setup nifi users

	Update configuration for using Elasticsearch as the search engine

	Provide cluster properties

	Update cluster properties in /opt/kylo/kylo-services/conf/elasticsearch.properties if different from the defaults provided below.

search.host=localhost
search.clusterName=demo-cluster
search.restPort=9200
search.transportPort=9300

Kylo services must be restarted if the above file has been changed to pick up the new values.

service kylo-services restart

	Steps to import updated Index Schema Service feed

	Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

	Pick the index_schema_service_elasticsearch.feed.zip file available at /opt/kylo/setup/data/feeds/nifi-1.0

	Leave Change the Category field blank (It defaults to System)

	Click Yes for these two options (1) Overwrite Feed (2) Replace Feed Template

	(optional) Click Yes for option (3) Disable Feed upon import only if you wish to keep the indexing feed disabled upon import (You can explicitly enable it later if required)

	Click Import Feed.

	Verify that the feed imports successfully.

	If your Hive metastore is in a schema named something other than hive, edit the feed and set hive.schema to the schema name. This configuration value may be available with the key config.hive.schema in /opt/kylo/kylo-services/conf/application.properties

	Steps to import updated Index Text Service feed

	Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

	Pick the index_text_service_elasticsearch.feed.zip file available at /opt/kylo/setup/data/feeds/nifi-1.0

	Leave Change the Category field blank (It defaults to System)

	Click Yes for these two options (1) Overwrite Feed (2) Replace Feed Template

	(optional) Click Yes for option (3) Disable Feed upon import only if you wish to keep the indexing feed disabled upon import (You can explicitly enable it later if required)

	Click Import Feed.

	Verify that the feed imports successfully.

	Re-import the templates.

	Re-import Data Ingest template (data_ingest.zip)

	Re-import Data Transformation template (data_transformation.zip)

	Re-import Data Confidence template (data_confidence_invalid_records.zip)

	NiFi 1.2/1.3 breaking change.

	NiFi introduced a change to their UpdateAttributes processor that prevents empty strings from being set to the dynamic properties unless the state is saved.

	The templates (in step 7 above) already have this change made. Any feeds you have from a previous NiFi version that have empty strings in the UpdateAttributes processors will be broken and need fixed. You can fix them by importing the new templates and then saving the feed, or you will neeed to manually fix the feed/template.
If you need to manually fix feed flows in NiFi do the following:

	Modify the UpdateAttributes processors and change the “Store State” property to be “Store state locally”

	Change the “Stateful Variables Initial Value” and check the box “Set empty string”

	Go to the Settings for the processor and Auto terminate the “set state fail” route.

[image: image0]

Release 0.8.1 (May 24, 2017)

Highlights

	140+ issues resolved

	You can now assign users and groups access to feeds, categories, and templates giving you fine grain control of what users can see and do. Refer to the Access Control for more information.

	Kylo can now be clustered for high availability. Refer to Clustering Kylo for more information.

	You now mix and match the order of standardizers and validators giving you more control over the processing of your data.

	The wrangler has been improved with a faster transformation grid and now shows column level profile statistics as you transform your data.

Download Links

	RPM : http://bit.ly/2r4P47A

	Debian : http://bit.ly/2rYObgz

Upgrade Instructions from v0.7.1

	If upgrading directly from v0.7.1, run the database update to enable Liquibase.

/opt/kylo/setup/sql/mysql/kylo/0.8.0/update.sh <db-hostname> <db-user> <db-password>

Upgrade Instructions from v0.8.0

Build or download the RPM [http://bit.ly/2r4P47A]

	Uninstall Kylo:

/opt/kylo/remove-kylo.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Copy the application.properties file from the 0.8.0.1 install. If you have customized the application.properties file you will want to copy the 0.8.0.1 version and add the new properties that were added for this release.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

	Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the “YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a backup file
mv /opt/kylo/kylo-services/application.properties application.properties.0_8_1_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties /opt/kylo/kylo-services/conf

4.3 Two new properties were added. Add in the 2 new properties to the /opt/kylo/kylo-services/conf/application.properties file

Entity-level access control. To enable, uncomment below line and set value as true
#security.entity.access.controlled=false

optional. If added you can control the timeout when you delete a feed
kylo.feed.mgr.cleanup.timeout=60000

Refer to the Access Control document for more information about entity level access control. To enable entity access control ensure the property above is set to true.

4.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui application.properties file match. They property below needs to match in both of these files:

	/opt/kylo/kylo-ui/conf/application.properties

	/opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

	Backup the Kylo database. Run the following code against your kylp database to export the ‘kylo’ schema to a file. Replace the PASSWORD with the correct login to your kylo database.

mysqldump -u root -pPASSWORD --databases kylo >kylo-0_8_0_1_backup.sql

	Database updates. Kylo uses liquibase to perform database updates. Two modes are supported.

	Automatic updates

By default Kylo is set up to automatically upgrade its database on Kylo services startup. As such,
there isn’t anything specific an end user has to do. When Kylo services startup the kylo database will be automatically upgraded to latest version if required.
This is configured via an application.properties setting

liquibase.enabled=true

	Manual updates

Sometimes, however you may choose to disable liquibase and manually apply the upgrade scripts. By disabling liquibase you are in control of how the scripts are applied. This is needed if the kylo database user doesnt have priviledges to make schema changes to the kylo database.
Please follow this Database Upgrades on how to manually apply the additional database updates.

	Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh

	Re-import Data Ingest template (data_ingest.zip).

	Kylo now allows converting data ingested from a database into AVRO format, and then running it further through the flow.

	To enable this, re-import the data_ingest.zip file (Templates -> + icon -> Import from a file -> Choose file -> Check yes to ‘overwrite’ feed template -> Check yes to ‘Replace the reusable template’ -> Import template)

Release 0.8.0 (Apr 19, 2017)

Highlights

	90+ issues resolved

	Automatic and manual database upgrades. See Database Upgrades

	Support for PostgreSQL as Kylo metadata store

	Join Hive and any JDBC tables in Data Transformation feeds by creating a new Data Source.

	Wrangler can now use standardization and validation functions, and be merged, profiled, and indexed.

	The Feed/Template import provides visual feedback and progress

	Kylo will now encrypt ‘sensitive’ properties and enforce ‘required’ properties.

Upgrade Instructions from v0.7.1

Build or download the RPM [http://bit.ly/2oVaQJE]

	Shut down NiFi:

service nifi stop

	Uninstall Kylo:

/opt/kylo/remove-kylo.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Copy the application.properties file from the 0.7.1 install. If you have customized the application.properties file you will want to copy the 0.7.1 version and add the new properties that were added for this release.

4.1 Find the /bkup-config/TIMESTAMP/kylo-services/application.properties file

	Kylo will backup the application.properties file to the following location, /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties, replacing the “YYYY_MM_DD_HH_MM_millis” with a valid time:

4.2 Copy the backup file over to the /opt/kylo/kylo-services/conf folder

move the application.properties shipped with the .rpm to a backup file
mv /opt/kylo/kylo-services/application.properties application.properties.0_8_0_template
copy the backup properties (Replace the YYYY_MM_DD_HH_MM_millis with the valid timestamp)
cp /opt/kylo/bkup-config/YYYY_MM_DD_HH_MM_millis/kylo-services/application.properties /opt/kylo/kylo-services/conf

4.3 Add in the 2 new properties to the /opt/kylo/kylo-services/conf/application.properties file

liquibase.enabled=true
liquibase.change-log=classpath:com/thinkbiganalytics/db/master.xml

4.4 Ensure the property security.jwt.key in both kylo-services and kylo-ui application.properties file match. They property below needs to match in both of these files:

	/opt/kylo/kylo-ui/conf/application.properties

	/opt/kylo/kylo-services/conf/application.properties.

security.jwt.key=

4.5 If using Spark 2 then add the following property to the /opt/kylo/kylo-services/conf/application.properties file

config.spark.version=2

	Backup the Kylo database. Run the following code against your kylp database to export the ‘kylo’ schema to a file. Replace the PASSWORD with the correct login to your kylo database.

mysqldump -u root -pPASSWORD --databases kylo >kylo-0_7_1_backup.sql

	Upgrade Kylo database:

/opt/kylo/setup/sql/mysql/kylo/0.8.0/update.sh localhost root <password or blank>

	Additional Database updates. Kylo now uses liquibase to perform database updates. Two modes are supported.

	Automatic updates

By default Kylo is set up to automatically upgrade its database on Kylo services startup. As such,
there isn’t anything specific an end user has to do. When Kylo services startup the kylo database will be automatically upgraded to latest version if required.

	Manual updates

Sometimes, however you may choose to disable liquibase and manually apply the upgrade scripts. By disabling liquibase you are in control of how the scripts are applied. This is needed if the kylo database user doesnt have priviledges to make schema changes to the kylo database.
Please follow this Database Upgrades on how to manually apply the additional database updates.

	Update the NiFi nars. Run the following shell script to copy over the new NiFi nars/jars to get new changes to NiFi processors and services.

/opt/kylo/setup/nifi/update-nars-jars.sh

	Update the NiFi Templates.

	The Data Transformation template now allows you to apply standardization and validation rules to the feed. To take advantage of this you will need to import the new template. The new data transformation template can be found:

If you import the new Data Transformation template, be sure to re-initialize your existing Data Transformation feeds if you update them.

Data Transformation Enhancement Changes

New to this release is the ability for the data wrangler to connect to various JDBC data sources, allowing you to join Hive tables with, for example, MySQL or Teradata. The JDBC drivers are automatically read from /opt/nifi/mysql/ when Kylo is starting up. When Kylo Spark Shell is run in yarn-client mode then these jars need to be added manually to the run-kylo-spark-shell.sh script:

	Edit /opt/kylo/kylo-services/bin/run-kylo-spark-shell.sh and append –jars to the spark-submit command-line:

spark-submit --jars /opt/nifi/mysql/mariadb-java-client-1.5.7.jar ...

Additional driver locations can be added separating each location with a comma

spark-submit --jars /opt/nifi/mysql/mariadb-java-client-1.5.7.jar,/opt/nifi/teradata/terajdbc4.jar ...

Ambari Service Monitor Changes

The Ambari Service Monitor is now a Kylo plugin jar. In order for Kylo to report status on Ambari services you will need to do the following:

	Modify/Ensure the connection properties are setup. The ambari connection parameters need to be moved out of the main kylo-services application.properties to a new file called ambari.properties

	Create a new file /opt/kylo/kylo-services/conf/ambari.properties. Ensure the owner of the file is kylo

	Add and configure the following properties in that file:

ambariRestClientConfig.host=127.0.0.1
ambariRestClientConfig.port=8080
ambariRestClientConfig.username=admin
ambariRestClientConfig.password=admin
ambari.services.status=HDFS,HIVE,MAPREDUCE2,SQOOP

	Copy the /opt/kylo/setup/plugins/kylo-service-monitor-ambari-0.8.0.jar to /opt/kylo/kylo-services/plugin

cp /opt/kylo/setup/plugins/kylo-service-monitor-ambari-0.8.0.jar /opt/kylo/kylo-services/plugin/

Release 0.7.1 (Mar 13, 2017)

Highlights

	64 issues resolved

	UI performance. Modules combined in a single page application and many other optimizations.

	Lineage auto-alignment. Correctly aligns feeds, sources, and destinations.

	Wrangle and machine learning. Added over 50 machine learning functions to the data wrangler. The data wrangler now supports over 600 functions!

	Test framework. Initial groundwork for automated integration testing.

	
	Notable issues resolved:

	
	Multiple Spark validation and profiler issues resolved

	Login issues when using https

	Race condition on startup of Kylo and Modeshape service

	For a complete list of resolved issues see here: Kylo - Version 0.7.1 Resolved Issues

RPM

http://bit.ly/2mlqhZr

Upgrade Instructions from v0.7.0

Build or download the RPM: http://bit.ly/2mlqhZr

	Uninstall the RPM, run:

/opt/kylo/remove-kylo.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Update the Database:

/opt/kylo/setup/sql/mysql/kylo/0.7.1/update.sh localhost root <password or blank>

	Start kylo apps:

/opt/kylo/start-kylo-apps.sh

Release 0.7.0 (Feb. 13, 2017)

Highlights

	Renamed thinkbig artifacts to kylo

	Our REST API documentation has been updated and reorganized for
easier reading. If you have Kylo running you can
open http://localhost:8400/api-docs/index.html to view the docs.

	Kylo is now available under the Apache 2 open-source license. Visit
our new GitHub [https://github.com/KyloIO] page!

	Login to Kylo with our new form-based authentication. A logout option
has been added to the upper-right menu in both the Feed Manager and
the Operations Manager.

RPM

http://bit.ly/2l5p1tK

Upgrade Instructions from v0.6.0

Build or download the rpm.

	Shut down NiFi:

service nifi stop

	Run:

useradd -r -m -s /bin/bash kylo

	Run:

usermod -a -G hdfs kylo

	Run:

/opt/thinkbig/remove-kylo-datalake-accelerator.sh to uninstall
the RPM

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Migrate the “thinkbig” database schema to “kylo”.

Kylo versions 0.6 and below use the thinkbig schema in MySQL. Starting from version 0.7, Kylo uses the kylo schema. This guide is intended for installations that are already on Kylo 0.6, and want to upgrade to Kylo 0.7. It outlines the procedure for migrating the current thinkbig schema to kylo schema, so that Kylo 0.7 can work.

Migration Procedure

6a. Uninstall Kylo 0.6 (Refer to deployment guide and release notes for details).

6b. Install Kylo 0.7 (Refer to deployment guide and release notes for details).

Do not yet start Kylo services.

6c. Log into MySQL instance used by Kylo, and list the schemas:

mysql> show databases

6d. Verify that:

	thinkbig schema exists

	kylo schema does not exist

6e. Navigate to Kylo’s setup directory for MySQL.

cd /opt/kylo/setup/sql/mysql

6f. Execute the migration script. It takes 3 parameters. For no password, provide the 3rd parameter as ‘’../migrate-schema-thinkbig-to-kylo-mysql.sh <host> <user> <password>

	Step 1 of migration: kylo schema is set up.

	Step 2 of migration: thinkbig schema is migrated to kylo schema.

6g. Start Kylo services. Verify that Kylo starts and runs successfully. At this point, there are two schemas in MySQL: kylo and thinkbig.

Once Kylo is running normally and migration is verified, the thinkbig schema can be dropped.

6h. Navigate to Kylo’s setup directory for MySQL.

cd /opt/kylo/setup/sql/mysql

6i. Execute the script to drop thinkbig schema. It takes 3 parameters. For no password, provide the 3rd parameter as:

../drop-schema-thinkbig-mysql.sh <host> <user> <password>

6j. Verify that only kylo schema now exists in MySQL.

mysql> show databases

This completes the migration procedure.

	Update the database:

/opt/kylo/setup/sql/mysql/kylo/0.7.0/update.sh localhost root <password or blank>

	Run:

/opt/kylo/setup/nifi/update-nars-jars.sh

	Edit:

/opt/nifi/current/conf/bootstrap.conf

Change “java.arg.15=Dthinkbig.nifi.configPath=/opt/nifi/ext-config” to “java.arg.15=Dkylo.nifi.configPath=/opt/nifi/ext-config”.

	Run:

mv /opt/thinkbig/bkup-config /opt/kylo
chown -R kylo:kylo bkup-config

	Run:

mv /opt/thinkbig/encrypt.key /opt/kylo

If prompted for overwrite, answer ‘yes’.

	Run:

chown kylo:kylo /opt/kylo/encrypt.key

	Copy the mariadb driver to access MySQL database.

	Run:

> cp /opt/kylo/kylo-services/lib/mariadb-java-client-*.jar /opt/nifi/mysql

> chown nifi:users /opt/nifi/mysql/mariadb-java-client-*.jar

	Start NiFi (wait to start):

service nifi start

	In the standard-ingest template, update the”Validate and Split Records” processor and change the ApplicationJAR value to:

/opt/nifi/current/lib/app/kylo-spark-validate-cleanse-jar-with-dependencies.jar

	In the standard-ingest template update the”Profile Data” processor and change the ApplicationJAR value to:

/opt/nifi/current/lib/app/kylo-spark-job-profiler-jar-with-dependencies.jar

	For the MySQL controller service (type: DBCPConnectionPool), update the properties to use the mariadb driver:

	Database Driver Class Name: org.mariadb.jdbc.Driver

	Database Driver Location(s): file:///opt/nifi/mysql/mariadb-java-client-1.5.7.jar

	For the JMSConnectionFactoryProvider controller service, set the MQ Client Libraries path property value to:

/opt/kylo/kylo-services/lib

	For the StandardSqoopConnectionService, copy the value of Source
Driver to Source Driver (Avoid providing value) then delete
the Source Driver property.

	Update, with your custom configuration, the configuration files at:

/opt/kylo/kylo-ui/conf/, /opt/kylo/kylo-services/conf/

/opt/kylo/kylo-spark shell/conf/

A backup of the previous version’s configuration is available from /opt/kylo/bkup-config/.

	Modify both of the metadata controller services in NiFi with the new REST endpoint.

	The first one should be under the root process group and is used by our processors. The REST Client URL property should be changed to http://localhost:8400/proxy/v1/metadata.

	The second is under the right-hand menu and is used by our reporting task. The REST Client URL property should be changed to http://localhost:8400/proxy/v1/metadata.

	If using NiFi v0.7 or earlier, modify:

/opt/kylo/kylo-services/conf/application.properties

Change spring.profiles.active from nifi-v1 to nifi-v0.

	Modify permissions to allow existing NiFi flows to use /tmp/kylo directory.

Note

After re-importing data_ingest.zip in a later step, any new feeds created will use the /tmp/kylo-nifi folder. The below command will allow existing flows to continue using the /tmp/kylo folder.

> chmod 777 /tmp/kylo

	Start kylo apps:

/opt/kylo/start-kylo-apps.sh

	Re-import the data_ingest.zip template. (New feeds will use the temp location /tmp/kylo-nifi.)

	(Optional) If unused, the mysql driver in /opt/nifi/mysql can be deleted.

	Run:

> rm /opt/nifi/mysql/mysql-connector-java-*.jar

Release 0.6.2 (Feb. 7, 2017)

Highlights

	Support for triggering multiple dependent feeds

	Added a flag to allow operations manager to query and display NiFi
bulletins on feed failure to help show any logs NiFi generated during
that execution back in operations manager

	Fixed NiFi provenance reporting to support manual emptying of flow
files which will now fail the job in ops manager

	The Audit Log table in Kylo will now track feed updates

Upgrade Instructions from v0.6.0

Build or download the RPM.

	Shut down NiFi:

service nifi stop

	To uninstall the RPM, run:

/opt/kylo/remove-kylo-datalake-accelerator.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Run:

/opt/thinkbig/setup/nifi/update-nars-jars.sh

	Start NiFi: (wait to start)

service nifi start

	Update, using your custom configuration, the configuration files at:

/opt/thinkbig/thinkbig-ui/conf/
/opt/thinkbig/thinkbig-services/conf/
/opt/thinkbig/thinkbig-spark-shell/conf/

 A backup of the previous version’s configuration is available from /opt/thinkbig/bkup-config/.

	If using NiFi v0.7 or earlier, modify
/opt/thinkbig/thinkbig-services/conf/application.properties by
changing spring.profiles.active from nifi-v1 to nifi-v0.

	Start thinkbig apps:

/opt/thinkbig/start-thinkbig-apps.sh

	Ensure the reporting task is configured A ReportingTask is now used
for communication between NiFi and Operations Manager. In order to
see Jobs and Steps in Ops Manager, you will need to configure this
following instructions found here:

../how-to-guides/NiFiKyloProvenanceReportingTask

Whats coming in 0.7.0?

The next release will be oriented to public open-source release and
select issues identified by the field for client projects.

The approximate release date is February 13, 2017.

Release 0.6.1 (Jan. 26, 2017)

Highlights

	Improved NiFi provenance reporting performance

	Added timeout option to the NiFi ExecuteSparkJob processor

	Fixed missing Cloudera dependency

	To build for Cloudera, substitute
“thinkbig-service-monitor-ambari” with
“thinkbig-service-monitor-cloudera-service” in
services/service-app/pom.xml

Potential Impacts

Upon upgrading the ExecuteSparkJob processors will be marked as invalid
saying: “Max wait time is invalid property”. You will need to stop
these processors and delete the “Max wait time” property.

Upgrade Instructions from v0.6.0

Build or download the RPM:

	Shut down NiFi:

service nifi stop

	To uninstall the RPM, run:

/opt/thinkbig/remove-thinkbig.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>

	Run:

/opt/thinkbig/setup/nifi/update-nars-jars.sh

	Start NiFi: (wait to start)

service nifi start

	Update, using your custom configuration, the configuration files at:

/opt/thinkbig/thinkbig-ui/conf/
/opt/thinkbig/thinkbig-services/conf/
/opt/thinkbig/thinkbig-spark-shell/conf/

A backup of the previous version’s configuration is available from /opt/thinkbig/bkup-config/.

	If using NiFi v0.7 or earlier, modify
/opt/thinkbig/thinkbig-services/conf/application.properties by
changing spring.profiles.active from nifi-v1 to nifi-v0.

	Start thinkbig apps: -

/opt/thinkbig/start-thinkbig-apps.sh

	Update the ExecuteSparkJob processors (Validate and Profile
processors) fixing the error: “Max wait time is invalid property” by
removing that property.

	Ensure the reporting task is configured A ReportingTask is now used
for communication between NiFi and Operations Manager. In order to
see Jobs and Steps in Ops Manager you will need to configure this
following the instructions found here:

../how-to-guides/NiFiKyloProvenanceReportingTask

Release 0.6.0 (Jan. 19, 2017)

Highlights

	90+ issues resolved

	NiFi clustering support. Ability to cluster NiFi with Kylo.

	Streaming enhancements. New streaming UI plots and higher throughput
performance between Kylo and NiFi. Ability to specify a feed as a
streaming type to optimize display.

	Improved schema manipulation. Ability for feeds and target Hive
tables to diverge (for example: drop fields, rename fields, and change data
types for fields the exist in raw files regardless of raw type).

	Alert persistence. Ability for alert panel to store alerts (and
clear) including and APIs for plugging in custom alert responder and
incorporate SLA alerts.

	Configurable data profiling. Profiled columns can be toggled to
avoid excessive Spark processing.

	Tags in search. Ability to search tags in global search.

	Legacy NiFi version cleanup. Deletes retired version of NiFi feed
flows.

	Avro format option for database fetch. GetTableData processor has
been updated to allow writing rows in Avro format and to allow
setting a custom column delimiter when the output type is a delimited
text file.

	Feed file upload. Ability to upload a file directly to a feed and
have it trigger immediately (for feeds using filesystem).

	Tutorials. New admin tutorial videos.

Potential Impacts

	JMS topics switch to queues in order to support NiFi clustering.
Check your ActiveMQ Topics page
(http://localhost:8161/admin/topics.jsp) to ensure that there are no
pending messages before shutting down NiFi. The number of enqueued
and dequeued messages should be the same.

	Apache NiFi versions 0.6 and 0.7 are no longer supported. Some
features may continue to function normally but haven’t been properly
tested. These will stop working in future releases. Upgrading to the
latest version of Apache NiFi is recommended.

	(for VirtualBox sandbox upgrades) The default password for MySQL has
changed. If you are using default config files deployed via RPM,
modify your MySQL password to match or alter the configuration files.

Upgrade Instructions from v0.5.0

Build or download the RPM:

	Shut down NiFi:

service nifi stop

	Run the following to uninstall the RPM:

/opt/thinkbig/remove-thinkbig.sh

	Install the new RPM:

rpm –ivh <RPM_FILE>"

	Run:

/opt/thinkbig/setup/nifi/update-nars-jars.sh

	Update /opt/nifi/current/conf/nifi.properties file and change it to use the default PersistentProvenanceRepository:

nifi.provenance.repository.implementation=org.apache.nifi.provenance.PersistentProvenanceRepository

	Execute the database upgrade script:

/opt/thinkbig/setup/sql/mysql/thinkbig/0.6.0/update.sh localhost root <password or blank>

	Create the “/opt/nifi/activemq” folder and copy the jars:

$ mkdir /opt/nifi/activemq

$ cp /opt/thinkbig/setup/nifi/activemq/*.jar
/opt/nifi/activemq

$ chown -R nifi /opt/nifi/activemq/

	Add a service account for thinkbig application to nifi group. (This will allow Kylo to upload files to the dropzone location defined in NiFi). This step will differ per operating system. Note also that these may differ depending on how the service accounts where created.

$ sudo usermod -a -G nifi thinkbig

Note

All dropzone locations must allow the thinkbig service account to write.

	Start NiFi: (wait to start)

service nifi start

Note

If errors occur, try removing the transient provenance data:
rm -fR /PATH/TO/NIFI/provenance_repository/.

	Update, using your custom configuration, the configuration files at:

/opt/thinkbig/thinkbig-ui/conf/
/opt/thinkbig/thinkbig-services/conf/
/opt/thinkbig/thinkbig-spark-shell/conf/

A backup of the previous version’s configuration is available from /opt/thinkbig/bkup-config/.

	If using NiFi v0.7 or earlier, modify /opt/thinkbig/thinkbig-services/conf/application.properties by changing spring.profiles.active from nifi-v1 to nifi-v0.

	Start thinkbig apps:

/opt/thinkbig/start-thinkbig-apps.sh

	Update the re-usable standard-ingest template, index_schema_service, and the index_text_service.

	The standard-ingest template can be updated through the templates page. (/opt/thinkbig/setup/data/templates/nifi-1.0/) The upgrade will:

	Add “json field policy file” path as one of the parameters to
Profiler processor to support selective column profiling. See
“Configurable data profiling” in highlights.

	Add feed field specification to support UI ability to modify
feeds. See “Improved schema manipulation” in highlights above.

	Adds shared library path to activemq libraries required going
forward.

	The index_schema_service and index_text_service templates are
feed templates and should be updated through the feeds page.
(/opt/thinkbig/setup/data/feeds/nifi-1.0/.

	Go to the feeds page.

	Click the Plus icon.

	Click on the “import from file” link.

	Choose one of the Elasticsearch templates and check the overwrite box.

	A ReportingTask is now used for communication between NiFi and Operations Manager. In order to see Jobs and Steps in Ops Manager you will need to configure this following these instructions:

../how-to-guides/NiFiKyloProvenanceReportingTask

Release 0.5.0 (Dec. 14, 2016)

Highlights

	65 issues resolved

	Audit tracking. All changes in Kylo are tracked for audit logging.

	Spark 2.0 support!

	PySparkExec support. New NiFi processor for executing Spark Python
scripts

	Plug-in API for adding raw formats. Ability to plug-in support for
new raw file formats and introspect schema

	New raw formats: Parquet, ORC, Avro, JSON

	Customize partition functions. Ability to add custom UDF functions
to dropdown for deriving partition keys

	Feed import enhancements. Allow users to change target category on
feed import

	Sqoop improvements. Improved compatibility with Kylo UI and behavior

	JPA conversion. Major conversion away from legacy Spring Batch
persistence to JPA for Ops Mgr

	Date/time standardization. Storage of all dates and times will be
epoch time to preserve the ability to apply timezones

	New installation document showing an example on how to install Kylo
on AWS in an HDP 2.5 cluster. Refer to HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

	Ranger enabled

	Kerberos enabled

	Minimal admin privileges

	NiFi and Kylo on separate edge nodes

Known Issues

Modeshape versioning temporarily disabled for feeds due to rapid storage
growth. We will have a fix for this issue and re-introduce it in
0.5.1.

Potential Impacts

	JPA conversion requires one-time script (see install instructions)

	Spark Shell moved into Think Big services /opt directory

	Date/time modification Timestamp fields converted to Java time for
portability and timezone consistency. Any custom reports will need
to be modified

Release 0.4.3 (Nov. 18, 2016)

Highlights

	67 issues resolved

	Hive user impersonation. Ability to restrict Hive table access
throughout Kylo based on permissions of logged-in user.

	Visual data lineage. Visualization of relationship between feeds,
data sources, and sinks. Refer to Feed Lineage Configuration

	Auto-layout NiFi feeds. Beautified display of Kylo-generated feeds in
NiFi.

	Sqoop export. Sqoop export and other Sqoop improvements from last
release.

	Hive table formats. Final Hive table format extended to: RCFILE,
CSV, AVRO (in addition to ORC, PARQUET).

	Hive change tracking. Batch timestamp (processing_dttm partition
value) carried into final table for change tracking.

	Delete, disable, reorder templates. Ability to disable and/or remove
templates as well as change their order in Kylo.

	Spark yarn-cluster support. ExecuteSparkJob processor now supports
yarn-cluster mode (thanks Prav!).

	Kylo logo replaces Teradata Thinkbig logo (note: this is not our
final approved logo).

Known Issues

Hive impersonation is not supported with CDH if using Sentry.

Wrangler does not yet support user impersonation.

Potential Impacts

	Existing wrangler feed tables will need to ALTER TABLE to add a
processing_dttm field to table in order to work.

	Processing_dttm field is now java epoch time instead of formatted
date to be timezone independent. Older feeds will now have partition
keys in two different formats.

	All non-feed tables will now be created as managed tables.

Release 0.4.2 (Nov. 4, 2016)

Highlights

	70-plus issues resolved

	NiFi version 1.0 and HDF version 2.0 support

	Encrypted properties and passwords in configuration files. Refer to “Encrypting Configuration Property Values” in the Encrypting Configuration Properties

	SSL support. SSL between services. Refer to NiFi and SSL

	Feed-chaining context. Context can be passed from dependent feeds. Refer to the Trigger Feed section in NiFi Processor Guide

	Lineage tracking. Schema, feed, and preconditions.

	UI/UX improvements

	CSVSerde support and improved schema discovery for text files

	NiFi Template upgrades

	Procedure for relocating install locations of Kylo and dependencies.

Release 0.4.1 (Oct. 20, 2016)

Highlights

	Resolved approximately 65 issues

	Ranger and Sentry integration (ability to assign groups to feed
tables)

	NEW Sqoop import processor for efficient database ingest (tested with
Sqoop version 1.4.6, Databases-Teradata,Oracle, and MySQL)

	Watermark service provides support for incremental loads

	Hive merge on Primary Key option

	Skip header support

	Configurable root paths for Hive and HDFS folders (multi-tenancy
phase I)

	New and simplified standard ingest and re-usable wrangler flows

	Support for Hive decimal type

	Support for choosing existing field as partition

	Documentation updates

	UI usability improvements (validation, etc)

Known Issues

Creating a feed using standard data ingest with Database as the input
may fail on initial run. There are 2 workarounds you can do to resolve
this:

	Go to the “Feed Details” screen for the feed and disable and then
enable the feed; or,

	During creation of the feed on the last “Schedule” step you can
uncheck the “Enable Feed Immediately”. This will save the feed in a
“disabled state”. Once the feed has been created on the Success
screen click “View Details” then enable the feed.

Release 0.4.0 (Oct. 4, 2016)

Highlights

	Support Streaming/Rapid Fire feeds from NiFi

Note

Operations Manager User Interfaces for viewing Streaming feeds will come in a near future release.

	Security enhancements including integration with LDAP and
administration of users and groups through the web UI

	Business metadata fields can be added to categories and feeds

	Category and feed metadata can be indexed with Elasticsearch, Lucene,
or Solr for easier searching

	Fixed bug with kylo init.d service scripts not support the
startup command

	Fixed issues preventing preconditions or cleanup feeds from
triggering

	Fixed usability issues with the visual query

	Better error notification and bug fixes when importing templates

	Service level agreement assessments are now stored in our relational
metadata store

	Spark Validator and Profiler Nifi processors can now handle
additional Spark arguments

	Redesign of job details page in operations manager to view
steps/details in vertical layout

	Allow injection of properties for any processor or controller service
in the application.properties file. The feed properties will be
overridden when importing a template. This includes support to auto
fill all kerberos properties.

Known Issues

	The Data Ingest and Data Transformation templates may fail to import
on a new install. You will need to manually start the
SpringContextLoaderService and the Kylo Cleanup Service in
NiFi, then re-import the template in the Feed Manager.

	When deleting a Data Transformation feed, a few Hive tables are not
deleted as part of the cleanup flow and must be deleted manually.

Running in the IDE

	If you are running things via your IDE (Eclipse or IntelliJ) you will
need to run the following command under the
core/operational-metadata/operational-metadata-jpa module

	mvn generate-sources

This is because it is now using JPA along with
QueryDSL(http://www.querydsl.com/), which generates helper Query
classes for the JPA entities. Once this runs you will notice it
generates a series of Java classes prefixed with “Q” (i.e.
QNifiJobExecution) in the
core/operational-metadata/operational-metadata-jpa/target/generated-sources/java/

Optionally you could just run a mvn install on this module which
will also trigger the generate-sources.

	Additionally, if you havent done so, you need to ensure the latest
nifi-provenance-repo.nar file is in the /opt/nifi/data/lib folder.

Release 0.3.2 (Sept. 19, 2016)

Highlights

	Fixes a few issues found in version 0.3.1.

	Removed thinkbig, nifi, and activemq user creation from RPM install
and installation scripts. Creating those users are now a manual
process to support clients who use their own user management tools.

	Kerberos support for the UI features (data wrangling, hive tables,
feed profiling page). Data wrangling uses the thinkbig user keytab
and the rest uses the hive user keytab.

	Fixed bug introduced in 0.3.1 where the nifi symbolic link creation
is broken during a new installation.

	Added support for installation Elasticsearch on SUSE.

Note

The activemq download URL was changed. To manually update the installation script edit: /opt/thinkbig/setup/activemq/install-activemq.sh and change the URL on line 25 to be https://archive.apache.org/dist/activemq/5.13.3/apache-activemq-5.13.3-bin.tar.gz

Release 0.3.1 (Aug. 17, 2016)

Highlights

	Fixes a few issues found in version 0.3.0.

	Fixes the download link to NiFi for generating an offline tar file.

	Compatibility with MySQL 5.7.

	Installs a stored procedure required for deleting feeds.

	PC-393 Automatically reconnects to the Hive metastore.

	PC-396 Script to update NiFi plugins and required JARs.

Note

A bug was introduced with installation of NiFi from the setup wizard (Fixed in the 0.4.0-SNAPSHOT). If installing a new copy of PCNG, make the following change:

Edit /opt/kylo/setup/nifi/install-kylo-components.sh and change “./create-symbolic-links.sh” to “$NIFI_SETUP_DIR/create-symbolic-links.sh”

Release 0.3.0 (Aug. 10, 2016)

Highlights

	65 issues resolved by the team

	Feed migration. Import/export feeds across environments

	Feed delete. Delete a feed (including tables and data)

	Business metadata. Ability to add user-defined business metadata
to categories and feeds

	Feed chaining. Chain feeds using UI-driven precondition rules

	SLA support. Create Service Level Agreements in UI

	Alerting. Alert framework and built-in support for JIRA and email

	Profiling UI. New graphical UI for viewing profile statistics

	Wrangler XML support. Wrangler enhancements including improved
XML support

	Authentication. Pluggable authentication support

Release 0.2.0 (June 22, 2016)

Whats New

Release data: June 22, 2016

R&D is pleased to announce the release of version 0.2.0 of the framework, which
represents the last three weeks of sprint development.

	Over 60 issues were resolved by the team working in collaboration
with our International teams using the framework for client projects.

	Dependency on Java 8

	Updated metadata server to ModeShape framework, which supports many of
our underlying architectural requirements:

	Dynamic schemas - provides extensible features for extending
schema towards custom business metadata in the field

	Versioning - ability to track changes to metadata over time

	Text Search - flexible searching metastore

	Portability - can run on sql and nosql databases

	See: http://modeshape.jboss.org/

Downloads

This page contains links to the commons files you might want to download

Latest Kylo Distribution (0.8.4)

	Type

	Link

	RPM

	http://bit.ly/2zQRrlY

	DEB

	http://bit.ly/2BnXIC5

	TAR

	http://bit.ly/2nhoSIn

Kylo Distribution (0.8.3.3)

	Type

	Link

	RPM

	http://bit.ly/2yMUbjb

	DEB

	http://bit.ly/2yrdL1o

	TAR

	http://bit.ly/2ylM5NR

Kylo Distribution (0.8.3)

	Type

	Link

	RPM

	http://bit.ly/2xOA8wd

	DEB

	http://bit.ly/2gkYmr1

	TAR

	http://bit.ly/2wk1kVH

Plugins

Plugins can be downloaded from the maven central repository
https://search.maven.org/

Overview

The best way to get started with Kylo is to keep it simple at first. Get Kylo up and running with a single node and test a simple feed
before enabling features such as clustering, SSL, encryption,etc. This installation section will help you get Kylo up and running, then
give you some guidance on where to go from there.

Installation Methods

Kylo has 3 build distributions:

	RPM - An easy and opinionated way of installing Kylo on Redhat based systems

	DEB - An easy and opinionated way of installing Kylo on Debian based systems

	TAR File – Available for those who want to install Kylo in a folder other than /opt/kylo, or want to run Kylo as a different user.

Once the binary is installed Kylo can be configured a few different ways:

	Setup Wizard - For local development and single node development boxes, the Setup Wizard Deployment Guide can be used to quickly bootstrap your environment to get you up and running.

	Manually Run Shell Scripts - In a test and production environment, you will likely be installing on multiple nodes. The Manual Deployment Guide provides detailed instructions on how to install each individual component.

	Configuration Management Tools – Kylo installation is designed to be automated. You can leverage tools such as Ansible, Chef, Puppet, and Salt Stack

Installation Components

Installing Kylo inlcudes the following software:

	Kylo Applications: Kylo provides services to produce Hive tables, generate a schema based on data brought into Hadoop, perform Spark-based transformations, track metadata, monitor feeds and SLA policies, and publish to target systems.

	Java 8: Kylo uses the Java 8 development platform.

	NiFi: Kylo uses Apache NiFi for orchestrating data pipelines.

	ActiveMQ: Kylo uses Apache ActiveMQ to manage communications with clients and servers.

	Elasticsearch/SOLR: Kylo can use either Elasticsearch or SOLR, as a distributed, multi-tenant capable full-text search engine.

Default Installation Locations

Installing Kylo installs the following software at these Linux file
system locations:

	Kylo Applications - /opt/kylo

	Java 8 - /opt/java/current

	NiFi - /opt/nifi/current

	ActiveMQ - /opt/activemq

	Elasticsearch - RPM installation default location

Demo Sandbox

If you are interested in running a working example of Kylo you might consider running one of our demo sandboxes located on the http://kylo.io/quickstart.html website

Review Dependencies

This page can be used as a guide to prepare you environment for installation.

Supported Operating Systems

	Operating System

	Versions

	RHEL,CentOs

	6.x, 7.x

	SUSE

	v11

	Ubuntu

	16.x,17.x

Supported Hadoop Distributions

	Platform

	Sandbox URL

	Version

	Hortonworks

	https://hortonworks.com/products/sandbox/

	HDP 2.3+

	Cloudera

	https://www.cloudera.com/downloads/quickstart_vms/5-12.html

	5.8+

Edge Node Hardware Requirements

Although the hardware requirements depend on the volume of data that will be processed here are some general recommendations:

	Minimum production recommendation is 4 cores CPU, 16 GB RAM.

	Preferred production recommendation is 8 cores CPU, 32 GB RAM.

Note

Kylo and Apache NiFi can be installed on a single edge node, however it is recommended that they run on separate edge nodes.

Kylo Stack Dependencies

Below is a list of some of the major components Kylo uses along with the version that Kylo currently supports:

	Category

	Item

	Version

	Description

	Persistence

	MySQL

	5.x (tested with 5.1.73)

	Used to store both the Modeshape (JCR 2.0) metadata and the Operational Relational (Kylo Ops Manager) metadata

	Persistence

	Postgres

	9.x

	Used to store both the Modeshape (JCR 2.0) metadata and the Operational Relational (Kylo Ops Manager) metadata

	Persistence

	MS SQL Server

	Azure

	Used to store both the Modeshape (JCR 2.0) metadata and the Operational Relational (Kylo Ops Manager) metadata

	JMS

	ActiveMq

	5.x (tested with 5.13.3)

	Used to send messages between different modules and to send Provenance from NiFi to Kylo

	NiFi

	NiFi

	1.0 - 1.3,(HDF 2.0)

	Either HDF or open source NiFi work.

	Spark

	Spark Client

	1.5.x, 1.6.x, 2.x

	NiFi and Kylo have routines that leverage Spark.

	Hive

	Hive

	1.2.x+

	Required if using Hive and the standard ingest template

	Hadoop

	HDFS

	2.7.x+

	Required if using Hive and the standard ingest template

	Java

	Java

	Java 8_92+

	The Kylo install will setup its own Java Home so it doesn’t affect any other Java versions running on the machine.

	Search

	Elasticsearch

	2.3.x, 5.x

	For index and search of Hive metadata and indexing feed data when selected as part of creating a feed

	Search

	Solr

	6.5.1 (SolrCloud mode)

	For index and search of Hive metadata and indexing feed data when selected as part of creating a feed

Linux Tools

Below are tools required to be installed on the Linux box before installing the Kylo components

	Tool

	Curl (for downloading installation files)

	RPM or dpkg(for install)

Service Accounts

Required new linux service accounts are listed below. Within enterprises there
are often approvals required and long lead times to obtain service
accounts. Kerberos principals are required where the service interacts
with a Kerberized Hadoop cluster. These services are not typically
deployed to control and data nodes. The Nifi, activemq, Elastic services
and Kylo metastore databases (mysql or postgres) are IO intensive.

	Service

	Purpose

	Local Linux Users

	Local Linux Groups

	Keytab file

	upn

	spn

	kylo-services

	Kylo API Server

	kylo

	kylo, hdfs or supergroup

	/etc/security/keytabs/kylo.service.keytab

	kylo@EXAMPLE.COM

	

	kylo-ui

	Provides Kylo feed and operations user interface

	kylo

	kylo, hdfs or supergroup

	
	
	

	nifi

	Orchestrate data flows

	nifi

	nifi, hdfs or supergroup

	/etc/security/keytabs/nifi.service.keytab

	nifi@EXAMPLE.COM

	

	activemq

	Broker messages between components

	activemq

	activemq

	
	
	

	elasticsearch

	Manages searchable index

	elasticsearch

	elasticsearch

	
	
	

	mysql or postgres

	Metastore for Kylo feed manager and operational metadata

	mysql or postgres

	mysql or postgres

	
	
	

Note

You have the flexibility to change the installation locations and service accounts when using the TAR installation method

Network Ports

Kylo relies heavily on integration with other services. Below is a list of network ports that are required for the standard ingest to work

Required

	Port

	From Service

	To Service

	8400

	Browser/NiFi

	kylo-ui

	8079

	Browser/kylo-services

	NiFi

	61616

	kylo-services/NiFi

	ActiveMQ

	3306

	kylo-services/NiFi

	MySQL

	9200

	kylo-services/NiFi

	Elasticsearch

	9300

	kylo-services/NiFi

	Elasticsearch 2.x

	8983

	kylo-services/NiFi

	SOLR

	9983

	kylo-services/NiFi

	SOLR

	10000

	kylo-services/NiFi

	HiveServer2

	ALL

	kylo-spark-shell

	Yarn, data nodes

Optional

	Port

	From Service

	To Service

	8420

	REST Client

	kylo-services

	8161

	Browser

	ActiveMQ Admin

Default HDFS Locations (for standard ingest)

The below locations are configurable. If you plan on using the default locations they will be create here.

	HDFS Location | Description

	/archive

	Archive original files

	/etl

	Feed processing file location

	/model.db

	Hive feed, invalid, valid, profile location

	/app/warehouse

	Hive feed table final location

Prepare Install Checklist

This checklist will help you prepare for an enterprise deployment and is valuable if you require approvals ahead of time. Please refer to the Review Dependencies guide
for more details in each section

	
	Pre-installation

	
	[] Determine data throughput requirements based on expected feeds

	[] Will I use an existing Elasticsearch/SOLR instance?

	[] Will I use an existing ActiveMQ instance?

	[] Review library dependencies to ensure HDFS/Hive/Spark is current enough

	[] Obtain approvals for Linux service users (If not, you must install using TAR method)

	[] Obtain approvals for network ports

	[] Determine if I want to leverage liquibase to automatically install database scripts and upgrades for Kylo

	[] Request or generate SSL certificates if required

	
	Hardware/OS Provisioning

	
	[] Provision Edge Nodes

	[] Install supported operating system

	
	General Configuration Preparation

	
	[] Hive Hostname/IP Address:

	[] Ambari/Cloudera Manager IP Hostname/IP Address (if used):

	[] Ambari/Cloudera Manager “kylo” user username/password (if used):

	[] Kylo Edge Hostname/IP Address:

	[] NiFi Edge Hostname/IP Address:

	[] MySQL Kylo Hostname/IP Address:

	[] Kylo MySQL Installation User username/password (Create Schema Required):

	[] Kylo MySQL application username/password (For the kylo-services application and Hive metadata access):

	[] MySQL Hive Hostname/IP Address:

	[] Hive MySQL application username/password:

	[] HDFS root folder location (if different than default:

	
	Kerberos Configuration Preparation

	
	[] KDC Hostname/IP Address (if used):

	[] Kerberos Principal for “kylo”:

	[] Kerberos Principal for “nifi”:

	[] Kerberos Principal for “hive” on the Hive Server2 Host:

Create Service Accounts

Creation of users and groups is done manually because many organizations have their own user and group management system. Therefore we cannot script it as part of the RPM install.

Note

Each of these should be run on the node on which the software will be installed. If a machine will run nifi, kylo and activemq, all users/groups should be created. If running individual services, only the appropriate user/group for that service should be created, not all of them.

Option 1: Install all users/groups on single node

To create all the users and groups on a single machine, run the following command:

useradd -r -m -s /bin/bash nifi && useradd -r -m -s /bin/bash kylo && useradd -r -m -s /bin/bash activemq

Option 2: Run individual useradd commands

If you are installing the Kylo components on different nodes you will need to run the commands individually. To create individual
users, run the following commands on the appropriate machines:

useradd -r -m -s /bin/bash nifi
useradd -r -m -s /bin/bash kylo
useradd -r -m -s /bin/bash activemq

The following command can be used to confirm if the user and group creation was successful:

grep 'nifi\|kylo\|activemq' /etc/group /etc/passwd

This command should give two results per user, one for the user in /etc/passwd and one in /etc/group. For example, if you added all the users to an individual machine, there should be six lines of output. If you just added an individual user, there will be two lines of output.

If the groups are missing, they can be added individually:

groupadd -f kylo
groupadd -f nifi
groupadd -f activemq

If all groups are missing, they can be all added with the following command:

groupadd -f kylo && groupadd -f nifi && groupadd -f activemq

Prepare Offline TAR

The OPTIONAL offline TAR file can be useful in two scenarios:

	You are installing ActiveMQ, Elasticsearch, Java, or NiFi on nodes with no external network access.

	You plan on installing ActiveMQ, Elasticsearch, Java, or NiFi on separate nodes than Kylo and want to take advantage of the setup files you will want to generate an

The offline TAR file will include the binaries required to install the 4 services mentioned above.

Generate the TAR file

	Install the Kylo RPM on a node that has internet access.

$ rpm -ivh kylo-<version>.rpm

	Run the script, which will download all application binaries and put them in their respective directory in the setup folder.

$ /opt/kylo/setup/generate-offline-install.sh

	Note

	If installing the Debian packages make sure to change the Elasticsearch download from RPM to DEB

	Copy the /opt/kylo/setup/kylo-install.tar file to the node you install the RPM on. This can be copied to a temp directory. It doesn’t have to be put in the /opt/kylo/setup folder.

	Run the command to tar up the setup folder.

tar -xvf kylo-install.tar

	Note the directory name where you untar’d the files. You will need to reference the setup location when manually running the shell scripts

Install Kylo

Choose one of the installation methods below to install Kylo.

RPM Install

Download the latest RPM (Downloads) , and place it on the host Linux machine that you want to install Kylo services on.

Note

To use wget instead, right-click the download link and copy the url.

$ rpm -ivh kylo-<version>.rpm

DEB Install

Download the latest DEB file (Downloads) , and place it on the host Linux machine that you want to install Kylo services on.

Note

To use wget instead, right-click the download link and copy the url.

$ dpkg -i kylo-<version>.deb

TAR File Install

The TAR file method is useful when you need more control over where you can install Kylo and you need the flexibility to run Kylo as a different service user. In this example we will
assume you want to install Kylo in the /apps folder, run it as the “ad_kylo” user and “users” group

	Download the latest TAR (Downloads) , and place it on the host Linux machine that you want to install Kylo services on.

	
	Untar the file

	$ sudo mkdir /apps/kylo
$ sudo tar -xvf /tmp/kylo-<version>-dependencies.tar.gz -C /apps/kylo

	Run the post-install script

$ sudo /apps/kylo/setup/install/post-install.sh /apps/kylo ad_kylo users

TAR File Upgrade

If you are performing an upgrade please see the TAR file upgrade page for instructions

TAR File Upgrade

Install Additional Components

Now that Kylo has been installed you have a few different option to install the database scripts, ActiveMQ, Elasticsearch, Java, and NiFi

Note

The setup wizard currently doesnt autodetect that its on a SUSE. Therefore you should skip the Elasticsearch installation step and download/install the DEB distribution manually.

Database Preparation

If you would like to run Kylo as a non-privileged user you should create a kylo database user and configure the appropriate permissions.

	Create Kylo Database and User

If you plan to generate and run the SQL scripts manually (turn off liquibase), please see the “Manual Upgrades” section in Database Upgrades

Option 1: Setup Wizard Installation

This is the easiest method and will allow you to choose which components to install on that node.

	Setup Wizard Deployment Guide

Option 2: Manual Installation

This option shows you how to run the scripts manually and will allow you to make customizations as you go.

	Manual Deployment Guide

Create Kylo Database and User

If you prefer to run Kylo as a non-privileged user and want to create the database schema yourself please do the following.

Note

These commands need to be ran as a database administrator

Create the kylo database

This must be done as a database administrator

Postgres

$ sudo -u postgres psql

> CREATE DATABASE kylo;

Create the kylo database user

Postgres

$ sudo -u postgres psql

> CREATE USER kylo WITH PASSWORD 'abc123';

Grant Kylo user access to DB

Postgres

$ sudo -u postgres psql -d kylo

> grant usage on schema public to kylo;
> GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA PUBLIC TO kylo;
> GRANT ALL PRIVILEGES ON ALL SEQUENCES IN SCHEMA PUBLIC TO kylo;
> grant execute on all functions in schema public to kylo;
> alter default privileges in schema public grant execute on functions to kylo;

Setup Wizard Deployment Guide

Note that you will need a database user with schema create privileges if allowing the setup wizard to create the database. If you prefer to create the “kylo” database yourself and/or create a “kylo” user please refer to Create Kylo Database and User first

Step 1: Run the Setup Wizard

Warning

If Java 8 is not the system Java choose option #2 on the Java step to download and install Java in the /opt/java/current directory.

	From the /opt/kylo/setup directory

$ /opt/kylo/setup/setup-wizard.sh

	Offline mode from another directory (using TAR file)

$ <PathToSetupFolder>/setup/setup-wizard.sh -o

Note

Both -o and -O work.

Follow the directions to install the following:
- MySQL or Postgres scripts into the local database

	Elasticsearch

	ActiveMQ

	Java 8 (If the system Java is 7 or below)

	NiFi and the Kylo dependencies

The Elasticsearch and ActiveMQ services start when the wizard is finished.

Manual Deployment Guide

This document explains how to install each component of the Kylo framework
manually. This is useful when you are installing across multiple
edge nodes. Use this link to the install wizard (Setup Wizard Deployment Guide)
if you would prefer not to do the installation manually.

Note

Many of the steps below are similar to running the wizard-based install. If you want to take advantage of the same scripts as the wizard, you can tar up the /opt/kylo/setup folder and untar it to a temp directory on each node.

Installation

For each step below, you will need to login to the target machine with root
access permissions. Installation commands will be executed from the
command line

Step 1: Setup Directory

Kylo is most often installed on one edge node. If you are deploying
everything to one node, the setup directory would typically be:

SETUP_DIR=/opt/kylo/setup

You might install some of these components on a differnet edge node than where Kylo is installed. In this case, copy
the setup folder or offline TAR file to those nodes that do not have the Kylo applications installed. In that case, use this SETUP_DIR command:

SETUP_DIR=/tmp/kylo-install

Step 2: Create the “dladmin” user

Before logging into Kylo for the first time you must create a password for the “dladmin” user. To created the password please do the following:

	Create a users.properties file and add the username/password

$ vi /opt/kylo/users.properties
 dladmin=myPassword

	Modify the /opt/kylo/kylo-ui/conf/application.properties file

$ vi /opt/kylo/kylo-ui/conf/application.properties

 # uncomment this line
 security.auth.file.users=file:///opt/kylo/users.properties

	Modify the /opt/kylo/kylo-services/conf/application.properties file

$ vi /opt/kylo/kylo-services/conf/application.properties

 # uncomment this line
 security.auth.file.users=file:///opt/kylo/users.properties

Please see Configure Access Control for information about configuring users and groups

Step 3: Install Java 8

Note

If you are installing NiFi and the kylo services on two separate nodes, you may need to perform this step on each node.

There are 3 scenarios for configuring the applications with Java 8.

Scenario 1: Java 8 is installed on the system and is already in the classpath.

In this case you need to remove the default JAVA_HOME used as part of the install. Run the following script:

For kylo-ui and kylo-services
$ <SETUP_DIR>/java/remove-default-kylo-java-home.sh

To test this you can look at each file referenced in the scripts for kylo-ui and kylo-services to validate the 2 lines setting and exporting the JAVA_HOME are gone.

Scenario 2: Install Java in the default /opt/java/current location.

Note

You can modify and use the following script to unstall Java 8:

Online Mode

$ <SETUP_DIR>/java/install-java8.sh <KYLO_HOME_DIR>

Offline Mode

$ <OFFLINE_SETUP_DIR>/java/install-java8.sh <KYLO_HOME_DIR> <OFFLINE_SETUP_DIR> -o

Example: /tmp/kylo-install/setup/java/install-java8.sh /opt/kylo /tmp/kylo-install/setup -o

Scenario 3: Java 8 is installed on the node, but it’s not in the default JAVA_HOME path.

If you already have Java 8 installed, and want to reference that installation, there is a script to remove the existing path and another script to set the new path for the kylo apps.

For kylo-ui and kylo-services
$ /opt/kylo/setup/java/remove-default-kylo-java-home.sh <KYLO_HOME>
$ /opt/kylo/setup/java/change-kylo-java-home.sh <JAVA_HOME> <KYLO_HOME>

Step 4: Install Java Cryptographic Extension

The Java 8 install script above will automatically download and install the Java Cryptographic Extension [http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html].
This extension is required to allow encrypted property values in the Kylo configuration files. If you already have a Java 8 installed on the
system, you can install the Java Cryptographic Extension by running the following script:

$ <SETUP_DIR>/java/install-java-crypt-ext.sh <PATH_TO_JAVA_HOME>

This script downloads the extension zip file and extracts the replacement jar files into the JRE security directory ($JAVA_HOME/jre/lib/security). It will first make backup copies of the original jars it is replacing.

Step 5: Install and Configure Elasticsearch

To get Kylo installed and up and running quickly, a script is provided
to stand up a single node Elasticsearch instance. You can also leverage
an existing Elasticsearch instance. For example, if you stand up an ELK
stack you will likely want to leverage the same instance.

Option 1: Install Elasticsearch from our script.

Note

The included Elasticsearch script was meant to speed up installation in a sandbox or DEV environment.

	Online Mode

$ <SETUP_DIR>/elasticsearch/install-elasticsearch.sh <KYLO_SETUP_FOLDER> <JAVA_8_HOME>

	Offline Mode

$ <OFFLINE_SETUP_DIR>/elasticsearch/install-elasticsearch.sh <OFFLINE_SETUP_DIR> <JAVA_8_HOME> -o

 Example: /tmp/kylo-install/setup/elasticsearch/install-elasticsearch.sh /tmp/kylo-install/setup /opt/java/current -o

	Option 2: Use an existing Elasticsearch.

	
	To leverage an existing Elasticsearch instance, you must update all feed templates that you created with the correct Elasticsearch URL.You can do this by going to the “Additional Properties” tab for that feed. If you added any reusable flow templates you will need to modify the Elasticsearch processors in NiFI.

	Execute a script to create kylo indexes. If these already exist, Elasticsearch will report an index_already_exists_exception. It is safe to ignore this and continue. Change the host and port if necessary.

/opt/kylo/bin/create-kylo-indexes-es.sh localhost 9200 1 1

Note

Tip: To test that Elasticsearch is running type “curl localhost:9200”. You should see a JSON response.

Step 6: Install ActiveMQ

Another script has been provided to stand up a single node ActiveMQ
instance. You can also leverage an existing ActiveMQ instance.

Option 1: Install ActiveMQ from the script

Note

The included ActiveMQ script was meant to speed up installation in a sandbox or DEV environment. It is not a production ready configuration.

	Online Mode

$ <SETUP_DIR>/activemq/install-activemq.sh <INSTALLATION_FOLDER> <LINUX_USER> <LINUX_GROUP> <JAVA_8_HOME>

	Offline Mode

 $ <OFFLINE_SETUP_DIR>/activemq/install-activemq.sh <INSTALLATION_FOLDER> <LINUX_USER> <LINUX_GROUP> <JAVA_8_HOME> <OFFLINE_SETUP_DIR> -o

Example: /tmp/kylo-install/setup/activemq/install-activemq.sh /opt/activemq activemq activemq /opt/java/current /tmp/kylo-install/setup -o

Note

If installing on a different node than NiFi and kylo-services you will need to update the following properties

1. /opt/nifi/ext-config/config.properties

 jms.activemq.broker.url
 (Perform this configuration update after installing NiFi, which is step 9 in this guide)

2. /opt/kylo/kylo-services/conf/application.properties

 jms.activemq.broker.url
 (By default, its value is tcp://localhost:61616)

Option 2: Leverage an existing ActiveMQ instance

Update the below properties so that NiFI and kylo-services can communicate with the existing server.

1. /opt/nifi/ext-config/config.properties

 spring.activemq.broker-url

2. /opt/kylo/kylo-services/conf/application.properties

 jms.activemq.broker.url

Step 7: Install NiFi

You can leverage an existing NiFi installation or follow the steps in the setup directory that are used by the wizard.

Option 1: Install NiFi from our scripts.

This method downloads and installs NiFi, and also installs and configures the Kylo-specific libraries. This instance of NiFi is configured to store persistent data outside of the NiFi installation folder in /opt/nifi/data. This makes it easy to upgrade since you can change the version of NiFi without migrating data out of the old version.

	Install NiFi in either online or offline mode:

Online Mode

$ <SETUP_DIR>/nifi/install-nifi.sh <NIFI_BASE_FOLDER> <NIFI_LINUX_USER> <NIFI_LINUX_GROUP>

Offline Mode

$ <OFFLINE_SETUP_DIR>/nifi/install-nifi.sh <NIFI_BASE_FOLDER> <NIFI_LINUX_USER> <NIFI_LINUX_GROUP> <OFFLINE_SETUP_DIR> -o

	Update JAVA_HOME (default is /opt/java/current).

$ <SETUP_DIR>/java/change-nifi-java-home.sh <JAVA_HOME> <NIFI_BASE_FOLDER>/current

	Install Kylo specific components.

Online Mode

$ <SETUP_DIR>/nifi/install-kylo-components.sh <NIFI_BASE_FOLDER> <KYLO_HOME> <NIFI_LINUX_USER> <NIFI_LINUX_GROUP>

Offline Mode

$ <SETUP_DIR>/nifi/install-kylo-components.sh <NIFI_BASE_FOLDER> <KYLO_HOME> <NIFI_LINUX_USER> <NIFI_LINUX_GROUP> <OFFLINE_SETUP_DIR> -o

Option 2: Leverage an existing NiFi instance

In some cases you may want to leverage separate instances of NiFi or Hortonworks Data Flow. Follow the steps below to include the Kylo resources.

Note

If Java 8 isn’t being used for the existing instance, then you will be required to change it.

	Copy the <SETUP_DIR>/nifi/kylo-.nar and kylo-spark-.jar files to the node NiFi is running on. If it’s on the same node you can skip this step.

	Shutdown the NiFi instance.

	Create folders for the jar files. You may choose to store the jars in another location if you want.

$ mkdir -p <NIFI_HOME>/kylo/lib

	Copy the kylo-*.nar files to the <NIFI_HOME>/kylo/lib directory.

	Create a directory called “app” in the <NIFI_HOME>/kylo/lib directory.

$ mkdir <NIFI_HOME>/kylo/lib/app

	Copy the kylo-spark-*.jar files to the <NIFI_HOME>/kylo/lib/app directory.

	Create symbolic links for all of the .NARs and .JARs. Below is an example of how to create it for one NAR file and one JAR file. At the time of this writing there are eight NAR files and three spark JAR files.

$ ln -s <NIFI_HOME>/kylo/lib/kylo-nifi-spark-nar-*.nar <NIFI_HOME>/lib/kylo-nifi-spark-nar.nar

$ ln -s <NIFI_HOME>/kylo/lib/app/kylo-spark-interpreter-*-jar-with-dependencies.jar
 <NIFI_HOME>/lib/app/kylo-spark-interpreter-jar-with-dependencies.jar

	Modify <NIFI_HOME>/conf/nifi.properties and update the port NiFi runs on.

nifi.web.http.port=8079
nifi.provenance.repository.implementation=com.thinkbiganalytics.nifi.provenance.repo.KyloPersistentProvenanceEventRepository

Note

If you decide to leave the port number set to the current value, you must update the “nifi.rest.port” property in the kylo-services application.properties file.

Note

See NiFi & Kylo Provenance for more information on provenance.

	There is a controller service that requires a MySQL database connection. You will need to copy the driver jar to a location on the NiFi node. The pre-defined templates have the default location set to /opt/nifi/mysql.

	Create a folder to store the driver jar in.

	Copy the /opt/kylo/kylo-services/lib/mariadb-java-client-<version>.jar to the folder in step #1.

	If you created a folder name other than the /opt/nifi/mysql default folder you will need to update the “MySQL” controller service and set the new location. You can do this by logging into NiFi and going to the Controller Services section at root process group level.

	Create an ext-config folder to provide JMS information and location of cache to store running feed flowfile data if NiFi goes down.

Note

Right now the plugin is hard coded to use the /opt/nifi/ext-config directory to load the properties file.

	Add additional System Property to NiFi boostrap.conf for the kylo ext-config location.

	Add the next java.arg.XX in <NIFI_HOME>/conf/bootstrap.conf set to: -Dkylo.nifi.configPath=<NIFI_INSTALL>/ext-config

Example: java.arg.15=-Dkylo.nifi.configPath=/opt/nifi/ext-config

Configure the ext-config folder

	Create the folder.

$ mkdir /opt/nifi/ext-config

	Copy the /opt/kylo/setup/nifi/config.properties file to the /opt/nifi/ext-config folder.

	Change the ownership of the above folder to the same owner that nifi runs under. For example, if nifi runs as the “nifi” user:

$ chown -R nifi:users /opt/nifi

	Create an activemq folder to provide JARs required for the JMS processors.

Configure the activemq folder

	Create the folder.

$ mkdir /opt/nifi/activemq

	Copy the /opt/kylo/setup/nifi/activemq/*.jar files to the /opt/nifi/activemq folder.

$ cp /opt/kylo/setup/nifi/activemq/*.jar /opt/nifi/activemq

	Change the ownership of the folder to the same owner that nifi runs under. For example, if nifi runs as the “nifi” user:

$ chown -R nifi:users /opt/nifi/activemq

OPTIONAL: The /opt/kylo/setup/nifi/install-kylo-components.sh contains steps to install NiFi as a service so that NiFi can startup automatically if you restart the node. This might be useful to add if it doesn’t already exist for the NiFi instance.

Enable Kerberos

If the cluster Kylo and NiFi will talk to has Kerberos enabled you will need to make a few additional configuration changes before starting Kylo for the first time.

Enable Kerberos for NiFi

Enable Kerberos for NiFi

Enable Kerberos for Kylo

Enable Kerberos for Kylo

Test Client

If your cluster is Kerberized its a good idea to test the keytabs generated for Kylo and NiFi to make sure they work in the JVM. Kylo
provides a test client to make this easy.

	Download the Test Client

Downloads

	Run the test client

Follow the instructions in the test client to validate connectivity in the JVM

$ java -jar /opt/kylo-kerberos-test-client-VERSION.jar

Additional Configuration

Before starting Kylo you will want to make sure the configuration is correct. Some common cases of when you would want to change the defaults is

	Database configuration

	Hive thrift connection configuration

	Set all required passwords

Note: Kylo no longer includes default passwords

Edit the Properties Files

There are 3 main properties files for Kylo

$ vi /opt/kylo/kylo-services/conf/application.properties

$ vi /opt/kylo/kylo-services/conf/spark.properties

$ vi /opt/kylo/kylo-ui/conf/application.properties

For more details on the properties please see Configuration Properties

Kylo HDP Demo Sandbox Example

Here is an example of the properties that need to be changed to work on the Kylo HDP demo sandbox

spring.datasource.username=<REPLACE_ME_WITH_USERNAME>
spring.datasource.password=<REPLACE_ME_WITH_PASSWORD>

hive.datasource.username=<REPLACE_ME_WITH_USERNAME>
hive.metastore.datasource.username=<REPLACE_ME_WITH_USERNAME>
hive.metastore.datasource.password=<REPLACE_ME_WITH_PASSWORD>

nifi.service.mysql.database_user=<REPLACE_ME_WITH_USERNAME>
nifi.service.mysql.password=<REPLACE_ME_WITH_PASSWORD>
nifi.service.kylo_mysql.database_user=<REPLACE_ME_WITH_USERNAME>
nifi.service.kylo_mysql.password=<REPLACE_ME_WITH_PASSWORD>

#Note: The value for this property is the password for the dladmin user.
nifi.service.kylo_metadata_service.rest_client_password=<REPLACE_ME_WITH_PASSWORD>

modeshape.datasource.username=${spring.datasource.username}
modeshape.datasource.password=${spring.datasource.password}
metadata.datasource.username=${spring.datasource.username}
metadata.datasource.password=${spring.datasource.password}

Kylo Cloudera Demo Sandbox Example

The configuration is setup to work out of the box with the Kylo Hortonworks
sandbox. There are a few differences that require configuration changes
for Cloudera.

	/opt/kylo/kylo-services/conf/application.properties

spring.datasource.username=<REPLACE_ME_WITH_USERNAME>
spring.datasource.password=<REPLACE_ME_WITH_PASSWORD>

hive.datasource.username=<REPLACE_ME_WITH_PASSWORD>
hive.metastore.datasource.username=REPLACE_ME_WITH_USERNAME
hive.metastore.datasource.password=<REPLACE_ME_WITH_PASSWORD>
hive.metastore.datasource.url=jdbc:mysql://localhost:3306/metastore
config.hive.schema=metastore

nifi.service.mysql.database_user=REPLACE_ME_WITH_USERNAME
nifi.service.mysql.password=<REPLACE_ME_WITH_PASSWORD>
nifi.service.kylo_mysql.database_user=REPLACE_ME_WITH_USERNAME
nifi.service.kylo_mysql.password=<REPLACE_ME_WITH_PASSWORD>
nifi.service.kylo_metadata_service.rest_client_password=<REPLACE_ME_WITH_PASSWORD>
nifi.executesparkjob.sparkhome=/usr/lib/spark
config.spark.validateAndSplitRecords.extraJars=/usr/lib/hive-hcatalog/share/hcatalog/hive-hcatalog-core.jar

modeshape.datasource.username=${spring.datasource.username}
modeshape.datasource.password=${spring.datasource.password}
metadata.datasource.username=${spring.datasource.username}
metadata.datasource.password=${spring.datasource.password}

	Spark configuration

cp /etc/hive/conf/hive-site.xml /etc/spark/conf/hive-site.xml

Snappy isn't working well for Spark on Cloudera
echo "spark.io.compression.codec=lz4" >> /etc/spark/conf/spark-defaults.conf

Kylo Application Properties

Below you can find all the properties used for the kylo-services application

Common Configuration Properties

	Property

	Default Value

	Description

	spring.profiles.include

	native,nifi-v1.2,auth-kylo,auth-file,search-esr,jms-activemq

	
Profiles that should be used. Different profiles will enable certain behaviors in Kylo.

Indicate the NiFi version you are using with the correct spring profile.

- For NiFi 1.0.x: nifi-v1

- For NiFi 1.1.x: nifi-v1.1

- For NiFi 1.2.x or 1.3.x: nifi-v1.2

Additionally you can separate properties into separate files with the notation application-<ProfileName>.You can separate properties into separate files and load them

Then add the ProfileName to the active profile property to use/override properties.

	server.port

	8420

	The port Kylo runs on

	liquibase.enabled

	true

	Liquibase allows Kylo to automatically update the database to ensure the Kylo metastore is current. If this is set to false you will need to manually run any SQL scripts when upgrading Kylo.

	liquibase.change-log

	classpath:com/thinkbiganalytics/db/master.xml

	the location of the liquibase scripts

Kylo Operations

	Property

	Default Value

	Description

	kylo.cluster.jgroupsConfigFile

	
	
Only for Clustered Kylo

The name of the kylo jgroups configuration file (i.e. ‘kylo.cluster.jgroupsConfigFile=kylo-cluster-jgroups-config.xml’)

	kylo.feed.mgr.cleanup.timeout

	60000

	The amount of time to wait when removing feeds before issuing a Timeout error. Sometimes it can take a while to remove a feed and its data. Increase this value if you need more time to cleanup a feed.

	kylo.ops.mgr.query.nifi.bulletins

	true

	If a failure event is detected query NiFi for any related bulletins and add them to the Job details

	kylo.ops.mgr.stats.nifi.bulletins.mem.size

	30

	
The limit to the number of bulletins to store for streaming feed failures. If statistics for streaming feeds detects a failure it will store any related NiFi bulletins in memory.

This is a rolling queue that will keep the last # of errors per feed

Since 0.8.3

	kylo.ops.mgr.stats.nifi.bulletins.persist

	false

	
When getting aggregate stats back for flows if errors are detected Kylo will query NiFi in attempt to capture matching bulletins.

By default this data is stored in memory. Setting this to true will store the data in the MySQL table

Since 0.8.3

	kylo.provenance.retry.unregistered.events.enabled

	true

	
Only for Clustered Kylo

When receiving provenance data when Kylo is clustered, sometimes the JMS message will come through before the Cluster notification is sent to all nodes.

When receiving JMS provenance events if the events are not found to match a Kylo feed set this to true to have it retry and process the events again.

Since 0.8.4

	kylo.provenance.retry.unregistered.events.maxRetries

	3

	
Only for Clustered Kylo

The number of times to retry unregistered provenance events from JMS that dont match a Kylo feed.

Since 0.8.4

	kylo.provenance.retry.unregistered.events.waitTimeSec

	5

	
Only for Clustered Kylo

The wait time in seconds to retry unregistered provenance events from JMS that dont match a Kylo feed.

Since 0.8.4

	nifi.auto.align

	true

	When saving a feed Kylo will auto align processors in NiFi to make the canvas clean and readable. You can set this property to false and manually align the processors via a rest endpoint.

	nifi.flow.inspector.threads

	1

	
When starting Kylo it will scan NiFi to get processors and connections. Usually 1 thread is sufficient in inspecting NiFi. Only under rare circumstances should you increase this.

Since 0.8.2.4 and 0.8.3.3

	nifi.flow.max.retries

	100

	If Kylo fails to inspect the NiFi flows it will retry this many times.

	nifi.flow.retry.wait.time.seconds

	5

	If Kylo fails to inspect the NiFi flows it will wait this many seconds before retrying.

	nifi.remove.inactive.versioned.feeds

	true

	When Kylo saves a feed it will version off the older feed. If the save is successful and nothing is running in the older feed and this property is true, Kylo will remove the old process group in NiFi

	sla.cron.default

	0 0/5 * 1/1 * ? *

	Interval for when SLA’s should be checked. Default is every 5 minutes. Use http://cronmaker.com for help in creating a cron expression

Database Connection

Kylo

	Property

	Default Value

	Description

	spring.datasource.driverClassName

	org.mariadb.jdbc.Driver

	The database driver to use. The default is for MariaDB. Be sure this matches your database (i.e. Postgres: org.postgresql.Driver, MySQL: com.mysql.jdbc.Driver)

	spring.datasource.maxActive

	30

	Max number of connections that can be allocated by the pool at a given time

	spring.datasource.username

	
	the user name to connect to the database

	spring.datasource.password

	
	the database password

	spring.datasource.testOnBorrow

	true

	true/false if the connection should be validated before connecting

	spring.datasource.url

	jdbc:mysql://localhost:3306/kylo

	URL for the database

	spring.datasource.validationQuery

	SELECT 1

	Query used to validate the connection is valid.

	spring.jpa.database-platform

	org.hibernate.dialect.MySQL5InnoDBDialect

	Platform to use. Default uses MySQL. Change this to the specific database platform (i.e. for Postgres use: org.hibernate.dialect.PostgreSQLDialect

	spring.jpa.open-in-view

	true

	true/false if spring should attempt to keep the connection open while in the view

	metadata.datasource.driverClassName

	${spring.datasource.driverClassName}

	Connection to Modeshape database. This defaults to the standard Kylo spring.datasource property

	metadata.datasource.testOnBorrow

	true

	Connection to Modeshape database. This defaults to the standard Kylo spring.datasource property

	metadata.datasource.url

	${spring.datasource.url}

	Connection to Modeshape database. This defaults to the standard Kylo spring.datasource property

	metadata.datasource.validationQuery

	SELECT 1

	Query used to validate the connection is valid.

	modeshape.datasource.driverClassName

	${spring.datasource.driverClassName}

	Connection to Modeshape database. This defaults to the standard Kylo spring.datasource property

	modeshape.datasource.url

	${spring.datasource.url}

	Connection to Modeshape database. This defaults to the standard Kylo spring.datasource property

	modeshape.index.dir

	/opt/kylo/modeshape/modeshape-local-index

	Directory on this node that will store the Modeshape index files. Indexing Modeshape speeds up access to the metadata. The indexes are defined in the metadata-repository.json file

Hive

	Property

	Default Value

	Description

	hive.datasource.driverClassName

	org.apache.hive.jdbc.HiveDriver

	The driver used to connect to Hive

	hive.datasource.url

	jdbc:hive2://localhost:10000/default

	The Hive Url

	hive.datasource.username

	
	The username used to connect to Hive

	hive.datasource.password

	
	The password used to connect to Hive

	hive.datasource.validationQuery

	show tables ‘test’

	Validation Query for Hive.

	hive.userImpersonation.enabled

	false

	true/false to indicate if user impersonation is enabled

	kerberos.hive.kerberosEnabled

	false

	true/false to indicate if kerberos is enabled

	hive.metastore.datasource.driverClassName

	org.mariadb.jdbc.Driver

	The driver used to connect to the Hive metastore

	hive.metastore.datasource.url

	jdbc:mysql://localhost:3306/hive

	The Hive metastore location

	hive.metastore.datasource.username

	
	the username used to connect to the Hive metastore

	hive.metastore.datasource.password

	
	the password used to connect to the Hive metastore

	hive.metastore.datasource.testOnBorrow

	true

	true/false if the connection should be validated before connecting

	hive.metastore.datasource.validationQuery

	SELECT 1

	Query used to validate the connection is valid.

JMS

More details about these properties can be found here JMS Providers

	Property

	Default Value

	Description

	jms.activemq.broker.url

	tcp://localhost:61616

	The JMS url

	jms.connections.concurrent

	1-1

	
The MIN-MAX threads to have listening for events. By default its set to 1 thread. Example. A value of 3-10 would create a minimum of 3 threads, and if needed up to 10 threads

Since: 0.8.1

	jms.client.id

	thinkbig.feedmgr

	The name of the client connecting to JMS

JMS - ActiveMQ

More detail about the ActiveMQ redelivery properties can be found here: http://activemq.apache.org/redelivery-policy.html

	Property

	Default Value

	Description

	jms.activemq.broker.username

	
	
The username to connect to JMS

Since: 0.8

	jms.activemq.broker.password

	
	
The password to connect to JMS

Since: 0.8

	jms.backOffMultiplier

	5

	
The back-off multiplier

Since: 0.8.2

	jms.maximumRedeliveries

	100

	
Sets the maximum number of times a message will be redelivered before it is considered a poisoned pill and returned to the broker so it can go to a Dead Letter Queue.

Set to -1 for unlimited redeliveries.

Since: 0.8.2

	jms.maximumRedeliveryDelay

	600000L

	
Sets the maximum delivery delay that will be applied if the useExponentialBackOff option is set. (use value -1 to define that no maximum be applied) (v5.5).

Since: 0.8.2

	jms.redeliveryDelay

	1000

	
Redeliver policy for the Listeners when they fail (http://activemq.apache.org/redelivery-policy.html)

Since: 0.8.2

	jms.useExponentialBackOff

	false

	
Should exponential back-off be used, i.e., to exponentially increase the timeout.

Since: 0.8.2

JMS - Amazon SQS

Note

To use SQS you need to replace the spring profile, jms-activemq, with jms-amazon-sqs

spring.profiles.include=[other profiles],jms-amazon-sqs

	Property

	Default Value

	Description

	sqs.region.name

	
	
the sqs region, example: eu-west-1

Since: 0.8.2.2

Kylo SSL

The following should be set if you are running Kylo under SSL

	Property

	Default Value

	Description

	server.ssl.key-store

	
	

	server.ssl.key-store-password

	
	

	server.ssl.key-store-type

	jks

	

	server.ssl.trust-store

	
	

	server.ssl.trust-store-password

	
	

	server.ssl.trust-store-type

	JKS

	

Security

	Property

	Default Value

	Description

	security.entity.access.controlled

	false

	
To enable entity level access control change this to “true”.

WARNING: Enabling entity access control is a one-way operation; you will not be able to set this poperty back to “false” once Kylo is started with this value as “true”.

	security.jwt.algorithm

	HS256

	JWT algorithm

	security.jwt.key

	<insert-256-bit-secret-key-here>

	The encrypted jwt key. This needs to match the same key in the kylo-ui/conf/application.properties file

	security.rememberme.alwaysRemember

	false

	

	security.rememberme.cookieDomain

	localhost

	

	security.rememberme.cookieName

	remember-me

	

	security.rememberme.parameter

	remember-me

	

	security.rememberme.tokenValiditySeconds

	1209600

	How long to keep the token active. Defaults to 2 weeks.

	security.rememberme.useSecureCookie

	
	

Security - Authentication

Below are properties for the various authentication options that Kylo supports. Using an option below requires you to use the correct spring profile and configure the associated properties.
More information on the different authentication settings can be found here: Authentication

Security - auth-simple

The following should be set if using the auth-simple profile

	Property

	Default Value

	Description

	authenticationService.username

	
	

	authenticationService.password

	
	

Security - auth-file

	Property

	Default Value

	Description

	security.auth.file.password.hash.algorithm

	MD5

	

	security.auth.file.password.hash.enabled

	false

	

	security.auth.file.password.hash.encoding

	base64

	

	security.auth.file.groups

	file:///opt/kylo/groups.properties

	Location of the groups file

	security.auth.file.users

	file:///opt/kylo/users.properties

	Location of the users file

Security - auth-ldap

	Property

	Default Value

	Description

	security.auth.ldap.authenticator.userDnPatterns

	uid={0},ou=people

	user DN patterns are separated by ‘|’

	security.auth.ldap.server.authDn

	
	

	security.auth.ldap.server.password

	
	

	security.auth.ldap.server.uri

	ldap://localhost:52389/dc=example,dc=com

	

	security.auth.ldap.user.enableGroups

	true

	

	security.auth.ldap.user.groupNameAttr

	ou

	

	security.auth.ldap.user.groupsBase

	ou=groups

	

Security - auth-ad

	Property

	Default Value

	Description

	security.auth.ad.server.domain

	test.example.com

	

	security.auth.ad.server.searchFilter

	(&(objectClass=user)(sAMAccountName={1}))

	

	security.auth.ad.server.uri

	ldap://example.com/

	

	security.auth.ad.user.enableGroups

	true

	

	security.auth.ad.user.groupAttributes

	
	group attribute patterns are separated by ‘|’

NiFi Rest

These properties allow Kylo to interact with NiFi

	Property

	Default Value

	Description

	nifi.rest.host

	localhost

	The hose NiFi is running on

	nifi.rest.port

	8079

	The port NiFi is running on. The port should match the port found in the /opt/nifi/current/conf/nifi.properties (nifi.web.https.port)

NiFi Rest SSL

The following properties need to be set if you interact with NiFi under SSL
Follow the document NiFi and SSL for more information on setting up NiFi to run under SSL

	Property

	Default Value

	Description

	nifi.rest.https

	false

	Set this to true if NiFi is running under SSL

	nifi.rest.keystorePassword

	
	

	nifi.rest.keystorePath

	
	

	nifi.rest.keystoreType

	
	The keystore type i.e. PKCS12

	nifi.rest.truststorePassword

	
	the truststore password needs to match that found in the nifi.properties file (nifi.security.truststorePasswd)

	nifi.rest.truststorePath

	
	

	nifi.rest.truststoreType

	
	The truststore type i.e JKS

	nifi.rest.useConnectionPooling

	false

	Use the Apache Http Connection Pooling client instead of the Jersey Rest Client when connecting.

NiFi Flow/Template Injection

Kylo will inject/populate NiFi Processor and Controller Service properties using Kylo environment properties.
Refer to this document Configuration Properties for details as Kylo has a number of options allowing it to interact and set properties in NiFi.
Below are the default settings Kylo uses.

	Property

	Default Value

	Description

	config.category.system.prefix

	
	
A constant string that is used to prefex the category reference.

This is useful if you have separate dev,qa,prod that might use the same hadoop cluster and want to prefex the locations with the environment.

	config.elasticsearch.jms.url

	tcp://localhost:61616

	the JMS url that will be used to send/receive notification when something should be indexed in Elastic Search

	config.hdfs.archive.root

	/archive

	Location used by the standard-ingest template to archive the data

	config.hdfs.ingest.root

	/etl

	Location used by the standard-ingest template to land the data

	config.hive.ingest.root

	/model.db

	Location used by the standard-ingest template for the Hive tables

	config.hive.master.root

	/app/warehouse

	description

	config.hive.profile.root

	/model.db

	Location used by the standard-ingest template for the Hive _profile table

	config.hive.schema

	hive

	Schema used to query the JDBC Hive metastore. Note for Cloudera this is metastore

	config.metadata.url

	http://localhost:8400/proxy/v1/metadata

	JDBC url for the Hive Metastore

	config.nifi.home

	/opt/nifi

	Location of NiFi

	config.spark.validateAndSplitRecords.extraJars

	/usr/hdp/current/hive-webhcat/share/hcatalog/hive-hcatalog-core.jar

	Location of the extra jars needed for the Spark Validate/Split processor in standard-ingest template

	config.spark.version

	1

	The spark version. Used in the Data Transformation template

	nifi.executesparkjob.driver_memory

	1024m

	Memory setting for all ExecuteSparkJob processors

	nifi.executesparkjob.executor_cores

	1

	Spark Executor Cores for all ExecuteSparkJob processors

	nifi.executesparkjob.number_of_executors

	1

	Spark Number of Executors for all ExecuteSparkJob processors

	nifi.executesparkjob.sparkhome

	/usr/hdp/current/spark-client

	Spark Home for all ExecuteSparkJob processors

	nifi.executesparkjob.sparkmaster

	local

	Spark master setting for all ExecuteSparkJob processors

	nifi.service.hive_thrift_service.database_connection_url

	jdbc:hive2://localhost:10000/default

	Controller Service named, Hive Thirft Service, default url

	nifi.service.kylo_metadata_service.rest_client_password

	
	Controller Service named, Kylo Metadata Service, Rest client password. This controller service is used for NiFi to talk to Kylo

	nifi.service.kylo_metadata_service.rest_client_url

	http://localhost:8400/proxy/v1/metadata

	Controller Service named, Kylo Metadata Service, Rest Url. This controller service is used for NiFi to talk to Kylo

	nifi.service.kylo_mysql.database_user

	
	Controller Service named, Kylo Mysql, database user

	nifi.service.kylo_mysql.password

	
	Controller Service named, Kylo Mysql, database password

	nifi.service.mysql.database_user

	
	Controller Service named, Mysql, database user

	nifi.service.mysql.password

	
	Controller Service named, Mysql, database password

Unused properties

	Property

	Default Value

	Description

	application.debug

	true

	

	application.mode

	STANDALONE

	

	spring.batch.job.enabled

	false

	

	spring.batch.job.names

	
	

Grant HDFS Privileges

Kylo and NiFi requires access to HDFS and Hive. NiFi needs to write to both Hive and HDFS. There are three approaches for granting the
required access to Kylo and NiFi

	Grant the “kylo” and “nifi” service users super user privileges to access resources on the cluster

	Control access through Ranger or Sentry

	Manage the HDFS permissions yourself

Option 1: Grant super user privileges

This is useful in a sandbox environment where you do not need security enabled. This allows Kylo and NiFi the ability to create/edit HDFS and Hive objects.

	Grant Superuser HDFS Privileges

Option 2: Control access through Ranger or Sentry

Instructions coming soon !!

Option 3: Manage the HDFS permissions yourself

This option is rarely used and we do not have documentation at this time

Grant Superuser HDFS Privileges

NiFi Node

Add nifi user to the HDFS supergroup or the group defined in hdfs-site.xml, for example:

Hortonworks (HDP)

$ usermod -a -G hdfs nifi

Cloudera (CDH)

$ groupadd supergroup
Add nifi and hdfs to that group:
$ usermod -a -G supergroup nifi
$ usermod -a -G supergroup hdfs

Note

If you want to perform actions as a root user in a development environment, run the below command.

$ usermod -a -G supergroup root

Kylo Node

Add kylo user to the HDFS supergroup or the group defined in hdfs-site.xml, for example:

Hortonworks (HDP)

$ usermod -a -G hdfs kylo

Cloudera (CDH)

$ groupadd supergroup
Add kylo and hdfs to that group:
$ usermod -a -G supergroup kylo
$ usermod -a -G supergroup hdfs

Note

If you want to perform actions as a root user in a development environment run the below command.

$ usermod -a -G supergroup root

Clusters

In addition to adding the nifi and kylo users to the supergroup on the edge node you also need to add the users/groups to the NameNodes and Data Nodes on a cluster.

Hortonworks (HDP)

 $ useradd kylo

 $ useradd nifi

 $ usermod -G hdfs nifi

 $ usermod -G hdfs kylo

Cloudera (CDH)

$ groupadd supergroup
Add nifi and hdfs to that group:
$ usermod -a -G supergroup kylo
$ usermod -a -G supergroup nifi
$ usermod -a -G supergroup hdfs

Start Services

Start Kylo and NiFi

$ kylo-service start
$ service nifi start

At this point all services should be running. Verify by running:

$ kylo-service status
$ service nifi status
$ service elasticsearch status
$ service activemq status

Test Services

Feed Manager and Operations UI

http://127.0.0.1:8400

username: dladmin

password: thinkbig

NiFi UI

http://127.0.0.1:8079/nifi

Elasticsearch REST API

curl localhost:9200

ActiveMQ Admin

http://127.0.0.1:8161/admin

Import Templates

The Kylo installation includes some sample ingestion templates to get you started. You can import them either through the command line or in the UI

Import from the command line

The setup folder includes a script to import the templates locally.

$ <KYLO_HOME>/setup/data/install-templates-locally.sh

Import from the Kylo UI

	Import the data ingest template.

	Locate the data_ingest.zip file. You will need the file locally to upload it. You can find it in one of two places:

- <kylo_project>/samples/templates/nifi-1.0/data_ingest.zip
- /opt/kylo/setup/data/templates/nifi-1.0/data_ingest.zip

	Go to the templates page in the Admin section

	Click on the plus icon on the top left

	Click on “Import from file” and choose the data_ingest.zip

	If this is the first time you are importing the template you do not need to check any of the additional options

	Click “Import Template”

	Import Index Text Template (For Elasticsearch or SOLR).

	Locate the file. You will need the file locally to upload it. You can find it in one of two places:

If you are using a version of NiFi prior to 1.3:

- <kylo_project>/samples/feeds/nifi-1.0/index_text_service_<TYPE>.zip
- /opt/kylo/setup/data/feeds/nifi-1.0/index_text_service_<TYPE>.zip

If you are using NiFi 1.3 or later:

- <kylo_project>/samples/feeds/nifi-1.3/index_text_service_v2.feed.zip
- /opt/kylo/setup/data/feeds/nifi-1.3/index_text_service_v2.feed.zip

	Go to the the Feeds page in Kylo.

	Click on the plus icon to add a feed.

	Select “Import from a file”.

	Choose the file from above.

	Click “Import Feed”.

	Import the data transformation template.

	Locate the data_transformation.zip file. You will need the file locally to upload it. You can find it in one of two places:

- <kylo_project>/samples/templates/nifi-1.0/data_transformation.zip
- /opt/kylo/setup/data/templates/nifi-1.0/data_transformation.zip

	Go to the templates page in the Admin section

	Click on the plus icon on the top left

	Click on “Import from file” and choose the data_transformation.zip

	If this is the first time you are importing the template you do not need to check any of the additional options

	Click “Import Template”

	Import the data confidence template.

	Locate the data_confidence_invalid_records.zip file. You will need the file locally to upload it. You can find it in one of two places:

- <kylo_project>/samples/templates/nifi-1.0/data_confidence_invalid_records.zip
- /opt/kylo/setup/data/templates/nifi-1.0/data_confidence_invalid_records.zip

	Go to the templates page in the Admin section

	Click on the plus icon on the top left

	Click on “Import from file” and choose the data_confidence_invalid_records.zip

	If this is the first time you are importing the template you do not need to check any of the additional options

	Click “Import Template”

Create Sample Feed

Before performing any more configuration with Kylo you should create and test a simple feed to make sure all of the integration configuration is correct

Below is an example on how to create a simple feed using one of the provided CSV files.

Create a dropzone folder on the edge node for file ingest

Perform the following step on the node on which NiFI is installed:

$ mkdir -p /var/dropzone

$ chown nifi /var/dropzone

Note

Files should be copied into the dropzone such that user nifi can read and remove. Do not copy files with permissions set as root.

Create a category in Kylo

If you have not created a category in Kylo you can do so by going to the “Categories” page in the Feed Manager

	Click on the plus icon.

	Create a category called “users” and save it.

Create a data ingest feed

Next we need to create a feed under the “users” category.

	Go to the “Feeds” page in Feed Manager

	Click the plus icon and choose the “Data Ingest” feed type.

	Under “General Info” give the feed a name. For example, “Test Feed 1”.

	Choose the “users” category then click “Continue to Step 2”.

	Leave the source type as “Filesystem” but change the file filter to be “userdata1.csv”. The click “Continue to Step 3”.

	“Sample File” should be selected. Click on “Choose File” and find the userdata1.csv file. It is located in two places:

	<kylo_project>/samples/sample-data/csv/userdata1.csv

	/opt/kylo/setup/data/sample-data/csv/userdata1.csv

	Click the upload button to upload the file

	Change the data type for the “registration_dttm” field name to be “timestamp” instead of “string”.

	Change the data type for the “cc” field name to be “String”. Then continue to Step 4 .

	Under field policies check the “index” box for the “id”, “first_name”, and “last_name” fields to index the data in Elasticsearch. Click “Continue to Step 6”

	Continue to step 7. Change the Timer to be 5 seconds instead of 5 minutes. Then click the “Create” button

Run the sample feed

Now lets try running the feed.

	Copy the file to the drop zone folder

cp -p <PATH_TO_FILE>/userdata1.csv /var/dropzone/

	You can watch the feed from both the Operations Manger page in Kylo and in NiFi to verify the file is being processed.

[image: image1]

Next we will show you can to validate all of the integration is configured correctly in Kylo

Validate Configuration

Kylo has many integration points. For example, Hive, NiFi, MySQL, Spark, ActiveMQ, Elasticsearch, etc. Now that we ran a feed through
we can test Kylo’s integration with all of these components.

By successfully running Kylo you have validated the MySQL configuration, as well as integration with ActiveMQ and NiFi.

Validate Hive Thrift Connection

	Test profile statistics:

	Go to the “Feeds” page in feed manager and click on your test feed.

	Go to the “PROFILE” tab and click “view” for one of the rows.

	Go to the “VALID” and “INVALID” tabs and verify data is being returned.

	Test the Tables page:

	Go to the “Tables” page in Feed Manager.

	Click on the table for your test feed. In our example it is “test_feed_1”.

	Click the “PREVIEW” and “QUERY” tabs to ensure data is being returned.

Validate Spark Shell

	Go to the “Visual Query” page in Feed Manager.

	In the search box type “test_feed_1” then click “add table”.

	Click “Continue to step 2”. Validate you can see data.

	Apply a transformation. An easy way to do this is to click on the “id” column, choose Filter -> “> 600”. Validate you only see numbers greater than 600

Validate Search

	Validate the schema information is there:

	Enter the feed name in the global search box at the top. For example, “test_feed_1”. Then click enter

	Verify the schema metadata exists.

[image: image1]

	Validate the indexed data is there:

	Enter the feed name in the global search box at the top. For example, “test_feed_1”. Then click enter.

	Verify the data you selected to index exists. If you remember we chose the id, first_name, and last_name columns.

[image: image2]

HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

About

This guide will help you understand the steps involved with deploying
Kylo to a Kerberos cluster with minimal admin privileges. No super user
privileges will be provided to the “nifi” or “kylo” user. The only
usage for an administrative account will be for kylo-services to
access the Ranger REST API.

There are two ways you can configure Hive to manage users on the
cluster.

	You can configure it to run Hive jobs as the end user, but all HDFS access is done as the Hive user.

	Run Hive jobs and HDFS commands as the end user.

Note

For detailed information on Hive authorizations refer to Best Practices for Hive Authorization Using Apache Ranger in HDP 2.2 on the Hortonworks website.

This document will configure option #2 to show how you can configure Kylo to grant appropriate access to both Hive and HDFS for the end user.

Cluster Topography

The cluster used in this example contains the following:

	3 master nodes

	3 data nodes

	1 Kylo edge node

	1 NiFi edge node

There are a couple of things to notes about the cluster:

	The cluster is leveraging the MIT KDC for Kerberos.

	The cluster uses Linux file system-based authorization (not LDAP or AD).

Known Issues

Kylo does not support Hive HA Thrift URL connections yet. If the cluster
is configured for HA and zookeeper, you will need to connect directly to
the thrift server.

You may see an error similar to the following:

Error

Requested user nifi is not whitelisted and has id 496, which is below the minimum allowed 500”.

If you do, do the following to change the user ID or lower the minimum ID:

	Login to Ambari and edit the yarn “Advanced yarn-env”.

	Set the “Minimum user ID for submitting job” = 450.

Prepare a Checklist

Leverage the deployment checklist to take note of information you will need to speed up configuration.

Prepare Install Checklist

Prepare the HDP Cluster

Before installing the Kylo stack, prepare the cluster by doing the following:

	Ensure that Kerberos is enabled.

	Enable Ranger, including the HDFS and Hive plugin.

	Change Hive to run both Hive and HDFS as the end user.

	Login to Ambari.

	Go to Hive -→ Config.

	Change “Run as end user instead of Hive user” to true.

	Restart required applications.

	Create an Ambari user for Kylo to query the status REST API’s.

	Login to Ambari.

	Got to “Manage Ambari” → Users.

	Click on “Create Local User”.

	Create a user called “kylo” and save the password for later.

	Go to the “Roles” screen.

	Assign the “kylo” user to the “Cluster User” role.

	If your Spark job fails when running in HDP 2.4.2 while interacting with an empty ORC table, you will get this error message:

Error

“ExecuteSparkJob[id=1fb1b9a0-e7b5-4d85-87d2-90d7103557f6] java.util.NoSuchElementException: next on empty iterator “

This is due to a change Hortonworks added to change how it loads the schema for the table. To fix the issue you can modify the following properties:

	On the edge node edit /usr/hdp/current/spark-client/conf/spark-defaults.conf.

	Add this line to the file “spark.sql.hive.convertMetastoreOrc false”

Optionally, rather than editing the configuration file you can add this property in Ambari:

	Login to Ambari.

	Go to the Spark config section.

	Go to “custom Spark defaults”.

	Add the property “spark.sql.hive.convertMetastoreOrc” and set to “false”.

	Create the “nifi” and “kylo” user on the master and data nodes.

Note

If the operations team uses a user management tool then create the users that way.

If you are using linux /etc/group based authorization in your cluster you are required to create any users that will have access to HDFS or Hive on the following:

Master Nodes:

$ useradd -r -m -s /bin/bash nifi
$ useradd -r -m -s /bin/bash kylo

Data Nodes: In some cases this is not required on data nodes.

$ useradd -r -m -s /bin/bash nifi
$ useradd -r -m -s /bin/bash kylo

Prepare the Kylo Edge Node

	Install the MySQL client on the edge node, if not already there:

$ yum install mysql

	Create a MySQL admin user or use root user to grant “create schema”
access from the Kylo edge node.

This is required to install the “kylo” schema during Kylo installation.

Example:

GRANT ALL PRIVILEGES ON *.* TO 'root'@'KYLO_EDGE_NODE_HOSTNAME' IDENTIFIED BY 'abc123' WITH GRANT OPTION; FLUSH PRIVILEGES;

	Create the “kylo” MySQL user.

CREATE USER 'kylo'@'<KYLO_EDGE_NODE>' IDENTIFIED BY 'abc123';
grant create, select, insert, update, delete, execute ON kylo.* to kylo'@'KYLO_EDGE_NODE_HOSTNAME';
FLUSH PRIVILEGES;

	Grant kylo user access to the hive MySQL metadata.

GRANT select ON hive.SDS TO 'kylo'@'KYLO_EDGE_NODE_HOSTNAME';
GRANT select ON hive.TBLS TO 'kylo'@'KYLO_EDGE_NODE_HOSTNAME';
GRANT select ON hive.DBS TO 'kylo'@'KYLO_EDGE_NODE_HOSTNAME';
GRANT select ON hive.COLUMNS_V2 TO 'kylo'@'KYLO_EDGE_NODE_HOSTNAME';

Note

If the Hive database is installed in a separate MySQL instance, you will need to create the “kylo” non privileged user in that database before running the grants.

	Make sure the Spark client and Hive client is installed.

	Create the “kylo” user on edge node.

Kylo Edge Node:
$ useradd -r -m -s /bin/bash kylo
$ useradd -r -m -s /bin/bash activemq

	Optional - Create offline TAR file for an offline Kylo installation.

[root]# cd /opt/kylo/setup/
[root setup]# ./generate-offline-install.sh

Copy the TAR file to both the Kylo edge node as well as the NiFi edge node.

	Prepare a list of feed categories you wish to create.

This is required due to the fact that we are installing Kylo without privileged access. We will create Ranger policies ahead of time to all Kylo access to the Hive Schema and HDFS folders.

9. Create “kylo” home folder in HDFS.
This is required for Hive queries to work in HDP.

[root]$ su - hdfs
[hdfs]$ kinit -kt /etc/security/keytabs/hdfs.headless.keytab <hdfs_principal_name>
[hdfs]$ hdfs dfs -mkdir /user/kylo
[hdfs]$ hdfs dfs -chown kylo:kylo /user/kylo
[hdfs]$ hdfs dfs -ls /user

Tip

If you do not know the HDFS Kerberos principal name run “klist -kt/etc/security/keytabs/hdfs.headless.keytab”.

Prepare the NiFi Edge Node

	Install the MySQL client on the edge node, if not already there.

$ yum install mysql

	Grant MySQL access from the NiFi edge node.

Example:

GRANT ALL PRIVILEGES ON *.* TO 'kylo'@'nifi_edge_node' IDENTIFIED BY 'abc123';
FLUSH PRIVILEGES;

	Make sure the Spark client and Hive client is installed.

	Create the “nifi” user on edge node, master nodes, and data nodes.

Edge Nodes:

$ useradd -r -m -s /bin/bash nifi

	Optional - Copy the offline TAR file created above to this edge node, if necessary.

	Create the “nifi” home folders in HDFS.

This is required for Hive queries to work in HDP.

[root]$ su - hdfs
[hdfs]$ kinit -kt /etc/security/keytabs/hdfs.headless.keytab <hdfs_principal_name>
[hdfs]$ hdfs dfs -mkdir /user/nifi
[hdfs]$ hdfs dfs -chown nifi:nifi /user/nifi
[hdfs]$ hdfs dfs -ls /user

Tip

If you don’t know the HDFS Kerberos principal name, run:

“klist -kt /etc/security/keytabs/hdfs.headless.keytab”

Create the Keytabs for “nifi” and “kylo” Users

	Login to the host that is running the KDC and create the keytabs.

[root]# kadmin.local
kadmin.local: addprinc -randkey "kylo/<KYLO_EDGE_HOSTNAME>@US-WEST-2.COMPUTE.INTERNAL"
kadmin.local: addprinc -randkey "nifi/<NIFI_EDGE_HOSTNAME>@US-WEST-2.COMPUTE.INTERNAL"
kadmin.local: xst -k /tmp/kylo.service.keytab kylo/<KYLO_EDGE_HOSTNAME>@US-WEST-2.COMPUTE.INTERNAL
kadmin.local: xst -k /tmp/nifi.service.keytab nifi/<NIFI_EDGE_HOSTNAME>@US-WEST-2.COMPUTE.INTERNAL

	Note the Hive principal name for the thrift connection later.

Write down the principal name for Hive for the KDC node
kadmin.local: listprincs

kadmin.local: exit

	Move the keytabs to the correct edge nodes.

4. Configure the Kylo edge node.
This step assumes that, to configure the keytab, you SCP’d the files to:

/tmp

Configure the edge node:

[root opt]# mv /tmp/kylo.service.keytab /etc/security/keytabs/
[root keytabs]# chown kylo:kylo /etc/security/keytabs/kylo.service.keytab
[root opt]# chmod 400 /etc/security/keytabs/kylo.service.keytab

	Test the keytab on the Kylo edge node.

[root keytabs]# su - kylo
[kylo ~]$ kinit -kt /etc/security/keytabs/kylo.service.keytab kylo/<KYLO_EDGE_HOSTNAME>@US-WEST-2.COMPUTE.INTERNAL
[kylo ~]$ klist
[kylo ~]$ klist
Ticket cache: FILE:/tmp/krb5cc_496
Default principal: kylo/ip-172-31-42-133.us-west-2.compute.internal@US-WEST-2.COMPUTE.INTERNAL
Valid starting Expires Service principal
11/29/2016 22:37:57 11/30/2016 22:37:57 krbtgt/US-WEST-2.COMPUTE.INTERNAL@US-WEST-2.COMPUTE.INTERNAL

[kylo ~]$ hdfs dfs -ls /
Found 10 items

Now try hive
[kylo ~]$ hive

	Configure the NiFi edge node.

root opt]# mv /tmp/nifi.service.keytab /etc/security/keytabs/
[root keytabs]# chown nifi:nifi /etc/security/keytabs/nifi.service.keytab
[root opt]# chmod 400 /etc/security/keytabs/nifi.service.keytab

	Test the keytab on the NiFi edge node.

[root keytabs]# su - nifi
[nifi ~]$ kinit -kt /etc/security/keytabs/nifi.service.keytab nifi/i<NIFI_EDGE_HOSTNAME>@US-WEST-2.COMPUTE.INTERNAL
[nifi ~]$ klist
Ticket cache: FILE:/tmp/krb5cc_497
Default principal: nifi/<NIFI_EDGE_HOSTNAME>@US-WEST-2.COMPUTE.INTERNAL
Valid starting Expires Service principal
11/29/2016 22:40:08 11/30/2016 22:40:08 krbtgt/US-WEST-2.COMPUTE.INTERNAL@US-WEST-2.COMPUTE.INTERNAL

[nifi ~]$ hdfs dfs -ls /
Found 10 items

[nifi ~]$ hive

	Test with Kerberos test client.

Kylo provides a kerberos test client to ensure the keytabs work in the JVM. There have been cases where kinit works on the command line but getting a kerberos ticket breaks in the JVM.

https://github.com/kyloio/kylo/tree/master/core/kerberos/kerberos-test-client

	Optional - Test Beeline connection.

Install NiFi on the NiFi Edge Node

	SCP the kylo-install.tar tar file to /tmp (if running in offline mode).

2. Run the setup wizard (example uses offline mode)
[root tmp]# cd /tmp

[root tmp]# mkdir tba-install
[root tmp]# mv kylo-install.tar tba-install/
[root tmp]# cd tba-install/
[root tba-install]# tar -xvf kylo-install.tar

[root tba-install]# /tmp/tba-install/setup-wizard.sh -o

	Install the following using the wizard.

	NiFi

	Java (Option #2 most likely)

	Stop NiFi.

$ service nifi stop

	Edit nifi.properties to set Kerberos setting.

[root]# vi /opt/nifi/current/conf/nifi.properties

nifi.kerberos.krb5.file=/etc/krb5.conf

	Edit the config.properties file.

[root]# vi /opt/nifi/ext-config/config.properties

jms.activemq.broker.url=tcp://<KYLO_EDGE_HOST>:61616

	Start NiFi.

[root]# service nifi start

	Tail the logs to look for errors.

tail -f /var/log/nifi/nifi-app.log

Install the Kylo Application on the Kylo Edge Node

	Install the RPM.

$ rpm -ivh /tmp/kylo-<VERSION>.noarch.rpm

	SCP the kylo-install.tar tar file to /tmp (if running in offline mode).

	Run the setup wizard (example uses offline mode)

[root tmp]# cd /tmp
[root tmp]# mkdir tba-install
[root tmp]# mv kylo-install.tar tba-install/
[root tmp]# cd tba-install/
[root tba-install]# tar -xvf kylo-install.tar

[root tba-install]# /tmp/tba-install/setup-wizard.sh -o

	Install the following using the wizard (everything but NiFi).

	MySQL database scripts

	Elasticsearch

	ActiveMQ

	Java (Option #2 most likely)

	Update Elasticsearch configuration.

In order for Elasticsearch to allow access from an external server you need to specify the hostname in addition to localhost.

$ vi /etc/elasticsearch/elasticsearch.yml
network.host: localhost,<KYLO_EDGE_HOST>

$ service elasticsearch restart

	Edit the thinbig-spark-shell configuration file.

[root kylo]# vi /opt/kylo/kylo-services/conf/spark.properties

kerberos.kylo.kerberosEnabled=true
kerberos.kylo.hadoopConfigurationResources=/etc/hadoop/conf/core-site.xml,/etc/hadoop/conf/hdfs-site.xml
kerberos.kylo.kerberosPrincipal=<kylo_principal_name>
kerberos.kylo.keytabLocation=/etc/security/keytabs/kylo.service.keytab

	Edit the kylo-services configuration file.

[root /]# vi /opt/kylo/kylo-services/conf/application.properties

spring.datasource.url=jdbc:mysql://<MYSQL_HOSTNAME>:3306/kylo?noAccessToProcedureBodies=true
spring.datasource.username=kylo
spring.datasource.password=password

ambariRestClientConfig.host=<AMBARI_SERVER_HOSTNAME>
ambariRestClientConfig.username=kylo
ambariRestClientConfig.password=password

metadata.datasource.url=jdbc:mysql://<MYSQL_HOSTNAME>:3306/kylo?noAccessToProcedureBodies=true
metadata.datasource.username=kylo
metadata.datasource.password=password

hive.datasource.url=jdbc:hive2://<HIVE_SERVER2_HOSTNAME>:10000/default;principal=<HIVE_PRINCIPAL_NAME>

hive.metastore.datasource.url=jdbc:mysql://<MYSQL_HOSTNAME>:3306/hive
hive.metastore.datasource.username=kylo
hive.metastore.datasource.password=password

modeshape.datasource.url=jdbc:mysql://<MYSQL_HOSTNAME>:3306/kylo?noAccessToProcedureBodies=true
modeshape.datasource.username=kylo
modeshape.datasource.password=password

nifi.rest.host=<NIFI_EDGE_HOST>

kerberos.hive.kerberosEnabled=true
kerberos.hive.hadoopConfigurationResources=/etc/hadoop/conf/core-site.xml,/etc/hadoop/conf/hdfs-site.xml
kerberos.hive.kerberosPrincipal=<KYLO_PRINCIPAL_NAME>
kerberos.hive.keytabLocation=/etc/security/keytabs/kylo.service.keytab

nifi.service.mysql.database_user=kylo
nifi.service.mysql.password=password
nifi.service.mysql.database_connection_url=jdbc:mysql://<MYSQL_HOSTNAME>

nifi.service.hive_thrift_service.database_connection_url=jdbc:hive2://<HIVE_SERVER2_HOSTNAME>:10000/default;principal=<HIVE_PRINCIPAL_NAME>
nifi.service.hive_thrift_service.kerberos_principal=<NIFI_PRINCIPAL_NAME>
nifi.service.hive_thrift_service.kerberos_keytab=/etc/security/keytabs/nifi.service.keytab
nifi.service.hive_thrift_service.hadoop_configuration_resources=/etc/hadoop/conf/core-site.xml,/etc/hadoop/conf/hdfs-site.xml

nifi.service.think_big_metadata_service.rest_client_url=http://<KYLO_EDGE_HOSTNAME>:8400/proxy/metadata

nifi.executesparkjob.sparkmaster=yarn-cluster
nifi.executesparkjob.extra_jars=/usr/hdp/current/spark-client/lib/datanucleus-api-jdo-3.2.6.jar,/usr/hdp/current/spark-client/lib/datanucleus-core-3.2.10.jar,/usr/hdp/current/spark-client/lib/datanucleus-rdbms-3.2.9.jar
nifi.executesparkjob.extra_files=/usr/hdp/current/spark-client/conf/hive-site.xml

nifi.all_processors.kerberos_principal=<NIFI_PRINCIPAL_NAME>
nifi.all_processors.kerberos_keytab=/etc/security/keytabs/nifi.service.keytab
nifi.all_processors.hadoop_configuration_resources=/etc/hadoop/conf/core-site.xml,/etc/hadoop/conf/hdfs-site.xml

Set the JMS server hostname for the Kylo hosted JMS server:

config.elasticsearch.jms.url=tcp://<KYLO_EDGE_HOST>:61616

	Install the Ranger Plugin.

	SCP Ranger plugin to /tmp.

	Install the Ranger plugin.

[root plugin]# mv /tmp/kylo-hadoop-authorization-ranger-<VERSION>.jar /opt/kylo/kylo-services/plugin
[root plugin]# chown kylo:kylo /opt/kylo/kylo-services/plugin/kylo-hadoop-authorization-ranger-<VERSION>.jar
[root plugin]# touch /opt/kylo/kylo-services/conf/authorization.ranger.properties
[root plugin]# chown kylo:kylo /opt/kylo/kylo-services/conf/authorization.ranger.properties

	Edit the properties file.

vi /opt/kylo/kylo-services/conf/authorization.ranger.properties

ranger.hostName=<RANGER_HOST_NAME>
ranger.port=6080
ranger.userName=admin
ranger.password=admin
hdfs.repository.name=Sandbox_hadoop
hive.repository.name=Sandbox_hive

	Start the Kylo applications.

[root]# /opt/kylo/start-kylo-apps.sh

	Check the logs for errors.

/var/log/kylo-services.log
/var/log/kylo-ui/kylo-ui.log
/var/log/kylo-services/kylo-spark-shell.err

	Login to the Kylo UI.

http://<KYLO_EDGE_HOSTNAME>:8400

Create Folders for NiFi standard-ingest Feed

	Create the dropzone directory on the NiFi edge node.

$ mkdir -p /var/dropzone
$ chown nifi /var/dropzone

	Create the HDFS root folders.

This will be required since we are running under non-privileged users.

[root]# su - hdfs
[hdfs ~]$ kinit -kt /etc/security/keytabs/hdfs.service.keytab
<HDFS_PRINCIPAL_NAME>
[hdfs ~]$ hdfs dfs -mkdir /etl
[hdfs ~]$ hdfs dfs -chown nifi:nifi /etl
[hdfs ~]$ hdfs dfs -mkdir /model.db
[hdfs ~]$ hdfs dfs -chown nifi:nifi /model.db
[hdfs ~]$ hdfs dfs -mkdir /archive
[hdfs ~]$ hdfs dfs -chown nifi:nifi /archive
[hdfs ~]$ hdfs dfs -mkdir -p /app/warehouse
[hdfs ~]$ hdfs dfs -chown nifi:nifi /app/warehouse
[hdfs ~]$ hdfs dfs -ls /

Create Ranger Policies

	Add the “kylo” and “nifi user to Ranger if they don’t exist.

	Create the HDFS NiFi policy.

	Click into the HDFS repository

	Click on “Add New Policy”

name: kylo-nifi-access
Resource Path:
 /model.db/*
 /archive/*
 /etl/*
 /app/warehouse/*
user: nifi
permissions: all

	Create the Hive NiFi policy.

	Click into the Hive repository.

	Click on “Add New Policy”.

Policy Name: kylo-nifi-access
Hive Database: userdata, default (required for access for some reason)
table: *
column: *
user: nifi
permissions: all

	Create the Hive Kylo policy.

Grant Hive access to “kylo” user for Hive tables, profile, and wrangler.

Note

Kylo supports user impersonation (add doc and reference it).

	Click into the Hive repository.

	Click on “Add New Policy”.

Policy Name: kylo-kylo-access
Hive Database: userdata
table: *
column: *
user: kylo
permissions: select

Import Kylo Templates

	Import Index Text Template (For Elasticsearch).

	Locate the index_text_service.zip file. You will need the file locally to upload it. You can find it in one of two places:

	<kylo_project>/samples/feeds/nifi-1.0/

	/opt/kylo/setup/data/feeds/nifi-1.0

	Go to the the Feeds page in Kylo.

	Click on the plus icon to add a feed.

	Select “Import from a file”.

	Choose the index_text_service.zip file.

	Click “Import Feed”.

	Update the Index Text processors.

	Login to NiFi.

	Go to the system → index_text_service process group.

	Edit the “Receive Index Request” processor and set the URL value to <KYLO_EDGE_HOSTNAME>.

	In addition to the URL field you might have to edit the jms-subscription property file as instructed above.

	Edit the “Update Elasticsearch” processor and set the HostName value to <KYLO_EDGE_HOSTNAME>.

Note

An issue was found with the getJmsTopic processor URL. If you import the template using localhost and need to change it there is a bug that won’t allow the URL to be changed. The value is persisted to a file.

[root@ip-10-0-178-60 conf]# pwd
/opt/nifi/current/conf
[root@ip-10-0-178-60 conf]# ls -l
total 48
-rw-rw-r-- 1 nifi users 3132 Dec 6 22:05 bootstrap.conf
-rw-rw-r-- 1 nifi users 2119 Aug 26 13:51 bootstrap-notification-services.xml
-rw-rw-r-- 1 nifi nifi 142 Dec 7 00:36 jms-subscription-2bd64d8a-2b1f-1ef0-e961-e50680e34686
-rw-rw-r-- 1 nifi nifi 142 Dec 7 00:54 jms-subscription-2bd64d97-2b1f-1ef0-7fc9-279eacf076dd
-rw-rw-r-- 1 nifi users 8243 Aug 26 13:51 logback.xml
-rw-rw-r-- 1 nifi users 8701 Dec 7 00:52 nifi.properties
-rw-rw-r-- 1 nifi users 3637 Aug 26 13:51 state-management.xml
-rw-rw-r-- 1 nifi users 1437 Aug 26 13:51 zookeeper.properties

	Edit the file named named “jms-subscription-<processor_id>”.

	Change the hostname.

	Restart NiFi.

	Import the data ingest template.

	Locate the data_ingest.zip file. You will need the file locally to upload it. You can find it in one of two places:

	<kylo_project>/samples/templates/nifi-1.0/

	/opt/kylo/setup/data/templates/nifi-1.0

	Go to the templates page and import the data ingest template.

	Manually update the Spark validate processor.

Add this variable to the ${table_field_policy_json_file}. It should look like this:

${table_field_policy_json_file},/usr/hdp/current/spark-client/conf/hive-site.xml

	Edit the “Upload to HDFS” and remove “Remote Owner” and “Remote Group” (since we aren’t using superuser).

	Update NiFi processors for Kylo template versions prior to 0.5.0.

We need to update a few settings in the elasticsearch and standard ingest template. This is not required with 0.5.0 or greater since they will be set during import.

	Login to NiFi.

	Go to the reusable_templates → standard-ingest process group.

	Edit the “Register Index” processor and set the URL to the <KYLO_EDGE_HOSTNAME>.

	Edit the “Update Index” processor and set teh URL to the <KYLO_EDGE_HOSTNAME>.

	Import the transform feed (Optional).

Create Data Ingest Feed Test

	Create a userdata feed to test.

	Test the feed.

cp -p <PATH_TO_FILE>/userdata1.csv /var/dropzone/

Overview

Now that Kylo is installed and you can run a simple feed successfully, you can now get famliar wtih some of the common configuration. Some of the common configuration
changes include

	Adding memory

	Changing the Java home

	Starting and stopping services

	Viewing log files

	Common cluster changes required for feeds

	Enabling yarn cluster mode

	Configure Kylo Spark Mode

	Configure to use Postgres database

Adjust Memory

Optimizing Performance

You can adjust the memory setting for each services using the below
environment variables:

/opt/kylo/kylo-ui/bin/run-kylo-ui.sh
export KYLO_UI_OPTS= -Xmx4g

/opt/kylo/kylo-services/bin/run-kylo-services.sh
export KYLO_SERVICES_OPTS= -Xmx4g

Change Java Home

By default, the kylo-services and kylo-ui application set the
JAVA_HOME location to /opt/java/current. This can easily be changed by
editing the JAVA_HOME environment variable in the following two files:

/opt/kylo/kylo-ui/bin/run-kylo-ui.sh
/opt/kylo/kylo-services/bin/run-kylo-services.sh

In addition, if you run the script to modify the NiFI JAVA_HOME
variable you will need to edit:

/opt/nifi/current/bin/nifi.sh

Log Files

Configuring Log Output

Log output for the services mentioned above are configured at:

/opt/kylo/kylo-ui/conf/log4j.properties
/opt/kylo/kylo-services/conf/log4j.properties
/opt/kylo/kylo-services/conf/log4j-spark.properties

You may place logs where desired according to the
‘log4j.appender.file.File’ property. Note the configuration line:

log4j.appender.file.File=/var/log/<app>/<app>.log

The default log locations for the various applications are located at:

/var/log/<service_name>

Yarn Cluster Mode Configuration

Overview

In order for the yarn cluster mode to work to validate the Spark processor, the JSON policy file has to be passed to the cluster. In addition the hive-site.xml file needs to be passed. This should work for
both HDP and Cloudera clusters.

Requirements

You must have Kylo installed.

Step 1: Add the Data Nucleus Jars

Note

This step is required only for HDP and is not required on Cloudera.

If using Hive in your Spark processors, provide Hive jar dependencies
and hive-site.xml so that Spark can connect to the right Hive metastore.
To do this, add the following jars into the “Extra Jars” parameter:

/usr/hdp/current/spark-client/lib (/usr/hdp/current/spark-client/lib/datanucleus-api-jdo-x.x.x.jar,/usr/hdp/current/spark-client/lib/datanucleus-core-x.x.x.jar,/usr/hdp/current/spark-client/lib/datanucleus-rdbms-x.x.x.jar)

Step 2: Add the hive-site.xml File

Specify “hive-site.xml”. It should be located in the following location:

Hortonworks

/usr/hdp/current/spark-client/conf/hive-site.xml

Cloudera

/etc/hive/conf.cloudera.hive/hive-site.xml

Add this file location to the “Extra Files” parameter. To add multiple files, separate them with a comma.

 [image: image18]

Step 3: Validate and Split Records Processor

If using the “Validate and Split Records” processor in the
standard-ingest template, pass the JSON policy file as well.

 [image: image19]

Kylo Spark Properties

Overview

The kylo-spark-shell process compiles and executes Scala code for schema detection and data transformations.

Configuration

The default location of the configuration file is at /opt/kylo/kylo-services/conf/spark.properties.

The process will run in one of three modes depending on which properties are defined. The default mode is Server which requires the process to be started and managed separately, typically using the
included init script. In the other two modes, Managed and Multi-User, the kylo-services process will start and manage the kylo-spark-shell processes. Typically Server mode will only
be used in development environments and Managed or Multi-User will be used in production. The following sections further describe these modes and their configuration options.

Server Mode

The kylo-spark-shell process will run in Server mode when the below properties are defined in spark.properties. In this mode the process should be started by using the included init script.
When using the Kylo sandbox it is sufficient to run service kylo-spark-shell start.

The properties from the other sections in this document are ignored when Server mode is enabled. To modify the Spark options, edit the run-kylo-spark-shell.sh file and add them to the
spark-submit call on the last line. Note that only the local Spark master is supported in this configuration.

	Property

	Type

	Default

	Description

	server.port

	Number

	8450

	Port for kylo-spark-shell to listen on.

	spark.shell.server.host

	String

	
	Host name or address where the kylo-spark-shell

process is running as a server.

	spark.shell.server.port

	Number

	8450

	Port where the kylo-spark-shell process is

listening.

	spark.ui.port

	Number

	8451

	Port for the Spark UI to listen on.

Advanced options are available by using Spring Boot properties.

Example spark.properties configuration:

spark.shell.server.host = localhost
spark.shell.server.port = 8450

Managed Mode

In Managed mode, Kylo will start one kylo-spark-shell process for schema detection and another for executing data transformations.

Once the process has started it will call back to kylo-services and register itself. This allows Spark to run in yarn-cluster mode as the driver can run on any node in the cluster.

The auth-spark Spring profile must be enabled for the Spark client to start.

	Property

	Type

	Default

	Description

	spark.shell.appResource

	String

	
	Path to the kylo-spark-shell-client jar file.

This is only needed if Kylo is unable to

determine the location automatically. The

default location for Spark 1.x is /opt/

kylo/kylo-services/lib/app/kylo-spark-

shell-client-v1-*.jar. There is a v2 jar for

Spark 2.x.

	spark.shell.deployMode

	String

	
	Whether to launch a kylo-spark-shell

process locally (client) or on one of the

worker machines inside the cluster

(cluster). Set to cluster when enabling

user impersonation.

	spark.shell.files

	String

	
	Additional files to be submitted with the

Spark application. Multiple files should be

separated with a comma.

	spark.shell.javaHome

	String

	
	The JAVA_HOME for launching the Spark

application.

	spark.shell.idleTimeout

	Number

	900

	Indicates the amount of time in seconds

to wait for a user request before

terminating a kylo-spark-shell process.

Any user request sent to the process will

reset this timeout. This is only used in

yarn-cluster mode.

	spark.shell.jars

	String

	
	Additional jars to be submitted with the

Spark application. Multiple jars should be

separated with a comma.

	spark.shell.master

	String

	
	Where to run Spark executors locally

(local) or inside a YARN cluster (yarn).

Set to yarn when enabling user

impersonation.

	spark.shell.portMin

	Number

	45000

	Minimum port number that a

kylo-spark-shell process may listen on.

	spark.shell.portMax

	Number

	45999

	Maximum port number that a

kylo-spark-shell process may listen on.

	spark.shell.propertiesFile

	String

	
	A custom properties file with Spark

configuration for the application.

	spark.shell

.registrationKeystorePassword

	String

	
	Password to keystore when

registrationUrl uses SSL.

	spark.shell

.registrationKeystorePath

	String

	
	Path to keystore when registrationUrl

uses SSL.

	spark.shell.registrationUrl

	String

	
	Kylo Services URL for registering the

Spark application once it has started. This

defaults to http://<server-address>:8400/

proxy/v1/spark/shell/register

	spark.shell.sparkArgs

	String

	
	Additional arguments to include in the

Spark invocation.

	spark.shell.sparkHome

	String

	
	A custom Spark installation location for

the application.

	spark.shell.verbose

	Boolean

	false

	Enables verbose reporting for Spark

Submit.

The default property values should work on most systems. An error will be logged if Kylo is unable to determine the correct value from the environment. Example spark.properties configuration:

#spark.shell.server.host = localhost
#spark.shell.server.port = 8450
spark.shell.deployMode = cluster
spark.shell.master = yarn

Multi-User Mode

Kylo will start a separate process for each Kylo user in Multi-User mode. This ensures that users only have access to their own tables and cannot interfere with each other.

The auth-spark Spring profile must be enabled for the Spark client to start.

In a Kerberized environment Kylo will need to periodically execute kinit to ensure there is an active Kerberos ticket. Spark does not support supplying both a keytab and a proxy user on the
command-line. See Spark User Impersonation Configuration for more information on configuring user impersonation in a Kerberized environment.

The options from Managed Mode are also supported.

	Property

	Type

	Default

	Description

	spark.shell.proxyUser

	Boolean

	false

	Set to true to enable Multi-User mode.

Example spark.properties configuration:

#spark.shell.server.host = localhost
#spark.shell.server.port = 8450
spark.shell.deployMode = cluster
spark.shell.master = yarn
spark.shell.proxyUser = true
spark.shell.sparkArgs = --driver-java-options -Djavax.security.auth.useSubjectCredsOnly=false

Hadoop must be configured to allow the kylo user to proxy users:

$ vim /etc/hadoop/conf/core-site.xml

<property>
 <name>hadoop.proxyuser.kylo.groups</name>
 <value>*</value>
</property>
<property>
 <name>hadoop.proxyuser.kylo.hosts</name>
 <value>*</value>
</property>

Kerberos

Kerberos is supported in both Managed and Multi-User modes.

	Property

	Type

	Default

	Description

	kerberos.spark.kerberosEnabled

	Boolean

	false

	Indicates that an active Kerberos ticket

is needed to start a kylo-spark-shell

process.

	kerberos.spark.kerberosPrincipal

	String

	
	Name of the principal for acquiring a

Kerberos ticket.

	kerberos.spark.keytabLocation

	String

	
	Local path to the keytab for acquiring a

Kerberos ticket.

	kerberos.spark.initInterval

	Number

	43200

	Indicates the amount of time in seconds

to cache a Kerberos ticket before

acquiring a new one. Only used in

Multi-User mode. A value of 0 disables

calling kinit.

	kerberos.spark.initTimeout

	Number

	10

	Indicates the amount of time in seconds

to wait
for kinit to acquire a ticket

before killing the process. Only used in

Multi-User mode.

	kerberos.spark.retryInterval

	Number

	120

	Indicates the amount of time in seconds

to wait before retrying to acquire a

Kerberos ticket if the last try failed.

Only used in Multi-User mode.

	kerberos.spark.realm

	String

	
	Name of the Kerberos realm to append

to usernames.

Example spark.properties configuration:

kerberos.spark.kerberosEnabled = true
kerberos.spark.kerberosPrincipal = kylo
kerberos.spark.keytabLocation = /etc/security/keytabs/kylo.headless.keytab

Postgres Metastore Configuration

Introduction

Kylo currently requires MySQL for the kylo schema. However, you can
configure Kylo to work with a cluster that uses Postgres. We need to
make some modifications to support Hive.

Kylo Services Configuration

Step 1: Ensure the Postgres driver is on the classpath

Ensure the postgres jdbc driver jar file is included in the kylo-services classpath.
Copy the driver jar file to the kylo-services/lib folder.

Step 2: Update the application.properties

For Kylo to connect to a Postgres databases for the Hive metadata you
need to change the following section of the kylo-services
application.properties file.

hive.metastore.datasource.driverClassName=org.postgresql.Driver
hive.metastore.datasource.url=jdbc:postgresql://<hostname>:5432/hive
hive.metastore.datasource.username=hive
hive.metastore.datasource.password=
hive.metastore.datasource.validationQuery=SELECT 1
hive.metastore.datasource.testOnBorrow=true

Elasticsearch NiFi Template Changes

The index_schema_service template is used to query out feed metadata
from the Hive tables, which is then stored in elasticsearch so it can be
searched for in Kylo. The following steps need to be taken to the
template to support Postgres:

Step 1: Copy the Postgres JAR file to NiFi

mkdir /opt/nifi/postgres
cp /opt/kylo/kylo-services/lib/postgresql-9.1-901-1.jdbc4.jar
/opt/nifi/postgres
chown -R nifi:users /opt/nifi/postgres

Step 2: Create a Controller Service for Postgres Connection

You will need to create an additional database controller services to
connect to the second database.

Controller Service Properties:

Controller Service Type: DBCPConnectionPool
Database Connection URL: jdbc:postgresql://<host>:5432/hive
Database Driver Class Name: org.postgresql.Driver
Database Driver Jar URL:
file:///opt/nifi/postgres/postgresql-9.1-901-1.jdbc4.jar Database
User: hive
Password: <password>

Enable the Controller Service.

Step 3: Update “Query Hive Table Metadata” Processor

Edit the “Query Hive Table Schema” processor and make two changes:

	Disable the “Query Hive Table Metadata” processor.

	Change the Database Connection Pooling Service to the Postgres Hive
controller service created above.

	Update the “SQL select Query” to be a Postgres query.

SELECT d."NAME", d."OWNER_NAME", t."CREATE_TIME", t."TBL_NAME",
t."TBL_TYPE",
 c."COLUMN_NAME", c."TYPE_NAME"
 FROM "COLUMNS_V2" c
 JOIN "SDS" s on s."CD_ID" = c."CD_ID"
 JOIN "TBLS" t ON s."SD_ID" =t."SD_ID"
 JOIN "DBS" d on d."DB_ID" = t."DB_ID"
 where d."NAME" = '${category}' and t."TBL_NAME" like '${feed}';

	Enable the “Query Hive Table Metadata” processor.

	Test a feed to make sure the data is getting indexed.

Overview

Kylo can be configured to run as a super user in a non-secure cluster or can be configured to work with secure clusters in order meet certain compliance guidelines (ex, PCI). This section
includes guides on how to secure different components of the Kylo stack. We recommend following the list in order to configure security.

Encrypting Configuration Properties

By default, a new Kylo installation does not have any of its
configuration properties encrypted. Once you have started Kylo for the
first time, the easiest way to derive encrypted versions of property
values is to post values to the Kylo services/encrypt endpoint to have
it generate an encrypted form for you. You could then paste the
encrypted value back into your properties file and mark it as encrypted
by prepending the values with {cipher}. For instance, if you wanted to
encrypt the Hive datasource password specified in
application.properties (assuming the password is “mypassword”), you can
get its encrypted form using the curl command like this:

$ curl -u dladmin:thinkbig -H "Content-Type: text/plain; charset=UTF-8" localhost:8400/proxy/v1/feedmgr/util/encrypt –d mypassword
29fcf1534a84700c68f5c79520ecf8911379c8b5ef4427a696d845cc809b4af0

You then copy that value and replace the clear text password
string in the properties file with the encrypted value:

hive.datasource.password={cipher}29fcf1534a84700c68f5c79520ecf8911379c8b5ef4427a696d845cc809b4af0

The benefit of this approach is that you will be getting a value that is
guaranteed to work with the encryption settings of the server where that
configuration value is being used. Once you have replaced all properties
you wish to have encrypted in the properties files, you can restart the Kylo
services to use them.

Encrypting Configuration Property Values with Spring CLI

	Install the Spring CLI client Mac example. In this example we will use Home Brew to install it on a Mac:

	Install JCE: http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

	Install Homebrew: http://brew.sh/

	Install Spring Boot CLI:

$ brew tap pivotal/tap
$ brew install springboot
$ spring install org.springframework.cloud:spring-cloud-cli:1.0.0.BUILD-SNAPSHOT

	Install the Spring CLI client Linux example:

$ wget http://repo.spring.io/release/org/springframework/boot/spring-boot-cli/1.5.3.RELEASE/spring-boot-cli-1.5.3.RELEASE-bin.tar.gz
$ sudo mkdir /apps/spring-boot
$ sudo tar -xvf /tmp/spring-boot-cli-1.5.3.RELEASE-bin.tar.gz -C /apps/spring-boot/

$ sudo vi /etc/profile
export SPRING_HOME=/apps/spring-boot/spring-1.5.3.RELEASE
export JAVA_HOME=/usr/lib/jvm/jre-1.8.0
export PATH=$SPRING_HOME/bin:$JAVA_HOME/bin:$PATH

$ source /etc/profile

$ sudo chown -R centos:centos /apps/spring-boot/
$ spring install org.springframework.cloud:spring-cloud-cli:1.3.1.RELEASE

	Copy the /apps/kylo/encrypt.key file to the computer with the Spring CLI client (if different)

	Encrypt the values. Note: Make sure to use single quotes around the password. If not special characters like $ will cause issues:

$ spring encrypt 'Pretend$Password' --key ./encrypt.key
dda0202d65ac03d250b1bc77afcf1097954wee08fc118b0f804a66xx286f61ae

	Decrypt values

$ spring decrypt dda0202d65ac03d250b1bc77afcf1097954wee08fc118b0f804a66xx286f61ae --key encrypt.key

Enable Kerberos for Kylo

The Kylo applications contain features that leverage the thrift server
connection to communicate with the cluster. In order for them to work in
a Kerberos cluster, some configuration is required. Some examples are:

	Profiling statistics

	Tables page

	Wrangler

Prerequisites

Below are the list of prerequisites for enabling Kerberos for the Kylo data
lake platform.

	Running Hadoop cluster

	Kerberos should be enabled

	Running Kylo 0.4.0 or higher

Configuration Steps

	Create a Headless Keytab File for the Hive and Kylo User.

Note

Perform the following as root. Replace “sandbox.hortonworks.com” with your domain.

[root]$ kadmin.local

kadmin.local: addprinc -randkey "kylo@sandbox.hortonworks.com"

kadmin.local: xst -norandkey -k /etc/security/keytabs/kylo.headless.keytab kylo@sandbox.hortonworks.com

kadmin.local: xst -norandkey -k /etc/security/keytabs/hive-kylo.headless.keytab hive/sandbox.hortonworks.com@sandbox.hortonworks.com

kadmin.local: exit

[root]$ chown kylo:hadoop /etc/security/keytabs/kylo.headless.keytab

[root]$ chmod 440 /etc/security/keytabs/kylo.headless.keytab

[root]$ chown kylo:hadoop /etc/security/keytabs/hive-kylo.headless.keytab

[root]$ chmod 440 /etc/security/keytabs/hive-kylo.headless.keytab

	Validate that the Keytabs Work.

[root]$ su – kylo

[kylo]$ kinit -kt /etc/security/keytabs/kylo.headless.keytab kylo

[kylo]$ klist

[root]$ su – hive

[hive]$ kinit -kt /etc/security/keytabs/hive-kylo.headless.keytab hive/sandbox.hortonworks.com

[hive]$ klist

	Modify the kylo-spark-shell configuration. If the spark.shell.server properties are set in spark.properties then the run-kylo-spark-shell.sh script will also need to be modified.

[root]$ vi /opt/kylo/kylo-services/conf/spark.properties

kerberos.spark.kerberosEnabled = true
kerberos.spark.keytabLocation = /etc/security/keytabs/kylo.headless.keytab
kerberos.spark.kerberosPrincipal = kylo@sandbox.hortonworks.com

[root]$ vi /opt/kylo/kylo-services/bin/run-kylo-spark-shell.sh

spark-submit --principal 'kylo@sandbox.hortonworks.com' --keytab /etc/security/keytabs/kylo.headless.keytab ...

	Modify the kylo-services configuration.

Tip

Replace “sandbox.hortonworks.com” with your domain.

To add Kerberos support to kylo-services, you must enable the
feature and update the Hive connection URL to support Kerberos.

[root]$ vi /opt/kylo/kylo-services/conf/application.properties

This property is for the hive thrift connection used by kylo-services
hive.datasource.url=jdbc:hive2://localhost:10000/default;principal=hive/sandbox.hortonworks.com@sandbox.hortonworks.com

This property will default the URL when importing a template using the thrift connection
nifi.service.hive_thrift_service.database_connection_url=jdbc:hive2://localhost:10000/default;principal=hive/sandbox.hortonworks.com@sandbox.hortonworks.com

Set Kerberos to true for the kylo-services application and set the 3 required properties

kerberos.hive.kerberosEnabled=true
kerberos.hive.hadoopConfigurationResources=/etc/hadoop/conf/core-site.xml,/etc/hadoop/conf/hdfs-site.xml
kerberos.hive.kerberosPrincipal=hive/sandbox.hortonworks.com
kerberos.hive.keytabLocation=/etc/security/keytabs/hive-kylo.headless.keytab

uncomment these 3 properties to default all NiFi processors that have these fields. Saves time when importing a template

nifi.all_processors.kerberos_principal=nifi
nifi.all_processors.kerberos_keytab=/etc/security/keytabs/nifi.headless.keytab
nifi.all_processors.hadoop_configuration_resources=/etc/hadoop/conf/core-site.xml,/etc/hadoop/conf/hdfs-site.xml

	Restart the kylo-services and kylo-spark-shell.

[root]$ service kylo-services restart
[root]$ service kylo-spark-shell restart

Kylo is now configured for a Kerberos cluster. You can test that it is
configured correctly by looking at profile statistics (if applicable):
go to the Tables page and drill down into a Hive table, and go to the
Wrangler feature and test that it works.

Enable Kerberos for NiFi

Prerequisites

Below are the list of prerequisites to enable Kerberos for the NiFi data
lake platform:

	A Hadoop cluster must be running.

	NiFi should be running with latest changes.

	Kerberos should be enabled.

	Keytabs should be created and accessible.

Types of Processors to be Configured

HDFS

	IngestHDFS

	CreateHDFSFolder

	PutHDFS

Hive

	TableRegister

	ExecuteHQLStatement

	TableMerge

Spark

	ExecuteSparkJob

Configuration Steps

	Create a Kerberos keytab file for Nifi user.

kadmin.local

addprinc -randkey nifi@sandbox.hortonworks.com

xst -norandkey -k /etc/security/keytabs/nifi.headless.keytab
nifi@sandbox.hortonworks.com

exit

chown nifi:hadoop /etc/security/keytabs/nifi.headless.keytab

chmod 440 /etc/security/keytabs/nifi.headless.keytab

Test that the keytab works. You can initialize your keytab file
using below command.

su - nifi

kinit -kt /etc/security/keytabs/nifi.headless.keytab nifi

klist

	Make sure nifi.properties file is available in conf directory of NiFi
installed location.

[image: image1]

	Open nifi.properties file and set location of krb5.conf file to
property nifi.kerberos.krb5.file.

vi nifi.properties

nifi.kerberos.krb5.file=/etc/krb5.conf

	HDFS Processor Configuration : Log in to NiFi UI and select HDFS
processor and set properties which is highlighted in red box.

Hadoop Configuration Resource :
/etc/hadoop/conf/core-site.xml,/etc/hadoop/conf/hdfs-site.xml

Kerberos Principal: nifi

Kerberos Keytab : /etc/security/keytabs/nifi.headless.keytab

[image: image2]

	SPARK Processor Configuration : Log in to NiFi UI and select HDFS
processor and set properties which is highlighted in red box.

[image: image3]

	Hive Processor Configuration : Log in to NiFi UI and go to toolbar.

[image: image4]

	Go to Controller Service Tab and disable Thrift Controller Services
if already running which highlighted in red box.

[image: image5]

	Make sure everything has stopped properly like below.

[image: image6]

	Update HiveServer2 hostname and Hive principal name.

Database Connection URL:
'jdbc:hive2://:<HOSTNAME>:10000/default;principal=hive/<HOSTNAME>@HOSTNAME'

ex.
'jdbc:hive2://localhost:10000/default;principal=hive/sandbox.hortonworks.com@sandbox.hortonworks.com'

[image: image7]

	Update Kerberos user information and Hadoop Configuration. Apply Changes and start controller services.

You have successfully configured NiFi DataLake Platform with Kerberos.

Enable Ranger Authorization

Prerequisite

Java

Java must be installed on all client nodes.

$ java -version
 $ java version "1.8.0_92"
$ OpenJDK Runtime Environment (rhel-2.6.4.0.el6_7-x86_64 u95-b00)
 $ OpenJDK 64-Bit Server VM (build 24.95-b01, mixed mode)

$ echo $JAVA_HOME
$ /opt/java/jdk1.8.0_92/

Kylo

This documentation assumes that you have Kylo installed and running on a
cluster.

Optional: Delete/Disable HDFS/HIVE Global Policy

If you are using HDP sandbox, remove all HDFS/HIVE global policy.

Disable the HDFS Policy.

[image: image1]

Disable the HIVE policy.

[image: image2]

Create a NiFi Super User Policy in Hive

	Login to Ranger UI.

	Select Hive Repository.

	Click on Add Policy.

	Create a policy as shown in image below.

Policy Name : ranger_superuser_policy
Select user : nifi
Permission : All

[image: image3]

Create a Hive User Policy in the HDFS Repository

	Login to Ranger UI.

	Select HDFS Repository.

	Click on Add Policy.

	Create a policy as shown in the image below.

Policy Name : hive_user_policy_kylo
Resource Path : /model.db/
 /app/warehouse/
 /etl/

[image: image4]

Ranger authorization is configured successfully. Now create a feed from the
Kylo UI and create feed for testing.

Enable Sentry Authorization

Prerequisite

Java

Java must be installed on all client nodes.

$ java -version
 $ java version "1.8.0_92"
$ OpenJDK Runtime Environment (rhel-2.6.4.0.el6_7-x86_64 u95-b00)
 $ OpenJDK 64-Bit Server VM (build 24.95-b01, mixed mode)

$ echo $JAVA_HOME
$ /opt/java/jdk1.8.0_92/

Cluster Requirements

	This documentation assumes that you have Kylo installed and running on
a cluster.

	Kerberos is mandatory. For testing purposes, set
sentry.hive.testing.mode to true.

	You must be running Hive Server2.

	In order to define policy for a role, you should have the user-group
created on all nodes of a cluster, and you must then map each role to
user-group.

	Only Sentry Admin can grant all access (create role, grant, revoke)
to a user. You can add a normal user to Sentry admin group via
Cloudera Manager.

Grant Sentry Admin Access to NiFi User

	Create a sentryAdmin group and assign a NiFi user to it.

groupadd sentryAdmin
usermod -a -G sentryAdmin nifi

	Add sentryAdmin group to Sentry Admin List.

	Log in to Cloudera Manager.

	Select Sentry Service.

	Go to Configuration tab.

	Select Sentry(Service-Wide) from Scope.

	Select Main from Category.

	Look for sentry.service.admin.group property.

	Add sentryAdmin to list.

	Click Save and Restart Service.

[image: image1]

Enabling Sentry for Hive

Change Hive Warehouse Ownership

The Hive warehouse directory (/user/hive/warehouse or any path you
specify as hive.metastore.warehouse.dir in your hive-site.xml) must be
owned by the Hive user and group.

$ sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

If you have a Kerberos-enabled cluster:

$ sudo -u hdfs kinit -kt <hdfs.keytab> hdfs
$ sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

Disable Impersonation for HiveServer2

	Go to the Hive service.

	Click the Configuration tab.

	Select Scope > HiveServer2.

	Select Category > Main.

	Uncheck the HiveServer2 Enable Impersonation checkbox.

	Click Save Changes to commit the changes.

Yarn Setting For Hive User

	Open the Cloudera Manager Admin Console and go to the YARN service.

	Click the Configuration tab.

	Select Scope > NodeManager.

	Select Category > Security.

	Ensure the Allowed System Users property includes the Hive user. If not, add Hive.

	Click Save Changes to commit the changes.

	Repeat steps 1-6 for every NodeManager role group for the YARN service that is associated with Hive.

	Restart the YARN service.

Enabled Sentry

	Go to the Hive service.

	Click the Configuration tab.

	Select Scope > Hive (Service-Wide).

	Select Category > Main.

	Locate the Sentry Service property and select Sentry.

	Click Save Changes to commit the changes.

	Restart the Hive service.

[image: image2]

Administrative Privilege

Once the sentryAdmin group is part of Sentry Admin list, it will be able
to create policies in Sentry but sentryAdmin will not be allowed to
read/write any tables. To do that, privileges must be granted to the sentryAdmin group.

CREATE ROLE admin_role
GRANT ALL ON SERVER server1 TO ROLE admin_role;
GRANT ROLE admin_role TO GROUP sentryAdmin;

Enabled HDFS ACL

	Go to the Cloudera Manager Admin Console and navigate to the HDFS
service.

	Click the Configuration tab.

	Select Scope > HDFS-1 (Service-Wide).

	Select Category > Security.

	Locate the Enable Access Control Lists property and select its checkbox to enable HDFS ACLs.

	Click Save Changes to commit the changes.

[image: image3]

Sentry authorization is configured successfully. Now create a feed from
the Kylo UI and test it.

Kylo UI and SSL

Overview

This guide provides details on what configuration changes are required to enable Kylo UI to use SSL.
Broadly, the changes will be two-fold:

	Changes to Kylo UI

	Changes to Nifi

1. Changes to Kylo UI

1.1 Create Self-Signed Certificate in a Keystore

Lets assume you are in a development mode and you want to try out Kylo UI on SSL. You will need a
self-signed certificate which is stored in a keystore. Make note of the kylo-ui.jks path, which we will refer
to in the following section when updating Kylo UI properties.

If you are in production, you would have your certificate issued by a trusted certificate authority.
You can then import it to your keystore.

mkdir /opt/kylo/ssl

Generate keys and keystore
keytool -genkeypair -alias kylo-ui -dname cn=kylo-ui -validity 10000 -keyalg RSA -keysize 2048 -keystore kylo-ui.jks -keypass changeit -storepass changeit

Create certificate sign request
keytool -certreq -alias kylo-ui -file localhost.csr -keystore kylo-ui.jks -keypass changeit -storepass changeit

Create certificate
keytool -gencert -alias kylo-ui -infile localhost.csr -outfile localhost.crt -ext SubjectAlternativeName=dns:localhost -keystore kylo-ui.jks -keypass changeit -storepass changeit

Import certificate into keystore
keytool -importcert -alias kylo-ui -file localhost.crt -keystore kylo-ui.jks -keypass changeit -storepass changeit

chown -R kylo /opt/kylo/ssl

1.2 Kylo UI Application Properties

Add following properties to /opt/kylo/kylo-ui/conf/application.properties. Change the port to your liking and
update path to keystore ‘kylo-ui.jks’ we generated in previous section.

server.ssl.enabled=true
server.port=8444
server.ssl.key-store=/opt/kylo/ssl/kylo-ui.jks
server.ssl.key-store-password=changeit
server.ssl.key-store-type=jks
server.ssl.key-alias=kylo-ui

1.3 Restart Kylo UI

You can now restart Kylo UI and browse to https://localhost:8444/ops-mgr/index.html.
The note protocol and port number have changed from default configuration and now are HTTPS and 8444 respectively.
Since we are using a self-signed certificate, expect browsers to complain about inadequate security. That is okay for development purposes.

service kylo-ui restart

2. Changes to Nifi

2.1 Import Kylo UI’s Certificate into a Truststore

You can either import Kylo UI’s certificate ‘localhost.crt’, generated in step 1.1 Create Self-Signed Certificate in a Keystore,
into a new truststore; or, if you are in a hurry, simply re-use Kylo UI’s keystore as Nifi’s truststore.

Create a new truststore and import the cert to keep things clean. Make sure ‘nifi’ user has access to this truststore, e.g.
keep the truststore in /opt/nifi/data/ssl directory, which belongs to ‘nifi’ user.

mkdir /opt/nifi/data/ssl

Import certificate into keystore
keytool -importcert -alias kylo-ui -file localhost.crt -keystore kylo-ui-truststore.jks -keypass changeit -storepass changeit

chown -R nifi /opt/nifi/data/ssl

2.2 Setup StandardSSLContextService in Nifi

Add StandardSSLContextService in Nifi at the root level next to all other controller services.

Set following properties on SSL Context Service:

	Truststore Filename

	/opt/nifi/data/ssl/kylo-ui-truststore.jks

	Truststore Password

	changeit

	Truststore Type

	JKS

[image: image1]

2.3 Update MetadataProviderSelectorService

Update MetadataProviderSelectorService. Set the following properties on MetadataProviderSelectorService, making sure host and port
correspond to where Kylo UI is running:

	REST Client URL

	https://localhost:8444/proxy/metadata

	SSL Context Service

	StandardSSLContextService

[image: image2]

NiFi and SSL

This link provides additional instruction for enabling SSL for NiFi:

https://docs.hortonworks.com/HDPDocuments/HDF2/HDF-2.0.0/bk_ambari-installation/content/ch_enabling-ssl-for-nifi.html

Creating a Self-signed Cert

	Download the NiFi toolkit from https://nifi.apache.org/download.html

	Unzip it to a directory.

/opt/nifi/nifi-toolkit-1.0.0

	Go into that directory.

cd /opt/nifi/nifi-toolkit-1.0.0/bin

	Update the “tls-toolkit.sh” file and add the current version of JAVA_HOME.

	Add this line to the start of the script:

export JAVA_HOME=/opt/java/current

	 Make an SSL directory under /opt/nifi/data as the nifi owner:

mkdir /opt/nifi/data/ssl
chown nifi /opt/nifi/data/ssl

	Change to that directory and generate certs using the tls-toolkit.

 cd /opt/nifi/data/ssl
 /opt/nifi/nifi-toolkit-1.0.0/bin/tls-toolkit.sh standalone -n 'localhost' -C 'CN=kylo, OU=NIFI' -o .

.. note:: Use the hostname of the NiFi node if running Kylo and NiFi on different servers to prevent certificate issues

This will generate one client cert and password file along with a
server keystore and trust store:

-rwxr-xr-x 1 nifi root 1675 Apr 26 21:28 nifi-key.key
-rwxr-xr-x 1 nifi root 1200 Apr 26 21:28 nifi-cert.pem
-rwxr-xr-x 1 nifi root 43 Apr 26 21:28 CN=kylo_OU=NIFI.password
-rwxr-xr-x 1 nifi root 3434 Apr 26 21:28 CN=kylo_OU=NIFI.p12
drwxr-xr-x 2 nifi root 4096 Apr 26 21:46 localhost

Note

The client cert is the p.12 (PKCS12) file along with its respective password. This will be needed later when you add the client cert to the browser/computer.

The directory ‘localhost’ is for the server side keystore and
truststore .jks files.

-rwxr-xr-x 1 nifi root 3053 Apr 26 21:28 keystore.jks
-rwxr-xr-x 1 nifi root 911 Apr 26 21:28 truststore.jks
-rwxr-xr-x 1 nifi root 8921 Apr 26 21:28 nifi.properties

	Change permissions on files.

chown nifi -R /opt/nifi/data/ssl/*
chmod 755 -R /opt/nifi/data/ssl/*

	Merge the generated properties (/opt/nifi/data/ssl/localhost) with the the NiFi configuration properties (/opt/nifi/current/conf/nifi.properties).

	Open the /opt/nifi/data/ssl/localhost/nifi.properties file.

	Compare and update the below properties

Note

Below is an example. Do not copy this text directly, as your keystore/truststore passwords will be different!

Site to Site properties
nifi.remote.input.host=localhost
nifi.remote.input.secure=true
nifi.remote.input.socket.port=10443
nifi.remote.input.http.enabled=true
nifi.remote.input.http.transaction.ttl=30 sec

web properties
nifi.web.war.directory=./lib
nifi.web.http.host=
nifi.web.http.port=
nifi.web.https.host=0.0.0.0
nifi.web.https.port=9443
nifi.web.jetty.working.directory=./work/jetty
nifi.web.jetty.threads=200

security properties
nifi.sensitive.props.key=
nifi.sensitive.props.key.protected=
nifi.sensitive.props.algorithm=PBEWITHMD5AND256BITAES-CBC-OPENSSL
nifi.sensitive.props.provider=BC
nifi.sensitive.props.additional.keys=

nifi.security.keystore=/opt/nifi/data/ssl/localhost/keystore.jks
nifi.security.keystoreType=jks
nifi.security.keystorePasswd=fCrusEdGOKdik7P5UORRegQOILoZTBQ+9kyhf8D+PUU
nifi.security.keyPasswd=fCrusEdGOKdik7P5UORRegQOILoZTBQ+9kyhf8D+PUU
nifi.security.truststore=/opt/nifi/data/ssl/localhost/truststore.jks
nifi.security.truststoreType=jks
nifi.security.truststorePasswd=DHJS0+HIaUMRkhrbqlK/ys5j7iL/ef9mnGJIDRlFokA
nifi.security.needClientAuth=
nifi.security.user.authorizer=file-provider
nifi.security.user.login.identity.provider=
nifi.security.ocsp.responder.url=
nifi.security.ocsp.responder.certificate=

	Edit the /opt/nifi/data/conf/authorizers.xml file to add the initial
admin identity. This entry needs to match the phrase you used to
generate the certificates in step 6.

<property name="Initial Admin Identity">CN=kylo,OU=NIFI</property>

Here is an example:

<authorizer>
 <identifier>file-provider</identifier>
 <class>org.apache.nifi.authorization.FileAuthorizer</class>
 <property name="Authorizations File">./conf/authorizations.xml</property>
 <property name="Users File">./conf/users.xml</property>
 <property name="Initial Admin Identity">CN=kylo, OU=NIFI</property>
 <property name="Legacy Authorized Users File"></property>

 <!-- Provide the identity (typically a DN) of each node when clustered, see above description of Node Identity.
 <property name="Node Identity 1"></property>
 <property name="Node Identity 2"></property>
 -->
</authorizer>

For reference: This will create a record in the /opt/nifi/current/conf/users.xml. Should you need to regenerate your SSL file with a different CN, you will need to modify the
users.xml file for that entry.

	Set the following parameters in the kylo-services “application.properties” file for the NiFi connection.

nifi.rest.host=localhost
nifi.rest.https=true
The port should match the port found in the /opt/nifi/current/conf/nifi.properties (nifi.web.https.port)
nifi.rest.port=9443
nifi.rest.useConnectionPooling=false
nifi.rest.truststorePath=/opt/nifi/data/ssl/localhost/truststore.jks
##the truststore password below needs to match that found in the nifi.properties file (nifi.security.truststorePasswd)
nifi.rest.truststorePassword=UsqLPVksIe/taZbfpVIsYElF8qFLhXbeVGRgB0pLjKE
nifi.rest.truststoreType=JKS
nifi.rest.keystorePath=/opt/nifi/data/ssl/CN=kylo_OU=NIFI.p12
###value found in the .password file /opt/nifi/data/ssl/CN=kylo_OU=NIFI.password
nifi.rest.keystorePassword=mw5ePri
nifi.rest.keystoreType=PKCS12

Importing the Client Cert on the Mac

	Copy the .p12 file that you created above (/opt/nifi/data/ssl/CN=kylo_OU=NIFI.p12) in step 6 to your Mac.

	Open Keychain Access.

	Create a new keychain with a name. The client cert is copied into this new keychain, which in the example here is named “nifi-cert”. If you add it directly to the System, the browser will ask you for the login/pass every time NiFi does a request.

	In the left pane, right-click “Keychains” and select “New Keychain”.

[image: image1]

	Give it the name “nifi-cert” and a password.

	[image: image2]

	[image: image3]

	Once the keychain is created, click on it and select File -> import
Items, and then find the .p12 file that you copied over in step 1.

	[image: image4]

	[image: image5]

Once complete you should have something that looks like this:

[image: image6]

Accessing NiFi under SSL

Open the port defined in the NiFi.properties above: 9443.

The first time you connect to NiFi (https://localhost:9443/nifi) you
will be instructed to verify the certificate. This will only happen
once.

	Click OK at the dialog prompt.

[image: image7]

	Enter the Password that you supplied for the keychain. This is the password that you created for the keychain in “Importing the Client Cert on the Mac” Step 3b.

[image: image8]

	Click Always Verify.

[image: image9]

	Click AdvancKyloConfiguration.rsted and then Click Proceed. It will show up as “not private” because it is a self-signed cert.

[image: image10]

	NiFi under SSL. Notice the User name matches the one supplied via the certificate that we created: “CN=kylo, OU=NIFI”.

[image: image11]

Refer to the Hortonworks documentation on Enabling SSL for NiFi:

https://docs.hortonworks.com/HDPDocuments/HDF2/HDF-2.0.0/bk_ambari-installation/content/ch_enabling-ssl-for-nifi.html

Authentication

Overview

Kylo supports a pluggable authentication architecture that allows
customers to integrate their existing infrastructure when authenticating
a user. The pluggability is built around JAAS, which delegates authentication
to one or more configured LoginModules that all collaborate in an authentication attempt.

Kylo supplies LoginModule implementations for the most common authentication
scenarios, though customers will be able to provide their own modules to
replace or augment the modules provided by Kylo.

In addition to performing authentication, LoginModules may, upon successful login, associate
the logged-in user with a set of principals (user ID and groups/roles) that can be used
to make authorization checks. For instance, a LoginModule that authenticates
a user’s credentials using LDAP may also load any groups defined in the LDAP store
for that user, and these groups can have permissions granted to them in Kylo.

Built-In Pluggable Authentication Profiles

Kylo comes with some pre-built authentication configurations that may be
activated by adding the appropriate Spring profiles to the UI and server
configuration application.properties files. By default, whenever any of these profiles
are added to the configuration it is equivalent to adding their associated
LoginModules to the overall JAAS configuration using the “required” control flag.

Note

More than one profile may be activated at one time. If multiple profiles are used, authentication in Kylo will only occur if all of the login requirements of each of the profiles are satisfied.

The table below lists all of the profiles currently supported by Kylo out-of-the-box. When any
of these profiles are activated certain properties are
expected to be present in the application.properties files.

	Login Method

	Spring Profile

	Description

	Kylo User

	auth-kylo

	Authenticates users against the
Kylo user/group store

	LDAP

	auth-ldap

	Authenticates users stored in LDAP

	Active Directory

	auth-ad

	Authenticates users stored
in Active Directory

	Users file

	auth-file

	Authenticates users in a file
users.properies (typically used in
development only)

	Simple

	auth-simple

	Allows only one admin user defined in the
configuration properties (development only)

	Cached credentials

	auth-cache

	Short-cicuit, temporary authentication after
previous user authentication by other means

auth-kylo

When this profile is active, a LoginModule will be added to the configuration
that validates whether the authenticating user is present in the Kylo user store.

Note

This profile is typically used in conjunction with other profiles (such as auth-ldap) as this configuration does not perform any password validation.

	Properties

	Required

	Example

	Description

	security.auth.kylo.login.services

	No

	required

	Corresponds to the control flag for LoginModule configurations: required, requisite, sufficient, and optional.
Possible values are required, requisite, sufficient, and optional

auth-file

When this profile is active, a LoginModule will be added to the configuration
that authenticates a username/password using user information within specific
files on the file system. For validating the credentials it looks by default,
unless configured otherwise, for a file called users.properties on the classpath containing
a mapping of usernames top passwords in the form:

user1=pw1
user2=pw2

If authentication is successful it will then look for a groups.properties file on
the classpath to load the groups that have been assigned to the authenticated user. The
format of this file is:

user1=groupA,groupB
user2=groupA,groupC

Note that use of the groups.properties file is optional when used in conjunction with other
authentication profiles. For instance, it would be redundant (but not invalid) to have a groups
file when auth-file is used with auth-kylo, as the latter profile will load any user
assigned groups from the Kylo store as well as those defined in the group file. It would likely
be confusing to have to manage groups from two different sources.

Note

The auth-file profile should generally not be used in a production environment because it currently stores user passwords in the clear. It is primarily used only in development and testing.

	Properties

	Required

	Example

	Description

	security.auth.file.users

	No

	users.properties

	The value is either a name of a resource found on the classpath or, if prepended by file:///, a direct file path

	security.auth.file.groups

	No

	groups.properties

	The same as security.auth.file.users but for the groups file

If auth-file is active and no users file property is specified in the configuration then these implicit username/password properties will be assumed:

dladmin=thinkbig
analyst=analyst
designer=designer
operator=operator

auth-ldap

This profile configures a LoginModule that authenticates the username and
password against an LDAP server.

	Property

	Required

	Example

	Description

	security.auth.ldap.server.uri

	Yes

	ldap://localhost:52389/dc=example,dc=com

	The URI to the LDAP server and root context

	security.auth.ldap.authenticator.userDnPatterns

	Yes

	uid={0},ou=people

	The DN filter patterns, minus the root
context portion, that identifies the entry for the
user. The username is substitued forthe {0}
tag. If more than one pattern is supplied they
should be separated by vertical bars

	security.auth.ldap.user.enableGroups

	No

	true

	Activates user group loading; default: false

	security.auth.ldap.user.groupsBase

	No

	ou=groups

	The filter pattern that identifies group entries

	security.auth.ldap.user.groupNameAttr

	No

	ou

	The attribute of the group entry containing the
group name

	security.auth.ldap.server.authDn

	No

	uid=admin,ou=people,dc=example,dc=com

	The LDAP account with the privileges necessary to
access user or group entries; usually only
needed (if at all) when group loading is activated

	security.auth.ldap.server.password

	No

	
	The password for the account with the privileges
necessary to access user or group entries

auth-ad

This profile configures a LoginModule that authenticates the username and
password against an Active Directory server. If the properties security.auth.ad.server.serviceUser and security.auth.ad.server.servicePassword
are set then those credentials will be used to autheticate with the AD server and only the username will be validated to exist in AD;
loading the user’s groups load (when configured) if the user is present.

	Property

	Required

	Example Value

	Description

	security.auth.ad.server.uri

	Yes

	ldap://example.com/

	The URI to the AD server

	security.auth.ad.server.domain

	Yes

	test.example.com

	The AD domain of the users to authenticate

	security.auth.ad.server.searchFilter

	No

	(&(objectClass=user)(sAMAccountName={1}))

	Specifies the filter to use to find AD entries for the login user; default: (&(objectClass=user)(userPrincipalName={0}))

	security.auth.ad.server.serviceUser

	No

	admin

	A service account used to authenticate with AD rather than
the user logging in (typically used with auth-spnego)

	security.auth.ad.server.servicePassword

	No

	
	A service account password used to authenticate with AD rather than
that of the user logging in (typically used with auth-spnego)

	security.auth.ad.user.enableGroups

	No

	true

	Activates user group loading; default: false

auth-simple

This profile configures a LoginModule that authenticates a single user as an administrator using
username and password properties specified in application.properties. The specified user will be
the only one able to login to Kylo. Obviously, this profile should only be used in development.

	Property

	Required

	Example Value

	Description

	authenticationService.username

	Yes

	dladmin

	The username of the administrator

	authenticationService.password

	Yes

	thinkbig

	The password of the administrator

auth-cache

Kylo’s REST API is stateless and every request must be authenticated. In cases where the REST API is
heavily used and/or the primary means of authetication is expensive, this profile can be used to reduce
the amount of times the primary authentication mechanism is consulted. This is achieved by inserting
a LoginModule a the head of the login sequence, flagged as Sufficient [http://docs.oracle.com/javase/7/docs/api/javax/security/auth/login/Configuration.html],
that reports a login success if the user credential for the current request is present in its cache.
Another LoginModule, flagged as Optional [http://docs.oracle.com/javase/7/docs/api/javax/security/auth/login/Configuration.html],
is inserted at the end of the sequence to add the credential to the cache whenever a successful login is committed.

	Property

	Required

	Example Value

	Description

	security.auth.cache.spec

	No

	expireAfterWrite=30s,maximumSize=512

	The cache specification [https://google.github.io/guava/releases/19.0/api/docs/com/google/common/cache/CacheBuilderSpec.html] (entry expire time, cache size, etc.)

User Group Handling

Kylo access control is governed by permissions assigned to user groups,
so upon successful authentication any groups to which the user belongs
must be loaded and associated with the current authenticated request
being processed. JAAS LoginModules have two responsibilities:

	Authenticate a login attempt

	Optionally, associate principals (user and group identifiers) with the security context of the request

A number of authentication profiles described above support loading of user groups at login time.
For auth-kylo this is done automatically, for others (auth-ldap, ‘auth-file`, etc.) this must be configured.
If more than one group-loading profile is configured, the result is additive. For example, if your configuration
activates the profiles auth-kylo and auth-LDAP, and the LDAP properties enable groups, then any groups associated
with the user in both LDAP and the Kylo user store will be combined and associated with the user’s security
context.

JAAS Application Configuration

Currently, there are two applications (from a JAAS perspective) for which LoginModules may be
configured for authentication: the Kylo UI and Services REST API. Kylo
provides an API that allows plugins to easily integrate custom login
modules into the authentication process.

Creating a Custom Authentication Plugin

The first step is to create Kylo plugin containing a LoginModule
that performs whatever authentication is required and then adds any
username/group principals upon successful authentication. This module
will be added to whatever other LoginModules may be associated
with the target application (Kylo UI and/or Services.)

The service-auth framework provides an API to make it easy to integrate
a new LoginModule into the authentication of the Kylo UI or services
REST API. The easiest way to integrate your custom LoginModule is to
create a Spring configuration class, which will be bundled into your
plugin jar along with your custom LoginModule. That then uses the framework-provided
LoginConfigurationBuilder to incorporate your LoginModule into the
authentication sequence. The following is an example of a configuration
class that adds a new module to the authentication sequence of both the
Kylo UI and Services; each with different configuration options:

@Configuration
public class MyCustomAuthConfig {
 @Bean
 public LoginConfiguration myLoginConfiguration(LoginConfigurationBuilder builder) {
 return builder
 .loginModule(JaasAuthConfig.JAAS_UI)
 .moduleClass(MyCustomLoginModule.class)
 .controlFlag("required")
 .option("customOption", "customValue1")
 .add()
 .loginModule(JaasAuthConfig.JAAS_SERVICES)
 .moduleClass(MyCustomLoginModule.class)
 .controlFlag("required")
 .option("customOption", "customValue2")
 .option("anotherOption", "anotherValue")
 .add()
 .build();
 }
}

As with any Kylo plugin, to deploy this configuration you would create a
jar file containing the above configuration class, your custom login
module class, and a plugin/plugin-context.xml file to bootstrap
your plugin configuration. Dropping this jar into the plugin directories of
the UI and Services would allow your custom LoginModule to participate in their
login process.

Kylo Kerberos SPNEGO

Configuration

auth-krb-spnego

Kerberos SPNEGO is activated in Kylo by adding the profile
auth-krb-spnego to the list of active profiles in the UI and services
properties files.

Currently, if SPNEGO is activated, then either the auth-kylo or auth-ad profile must be
used as well. This is because requests reaching Kylo when SPNEGO is used will already be authenticated
but the groups associated with the requesting user must still be associated during Kylo authentication.
Both the configurations activated by auth-kylo and auth-ad are SPNEGO-aware and allow serice
accounts properties to be set for use in looking up the groups of user from the Kylo user store or
Active Directory.

Once SPNEGO is configured in kylo-services the services’ REST API will begin to accept
SPNEGO Authorization: Negotiate headers for authentication. The REST API will continue to accept
HTTP BASIC authentication requests as well.

When auth-krb-spnego is activated, the following properties are required to configure Kerberos SPNEGO:

	Property

	Description

	Example

	security.auth.krb.service-principal

	Names the service principal used to access Kylo

	HTTP/kylo.domain.com@EXAMPLE.COM

	security.auth.krb.keytab

	Specifies path to the keytab file containing the service principal

	/opt/kylo/kylo.keytab

auth-kylo

If the auth-kylo profile is activated with SPNEGO then the kylo-ui/conf/appplication.properties file must contain the credential properties specified
in the table below to allow access to the Kylo user store via the kylo-services’ REST API using BASIC auth. The authentication configuration
for kylo-services can be anything that accepts the credentials specified in these properties.

	Property

	Description

	security.auth.kylo.login.username

	Specifies a Kylo username with the rights to retrieve all of the Kylo groups of which the authenticating user is a member

	security.auth.kylo.login.password

	Specifies the password of the above username retrieving the authenticating user’s groups

auth-ad

If the auth-ad profile is activated with SPNEGO then the properties in the table below must be set in kylo-ui/conf/appplication.properties and kylo-services/conf/appplication.properties
(if the profile is used in kylo-services).

	Property

	Description

	security.auth.ad.user.enableGroups

	This should be set to true as group loading would be the only purpose of activating auth-ad with SPNEGO

	security.auth.ad.server.serviceUser

	Specifies a username in AD with the rights to retrieve all of the groups of which the authenticating user is a member

	security.auth.ad.server.servicePassword

	Specifies the password of the above AD username retrieving the authenticating user’s groups

Kerberos Configuration

In addition to having a principal for every user present in your
Kerberos KDC, you will also need to have a service principal of the form
HTTP/<Kylo host domain name>/@<YOUR REALM> registered. This
service principal should be exported into a keytab file and placed on
file system of the host running Kylo (typically /opt/kylo/kylo.keytab).
These values would then be used in the Kylo configuration properties as specified
above.

Verifying Access

Once Kylo is configured for Kerberos SPNEGO, you can use curl to verify
access. See the curl —negotiate option documentation (https://curl.haxx.se/docs/manual.html) to see the library
requirements to support SPNEGO. Use the -V option to verify whether
these requirements are met.

In these examples we will be accessing Kylo using URLs in the form:
http://localhost:8420/. Therefore, curl will
be requesting tickets from Kerberos for access to the service principle:
HTTP/localhost.localdomain@YOUR_REALM.

If you use a different URL, say
http://host.example.com:8400/, then the requested service principal will
look like: HTTP/host.example.com@YOUR_REALM. In either case these
service principals must be present in your KDC, exported into the keytab
file, and the service principal name added to Kylo’s configuration
property security.auth.krb.service-principal.

First, log into Kerberos with your username (“myname” here) using kinit. The
@YOUR_REALM part is optional if your KDC configuration has a default
realm:

$ kinit myname@YOUR_REALM

Attempt to access the feeds API of kylo-services directly:

$ curl -v --negotiate -u : http://localhost:8420/api/v1/metadata/feed/

Attempt to access the same feeds API through the kylo-ui proxy:

$ curl -v --negotiate -u : http://localhost:8400/proxy/v1/metadata/feed/

Attempt to access the feeds HTML page on the kylo-ui:

$ curl -v --negotiate -u : http://localhost:8400/feed-mgr/index.html

Using the -v option causes curl to output the headers and status info
exchanged with Kylo during the processing of the request before writing
out the response. If Kerberos SPNEGO authentication was
successful for each curl command, the output should include lines such
as these:

> GET /proxy/v1/metadata/feed/ HTTP/1.1

< HTTP/1.1 401 Unauthorized

< WWW-Authenticate: Negotiate

> GET /proxy/v1/metadata/feed/ HTTP/1.1
> Authorization: Negotiate YII...

< HTTP/1.1 200 OK

	This shows curl:

	
	Attempt to get the feed resource

	Receive an unauthorized response (401) and a challenge to negotiate authentication

	Retry the request, but this time supplying the Kerberos ticket in an authorization header

	Finally receiving a successful response (200)

Test Environment

The following links provide useful information on setting up your own
KDC in a test environment:

	Appendices of the Spring Kerberos Reference
Documentation [http://docs.spring.io/spring-security-kerberos/docs/1.0.1.RELEASE/reference/htmlsingle/#setup-kerberos-environments]

	MIT Kerberos Admin
Guide [http://web.mit.edu/kerberos/krb5-current/doc/admin/index.html]

Access Control

Overview

A goal is to support authentication and authorization seamlessly
between the Kylo applications and the Hadoop cluster.

Authorization

Authorization within Kylo uses access control lists (ACL) to control what users can do and see.
A permission in Kylo is the granting to a user or group the right to perform some action, such as see the description of a template,
create and edit a category, enable/disable a feed, etc.
These actions are organized into a hierarchies and permission to perform an action may be granted at any level in that hierarchy.

Authorization in Kylo is divided into two layers: service-level (Kylo-wide) permissions and (when enabled) entity-level permissions.
Access to these functions can often be controlled at both the service-level and entity-level.

Users and Groups can be updated using the Users and Groups pages under the Admin section in Kylo.

Note

If groups are enabled only by an external authentication source (such as LDAP) via a plugin module then user groups may not be visible in the Users page.

Default Users and Groups

When Kylo is newly installed, it will be pre-configured with a few default users
and groups defined; with varying permissions assigned to each group. The default groups are:

	Administrators

	Operations

	Designers

	Analysts

	Users

The default users and their assigned groups are:

	Data Lake Administrator - Administrators, Users

	Analyst - Analysts, Users

	Designer - Designers, Users

	Operator - Operations, Users

The initial installation will also
have the auth-kylo and auth-file included in the active profiles configured in
the conf/application.properties file of both the UI and Services. With these profiles
active the authentication process will use both the built-in Kylo user store and a username/password
file to authenticate requests. In this configuration, all activated login modules
will have to successfully authenticate a request before access will be granted.

Service-Level Authorization

Service-level access controla what functions are permitted kylo-wide. Access is controlled
by granting permissions to groups to perform a set of actions. A logged in user would
then be authorized to perform any actions permitted to the groups to which the user is a member.

At the service-level, the heirarchical actions available for granting
to groups are organized as follows:

	Access Kylo Metadata - Allows the ability to view and query directly the data in the Kylo metadata store, including extensible types

	Administer Kylo Metadata - Allows the ability to directly manage the data in the Kylo metadata store (edit raw metadata, create/update/delete extensible types, update feed status events)

	Access Feed Support - Allows access to feeds and feed-related functions

	Access Feeds - Allows access to feeds and their metadata

	Edit Feeds - Allows creating, updating, enabling and disabling feeds

	Import Feeds - Allows importing of previously exported feeds (.zip files)

	Export Feeds - Allows exporting feeds definitions (.zip files)

	Administer Feeds - Allows deleting feeds and editing feed metadata

	Access Tables - Allows listing and querying Hive tables

	Access Visual Query - Allows access to visual query data wrangler

	Access Categories - Allows access to categories and their metadata

	Edit Categories - Allows creating, updating and deleting categories

	Administer Categories - Allows updating category metadata

	Access Templates - Allows access to feed templates

	Edit Templates - Allows creating, updating, deleting and sequencing feed templates

	Import Templates - Allows importing of previously exported templates (.xml and .zip files)

	Export Templates - Allows exporting template definitions (.zip files)

	Administer Templates - Allows enabling and disabling feed templates

	Access Data Sources - Allows (a) access to data sources (b) viewing tables and schemas from a data source (c) using a data source in transformation feed

	Edit Data Sources - Allows creating and editing data sources

	Administer Data Sources - Allows getting data source details with sensitive info

	Access Service Level Agreements - Allows access to service level agreements

	Edit Service Level Agreements - Allows creating and editing service level agreements

	Access Global Search - Allows access to search all indexed columns

	Access Users and Groups Support - Allows access to user and group-related functions

	Access Users - Allows the ability to view existing users

	Administer Users - Allows the ability to create, edit and delete users

	Access Groups - Allows the ability to view existing groups

	Administer Groups - Allows the ability to create, edit and delete groups

	Access Operational Information - Allows access to operational information like active feeds, execution history, job and feed stats, health status, etc.

	Administer Operations - Allows administration of operations, such as creating/updating alerts, restart/stop/abandon/fail jobs, start/pause scheduler, etc.

	Access Encryption Services - Allows the ability to encrypt and decrypt values

The above actions are hierarchical, in that being permitted a lower level action (such as Edit Feeds) implies being granted the higher-level actions (Access Feeds & Access Feed Support).

Note

Although permissions to perform the above actions are currently granted to groups, a future Kylo version may switch to a role-based mechanism similar to the entity-level access control (see below.)

Entity-Level Authorization

Entity-level authorization is an additional, optional form of access control that applies to individual entities: templates, feeds, categories, etc. Entity-level access control is similar to service-level
in that it involves granting permissions to perform a hierarchical set of actions. These actions, though, would apply only to an individual entity.

Entity-level access control is turned off by default. To activate this feature you must set this property to true in kylo-services/conf/application.properties and then restart Kylo:

security.entity.access.controlled=true

Warning

Turning on entity-level access control is a one-way operation; you cannot reset the above property back to false to deactivate this feature

Roles

Entity-level access control differs from service-level access control in that permissions are not granted to individual groups, rather they are granted to one or more roles.
A role is a named, pre-configured set of granted permissions that may be applied to a group or individual user for a particular entity instance.
Roles are defined and associated with each kind of entity and may be granted permission to perform any of the actions defined for that entity type.
The actual members (users or groups) of a role are associated at the entity-level, though, and grant permissions to perform actions on that entity only.

For instance, there might be the roles Editor, Admin, and Read-Only defined that grant varying sets of permissions for feeds.
Adding a user, or any group that user belongs to, as a member of the Editors role of a specific feed will permit that user to make changes to it.
A particular user might be a member of the Editor role for one feed, an Admin member of another feed, but only a Read-Only member of a third feed.

Default Roles

Kylo comes with a set of default roles for each kind of entity as described below.

Note

As of Kylo verion 0.8.1, entity roles and their granted permissions are fixed. Future versions of Kylo will allow for creation and management of custom roles and assigned permissions.

	Template Roles

	Editor

	Allows a user to edit and export a template

	Admin

	All capabilities defined in the ‘Editor’ role along with the ability to change the permissions

	Read-Only

	Allows a user to view, but not modify, the template

	Category Roles

	Editor

	Allows a user to edit and delete feeds using this category

	Admin

	All capabilities defined in the ‘Editor’ role along with the ability to change the permissions

	Read-Only

	Allows a user to view the category

	Feed Creator

	Allows a user to create a new feed using this category

	Feed Roles

	Editor

	Allows a user to edit, enable/disable, delete, export, and access job operations of the feed

	Admin

	All capabilities defined in the ‘Editor’ role along with the ability to change the permissions

	Read-Only

	Allows a user to view the feed and access job operations

	Data Source Roles

	Editor

	Allows a user to edit and delete the datasource

	Admin

	All capabilities defined in the ‘Editor’ role along with the ability to change the permissions

	Read-Only

	Allows a user to view the datasource

Category-Wide Feed Role Memberships

Kylo supports adding users and groups to feed roles at the category level that apply to all feeds under that category.
This is useful when you wish to organize your feed access control around feeds grouped by category and apply all feed
access control changes in one place. Assigning feed role memberships at the category level does not prevent adding
additional memberships on each individual feed however. The members of the roles of a particular feed are the union
of all memberships assigned at the individual feed level and at the level of the category containing that feed.

In Kylo feed role memberships are managed by editing them in the category details page just below where the category
role memberships are managed.

Why Two Levels of Access Control?

Kylo support two levels acces control because not all installations require the fine-grained control of entity-level authorization.
Service-level authorization is generally easier to manage if your security requirements are not very selective or stringent. If
you only need the ability to restrict some Kylo actions to certain select groups of users then service-level might be sufficient.

If your installation deals with sensitive information, and you need to be very selective of what data certain users and groups can see and
manipulate, then you should use entity-level authorization to provide tight controls over that data.

Having two security schemes can pose management challenges as there is a bit of an overlap between the service-level and entity-level
permissions, and both levels of access control must be satisfied for a user’s action to be successful. If you choose to use entity-level
control then it may be helpful to loosen up the service-level access a bit more where the entity and service permissions are redundant. To help
determine what permissions are needed to perform common Kylo activities, the next section describes both kinds of access requirements
depending upon what actions are attempted in Kylo.

Roles and Permissions Required for Common Activities

To help understand and manage permissions required by users when using Kylo, the following tables show:

	Common actions in Kylo

	The default entity-level roles that permit those actions

	Additional service-level permissions reqired to perform those actions

Template Actions

	Action

	Roles Permitted

	Service-level Permissions

	View template and its summary

	Editor, Admin, Read-Only

	Access Templates

	Edit template and its details

	Editor, Admin

	Edit Templates

	Delete template

	Editor, Admin

	Edit Templates

	Export template

	Editor, Admin

	Export Templates

	Grant permissions on template to users/groups

	Admin

	Edit Templates

	Import template (new)

	N/A

	Import Templates

	Import template (existing)

	Editor, Admin

	Import Templates, Edit Templates

	Enable template

	N/A

	Admin Templates

	Disable template

	N/A

	Admin Templates

Category Actions

	Action

	Roles Permitted

	Service-level Permissions

	View category and its summary

	Editor, Admin, Feed Creator, Read-Only

	Access Categories

	Edit category summary

	Editor, Admin

	Edit Categories

	View category and its details

	Editor, Admin, Feed Creator

	Access Categories

	Edit category details

	Editor, Admin

	Edit Categories

	Edit set user fields

	Editor, Admin

	Admin Categories

	Delete category

	Editor, Admin

	Edit Categories

	Create feeds under category

	Feed Creator

	Edit Categories

	Grant permissions on category to users/groups

	Admin

	Edit Categories

Feed Actions

	Action

	Roles Permitted

	Service-level Permissions

	View feed and its details

	Editor, Admin, Read-Only

	Access Feeds

	Edit feed summary

	Editor, Admin

	Edit Feeds

	Edit feed details

	Editor, Admin

	Edit Feeds

	Edit feed user fields

	Editor, Admin

	Admin Feeds

	Delete feed

	Editor, Admin

	Admin Feeds

	Enable feed

	Editor, Admin

	Edit Feeds

	Disable feed

	Editor, Admin

	Edit Feeds

	Export feed

	Editor, Admin

	Export Feeds

	Import feed (new)

	N/A

	Import Feeds

	Import feed (existing)

	Editor, Admin

	Import Feeds

	View operational history of feed

	Editor, Admin, Read-Only

	Access Feeds

	Grant permissions on feed to users/groups

	Admin

	Edit Feeds

Data Source Actions

	Action

	Roles Permitted

	Service-level Permissions

	View data source summary and use in data transformations

	Editor, Admin, Read-Only

	Access Data Sources

	Edit data source summary

	Editor, Admin

	Edit Data Sources

	View data source and its details

	Editor, Admin

	Access Data Sources

	View data source details, including sensitive information

	Editor, Admin

	Admin Data Sources

	Edit data source details

	Editor, Admin

	Edit Data Sources

	Delete data source

	Editor, Admin

	Edit Data Sources

	Grant permissions on data source to users/groups

	Admin

	Edit Data Sources

Spark User Impersonation Configuration

Overview

Users in Kylo have access to all Hive tables accessible to the kylo user by default. By configuring Kylo for a secure Hadoop cluster and enabling user impersonation, users will only have
access to the Hive tables accessible to their specific account. A local spark shell process is still used for schema detection when uploading a sample file.

Requirements

This guide assumes that Kylo has already been setup with Kerberos authentication and that each user will have an account in the Hadoop cluster.

Kylo Configuration

Kylo will need to launch a separate spark shell process for each user that is actively performing data transformations. This means that the kylo-spark-shell service should no longer be managed by
the system.

	Stop and disable the system process.

$ service kylo-spark-shell stop
$ chkconfig kylo-spark-shell off

	Add the auth-spark profile in application.properties. This will enable Kylo to create temporary credentials for the spark shell processes to communicate with the kylo-services process.

$ vim /opt/kylo/kylo-services/conf/application.properties

spring.profiles.include = auth-spark, ...

	Enable user impersonation in spark.properties. It is recommended that the yarn-cluster master be used to ensure that both the Spark driver and executors run under the user’s account. Using the local or yarn-client masters are possible but not recommended due the Spark driver running as the kylo user.

$ vim /opt/kylo/kylo-services/conf/spark.properties:

Ensure these two properties are commented out
#spark.shell.server.host
#spark.shell.server.port

Executes both driver and executors as the user
spark.shell.deployMode = cluster
spark.shell.master = yarn
Enables user impersonation
spark.shell.proxyUser = true
Reduces memory requirements and allows Kerberos user impersonation
spark.shell.sparkArgs = --driver-memory 512m --executor-memory 512m --driver-java-options -Djavax.security.auth.useSubjectCredsOnly=false

kerberos.spark.kerberosEnabled = true
kerberos.spark.kerberosPrincipal = kylo
kerberos.spark.keytabLocation = /etc/security/keytabs/kylo.headless.keytab

	Redirect logs to kylo-spark-shell.log. By default the logs will be written to kylo-services.log and include the output of every spark shell process. The below configuration instead redirects this output to the kylo-spark-shell.log file.

$ vim /opt/kylo/kylo-services/conf/log4j.properties

log4j.additivity.org.apache.spark.launcher.app.SparkShellApp=false
log4j.logger.org.apache.spark.launcher.app.SparkShellApp=INFO, sparkShellLog

log4j.appender.sparkShellLog=org.apache.log4j.DailyRollingFileAppender
log4j.appender.sparkShellLog.File=/var/log/kylo-services/kylo-spark-shell.log
log4j.appender.sparkShellLog.append=true
log4j.appender.sparkShellLog.layout=org.apache.log4j.PatternLayout
log4j.appender.sparkShellLog.Threshold=INFO
log4j.appender.sparkShellLog.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %t:%c{1}:%L - %m%n

	Configure Hadoop to allow Kylo to proxy users.

$ vim /etc/hadoop/conf/core-site.xml

<property>
 <name>hadoop.proxyuser.kylo.groups</name>
 <value>*</value>
</property>
<property>
 <name>hadoop.proxyuser.kylo.hosts</name>
 <value>*</value>
</property>

Setup A NiFi Cluster in a Kylo Sandbox

Purpose

This document is intended for advanced NiFi users who wish to run a NiFi cluster in their Kylo sandbox. The NiFi cluster is intended for testing of failover scenarios only.

Prerequisite

You will need to have set up a Kylo sandbox according to the Setup Wizard Deployment Guide.

Install a Second NiFi Node

Each new node in a NiFi cluster should be a fresh install to ensure that the new node starts with an empty repository. You will then configure the new node and enable NiFi clustering.

	Rename the existing NiFi directory to make room for the new install:

service nifi stop
mv /opt/nifi /opt/nifi-temp

	Reinstall NiFi using the Kylo install wizard:

/opt/kylo/setup/nifi/install-nifi.sh
/opt/kylo/setup/java/change-nifi-java-home.sh /opt/java/current
/opt/kylo/setup/nifi/install-kylo-components.sh

	Rename the new NiFi directory and restore the old NiFi directory:

service nifi stop
mv /opt/nifi /opt/nifi-2
mv /opt/nifi-temp /opt/nifi

	Create a new init.d script for nifi-2 by changing the NiFi path:

sed 's#/opt/nifi#/opt/nifi-2#' /etc/init.d/nifi > /etc/init.d/nifi-2
chmod 744 /etc/init.d/nifi-2

	Create a log directory for nifi-2:

mkdir /var/log/nifi-2
chown nifi:nifi /var/log/nifi-2
sed -i 's#NIFI_LOG_DIR=".*"#NIFI_LOG_DIR="/var/log/nifi-2"#' /opt/nifi-2/current/bin/nifi-env.sh

	Edit /opt/nifi-2/current/conf/nifi.properties and replace all references to /opt/nifi with /opt/nifi-2:

sed -i 's#/opt/nifi#/opt/nifi-2#' /opt/nifi-2/current/conf/nifi.properties

Enable NiFi Clustering

Each node in the NiFi cluster will need to be configured to connect to the cluster.

	Edit the /opt/nifi/current/conf/nifi.properties file:

nifi.cluster.is.node=true
nifi.cluster.node.address=localhost
nifi.cluster.node.protocol.port=8078
nifi.zookeeper.connect.string=localhost:2181

	Edit the /opt/nifi-2/current/conf/nifi.properties file:

nifi.web.http.port=8077
nifi.cluster.is.node=true
nifi.cluster.node.address=localhost
nifi.cluster.node.protocol.port=8076
nifi.zookeeper.connect.string=localhost:2181

Start Each Node

Now that your cluster is created and configured, start the services:

service nifi start
service nifi-2 start

Don’t forget to open up the nifi.web.http.port property’s port number in your VM.

You should be able to open the NiFi UI under either http://localhost:8079 or http://localhost:8077 and see in the upper left a cluster icon and 2/2.

Clustering Kylo

Kylo Clustering is now available starting with version v0.8.1.

Kylo uses jgroups, http://jgroups.org/index.html, for cluster configuration. This is chosen because Kylo’s metadata engine, Modeshape (http://modeshape.jboss.org/) uses jgroups internally for its cluster management.

Two jgroups configuration files are needed to be setup (One for ModeShape and one for Kylo)

ModeShape Configuration

	Update the metadata-repository.json file and add the “clustering” section

 "clustering": {
 "clusterName":"kylo-modeshape-cluster",
 "configuration":"modeshape-jgroups-config.xml",
 "locking":"db"
},

Make sure the name of the jgroups-config.xml file is in the /kylo-services/conf folder. Refer sample files for setting up a jgroups configuration at /opt/kylo/setup/config/kylo-cluster.
Note if working in Amazon you need to refer to the “s3” jgroups configuration as it needs to use an S3Ping to have the nodes communicate with each other.

Kylo Configuration

We also have another jgroups configuration setup for Kylo nodes. We cannot use the ModeShape cluster configuration since that is internal to ModeShape.

1. Create a similar jgroup-config.xml file and add it to the /kylo-services/conf file. Refer sample files for setting up a jgroups configuration at /opt/kylo/setup/config/kylo-cluster.
Ensure the ports are different between this xml file and the ModeShape xml file

	Add a property to the kylo-services/conf/application.properties to reference this file

kylo.cluster.jgroupsConfigFile=kylo-cluster-jgroups-config.xml

	Startup Kylo

When starting up you should see 2 cluster configurations in the logs. One for the modeshape cluster and one for the kylo cluster

GMS: address=Kylo - MUSSR186054-918-31345, cluster=kylo-modeshape-cluster, physical address=127.0.0.1:7800

GMS: address=Kylo - MUSSR186054-918-31345, cluster=internal-kylo-cluster, physical address=127.0.0.1:7900

2017-05-04 06:17:06 INFO pool-5-thread-1:JGroupsClusterService:120 - Cluster membership changed: There are now 1 members in the cluster. [Kylo - MUSSR186054-918-31345]
2017-05-04 06:17:06 INFO pool-5-thread-1:JGroupsClusterService:155 - *** Channel connected Kylo - MUSSR186054-918-31345,[Kylo - MUSSR186054-918-31345]
2017-05-04 06:17:06 INFO pool-5-thread-1:NifiFlowCacheClusterManager:205 - on connected 1 members exist. [Kylo - MUSSR186054-918-31345]

Quartz Scheduler Configuration

When running in clustered mode you need to configure the Quartz SLA scheduler to be backed by the database and run it in clustered mode.
Do the following:

	Download and extract the Quartz distribution to a machine. http://d2zwv9pap9ylyd.cloudfront.net/quartz-2.2.3-distribution.tar.gz You just need this to get the database scripts.

	Run the Quartz database scripts for your database found in the docs/dbTables

	Create a quartz.properties file and put it in the /opt/kylo/kylo-services/conf folder. Refer to a sample file /opt/kylo/setup/kylo-cluster/quartz-cluster-example.properties

	Do not specify datasource connection information in this file. The system will use the default spring.datasource property information found in the application.properties for the database connection

Service Monitoring

You can monitor the health of the kylo cluster by adding the kylo-service-monitor-kylo-cluster.jar to the /opt/kylo/kylo-services/plugins folder.

	Copy the file in the /opt/kylo/setup/plugins/kylo-service-monitor-kylo-cluster-VERSION.jar to the /opt/kylo/kylo-services/plugins` folder

	Add a new property to the application.properties to indicate the expected number of nodes you are running in your cluster. Below is an example expecting 2 nodes in the cluster

kylo.cluster.nodeCount=2

	Now a new Kylo Cluster service will appear in the Kylo dashboard and show you cluster health status

[image: image0]

[image: image1]

Testing - (as of Kylo 0.8.4)

Starting with Kylo 0.8.4 you can test your cluster configuration in the Kylo application.

	Start your Kylo Cluster (both services and ui on all your nodes)

	In a new web browser (i.e. Chrome), connect to a specific node in your cluster. Go to this webpage http://localhost:8400/index.html#!/admin/cluster (replace localhost and port with the direct host and port)

	This page will show you Cluster information and allow you to send/receive test messages

	In a new web browser (i.e. Firefox), connect to another node in your cluster. Follow the steps above and connect to a different node/port.

	Send a message from one of the nodes. You should see the message appear in the other web browser. See screenshots below.

	The screenshots below are from a 2 node Kylo cluster.

	
	Node 1: kylo-sandbox-43958

	Node 2: kylo-sandbox-59542

Screenshot from Node 1: kylo-sandbox-43958

[image: image2]

Screenshot from Node 2: kylo-sandbox-59542

[image: image3]

	If this page correctly shows your cluster members, but fails to send the message or receive it follow the Troubleshooting tips below. Most likely cause of this is the system parameter -Dava.net.preferIPv4Stack=true needs to be configured.

	If the cluster is not configured correctly this page will indicate and provide you with information on troubleshooting.

Troubleshooting

	If you are having issues identifying if the clustering is working you can modify the log4j.properties and have it show cluster events. This is especially useful for modeshape.
Note: by doing this logs will be very verbose, so its recommended this is only done for initial setup/debugging

log4j.logger.org.modeshape.jcr.clustering.ClusteringService=DEBUG
log4j.logger.org.jgroups=DEBUG

	If you get a Network is unreachable error, below, you may need to do the following:

	Network unreachable error

SEVERE: JGRP000200: failed sending discovery request
java.io.IOException: Network is unreachable
 at java.net.PlainDatagramSocketImpl.send(Native Method)
 at java.net.DatagramSocket.send(DatagramSocket.java:693)
 at org.jgroups.protocols.MPING.sendMcastDiscoveryRequest(MPING.java:295)
 at org.jgroups.protocols.PING.sendDiscoveryRequest(PING.java:62)
 at org.jgroups.protocols.PING.findMembers(PING.java:32)
 at org.jgroups.protocols.Discovery.findMembers(Discovery.java:244)

	Modify the /opt/kylo/kylo-services/bin/run-kylo-services.sh

	Add -Djava.net.preferIPv4Stack=true

java $KYLO_SERVICES_OPTS -Djava.net.preferIPv4Stack=true -cp /opt/kylo/kylo-services/conf

	Multicast

	Enabling multicast is done via the <MPING .. /> xml node in the jgroups-configuration xml file. Multicast may not work in your environment. If you have issues you can remove the <MPING ../> node and ensure your host names are configured propertly in the <TCPPING ../> node. Refer to the jgroups documentation around MPING for more information: http://jgroups.org/manual-3.x/html/protlist.html#d0e4760

	Running the Multicast test program

	Run the following to test 2 node communication. The below was taken from http://www.jgroups.org/manual/html/ch02.html#ItDoesntWork

	Stop kylo-services on both nodes

	On 1 node run the code below to act as a receiver. Replace the bind_addr and port arguments with your specific values

java -Djava.net.preferIP4Stack=true -cp /opt/kylo/kylo-services/conf:/opt/kylo/kylo-services/lib/*:/opt/kylo/kylo-services/plugin/* org.jgroups.tests.McastReceiverTest -bind_addr 127.0.0.1 -port 7900

	On another node run the code below to act as a sender. Replace the bind_addr and port arguments to match the values above

java -Djava.net.preferIP4Stack=true -cp /opt/kylo/kylo-services/conf:/opt/kylo/kylo-services/lib/*:/opt/kylo/kylo-services/plugin/* org.jgroups.tests.McastSenderTest -bind_addr 127.0.0.1 -port 7900

As a Sender you will get a prompt. Type in some string and then verify its received on the other node.

Sender:

org.jgroups.tests.McastSenderTest -bind_addr 127.0.0.1 -port 7900
Socket #1=0.0.0.0/0.0.0.0:7900, ttl=32, bind interface=/127.0.0.1
> this is a test message

Receiver:

this is a test message [sender=127.0.0.1:7900]

NiFi & Kylo Provenance

Introduction

Kylo uses a custom ProvenanceRepository (KyloPersistentProvenanceEventRepository) to send data from NiFi to Kylo.
A custom NiFi nar file https://github.com/Teradata/kylo/tree/master/integrations/nifi/nifi-nar-bundles/nifi-provenance-repo-bundle is used for the ProvenanceRepository.

Setup

	Edit the nifi.properties file (/opt/nifi/current/conf/nifi.properties) and change the nifi.provenance.repository.implementation property as below:

Provenance Repository Properties
#nifi.provenance.repository.implementation=org.apache.nifi.provenance.PersistentProvenanceRepository
nifi.provenance.repository.implementation=com.thinkbiganalytics.nifi.provenance.repo.KyloPersistentProvenanceEventRepository

	Ensure the correct nars are available in the NiFi classpath. Depending upon the NiFi version there are 2 different nar files that are used. If you use the kylo wizard it will copy the nar files and setup the symlinks to point to the correct nar version for your NiFi installation.

	For NiFi 1.0 or 1.1

	kylo-nifi-provenance-repo-v1-nar-<version>.nar

	For NiFi 1.2 or 1.3

	kylo-nifi-provenance-repo-v1.2-nar-<version>.nar

	
	Configure the KyloPersistentProvenanceEventRepository properties: The Provenance Repository uses properties found in the /opt/nifi/ext-config/config.properties file.

	Note: this location is configurable via the System Property kylo.nifi.configPath passed into NiFi when it launches. Below are the defaults which are automatically set if the file/properties are not found.

Note: the config.properties marked with ## Supports dynamic update below can be updated without restarting NiFi. Every 30 seconds a check is made to see if the config.properties file has been updated.

 ###
jms.activemq.broker.url=tcp://localhost:61616

Back up location to write the Feed stats data if NiFi goes down
Supports dynamic update
kylo.provenance.cache.location=/opt/nifi/feed-event-statistics.gz

The maximum number of starting flow files per feed during the given run interval to send to ops manager
Supports dynamic update
kylo.provenance.max.starting.events=5

The number of starting flow files allowed to be sent through until the throttle mechanism in engaged.
if the feed starting processor gets more than this number of events during a rolling window based upon the kylo.provenance.event.throttle.threshold.time.millis timefame events will be throttled back to 1 per second until its slowed down
kylo.provenance.event.count.throttle.threshold=15

Throttle timefame used to check the rolling window to determine if rapid fire is occurring
kylo.provenance.event.throttle.threshold.time.millis=1000

run interval to gather stats and send to ops manager
Supports dynamic update
kylo.provenance.run.interval.millis=3000

JSON string of the Event Type to Array of Processor classes
These processors produce orphan child flow files that dont send DROP provenance events for the children.
Child flow files produced by events matching the EventType and processor class will not be processed
Supports dynamic update
kylo.provenance.orphan.child.flowfile.processors={"CLONE":["ConvertCSVToAvro"]}

Event Processing

When NiFi runs the processors will send provenance events to JMS Queues. Kylo listens on these JMS queues and creates Jobs/Steps and Streaming statistics about each feed and job execution. These are displayed in the Operations Manager.

NiFi Processor Guide

ImportSqoop Processor

About

The ImportSqoop processor allows loading data from a relational system
into HDFS. This document discusses the setup required to use this
processor.

Starter template

A starter template for using the processor is provided at:

samples/templates/nifi-1.0/template-starter-sqoop-import.xml

Configuration

For use with Kylo UI, configure values for the two properties (nifi.service.<controller service name in NiFi>.password, config.sqoop.hdfs.ingest.root) in the below section in the properties file: /opt/kylo/kylo-services/conf/application.properties

Sqoop import
DB Connection password (format: nifi.service.<controller service name in NiFi>.password=<password>
#nifi.service.sqoop-mysql-connection.password=hadoop
Base HDFS landing directory
#config.sqoop.hdfs.ingest.root=/sqoopimport

Note

The DB Connection password section will have the name of the key derived from the controller service name in NiFi. In the above snippet, the controller service name is called sqoop-mysql-connection.

Drivers

Sqoop requires the JDBC drivers for the specific database server in order to transfer data. The processor has been tested on MySQL, Oracle, Teradata and SQL Server databases, using Sqoop v1.4.6.

The drivers need to be downloaded, and the .jar files must be copied over to Sqoop’s /lib directory.

As an example, consider that the MySQL driver is downloaded and available in a file named: mysql-connector-java.jar.

This would have to be copied over into Sqoop’s /lib directory, which may be in a location similar to: /usr/hdp/current/sqoop-client/lib.

The driver class can then be referred to in the property Source Driver in StandardSqoopConnectionService controller service
configuration. For example: com.mysql.jdbc.Driver.

Tip

Avoid providing the driver class name in the controller service configuration. Sqoop will try to infer the best connector and driver for the transfer on the basis of the Source Connection String property configured for StandardSqoopConnectionService controller service.

Passwords

The processor’s connection controller service allows three modes of providing the password:

	Entered as clear text

	Entered as encrypted text

	Encrypted text in a file on HDFS

For modes (2) and (3), which allow encrypted passwords to be used, details are provided below:

Encrypt the password by providing the:

	Password to encrypt

	Passphrase

	Location to write encrypted file to

The following command can be used to generate the
encrypted password:

/opt/kylo/bin/encryptSqoopPassword.sh

The above utility will output a base64 encoded encrypted password, which can be entered directly in the controller service configuration
via the SourcePassword and Source Password Passphrase properties (mode 2).

The above utility will also output a file on disk that contains the encrypted password. This can be used with mode 3 as described below:

Say, the file containing encrypted password is named: /user/home/sec-pwd.enc.

Put this file in HDFS and secure it by restricting permissions to be only read by nifi user.

Provide the file location and passphrase via the Source Password File and Source Password Passphrase properties in
the StandardSqoopConnectionService controller service configuration.

During the processor execution, password will be decrypted for modes 2 and 3, and used for connecting to the source system.

TriggerFeed

Trigger Feed Overview

In Kylo, the TriggerFeed Processor allows feeds to be configured
in such a way that a feed depending upon other feeds is automatically
triggered when the dependent feed(s) complete successfully.

Obtaining the Dependent Feed Execution Context

[image: image16]

To get dependent feed execution context data, specify the keys that you
are looking for. This is done through the “Matching Execution Context
Keys” property. The dependent feed execution context will only be
populated the specified matching keys.

For example:

Feed_A runs and has the following attributes in the flow-file as it
runs:

-property.name = "first name"
-property.age=23
-feedts=1478283486860
-another.property= "test"

Feed_B depends on Feed A and has a Trigger Feed that has “Matching
Execution Context Keys” set to “property”.

It will then get the ExecutionContext for Feed A populated with 2
properties:

"Feed_A":{property.name:"first name", property.age:23}

Trigger Feed JSON Payload

The FlowFile content of the Trigger feed includes a JSON string of the
following structure:

{
 "feedName":"string",
 "feedId":"string",
 "dependentFeedNames":[
 "string"
],
 "feedJobExecutionContexts":{

 },
 "latestFeedJobExecutionContext":{

 }
 }

JSON structure with a field description:

{
 "feedName":"<THE NAME OF THIS FEED>",
 "feedId":"<THE UUID OF THIS FEED>",
 "dependentFeedNames":[<array of the dependent feed names],
 "feedJobExecutionContexts":{<dependent_feed_name>:[
{
"jobExecutionId":<Long ops mgr job id>,
 "startTime":<millis>,
 "endTime":<millis>,
 "executionContext":{
<key,value> matching any of the keys defined as being "exported" in
this trigger feed
 }
 }
]
 },
 "latestFeedJobExecutionContext":{
 <dependent_feed_name>:{
 "jobExecutionId":<Long ops mgr job id>,
 "startTime":<millis>,
 "endTime":<millis>,
 "executionContext":{
<key,value> matching any of the keys defined as being "exported" in
this trigger feed
 }
}
}
}

Example JSON for a Feed:

 {
 "feedName":"companies.check_test",
 "feedId":"b4ed909e-8e46-4bb2-965c-7788beabf20d",
 "dependentFeedNames":[
 "companies.company_data"
],
 "feedJobExecutionContexts":{
 "companies.company_data":[
 {
 "jobExecutionId":21342,
 "startTime":1478275338000,
 "endTime":1478275500000,
 "executionContext":{
 }
 }
]
 },
 "latestFeedJobExecutionContext":{
 "companies.company_data":{
 "jobExecutionId":21342,
 "startTime":1478275338000,
 "endTime":1478275500000,
 "executionContext":{
 }
 }
 }
}

Example Flow

The screenshot shown here is an example of a flow in which the inspection of the payload triggers dependent feed data.

[image: image17]

The EvaluateJSONPath processor is used to extract JSON content from the flow file.

Refer to the Data Confidence Invalid Records flow for an example:
https://github.com/KyloIO/kylo/blob/master/samples/templates/nifi-1.0/data_confidence_invalid_records.zip

Kylo Templates Guide

Templates facilitate the creation of data flows. They can be:

	normal (1 template for the whole flow)

	reusable (1 reusable template and 1 flow template)

Important

More on reusable flows here

Setup templates

Import Kylo template

	Import template from file

	Select file

	Select overwrite + replace the reusable template option

	Register the template

Note

The following sections apply only if you didn’t import yet a template in Kylo, or are lacking a Kylo template archive.

Import reusable template

	Import template from file.

Warning

You can’t import the reusable template from NiFi environment, as it has input/output ports which need to be connected.

	Select file and select overwrite + replace the reusable template option

	Register the template

Import flow template

	Import template from NiFi environment (as we want to customize it)

	Enable/Customize the available fields (steps 2 - 4)

	Under Connection Options (step 5) - connect the output ports from the flow template to the input ports from reusable template

	Customize the Feed Lineage Datasources

	Register the template

Update template

	Remember the template name <template_name> from NiFi

	Create a new flow from the template <template_name>

	Modify your flow for <template_name>

	Delete <template_name> in NiFi template registry

	Save flow with name <template_name>

	In Kylo (if exists), from the Template menu, go through the edit wizard (click on the template name), so that it’s reinitialized properly

Indicating Flow Failures

When Data is sent to Kylo Operations Manager it indicates if the flow file has been successful or has failed. Failures are indicated two ways

	When the flow file passes through an ‘Auto terminate on failure’ relationship.
In a processor in NiFi if you check the box ‘Auto terminate on failure’ and the flow file passes through this relationships and fails it will send the failure message to Kylo Operations Manager and fail the job/step.

[image: auto_terminate_failure_image]

	If the NiFi connection has the word ‘failure’ in it and the flow files pass through that connection. The ‘failure’ connection name will be automatically applied by NiFi if you have a ‘failure’ relationship between your two processors. You can right click on a connection and edit it and change the name to include the word ‘failure’ if you want to always ensure that flow files which travel along that path fail the job in Kylo.

[image: failure_connection_image]

Additionally if you manually ‘Empty the Queue’ in NiFi it will fail those corresponding jobs in Kylo.

Available templates

Kylo provides some ready to be used templates in the Kylo repository [https://github.com/Teradata/kylo/tree/master/samples/templates]

Data Ingest

Data Ingest template is used to import data from with various formats (CSV, JSON, AVRO, Parquet, ORC) into Hive tables.

S3

S3 Standard Ingest Template

JSON

There is a limitation with the JSON file format:

	Ensure ‘skip header’ is turned OFF. This will allow all of the JSON data in file to be processed. Otherwise the first record will be skipped.

	Ensure that this jar file is provided to the Validator step via the ‘Extra JARs’ parameter (HDP location shown for reference): /usr/hdp/current/hive-webhcat/share/hcatalog/hive-hcatalog-core.jar. Otherwise, an exception will be thrown: “java.lang.ClassNotFoundException Class org.apache.hive.hcatalog.data.JsonSerDe not found”

	The JSON data in the file should be on one row per line.

Example:
.. code-block:

{"id":"978-0641723445","cat":["book","hardcover"],"name":"The Lightning Thief","author":"Rick Riordan","series_t":"Percy Jackson and the Olympians","sequence_i":1,"genre_s":"fantasy","inStock":true,"price":12.50,"pages_i":384} {"id":"978-1423103349","cat":["book","paperback"],"name":"The Sea of Monsters","author":"Rick Riordan","series_t":"Percy Jackson and the Olympians","sequence_i":2,"genre_s":"fantasy","inStock":true,"price":6.49,"pages_i":304}

Data Transformation

Data Transformation is used to transform/wrangle data with various operations from Spark ML.

Several tables can be taken from a data source and be joined, denormalized or transformed together, to result a new data table.

Accesing S3 and other distributed filesystems

Accessing S3 from the Data Wrangler

Kylo Datasources Guide

Introduction

Kylo can manage the creation and usage of Nifi RDBMS data source configurations, through a simple Data Source UI [http://localhost:8400/index.html#!/datasources].

JDBC

Note

Permissions for the jars are separate per the type of process running.

Locations

	$NIFI_HOME/data/lib or
any path accesible by NiFi

	Needed by Nifi for the DBCPConnectionPool.
The path might be erased at Nifi upgrade time.

	$KYLO_HOME/kylo-services/plugin

	Needed by Kylo in the schema discovery (Data Ingestion). Need to restart Kylo if added post-start

	$KYLO_HOME/kylo-services/lib

	Needed by Kylo wrangler (Visual Query / Data Transformation)

Spark configuration

While using the Visual Query / Data Transformation, you will need to make available the datasource jar.
Recommended is to keep the datasource jar with the application (Kylo/Nifi), and pass it along to spark.

Depending on the Spark setup (server mode or the others), you will need to do different changes.

Server mode / Sandbox

	edit $KYLO_HOME/kylo-services/bin/run-kylo-spark-shell.sh

	update KYLO_DRIVER_CLASS_PATH with the path to the datasource jar (can be under $NIFI_HOME)

OR (not so recommended)

	update/append $SPARK_HOME/conf/spark-defaults.conf with the path value. Values can be appended with “:” .This file should be referenced by spark-submit, or it’s referenced by /opt/kylo/kylo-services/bin/run-kylo-spark-shell.sh, which passes the values like spark-submit … –driver-class-path /path-to-oracle-jdbc/:/path-to-other-jars/

Non-server mode

	edit $KYLO_HOME/kylo-services/spark.properties

	add to spark.shell.sparkArgs the –jar /path-to-datasource-jdbc/

You can find more information here <http://kylo.readthedocs.io/en/latest/installation/KyloSparkProperties.html>

Configuration examples

Oracle

Database Connection URL = jdbc:oracle:thin:@oracle:1521
Database Driver Class Name = oracle.jdbc.OracleDriver
User = <user>
Password = <password>
Database Driver Location = /opt/nifi/oracle/oracle-jdbc.jar (needs to be accesible by Nifi)

Note

Oracle tables are only in UPPERCASE

MariaDB / MySQL

Database Connection URL = jdbc:mariadb://mariadb:3306
Database Driver Class Name = org.mariadb.jdbc.Driver
User = <user>
Password = <password>
Database Driver Location = /opt/nifi/mysql/maria-jdbc.jar (needs to be accesible by Nifi)

(OPT) Specify the password in the Kylo application properties file
Update /opt/kylo/kylo-services/conf/application.properties with
nifi.service.<datasource_name>.password=<password>

Perfomance considerations while importing data

Consider to use the Sqoop import processor for performance gains

Feed Lineage Configuration

Introduction

Feeds track and display dependencies to other feeds and also their connections through their datasources.

The Lineage view on the Feed Details page is an interactive canvas that allows the user to analyze and inspect the feeds relationships.

The Designer must indicate NiFi processors that represent a source or sink to be tracked. The following guide describes how lineage is tracked and the role of designers.

[image: image0]

Feed Connections

Connected by Preconditions

When a feed depends upon another feed(s) via a precondition (a
TriggerFeed), then it will be assigned as “depends on” relationship in
the Feed Lineage graph.

Connected through Datasources

Feeds are also connected through their datasources. If FeedA writes to
a table and FeedB uses that same table as its source than it will be
connected.

Getting Started

In order to get your feed to see its lineage you will need to do 2
things.

	Assign the datasources to the template. See the
section Registering Datasources with a Template below.

	Save the Feed. Once the template has been registered you will need
to save the feed. Go to the feed details. Click the Pencil icon on
any section. Click Save.

How it works

Datasource Definitions

NiFi processors and their properties are defined as datasources in the
system. These definitions are stored in the Kylo metadata repository
and they can be registered 2 ways.

Registration on Startup

Kylo read the file datasource-definitions.json
found in the classpath on startup and will update the datasource
definitions. This will be in the /opt/kylo/kylo-services/conf
directory. Kylo ships with many of the NiFi processors defined, but you may find you want to alter or add new ones.

Registration via REST

If you need to update or add new datasource definitions there is a
REST endpoint that allows you to post the new definition data.

[image: image2]

To list the metadata store of defined datasources you can use this REST
call

http://localhost:8400/proxy/v1/metadata/datasource/datasource-definitions

Datasource Definition Structure

A datasource definition is defined with the following attributes in
JSON:

{
"processorType": "The Path to the NiFi processor Class Name",
"datasourcePropertyKeys":["Array of NiFi Property Names that identify Uniqueness"],
"datasourceType":"A Common String identifying the Type. See the section Datasource Types below",
"connectionType":"Either SOURCE or DESTINATION",
"identityString":"<optional> <supports expressions> A string identifying uniqueness.
You reference any 'datasourcePropertyKey' above via expressions ${key}
(see the example GetFile below), If not defined it will use all the 'datasourcePropertyKeys' for its identityString",
"description":"<optional> <supports expressions> A string describing this source",
"title":"<optional> <supports expressions> A Title that will be displayed on the Feed Lineage page.
If not supplied it will use the 'identityString' property"
}

Example for the GetFile processor in NiFi:

{
"processorType": "org.apache.nifi.processors.standard.GetFile",
"datasourcePropertyKeys":["Input Directory","File Filter"],
"datasourceType":"DirectoryDatasource",
"connectionType":"SOURCE",
"identityString":"${Input Directory}/${File Filter}",
"description":" Directory or File source"
}

Datasource Types

A datasource is made unique by using its ‘identityString’ and its ‘datasourceType’. The predefined types shipping with Kylo are:

	“HiveDatasource”

	“JMSDatasource”

	“KafkaDatasource”

	“DirectoryDatasource”

	“HDFSDatasource”

	“S3Datasource”

	“FTPDatasource”

	“HBaseDatasource”

	“HTTPDatasource”

	“DatabaseDatasource”

Refer to the datasource-definitions.json file for more details.

Registering Datasources with a Template

Templates need to be configured to identify the datasources that it
should track. When registering a template that last step will show the
available datasources it found in your flow. Kylo reads the template
and then matches each processor with the datasource definition (see
above). You will then need to select the datasources you wish to track.

This step is necessary because you may have a variety of processors in
the flow that match a processor type in the datasource definition (i.e.
PutFile for failed flows), but those don’t define the true destination of
the flow.

[image: image1]

Styling the Feed Lineage User Interface

Feed Lineage uses a JavaScript
framework *http://visjs.org/* to build the
interactive canvas.

If needed you can adjust the styles of the feeds and each type of
datasource. Kylo reads styles on startup from the /opt/kylo/kylo-services/conf/datasource-styles.json
This file can be found in /opt/kylo/kylo-services/conf. Styles
are not stored in the metadata. They are read from this file on
startup. You can alter styles using the REST endpoint below, but to
persist it for the next time you will want to update this JSON file.

@TODO: image of REST ENDPOINTS

Accessing S3 from the Data Wrangler

Problem

You would like to access S3 or another Hadoop-compatible filesystem from
the data wrangler.

Solution

The Spark configuration needs to be updated with the path to the JARs
for the filesystem.

To access S3 on HDP, the following must be added to the spark-env.sh
file:

export SPARK_DIST_CLASSPATH=$(hadoop classpath)

Additional information is available from the Apache Spark project:

https://spark.apache.org/docs/latest/hadoop-provided.html

S3 Standard Ingest Template

Table of Contents

	S3 Standard Ingest Template

	Problem

	Introduction

	1. S3 Data Ingest Template Overview

	1.1 Template processors pull defaults from application.properties

	1.2 Non-reusable portion of template

	1.2.1 List S3

	1.2.2 Initialize Feed Parameters

	1.2.3 DropInvalidFlowFile

	1.2.4 Initialize Cleanup Parameters

	1.3 Reusable portion of Template

	1.3.1 Register Tables

	1.3.2 Route if Data to Create ES Table

	1.3.3 CreateElasticsearchBackedHiveTable

	1.3.4 Set Feed Defaults

	1.3.5 Create Feed Partition

	1.3.6 ExecuteHQLStatement

	1.3.5 Merge Table

	1.3.4.1 Sync Merge Strategy

	1.3.6 DeleteS3Object

	2. Sandbox Walk-Through

	2.1 Prerequisites

	2.2 Launch an EC2 instance using the Sandbox AMI

	2.3 Configuring core-site.xml and hive-site.xml

	2.4 Get Nifi Ready

	2.5 Get Kylo Ready

	2.6 Import the Template

	2.7 Create the Data Ingest Feed

	2.8 Test the Feed

	3. Further Reference

Problem

You would like to ingest data from a S3 data source into Hive tables backed by S3 external folders without the data files traveling through the NiFi edge nodes.

Introduction

The Data Ingest S3 template is a variation of the standard Data Ingest template within Kylo. The standard template utilizes HDFS backed hive tables, accepts inputs from local files, and is designed to run on a Cloudera or Hortonworks sandbox. By contrast, the Data Ingest S3 template utilizes S3 backed hive tables, accepts inputs from an S3 bucket and is designed for use on an AWS stack utilizing EC2 and EMR. Additionally the template has improved performance in that data on s3 is not brought into the Nifi node.i In order to accommodate these changes, the ExecuteHQLStatement processor has been updated and a new processor, CreateElasticsearchBackedHiveTable, has been created.

1. S3 Data Ingest Template Overview

The template has two parts. The first is a non-reusable part that is created for each feed. This is responsible for getting the input location of the data in S3 as well as setting properties that will be used by the reusable portion of the template. The second is the reusable template. The reusable template creates the hive tables. It also merges, validates, profiles, and indexes the data.

The template is very similar to the HDFS standard ingestion template. The differences are outlined in the following sections.

1.1 Template processors pull defaults from application.properties

Creating feeds from the S3 template is simplified by adding default values into Kylo’s /opt/kylo/kylo-services/conf/application.properties.

	config.s3ingest.s3.protocol

	The protocol to use for your system. e.g. The hortonworks sandbox typically uses “s3a”, EMR using an EMRFS may use “s3”

	config.s3ingest.es.jar_url

	The location of the elasticsearch-hadoop jar. Use an S3 location accessible to the cluster.

	config.s3ingest.apach-commons.jar_url

	The location of the commons-httpclient-3.1.jar. Use an S3 location accessible to the cluster.

	config.s3ingest.hiveBucket

	This property is the name output bucket where the data ends up. Hive will generate the folder structure within it. Note: This bucket must have something in it. Hive cannot create folders within an empty S3 bucket.

	config.s3ingest.es.nodes

	A comma separated list of Elasticsearch nodes that will be connected to.

For Example settings see below.

1.2 Non-reusable portion of template

1.2.1 List S3

Rather than fetching the data and bringing it into the Nifi node the first few properties get the location of the input data and pass the data location to subsequent processors.

	Bucket

	This is the S3 bucket where the input data is located. Note: The data files should be in a folder at the root level of the bucket.

	Region

	The region of the input S3 bucket.

	Prefix

	The “path” or “sub directory” within the bucket that will receive input files. Be sure the value ends with a trailing slash.

1.2.2 Initialize Feed Parameters

Just like in the Standard ingestion template, this processor sets the attributes that will be used by the reusable portion of the template. There are several parameters that have been added to accommodate changes made to the template for S3 integration:

	InputFolderName:=<the path portion of the filename>

	The input folder name will be used by the create feed partition processor in the reusable flow.

	s3ingest.apache-commons.jar_url:=${config.s3ingest.apache-commons.jar_url}

	The location of the commons-httpclient.jar. Use an S3 location accessible to the cluster.

	s3ingest.es.jar_url:=${config.s3ingest.es.jar_url}

	The location of the elasticsearch-hadoop.jar. Use an S3 location accessible to the cluster.

	s3ingest.hiveBucket:=${config.3ingest.hiveBucket}

	This property is the name output bucket where the data ends up. Hive will generate the folder structures within it. Note: Hive cannot create folders into a fresh bucket that has not had objects written to it before. Prime the pump on new S3 buckets by uploading and deleting a file.

	s3ingest.es.nodes:=${config.s3ingest.es.nodes}

	The comma separated list of node names for your elasticsearch nodes.

	s3ingest.s3.protocol:=${config.s3ingest.s3.protocol}

	The protocol your cluster will use to access the S3 bucket. (e.g. ‘s3a’)

1.2.3 DropInvalidFlowFile

When ListS3 scans a bucket, the first time it sees an object that represents the folder you specified in the Prefix it creates a flow file. Since this flow file is not a data file it will not process correctly in the flow and should be removed.

1.2.4 Initialize Cleanup Parameters

The clean up flow needs to know the name of the Hive bucket in order to clean it so the s3ingest.hiveBucket property has been added to this processor.

1.3 Reusable portion of Template

1.3.1 Register Tables

This processor creates S3 backed hive tables for storing valid, invalid, feed, profile, and master data.
Feed Root Path, Profile Root Path, and Master Root Path define the location of their respective tables. Each of these properties will use the protocol you specified in s3ingest.protocol (s3, s3n, or s3a). The protocol must be supported by you cluster distribution.

1.3.2 Route if Data to Create ES Table

This processor routes the flow to the CreateElastisearchBackedHiveTable processor if the metadata.table.fieldIndexString property has been set. Otherwise, the CreateElastisearchBackedHiveTable processor is skipped.

1.3.3 CreateElasticsearchBackedHiveTable

This processor creates an elasticsearch backed hive table for indexing data that will be searchable from with in the Kylo UI. A description of this processor and it’s properties can be found here: CreateElasticsearchBackedHiveTable
Create Feed Partition
In the statement for this processor the protocol for the s3 location may need to be updatad to use a protocol supported by the distribution being used.

1.3.4 Set Feed Defaults

The following property has been modified:

	filename

	The filename property will later be used by Failed Flow processor when the flowfile is placed into the temp location. Since filename coming from S3List in the feed flow includes path information, it is stripped of that here.

1.3.5 Create Feed Partition

The ALTER TABLE statement has been modified to include the InputFolderName

1.3.6 ExecuteHQLStatement

We have updated the ExecuteHQLStatement processor to run Hive statements they just need to be separated by a semi-colon (“;”). This allows us to add the elasticsearch-hadoop jar using the config.s3ingest.es.jar_url property. This particular processor inserts the data to be indexed into the elasticsearch backed hive table. It executes the following statements:

ADD JAR ${config.s3ingest.es.jar_url};
ADD JAR ${config.s3ingest.apache-commons.jar_url};
INSERT INTO TABLE ${category}.${feed}_index SELECT ${metadata.table.fieldIndexString},processing_dttm FROM ${category}.${feed}_valid

1.3.5 Merge Table

The Merge Table processor will merge the incoming data with the master table, based on the merge strategy you choose.

1.3.4.1 Sync Merge Strategy

If you encounter an error similar to:

2017-06-21 20:50:42,430 ERROR [Timer-Driven Process Thread-4] c.t.ingest.TableMergeSyncSupport Failed to execute alter table `category_name`.`feed_name_1498078145646` RENAME TO `catgeory_name`.`feed_name` with error
java.sql.SQLException: Error while processing statement: FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. Unable to alter table. Alter Table operation for <category_name>.<feed_name>_1498078145646 failed to move data due to: 'Renaming s3a://${hiveS3Bucket}/${hive.root.master}/<category_name>/<feed_name>_1498078145646 to s3a://hiveS3Bucket/${hive.metastore.warehouse.dir}/${category_name}.db/<feed_name> failed' See hive log file for details.

Note that hive.root.master is a feed property and that hive.metastore.warehouse.dir is a property from your hive-site.xml. In versions of Hive prior to 2.2.0 the HDFS location of a managed table, with a LOCATION clause, will be moved and that Hive derives the new location using the hive.metastore.warehouse.dir and the schema_name with a .db suffix.
Be sure that you have set the properties mapred.input.dir.recursive=true and hive.mapred.supports.subdirectories=true in your hive-site.xml.

1.3.6 DeleteS3Object

This processor replaces the RemoveHDFSFolder processor in standard ingest. It is analgous in that it takes the attributes from earlier in the flow and uses them to calculate the objects in the S3bucket that need to be removed and performs the delete operation.

2. Sandbox Walk-Through

2.1 Prerequisites

Download the required JARS for Hive to write table data to ElasticSearch. Using the links below find the jars need and place them in a folder within your hive bucket (or other S3 bucket). Make them public. In the end you should have jars available in S3 and the following commands should produce a good result:

aws s3 ls s3://hive-bucket/jars/elasticsearch-hadoop-5.4.0.jar
aws s3 ls s3://hive-bucket/jars/commons-httpclient-3.1.jar

2.2 Launch an EC2 instance using the Sandbox AMI

The S3 template was developed using the 0.8.1 sandbox but relies on code changes to be released in the 0.8.2 release. Go to AWS Market place and find the 0.8.2 or later sandbox for your region and launch the instance. Wait 15 minutes or more for nifi service and kylo services to start. Now shut down Nifi so we can change cluster configs and will need to refresh the NiFi connections to the cluster. Shut down Kylo so we change the application properties later.

service nifi stop
/opt/kylo/stop-kylo-apps.sh

2.3 Configuring core-site.xml and hive-site.xml

In the core-site.xml where your data is to be processed make sure that your fs.s3 properties are set.

Note

	for s3 use fs.s3.awsAccessKeyId and fs.s3.awsSecretAccessKey

	for s3n use fs.s3n.awsAccessKeyId and fs.s3n.awsSecretAccessKey

	for s3a use fs.s3a.access.key and fs.s3a.secret.key

Depending on what distribution you are using the supported protocol may be different (s3, s3n) in which case you would need to use the equivalent property for that protocol. Import the template using kylo-ui making sure to import the reusable portion as well as overwriting any previous versions of the template.

Warning

There are times when AWS SDK will consult the ‘s3’ properties for the keys, regardless of the protocol you use. To work around the problem define s3 properties in addition to your protocol properties.

Open Ambari and go to HDFS -> Configs -> Advanced -> Custom core-site section. Add the fs.s3a access properties.

fs.s3.awsAccessKeyId=XXX
fs.s3.awsSecretAccessKey=YYY
fs.s3a.access.key=XXX
fs.s3a.secret.key=YYY

Go to Hive -> Configs -> Advanced -> Custom hive-site section. Add the mapred.input.dir.recursive and hive.mapred.supports.subdirectories properties.

mapred.input.dir.recursive=true
hive.mapred.supports.subdirectories=true

Stop all services in the cluster. Start all services.

2.4 Get Nifi Ready

service nifi start

Go into Nifi UI and open up the Process Group Configuration and create a new AWSCredentialsProviderControllerService under the Controller Services tab. This service will be utilized by the various S3 processors to access the configured S3 buckets. Add your Access Key and Secret Key to the named parameters.

2.5 Get Kylo Ready

Edit /opt/kylo/kylo-services/conf/elasticsearch.properties and edit your settings.

Change elasticsearch.host to be same as your host in use by the template, if not already done. e.g.

search.host=localhost
search.clusterName=demo-cluster

Edit /opt/kylo/kylo-services/conf/application.properties and edit your settings. Append your template defaults. Example settings:

config.s3ingest.s3.protocol=s3a
config.s3ingest.hiveBucket=hive-bucket
config.s3ingest.es.jar_url=s3a://hive-bucket/jars/elasticsearch-hadoop-5.4.0.jar
config.s3ingest.apache-commons.jar_url=s3a://hive-bucket/jars/commons-httpclient-3.1.jar
config.s3ingest.es.nodes=localhost

Start Kylo

/opt/kylo/start-kylo-apps.sh

2.6 Import the Template

Go to Admin -> Templates section of Kylo. Import the ‘S3 Data Ingest’ bundle from the kylo source repo path: samples/templates/nifi-1.0/s3_data_ingest.template.zip

2.7 Create the Data Ingest Feed

Create a category called “S3 Feeds” to place your new feed. Create a feed and provide the following feed inputs:

	Bucket

	This is the name of your S3 bucket for input data. e.g. “myInputBucket”

	Region

	This is the region where your servers operate. e.g. us-east-1

	s3ingest.hiveBucket

	This is the name of your S3 bucket for the various hive tables e.g. “myHiveBucket”. It appears twice as it will be initilaized for the feed flow and the cleanup flow. It should be defaulted to the value you set in application.properties.

	prefix

	This is the folder in the S3 input bucket to search for input files. The default bucket will look in a folder with the same system name as the feed you are creating: “${metadata.systemFeedName}/”

2.8 Test the Feed

Put a data file in your input bucket. Check Kylo to ensure your feed ran successfully!

3. Further Reference

	Configure Apache Hive to Recursively Search Directories for Files [https://joshuafennessy.com/2015/06/30/configure-apache-hive-to-recursively-search-directories-for-files/]

	Hadoop-AWS module: Integration with Amazon Web Services [https://hadoop.apache.org/docs/r2.8.0/hadoop-aws/tools/hadoop-aws/index.html#S3A_Authentication_methods]

	LanguageManual DDL: Rename Table [https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-RenameTable]

	Maven Central: Elasticsearch Haddop Jars [https://mvnrepository.com/artifact/org.elasticsearch/elasticsearch-hadoop]

	Maven Central: Apache Commons HTTP Jars [https://mvnrepository.com/artifact/commons-httpclient/commons-httpclient]

Azure Standard Ingest Template

Table of Contents

	Azure Standard Ingest Template

	Problem

	Intro

	Configuration

	Modify HDFS processor in template

	Known Limitations

	Default FS

	Single container

Problem

You need to modify Kylo’s standard ingest template for Hive tables backed by the Azure Blob (WASB) store.

Intro

This guide provides the basics for modifying Kylo’s existing standard ingest template for use with the Azure Blob (WASB) store. For details on how to modify an existing template, please see the
video tutorials on http://kylo.io.

Configuration

The resulting Data Ingest template will be a slightly modified version of the standard Data Ingest template included with Kylo.

Note

	HD Insight clusters with Azure Blob Storage as a default storage has all the necessary properties set so default resource file, i.e. /etc/hadoop/conf/core-site.xml, can be used.

=============================-

To access Azure Blob Storage from HDFS, create an Hadoop Configuration XML file which, at minimum, will contain following properties:

	Property

	Value

	Note

	fs.azure.account.key.<your-account>.blob.core.windows.net

	access key to your Azure Blob Storage’s account (MSDN documentation)

	See Hadoop Azure documentation for more options for how to specific access keys

	fs.defaultFS

	wasb://@.blob.core.windows.net

	

	fs.wasb.impl

	org.apache.hadoop.fs.azure.NativeAzureFileSystem

	

Modify HDFS processor in template

Load the existing reusable Data Ingest template into NiFi, locate the HDFS processor and modify the following properties and reimport the template into Kylo:

	Property

	Note

	Hadoop Configuration Resources

	Comma separated paths to XML configuration files. See Hadoop Azure documentation for more options for how to specific access keys

	Directory

	absolute / relative path, within default FS, for writing / reading files

	Additional Classpath Resources

	path to directory containing additional JARs needed by WASB (usually hadoop-azure-2.7.3.jar,azure-storage-2.0.0.jar

Known Limitations

Default FS

Because HDFS processors are using value of fs.defaultFS property in connection with processor’s Directory property to figure out where to write/read files, this functionality can be limiting in terms when you need to copy/move files between various distributed file systems (DFS), using HDFS processors, within a single NiFi flow.

To overcome this limitation you can create minimal Hadoop configuration resource for the other FS and specify it in the list of files in Hadoop Configuration Resources property of HDFS processor. This will change the default FS for this single processor and thus allows to use a different DFS.

Single container

With previous limitation, Default FS, is a closely related a limitation on a single container - fs.defaultFS property contains also the container name. Way to overcome this limitation is the same as for default FS, i.e. create a copy of minimal Hadoop Configuration Resource file and change the fs.defaultFS property.
Troubleshooting
Server failed to authenticate the request. Make sure the value of Authorization header is formed correctly including the signature.

	check that access keys are valid and you set them correctly in XML file (including the blob.core.windows.net after the storage account name)

	if you run the NiFi on virtual machine make sure your OS time is synchronised (e.g. using NTP)

SUSE Configuration Changes

Overview

The deployment guide currently addresses installation in a Red Hat Enterprise Linux (RHEL or variant, CentOS, Fedora) based
environment. There are a couple of issues installing Elasticsearch and
ActiveMQ on SUSE. Below are some instructions on how to install these
two on SUSE.

ActiveMQ

When installing ActiveMQ you might see the following error.

Error

Configuration variable JAVA_HOME or JAVACMD is not defined correctly.

(JAVA_HOME=’‘, JAVACMD=’java’)

For some reason ActiveMQ isn’t properly using the system Java that is
set. To fix this issue I had to set the JAVA_HOME directly.

	Edit /etc/default/activemq and set JAVA_HOME at the bottom

	Restart ActiveMQ (service activemq restart)

Elasticsearch

RPM installation isn’t supported on SUSE. To work around this issue we created a custom init.d service script and wrote up a manual procedure to install Elasticsearch on a single node.

https://www.elastic.co/support/matrix

We have created a service script to make it easy to start and stop
Elasticsearch, as well as leverage chkconfig to automatically start
Elasticsearch when booting up the machine. Below are the instructions on
how we installed Elasticsearch on a SUSE box.

	Make sure Elasticsearch service user/group exists

	mkdir /opt/elasticsearch

	cd /opt/elasticsearch

	mv /tmp/elasticsearch-2.3.5.tar.gz

	tar -xvf elasticsearch-2.3.5.tar.gz

	rm elasticsearch-2.3.5.tar.gz

	ln -s elasticsearch-2.3.5 current

	cp elasticsearch.yml elasticsearch.yml.orig

	Modify elasticsearch.yml if you want to change the cluster name. Our
copy that is installed the wizard scripts is located in
/opt/kylo/setup/elasticsearch

	chown -R elasticsearch:elasticsearch /opt/elasticsearch/

	vi /etc/init.d/elasticsearch - paste in the values from
/opt/kylo/setup/elasticsearch/init.d/teradata-sles-11-hadoop/elasticsearch

	Uncomment and set the java home on line 44 of the init.d file in
step #10

	chmod 755 /etc/init.d/elasticsearch

	chkconfig elasticsearch on

	service elasticsearch start

Configuration Properties

Overview

This guide provides details on how to configure Kylo Templates and Feeds with properties from different sources.
The sources can be the following:

	Configuration from application.properties

	Configuration from Feed Metadata

	Configuration from Nifi environment variables

There are two property resolution options:

	Design-time resolution

	Runtime resolution

1. Configuration Sources

1.1 Configuration from application.properties

When creating Kylo feeds and templates one can refer to configuration properties which appear in
/opt/kylo/kylo-services/conf/application.properties file. Property names must begin with word config. and they
should be referenced by following notation in Kylo UI ${config.<property-name>}

Here is an example of how we use this in application.properties

config.hive.schema=hive
config.props.max-file-size=3 MB

Here is how you would refer to config.props.max-file-size in Kylo template:

[image: image1]

Setting NiFi Processor Properties

There is a special property naming convention available for Nifi Processors and Services in application.properties too.

For Processor properties four notations are available:

	nifi.<processor_type>.<property_key>

	nifi.all_processors.<property_key>

	nifi.<processor_type>[<processor_name>].<property_key> (Available in Kylo 0.8.1)

	$nifi{nifi.property} will inject the NiFi property expression into the value. (Available in Kylo 0.8.1)

where <processor_type>, <property_key>, <processor_name> should be all lowercase with spaces replaced by underscores. The <processor_name> is the display name of the processor set in NiFi.
Starting in Kylo 0.8.1 you can inject a property that has NiFi Expression Language as the value. Since Spring and NiFi EL use the same notation (${property}) Kylo will detect any
nifi expression in the property value if it start with $nifi{property}

	Setting properties matching the NiFi Processor Type. Here is an example of how to set ‘Spark Home’ and ‘Driver Memory’ properties on all ‘Execute Spark Job’ Processors:

nifi.executesparkjob.sparkhome=/usr/hdp/current/spark-client
nifi.executesparkjob.driver_memory=1024m

	Setting properties for a named NiFi Processor (starting in Kylo 0.8.1). Here is an example setting the property for just the ExecuteSparkJob processor named “Validate and Split Records”:

nifi.executesparkjob[validate_and_split_records].number_of_executors=3
nifi.executesparkjob[validate_and_split_records].driver_memory=1024m

	Setting a property with NiFi expression language as a value (starting in Kylo 0.8.1). Here is an example of injecting a value which refers to a NiFi expression

nifi.updateattributes[my_processor].my_property=/path/to/$nifi{my.nifi.expression.property}

The “my property” on the UpdateAttribute processor named “My Processor” will get resolved to /path/to/${my.nifi.expression.property} in NiFi.

	Setting all properties matching the property key. Here is an example of how to set Kerberos configuration for all processors which support it:

nifi.all_processors.kerberos_principal=nifi
nifi.all_processors.kerberos_keytab=/etc/security/keytabs/nifi.headless.keytab

Setting Controller Service Properties

For Services use following notation: nifi.service.<service_name>.<property_name>.
Anything prefixed with nifi.service will be used by the UI. Replace spaces in Service and Property names with underscores
and make it lowercase. Here is an example of how to set ‘Database User’ and ‘Password’ properties for MySql Service:

nifi.service.mysql.database_user=root
nifi.service.mysql.password=hadoop

1.2 Configuration from Feed Metadata

When creating Kylo feeds and templates you can also refer to Feed Metadata, i.e. set property values based on known
information about the feed itself. These properties start with word ‘metadata’, e.g. ${metadata.<property-name>}

Here is how you would refer to Category name and Feed name in Kylo template:

[image: image2]

1.3 Configuration from Nifi environment variables

TODO - Help us complete this section

2. Property Resolution Options

2.1 Design-time Resolution

These properties will be resolved at design-time during Feed creation from Template. They use the following notation ${property-name}.
If you had property-name=value in application.properties and ${property-name} in Template then static value would be placed
into Processor field in Nifi on Feed creation.

You can also provide nested properties or properties which refer to other properties ${property-name2.${property-name1}}
If you had property-name1=value1 and property-name2.value1=value2 in application.properties and
${property-name1.${property-name2}} in Template then static value2 would be placed into Processor field in Nifi on Feed creation.

Note

This type of resolution is great for properties which do not support Nifi’s Expression Language.

2.2 Runtime or Partial Resolution

If you don’t want to resolve properties at design time and would rather take advantage of property resolution at runtime by Nifi’s
Expression Language then you can still refer to properties in Kylo Feeds and Template, just escape them with a dollar sign $ like so:
$${config.${metadata.feedName}.input-dir}. Notice the double dollar sign at the start. This property will be resolved at
design-time to ${config.<feed-name>.input-dir} and will be substituted at runtime with a value from application.properties file.
So if you had a feed called users and config.users.input-dir=/var/dropzone/users in application.properties then at
runtime the feed would take its data from /var/dropzone/users directory.

[image: image3]

Note

This type of resolution is great for creating separate configurations for multiple feeds created from the same template

Validator Tuning

Setting RDD Persistence Level

The Validator allows specifying the RDD persistence level via command line argument.

To use this feature in the standard ingest flow, perform these steps:

	In NiFi, navigate to ‘reusable_templates -> standard_ingest’.

	Stop ‘Validate And Split Records’ processor.

	Open configuration for ‘Validate And Split Records’ processor. Add two arguments at the end for the MainArgs property.

<existing_args>,--storageLevel,<your_value>

<your_value> can be any valid Spark persistence level (e.g. MEMORY_ONLY, MEMORY_ONLY_SER)

	Start ‘Validate And Split Records’ processor.

Note

If not specified, the default persistence level used is MEMORY_AND_DISK.

Specifying Number of RDD Partitions

The Validator allows specifying the number of RDD partitions via command line argument. This can be useful for processing large files.

To use this feature in the standard ingest flow, perform these steps:

	In NiFi, navigate to ‘reusable_templates -> standard_ingest’.

	Stop ‘Validate And Split Records’ processor.

	Open configuration for ‘Validate And Split Records’ processor. Add two arguments at the end for the MainArgs property.

<existing_args>,--numPartitions,<your_value>

<your_value> should be positive integer.

	Start ‘Validate And Split Records’ processor.

Note

If not specified, Spark will automatically decide the partitioning level.

Configure Kylo & Global Search

Kylo supports Global search via a plugin-based design. Three plugins are provided out of the box:

	Elasticsearch (rest client) [default]

	Elasticsearch (native client)

	Solr

Elasticsearch 5 support

Elasticsearch 5 is supported when using NiFi 1.3 (or later) and rest client. Kylo has been tested with version 5.5.1. Please refer to the rest client configuration for additional details.

Elasticsearch (rest client) [default]

Steps to configure Kylo with Elasticsearch engine (using rest client) are below. Both Elasticsearch versions 2 and 5 are supported via this plugin.

	Include search-esr profile in existing list of profiles in /opt/kylo/kylo-services/conf/application.properties

spring.profiles.include=native,nifi-v1,auth-kylo,auth-file,search-esr

	Ensure that the plugin is available in /opt/kylo/kylo-services/plugin. This comes out-of-the-box at this location by default. It should have ownership as kylo:users and permissions 755.

kylo-search-elasticsearch-rest-0.8.3.jar

Note

There should be only one search plugin in the /opt/kylo/kylo-services/plugin directory. If there is another search plugin (for example, kylo-search-elasticsearch-0.8.3.jar), move it to /opt/kylo/setup/plugins/ for later use.

Reference commands to get the plugin, and change ownership and permissions:

mv /opt/kylo/kylo-services/plugin/kylo-search-*-0.8.3.jar /opt/kylo/setup/plugins/
cp /opt/kylo/setup/plugins/kylo-search-elasticsearch-rest-0.8.3.jar /opt/kylo/kylo-services/plugin/
cd /opt/kylo/kylo-services/plugin/
chown kylo:users kylo-search-elasticsearch-rest-0.8.3.jar
chmod 755 kylo-search-elasticsearch-rest-0.8.3.jar

	Provide elasticsearch properties

Update cluster properties in /opt/kylo/kylo-services/conf/elasticsearch-rest.properties if different from the defaults provided below.

search.rest.host=localhost
search.rest.port=9200

	Create Kylo Indexes

Execute a script to create kylo indexes. If these already exist, Elasticsearch will report an index_already_exists_exception. It is safe to ignore this and continue.
Change the host and port if necessary.

/opt/kylo/bin/create-kylo-indexes-es.sh localhost 9200 1 1

	Restart Kylo Services

service kylo-services restart

	Steps to import updated Index Text Service feed

	Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

2a. [Elasticsearch version 2] Pick the index_text_service_elasticsearch.feed.zip file available at /opt/kylo/setup/data/feeds/nifi-1.0

2b. [Elasticsearch version 5] [This requires NiFi 1.3 or later] Pick the index_text_service_v2.feed.zip file available at /opt/kylo/setup/data/feeds/nifi-1.3

	Leave Change the Category field blank (It defaults to System)

	Click Yes for these two options (1) Overwrite Feed (2) Replace Feed Template

	(optional) Click Yes for option (3) Disable Feed upon import only if you wish to keep the indexing feed disabled upon import (You can explicitly enable it later if required)

	Click Import Feed.

	Verify that the feed imports successfully.

Elasticsearch (native client)

Steps to configure Kylo with Elasticsearch engine (using native client) are below. Only Elasticsearch version 2 is supported via this plugin.

	Include search-es profile in existing list of profiles in /opt/kylo/kylo-services/conf/application.properties

spring.profiles.include=native,nifi-v1,auth-kylo,auth-file,search-es

	Ensure that the plugin is available in /opt/kylo/kylo-services/plugin. The plugin comes out-of-the-box at another location /opt/kylo/setup/plugins. It should have ownership as kylo:users and permissions 755.

kylo-search-elasticsearch-0.8.3.jar

Note

There should be only one search plugin in the above plugin directory. If there is another search plugin (for example, kylo-search-solr-0.8.3.jar), move it to /opt/kylo/setup/plugins/ for later use.

Reference commands to get the plugin, and change ownership and permissions:

mv /opt/kylo/kylo-services/plugin/kylo-search-*-0.8.3.jar /opt/kylo/setup/plugins/
cp /opt/kylo/setup/plugins/kylo-search-elasticsearch-0.8.3.jar /opt/kylo/kylo-services/plugin/
cd /opt/kylo/kylo-services/plugin/
chown kylo:users kylo-search-elasticsearch-0.8.3.jar
chmod 755 kylo-search-elasticsearch-0.8.3.jar

	Provide elasticsearch properties

Update cluster properties in /opt/kylo/kylo-services/conf/elasticsearch.properties if different from the defaults provided below.

search.host=localhost
search.clusterName=demo-cluster
search.restPort=9200
search.transportPort=9300

	Restart Kylo Services

service kylo-services restart

	Steps to import updated Index Text Service feed

	Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

	Pick the index_text_service_elasticsearch.feed.zip file available at /opt/kylo/setup/data/feeds/nifi-1.0

	Leave Change the Category field blank (It defaults to System)

	Click Yes for these two options (1) Overwrite Feed (2) Replace Feed Template

	(optional) Click Yes for option (3) Disable Feed upon import only if you wish to keep the indexing feed disabled upon import (You can explicitly enable it later if required)

	Click Import Feed.

	Verify that the feed imports successfully.

Solr

Kylo is designed to work with Solr (SolrCloud mode) and tested with v6.5.1. This configuration assumes that you already have a running Solr instance. You can also get it from the official download page [http://lucene.apache.org/solr/downloads.html].

Steps to configure Kylo with Solr are below:

	Include search-solr profile in existing list of profiles in /opt/kylo/kylo-services/conf/application.properties

spring.profiles.include=native,nifi-v1,auth-kylo,auth-file,search-solr

	Ensure that the plugin is available in /opt/kylo/kylo-services/plugin. The plugin comes out-of-the-box at another location /opt/kylo/setup/plugins. It should have ownership as kylo:users and permissions 755.

kylo-search-solr-0.8.3.jar

Note

There should be only one search plugin in the /opt/kylo/kylo-services/plugin directory. If there is another search plugin (for example, kylo-search-elasticsearch-0.8.3.jar), move it to /opt/kylo/setup/plugins/ for later use.

Reference commands to get the plugin, and change ownership and permissions:

mv /opt/kylo/kylo-services/plugin/kylo-search-*-0.8.3.jar /opt/kylo/setup/plugins/
cp /opt/kylo/setup/plugins/kylo-search-solr-0.8.3.jar /opt/kylo/kylo-services/plugin/
cd /opt/kylo/kylo-services/plugin/
chown kylo:users kylo-search-solr-0.8.3.jar
chmod 755 kylo-search-solr-0.8.3.jar

	Create a folder on the box where Kylo is running to store indexes for Kylo metadata. Ensure that Kylo can write to this folder.

Reference commands to create this folder and give full permissions:

mkdir /tmp/kylosolr
chmod 777 /tmp/kylosolr

	Provide solr properties

Update cluster properties in /opt/kylo/kylo-services/conf/solrsearch.properties if different from the defaults provided below. The search.indexStorageDirectory should match with the folder location created in previous step.

search.host=localhost
search.port=8983
search.indexStorageDirectory=/tmp/kylosolr
search.zooKeeperPort=9983

	Create collections in Solr that Kylo will use.

Reference commands:

bin/solr create -c kylo-datasources -s 1 -rf 1
bin/solr create -c kylo-data -s 1 -rf 1

	Configure Kylo collections created in previous step via Admin UI

Reference steps:

	Navigate to Admin UI

	
	http://localhost:8983/solr

Configure collection for datasources

	Select kylo-datasources collection from the drop down on left nav area

	Click Schema on bottom left of nav area

	Click Add Field on top of right nav pane

	name: kylo_collection

	type: string

	default value: kylo-datasources

	index: no

	store: yes

Configure collection for data

	Select kylo-data collection from the drop down on left nav area

	Click Schema on bottom left of nav area

	Click Add Field on top of right nav pane

	name: kylo_collection

	type: string

	default value: kylo-data

	index: no

	store: yes

	Restart Kylo Services

service kylo-services restart

	Steps to import updated Index Text Service feed

	Feed Manager -> Feeds -> + orange button -> Import from file -> Choose file

	Pick the index_text_service_solr.feed.zip file available at /opt/kylo/setup/data/feeds/nifi-1.0

	Leave Change the Category field blank (It defaults to System)

	Click Yes for these two options (1) Overwrite Feed (2) Replace Feed Template

	(optional) Click Yes for option (3) Disable Feed upon import only if you wish to keep the indexing feed disabled upon import (You can explicitly enable it later if required)

	Click Import Feed.

	Verify that the feed imports successfully.

	Ensure that the box running Kylo can connect to the box running Solr (if they are on separate machines). If required, open up these ports:

	8983

	9983

Service Monitor Plugins

Introduction

Kylo supports pluggable Service Monitor implementations. There are a number of them available out-of-the-box, for example:

	Services via Cloudera Manager

	Services via Ambari

	Nifi

	Kylo Cluster

Public Service Monitor API is available to implement additional Service Monitors

Monitor Services via Cloudera Manager

Installation

After you have installed Kylo, copy /opt/kylo/setup/plugins/kylo-service-monitor-cloudera-service-<version>.jar to Kylo plugins directory
/opt/kylo/kylo-services/plugin and make sure plugin jar belongs to user Kylo runs with:

cp /opt/kylo/setup/plugins/kylo-service-monitor-cloudera-service-<version>.jar /opt/kylo/kylo-services/plugin
chown kylo:kylo /opt/kylo/kylo-services/plugin/kylo-service-monitor-cloudera-service-<version>.jar

Configuration

Create service configuration file /opt/kylo/kylo-services/conf/cloudera.properties which belongs to user Kylo runs with and contains
following properties. Do substitute values with what your Cloudera Manager is configured with:

clouderaRestClientConfig.username=cloudera
clouderaRestClientConfig.password=cloudera
clouderaRestClientConfig.serverUrl=127.0.0.1
clouderaRestClientConfig.port=7180
cloudera.services.status=HDFS/[DATANODE,NAMENODE,SECONDARYNAMENODE],HIVE/[HIVEMETASTORE,HIVESERVER2],YARN,SQOOP

Restart Kylo

service kylo-services restart

Monitor Services via Ambari

Installation

After you have installed Kylo, copy /opt/kylo/setup/plugins/kylo-service-monitor-ambari-<version>.jar to Kylo plugins directory
/opt/kylo/kylo-services/plugin and make sure plugin jar belongs to user Kylo runs with:

cp /opt/kylo/setup/plugins/kylo-service-monitor-ambari-<version>.jar /opt/kylo/kylo-services/plugin
chown kylo:kylo /opt/kylo/kylo-services/plugin/kylo-service-monitor-ambari-<version>.jar

Configuration

Create service configuration file /opt/kylo/kylo-services/conf/ambari.properties which belongs to user Kylo runs with and contains
following properties. Do substitute values with what your Ambari is configured with:

ambariRestClientConfig.host=127.0.0.1
ambariRestClientConfig.port=8080
ambariRestClientConfig.username=admin
ambariRestClientConfig.password=admin
ambari.services.status=HDFS/[DATANODE,NAMENODE,SECONDARYNAMENODE],HIVE/[HIVEMETASTORE,HIVESERVER2],YARN,SQOOP

Restart Kylo

service kylo-services restart

JMS Providers

Introduction

Kylo supports pluggable JMS implementations. There are two JMS implementations supported out-of-the-box: ActiveMQ and Amazon SQS.
Both Kylo and Nifi should be configured with the same JMS implementation.

Kylo Configuration

ActiveMQ

ActiveMQ profile is selected by default. If you switched away from ActiveMQ and now want to restore default Kylo settings you can
edit /opt/kylo/kylo-services/conf/application.properties and select ActiveMQ JMS implementation by adding jms-activemq profile to
spring.profiles.include property, e.g.

spring.profiles.include=[other profiles],jms-activemq

In addition to selected profile, ActiveMQ configuration properties should be provided in /opt/kylo/kylo-services/conf/application.properties.
Redelivery processing properties are now available for configuration. If Kylo receives provenance events and they have errors or are unable to attach NiFi feed information
(i.e. if NiFi goes down and Kylo doesnt have the feed information in its cache) then the JMS message will be returned for redelivery based upon the following parameters.
Refer to the ActiveMQ documentation, http://activemq.apache.org/redelivery-policy.html, for assigning these values

jms.activemq.broker.url=tcp://localhost:61616
#jms.activemq.broker.username=admin
#jms.activemq.broker.password=admin
##Redeliver policy for the Listeners when they fail (http://activemq.apache.org/redelivery-policy.html)
#jms.maximumRedeliveries=100
#jms.redeliveryDelay=1000
#jms.maximumRedeliveryDelay=600000L
#jms.backOffMultiplier=5
#jms.useExponentialBackOff=false

Amazon SQS

ActiveMQ profile is selected by default. But you can switch over to Amazon SQS by replacing jms-activemq profile with jms-amazon-sqs in
/opt/kylo/kylo-services/conf/application.properties, e.g.

spring.profiles.include=[other profiles],jms-amazon-sqs

In addition to that Amazon SQS specific properties should be provided in /opt/kylo/kylo-services/conf/application.properties.

sqs.region.name=eu-west-1

Amazon SQS uses DefaultAWSCredentialsProviderChain class to look for AWS credentials in the following order:

	Environment Variables - AWS_ACCESS_KEY_ID and AWS_SECRET_KEY

	Java System Properties - aws.accessKeyId and aws.secretKey

	Credential profiles file at the default location (~/.aws/credentials) shared by all AWS SDKs and the AWS CLI

	Instance profile credentials delivered through the Amazon EC2 metadata service

For example, add your AWS credentials to /home/kylo/.aws/credentials

[default]
aws_access_key_id=...
aws_secret_access_key=...

Nifi Configuration

Active MQ

Select jms-activemq profile and provide ActiveMQ specific configuration properties in /opt/nifi/ext-config/config.properties, e.g.

spring.profiles.active=jms-activemq

jms.activemq.broker.url=tcp://localhost:61616
#jms.activemq.broker.username=admin
#jms.activemq.broker.password=admin
##Redeliver policy for the Listeners when they fail (http://activemq.apache.org/redelivery-policy.html)
#jms.maximumRedeliveries=100
#jms.redeliveryDelay=1000
#jms.maximumRedeliveryDelay=600000L
#jms.backOffMultiplier=5
#jms.useExponentialBackOff=false

Amazon SQS

Select jms-amazon-sqs profile and provide Amazon SQS specific configuration properties in /opt/nifi/ext-config/config.properties, e.g.

spring.profiles.active=jms-amazon-sqs

sqs.region.name=eu-west-1

Amazon SQS uses DefaultAWSCredentialsProviderChain class to look for AWS credentials in the following order:

	Environment Variables - AWS_ACCESS_KEY_ID and AWS_SECRET_KEY

	Java System Properties - aws.accessKeyId and aws.secretKey

	Credential profiles file at the default location (~/.aws/credentials) shared by all AWS SDKs and the AWS CLI

	Instance profile credentials delivered through the Amazon EC2 metadata service

For example, add your AWS credentials to /home/nifi/.aws/credentials

[default]
aws_access_key_id=...
aws_secret_access_key=...

There are four places where standard Kylo feeds need updating in Nifi to route JMS messages via Amazon SQS instead of ActiveMQ.
Replace JMS processors with their Amazon SQS equivalents. Replace PublishJMS processors with PutSQS processors and
ConsumeJMS processors with GetSQS processors in following feeds:

	reusable_templates -> standard-ingest

	Register Index (PublishJMS)

	Update Index (PublishJMS)

	system

	index_schema_service -> Receive Schema Index Request (ConsumeJMS)

	index_text_service -> Receive Index Request (ConsumeJms)

Database Upgrades

Overview

This guide provides details on how to update your database with each new Kylo version.
Kylo supports two ways to upgrade your database:

	Automatic upgrades

	Manual upgrades

1. Automatic Upgrades

By default Kylo is set up to automatically upgrade its database on Kylo services startup. As such,
there isn’t anything specific an end user has to do. Just start Kylo services as normal and
your database will be automatically upgraded to latest version if required.

2. Manual Upgrades

By default Kylo is set up to automatically upgrade its database. To manually upgrades your database:

	Turn off automatic database upgrades

	Generate update SQL script

	Run generated SQL manually on your database

2.1 Turn off automatic database upgrades

Set liquibase.enabled to false in /opt/kylo/kylo-services/conf/application.properties if you don’t
want to automatically upgrade Kylo database. Also make sure your database connection properties are correct:

liquibase.enabled=false

spring.datasource.url=
spring.datasource.username=
spring.datasource.password=
spring.datasource.driverClassName=

2.2 Generate upgrade SQL script

Make sure that required database driver is on classpath in /opt/kylo/kylo-services/lib directory and
run /opt/kylo/setup/sql/generate-update-script.sh.

/opt/kylo/setup/sql/generate-update-script.sh

This will generate database update SQL in your current directory called kylo-db-update-script.sql.
This SQL script will contain all required SQL statements to update your database to next Kylo version.

2.3 Run generated SQL manually on your database

The process of executing kylo-db-update-script.sql SQL script will differ for each database vendor.
Please consult documentation for your database on how to execute an SQL script.

Icons and Icon Colors

Icons and the colors can be configured using 2 JSON files found in the
/opt/kylo/kylo-services/conf directory.

icons.json

This is an array of valid icon names. Valid names that
can be used can be found here:
https://klarsys.github.io/angular-material-icons/.

icon-colors.json

This is an array of objects indicating the display
name and respective Hex color code.

Twitter Sentiment with Kafka and Spark Streaming Tutorial

About

This advanced tutorial will enable Kylo to perform near real-time sentiment analysis for tweets. Our Kylo template will enable user self-service to configure new feeds for sentiment analysis. The
user will simply enter the list of twitter keywords to analyze (e.g. famous list of music artists). Tweets will be classified as positive, negative, or neutral based on analysis of the text. The tweet and sentiment results will be written to Hive. We will be able to monitor the streaming process in the Kylo Ops Manager module and explore the results.

How it Works

Once the user configures the new feed in Kylo, a pipeline will be generated in Apache NiFi. The tweet text will be extracted and published to a Kafka topic. A Spark streaming job will consume the
message tweet from Kafka, performs sentiment analysis using an embedded machine learning model and API provided by the Stanford NLP project [https://stanfordnlp.github.io/CoreNLP]. The Spark streaming job then inserts result into Hive and publishes a Kafka message to a Kafka response topic monitored by Kylo to complete the flow.

In order to track processing though Spark, Kylo will pass the NiFi flowfile ID as the Kafka message key. Kylo passes the FlowFile ID to Spark and Spark will return the message key on a separate Kafka response topic. The latter utilizes the new Notify and Wait processors in NiFi 1.3.0+ which we will introduce with this tutorial.

Prerequisites

	Download the latest Kylo sandbox [https://kylo.io/quickstart.html]. This tutorial requires NiFi 1.3.

	Install/enable Kafka (if needed)

3. Create a twitter application account [http://docs.inboundnow.com/guide/create-twitter-application]. and document your consumer key/secret and access token/secret pairs.

4. Download Stanford corenlp libraries [https://stanfordnlp.github.io/CoreNLP]. The specific library files are shown in the Spark configuration section (below). This tutorial used v3.7.0.

5. Download and build this useful Twitter Sentiment analysis utility [https://github.com/vspiewak/twitter-sentiment-analysis]. The specific library files needed are shown in the Spark configuration section (below).

Configuration

Your Twitter consumer key/secret and access token/secret pairs are needed in order to provision the template with the correct Twitter credentials. Add the following block to your Kylo application
.properties file (typically located in /opt/kylo/kylo-services/conf/application.properties). Note that Kylo will automatically injects these properties into the NiFi pipeline when a new feed is
provisioned:

Twitter
nifi.gettwitter.consumer_key={REPLACE_WITH_YOUR_TWITTER_CONSUMER_KEY}
nifi.gettwitter.consumer_secret={REPLACE_WITH_YOUR_TWITTER_CONSUMER_SECRET}
nifi.gettwitter.access_token={REPLACE_WITH_YOUR_TWITTER_ACCESS_TOKEN}
nifi.gettwitter.access_secret={REPLACE_WITH_YOUR_TWITTER_ACCESS_SECRET}

Restart Kylo after applying changes to the property file.

Spark Configuration

The following JARs need to be available on the Spark2 classpath. There are different ways to achieve this but one way is to simply modify the /etc/spark2/conf/spark-defaults.conf as shown here:

Add to /etc/spark2/conf/spark-defaults.conf
spark.driver.extraClassPath /path/to/lib.jar:/path/to/lib2.jar:/path/to/lib3.jar

The extra classpath libraries needed will depend on your specific Hadoop and Kafka installation. The following are required jar files for readability:

From local machine
kafka-streams-0.10.0.2.5.5.0-157.jar
spark-examples_2.11-2.0.2.2.5.5.0-157.jar
spark-streaming-kafka-0-10_2.11-2.1.1.jar
spark-streaming_2.11-2.0.2.2.5.5.0-157.jar
ejml-0.23.jar

From github.com/vspiewak/
twitter-sentiment-analysis_3.7.0.jar (must be built from source)
jsonic-1.2.0.jar (available in lib)
langdetect.jar (available in lib)

From Stanford NLP
stanford-corenlp-3.7.0-models-english.jar
stanford-parser-3.7.0.jar
stanford-corenlp-3.7.0.jar

Twitter Sentiment template

The feed template for this tutorial is provided in Kylo github. This template will allow you to create a feed to monitor tweets based on keywords and write the sentiment results to a Hive table.
Download and import the Twitter Sentiment template [https://github.com/Teradata/kylo/blob/master/samples/templates/nifi-1.0/twitter_sentiment.template.zip]. into the Kylo
templates UI.

Kafka response feed

This system feed will monitor a Kafka topic for flowfile ids that have been processed by our Spark job.

Download and import the Kafka Notifier feed [https://github.com/Teradata/kylo/blob/master/samples/feeds/nifi-1.3/kafka_notifier_service.feed.zip]. into the Kylo
feeds.

Scripts

Create the following shell scripts in /opt/spark-receiver/ and ensure NiFi has execute permissions on the files:

	The following shell script will start/stop our streaming application. It will only start the application if it is not currently running. Name the file: stream-submit-kafka.sh

#!/bin/bash

#extract script file then shift remaining args will be pased to scala script
arg_count="$#"
command=$1
app_name=$2
scala_file=$3
shift 3
arguments=$@

export SPARK_MAJOR_VERSION=2
spark_regex=".*SparkSubmit.*\s$app_name.*"

start() {
 if ["$arg_count" -lt 10]; then
 echo "Illegal parameters. Usage ./stream-submit-kafka.sh start sentiment-app path/to/script.scala {window secs} {hive table} {twitter keywords,comma-delim} {kafka read topic} {kafka write topic} {broker} {zookeeper} {kafka group}
 echo "Example: ./stream-submit-kafka.sh start sentiment-app /opt/spark-receiver/sentiment-job-kafka.scala 15 sentiment_17 @ArianaGrande,@justinbieber,@MileyCyrus topicC topicB sandbox.kylo.io:6667 sandbox.kylo.io:2181 groupA
 exit 1
 fi
 echo "Starting process $app_name with $arguments"
 if pgrep -f "$spark_regex" > /dev/null
 then
 echo "$app_name already running"
 else
 nohup spark-shell --name "$app_name" --master local[2] --deploy-mode client \
 --queue default \
 --driver-memory 4G --executor-memory 4G \
 -i <(echo 'val args = "'$arguments'".split("\\s+")' ; cat $scala_file) &> $app_name.out &
 fi
}

stop() {
 if ["$arg_count" -lt 2]; then
 echo "Illegal parameters. Usage ./stream-submit.sh kill appName"
 exit 1
 fi
 if pgrep -f "$spark_regex" > /dev/null
 then
 echo "Killing $app_name"
 pkill -f "$spark_regex"
 else
 echo "$app_name not running"
 fi
}

status() {
 if ["$arg_count" -lt 2]; then
 echo "Illegal parameters. Usage ./stream-submit.sh status appName"
 exit 1
 fi

 if pgrep -f "$spark_regex" > /dev/null
 then echo "$app_name running"
 else echo "$app_name not running"
 fi
}

case "$command" in
 status)
 status
 ;;
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart)
 echo "Restarting $app_name"
 stop
 sleep 2
 start
 echo "$app_name started"
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart|status|"
 exit 1
esac
exit 0

	The following Scala script is our sentiment analysis Spark job. Please name the file: sentiment-job-kafka.scala

import java.util.HashMap

import org.apache.spark.examples.streaming._
import kafka.serializer.StringDecoder

import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka010._
import org.apache.spark.SparkConf

import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization._
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe

import java.util.HashMap

import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}

import org.apache.spark.SparkConf
import org.apache.spark.streaming._
import java.io._

import java.nio.charset.StandardCharsets
import scala.collection.mutable.ListBuffer

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SQLContext
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext, Time}
import com.github.vspiewak.util._
import edu.stanford.nlp.sentiment._
import java.io.IOException
import java.util.Properties

 case class TweetRecord(time: Integer, topic: String, sentiment: String, tweet: String)

 val durationSecs = args(0).toLong
 val tableName = args(1)
 val keywords = args(2)
 val readerTopic = args(3)
 val writerTopic = args(4)
 val brokers = args(5)
 val zookeeper = args(6)
 val group = args(7)
 println("durationSecs: " + durationSecs)
 println("tableName: " + tableName)
 println("keywords: " + keywords)

 val bKeywords = sc.broadcast(keywords.split(","))

 val clientParams = Map[String, Object](
 "bootstrap.servers" -> brokers,
 "zookeeper.connect" -> zookeeper,
 "key.deserializer" -> classOf[StringDeserializer],
 "value.deserializer" -> classOf[StringDeserializer],
 "group.id" -> group,
 "auto.offset.reset" -> "latest",
 "enable.auto.commit" -> (false: java.lang.Boolean)
)

 val producerProps = new java.util.Properties()

 producerProps.put("bootstrap.servers", brokers)
 producerProps.put("zookeeper.connect", zookeeper)
 producerProps.put("key.serializer", classOf[StringSerializer])
 producerProps.put("value.serializer", classOf[StringSerializer])
 producerProps.put("key.deserializer", classOf[StringDeserializer])
 producerProps.put("value.deserializer", classOf[StringDeserializer])

 StreamingExamples.setStreamingLogLevels()

 val producer = new KafkaProducer[String, String](producerProps)

 spark.sql("CREATE TABLE IF NOT EXISTS "+tableName+" (`time` int, `topic` string, `sentiment` string, `tweet` string)")

 // Create direct kafka stream with brokers and topics
 // Create context with specified batch interval
 @transient val ssc = new StreamingContext(sc, Seconds(durationSecs))

 val topics = Array(readerTopic)
 @transient val tweetStream = KafkaUtils.createDirectStream[String, String](
 ssc,
 PreferConsistent,
 Subscribe[String, String](topics, clientParams)
)

 @transient val uuids = tweetStream.map(_.key)

 @transient val tweetStreamMapped = tweetStream.map { record: org.apache.kafka.clients.consumer.ConsumerRecord[String,String] =>
 val tweet = record.value
 println(tweet)
 // Create record for each match so tweets with multiple matches will be counted multiple times
 val keywords = bKeywords.value
 val matches = keywords.filter { (term) => (tweet.contains(term)) }
 val matchArray = matches.map { (keyword) => (keyword, tweet) }
 // Convert to listbuffer so we can flatten
 val matchLB = ListBuffer(matchArray: _ *)
 matchLB.toList
 }.
 flatMap(identity).
 map { (tuple) =>
 val topic = tuple._1
 val tweet = tuple._2
 // Clean hashtags, emoji's, hyperlinks, and twitter tags which can confuse the model. Replace @mention with generic word Foo
 val tweet_clean = tweet.replaceAll("(\\b\\w*RT)|[^a-zA-Z0-9\\s\\.\\,\\!,\\@]", "").replaceAll("(http\\S+)","").replaceAll("(@\\w+)","Foo").replaceAll("^(Foo)","")
 try {
 val sentiment = SentimentAnalysisUtils.detectSentiment(tweet_clean).toString.toLowerCase
 (topic, sentiment,tweet)

 } catch {
 case e: IOException => e.printStackTrace(); (tuple._1, "unknown", tweet)
 }
 }

 println("Writing results to Hive "+tableName)
 tweetStreamMapped.foreachRDD { (rdd: RDD[(String, String, String)], time: org.apache.spark.streaming.Time) => rdd.map(t => TweetRecord((time.milliseconds / 1000).toInt, t._1, t._2, t._3))
 .toDF()
 .filter("sentiment is not null")
 .write
 .insertInto(tableName)
 }
 println("Sending results to Kafka topic:"+writerTopic)
 uuids.foreachRDD { rdd =>
 rdd.collect().foreach { key =>
 producer.send(new ProducerRecord[String, String](writerTopic, key, "done"))
 }
 }

 ssc.start()
 ssc.awaitTermination()

 ssc.stop()

Create your feed

After importing the template in Kylo, you are ready to create a feed. Create a new feed and select ‘Sentiment Analysis’. Now provide the keywords as comma separated strings. Note that because the
Twitter account used by the template is a free account, you are limited to filtering on specific keywords. This template has hardcoded a set of keywords of common twitter accounts: @katyperry,
@justinbieber,@taylorswift13,@rihanna,@realDonaldTrump. Your feed may include any subset or combination of these. You can alter the superset of keywords in the template. If you have a full Twitter
account, you could use the Firehose endpoint and then perform your filtering in Spark.

Monitor your feed in Kylo

From the Ops Manager, your feed will appear as a Streaming feed.

[image: Kylo streaming]

Ambari Service Monitor Plugin

Purpose

The Ambari Service Monitor reports the status of Ambari services in Kylo Operations Manager.

Enable Plugin

To enable the plugin please do the following

	Create a new file /opt/kylo/kylo-services/conf/ambari.properties. Ensure the owner of the file is kylo

	Add the following to the ambari.properties file.

ambariRestClientConfig.host=127.0.0.1
ambariRestClientConfig.port=8080
ambariRestClientConfig.username=admin
ambariRestClientConfig.password=admin
ambari.services.status=HDFS,HIVE,MAPREDUCE2,SQOOP

	Copy the /opt/kylo/setup/plugins/kylo-service-monitor-ambari-<<VERSION>>.jar to /opt/kylo/kylo-services/plugin

cp /opt/kylo/setup/plugins/kylo-service-monitor-ambari-<<VERSION>>.jar /opt/kylo/kylo-services/plugin/

	Restart kylo-services

Contributing to Kylo

Introduction

We gladly welcome contributions to help make Kylo better! This document
describes our process for accepting contributions and the guidelines we
adhere to as a team. Please take a moment to review before submitting a
pull request.

Why Contribute

Think Big originally developed Kylo based on experience gained on over 150 big data projects. Many of the best improvements came from exercising the technology in the field on the huge variety of
situations faced by customers. Contributing to Kylo allows you to influence the roadmap and evolution of Kylo and contribute back to the community at large.

Reporting Issues

We monitor Group Groups [https://groups.google.com/forum/#!forum/kylo-community]
for questions. If you’re not sure about something then please search on Group
Groups [https://groups.google.com/forum/#!forum/kylo-community] first and
ask a new question if necessary. Bug reports, feature requests, and pull
requests can be submitted to our
JIRA [https://kylo-io.atlassian.net/] for tracking. If you find an
issue:

	Search in
JIRA [https://kylo-io.atlassian.net/projects/KYLO/issues/?filter=allissues]
to see if the issue has already been reported. You can add to the
existing discussion or see if someone else is already working on
it.

	If the issue has been fixed then try reproducing the issue using the
latest master branch.

	If the issue persists then try to isolate the cause and create a new
JIRA.

	For bug reports, please include a description of the issue, the
steps to reproduce, the expected results, and the actual
results.

	For feature requests, please give as much detail as possible
including a design document if available.

Introducing New Functionality

Before contributing new functionality or bug fixes please consider how
these changes may impact other people using Kylo, and whether these
changes can be considered overall enhancements or merely enhancements
needed by your particular project. New functionality can be introduced
either as a plugin or through a pull request.

Plugins

Plugins are the preferred way of adding, swapping, or enhancing
functionality that is only relevant to specific users. Our components
and services have well-defined interfaces that can be extended by adding
a new JAR to the plugin directory. Create a new Spring @Configuration
class to add your classes to the Spring context.

A separate git repository should be used for your plugins. You can
reference Kylo’s API artifacts in Maven.

Pull Requests

Changes that apply to every Kylo user should be submitted as a pull
request in GitHub. You should do your work in a fork of Kylo and submit
a request to pull in those changes. Don’t forget to confirm the target
branch (master or point release) before submitting the request. Please
continue reading for instructions on creating a pull request.

Development Guidelines

We adhere to the following guidelines to ensure consistency in our code:

	Source code should be formatted according to our IntelliJ or Eclipse
formatter. Formatter markers in comments are enabled but should be used
sparingly.

	To import our standard IntelliJ formatter:

	Download the template from here: thinkbig-googlestyle-intellij-v2-1.xml.

	Preferences -> Editor -> Code Style -> Manage

	Select “Import” and choose the downloaded preferences file

	Make sure the “scheme” shows thinkbig-googlestyle-intellij-vX.Y

	To import our standard Eclipse formatter:

	Download the template from here: thinkbig-googlestyle-eclipse-v2-1.xml.

	Preferences -> Java -> Code Style -> Formatter

	Select “Import” and choose the downloaded preferences file

	Make sure the “Active Profile” shows thinkbig-googlestyle-eclipse-v2-1.xml

	Public API methods should be documented. Use Swagger annotations for
REST endpoints.

	Ensure tests are passing for the modified classes. New tests should
use JUnit and Mockito.

	Prefer to throw runtime exceptions instead of checked exceptions.

	Dependency versions should be declared in the root pom and can be
overridden using pom properties.

	Module names should be in all lowercase. Words should be singular and
separated by a hyphen. For example, kylo-alert is preferred over
kylo-alerts.

	Logging should use SLF4j:

private static final Logger log = LoggerFactory.getLogger(MyClass.class);

Pull Requests

To get started go to GitHub and fork the Kylo [https://github.com/KyloIO/kylo] repository.

[image: image0]

This will create a copy of the repository under your personal GitHub
account. You will have write permissions to your repository but not to
the official Kylo repository.

Before you start

The easiest way to contribute code is to create a separate branch for
every feature or bug fix. This will allow you to make separate pull
requests for every contribution. You can create your branch off
our master branch to get the latest code, or off a release
branch if you need more stable code.

git clone https://github.com/<your-username>/kylo.git
cd kylo
git checkout -b my-fix-branch master

Every change you commit should refer to a JIRA
issue [https://kylo-io.atlassian.net/] that describes the feature
or bug. Please open a JIRA issue if one does not already exist.

Committing your change

Ensure that your code has sufficient unit tests and that all unit tests
pass.

Your commit message should reference the JIRA issue and include a
sentence describing what was changed. An example of a good commit
message is “PC-826 Support for schema discovery of Parquet files.”

git commit -a -m "<my-commit-message>"
git push origin my-fix-branch

Submitting a pull request

Once you are ready to have us add your changes to the Kylo repository,
go to your repository in GitHub and select the branch with your changes.
Then click the New pull request button.

[image: image1]

GitHub will generate a diff for your changes and determine if they can
be merged back into Kylo. If your changes cannot be
automatically merged, please try rebasing your changes against the
latest master branch.

git fetch --all
git rebase origin/master
git push --force-with-lease origin my-fix-branch

We will review your code and respond with any necessary changes before
pulling in your changes. After your pull request is merged you can
safely delete your branch and pull in the changes from the official
Kylo repository.

Developer Getting Started Guide

This guide should help you get your local development environment up and
running quickly. Development in an IDE is usually done in conjunction
with a Hortonworks sandbox in order to have a cluster with which to communicate.

Dependencies

To run the Kylo project locally the following tools must be installed:

	Maven 3

	RPM (for install)

	Java 1.8 (or greater)

	Hadoop 2.3+ Sandbox

	Virtual Box or other virtual machine manager

The assumption is that you are installing on a Mac or Linux box. You can
do most activities below on a Windows box, except to perform a Maven
build with the RPM install. At some point, we could add a Maven profile
to allow you to build but skip the final RPM step.

Install Maven 3

This project requires Maven to execute a build. Use this link to
download to the Maven installation file:

Note

For instructions on installing Apache Maven see the Installing Apache Maven [https://maven.apache.org/install.html] docs at the Apache Maven project site.

Optional - Add Java 8 to Bash Profile

To build from the command line, you need to add Java 8 and Maven to your
$PATH variable.

Edit ~/.bashrc and add the following:

export MVN_HOME=/Users/<HomeFolderName>/tools/apache-maven-3.3.3
export MAVEN_OPTS="-Xms256m -Xmx512m"
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_45.jdk/Contents/Home
export PATH=$JAVA_HOME/bin:$MVN_HOME/bin:$PATH

To test, run the following:

$ mvn -v
$ java -version

Install Virtual Box

Use this link to download and install the DMG file to install Virtual
Box:

https://www.virtualbox.org/wiki/Downloads

Install the RPM Tool on your Mac

The RPM library is required for building the RPM file as part of the
Maven build. This can be done using Home Brew or Mac Ports.

$ brew install rpm

Clone Project from Github

Clone the Kylo project to your host. You can do this in your IDE or from
the command line.

	From the command line,run the “git clone” command.

	cd to the directory you want to install the project to.

	Type “git clone *https://github.com/kyloio/kylo.git”*.

	Import from your IDE using the
“*https://github.com/kyloio/kylo.git*”
URL.

Import the Project into your IDE

Import the project into your favorite IDE as a Maven project.

Note

Configure the project to use Java 8.

Perform a Maven Build

Perform a Maven build to download all of the artifacts and verify that
everything is setup correctly.

$ mvn clean install

Note

If you receive an OutOfMemoryError try increasing the Java heap space:
$ export MAVEN_OPTS="-Xms2g -Xmx4g"

Tip

For faster Maven builds you can run in offline mode and skip unit testing:
$ mvn clean install -o -DskipTests

Install and Configure the Hortonworks Sandbox

Follow the guide below to install and configure the Hortonworks sandbox:

Hortonworks Sandbox Configuration

Install the Kylo Applications

To install the Kylo apps, NiFi, ActiveMQ, and Elasticsearch in the
VM you can use the deployment wizard instructions found here:

Setup Wizard Deployment Guide

Instead of downloading the RPM file copy the RPM file from your project folder after running a Maven build.

$ cd /opt
$ cp /media/sf_kylo/install/target/rpm/kylo/RPMS/noarch/kylo-<version>.noarch.rpm.
$ rpm -ivh kylo-<version>.rpm

Follow the rest of the deployment wizard steps to install the rest of
the tools in the VM.

You now have a distribution of the stack running in your Hortonworks
sandbox.

Running in the IDE

You can run kylo-ui and thinkbig-services in the IDE. If you plan to
run the apps in the IDE, you should shut down the services in your
sandbox so you aren’t running two instances at the same time.

$ service kylo-services stop
$ service kylo-ui stop

The applications are configured using Spring Boot.

IntelliJ Configuration

	Install the Spring Boot plugin.

	Create the kylo-services application run configuration.

	Open the Run configurations.

	Create a new Spring Boot run configuration.

	Give it a name like “KyloServerApplication”.

	Set “use classpath of module” property to “kylo-service-app”
module.

	Set the “Main Class” property to
“com.thinkbiganalytics.server.KyloServerApplication”.

	Create the kylo-ui application run configuration.

	Open the Run configurations.

	Create a new Spring Boot run configuration.

	Give it a name like “KyloDataLakeUiApplication”.

	Set “use classpath of module” property to “kylo-ui-app”
module.

	Set the “Main Class” property to
“com.thinkbiganalytics.KyloUiApplication”.

	Run both applications.

Eclipse Configuration

	Open Eclipse.

	Import the Kylo project.

	File - Import

	Choose “maven” and “Existing Maven Projects” then choose next

	Choose the Kylo root folder. You should see all
Maven modules checked

	Click finish

	Import takes a bit - if you get an error about scala plugin, just click
finish to ignore it.

	Find and open the
“com.thinkbiganalytics.server.KyloServerApplication” class.

	Right click and choose to debug as a Java application.

	Repeat for “com.thinkbiganalytics.KyloUiApplication”.

OPTIONAL: Install the spring tools suite and run as a spring boot
option

Note

Consult the Spring Boot documentation for Running Your Application [http://docs.spring.io/spring-boot/docs/current/reference/html/using-boot-running-your-application.html] for additional ways to run with spring boot.

Web Development

Most of the Kylo UI depends on AngularJS and AngularJS Material but a few parts have been upgraded to Angular 2 and Covalent. New plugins should be written in Typescript and use Angular 2 for future compatibility.

NPM should be used to configure and start your web development environment:

	Install NPM in your development environment:

	apt-get install npm (Debian / Ubuntu)

	brew install npm (Mac)

	Install the development packages:

$ cd kylo/ui/ui-app
$ npm install

	Start Kylo and the development server:

$ service kylo-services start
$ service kylo-ui start
$ npm run start

	A new browser window will open showing the Kylo UI. Any changes you make will automatically refresh the page with the new changes.

If you will be editing stylesheets then you will need to additionally configure IntelliJ to compile SCSS files:

	Install the File Watchers plugin and restart IntelliJ.

	Go to Preferences -> Tools -> File Watchers.

	Click the + plus sign at the bottom and create a SCSS file watcher.

	Change the Arguments to: --output $FileDir$ $FilePath$

	Change the Output paths to refresh to: $FileNameWithoutExtension$.css

Angular Material Notes

There are a few notes worth mentioning about using AngularJS Material:

	Do not use layout-row and layout-wrap with percents. It has been broken on Safari for a while now [https://github.com/angular/material/issues/10516] with current plan to be fixed only in Angular 4.x.

	Do not refer to Angular model in plain HTML style element, it is broken on IE. Instead use Angular ng-style element which works on all browsers like so ng-style="{'fill':controller.fillColor}"

	Do not use flex element where you don’t have to. Browsers will usually flex elements correctly. This is to minimise the occurrence of flex being required by Safari while breaking layout on IE.

Plugin APIs

Kylo UI

	Feed Stepper [https://github.com/Teradata/kylo/tree/master/samples/plugins/example-ui-feed-stepper-plugin]

	Processor Template [https://github.com/Teradata/kylo/tree/master/samples/plugins/example-ui-get-file-processor-template]

	AngularJS UI Module [https://github.com/Teradata/kylo/tree/master/samples/plugins/example-module/example-module-ui]

	Angular 2 UI Module [https://github.com/Germanaz0/kylo-sample-module]

	Spark Functions

Kylo Services

	Field Policies [https://github.com/Teradata/kylo/tree/master/core/field-policy]

	Preconditions [https://github.com/Teradata/kylo/tree/master/core/precondition]

	Schema Discovery [https://github.com/Teradata/kylo/tree/master/core/schema-discovery/schema-discovery-api/src/main/java/com/thinkbiganalytics/discovery/parser]

	Search [https://github.com/Teradata/kylo/tree/master/core/search/search-api/src/main/java/com/thinkbiganalytics/search/api]

	Service Monitor [https://github.com/Teradata/kylo/tree/master/core/service-monitor/service-monitor-api/src/main/java/com/thinkbiganalytics/servicemonitor/check]

	SLAs [https://github.com/Teradata/kylo/tree/master/core/sla]

	Custom Module [https://github.com/Teradata/kylo/tree/master/samples/plugins/example-module]

Writing Spark Function Definitions

Tern defines the definitions file format for displaying the list of functions, providing auto-completion, and showing hints. Kylo extends this format by providing additional fields that describe how to convert the function into Scala code.

The definitions are loaded from json files matching *spark-functions.json in the Kylo classpath and merged into a single document to be used by the Kylo UI. Duplicate functions are ignored.

Data Types

An expression may consist of may different data types but the end result is to produce a DataFrame.

Arrays

An array is a collection of zero or more literals of the same type.

Booleans

A Boolean value is either true or false.

Columns

A Column is an object that represents a DataFrame column. It has an optional alias property which defines the name of the column.

Numbers

Numbers can be either literal integers or floating-point values. They will be automatically converted to a Column if required.

Objects

An Object is any Scala class type. No conversions are performed on objects.

Strings

Strings should be enclosed in double quotes. They are automatically converted to a Column if required.

Definitions

Function definitions are declared in a JSON document that maps a function name to a definition. Each definition is an object with special directives indicating the function arguments, return value, documentation, and a Spark conversion string. The JSON document also has a special directive with the name of the document.

{
 "!name": "ExampleDefinition",
 "add": {
 "!type": "fn(col1: Column, col2: Column) -> Column",
 "!doc": "Add two numbers together.",
 "!spark": "%c.plus(%c)"
 "!sparkType": "column"
 }
}

The above document is named ExampleDefinition as declared by the !name directive. It contains a single function named add and the !type directive indicates it takes two Column arguments and outputs a Column. The strings for the !doc and !type directives will be displayed in the autocomplete menu. The !spark directive defines the Spark conversion string for converting the expression to Spark code, and the !sparkType directive indicates is produces a Column object.

Spark Conversion String Syntax

The conversion string consists of literal characters that are copied as-is to the Spark code and conversion specifications that either consume one of the function arguments.

The conversion specifications have the following syntax:

%[flags]conversion

Conversion

The following conversions are supported:

	Type Specifier

	Description

	Example Spark Result

	b

	Expects the argument to be a literal boolean, either true

or false. The result is a literal boolean.

	true

	c

	The result is a Column object. All input types are

supported.

	new Column(“mycol”)

	d

	Expects the argument to be a literal integer. The result is a

literal integer.

	123

	f

	Expects the argument to be a literal floating-point

number. The result is a literal double.

	123.5

	o

	The result is a Scala object.

	

	r

	The result is a DataFrame object.

	

	s

	Expects the argument to be a literal of any type. The

result is a literal string.

	“myval”

Flags

The following flags are supported:

	Flag

	Description

	Example Spark Result

	?

	The conversion is optional and will be ignored if

there are no more arguments left to consume.

	

	*

	The conversion should consume all remaining

arguments, if any. Useful for var-arg functions.

	new Column(“arg1”), new Column(“arg2”)

	,

	The conversion should begin with a comma.

	, new Column(“arg1”)

	@

	The result is an array of the specified type.

	Array(“value1”, “value2”)

Spark Types

The !sparkType directive indicates the type produced by the !spark directive.

	Type

	Description

	array

	A Scala array.

	column

	A Spark SQL Column object.

	dataframe

	A Spark SQL DataFrame object.

	literal

	A Scala literal value.

	transform

	A function that takes a DataFrame and returns a DataFrame.

Any other type is assumed to be a class type.

Column Functions

These functions are instance methods of the Column class.

	as

	fn (alias: string) -> Column

Gives the column an alias.

	cast

	fn (to: string) -> Column

Casts the column to a different type.

	over

	fn (window: WindowSpec) -> Column

Define a windowing column.

Resources

Additional information on the Tern JSON format is available in the JSON Type Definitions section of the Tern docs.

Kylo REST API

Documentation

Kylo uses Swagger to document its REST API.

When running Kylo, you can access the documentation at http://localhost:8400/api-docs/index.html.

A sample PDF Kylo REST API Sample shows you some of the operations Kylo exposes..

Authentication

REST API calls require basic authorization header.

Cleanup Scripts

For development and sandbox environments you can leverage the cleanup
script to remove all of the Kylo services as well as Elasticsearch,
ActiveMQ, and NiFi.

$ /opt/kylo/setup/dev/cleanup-env.sh

Important

Only run this in a DEV environment. This will delete all application and the MySQL schema.

In addition there is a script for cleaning up the Hive schema and HDFS
folders that are related to a specific “category” that is defined in the
UI.

$ /opt/kylo/setup/dev/cleanupCategory.sh [categoryName]

Example: /opt/kylo/setup/dev/cleanupCategory.sh customers

Cloudera Docker Sandbox Deployment Guide

About

In some cases, you may want to deploy a Cloudera sandbox in AWS for a
team to perform a simple proof-of-concept, or to avoid system resource usage
on the local computer. Cloudera offers a Docker image, similar
to the Cloudera sandbox, that you download and install to your
computer.

Warning

Once you create the docker container called “cloudera” do not remove the container unless you intend to delete all of your work and start cleanly. There are instructions below on how to start and stop an existing container to retain your data.

Prerequisites

You need access to an AWS instance and permission to create an EC2 instance.

Installation

Step 1: Create an EC2 instance

For this document, we will configure a CoreOS AMI which is optimized for running Docker images.

	Choose an AMI for the region in which you will configure the EC2 instance.

Note

For detailed procedures for configuring_the_EC2 instance, visit Running CoreOS Container Linux on EC2 on the CoreOS website.

	Create the EC2 instance. You might want to add more disk space than the default 8GB.

	Configure the EC2 security group.

	After starting up the instance, Login to the EC2 instance:

$ ssh -i <private_key> core@<IP_ADDRESS>

Step 2: Create Script to Start Docker Container

Create a shell script to startup the Docker container. This makes it
easier to create a new container if you decided to delete it at some
point and start clean.

	Create Cloudera docker script:

$ vi startCloudera.sh

	Add the following:

#!/bin/bash
docker run --name cloudera =
 --hostname=quickstart.cloudera \
 --privileged=true -t -d \
 -p 8888:8888 \
 -p 7180:7180 \
 -p 80:80 \
 -p 7187:7187 \
 -p 8079:8079 \
 -p 8400:8400 \
 -p 8161:8161 \
 cloudera/quickstart:5.7.0-0-beta /usr/bin/docker-quickstart

	Change permissions:

$ chmod 755 startCloudera.sh

	Start the Container:

$ /startCloudera.sh

It will have to first download the Docker image, which is about 4GB,
so give it some time.

Step 3: Login to the Cloudera Container and Start Cloudera Manager

	Login to the Docker container:

$ docker exec -it cloudera bash

	Start Cloudera Manager:

$ /home/cloudera/cloudera-manager --express

	Login to Cloudera Manager:

<EC2_HOST>:7180 (username/password is cloudera/cloudera)

	Start all services in Cloudera Manager.

Step 4: Install Kylo in the Docker Container

	Follow the Setup Wizard guide

Setup Wizard Deployment Guide

	Login to Kylo at <EC2_HOST>:8400, and NiFi at <EC2_HOST>:8079.

Shutting down the container when not in use

EC2 instance can get expensive to run. If you don’t plan to use the
sandbox for a period of time, we recommend shutting down the EC2
instance. Here are instructions on how to safely shut down the Cloudera
sandbox and CoreOS host.

	Login to Cloudera Manager and tell it to stop all services.

	On the CoreOS host, type “docker stop cloudera”.

	Shutdown the EC2 Instance.

Starting up an Existing EC2 instance and Cloudera Docker Container

	Start the EC2 instance.

	Login to the CoreOS host.

	Type “docker start cloudera” to start the container.

	SSH into the docker container.

$ docker exec -it cloudera bash

	Start Cloudera Manager.

$ /home/cloudera/cloudera-manager --express

	Login to Cloudera Manager and start all services.

Hortonworks Sandbox Configuration

Introduction

This guide will help you install the Hortonworks sandbox for development
and RPM testing.

Install and Configure the Hortonworks Sandbox

Download the latest HDP sandbox and import it into Virtual Box. We want
to change the CPU and and RAM settings:

	CPU - 4

	RAM - 10GB

Hortonworks Sandbox

Add Virtual Box Shared Folder

Adding a shared folder to Virtual Box will allow you to access the Kylo project folder outside of the VM so you can copy
project artifacts to the sandbox for testing.

Note

This should be done before starting the VM to that you can auto mount the folder.

VBox GUI > Settings > Shared Folders > Add

Folder Path = <pathToProjectFolder>
Folder Name = kylo

Choose Auto-mount so that it remembers next time you start the VM.

Open VM Ports

The following ports needs to be forwarded to the VM:

(On Virtual Box > Settings > Network > Port Forwarding

This table shows the ports to add.

	Application Name

	Host Port

	Guest Port

	Comment

	Kylo UI

	8401

	8400

	Use 8401 on the HostIP side so that you can run it in your IDE under 8400 and still test in the VM

	Kylo Spark Shell

	8450

	8450

	

	NiFi

	8079

	8079

	

	ActiveMQ Admin

	8161

	8161

	

	ActiveMQ JMS

	61616

	61616

	

	MySQL

	3306

	3306

	

Note

HDP 2.5+ sandbox for VirtualBox now uses Docker container, which means configuring port-forwarding in the VirtualBox UI is not enough anymore. You should do some extra steps described in: 2.5+ Sandbox port forwarding on VirtualBox

Startup the Sandbox

	Start the sandbox.

	SSH into the sandbox.

$ ssh root@localhost -p 2222 (password is "kylo")

Note

You will be prompted to change your password.

	Add the Ambari admin password.

$ ambari-admin-password-reset

After setting the password the Ambari server will be started.

Kerberos Installation Example - Cloudera

Note

This document was developed by going through these steps in a base CDH Sandbox 5.4, not the newer Kylo sandbox on Cloudera distribution.

Important

This document should only be used for DEV/Sandbox purposes. It is useful to help quickly Kerberize your Cloudera sandbox so that you can test Kerberos features.

Prerequisite

Java

All client node should have java installed on it.

$ java -version
version "1.7.0_80"
Java(TM) SE Runtime Environment (build 1.7.0_80-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.80-b11, mixed mode)

$ echo $JAVA_HOME
/usr/java/jdk1.7.0_80

Install Java Cryptography Extensions (JCE)

sudo wget -nv --no-check-certificate --no-cookies --header "Cookie:oraclelicense=accept-securebackup-cookie" http://download.oracle.com/otn-pub/java/jce/7/UnlimitedJCEPolicyJDK7.zip -O /usr/java/jdk1.7.0_80/jre/lib/security/UnlimitedJCEPolicyJDK7.zip

cd /usr/java/jdk1.7.0_80/jre/lib/security

sudo unzip UnlimitedJCEPolicyJDK7.zip

sudo cp UnlimitedJCEPolicy/* .

#sudo rm -r UnlimitedJCEPolicy*

ls -l

Test Java Cryptography Extension

Create a java Test.java and paste below mentioned code in it.

$ vi Test.java

import javax.crypto.Cipher;
class Test {
public static void main(String[] args) {
try {
 System.out.println("Hello World!");
 int maxKeyLen = Cipher.getMaxAllowedKeyLength("AES");
 System.out.println(maxKeyLen);
} catch (Exception e){
 System.out.println("Sad world :(");
}
}
}

Compile:

$ javac Test.java

Run test, the expected number is: 2147483647

$ java Test
Hello World!
2147483647

Install Kerberos

On a cluster, go to the master node for installation of Kerberos utilities.

	Install a new version of the KDC server:

yum install krb5-server krb5-libs krb5-workstation

	Using a text editor, open the KDC server configuration file, located by default here:

vi /etc/krb5.conf

	Change the [realms] as below to “quickstart.cloudera” . Update KDC and Admin Server Information.

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = quickstart.cloudera
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true

[realms]
 quickstart.cloudera = {
 kdc = quickstart.cloudera
 admin_server = quickstart.cloudera
 }

	Update /var/kerberos/krb5kdc/kdc.conf. Change the [realms] as “quickstart.cloudera”.

[kdcdefaults]
 kdc_ports = 88
 kdc_tcp_ports = 88

[realms]
 quickstart.cloudera = {
 #master_key_type = aes256-cts
 acl_file = /var/kerberos/krb5kdc/kadm5.acl
 dict_file = /usr/share/dict/words
 admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab
 supported_enctypes = aes256-cts:normal aes128-cts:normal
 des3-hmac-sha1:normal arcfour-hmac:normal des-hmac-sha1:normal
 des-cbc-md5:normal des-cbc-crc:normal
 }

	Update /var/kerberos/krb5kdc/kadm5.acl and replace EXAMPLE.COM with “quickstart.cloudera”.

*/admin@quickstart.cloudera *

	Create the Kerberos Database. Use the utility kdb5_util to create the Kerberos database. While asking for password , enter password as thinkbig.

kdb5_util create -s

	Start the KDC. Start the KDC server and the KDC admin server.

/etc/rc.d/init.d/krb5kdc start
/etc/rc.d/init.d/kadmin start

Note

When installing and managing your own MIT KDC, it is very important to set up the KDC server to auto start on boot.

chkconfig krb5kdc on
chkconfig kadmin on

	Create a KDC admin by creating an admin principal. While asking for password , enter password as thinkbig.

kadmin.local -q "addprinc admin/admin"

	Confirm that this admin principal has permissions in the KDC ACL. Using a text editor, open the KDC ACL file:

vi /var/kerberos/krb5kdc/kadm5.acl

	Ensure that the KDC ACL file includes an entry so to allow the admin principal to administer the KDC for your specific realm. The file should have an entry:

/quickstart.cloudera

	After editing and saving the kadm5.acl file, you must restart the kadmin process.

/etc/rc.d/init.d/kadmin restart

	Create a user in the linux by typing below. We will use this user to test whether the Kerberos authentication is working or not. We will first run the command hadoop fs ls / but switching to this user. And we will run the same command again when we enable Kerberos.

adduser testUser
su testUser
hadoop fs ls /

Install Kerberos on Cloudera Cluster

	Login to Cloudera Manager and Select Security option from Administration tab.

[image: image1]

	Click on Enable Kerberos.

[image: image2]

	Select each item and click on continue.

[image: image3]

	The Kerberos Wizard needs to know the details of what the script configured. Fill in the entries as follows and click continue.

KDC Server Host: quickstart.cloudera
Kerberos Security Realm: quickstart.cloudera
Kerberos Encryption Types: aes256-cts-hmac-sha1-96

[image: image4]

	Select checkbox Manage krb5.conf through cloudera manager.

[image: image5]

	Enter username and password for of KDC admin user.

Username : admin/admin@quickstart.cloudera
Password : thinkbig

The next screen provides good news. It lets you know that the wizard was able to successfully authenticate.

[image: image6]

	Select “I’m ready to restart the cluster now” and click on continue.

[image: image7]

	Make sure all services started properly. Kerberos is successfully installed on cluster.

KeyTab Generation

	Create a keytab file for Nifi user.

kadmin.local
addprinc -randkey nifi@quickstart.cloudera
xst -norandkey -k /etc/security/nifi.headless.keytab nifi@quickstart.cloudera
exit

chown nifi:hadoop /etc/security/keytabs/nifi.headless.keytab
chmod 440 /etc/security/keytabs/nifi.headless.keytab

[Optional] You can initialize your keytab file using below command.

kinit -kt /etc/security/keytabs/nifi.headless.keytab nifi

Kerberos Installation Example - HDP 2.4

Important

This document should only be used for DEV/Sandbox installation purposes. It is useful to help quickly Kerberize your Hortonworks sandbox so that you can test Kerberos features.

Prerequisite

Java

Java must be installed on all client nodes.

$ java -version
java version "1.7.0_80"
Java(TM) SE Runtime Environment (build 1.7.0_80-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.80-b11, mixed mode)

$ echo $JAVA_HOME
/usr/java/jdk1.7.0_80

Install Java Cryptography Extensions (JCE)

sudo wget -nv --no-check-certificate --no-cookies --header "Cookie: oraclelicense=accept-securebackup-cookie" http://download.oracle.com/otn-pub/java/jce/7/UnlimitedJCEPolicyJDK7.zip -O /usr/java/jdk1.7.0_80/jre/lib/security/UnlimitedJCEPolicyJDK7.zip
cd /usr/java/jdk1.7.0_80/jre/lib/security

sudo unzip UnlimitedJCEPolicyJDK7.zip
sudo cp UnlimitedJCEPolicy/* .
#sudo rm -r UnlimitedJCEPolicy*

ls -l

Test Java Cryptography Extension

Create a java Test.java and paste below mentioned code in it.

$ vi Test.java

import javax.crypto.Cipher;
class Test {
public static void main(String[] args) {
try {
 System.out.println("Hello World!");
 int maxKeyLen = Cipher.getMaxAllowedKeyLength("AES");
 System.out.println(maxKeyLen);
} catch (Exception e){
 System.out.println("Sad world :(");
}
}
}

Compile:

$ javac Test.java

Run test. The expected number is: 2147483647.

$ java Test

Hello World!

2147483647

Install Kerberos

On a cluster, go to the master node for installation of Kerberos
utilities.

	Install a new version of the KDC server:

yum install krb5-server krb5-libs krb5-workstation

	Using a text editor, open the KDC server configuration file, located by default here:

vi /etc/krb5.conf

	Change the [realms], as below, to sandbox.hortonworks.com. Update KDC and Admin Server Information.

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = sandbox.hortonworks.com
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true

[realms]
 sandbox.hortonworks.com = {
 kdc = sandbox.hortonworks.com
 admin_server = sandbox.hortonworks.com
 }

	Update /var/kerberos/krb5kdc/kdc.conf. Change the [realms] as sandbox.hortonworks.com.

[kdcdefaults]
 kdc_ports = 88
 kdc_tcp_ports = 88

[realms]
 sandbox.hortonworks.com = {
 #master_key_type = aes256-cts
 acl_file = /var/kerberos/krb5kdc/kadm5.acl
 dict_file = /usr/share/dict/words
 admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab
 supported_enctypes = aes256-cts:normal aes128-cts:normal
 des3-hmac-sha1:normal arcfour-hmac:normal des-hmac-sha1:normal
 des-cbc-md5:normal des-cbc-crc:normal
 }

	Update /var/kerberos/krb5kdc/kadm5.acl and replace EXAMPLE.COM with sandbox.hortonworks.com.

*/admin@sandbox.hortonworks.com *

	Create the Kerberos Database. Use the utility kdb5_util to create the Kerberos database. Enter the password: thinkbig.

kdb5_util create -s

	Start the KDC. Start the KDC server and the KDC admin server.

/etc/rc.d/init.d/krb5kdc start
/etc/rc.d/init.d/kadmin start

or

systemctl start krb5kdc.service
systemctl start kadmin.service

	When installing and managing your own MIT KDC, it is important to set up the KDC server to auto-start on boot.

chkconfig krb5kdc on
chkconfig kadmin on

or

systemctl enable krb5kdc.service
systemctl enable kadmin.service

	Create a KDC admin by creating an admin principal. Enter the password: thinkbig.

kadmin.local -q "addprinc admin/admin"

	Confirm that this admin principal has permissions in the KDC ACL. Using a text editor, open the KDC ACL file:

vi /var/kerberos/krb5kdc/kadm5.acl

	Ensure that the KDC ACL file includes an entry that allows the admin principal to administer the KDC for your specific realm. The file should have an entry:

*/admin@sandbox.hortonworks.com *

	After editing and saving the kadm5.acl file, restart the kadmin process.

/etc/rc.d/init.d/kadmin restart
/etc/rc.d/init.d/krb5kdc restart

or

systemctl restart kadmin.service
systemctl restart krb5kdc.service

	Create a user in Linux by typing the adduser command as shown below. We will use this user to test whether the Kerberos authentication is working or not. We will first run the command hadoop fs -ls / but switching to this user. And we will run the same command again when we enable Kerberos.

adduser testUser
su testUser
hadoop fs -ls /

Install Kerberos on an HDP Cluster

	Open Ambari and then go to admin tab and select Kerberos.

[image: image1]

	Click on enable Kerberos. Then following screen will display. Tick the checkboxes as shown in this screenshot, then click Next.

[image: image2]

	Put sandbox.hortonworks.com in the KDC tab and click to test the KDC connection. Then, in Kadmin, put sandbox.hortonworks.com as host and admin principal as *admin/admin@sandbox.hortonworks.com*, and enter the password created in step 7.

Leave the advanced Kerberos-env and advanced krb5-conf as it is. And click Next.

[image: image3]

	Download the .csv file and save it.

[image: image4]

	Click Next through the end of the process, until finally you can click Complete.

[image: image5]

Kerberos Installation Example - Cloudera

Make sure all services started properly. Kerberos is successfully installed on the cluster.

Writing Spark Function Definitions

Tern defines the definitions file format for displaying the list of functions, providing auto-completion, and showing hints. Kylo extends this format by providing additional fields that describe how to convert the function into Scala code.

The definitions are loaded from json files matching *spark-functions.json in the Kylo classpath and merged into a single document to be used by the Kylo UI. Duplicate functions are ignored.

Data Types

An expression may consist of may different data types but the end result is to produce a DataFrame.

Arrays

An array is a collection of zero or more literals of the same type.

Booleans

A Boolean value is either true or false.

Columns

A Column is an object that represents a DataFrame column. It has an optional alias property which defines the name of the column.

Numbers

Numbers can be either literal integers or floating-point values. They will be automatically converted to a Column if required.

Objects

An Object is any Scala class type. No conversions are performed on objects.

Strings

Strings should be enclosed in double quotes. They are automatically converted to a Column if required.

Definitions

Function definitions are declared in a JSON document that maps a function name to a definition. Each definition is an object with special directives indicating the function arguments, return value, documentation, and a Spark conversion string. The JSON document also has a special directive with the name of the document.

{
 "!name": "ExampleDefinition",
 "add": {
 "!type": "fn(col1: Column, col2: Column) -> Column",
 "!doc": "Add two numbers together.",
 "!spark": "%c.plus(%c)"
 "!sparkType": "column"
 }
}

The above document is named ExampleDefinition as declared by the !name directive. It contains a single function named add and the !type directive indicates it takes two Column arguments and outputs a Column. The strings for the !doc and !type directives will be displayed in the autocomplete menu. The !spark directive defines the Spark conversion string for converting the expression to Spark code, and the !sparkType directive indicates is produces a Column object.

Spark Conversion String Syntax

The conversion string consists of literal characters that are copied as-is to the Spark code and conversion specifications that either consume one of the function arguments.

The conversion specifications have the following syntax:

%[flags]conversion

Conversion

The following conversions are supported:

	Type Specifier

	Description

	Example Spark Result

	b

	Expects the argument to be a literal boolean, either true

or false. The result is a literal boolean.

	true

	c

	The result is a Column object. All input types are

supported.

	new Column(“mycol”)

	d

	Expects the argument to be a literal integer. The result is a

literal integer.

	123

	f

	Expects the argument to be a literal floating-point

number. The result is a literal double.

	123.5

	o

	The result is a Scala object.

	

	r

	The result is a DataFrame object.

	

	s

	Expects the argument to be a literal of any type. The

result is a literal string.

	“myval”

Flags

The following flags are supported:

	Flag

	Description

	Example Spark Result

	?

	The conversion is optional and will be ignored if

there are no more arguments left to consume.

	

	*

	The conversion should consume all remaining

arguments, if any. Useful for var-arg functions.

	new Column(“arg1”), new Column(“arg2”)

	,

	The conversion should begin with a comma.

	, new Column(“arg1”)

	@

	The result is an array of the specified type.

	Array(“value1”, “value2”)

Spark Types

The !sparkType directive indicates the type produced by the !spark directive.

	Type

	Description

	array

	A Scala array.

	column

	A Spark SQL Column object.

	dataframe

	A Spark SQL DataFrame object.

	literal

	A Scala literal value.

	transform

	A function that takes a DataFrame and returns a DataFrame.

Any other type is assumed to be a class type.

Column Functions

These functions are instance methods of the Column class.

	as

	fn (alias: string) -> Column

Gives the column an alias.

	cast

	fn (to: string) -> Column

Casts the column to a different type.

	over

	fn (window: WindowSpec) -> Column

Define a windowing column.

Resources

Additional information on the Tern JSON format is available in the JSON Type Definitions section of the Tern docs.

Events

Kylo publishes events to a message bus that you can subscribe to and react to changes in the system with custom plugins.

Below is a listing of the events Kylo publishes.

	Event

	Description

	CategoryChangeEvent

	Called when a Category is created, updated, or deleted

	FeedChangeEvent

	Called when a Feed is created, updated, or deleted

	FeedPropertyChangeEvent

	Called when a user updates the generic set of properties on a feed. See the Nifi processor PutFeedMetadata [https://github.com/Teradata/kylo/blob/master/integrations/nifi/nifi-nar-bundles/nifi-core-bundle/nifi-core-processors/src/main/java/com/thinkbiganalytics/nifi/v2/metadata/PutFeedMetadata.java]

	PreconditionTriggerEvent

	Called when a precondition is fired for a feed

	CleanupTriggerEvent

	Called when a feed is being cleaned up after a delete

	FeedOperationStatusEvent

	Called when a Job for a feed has started, stopped, succeeded, failed, or been abandoned

	TemplateChangeEvent

	Called when a Template is created, updated, or deleted

	ServiceLevelAgreementEvent

	As of Kylo 0.8.4, Called only when an SLA is deleted.

Event Source

All events extends the AbstractMetadataEvent object.
You can find relevant source code for the events here: https://github.com/Teradata/kylo/tree/master/metadata/metadata-api/src/main/java/com/thinkbiganalytics/metadata/api/event

Example Feed Change Listener

import com.thinkbiganalytics.metadata.api.event.MetadataChange;
import com.thinkbiganalytics.metadata.api.event.MetadataEventListener;
import com.thinkbiganalytics.metadata.api.event.MetadataEventService;
import com.thinkbiganalytics.metadata.api.event.feed.FeedChangeEvent;
import com.thinkbiganalytics.metadata.api.event.feed.FeedOperationStatusEvent;
import com.thinkbiganalytics.metadata.api.feed.Feed;
import com.thinkbiganalytics.metadata.api.op.FeedOperation;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Component;

import java.util.Optional;

import javax.annotation.Nonnull;
import javax.annotation.PostConstruct;
import javax.inject.Inject;

@Component
public class ExampleFeedListener {

 private static final Logger log = LoggerFactory.getLogger(ExampleFeedListener.class);

 @Inject
 private MetadataEventService metadataEventService;

 /**
 * Listen for when feeds change
 */
 private final MetadataEventListener<FeedChangeEvent> feedPropertyChangeListener = new FeedChangeEventDispatcher();

 /**
 * Listen for when feed job executions change
 */
 private final MetadataEventListener<FeedOperationStatusEvent> feedJobEventListener = new FeedJobEventListener();

 @PostConstruct
 public void addEventListener() {
 metadataEventService.addListener(feedPropertyChangeListener);
 metadataEventService.addListener(feedJobEventListener);
 }

 private class FeedChangeEventDispatcher implements MetadataEventListener<FeedChangeEvent> {

 @Override
 public void notify(@Nonnull final FeedChangeEvent metadataEvent) {

 //feedName will be the 'categorySystemName.feedSystemName'
 Optional<String> feedName = metadataEvent.getData().getFeedName();

 //the id for the feed
 Feed.ID feedId = metadataEvent.getData().getFeedId();

 //feed state will be NEW, ENABLED, DISABLED, DELETED
 Feed.State feedState = metadataEvent.getData().getFeedState();

 if (feedName.isPresent()) {
 log.info("Feed {} ({}) has been {} ", feedName.get(), feedId, metadataEvent.getData().getChange());
 Feed.State state = metadataEvent.getData().getFeedState();
 if (metadataEvent.getData().getChange() == MetadataChange.ChangeType.CREATE) {
 //Do something on Create
 } else if (metadataEvent.getData().getChange() == MetadataChange.ChangeType.UPDATE) {
 //Do something on Update
 } else if (metadataEvent.getData().getChange() == MetadataChange.ChangeType.DELETE) {
 //Do something on Delete
 }

 }
 }
 }

 private class FeedJobEventListener implements MetadataEventListener<FeedOperationStatusEvent> {

 @Override
 public void notify(FeedOperationStatusEvent event) {

 //feedName will be the 'categorySystemName.feedSystemName'
 String feedName = event.getData().getFeedName();

 //the id for the feed
 Feed.ID feedId = event.getData().getFeedId();

 //This is the Job Execution Id
 FeedOperation.ID jobId = event.getData().getOperationId();

 //this is {STARTED, SUCCESS, FAILURE, CANCELED, ABANDONED}
 FeedOperation.State jobState = event.getData().getState();

 //this is CHECK or FEED. CHECK refers to a Data Confidence Job
 FeedOperation.FeedType feedType = event.getData().getFeedType();

 //a string message of what the event is for
 String statusMessage = event.getData().getStatus();

 if(event.getData().getState() == FeedOperation.State.SUCCESS){
 // Do something if a Job successfully completes
 }
 }
 }

}

Operations Guide

Purpose

This guide provides instructions for operating and maintaining
the Kylo solution. The information is used by the Operations and Support
Team in the deployment, installation, updating, monitoring and support
of Kylo.

Scope

This guide is not a step-by-step process for the Operations Team, but a
set of examples that we have assembled from our previous experiences.

Audience

This guide assumes its user to be knowledgeable in IT terms and skills.
As an operations and maintenance (O&M) runbook, it describes the
information necessary to effectively manage:

	Production processing

	Ongoing maintenance

	Performance monitoring

This document specifically serves to guide those who will be
maintaining, supporting, and using the Kylo solution in day-to-day
operational basis.

Abbreviations

	Abbreviations/Key term

	Definition

	O&M

	Operations and Maintenance

	CLI

	Command Line Interface

	ES

	ElasticSearch

Introduction

Kylo is a software application that provides scheduling, monitoring, and control for data processing jobs. Kylo includes its own web-based
interface intended for an Operations user to visualize status of processing and assist with troubleshooting problems.

Please note, this Operations Guide is provided in its entirety, despite the fact that not all features may be utilized within a particular
solution.

Common Definitions

The following terms are used in this document or are relevant to understanding the nature of Kylo processing.

	Term

	Definition

	Job

	A Job consists of a sequence of processing tasks called steps.

A Job has both status and state that indicate its outcome.

	Feed

	A feed is a pipeline, jobs are run for feeds. The “health” status of a feed (regardless of its running state) can be visualized on the Kylo Dashboard page.

	Check Data Job

	An optional job type employed for independent data quality checks against customer data with results contributing to a “Data Confidence” metric visible on the Dashboard page.

	Step

	A unit of processing in a job sequence. A job consists of one or more steps. Each step also has both status and state, similar to that of a job. Steps may capture metadata, stored in Postgres and viewable in the application.

	Job Instance Id

	The Job Instance and its corresponding Job Instance Id refer to a logical Job run (i.e. A Job with a set of Job Parameters).

A Job Instance can have multiple Job Executions, but only one successful Job Execution.

	Job Execution Id

	The Job Execution and corresponding Job Execution Id refer to a single attempt to run a Job Instance. A Job Instance can have multiple Job Executions if some fail and are restarted.

User Interface

Kylo has a web-based user interface designed for an Operations user to
monitor and managing data processing. The default URL is
http://<hostname>:8400/, however the port may be configured via the
application.properties.

The following sections describe characteristics of the user interface.

Dashboard Page

The Dashboard tab performs the role of an Operations Dashboard. Content
in the page automatically refreshes showing real-time health and
statistics about data feeds and job status.

[image: image2]

Kylo Dashboard Page

Key Performance Indicators

The Dashboard page has multiple indicators that help you quickly assess
the health of the system:

	[image: image3]

	Provides a health status of external dependencies such as MySQL or Postgres, Hadoop services.

	[image: image4]

	Provides a summary health status of all data feeds. Details of these feeds are shown in a table, Feed Health, also on the Dashboard Page

	[image: image5]

	Optional. Displays a confidence metric updated by any Data Quality Check jobs.

	[image: image6]

	Displays all running jobs.

	[image: image7]

	Displays alerts for services and feeds. Click on them for more information.

Feed Health

The Feed Health Table provides the state and status of each data feed
managed by Kylo. The state is either HEALTHY or UNHEALTHY. The status is
the status of the most recent job of the feed. You can drill into a
specific feed and see its *history* by clicking
on the name of the feed in the table.

[image: image8]

Active Jobs

The Active Jobs table shows currently running jobs as well as any failed
jobs that require user attention. The table displays all jobs. A user
may drill-in to view *Job Details* by
clicking on the corresponding Job Name cell. Jobs can be controlled via
action buttons. Refer to the *Controlling Jobs*
section to see the different actions that can be performed for a Job.

Understanding Job Status

Jobs have two properties that indicate their status and state, Job
Status and Exit Code respectively.

Job Status

The Job Status is the final outcome of a Job.

	COMPLETED – The Job finished.

	FAILED – The Job failed to finish.

	STARTED – The Job is currently running.

	ABANDONED – The Job was abandoned.

Job Exit Codes

The Exit Code is the state of the Job.

	COMPLETED – The Job Finished Processing

	EXECUTING - The Job is currently in a processing state

	FAILED – The Job finished with an error

	ABANDONED – The Job was manually abandoned

Controlling Jobs

The image below illustrates the different actions that can be
performed based on its Job Status:

[image: image10]

Feed History Page

Kylo stores history of each time a feed is executed. You can access this
data by clicking on the specific feed name in the Feed Health table on
the Dashboard page. Initially the Feeds table provides high-level data
about the feed.

[image: image11]

You can get more data by clicking on a job in the Feed Jobs table. This
will go into the Job Details page for that job.

Job History Page

Job history can be accessed in the Jobs Tab.

[image: image12]

The Job History page provides a searchable table displaying job
information, seen below. You can click on the Job Name to view the *Job
Details* for the selected Job.

[image: image13]

Job Detail Drill-Down

Clicking on the Job Name from either the Jobs Tab or Feeds Tab accesses
the Job Details. It shows all information about a job including any
metadata captured during the Job run.

The detail page is best source for troubleshooting unexpected behavior
of an individual job.

[image: image14]

Job Status Info

Job Status information such as start and run time, along with any
control actions, are displayed on the right.

[image: image15]

Job Parameters

A Job has a set of parameters that are used as inputs into that job. The
top section of the Job Details page displays these
parameters. [image: image16]

Job Context Data

As a Job runs operational metadata is captured and step status is visible in the Job page.

This metadata is stored in the Job Context section. Access this section
by clicking on the Execution Context Data button next to the Job
Parameters button in the previous figure.

Step Context Data

A job can have multiple steps, each of which capture and store metadata
as it relates to that step.

[image: image17]

Scheduler Page

The scheduling of SLAs can be viewed and via the “Scheduler” tab.

This allows a user to pause the entire Scheduler, pause specific SLAs,
and even manually trigger SLAs to execute.

[image: image18]

Changing an SLA

To change the schedule of a given SLA :

	Click on the SLA tab in the Feed Manager site.

[image: image19]

	Select the SLA whose schedule you would like to change.

[image: image20]

	Edit the configurations and click Save SLA.

[image: image21]

Filtering Job History

The following section describes how to filter the job and feed history
tables. Kylo provides a dynamic filter capability for any table
displaying multiple rows of information.

Data Table Operations

Sorting Content

All tables allow for the columns to be sorted. An arrow will appear next
to the column indicating the sort direction. Click on the column header
to change the sort.

Filtering Tables

All Tables in Kylo have a Filter bar above them. The rows can be
filtered using the search bar at the top.

[image: image22]

Clicking on the [image: image23] icon in the top right of the table will
display the table so that you can sort by column.

[image: image24]

Click on any of the column headers, or click on the [image: image25] icon in
the top right of the table, to sort.

Charts and Pivot Tables

The Charts tab allows you to query and perform data analysis on the Jobs
in the system. The right panel allows you to provide filter input that
will drive the bottom Pivot Chart panel.

[image: image26]

The Pivot Charts panel is a rich drag and drop section that allows you
to create custom tables and charts by dragging attributes around. The
drop down at the top left allows you to choose how you want to display
the data

[image: image27]

The data attributes at the top can be dragged into either Column Header
or Row level attributes for the rendered pivot.

[image: image28]

Clicking the down arrow on each attribute allows you to filter out
certain fields.

[image: image29]

This interface allows you to filter the job data and create many
different combinations of tables and charts.

Software Components

The following provides a basic overview of the components and
dependencies for Kylo:

	Web-based UI (tested with Safari, Firefox, Chrome)

	Embedded Tomcat web container (configurable HTTP port)

	Java 8

	Stores job history and metadata in Postgres or MySQL

	NiFi 1.x+

	ActiveMQ

	Elasticsearch (optional, but required for full feature set)

Installation

Please refer to the installation guide for Kylo installation procedures.

Application Configuration

Configuration files for Kylo are located at:

/opt/kylo/kylo-services/conf/application.properties
/opt/kylo/kylo-ui/conf/application.properties

Application Properties

The application.properties file in kylo-services specifies most of
the standard configuration in pipeline.

Note

Any change to the application properties will require an application restart.

Below is a sample properties file with Spring Datasource properties for spring batch and the default data source:

Note

Cloudera default password for root access to mysql is “cloudera”.

spring.datasource.url=jdbc:mysql://localhost:3306/kylo
spring.datasource.username=root
spring.datasource.password=
spring.datasource.maxActive=10
spring.datasource.validationQuery=SELECT 1
spring.datasource.testOnBorrow=true
spring.datasource.driverClassName=com.mysql.jdbc.Driver
spring.jpa.database-platform=org.hibernate.dialect.MySQL5InnoDBDialect
spring.jpa.open-in-view=true
#
#Postgres datasource configuration
#
#spring.datasource.url=jdbc:postgresql://localhost:5432/pipeline_db
#spring.datasource.driverClassName=org.postgresql.Driver
#spring.datasource.username=root
#spring.datasource.password=thinkbig
#spring.jpa.database-platform=org.hibernate.dialect.PostgreSQLDialect
###
Current available authentication/authorization profiles:
* auth-simple - Uses authenticationService.username and authenticationService.password for authentication (development only)
* auth-file - Uses users.properties and roles.properties for authentication and role assignment
#
spring.profiles.active=auth-simple
authenticationService.username=dladmin
authenticationService.password=thinkbig
###Ambari Services Check
ambariRestClientConfig.username=admin
ambariRestClientConfig.password=admin
ambariRestClientConfig.serverUrl=http://127.0.0.1:8080/api/v1
ambari.services.status=HDFS,HIVE,MAPREDUCE2,SQOOP
###Cloudera Services Check
#clouderaRestClientConfig.username=cloudera
#clouderaRestClientConfig.password=cloudera
#clouderaRestClientConfig.serverUrl=127.0.0.1
#cloudera.services.status=
##HDFS/[DATANODE,NAMENODE,SECONDARYNAMENODE],HIVE/[HIVEMETASTORE,HIVESERVER2],YARN,SQOOP
Server port
#
server.port=8420
#
General configuration - Note: Supported configurations include STANDALONE, BUFFER_NODE_ONLY, BUFFER_NODE, EDGE_NODE
#
application.mode=STANDALONE
#
Turn on debug mode to display more verbose error messages in the UI
#
application.debug=true
#
Prevents execution of jobs at startup. Change to true, and the name of the job that should be run at startup if we want that behavior.
#
spring.batch.job.enabled=false
spring.batch.job.names=
#spring.jpa.show-sql=true
#spring.jpa.hibernate.ddl-auto=validate
NOTE: For Cloudera metadata.datasource.password=cloudera is required
metadata.datasource.driverClassName=com.mysql.jdbc.Driver
metadata.datasource.url=jdbc:mysql://localhost:3306/kylo
metadata.datasource.username=root
metadata.datasource.password=
metadata.datasource.validationQuery=SELECT 1
metadata.datasource.testOnBorrow=true

NOTE: For Cloudera hive.datasource.username=hive is required.

hive.datasource.driverClassName=org.apache.hive.jdbc.HiveDriver
hive.datasource.url=jdbc:hive2://localhost:10000/default
hive.datasource.username=
hive.datasource.password=
NOTE: For Cloudera hive.metastore.datasource.password=cloudera is required.
##Also Clouder url should be /metastore instead of /hive
hive.metastore.datasource.driverClassName=com.mysql.jdbc.Driver
hive.metastore.datasource.url=jdbc:mysql://localhost:3306/hive
#hive.metastore.datasource.url=jdbc:mysql://localhost:3306/metastore
hive.metastore.datasource.username=root
hive.metastore.datasource.password=
hive.metastore.validationQuery=SELECT 1
hive.metastore.testOnBorrow=true
nifi.rest.host=localhost
nifi.rest.port=8079
elasticsearch.host=localhost
elasticsearch.port=9300
elasticsearch.clustername=demo-cluster
used to map Nifi Controller Service connections to the User Interface
naming convention for the property is nifi.service.NIFI_CONTROLLER_SERVICE_NAME.NIFI_PROPERTY_NAME
##anything prefixed with nifi.service will be used by the UI. Replace Spaces with underscores and make it lowercase.
nifi.service.mysql.password=
nifi.service.example_mysql_connection_pool.password=
jms.activemq.broker.url:tcp://localhost:61616
jms.client.id=thinkbig.feedmgr
nifi Property override with static defaults
##Static property override supports 2 usecases
1) store properties in the file starting with the prefix defined in the "PropertyExpressionResolver class" default = config.
2) store properties in the file starting with "nifi.<PROCESSORTYPE>.<PROPERTY_KEY> where PROCESSORTYPE and PROPERTY_KEY are all lowercase and the spaces are substituted with underscore
##Below are Ambari configuration options for Hive Metastore and Spark location
config.hive.schema=hive
nifi.executesparkjob.sparkhome=/usr/hdp/current/spark-client
##cloudera config
#config.hive.schema=metastore
#nifi.executesparkjob.sparkhome=/usr/lib/spark
how often should SLAs be checked
sla.cron.default=0 0/5 * 1/1 * ? *

Kylo Metadata

Kylo stores its metadata in the database configured in
/opt/kylo/kylo-services/conf/application.properties in the
following lines:

metadata.datasource.driverClassName=com.mysql.jdbc.Driver
metadata.datasource.url=jdbc:mysql://localhost:3306/kylo
metadata.datasource.username=root
metadata.datasource.password=

The metadata database needs to be configured in order to have Kylo
metadata backed up and recovered.

For example, MySQL backup can be configured using the methods provided
at http://dev.mysql.com/doc/refman/5.7/en/backup-methods.html.

NiFi Data

Data and metadata in NiFi is intended to be transient, and depends on
the state of the flows in NiFi. However, NiFi can be configured to keep
metadata and data in certain directories, and those directories can be
backed up as seen fit. For example, in the nifi.properties file,
changing

nifi.flow.configuration.file=/opt/nifi/data/conf/flow.xml.gz

will have NiFi store its flows in /opt/nifi/data/conf/flow.xml.gz.

With a default Kylo installation, NiFi is configured to put all of its
flows, templates, data in the content repository, data in the flowfile
repository, and data in the provenance repository in /opt/nifi/data. For
more information about these configurations, the NiFi system
administrator’s guide is the authority.

https://nifi.apache.org/docs/nifi-docs/html/administration-guide.html

Startup and Shutdown

Kylo service automatically starts on system boot.

	Manual startup and shutdown from command-line:

$ sudo /etc/init.d/kylo-services start
$ sudo /etc/init.d/kylo-ui start
$ sudo /etc/init.d/kylo-spark-shell start

$ sudo /etc/init.d/kylo-services stop
$ sudo /etc/init.d/kylo-ui stop
$ sudo /etc/init.d/kylo-spark-shell stop

Log Files

Kylo uses Log4J as its logging provider.

	Default location of application log file is:

/var/log/kylo-<ui, services, or spark-shell>/

	Log files roll nightly with pipeline-application.log.<YYYY-MM-DD>

	Log levels, file rotation, and location can be configured via:

/opt/kylo/kylo-<ui, services, or
spark-shell>/conf/log4j.properties

Additional Configuration

The following section contains additional configuration that is
possible.

Configuring JVM Memory

You can adjust the memory setting of the Kylo Service using the
KYLO_SERVICES_OPTS environment variable. This may be necessary if
the application is experiencing OutOfMemory errors. These would appear
in the log files.

export KYLO_SERVICES_OPTS="-Xmx2g"

The setting above would set the Java maximum heap size to 2 GB.

Service Status Configuration

The Dashboard page displays Service Status as a Key Performance
Indicator. The list of services is configurable using the following
instructions:

Viewing Service Details

Within Kylo on the Dashboard tab the “Services” indicator box shows the
services it is currently monitoring. You can get details of this by
clicking on the Services tab:

[image: image30]

[image: image31]

[image: image32]

The Services Indicator automatically refreshes every 15 seconds to
provide live updates on service status.

Example Service Configuration

The below is the service configuration monitoring 4 services:

ambari.services.status=HDFS,HIVE,MAPREDUCE2,SQOOP

Migrating Templates and Feeds

Exporting Registered Templates

In Kylo, a template can be exported from one instance of Kylo to
another. To export a template, navigate to the Feed Manager site by
clicking Feed Manager on the left pane.

[image: image33]

Then navigate to the Templates tab. All of the templates that have been
registered in this instance of Kylo will be listed here. [image: image34]

To export a template, click the Export button for that template. This
will download a zip archive of the template.

Importing Registered Templates

To import a registered template, on the Templates tab click on the
[image: image35] button in the top right. Select Import from File.

[image: image36]

Browse for the zip archive of the registered template, select whether or
not to overwrite any existing registered templates with the same name,
and click upload.

[image: image37]

The template is now in the list of registered templates, and a feed can
be created from it. This will also import the associated NiFi template
into NiFi.

Exporting Feeds

To export a feed for deployment in another instance of Kylo, click on
the Feeds tab. Similarly to the templates page, there will be a
list, this time with feeds instead of templates. Click the export button
to export a feed as a zip archive.

[image: image38]

Importing Feeds

To import a feed, click the [image: image39] button in the top right of the
Feeds page. Click “Import” text at the top of the screen.

[image: image40]

Browse for the exported feed and then click Import Feed.

[image: image41]

If the import is successful, you should now see a running feed in the
Feeds tab.

Altering Feed Configurations

A feed that has been imported may have configurations specific to an
environment, depending on its registered template. To change
configurations on a feed, click on the Feeds tab in the Feed Manager
site and then click on the name of the feed you want to update. A list
of configurations will be present.

[image: image42]

Click on the [image: image43] icon to allow editing the fields. When done
editing the fields for a section, click Save.

[image: image44]

Kylo recreates the flow in NiFi with the new values. Keep in mind that
the values that are configurable here are determined by the registered
template, so registered templates need to expose environment-specific
properties if they are to be configured or updated at a feed level.

Updating Sensitive Properties in NiFi

Some NiFi processors and controller services have properties that are
deemed sensitive, and are therefore not saved when exporting from Kylo.
Because of this, some Kylo templates and feeds are not directly portable
from one instance of Kylo to another, without some changes in NiFi. In
these situations, sensitive values need to be entered directly into NiFi
running on the target environment, and then the changes must be saved in
a new NiFi template and used to overwrite the imported NiFi template. If
the sensitive properties are only within controller services for the
imported artifact, then the controller service must be disabled, the
sensitive value entered, and the controller service re-enabled, but a
new NiFi template does not need to be made.

It is uncommon for NiFi processors to have sensitive properties, and is
most often seen in controller services, such as a DBCPConnectionPool for
connection to a database. If the controller services used by a template
or feed are already in existence in NiFi in the target environment, then
Kylo uses those controller services. This issue only exists when
importing a template or feed that has NiFi processors with sensitive
properties or that use controller services that do not exist in the
target environment.

Continuous Integration / Continuous Deployment (CICD)

Kylo currently does not have built-in or integrated CICD. However, Kylo
allows you to export both templates (along with any registered
properties) and feeds that can then be imported to any environment.

The following approach for CICD should be incorporated:

	Build a flow in Nifi and get it configured and working in a dev
instance of Nifi and Kylo as a Feed.

Once its ready to be tested export that Feed from Kylo. This export
is a zip containing the feed metadata along with the categories and
templates used to create the feed.

Have a separate VM running Kylo and NiFi. This would be where the
scripts would create, run, and test the feeds and flows.

Have a separate Script/Maven project running to instantiate this
feed and run it. This could look something like the following: Have
a Maven module running that has a TestCase that looks for these
exported feed zip files and then uses NiFi and Kylos Rest apis to
create them, run the feed, verify the results, and then tear down
the flow.

Kylo operates over REST and has many rest endpoints that can be
called to achieve the same results as you see in the Kylo UI. For
example importing a feed can be done by posting the zip file to the
endpoint:

/v1/feedmgr/admin/import-feed

	Once the tests all are passed you could take that exported
Feed/Template, save it in a version control system (i.e. git), and
import it into a different environment.

The graphic below depicts an example of an overall CICD ecosystem
that could be implemented with Kylo with an approach similar to what
Think Big R&D has put forward.

[image: image45]

Migrating Kylo and NiFi Extensions

If custom NiFi or Kylo plugins/extensions have been built, they must
copied to all instances of NiFi and Kylo where you wish to use them.
Custom NiFi extensions are packaged in .nar format, and must be place in
NiFi’s lib directory. With a default Kylo installation, this directory
is /opt/nifi/current/lib. Place all custom .nar files there, and restart
the NiFi service.

Custom Kylo plugins belong in the /opt/kylo/kylo-services/plugin
directory in a default Kylo installation. Place the .jar files for
custom plugins in this directory and manually start and stop the
kylo-services service.

Operational Considerations

When considering promoting Kylo/NiFi metatdata you will need to restart
Kylo:

	Upon changing/adding any new NiFi processors/services (changing code
that creates a new Nifi plugin .nar file) you will need to bounce
NiFi

	Upon changing/adding any new Kylo plugin/extension (changing the java
jar) you will need to bounce Kylo (kylo-services)

Troubleshooting & Tips

Tuning the ExecuteSparkJob Processor

Problem

By default, the ExecuteSparkJob processor is configured to run in
local or yarn-client mode. When a Hadoop cluster is available, it is
recommended that the properties be updated to make full use of the
cluster.

Solution

Your files and jars should be made available to Spark for distributing
across the cluster. Additional configuration may be required for Spark
to run in yarn-cluster mode.

	Add the DataNucleus jars to the “Extra Jars” parameter:

	/usr/hdp/current/spark-client/lib/datanucleus-api-jdo-x.x.x.jar

	/usr/hdp/current/spark-client/lib/datanucleus-core-x.x.x.jar

	/usr/hdp/current/spark-client/lib/datanucleus-rdbms-x.x.x.jar

	Add the hive-site.xml file to the “Extra Files” parameter:

	For Cloudera, this file is at
/etc/hive/conf.cloudera.hive/hive-site.xml.

	For Hortonworks, this file is at
/usr/hdp/current/spark-client/conf/hive-site.xml.

	The “Validate and Split Records” and “Profile Data” processors from
standard-ingest require access to the json policy file. Add
“${table_field_policy_json_file}” to the “Extra Files”
properties to make this file available.

[image: image1]

	The “Execute Script” processor from the data-transformation reusable
template requires access to the Scala script.

	Change “MainArgs” to:
${transform_script_file:substringAfterLast('/')}

	Add the following to “Extra Files”: ${transform_script_file}

Additionally, you can update your Spark configuration with the
following:

	It is ideal to have 3 executors per node minus 1 used by the manager:

	num-executor = 3 * (number of nodes) - 1

	Executor cores should be either 4, 5, or 6 depending on the total number
of available cores. This should be tested. Starting with 6 tends
to work well:

	spark.executor.cores = 6

	Determine the total memory using the following equation:

	total.memory (GB) = yarn.nodemanager.resource.memory-mb *
(spark.executor.cores / yarn.nodemanager.resource.cpu-vcores)

	Use total.memory and split it between spark.executor.memory and
spark.yarn.executor.memoryOverhead (15-20% of total memory):

	spark.yarn.executor.memoryOverhead = total.memory * (0.15)

	spark.executor.memory = total.memory
- spark.yarn.executor.memoryOverhead

Dealing with non-standard file formats

Problem

You need to ingest a file with a non-standard format.

Solution

There are two possible solutions:

	You may write a custom SerDe and register that SerDe in HDFS. Then
specify the use of the SerDe in the source format field of the
schema tab during feed creation.

	Here’s an example SerDe that reads ADSB files:
https://github.com/gm310509/ADSBSerDe

	The dependencies in the pom.xml file may need to be changed to
match your Hadoop environment.

	You can use two feeds: 1) ingest; 2) use the wrangler to
manipulate the fields into columns:

	Create an ingest field, manually define the schema as a single
field of type string. You can just call that field “data”.

	Make sure the format specification doesn’t conflict with data in
the file, i.e., tabs or commas which might cause it to get split.

	Once ingested, create a data transform feed to wrangle the data
using the transform functionsHi.

	Here’s an example of converting the weird ADSB format into JSON
then converting into fields:

	1
2
3
4
5

	 select(regexp_replace(data, "([\\w-.]+)\t([\\w-.]+)", "\"$1\":\"$2\"").as("data"))
 select(regexp_replace(data, "\" *\t\"", "\",\"").as("data"))
 select(concat("{", data, "}").as("data"))
 select(json_tuple(data, "clock", "hexid", "ident", "squawk", "alt", "speed", "airGround", "lat", "lon", "heading"))
 select(c0.as("clock"), c1.as("hexid"), c2.as("ident"), c3.as("squawk"), c4.as("alt"), c5.as("speed"), c6.as("airGround"), c7.as("lat"), c8.as("lon"), c9.as("heading"))

Merge Table fails when storing as Parquet using HDP

Problem

There is a bug with Hortonworks where a query against a Parquet backed
table fails while using single or double quotes in the value names. For
example:

hive> select * from users_valid where processing_dttm='1481571457830';
OK
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
Failed with exception java.io.IOException:java.lang.IllegalArgumentException: Column [processing_dttm] was not found in schema!

Solution

You need to set some Hive properties for queries to work in Hive. These
forum threads explain how to set the correct property:

	https://community.hortonworks.com/questions/47897/illegalargumentexception-when-select-with-where-cl.html

	https://community.hortonworks.com/questions/40445/querying-a-partition-table.html

	On the Hive command line you can set the following property to allow
quotes:

set hive.optimize.ppd = false;

NiFi becomes non-responsive

Problem

NiFi appears to be up but the UI is no longer functioning. NiFi may be
running low on memory. There may be PID files in the /opt/nifi/current
directory.

Solution

Increase memory to NiFi by editing
/opt/nifi/current/conf/boostrap.conf and setting the following line:

java.arg.3=-Xmx3g

Additionally, it may also be necessary to create swap space but this is
not recommended by NiFi for performance reasons.

Automated Feed and Template Importing

Problem

Feeds and templates should be automatically imported into the staging or
production environment as part of a continuous integration process.

Solution

The Kylo REST API can be used to automate the importing of feeds and
templates.

Templates can be imported either as an XML or a ZIP file. Set
the overwrite parameter to true to indicate that existing templates
should be replaced otherwise an error will be returned. Set
the createReusableFlow parameter to true if the template is an XML file
that should be imported as a reusable template.
The importConnectingReusableFlow parameter indicates how to handle a ZIP
file that contains both a template and its reusable flow.
The NOT_SET value will cause an error to be returned if the template
requires a reusable flow. The YES value will cause the reusable flow to
be imported along with the template. The NO value will cause the
reusable flow to be ignored and the template to be imported as normal.

curl -F file=@<path-to-template-xml-or-zip> -F overwrite=false -F createReusableFlow=false -F importConnectingReusableFlow=NOT_SET -u <kylo-user>:<kylo-password> http://<kylo-host>:8400/proxy/v1/feedmgr/admin/import-template

Feeds can be imported as a ZIP file containing the feed metadata and
NiFi template. Set the overwrite parameter to true to indicate that an
existing feed and corresponding template should be replaced otherwise an
error will be returned. The importConnectingReusableFlow parameter
functions the same as the corresponding parameter for importing a
template.

curl -F file=@<path-to-feed-zip> -F overwrite=false -F importConnectingReusableFlow=NOT_SET -u <kylo-user>:<kylo-password> http://<kylo-host>:8400/proxy/v1/feedmgr/admin/import-feed

Spark job failing on sandbox with large file

Problem

If running on a sandbox (or small cluster) the spark executor may get
killed due to OOM when processing large files in the standard ingest
flow. The flow will route to failed flow but there will be no error
message. Look for Exit Code 137 in /var/log/nifi/nifi-app.log. This
indicates an OOM issue.

Solution

On a single-node sandbox it is better to run Spark in local mode than
yarn-client mode and simply give Spark enough memory to perform its
task. This eliminates all the YARN scheduler complications.

	In the standard-ingest flow, stop and alter the ExecuteSparkJob
processors:

	Set the SparkMaster property to local instead of yarn-client.

	Increase the Executor Memory property to at least 1024m.

	Start the processors.

NiFi hangs executing Spark task step

Problem

Apache NiFi flow appears to be stuck inside the Spark task such as
“Validate and Split Records” step. This symptom can be verified by
viewing the YARN jobs. The Spark job appears to be running and there is
a Hive job queued to run but never launched: http://localhost:8088/cluster

So what is happening? Spark is executing a Hive job to insert data into
a Hive table but the Hive job never gets YARN resources. This is a
configuration problem that leads to a deadlock. Spark will never
complete because the Hive job will never get launched. The Hive job is
blocked by the Spark job.

Solution

First you will need to clean up the stuck job then re-configure the YARN
scheduler.

To clean up the stuck job, from the command-line as root:

	Obtain the PID of the Spark job:

ps -ef | grep Spark | grep Validator

	Kill the Spark job:

kill <pid>

Configure YARN to handle additional concurrent jobs:

	Increase the maximum percent with the following parameter
(see: https://hadoop.apache.org/docs/r0.23.11/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html):

yarn.scheduler.capacity.maximum-am-resource-percent=0.8

	Restart the cluster or all affected services.

	Restart Apache NiFi to re-initialized Thrift connection pool:

service nifi restart

Note

In Ambari, find this under Yarn | Configs (advanced) | Scheduler.

Spark SQL fails on empty ORC and Parquet tables

Problem

Your spark job fails when running in HDP 2.4 or 2.5 while interacting
with an empty ORC table. A likely error that you will see is:

ExecuteSparkJob[id=1fb1b9a0-e7b5-4d85-87d2-90d7103557f6] java.util.NoSuchElementException: next on empty iterator

This is due to a change Hortonworks added that modified how it loads the
schema for the table.

Solution

To fix the issue, you can take these steps:

	On the edge node,
edit the file: /usr/hdp/current/spark-client/conf/spark-defaults.conf

	Add these configuration entries to the file:

spark.sql.hive.convertMetastoreOrc false
spark.sql.hive.convertMetastoreParquet false

See Spark SQL Fails on Empty ORC Table HDP 242

High Performance NiFi Setup

Problem

The NiFi team published an article on how to extract the most
performance from Apache NiFi.

Solution

See How to Setup a High Performance NiFi

RPM install fails with ‘cpio: read’ error

Problem

Kylo rpm install fails giving a ‘cpio: read’ error.

Solution

This problem occurs if the rpm file is corrupt or not downloaded
properly. Try re-downloading the Kylo rpm from the Kylo website.

Accessing Hive tables from Spark

Problem

You receive a NoSuchTableException when trying to access a Hive table
from Spark.

Solution

Copy the hive-site.xml file from Hive to Spark.

For Cloudera, run the following command:

cp /etc/hive/conf/hive-site.xml /usr/lib/spark/conf/

Compression codec not found for PutHDFS folder

Problem

The PutHDFS processor throws an exception like:

java.lang.IllegalArgumentException: Compression codec com.hadoop.compression.lzo.LzoCodec not found.

Solution

Edit the /etc/hadoop/conf/core-site.xml file and remove the failing
codec from the io.compression.codecs property.

Creating a cleanup flow

Problem

When deleting a feed it is sometimes useful to run a separate NiFi flow
that will remove any HDFS folders or Hive tables that were created by
the feed.

Solution

	You will need to have a controller service of type
JmsCleanupEventService. This service has a Spring Context Service
property that should be connected to another service of type
SpringContextLoaderService.

	In your NiFi template, create a new input processor of type
TriggerCleanup. This processor will be run automatically when a
feed is deleted.

	Connect additional processors such as RemoveHDFSFolder or
DropFeedTables as needed.

Accessing S3 from the data wrangler

Problem

You would like to access S3 or another Hadoop-compatible filesystem from
the data wrangler.

Solution

The Spark configuration needs to be updated with the path to the JARs
for the filesystem.

To access S3 on HDP, the following must be added to the spark-env.sh
file:

export SPARK_DIST_CLASSPATH=$(hadoop classpath)

Additional information is available from the Apache Spark project.

Dealing with XML files

Problem

You need to ingest an XML file and parse into Hive columns.

Solution

	You can use two feeds: 1) ingest; 2) use the wrangler to
manipulate the fields into columns:

	Create an ingest field and manually define the schema as a single
field of type string. You can just call that field “data”.

	Make sure the format specification doesn’t conflict with data in
the file, i.e. tabs or commas which might cause it to get split.

	Once ingested, create a data transform feed to wrangle the data
using the transform functions.

	Here’s an example of converting XML to columns using wrangler
functions:

XML Explode

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 select(regexp_replace(contents, "(?s).*<TicketDetails>\\s*<TicketDetail>\\s*", "").as("xml"))
 select(regexp_replace(xml, "(?s)</TicketDetails>.*", "").as("xml"))
 select(split(xml, "<TicketDetail>\\s*").as("TicketDetails"))
 select(explode(TicketDetails).as("TicketDetail"))
 select(concat("<TicketDetail>", TicketDetail).as("TicketDetail"))
 xpath_int(TicketDetail, "//Qty").as("Qty")
 xpath_int(TicketDetail, "//Price").as("Price")
 xpath_int(TicketDetail, "//Amount").as("Amount")
 xpath_int(TicketDetail, "//NetAmount").as("NetAmount")
 xpath_string(TicketDetail, "//TransDateTime").as("TransDateTime")
 drop("TicketDetail")

Dealing with fixed width files

Problem

You need to load a fixed-width text file.

Solution

This is possible to configure with the schema tab of the feed creation
wizard. You can set the SerDe and properties:

	Create an ingest feed.

	When at the schema tab look for the field (near bottom) specifying
the source format.

	Manually build the schema since Kylo won’t detect the width.

	Place text as follows in the field substituting regex based on the
actual columns:

ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
WITH SERDEPROPERTIES ("input.regex" = "(.{10})(.{20})(.{20})(.{20})(.{5}).*")

Dealing with custom SerDe or CSV files with quotes and escape characters

Problem

You need to load a CSV file with surrounding quotes and don’t want those
quotes removed.

Solution

This is possible to configure within the schema tab of the ingest feed
creation, you can set the SerDe and properties:

	Create an ingest feed.

	When at the schema tab look for the field (near bottom) specify the
source format.

	See the Apache wiki CSV+Serde for Configuring CSV Options.

	Place text as follows in the field:

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
WITH SERDEPROPERTIES (
 "separatorChar" = ",",
 "quoteChar" = "\\\\"",
 "escapeChar"="\\\\\\\\");
)

Notice the double escape required!

Configuration on a Node with Small Root Filesystem

Problem

The node that Kylo will run on has a small root filesystem. There are other mounts that contain larger space but in particular, the following directories contain 30GB or less.

	/opt which is used for libraries, executables, configs, etc

	/var which is used for logs, storage, etc

	/tmp which is used for processing data

For Kylo, these directories get filled up very quickly and this causes all processes on the edge node to freeze.

Solution

In general, the solution is to move all the large files onto the larger data mount. For this solution, the /data directory is considered to be the largest and most ideal location to contain Kylo artifacts (logs, storage, etc).

To alleviate the disk space issues, these steps were taken to move items to the /data directory

Relocate MySQL

The default location of MySQL is /var/lib/mysql. MySQL will fill up the root partition with the default configuration so the storage volumes for MySQL must be migrated to /data/mysql.

	Stop MySQL: service mysql stop

	Copy data over to new location: rsync -av /var/lib/mysql /data/

	Backup the existing data: mv /var/lib/mysql /var/lib/mysql.bak

	Backup the existing my.cnf: cp /etc/my.cnf /etc/my.cnf.bak

	Update MySQL config with new location with the values below: vi /etc/my.cnf

	Under [mysqld], set datadir = /data/mysql

	Start MySQL: service mysql start

	Back up old MySQL directory: tar -zcvf mysql_bak.tar.gz mysql.bak

Change properties to point to /data

	Kylo

	Update /opt/kylo-services/log4j.properties

	log4j.appender.file.File=/data/log/kylo-services/kylo-services.log

	Update /opt/kylo-services/log4j-spark.properties

	log4j.appender.file.File=/data/log/kylo-services/kylo-spark-shell.log

	Update /opt/kylo-ui/log4j.properties

	log4j.appender.file.File=/data/log/kylo-ui/kylo-ui.log

	Nifi

	Update /opt/nifi/nifi.properties

	nifi.flow.configuration.file=/data/opt/nifi/data/conf/flow.xml.gz

	nifi.flow.configuration.archive.dir=/data/opt/nifi/data/conf/archive/

	nifi.authorizer.configuration.file=/data/opt/nifi/data/conf/authorizers.xml

	nifi.login.identity.provider.configuration.file=/data/opt/nifi/data/conf/login-identity-providers.xml

	nifi.templates.directory=/data/opt/nifi/data/conf/templates

	nifi.flowfile.repository.directory=/data/opt/nifi/data/flowfile_repository

	nifi.content.repository.directory.default=/data/opt/nifi/data/content_repository

	nifi.provenance.repository.directory.default=/data/opt/nifi/data/provenance_repository

	Elasticsearch

	Update /opt/elasticsearch/elasticsearch.yml

	path.data: /data/elasticsearch

	path.logs: /data/log/elasticsearch

GetTableData vs ImportSqoop Processor

Problem

You need to load data from a structured datastore.

Solution

There are two major NiFi processors provided by Kylo for importing data into Hadoop: GetTableData and ImportSqoop.

	GetTableData leverages JDBC to pull data from the source into the flowfile within NiFi. This content will then need to be pushed to HDFS (via a PutHDFS processor).

	ImportSqoop executes a Sqoop job to pull the content from the source and place it directly to HDFS. For details on how this is done, please refer to Apache Sqoop [http://sqoop.apache.org/].

In general, it is recommended to use the ImportSqoop processor due to performance. Using the GetTableData processors uses the edge node (where NiFi is running) as a middle-man. The ImportSqoop processor runs a MapReduce job that can be tuned to load the data efficiently. For example, a single mapper will be sufficient if you are loading a reference table but a table with billions of rows would benefit from multiple mappers.

The GetTableData processor should be used when the data being pulled is small. Other use cases are when certain pre-processing steps are required that benefit from being on the edge node. For instance, if the edge node resides behind a firewall and PII (personal identifiable information) fields need to be masked before being pushed to a more open HDFS environment.

Kylo’s Data Ingest template comes with out-of-the-box support for the GetTableData processor. To use the ImportSqoop processor instead, the following changes should to be made to the Data Ingest template and the standard-ingest reusable template:

	Replace the GetTableData processor with the ImportSqoop processor

	Remove the PutHDFS processor from the flow

	Update the “Create Feed Partition” processor to point to the target location of the ImportSqoop processor

	Create a new archive processor which will archive data from HDFS. One option is use the Hadoop streaming tool to take the files residing in the target location of the ImportSqoop processor and compress then store the data to the archive directory. For details on this, please refer to Hadoop Streaming [http://hadoop.apache.org/docs/current/hadoop-streaming/HadoopStreaming.html].

It is important to note that any other templates that output to standard-ingest would need to be updated because the changes above assumes data resides in HDFS. In general, adding a PutHDFS processor would be sufficient.

Using machine learning functions

Problem

You need to use a machine learning function in a data transformation feed.

Solution

Kylo provides many functions from the Spark ML package. Below is an example of using linear regression to estimate the number of tickets bought based on the price paid. The run() function
performs both the fit and transform operations of the linear regression. It requires a DataFrame as a parameter which is used for the fit operation, in the case below it uses limit(10).

	1
2
3

	vectorAssembler(["pricepaid"], "features")
qtysold.cast("double").as("label")
LinearRegression().setMaxIter(10).setRegParam(0.01).run(limit(10))

Sqoop requires JDK on Kylo sandbox

Problem

This issue is known to exist for Kylo sandbox version 0.7.1. The file name for the sandbox is kylo-hdp-sandbox-0.7.1.ova. Sqoop job throws an error “Sqoop requires a JDK that can compile Java code.”

Solution

Sqoop requires a JDK to compile Java code. The steps to install a JDK and fix this error are listed below:

	Install Open JDK 7.

root@sandbox ~# yum install java-1.7.0-openjdk-devel

	Verify JDK version.

root@sandbox ~# javac -version
javac 1.7.0_131

	Verify actual location.

root@sandbox ~# ls -l /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.131-2.6.9.0.el7_3.x86_64/bin/javac
-rwxr-xr-x 1 root root 7368 Feb 13 17:16 /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.131-2.6.9.0.el7_3.x86_64/bin/javac

4. Update /etc/hadoop/conf/hadoop-env.sh.
(Find existing entry and update it)

root@sandbox ~# vi /etc/hadoop/conf/hadoop-env.sh
export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-1.7.0.131-2.6.9.0.el7_3.x86_64/

	Re-run Sqoop flow.

Validator is unable to process policy JSON file

Problem

Validator throws an error while trying to process the policy JSON file. This issue may be caused due to manual editing of the file in an editor and pasting the result back in NiFi.

Solution

Ensure that the policy file is correctly formatted. External editors can sometimes put in invalid characters. One way to do this verification is at: JSON Pretty Print [http://jsonprettyprint.com/]. Paste in the policy file in the text box and click ‘Pretty Print JSON’. If the JSON is valid, it will be shown in a more readable format. Otherwise, a null will be output.

Creating a feed fails due to java.sql.BatchUpdateException

Problem

When using MySQL/MariaDB as the database for Kylo, creating a feed with large number of columns can lead to an exception in the last step (Setting the feed schedule and saving it). Sample exception below:

java.sql.BatchUpdateException: (conn:330) Could not send query: stream size 1652321 is >= to max_allowed_packet (1048576)

Solution

Increase the max_allowed_packet configuration parameter for the database server.

	Add this entry to file /etc/my.cnf under the [mysqld] section.

[mysqld]
max_allowed_packet=16M

	Restart the database server. Choose command as per your database.

service mariadb restart
service mysql restart

	Verify the change by executing this in the database client console.

show variables like 'max_allowed_packet';

	Save the feed now.

When using Solr, indexing schema with large number of fields throws exception

Problem

When using Solr as the search engine, indexing of the feed schema can throw an exception similar to below. This happens when the feed contains a large number of columns.

Exception writing document id a1e41cbc-d550-49cc-bc20-49fc981e767e to the index; possible analysis error: Document contains at least one immense term in field="hiveColumns" (whose UTF8 encoding is longer than the max length 32766), all of which were skipped. Please correct the analyzer to not produce such terms.

Solution

	Execute this command. Replace localhost if necessary.

curl -X POST -H 'Content-type:application/json' --data-binary '{
"replace-field":{
 "name":"hiveColumns",
 "type":"text_general" } }' "http://localhost:8983/solr/kylo-datasources/schema?wt=json&indent=true"

	Restart Solr server.

	Create the feed again.

Prioritize jobs based on an attribute value

Problem

You have many feeds in Kylo that all execute at once but there are a few high-priority feeds that should be executed before the others.

Solution

The connection to a processor can be configured to prioritize flow files using a few different methods:

	FirstInFirstOutPrioritizer: Given two FlowFiles, the one that reached the connection first will be processed first.

	NewestFlowFileFirstPrioritizer: Given two FlowFiles, the one that is newest in the dataflow will be processed first.

	OldestFlowFileFirstPrioritizer: Given two FlowFiles, the one that is oldest in the dataflow will be processed first. This is the default scheme that is used if no prioritizers are selected.

	PriorityAttributePrioritizer: Given two FlowFiles that both have a “priority” attribute, the one that has the highest priority value will be processed first. Note that an UpdateAttribute processor should be used to add the “priority” attribute to the FlowFiles before they reach a connection that has this prioritizer set. Values for the “priority” attribute may be alphanumeric, where “a” is a higher priority than “z”, and “1” is a higher priority than “9”, for example.

See the NiFi User Guide for more information.

EsIndexException in Kylo services logs

Problem

Kylo services log contains errors similar to this:
org.modeshape.jcr.index.elasticsearch.EsIndexException: java.io.IOException: Not Found

Solution

Pre-create the indexes used by Kylo in Elasticsearch. Execute this script:

/opt/kylo/bin/create-kylo-indexes-es.sh

The script takes 4 parameters.

<host> <rest-port> <num-shards> <num-replicas>
Examples values:
 host: localhost
 rest-port: 9200
 num-shards: 1
 num-replicas: 1
 Note: num-shards and num-replicas can be set to 1 for development environment

Best Practices

The following document describes patterns and best practices particularly oriented to IT Designers and System Administrators.

Organizational Roles

Kylo supports the division of responsibility between IT designers, administrators, operations, and end-users.

Role separation

A key tenet of Kylo is IT governed self-service. Most activities such as data ingest and preparation are possible by data analysts who may have deep understanding of their data but not appreciate the advanced data processing concepts of Hadoop. It is the
responsibility of the Designer to build models that incorporate best practices and maintain the ability for end-users to easily configure feeds.

Designers are responsible for developing templates for pipelines using Apache NiFi. When configured in Kylo provide the processing model for feeds created by end-users. System Administrators are
responsible for activities such as install, configuration, connections, security, performance tuning and role-based security.

Designers

Designers are responsible for developing templates for pipelines using
Apache NiFi. When configured in Kylo provide the processing model for feeds created by end-users. System Administrators are responsible for activities such as install, configuration, connections,
security, performance tuning and role-based security.

Designers should limit the properties exposed to end-users and assume a
user has limited knowledge of the internal working of the pipeline. For
example, it is poor practice to expose Spark parameters, paths to
libraries, memory settings, concurrency settings, etc. However, a user
creating a feed should would know the name of file(s) to load, whether
they want to do a snapshot or merge, and target table names and business
metadata.

Designers use the NiFi expression language and Kylo’s built-in metadata
properties to auto-wire processor components in the NiFi flow to the
wizard UI.

Administrators

NiFi/Hadoop Administrators are typically system administrators who need
to control resource utilization, such as memory and concurrency. These
activities are typically configured directly in NiFi.

The Administrator is also responsible for configuring NiFi Controller
Services, which may contain privileged database and services login
configuration.

The Administrator must review new pipelines to understand how shared
resources are utilized. For example, a flow may use excessive resources
on the edge node or may need to be properly tuned for the size of the
target cluster. Administrators may modify resource behavior such as
concurrency, back-pressure settings, Spark driver memory, and number of
mappers.

The Administrator should also evaluate new flows and understand security
implications or security vulnerabilities introduced as NiFi operates as
a privileged user.

Operations

An Operator uses the Operations Manager dashboard to monitor activity in
the system and relies on alerts. The Designer should consider that an
Operations user may need to respond to problems and recover from errors.

Users

Users can include data analytics, data scientists, and data stewards who interact with the Kylo application. Administrator determines what features are available to users based on roles.
Designers determine how users are able to configure feeds based on templates.

Designers

Guidance for designers who design new pipeline templates and enable self-service.

NiFi Template Design

The Designer is responsible for developing Apache NiFi templates, which
provide the processing model for feeds in Kylo. Once a template has been
registered with the Kylo framework through the administrative template
UI, Kylo allows end-users to create and configure feeds (based on that
template model) through a user-friendly, guided wizard. The use of templates
embodies the principle of “write-once, use-many”.

The Designer determines which parameters are settable by an end-user in
the wizard UI, how the field is displayed (for example: picklist, SQL
window, numeric field), and any defaults or constraints. The Designer
may also wire parameters to environment-specific properties and any
standard metadata properties provided by the UI wizard used by
end-users.

After a template is registered in Kylo, an end-user will be able to
create new feeds based on that template using the UI-wizard. End-users
may only set parameters exposed by the template designer.

A well-written template may support many feeds. It should incorporate
best practices and consider security, regulatory requirements, and error
handling.

A good reference model is Kylo’s standard ingest template. This can
serve as a model for best practices and can be adapted to an
organization’s individual requirements.

Template re-use

Templates should be designed for maximum re-use and flexibility. Kylo’s standard ingest serves as
an example of this. There are two types of templates Kylo uses this to promote this objective:

	Feed Template. Kylo generates a clone of this template as a unique running instance per feed. This means for every feed, there is a copy of the pipeline as defined by the template. Kylo uses the template to make the clone and injects any metadata configured in the feed (e.g. data source selections, schema configuration, etc). The feed template should be composed of the set of initial datasource connectors, an UpdateAttribute processor where Kylo can inject common metadata configured by the wizard, and an output port connected to a re-usable flow (below). The feed-based template should include minimal logic. The bulk of logic should be contained in the re-usable flow.

	Reusable-flow Template. This template is used to create a single running instance of the flow that can supports multiple connected feeds through a NiFi input port. The core logic for your pipelines should be centralized into re-usable flows. This allows one to update the pipeline for many feeds in just one place.

Again, both types of templates are exemplified in Kylo’s standard ingest template included with Kylo. More about reusable flows is discussed below.

Reusable Flows

When possible, consider using re-usable flows for the majority of pipeline
workflow and logic. A reusable flow is a
special template that creates just a single instance of a flow shared
by other feed flows through a NiFi process port. A single
instance simplifies administration and future updates. All feeds
utilizing a reusable flow will inherit changes automatically.

A re-usable flow will require at least two templates: 1) The feed flow
instance template, and 2) the re-usable flow template.

The feed flow instance will be generated each time a feed is created and
will have the feed-specific configuration defined by the end-user. The
feed-instance defines an output to the re-usable flow. The re-usable
flow template will have an input from the feed-instance flow.

When a Designer registers the re-usable template and the feed instance
template, the Designer is prompted to wire together the input and
output. Kylo will take care of auto-wiring these each time a new feed is
created.

Please see Kylo’s standard ingest templates for an example of this in action.

Streaming Templates

Kylo can support batch and streaming feeds. In a batch feed, each dataset is
processed and tracked as a job from start to finish. The entire job fails if the
dataset is not processed successfully.

Streaming feeds typically involve continuous data processing of very frequent,
discrete packets of data. Data can be flowing through different portions of the
pipeline. Tracking each record in a streaming feed as a job would add significant
overhead and could be meaningless. Imagine consuming millions of JMS messages and
viewing each records journey through the pipeline as a job. This would be impractical.
Instead, Kylo treats a streaming feed as a constant running job, gathering aggregate
statistics such as success and failure rates, throughput, etc.

A template can be registered as a streaming template by checking the ‘Streaming template”
checkbox on the last step of the template registration wizard.

Error Handling

Error handling is essential to building robust flows.

NiFi processors have the ability to route to success or failure paths.
This allows the Designer to setup standard error handling. The Designer
should ensure that data is never lost and that errors allow an Operator
to recover.

Kylo is configured to look for any activity along standard failure paths
and trigger alerts in Ops Mgr.

A best practice is to handle errors in consistent ways through a
reusable “error flow”. Potentially, a custom NiFi processor could be
developed to make this convenient for Designers.

Some processors automatically support retries, providing a penalty to
incoming flowfiles. An example of this case is when a resource is
temporarily unavailable. Rather than failing, the flowfile will be
penalized (delayed) and re-attempted at a later point.

Preserve Edge Resources

The edge node is a limited resource, particularly compared to the Hadoop
cluster. The cluster will have a magnitude greater IO and processing
capacity than the edge, so if possible avoid moving data through Apache
NiFi. Strive to move data directly from source to Hadoop and performing
any data processing in the cluster.

There may be good arguments to perform data processing through the edge
node, in this case a single edge node may be insufficient and require a
small NiFi cluster along the edge.

Note

The advantage of external Hive tables is the ability to simply mount an HDFS file (external partition). This means data can be moved to HDFS, and then surfaced in a table through a simple DDL (ADD PARTITION).

Generalize Templates

Templates allow the Designer to promote the “write-once,use-many”
principle. That is, once a template is registered with Kylo, any feeds
created will utilize the model provided. The Designer should consider
parameterizing flows to support some derivative data use cases, while
always striving to maintain ease of use for end-users, who have to
create feeds and ensure their testability.

An example of this type of flexibility is a flow that allows the
end-user to select from a set of sources (for example: kafka,
filesystem, database) and write to different targets (for example: HDFS,
Amazon S3). A single template could feasibly provide this capability.
There is no need to write nxn templates for each possible case.

It may be necessary to write “exotic templates” that will only be used
once by a single feed. This is also fine. The Designer should still
consider other best practices, such as portability. See chaining feeds
below for a possible alternative to this.

Chaining Feeds

Instead of creating long special-purposed pipelines, consider breaking
the pipeline into a series of feeds. Each feed then represents a
significant movement of data between source and sink (for example:
ingest feed, transform feed A, transform feed B, export feed).

Kylo provides the ability to chain feeds together via preconditions.
Preconditions define a rule for the “event” that will trigger a feed.
Preconditions allow triggering based on the completion of one or more
predecessor jobs. The ability to define preconditions can be enabled
by a Designer and configured by a Data Analyst during the feed creation
process. This allows for sophisticated chaining of feeds without
resorting to the need to build specially-purpose pipelines.

One-Time Setup and Deletion

The Designer should incorporate any one-time setup, and any processing
flow required for deletion of a feed. One time setup is referred to as
registration within a feed. The metadata server can route a flow
through a one-time registration process to setup Hive tables and HDFS
paths.

A proper deletion routine should delete all the Hadoop artifacts created
by a feed. Delete allows a user to test a feed and easily delete it if
needed. The cleanup-up flow is described below.

Clean-up

When creating a template, ensure you have the appropriate clean-up activity associated. If
using the standard ingest, you can also use the standard clean-up to remove HDFS, Hive tables
and the feed itself. This is triggered when the delete feed option is clicked on the Kylo UI.

Clean up flows should be configured to start with a TriggerCleanup trigger processor and
the attribute variables set to specify that feed. When you register the template in Kylo,
be sure to set the attributes for the Trigger Cleanup processor to take the metadata systemNames
of the feed.

For each client, think about what a clean-up best practice will be when you design the template
as this may be different per client.

Clean-ups could also be triggered through a JMS message using the publish and consumeJMS processors. In t
this way you could start a clean-up activity on the completion of a feed for instance

Lineage Tracking

Kylo automatically maintains lineage at the “feed-level”
and by any sources and sinks identified by the template designer when
registering the template.

Kylo relies on the designer specifying the roles of processors as sources or sinks
when registering the flow. The default or stereotype role of processors can be
defined by a system administrator conf/datasource-definitions.json.

Idempotence

Pipelines and template steps should be idempotent, such that if work is
replayed it will produce the same result without a harmful side effect
such as duplicates.

Environment Portability

NiFi Templates and associated Kylo configuration can be exported from
one environment and imported into another environment. The Designer
should ensure that Apache NiFi templates are designed to be portable
across development, test and production environments .

Environment-specific settings such as library paths or URLs should be
specified in the environment-specific settings file in Kylo. See
documentation. Environment-specific variables can be set through an
environment specific properties file. Kylo provides an expression syntax
for a Designer to utilize these properties when registering the
template. An Administrator typically maintains the environment-specific
settings.

Application properties override template attribute settings and can be very useful
for setting environment specific settings and also to set specific controller related
settings. Application properties can be set encrypted and should be when setting sensitive information.

Note: You should NOT add your processor attributes to application properties unless they
are ENVIRONMENT specific. It is an anti-pattern to try to bring all attributes out into
“configuration property files”.

Data Confidence

In addition to NiFi templates for feeds, a Designer can and should
create templates for performing Data Quality (DQ) verification of those
feeds. Data Quality verification logic can vary but often can be
designed to be generalized into a few common patterns.

Examples of a DQ template might evaluate the profile statistics from the
latest run and use those statistics such as ratio of valid-to-invalid
records. Another check could compare aggregates in the source table
against Hadoop to verify that totals match at certain intervals (for
example: nightly revenue roll-ups match).

A special field identifies the template as a DQ check related to a feed
and used for Data Confidence KPI, alerts, and feed health by the Ops
manager. See Manual.

Data Ingestion

Archival: It is best practice to preserve original raw content and
consider regulatory compliance. Also, consider security and encryption
at rest since raw data may contain sensitive information. After a
retention period is passed, information may be deleted. ILM feeds can be
created to do this type of house-keeping. Retention policies can
optionally be defined by a feed or business metadata at the
category-level.

Make sure to secure intermediate tables and HDFS locations used for data
processing. These tables may contain views of raw, sensitive data.
Intermediate tables may require different security requirements than the
managed table. Additionally, the data may need to go on an encryption
zone on HDFS. Administrators and Operators may need visibility for
troubleshooting, but typical end-users should not see intermediate data.

Avoid “transformations” to raw. Best practice is to ingest the raw
source (although consider protecting sensitive data) and avoid
transformation of the data.

Cleanup Intermediate Data

The intermediate data generated by feed processing should be
periodically deleted. It may be useful to have a brief retention period
(for example: 72 hours) for troubleshooting. A single cleanup feed can
be created to do this cleanup.

Data Cleansing and Standardization

Kylo includes a number of useful cleansing and standardization functions
that can be configured by an end-user in the feed creation wizard UI.

Avoid using the cleansing and standardization capabilities to do complex
“transformation” data. It should be primarily used for manipulating data
into conventional or canonical formats (for example: simple datatype
conversion such as dates, stripping special characters) or data
protection (for example: masking credit cards, PII, etc.)

Kylo provides an extensible Java API for developing custom cleansing and
standardization routines.

Validation

Hive is extremely tolerant of inconsistencies between source data and
the HCatalog schema. Using Hive without additional validation will allow
data quality issues to go unnoticed and extremely difficult to detect.

Kylo automatically provides schema validation, ensuring that source data
conforms to target schema. For example, if a field contains alpha
characters and is destined for a numeric column, Kylo will flag the
record as invalid.

Additionally users can define field-level validation to protect against
data quality issues.

Kylo provides an extensible Java API for developing custom validation
routines.

Data Profiling

Kylo’s Data profiling routine generates statistics for each field in an
incoming dataset.

Beyond being useful to Data Scientists, profiling is useful for
validating data quality (See Data Quality checking).

RDBMS Data

Joins in Hadoop are inefficient. Consider de-normalizing data during
ingest. One strategy is to ingest data via views.

File Ingest

One common problem with files is ensuring they are fully written from a
source before they are picked up for processing. A strategy for this is
to set the process writing the file to either change permissions on the
file after the write is complete, or append a suffix such as DONE.

Character Conversion and Hive

Hive works with UTF-8. Character conversion may be required for any
records that should be queried from Hive. NiFi provides a character
conversion processor that can be used for this. Kylo can detect source
encoding using Tikka.

Development Patterns

Best practices and guidance oriented to the development process, release, and testing.

Development Process

NiFi templates should be developed and tested in a personal development
environment. Do not develop NiFi templates in the production NiFi
instance used by Kylo.

It is recommended to do initial testing in NiFi. Once the flow has been
tested and debugged within NiFi, then register the template with Kylo in
the development environment, where one can test feed creation.

Note

Controller Services that contain service, cluster, and database connection information should be setup by the Developer using their personal login information. In production, an Administrator manages these controller services, and they typically operate as an application account with elevated permissions.

Automated Deployment

Building an automated deployment scripts is the best practice approach to
deploying feeds and templates and this should be delivered along with your
other deployment scripts. Importing of templates and feeds can be carried
out via the REST API of Kylo.

Template Export/Import

As stated previously, it is recommended that Apache NiFi template
development occur in a development environment. This is a best practice
from a security and operations perspective. Kylo allows templates and
the registration metadata to be exported to a ZIP file. This file can be
imported into a new environment.

Feed Export/Import

Although Kylo can be used for self-service feed creation in production,
some organizations prefer to lock this ability down and perform feed
development and testing in a separate environment.

Version Control

It is recommended to manage exported templates and feeds through an SCM
tool such as git, subversion, or CVS.

General Deployment Guidelines

Regardless of whether deploying manually or using automated scripts,
ensure the following:

	Deploy any reusable templates first

	Configure controller services (in NiFi) on the first time a template is imported or if any new controllers are introduced

	Smoke test your pipeline

Users

Best practices and guidance oriented to end-users (users of the Kylo application).

When to Use Snapshot

Kylo allows users to configure feeds to do incremental updates or
to enable the use of a snapshot (replacing the target with the entire
contents). In the case of RDBMS, where there small source tables, it may
be more efficient to simply overwrite (snapshot) the data each time.
Tables with less than 100k records probably fit the snapshot pattern.

When to Use Timer (vs. Cron)

Timer is a good scheduling technique for lightweight polling behavior.
Be aware, however, that all timers fire concurrently when NiFi starts.
Avoid using for processors that place heavy demand on a source when
triggered. For example: database sources or launching a transformation
workflow. Cron is a more appropriate scheduling option for these
resource-intensive processors.

Wrangling

The wrangling utility allows for users to do visual drag-drop SQL joins
and apply transform functions to build complex transformations in a
WYSIWG, Excel-like interface. This is a recommended method for
performing transformations on raw data.

Service Level Agreements

Service level agreements are created by users to enforce service levels,
typically related to feeds. An SLA may set a threshold tolerance for
data arrival time or feed processing time. An SLA can enforce ratio of
invalid data from a source.

SLAs are useful for alerting and measuring service level performance
over-time.

Administrators

Back-Pressure

Administrators (and Designers) should understand NiFi capabilities
regarding back-pressure. Administrators can configure backpressure
limits at the processor level to control how many flow files can be
queued before upstream processors start to throttle activity. This can
assure that a problem with a service doesn’t cause a huge queue or
result in a large number of failed jobs.

Business Metadata

Business metadata is any information that enriches the usefulness of the
data, or is potentially helpful for future processing or error handling.

Kylo allows an Administrator to setup business metadata fields that a
user sees when creating a feed. These business metadata templates can
be setup either globally or at the category-level. Once setup, the user
is prompted to fill this information in the Properties step of the
Ingest wizard.

Security

Guidance around security.

Security Vulnerabilities

Designers and Administrators should be aware of introducing a backdoor
for malicious users, or even for developers. Although NiFi components
are extremely powerful, be aware of SQL Injection or exposing the
ability for a user to paste script.

Consider issues such a malicious user configuring an ingestion path that
accesses secure files on the file system.

When importing feeds from other environments, the Administrator should
always ensure that the security group is appropriate to the environment.
A security group that may be appropriate in a development environment
might not be inappropriate for production.

Index

Kylo rST Style Guide

Titles

The contents of each rST file begins with a Title, formatted with =
signs above and below the words and spaces in the title.

[image: image0]

There must be as many = signs as there are words and spaces.

This syntax produces this title in the Kylo Read-the-Docs site:

[image: image1]

Headings

The Kylo documentation uses the following heading syntax to produce the
following outputs:

Heading 1

[image: image2]

[image: image3]

Heading 2

[image: image4]

[image: image5]

Heading 3

[image: image6]

Heading 4

[image: image7]

Boldface

Add two asterisks before and after the word you wish to boldface. For
example:

Setup Wizard

Reference a Document within the Kylo Read-the-Docs Site

The :doc: directive can be used to create a link to another document in
the Kylo RTD library:

[image: image8]

In the Kylo RTD output, this directive produces this (see the link
embedded in the paragraph):

[image: image9]

When the user clicks the Setup Wizard Deployment Guide link, the
document opens in a new tab in the browser.

External Links

External links are done using the raw syntax, which opens the link in a
separate tab, leaving the Read the Docs page open.:

[image: image10]

That link syntax can be used standalone code, or it can be embedded in
text as in the following example. Either way, it produces the same
output in the Kylo RTD site.

Notice how the above rst syntax displays in the Kylo RTD site.

[image: image11]

This syntax requires that the link be specified with the following rst
syntax, which is included at the bottom of the rst source file:

[image: image12]

Bulleted Lists

Bulleted lists may be indented or not, using this sample syntax:

[image: image13]

The above syntax produces this output:

[image: image14]

Notes, Tips, Warnings…

A variety of special formats are available through one-word directives,
each of which produces a box (examples) below with a color scheme
determined by the theme. (Note that Kylo uses the RTD Theme.)

Starting flush left, the directive is stated as in this example:

[image: image15]

This produces the following note:

[image: image16]

Changing the key word (e.g., note, error, important, tip, waring)
changes the output, as shown in the following examples:

[image: image17]

[image: image18]

[image: image19]

[image: image20]

Code-Block

Various code-block directives produce different results, highlighting words in ways appropriate to how the code-block is assigned (e.g., shell, properties, javascript, html)

Here is a code-block for standard coding, and the way it displays on the Kylo RTD site:

[image: image21]

[image: image22]

And here is code-block for displaying code properties:

[image: image23]

[image: image24]

And here is code-block for displaying inline code, as shown below:

[image: image25]

[image: image26]

Kylo - Version 0.7.1 Resolved Issues

 Story

	[KYLO-44] - Consolidate metadata models and providers

	[KYLO-117] - Restructure feeds in ModeShape to separate versionable and transient data

	[KYLO-279] - Feed creation on Data Transformation is failing

 Task

	[KYLO-38] - Streaming stats should show tighter time frequency

	[KYLO-56] - Ability to navigate from operations -> feed details to data profile

	[KYLO-260] - Testing Infrastructure

	[KYLO-261] - Data science/analytics capabilities

	[KYLO-264] - Consolidate ops manager and feed manager into single UI

	[KYLO-265] - Feed Health details card in Ops Manager doesn't render Feeds in Safari

	[KYLO-268] - Create an 0.6.2 demo AMI

	[KYLO-269] - Create an 0.7.0 demo AMI

	[KYLO-277] - DBSchemaParser.listCatalogs() doesnt support Kerberos

	[KYLO-285] - Kylo Startup error:.modeshape.MetadataRepositoryException

	[KYLO-292] - Replace ModeshapeAvailability listener with PostMetadataConfigAction

	[KYLO-293] - Graph of NiFi flows errors when processors loop back to itself

	[KYLO-302] - Kylo doesn't start after feed was deleted

	[KYLO-345] - Integrate Travis CI with Teradata/kylo

	[KYLO-346] - Integrate Travis CI with KyloIO/kylo-docs

	[KYLO-367] - Document how to use machine learning functions

	[KYLO-374] - feed import should show progress

 Bug

	[KYLO-1] - need a favorites icon for web site

	[KYLO-12] - Double vision in profiling

	[KYLO-24] - Accumulators Double Counting - Spark Validator App

	[KYLO-47] - Valid records marked invalid after skip header is disabled

	[KYLO-59] - Feed is not triggered

	[KYLO-75] - Empty rows show up as invalid

	[KYLO-82] - Job fails if choosing JSON file format

	[KYLO-110] - Wrangler function getItem returns error

	[KYLO-119] - TableMerge broke when jsonPolicy is empty with Validator

	[KYLO-256] - DateTime Standardizer doesnt allow for Null date format

	[KYLO-262] - JSON Serde generated incorrectly

	[KYLO-266] - Cannot login when Kylo UI is on HTTPS

	[KYLO-267] - PR1 Fixed typos

	[KYLO-280] - Teradata tables are not listed when creating a new feed which should pull from Teradata database

	[KYLO-299] - Data Wrangler and Visual Query broken on Spark 2.1.0

	[KYLO-301] - Failure in Validate and Split Records processor of standard ingest template for Spark v2.1.0+

	[KYLO-308] - VARCHAR(2500) is used to store ExitCode

	[KYLO-332] - Feed Exports should respect and ${config. } values

	[KYLO-340] - Additional Audit Log capture for Feeds and Templates

	[KYLO-350] - Cannot setup feed preconditions

	[KYLO-351] - Chinese characters on Table headers

	[KYLO-352] - Visual Query doesn’t work on Transform Data step

	[KYLO-353] - Cannot see Alert details when clicking on one of the Alerts from SLA Violation

	[KYLO-354] - Extra properties defined Properties are not shown for Categories and then getting an error when saving properties

	[KYLO-355] - Additional properties defined in Properties tab are not displayed for Feeds

	[KYLO-357] - Source field for table partitions is empty for transformation feeds

	[KYLO-358] - NiFi graph is not build correctly with flows that have nested Process Groups

	[KYLO-363] - Lineage Details Panel does not get updated on selection of components on screen

	[KYLO-368] - Upload button in feed details doesn't work

	[KYLO-369] - User properties missing from feed details

	[KYLO-370] - User properties missing description, required indicator in feed wizard

	[KYLO-371] - Safari rendering issues on Ops Manager dashboard

	[KYLO-372] - cron preview is not showing

	[KYLO-376] - Importing a feed will also overwrite the template

	[KYLO-378] - Import Template doesnt show errors if it fails

	[KYLO-381] - Profile page styles in Safari (v 0.8 tested)

	[KYLO-385] - Hive tables autocomplete is cached.. needs ability to refresh

Release notes - Kylo - Version 0.8.2.2

 Task

	[KYLO-1174] - Allow users to override auto alignment on save in NiFi

	[KYLO-1175] - Remove 'required' flag on entity access owner field

	[KYLO-1186] - Optimize Feed Creation in NiFi

 Bug

	[KYLO-1020] - Kylo doesn't pick-up processor/ step errors

	[KYLO-1069] - Unable to create feed as a different user. Create Feed permission error

	[KYLO-1189] - Support 'failure' connection detection in subgroups

	[KYLO-1193] - KyloPersistentProvenanceRepository sometimes doesnt save the backup file on shutdown

	[KYLO-1194] - NPE on feed edit and save

QuickStart

The Kylo Sandbox is a personal virtual environment so you can quickly get started with Kylo. The sandbox is a pre-configured Kylo instance with Apache Hadoop, Spark, and NiFi.

Please access the Kylo website [https://kylo.io/quickstart.html] to try it out. There you will find download instructions and helpful tutorials on using Kylo.

Sentry Installation Guide

Installation Steps

	Log in to Cloudera Manager and click Add Service.

[image: image1]

	Select Sentry from list.

[image: image2]

	Click Select hosts to add a Sentry service.

[image: image3]

	Provide Sentry database information and test connection.

	Database Type : mysql

	Database Name : sentry

	Username : sentry

	Password : cloudera

[image: image4]

	Click Continue once all services are started.

[image: image5]

	Click Finish.

[image: image6]

Sentry is installed successfully.

Ambari Services Check

Describe the shell below:

ambariRestClientConfig.host=127.0.0.1
ambariRestClientConfig.port=8080
ambariRestClientConfig.username=admin
ambariRestClientConfig.password=admin
#ambariRestClientConfig.serverUrl=http://127.0.0.1:8080/api/v1
ambari.services.status=HDFS,HIVE,MAPREDUCE2,SQOOP

Authentication Settings

Currently available athentication/authorization Spring profiles:

auth-kylo - Users are authenticated if they exist in the Kylo user store and any groups associated with the user are retrieved for access control.

This profile is usually used in conjunction with other auth profiles (for example: auth-ldap, auth-ad).

auth-ldap - Authenticates users using LDAP, and optionally loads any associated user groups.

auth-ad - Authenticates users using Active Directory and loads any associated user groups.

auth-simple - Uses authenticationService.username and authenticationService.password for authentication (development only)

auth-file - Uses users.properties and roles.properties files for authentication and role assignment (generally for development only)

Auth-file

If this profile is active, then these optional properties may be used:

security.auth.file.users=file:///opt/kylo/users.properties
security.auth.file.groups=file:///opt/kylo/groups.properties

Auth-simple

If this profile is active, these authenticationService properties are used:

authenticationService.username=dladmin
authenticationService.password={cipher}52fd39e4e4f7d0f6a91989efbfa870f1a543550401e6ab0b17f3059c1ada9b5f
authenticationService.password=thinkbig

Auth-ldap

If this profile is active, then these properties should uncommented and updated appropriately:

security.auth.ldap.server.uri=ldap://localhost:52389/dc=example,dc=com
security.auth.ldap.server.authDn=uid=dladmin,ou=people,dc=example,dc=com
security.auth.ldap.server.password=thinkbig

Note

User DN patterns are separated by ‘|’

security.auth.ldap.authenticator.userDnPatterns=uid={0},ou=people
security.auth.ldap.user.enableGroups=true
security.auth.ldap.user.groupNameAttr=ou
security.auth.ldap.user.groupsBase=ou=groups

Auth-ad

If this profile is active, then these properties should uncommented and updated appropriately:

security.auth.ad.server.uri=ldap://example.com/
security.auth.ad.server.domain=test.example.com
security.auth.ad.user.enableGroups=true

Note

Group attribute patterns are separated by ‘|’.

security.auth.ad.user.groupAttributes=

Cloudera Services Check

Describe what is shown here:

clouderaRestClientConfig.username=cloudera
clouderaRestClientConfig.password=cloudera
clouderaRestClientConfig.serverUrl=127.0.0.1
cloudera.services.status=

Explain:

HDFS/[DATANODE,NAMENODE,SECONDARYNAMENODE],HIVE/[HIVEMETASTORE,HIVESERVER2],YARN,SQOOP

Server Port

Explain:

server.port=8420
server.port=8443

Add if SSL is Needed

Explain:

#server.ssl.key-store=/Users/sr186054/tools/test-ssl/test/localhost/keystore.jks
#server.ssl.key-store-password=sxkJ96yw2ZZktkVFtflln2IqjxkXPCD+vh3gAPDhQ18
#server.ssl.key-store-type=jks
#server.ssl.trust-store=/Users/sr186054/tools/test-ssl/test/localhost/truststore.jks
#server.ssl.trust-store-password=S1+cc2FKMzk2td/p6OJE0U6FUM3fV5jnlrYj46CoUSU
#server.ssl.trust-store-type=JKS

General Configuration

Describe this section.

Note

Supported configurations include: STANDALONE, BUFFER_NODE_ONLY, BUFFER_NODE, EDGE_NODE.

application.mode=STANDALONE

Turn on debug mode to display more verbose error messages in the UI.

application.debug=true

Prevents execution of jobs at startup. Change to true, and provide the name of the job that should be run at startup if we want that behavior

spring.batch.job.enabled=false
spring.batch.job.names=
spring.jpa.show-sql=true
spring.jpa.hibernate.ddl-auto=validate

Note

For Cloudera, metadata.datasource.password=cloudera is required.

metadata.datasource.driverClassName=org.mariadb.jdbc.Driver
metadata.datasource.url=jdbc:mysql://localhost:3306/kylo
metadata.datasource.username=root
metadata.datasource.password=hadoop
metadata.datasource.validationQuery=SELECT 1
metadata.datasource.testOnBorrow=true

Note

For Cloudera hive.datasource.username=hive is required.

hive.userImpersonation.enabled=false
hive.datasource.driverClassName=org.apache.hive.jdbc.HiveDriver
hive.datasource.url=jdbc:hive2://localhost:10000/default
hive.datasource.username=hive
hive.datasource.password=hive
hive.datasource.validationQuery=show tables 'test'

Note

For Cloudera, hive.metastore.datasource.password=cloudera is required.

Also the Cloudera url should be /metastore instead of /hive.

hive.metastore.datasource.driverClassName=org.mariadb.jdbc.Driver
hive.metastore.datasource.url=jdbc:mysql://localhost:3306/hive
hive.metastore.datasource.url=jdbc:mysql://localhost:3306/metastore
hive.metastore.datasource.username=root
hive.metastore.datasource.password=hadoop
hive.metastore.datasource.validationQuery=SELECT 1
hive.metastore.datasource.testOnBorrow=true
modeshape.datasource.driverClassName=org.mariadb.jdbc.Driver
modeshape.datasource.url=jdbc:mysql://localhost:3306/kylo
modeshape.datasource.username=root
modeshape.datasource.password=hadoop
nifi.rest.host=localhost
nifi.rest.port=8079

Configuring NiFi for HDFS Encryption

Key Creation Process

	Log in to Ranger KMS UI.

<Hostname>:6080

[image: image1]

	Provide Username as ‘keyadmin’ and password for user.

	Go to the Encryption tab and click Key Manager.

[image: image2]

	Select the appropriate defined service from list.

[image: image3]

	Click Add New Key.

	Fill out the Key Detail fields.

[image: image4]

	Click Save.

Now the Key has been successfully created, and it can be used for creating an
encryption zone.

Permission Definition

The next task is to provide necessary permissions to a user who will run the NiFi
application. In our case, we are using a NiFi user for running the application
and HDFS as a super user operation.

	Click on Service.

[image: image5]

	Click on the edit icon present at right side.

[image: image6]

	Go to bottom of page , you will see User and Group Permissions tab.

[image: image7]

	Provide appropriate permissions to the NiFi user.

Configure CreateHDFSFolder Processor

	Right-click Processor and select Configure.

	Configure the highlighted property for the processor.

Directory To Be Encrypted: /model.db/${source}
 /app/warehouse/${source}
 /etl/${source}
 /archive/${source}
Encryption Key: nifikey
Encryption Required: Y

[image: image8]

	Click OK and start the processor.

You have successfully configured NiFi DataLake Platform for HDFS Encryption.

NiFi HTTPS Configuration

Follow the directions provided at https://wiki.thinkbiganalytics.com/x/twHK to
setup certificates and properties in NiFi.

The port should match the port found in the
/opt/nifi/current/conf/nifi.properties (nifi.web.https.port)

nifi.rest.port=9443
nifi.rest.https=true
nifi.rest.useConnectionPooling=false
nifi.rest.truststorePath=/opt/nifi/data/ssl/localhost/truststore.jks

The truststore password below needs to match that found in the
nifi.properties file (nifi.security.truststorePasswd):

nifi.rest.truststorePassword=Zl1mAbMm0v4UkGV8VYjTi2ZP8NdwUL9CW7nsjGo47Fs
nifi.rest.truststoreType=JKS
nifi.rest.keystorePath=/opt/nifi/data/ssl/CN=kylo_OU=NIFI.p12

Value found in the .password file

/opt/nifi/data/ssl/CN=kylo_OU=NIFI.password
nifi.rest.keystorePassword=ydPkkba
nifi.rest.keystoreType=PKCS12

Question: Is this a new section?

elasticsearch.host=localhost
elasticsearch.port=9300
elasticsearch.clustername=demo-cluster
kerberos.hive.kerberosEnabled=false
kerberos.hive.hadoopConfigurationResources=/etc/hadoop/conf/core-site.xml,/etc/hadoop/conf/hdfs-site.xml
kerberos.hive.kerberosPrincipal=hive/sandbox.hortonworks.com
kerberos.hive.keytabLocation=/etc/security/keytabs/hive-thinkbig.headless.keytab

Used to map Nifi Controller Service connections to the User Interface

The naming convention for the property is
nifi.service.NIFI_CONTROLLER_SERVICE_NAME.NIFI_PROPERTY_NAME

Anything prefixed with nifi.service will be used by the UI. Replace
Spaces with underscores and make it lowercase.

nifi.service.mysql.database_user=root
nifi.service.mysql.password=hadoop
nifi.service.hive_thrift_service.database_connection_url=jdbc:hive2://localhost:10000/default
nifi.service.hive_thrift_service.kerberos_principal=nifi
nifi.service.hive_thrift_service.kerberos_keytab=/etc/security/keytabs/nifi.headless.keytab
nifi.service.hive_thrift_service.hadoop_configuration_resources=/etc/hadoop/conf/core-site.xml,/etc/hadoop/conf/hdfs-site.xml
nifi.service.kylo_metadata_service.rest_client_url=http://localhost:8400/proxy/v1/metadata
nifi.service.kylo_metadata_service.rest_client_password=thinkbig
jms.activemq.broker.url=tcp://localhost:61616
jms.client.id=thinkbig.feedmgr

NiFi Property Override with Static Defaults

Static property override supports three use cases:

	Store properties in the file starting with the prefix defined in the “PropertyExpressionResolver class” default = config.

	Store properties in the file starting with “nifi.<PROCESSORTYPE>.<PROPERTY_KEY> where PROCESSORTYPE and PROPERTY_KEY are all lowercase and the spaces are substituted with underscore.

	Global property replacement. properties starting with “nifi.all_processors.<PROPERTY_KEY> will globally replace the value when the template is instantiated.

Below are Ambari configuration options for Hive Metastore and Spark location:

config.hive.schema=hive
config.metadata.url=http://localhost:8400/proxy/v1/metadata

Spark Configuration

nifi.executesparkjob.sparkhome=/usr/hdp/current/spark-client
nifi.executesparkjob.sparkmaster=local
nifi.executesparkjob.driver_memory=1024m
nifi.executesparkjob.number_of_executors=1
nifi.executesparkjob.executor_cores=1

Specify to override the default HDFS locations for feed tables and multi-tenancy.

Root HDFS locations for new raw files:

config.hdfs.ingest.root=/etl

Root HDFS location for Hive ingest processing tables (raw,valid,invalid):

config.hive.ingest.root=/model.db

Root HDFS location for Hive profile table:

config.hive.profile.root=/model.db

Root HDFS location for Hive master table:

config.hive.master.root=/app/warehouse

Prefix to prepend to category system name for this environment (blank if none). Use for multi-tenancy:

config.category.system.prefix=

Set the JMS server hostname for the Kylo hosted JMS server:

config.elasticsearch.jms.url=tcp://localhost:61616

Example of replacing global properties:

nifi.all_processors.kerberos_principal=nifi
nifi.all_processors.kerberos_keytab=/etc/security/keytabs/nifi.headless.keytab
nifi.all_processors.hadoop_configuration_resources=/etc/hadoop/conf/core-site.xml,/etc/hadoop/conf/hdfs-site.xml

Cloudera Config

config.hive.schema=metastore
nifi.executesparkjob.sparkhome=/usr/lib/spark

How often should SLAs be checked:

sla.cron.default=0 0/5 * 1/1 * ? *

Additional Hive UDFs for partition functions. Separate multiple functions with commas.

kylo.metadata.udfs=

Postgres Datasource Configuration

Describe

spring.datasource.url=jdbc:postgresql://localhost:5432/pipeline_db
spring.datasource.driverClassName=org.postgresql.Driver
spring.datasource.username=root
spring.datasource.password=thinkbig
spring.jpa.database-platform=org.hibernate.dialect.PostgreSQLDialect

Spring Datasource Properties

Other properties are in the services-app/application.properties.

Add extra profiles by setting “spring.profiles.active=<profile-name>”
property on command line. For example:

-Dspring.profiles.active=hdp24,gmail,cdh

Extra profiles will add to this set of profiles and override properties given in this file:

spring.profiles.include=native,nifi-v1,auth-kylo,auth-file

Spring Datasource properties for spring batch and the default data source:

Note

Cloudera default password for root access to mysql is “cloudera”.

spring.datasource.url=jdbc:mysql://localhost:3306/kylo
spring.datasource.username=root
spring.datasource.password=hadoop
spring.datasource.maxActive=30
spring.datasource.validationQuery=SELECT 1
spring.datasource.testOnBorrow=true
spring.datasource.driverClassName=org.mariadb.jdbc.Driver
spring.jpa.database-platform=org.hibernate.dialect.MySQL5InnoDBDialect
spring.jpa.open-in-view=true

Sqoop Import Configuration

DB Connection password and driver (format: nifi.service.<sqoop controller service name in NiFi>.<key>=<value>).

Note

Ensure that the driver jar is available in below two locations:

	sqoop’s lib directory (e.g. /usr/hdp/current/sqoop-client/lib/)

	kylo’s lib directory, and owned by ‘kylo’ user (/opt/kylo/kylo-services/lib)

Need explanation:

nifi.service.sqoop-mysql-connection.password=hadoop
nifi.service.sqoop-mysql-connection.database_driver_class_name=com.mysql.jdbc.Driver

Base HDFS Landing Directory

Describe:

config.sqoop.hdfs.ingest.root=/sqoopimport

Uncommenet the settings below for Gmail to work:

sla.mail.protocol=smtp
sla.mail.host=smtp.google.com
sla.mail.port=587
sla.mail.smtpAuth=true
sla.mail.starttls=true

Login Form Authentication

Describe:

security.jwt.algorithm=HS256
security.jwt.key=<insert-256-bit-secret-key-here>
security.rememberme.alwaysRemember=false
security.rememberme.cookieDomain=localhost
security.rememberme.cookieName=remember-me
security.rememberme.parameter=remember-me
security.rememberme.tokenValiditySeconds=1209600
security.rememberme.useSecureCookie=

If a job fails, tell your operations manager to query NiFi for bulletin
information in an attempt to capture more logs about the failure:

kylo.ops.mgr.query.nifi.bulletins=true

TAR File Upgrade

Below are instructions on how to upgrade using a TAR file when using a non standard installation location.

Step 1: Backup and Delete the Kylo folder

$ sudo kylo-service stop
$ sudo cp -R /apps/kylo/ /apps/kylo-<version>-bk
$ sudo rm -rf /apps/kylo
$ sudo chkconfig --del kylo-ui
$ sudo chkconfig --del kylo-spark-shell
$ sudo chkconfig --del kylo-services
$ sudo rm -rf /etc/init.d/kylo-ui
$ sudo rm -rf /etc/init.d/kylo-services
$ sudo rm -rf /etc/init.d/kylo-spark-shell
$ sudo rm -rf /var/log/kylo-*

Step 2: Stop NiFi

Step 3: Untar the new file

$ sudo mkdir /apps/kylo
$ sudo tar -xvf /tmp/kylo-0.8.2-dependencies.tar.gz -C /apps/kylo

Step 4: Run the post install script

$ sudo /apps/kylo/setup/install/post-install.sh /apps/kylo ad_kylo users

Step 5: Update the NiFi JARS and NARS

$ sudo rm -rf /apps/nifi/data/lib/*.nar
$ sudo rm -rf /apps/nifi/data/lib/app/*.jar

$ sudo /apps/kylo/setup/nifi/update-nars-jars.sh /apps/nifi /apps/kylo/setup ad_nifi users

Step 6: Start NiFi

Step 7: Copy custom configuration files to the new installation

For example:

$ sudo cp /apps/kylo-<version>-bk/kylo-services/bin/run-kylo-spark-shell.sh /apps/kylo/kylo-services/bin
$ sudo cp /apps/kylo-<version>-bk/kylo-services/conf/spark.properties /apps/kylo/kylo-services/conf
$ sudo cp /apps/kylo-<version>-bk/kylo-services/conf/application.properties /apps/kylo/kylo-services/conf
$ sudo cp /apps/kylo-<version>-bk/kylo-ui/conf/application.properties /apps/kylo/kylo-ui/conf
$ sudo cp /apps/kylo-<version>-bk/encrypt.key /apps/kylo/
$ sudo cp /apps/kylo-<version>-bk/kylo-services/lib/postgresql-42.0.0.jar /apps/kylo/kylo-services/lib/

$ sudo cp /apps/kylo-<version>-bk/kylo-services/conf/ambari.properties /apps/kylo/kylo-services/conf/
$ sudo cp /apps/kylo/setup/plugins/kylo-service-monitor-ambari-<version>.jar /apps/kylo/kylo-services/plugin/
$ sudo chown ad_kylo:ad_kylo /apps/kylo/kylo-services/plugin/kylo-service-monitor-ambari-<version>.1.jar

Step 8: Start Kylo

$ sudo kylo-service start

 _images/KC18.png
Processor Det:

Required field

Property
Xecutor Memory

Number of Executors @1
Spark Application Name @ | validator
Executor Cores @1
Network Timeout @ 120
Hadoop Configuration Resources @ o
Kerberos Principal

Kerberos keytab

Spark Configurations

@
)
Yar Queue @
)
@

Extra Files Jusr/hdp/current/spark-client/conf/hive-site.xml

_images/KC19.png
Configure Processor

settings | schotin | [commert=
= Ve
P temeny o
Number of Executors @ 1
Spark Application Name @ validator
Executor Cores. @ 1
Network Timeout @ 120s
Hadoo Conrto Rezources @ [oaioe et
Kerbero rncpa o 1o
Kerbero et @ [o vab et
Spark Configurations @ | spark.yarn.executormemoryOverhead=2048

Iz ool

_images/KC16.png
Required field +

Metadata Ser © Think Big Metadata Service -
Feed Precondition Event Service © JmsFeedPreconditionEventService =)
System feed category © S{metadata.category.systemName)

System feed name © S(metadata.systemFeedName)

Matching Execution Context Keys 0 __exortiylo

Comma separated st of Execution context keys or key fragments that will be
applied to cach of the dependent feed execution context data set. Only the
execution context values starting with keys this set will be included in the flow file
JSON content. Any key (case insensitive) starting with one of these supplied keys
will be included

Default value: export kylo

Supports expression language: false

CANCEL

_images/KC17.png
| > TrggerFes

n o)
Resdite Obyts Oites Sma
ou o

7 cueued 0 0es)

=] > et Feed Name o Valdate

U5 o)
Resiite 0byts Obyes

ou ol

TeskaTime 0000000 000

[Queed 006y i

21> ntiakze Parameters

B o
Besdinte 0byte Diyes
ou 0w

TeskeTime 0/000000000

_images/KC2.png
New Keychain

_images/image21.png
Service Level Agreements

Completion Time

Feed deadline every 24 hours

demo2.demo_ingest_feed
Related Feeds

Rows per page 5w

1-10f1

oo

_images/KC3.png
a

Enter a new password for the keychain “ni
cert”

New Password:
o

Password Good

Canc

_images/image23.png
Filter

Feed Health demo

ALL RUNNING HEALTHY

demo2.demo_ingest_feed
® HEALTHY

demo.kafka_pub_demo_feed_2
® HEALTHY

demo.kafka_pub_demo_feed_1
® HEALTHY

ABANDONED

Status

RUNNING

Status

COMPLETED

Status

17 days 15 hrs 55 min 47 sec

since

5 days 23 hrs 24 min 13 sec

since

61 days 18 hrs 32 min 13 sec

since

893 hr 34 min 12 sec

Last Run Time

Last Run Time

0 sec

Last Run Time

Rowsperpage 5w 1-30f3

_images/image22.png
SLA Conditions

1. Feed Processing deadline
Ensure a Feed processes data by a specified time

FeedName

demo2.Demo ingest feed v

00121/1%2%
Cron Expression for when you expect to receive this data

Cron Preview
10/03/2016 12:00:00 PM
10/04/2016 12:00:00 PM
10/05/2016 12:00:00 PM

No later than time Uit
2 Hours v

Number specifying the amount of time allowed after the Expected Delivery
Time

ADD CONDITION

SLA Actions

1. Email
Email user(s) when the SLA is violated
Warning Configuration Error! You can still assign this action, but it may not fire due to configuration issues.

Email connection information is not setup. Please contact an administrator to set this up.

Email addresse
admin@Imei.com
comma separated email addresses

ADD ACTION

DELETE CANCEL SAVE SI

_images/image25.png
Filter

Feed Health demo
ALL RUNNING
Feed |,

demo2.demo_ingest_feed

demo.kafka_pub_demo_feed_2

demo.kafka_pub_demo_feed_1

HEALTHY UNHEALTHY

Health
® HEALTHY
© HEALTHY

® HEALTHY

Status

ABANDONED

RUNNING

COMPLETED

Since

17 days 15 hrs 57 min 24 sec

5 days 23 hrs 25 min 50 sec

61 days 18 hrs 33 min 50 sec

Rows per page:

5w

Last Run Time

893 hr 34 min 12 sec

0sec

1-50f12

_images/image24.png

_images/image27.png
Filter Chart

Showing 1 jobs

Feed

data sources.GetFile source

E Start date

E End date

Limit

500 ¥

Update

_images/image26.png

_images/image29.png
Pivot Charts

Chart Type Attributes (drag and drop to customize the chart)
[Table O]

Create Time~ EndTime~ StartTime~ Status~ Duration (min) ~ Time Since End Time ~

Job Type v Feed Name ~ -4 tatus~ EndDate - Duration (sec) -

Totals 2 2

Aggregrator

| Count
T EECLE R,
! at
' Job Name ~ © 2016-09-01 Totals
! Exit Code
. Exit Code ~ ! COMPLETED 1 1
' . Imci_debug.ingest 3
h EXECUTING 1 1
h
\

_images/image28.png
Chart Type

Table Barchart
Heatmap

Row Heatmap

Col Heatmap

Line Chart

Bar Chart
Stacked Bar Chart
Area Chart
Scatter Chart

_images/image20.png
TERADATA THINKBIG

User: dladmin v

& Feeds
Y Categories

@ Tables

B SLA
f Visual Query

Admin

Templates

A Operations Manager

_images/image2.png
Sources

Ingestion Framework
(KyloNIFI)

Processing Framework
(KyloNIFI + Spark)

Access Framework
(KyloNIFI + Spark +

Views)

‘Applcation
Views

Landing

Zone.
XML blob, (€000

Text blob
Master Data

Discovery
Ad-hoc
Reports

_images/KC14.png
Processor Det:

Required field

Property
Xecutor Memory

Number of Executors @1
Spark Application Name @ | validator
Executor Cores @1
Network Timeout @ 120
Hadoop Configuration Resources @ o
Kerberos Principal

Kerberos keytab

Spark Configurations

@
)
Yar Queue @
)
@

Extra Files Jusr/hdp/current/spark-client/conf/hive-site.xml

_images/KC15.png
Configure Processor

settings | schotin | [commert=
= Ve
P temeny o
Number of Executors @ 1
Spark Application Name @ validator
Executor Cores. @ 1
Network Timeout @ 120s
Hadoo Conrto Rezources @ [oaioe et
Kerbero rncpa o 1o
Kerbero et @ [o vab et
Spark Configurations @ | spark.yarn.executormemoryOverhead=2048

Iz ool

_images/KC12.png
Required field +

Metadata Ser © Think Big Metadata Service -
Feed Precondition Event Service © JmsFeedPreconditionEventService =)
System feed category © S{metadata.category.systemName)

System feed name © S(metadata.systemFeedName)

Matching Execution Context Keys 0 __exortiylo

Comma separated st of Execution context keys or key fragments that will be
applied to cach of the dependent feed execution context data set. Only the
execution context values starting with keys this set will be included in the flow file
JSON content. Any key (case insensitive) starting with one of these supplied keys
will be included

Default value: export kylo

Supports expression language: false

CANCEL

_images/KC13.png
| > TrggerFes

n o)
Resdite Obyts Oites Sma
ou o

7 cueued 0 0es)

=] > et Feed Name o Valdate

U5 o)
Resiite 0byts Obyes

ou ol

TeskaTime 0000000 000

[Queed 006y i

21> ntiakze Parameters

B o
Besdinte 0byte Diyes
ou 0w

TeskeTime 0/000000000

_images/image13.png
TerapaTa THINK BIG

User: dladmin -

A Overview
A, services

£ Jobs
() scheduler
m

Charts

1]

Feed Manager

_images/image12.png
"TERADATA
THINK BIG

User: dladmin

Overview
Services
Jobs
Scheduler

Charts

Feed Manager

< Overview

Jobs Activity 3DAYS 1 MONTH 3 MONTHS 1YEAR
@ COMPLETED
14
o
09/15/2016
Date

Feed Jobs e :

ALL RUNNING FAILED COMPLETED ABANDONED STOPPED
test.test_listfile_state_on_update_f... Sep 22, 2016 17:24:34 0 sec
@ COMPLETED Start Time Run Time
test.test_listfile_state_on_update_f... Sep 22, 2016 17:24:13 1sec
@ COMPLETED Start Time Run Time
test.test_listfile_state_on_update_f... Sep 22, 2016 17:24:13 1 sec
@ COMPLETED Start Time Run Time
test.test_listfile_state_on_update_f... Sep 22, 2016 17:24:13 1 sec
@ COMPLETED Start Time Run Time
test.test_listfile_state_on_update_f... Sep 22, 2016 17:24:13 1 sec
@ COMPLETED Start Time Run Time

Feed Details
test.test_listfile_state_on_update_feed
® HEALTHY

COMPLETED

Status

3 days 19 hrs 40 min 20 sec

Since

0 sec

Last Run Time

O Alerts

No alerts

_images/image15.png
Job Execution

JoB STEP 1 STEP2 STEP3

test.test_listfile_state_on_update_feed Sep 22,2016 17:24:34
@ COMPLETED Start Time

Exit Description
No description available

Parameters Values

file.group thinkbig

file.lastModifiedTime 2016-09-20T10:27:08-0400

file.size 413376

file.permissions W

uuid 076560ch-b322-446e-aad7-eff912e03301
absolute.path Jmp/

path /

0sec

Run Time

JOB PARAMETERS

Job 1 of 1

COMPLETED

Exit Code

EXECUTION CONTEXT DATA

Job Details @

test.test_listfile_state_on_update_feed
@ COMPLETED

FEED
Type

Sep 22,2016 17:24:34

Start Time

0sec

Run Time

COMPLETED

Exit Code

Related Jobs

Job

1.Sep22,201617:24:34 v

_images/image14.png
Jobs

ALL RUNNING FAILED COMPLETED ABANDONED STOPPED

demo.kafka_pub_demo_feed_2 demo.kafka_pub_demo_feed_2 Sep 27,2016 12:32:19 104 hrs 52 min 19 sec

sToP FAIL
&£ STARTED Feed Start Time Run Time
Imci_debug.test_listfile_permissions Imci_debug.test_listfile_permi... Sep 27,2016 10:22:25 107 hrs 2 min 13 sec

sToP FAIL
&£ STARTED Feed Start Time Run Time
Imci_debug.test_listfile_permissions Imci_debug.test_listfile_permi... Sep 27,2016 10:22:25 107 hrs 2 min 13 sec

sToP FAIL
&£ STARTED Feed Start Time Run Time
Imci_debug.test_listfile_permissions Imci_debug.test_listfile_permi... Sep 27,2016 10:22:25 107 hrs 2 min 13 sec

sToP FAIL
&£ STARTED Feed Start Time Run Time
Imci_debug.test_listfile_permissions Imci_debug.test_listfile_permi... Sep 27,2016 10:22:25 107 hrs 2 min 13 sec

sToP FAIL
&£ STARTED Feed Start Time Run Time

Rows perpage 5 v 1-50f1317

_images/image17.png
Parameters

file.group

file.lastModifiedTime

file.size

file.permissions

uuid

absolute.path

path

feed

filename

file.creationTime

file.lastAccessTime

file.owner

feedlsParent

jobType

JOB PARAMETERS

Values

thinkbig

2016-09-20T10:27:08-0400

413376

W

076560ch-b322-446e-aa47-ff91ae03301

/tmp/

testtest listfile_state_on_update_feed

import_template_14743816284854385705068247225005.xml

2016-09-20T10:27:08-0400

2016-09-20T10:27:08-0400

thinkbig

true

FEED

EXECUTION CONTEXT DATA

_images/image16.png
Job Details [(©]

RESTART ABANDON

Imci_debug.test_listfile_permissions
@ FAILED

FEED

Type

Sep 27,2016 10:22:24

Start Time

24 hrs 56 min 56 sec

Run Time

EXECUTING

Exit Code

Related Jobs

1.Sep 27,2016 10:22:24 v

_images/image19.png
Scheduler

Scheduled Jobs Scheduler Details
Completion Time SLA in a few seconds PAUSE SCHEDULER
=) Cron Expression PAUSE FIRE NOW
O SCHEDULED Group Next Fire
@& RUNNING

Status

149 hrs 54 min 38 sec
Up Time

09/26/2016 04:23:18 pm

Start Time

284

Jobs Executed

_images/image18.png
Job Execution

JoB STEP1 STEP2
ListFile
@ COMPLETED

Exit Description
No description available

Context Parameters
file.group
file.lastModifiedTime
file.size

Event Id
file.permissions

uuid

absolute.path

Flow File Id

path

STEP3

Sep 22,2016 17:24:34

Start Time

Values

thinkbig

2016-09-20T10:27:08-0400

413376

2251

W

076560ch-b322-446e-aa47-ff91ae03301

/tmp/

076560ch-b322-446e-aa47-ff91ae03301

0sec

Run Time

Job 1 of 1

COMPLETED

Exit Code

_images/image10.png
Jobs

ALL RUNNING FAILED

Imci_debug.test_listfile_permissions

£ STARTED

Imci_debug.test_listfile_permissions

O FAILED

test.test_listfile_state_on_update_feed

@ COMPLETED

test.test_listfile_state_on_update_feed

@ COMPLETED

test.test_listfile_state_on_update_feed

@ COMPLETED

COMPLETED

ABANDONED STOPPED

Imci_debug.test_listfile_permissions

Sep 23, 2016 16:34:09

Start Time

Sep 23, 2016 16:29:05

Start Time

Sep 22,2016 17:24:34

Start Time

Sep 22,2016 17:24:13

Start Time

Sep 22,2016 17:24:13

Start Time

68 hrs 28 min 3 sec
sToP
Run Time

2 min 44 sec
RESTART
Run Time

0sec

Run Time

1sec

Run Time

1sec

Run Time

Rows per page

5v

FAIL

ABANDON

1-50f772

_images/feed_lineage_datasource_rest_endpoints.png
EZ] v /recdmgrifeedsiupdate-datasource-definitions. Updates the datasource defintons.

EZ] v /fecdmerifeedsiupdate-feed-lineage-styles Updates the feed ineage styles.

_images/image11.png
. Action
Job Control Actions

Restart Fail

Fail Abandon

_images/image4.png
Services Health

Monitors All Service Health

6 Total

4 2

Healthy Unhealthy

_images/image41.png
Import a Feed

Import a Pipeline Controller Feed Archive.
Type File type
ZIP

Archive
CHOOSE FILE data_ingest.zip

D Overwrite
If the Feed already exists it will be replaced.

IMPORT FEED

Description

An archive contains both Nifi and Pipeline Controller Feed Data.
This will import into Nifi and register the feed and respective template in Pipeline

Controller .

|=»

_images/image40.png
Select the type of feed or Import from an archive

Data Ingest »
Data Ingest
Data Transformation x

Data Transformation

e

Data Confidence Invalid Records | 4

Data Confidence Check - Invalid record count percentage

More

_images/image43.png

_images/image42.png
Feed Details

DETAILS PROFILES SLA

v Feed Definition

Feed Name Demo ingest feed
System Name demo_ingest_feed
Description sample description
Feed Type Data Ingest

v Feed Details

Source Poll filesystem
Input Directory /var/dropzone

File Filter userdata\d{1,3}.csv

_images/image45.jpg
P T}

P T}

DEV/QA

Development

UAT

PROD

Production

‘Stakeholders Development Teams

Data Engi

REQUIREMENTS

Development
Sandboxes

®© cocertests () Data Samples

® reeas @ oataspecs
@ Templates @ Mocets

BIG DATA APPLICATION DEVELOPMENT LIFE CYCLE

€ICD Tools

Artifactory.

‘Sonaraube

yrate Functions

— {

Edge Node

Kylo,

DEV/ QA Cluster

Spark

Hadoop

Staging Cluster

Production Cluster

_images/image44.png
v Feed Details °

Choose a Feed Input
© Poll filesystem O Poll database

Input Directory

/var/dropzone

The input directory from which to pull files
File Filter

userdata\d{1,3}.csv
Only files whose names match the given regular expression will be picked up

CANCEL SAVE

_images/image6.png
Data Confidence
Validates Data Integrity

0 1

Healthy Unhealthy

_images/image5.png
Feed Health

Monitors All Feed Health

12 Total

11 1

Healthy Unhealthy

_images/image7.png
Job Activity

Currently Running Jobs

1

Running

_images/image31.png
Service Health

database

® HEALTHY

HDFS
A WARNING

HIVE
® HEALTHY

MAPREDUCE2
® HEALTHY

Nifi
® HEALTHY

1

Component(s)

7

Component(s)

6

Component(s)

2

Component(s)

1

Component(s)

None

Alerts

18 Alerts

Alerts

3 Alerts

Alerts

4 Alerts

Alerts

None

Alerts

0/03/2016 at 9:09
Last Checked

0/03/2016 at 9:09
Last Checked

0/03/2016 at 9:09
Last Checked

0/03/2016 at 9:09
Last Checked

0/03/2016 at 9:09
Last Checked

Rows per page 5w 1-50f6

_images/image30.png
Aggregrator

Start Date ~

| Count 4|
Job Name ~
Job Name
Exit Code
Exit Code (2)

Select All | Select None
Filter results

@ COMPLETED (15)
@ EXECUTING (1)

ok

_images/image33.png
Service Component Alerts

DataNod

@ ok

DataNod

@ ok

DataNod

@ ok

DataNod

@ ok

DataNod

@ ok

e Process

e Web Ul

e Unmounted D...

e Storage

e Heap Usage

TCP OK - 0.000s response on port 50010

Message

HTTP 200 response in 0.000s

Message

Data dir(s) are fine, /hadoop/hdfs/data .

Message

Remaining Capacity:[13935746895], Total Capacity:[73% Used, 52587134976]

Message

Used Heap:[10%, 96.34919 MB], Max Heap: 1004.0 MB

Message

Rows per page

10/03/20

Time

10/03/20

Time

10/03/20

Time

10/03/20

Time

10/03/20

Time

6at9:10

6at9:10

6 at 9:09

6 at 9:09

6 at 9:09

5w 1-50f5

_images/image32.png
Service Components

DATANODE
® HEALTHY

HDFS_CLIENT
® HEALTHY

JOURNALNODE
A WARNING

NAMENODE
® HEALTHY

NFS_GATEWAY
A WARNING

STARTED

Message

INSTALLED

Message

UNKNOWN

Message

STARTED

Message

UNKNOWN

Message

5 Alerts

Alerts

0 Alerts

Alerts

0 Alerts

Alerts

10 Alerts

Alerts

0 Alerts

Alerts

Rows per page

10/03/2016 at 9:10
Last Checked

10/03/2016 at 9:10
Last Checked

10/03/2016 at 9:10
Last Checked

10/03/2016 at 9:10
Last Checked

10/03/2016 at 9:10
Last Checked

5w 1-50f7

_images/image35.png
Registered Templates

Data Confidence Invalid Records

‘¥ Template Name

Data Ingest

®» Template Name

Data Transformation

J. Template Name

Example kafka put

@ Template Name

generate flow file source

= Template Name

07/28/2016 @ 2:57:09PM
Last Updated

08/23/2016 @ 5:20:31PM
Last Updated

07/28/2016 @ 2:53:09PM
Last Updated

08/11/2016 @ 6:33:33PM
Last Updated

08/23/2016 @ 3:16:49PM
Last Updated

|&

|&

|&

|&

|&

Export

Export

Export

Export

Export

-50f 14

_images/image34.png
TerADATA THINK BIG

User: dladmin v

A Overview

Services

Jobs

Scheduler

Charts

k 8 0d & b

Feed Manager

_images/image37.png
Register a new template

Create from Nifi 4

Register a new template that currently resides in Nifi

Import from file 1

Register a new template that you exported from a different
Pipeline Controller Environment

_images/image36.png

_images/image39.png
Feeds

Demo ingest feed

Feed Name

generate flowfile to hdfs continue

@ Feed Name

Generated FlowFile

Feed Name

GetKafkaPutHdfs1

@ Feed Name

HDFS put

@ Feed Name

demo2

CQ Category

Sources

0 Category

Sources

0 Category

Imci_debug

& Category

Sinks

0 Category

Data Ingest

Type

generate flow file source
Type

generate flow file source

Type

GetKafkaPutHDFS

Type

putfile sink

Type

Rows per page 5w

1-50f17

le

le

le

le

le

Export

Export

Export

Export

Export

_images/image38.png
Import a Template

Choose Import a Nifi Template or Pipeline Controller Archive.

Type File type Description
Nifi Template XML Importing a Nifi Template will validate and import the template into Nifi.
Archive ZIP An archive contains both Nifi and Pipeline Controller data.

This will import into Nifi and register the template in Pipeline Controller.

CHOOSE FILE data_transformation.zip

D Overwrite

If template already exists it will be replaced.

IMPORT TEMPLATE

|=»

_images/image3.png
“TERADATA
THINK BIG

User: dladmin

8 0 % > >

13

Overview
Services
Jobs
Scheduler

Charts

Feed Manager

Overview

Services Health

Monitors All Service Health

Feed Health

Monitors All Feed Health

Data Confidence
Validates Data Integrity

Job Activity

Currently Running Jobs

6 Total 1
0
4 2 11 1 0 1 1
Healthy Unhealthy Healthy Unhealthy Healthy Unhealthy Running
Feed Health the °
ALL RUNNING HEALTHY UNHEALTHY

test.test_listfile_state_on_update_feed COMPLETED 3 days 19 hrs 33 min 24 sec 0sec
®© HEALTHY Status Since Last Run Time
test.test_generate_flowfile__put ABANDONED 3 days 20 hrs 57 min 11 sec 26 hr 1 min 4 sec
®© HEALTHY Status Since Last Run Time
templates.kafka pub ABANDONED 58 days 19 hrs 21 min 35 sec 28 hr 20 min 54 sec
© HEALTHY Status Since Last Run Time
Imci_debug.test_listfile_permissions RUNNING 2 days 20 hrs 23 min 49 sec -
© UNHEALTHY Status Since Last Run Time
Imci_debug.sample ingest 2 ABANDONED 10 days 16 hrs 57 min 49 sec 341 hr 55 min 31 sec
® HEALTHY Status Since Last Run Time

Rows per page

5v 1-50f12 < >

O Alerts

Imci_debug.test_listfile_permissions
1 ALERT

MAPREDUCE2
1 ALERT

HDFS
1 ALERT

Feed
3 days ago

Service

aminute ago

Service

aminute ago

_images/3.png
~ Global

Keytab Dir

Realm

‘Spnego Principal

Spnego Keytab

~ Ambari Principals

‘Smoke user principal

‘Smoke user keytab

HDFS user principal

HDFS user keytab

HBase user principal

HBase user keytab

‘Spark user principal

‘Spark user keytab

Jetc/security/keytabs

HDP-TBRND-DEV

HTTP/_HOST@S{realm}

S{keytab_dir}/spnego service keytab

S{cluster-envismokeuser}-S{cluster_name}@s{reaim}
S{keytab_dir}/smokeuser headless keytab
‘${hadoop-env/ndfs_user}-S{cluster_name}@s{realm}
S{keytab_dir}/nafs headless keytab
S{nbase-env/hbase_user}-S{cluster_name}@s{realm}
S{keytab_dir}/nbase headless keytab
S{spark-envispark_user}-S{cluster_name}@s{reaim}

S{keytab_dir)/spark headless keytab

_images/4.png
J @ Ambari - Sand
€« c b

Enable Kerberos Wizard

Confirm Configuration

e setup proce

Using the Download CSV button, you can d d a csv file which contains a list of the principals and
d by Amt

Confirm Configuration

Executable path: /usr/bin, /usr/kerbs bin, /usr/lib/mit/bin, /usr/lib/mit

I 2z |
25112015

A il @

_images/2_executesparkjob.png
Configure Processor

Property Value
ecitor Memory T S1am
Number of Executors @1
‘Spark Application Name @ | validator
Executor Cores @1
Network Timeout @ 120
Hadoop Configuration Resources @ | No value set
Kerberos Principal @ |nove
Kerberos keytab @ | No value set
Yern Queue @ | No value set
‘Spark Configurations. @ | spark.yarn.executormemoryOverhead=2048

Iz ool

_images/2_new-pull-request.png
sranch.,m..m.m..m.... crestenewtie | upiosaties | rinatie | [N

_images/BulletedRTD.png
Some core features:

e Dynamic schemas - provide extensible features for extending schema towards custom business
metadata in the field

e \ersioning - ability to track changes to metadata over time

e Text Search - flexible searching metastore

e Portability - can run on sql and nosql databases

_images/CK111.png
clouder:

Clusters ~ Hosts - Diagnostics - Audits Charts ~ Administration ~

Home Settings.
Aerts

Liser:

Ticense

Status Al Health Issues Configuration ~ Al Recent Commands

Request to the Service Monitor failed. This may cause slow page responses. View the status of the § -3"9Uag¢

_images/5.png
1/admin/kert

Enable Kerberos Wizard

Kerberize Cluster

Kert as successfull

Kerberize Cluster

A il O

25-11-2015

_images/Bulleted.png
uc L.
Some core features:

- Dynamic schemas - provide extensible features for extending schema
towards custom business metadata in the field

- Versioning - ability to track changes to metadata over time

- Text Search - flexible searching metastore

_images/CK2.png
clouder:

Clusters ~ Hosts - Diagnostics - Audits Charts ~ Administration ~ Support~ ¢

Security

Status Kerberos Credentials

Status ‘Security Inspector

Cluster

Cloudera QuickStart Kerberos is disabled. Enable Kerberos HDFS Data At Rest Encryption is disabled Set up HDFS Data At Rest Encryption

_images/N6.png
NiFi Flow Settings

(] coor s [R

Name ~

o@ MetadataConnectionService MetadataConnectionservice # Enabled
oB ‘ThriftConnectionPool ‘ThriftConnectionPool # Enabled

o |

_images/CK3.png
< C' | ® 127.0.0.1:7180/cmf/clusters/1/kerberos/wizard Qx| @ #
Cloudera Support~ cloud

Enable Kerberos for Cloudera QuickStart

Welcome

This wizard walks you through the steps to configure Cloudera Manager and CDH to use Kerberos for authentication. All services in the cluster. as well as the Cloudera Management
Service, are restarted as part of the wizard. Before proceeding with the wizard, read the documentation about enabling Kerberos.

Before using the wizard, please ensure that you have performed the following steps:

Set up a working KDC. Cloudera Manager supports MIT KDC and Active Directory.
4/ Yes, I've set up a working KDC.

The KDC should be configured to have non-zero ticket lifetime and renewal lifetime. CDH will not work properly if tickets are not renewable.
14! Yes, I've checked that the KDC allows renewable tickets.

OpenLdap client libraries should be installed on the Cloudera Manager Server host if you want to use Active Directory. Also, Kerberos client libraries should be
installed on ALL hosts.

14! Yes, I've installed the client libraries.

Cloudera Manager needs an account that has permissions to create other accounts in the KDC.
(4] Yes, I've created a proper account for Cloudera Manager.

Back 080080000

_images/N8.png
NiFi Flow Settings

General | [| Reporting

Configure Controller Service

Name -

-

Required field

Database Driver

lass Name
Database Driver Jar Url

Hadoop Configuration Resources
Kerberos Principal

Kerberos Keytab

Database User

Password

Max Wait Time

Max Total Connections

|| New property.

idoechive2:
<HIVE_PRIN

/1< >£10000/default;principal=
oA N

Cancel

_static/ajax-loader.gif

_images/N7.png
ing Taf

rvice

Disable Controller Service

Service
ThriftConnectionPool

Steps to disable ThriftConnectionPool

Stopping referencing processars and reporting tasks ¥

Disabling referencing controller services.
Disabling this controller service

v
v

Referencing Components
Processors (.

A\ Register Tables

A\ Create Feed Partition ©xec

A\ Tebletrerse

A\ TableRegister 7:

_images/Note.png
. note:: The setup wizard is designed for easy installation of all components on one node.

_static/comment-bright.png

_images/NiFi-1.3.0_updateattributes_change.png
Configure Processor

SCHEDULING PROPERTIES

Required field +
Delete Attributes Expression © Configure Processor
Store State © Store state locally
Stateful Variables Initial Value @ | Empty string set ,7
SETTINGS 'SCHEDULING PROPERTIES COMMENTS
feedts © ${now():toNumber()} o
hdfs.ingest root © ${hdfs ingest root:replaceEmpty(/etl)} o Name Automatically Terminate Relationships @
hive.Ingest.root © S$ihive.ngest rootreplaceEmpty(/model.db)) o Set Feed Defaults Enabled set state fail
A failure to set the state after adding the attributes to the
" FlowFile will route the FlowFile here.
60d7710f-1cab-3078-43c4-f7cebaad3c91 D 'success
All successful FlowFiles are routed to this relationship
Configure Processor UpdateAttribute 1.3.0
Bundle
SETTINGS 'SCHEDULING PROPERTIES COMMENTS
Required field +
Delete Attributes Expression © | Novalue set
Store State
Stateful Variables Initial Value |
feedts
hdfs.ingest.root e y
hive.ingest.root | Set empty string

hive.master.root

hive.profile.root CANCEL

metadata.dataTransformation.dataTransformSeript © S${metadata. dataTransformation.dataTransformSeriptrepla.. @

_images/KC9.png
Google Chrome wants to sign using key
“privateKey” in your keychain.
Do you want to allow access to tis item?

Always Allow Deny Allow

_images/KC8.png
Google Chrome wants to use the “nifi-cert”
keychain.

Please enter the keychain password.

N —
Garce

_images/N3.png
Configure Processor

stinge | [sceduing e

Required field || ew property

Propery vaiue —

Hadoop Configuration Resources <HADOOP CONFIGURATION LOCATION> S

Kerberos Principal <PRINCIPAL NAME>

Kerberos Keytab <KEYTAB LOCATION>
Kerberos Relogin Period T hours
Directory /etl/${source}/${entity}/${feedts}
Conflict Resolution Strategy replace
Block Size

10 Buffer Size

Replication

D EIEEG R

permissions umask.

Remot:

_images/N1.png
172-31-28-19 conf]$ pwd
/opt/nifi/nifi-0.5.1/conf
[ec2-user@ip-172-31-28-19 confl$ vi nifi.properties ||

_images/N5.png
. nifi

v
=¥ NifiFlow » kerberos-testing

Active threads: 0 Queued: 3 / 420.35 KB Stats last refreshed: 09:34:29 GMT @o [Flo p14a @3 A1 sbo

_images/N4.png
Configure Processor

[settings | schduing | [Comments|

Required field |o] New property

Property Value

ApplicationAR /opt/nifi/current/lib/app/thinkbig-spark-0.5.0-S.

MainClass com.thinkbiganalytics.spark.datavalidator.Validator

Hadoop Configuration Resources <HADOOP CONFIGURATION LOCATION>

Kerberos Principal <PRINCIPAL NAME>

‘SparkMaster yarn-client

SparkHome 2 Jusr/hdp/current/spark-client/
Max Wait Time

Driver Memory

Exacutor Mam.

_images/CK8.png
Sup

Enable Kerberos for Cloudera QuickStart

Configure Ports
Configure the privileged ports required by DataNodes in a secure HDFS service

DataNode Transceiver 1004
POt port for DataNode's XCeiver Protocol. Combined with the DataNode's hostname to build its address

DataNode HTTP Web Ul 1006
Port port for the DataNode HTTP web UL Combined with the DataNode's hostname to build its HTTP address

_images/Code_properties.png
. code-block:: properties

default = FILE:/var/log/kr!
kdc = FILE: /var/log/krbS

admin_server =

_images/CK5.png
< C ‘ ® 127.0.0.1:7180/cmf/clusters/1/kerberos/wizard#step:

erberosKRB5Conf2Step

Enable Kerberos for Cloudera QuickStart

KRB5 Configuration

‘Specify the properties needed for generating krbs.conf for the cluster. You can use the safety valve fields to specify configuration of an advanced KDC setup; for example, with
cross-realm authentication

Manage krbs.conf through Cloudet
Manager

Kerberos Ticket Lifetime
ticket_lifetime

1) day(s) v

Kerberos Renewable Lifetime

7| dayis) v
renew_ifetime

DNS Lookup KDC [s]
ans_lookup_kdc.

Forwardable Tickets 2
forwardable

KDC Timeout
Kd_timeout

® © © © © ©o

3| second(s v

_images/CK6.png
<« C' | ® 127.00.1:7180/cmf/clusters/1/kerberos/wizard#step=kerberosimportCommandDetailsStep aw|(@ = @

Support

cloudera

Enable Kerberos for Cloudera QuickStart

+ Import KDC Account Manager Credentials Command

Status: Finished Start Time: Oct 25, 7:14:18 AM Duration: 5.06s

Successfully imported KDC Account Manager credentials.

Back 008080000

_images/DocrefRTD.png
e Setup Wizard - For local development and single node development boxes, the Setup Wizard
Deployment Guide can be used to quickly bootstrap your environment to get you up and
running.

_images/E1.png
Ranger

& Username:

@ Password:

_images/Code_shell.png
. code-block:: shell

$ java version "1.7.0_80"
$ Java(TM) SE Runtime Environment (build 1.7.0_80-b15)
$ Java HotSpot(TM) 64-Bit Server VM (build 24.80-b11, mixed mode)

$ echo $JAVA_HOME
$ /usr/java/jdk1.7.0_80

_images/Docref.png
e :doc:../installation/KyloSetupWizardDeploymentGuide®

_images/E2.png
Access Manager @ Encryption

Service Manager

= KMS +

tbarnd01_kms

_images/KC5.png
< B = ey

Favoritos
22 Dropbox
& Al My Files
& iCloud Drive
#; Applications
= Google Drive
[Desktop
© Downloads

o

=y Bkeys Q Search

Name

Destination Keychain: | nifi-cert <]

Cancel

_images/KC4.png
Keychain Access [JIC}| Edit View Window Help

Koychains
&' login
&' Local ems
& System
) System Roots

Category
7 Al ltems
L., Passwords,

Fr———

Name

New Password item.
New Secure Note Item...
New Keychain...

Import Items....
Add Keychain...

Delete Keychain “nifi-cert”

Close

Lock Keychain “nifi-cert”
Lock All Keychains

%N
08N
%N
o

0%2A
e

W

8L

Make Keychain “nifi-cert” Default

_images/KC7.png
¢ X @ nupsitocamostsasunin R

Procassing reaues.

o seectaconsiats
[e

| —

Thi Show Corfcate

127.00.1 unexpectedy closed the connection.
Ty

+ Checking the connection

« Checking the proxy and the firowal

« Runring Network Diagnostics.

oons =

_images/KC6.png
[i] Clik tolock the nifi-cert keychain.

&' login - kylo
s csos
e e e en s sz
e

[System Roots o =
§ nifviey private key -
(6 locanost contcato =

= o certficate =

_images/CK4.png
:7180/cmf/clusters/1/kerberos/wizard#stey

<« c | @124 erberoskRB5ConfStep Q|0

cloudera

Enable Kerberos for Cloudera QuickStart
KDC Information

‘Specify information about the KDC. The properties below are used by Cloudera Manager to generate principals for CDH daemons running on the cluster.

KDC Type ©® MITKDC (2]
Active Directory

:’“c eenrentioss quickstart cloudera @ 9

e

Kerberos Security Realm CLOUDERA c ()

defaut_reaim

Kerberos Encryption Types Hes256-cls-hmac-sha-96 + - c Encrx;{;n q/pest suppcrlked by KDC. "Nou: T X
use AES encryption, make sure you have
deployed JCE Unlimited Strength Policy File by
following the instructions here

Maximum Renewable Life for 5| days) v ()

Principals

_images/E6.png
R ger UAccessManager @ Encryption

Description

Default Policy for Servics
tbarnd01_kms

Audit Logging

User and Group Permissions :
Permissions Select Group Select User Permissions. Delegate Admin
Seket Group [ot coy= [ot wotadata [conorato eck [pocrype e @ a
pm—p—) a a
Select Group 5} [~]

_images/E7.png
Processor Details

satinge| schaduing e

Required

Kerberos Principal
Kerberos Keytab

Kerberos Relogin Period
Directory.

permissions umask

Remote Owner

Remote Group

Directory To Be Encyrpted
Encryption Key

Encryption Required

Value
| [etc/nadoop;cont/cor

@ | nifi

@ | [home/nifi/nifi.headless keytab

@ | 4 hours

7 /model.db/${source} /model.db/${source}/${e...
@777

@ | nifi

@ /model.db/${source} /app/warehouse/${source..,
@ | nifikey
@)y

1 /model.db/${source!
2 /app/warehouse/${source}
3 /etl/${source}

4 /archive/${source}

_images/E5.5.png
Access Manager @ Encryption

Ranger

ice Manager tbarndo1_kms Policies

List of Pol tbarnd01_kms
(q Search for your policy. o)
Policy ID Policy Name status Audit Logging Groups Users

9 tbarndo1_kms-1-20160528211329 | Enabled] [Enabled | [keyadmin | hafs | nifi | nn JEPRN

_images/E5.png
Ranger Access Manager @ Encryption

Service Manager

= KMS +

tbarnd01 kms

_images/ExternalrefRTD.png
Kylo was developed by Think Big (a Teradata company) and it is in use at a dozen major corporations
globally. Think Big provides big data and analytics consulting to the world’s largest organizations,

_images/Externalrefspec.png
Ed
.. |Think_Big_Link| raw:: html

Think Big

NULDNO LllytCol oUppuvi L TEYUYULTCo LUWITTALYUT ATy a@ UyVE el AL JUDL VT AVET = .

_images/ErrorRTD.png
Requested user nifi is not whitelisted and has id 496, which is below the minimum allowed 500"

_images/Externalref.png
y |Think_Big_Link]|

_images/Titles.png
Manual Deployment Guide

_images/WarningRTD.png
ERROR: Configuration variable JAVA_HOME or JAVACMD is not defined correctly.
(JAVA_HOME=", JAVACMD-="java’)

_images/TitlesRTD.png
Manual Deployment Guide

_images/config-property.png
Additional Properties

Maximum File Age

. Maximum File Size

Default Value (Supports Expressions)

${config.props.max-file-size}

3 MB

Render as

[Allow userinput? Text ¥

Minimum File Age

Minimum File Size

_images/auto_terminate_on_failure.png
COMMENTS.

Automatically Terminate Relationships ©
failure

Files that could not be written to the output directory for
some reason are transferred to this relationship.

success.

Files that have been successfully witten to the output
directory are transferred to this relationship

_images/feed-lineage.png
Feed Details

DETAILS, PROFILE LINEAGE SLA

-destination

>

-

Directory
Ivar/dropzone/allevents\d{1,3).csv

Event

-destination

Hive
movies.event

>

Directory
Ivar/dropzone/venue.csv

Venue

Hive
movies.venue

* m\

City Events

SHOW FEEDS ‘SHOW FEEDS AND SOURCES

website.city_events

= website city_events

Datasource selected ~

HiveDatasource
datasourceType

website
schema

city_events
table

COLLAPSE @
e®

Feed Summary
City Events

ENABLED @
State

city_events
Tabie

Tags

Website wrre
category

Operations Manager
Operational Statistics
Operational Job Details

_images/failure_connection.png
in g

Name failure connection
Queued 0 (0 bytes)

_images/SN5.png
Add a Sentry Service to Cloudera QuickStart

+ First Run Command

Status:

inished Start Time: Oct 28, 6:55:55 AM Duration: 2m

Finished First Run of the following services successfully: Sentry.

Details ~ Completed 5 of 5 step(s). @Al () Failed Only () Running Only
Step Context Start Time Duration Actions
> + Deploy Client Configuration @ Cloudera QuickStart & Oct28,6:55:55AM 1584

Successfully deployed all client configurations.

> « Start @ ZooKeeper e Oct 28, 6:56:11 AM 30.29s
Successfully completed 1 steps.

> Start @ HDFSe Oct 28, 6:56:41 AM 30.52s
Successfully started HDFS service

> «/ Create Sentry Database Tables @ Sentryc Oct 28, 6:57:11 AM 15.38s
Successfully created Sentry database tables.

> Start @ Sentryc Oct 28, 6:57:27 AM 30.29s

Successfully started service.

Back 0800080

_images/SN4.png
Add a Sentry Service to Cloudera QuickStart
Database Setup

Configure and test database connections. Create the databases first according to the Installing and Configuring an External Database section of the Installation Guide & .

Sentry + Successful
Database Host Name: * Database Type: Database Name : * Username: * Password:
quickstart.cloudera MysQL v sentry sentry PR
() Show Password
Test Connection
Notes:

« The value in the Database Host Name field must match the value you used for the host name when creating the database. Learn more ®
« Ifthe database is not running on its default port, specify the port number using host:port in the Database Host Name field.
= ltis highly recommended that each database is on the same host as the corresponding role instance.

Back 080080

_images/TipRTD.png
If you do not know the HDFS Kerberos principal name run “klist -
kt/etc/security/keytabs/hdfs.headless.keytab”.

_images/SN6.png
cloudera Support~ cloudera

Add a Sentry Service to Cloudera QuickStart

Congratulations!

‘Your new service is installed and configured on your cluster.

Note: You may still have to start your new service. It is recommended that you restart any dependency services with outdated configurations before doing so. You can perform these
actions on the main page by clicking Finish below.

_images/E3.png
keyadmin

MS

Key Management
Select Service: | Please select KMS service B
Q
Q Search for your 0)
Key Name Cipher Vversion Attributes Length Created Date Action

No Key found!

<<<->>>

_images/E4.png
Ranger Access Manager @ Encryption

S tbarnd01_kms

Key Detail

Key Name *

Cipher

Length

Description

Attributes

nifikey ‘
AES/CTR/NoPadding |

R

Value

_images/Heading4.png
pPIUVLIUC LLVEC UpUdalCo Ul SCITVLILCT oL«

Example Service Configuration
o

_images/ImportantRTD.png
© Important

This document should only be used for DEV/Sandbox purposes. It is useful to help quickly
Kerberize your Cloudera sandbox so that you can test Kerberos features.

_images/Heading2RTD.png
Configure the ext-config Folder

_images/Heading3.png
Migrating Kylo and NiFi Extensions

_images/KC11.png
27—
/& nm x

& C | A rtpsi/iocalnost:9443/nifi/

L

®o

ma75 As3 o123 £ 22:17:45UTC

@ navigate]

romsacto

_images/KC1.png
[Click tolock he logn keycnain.

Keychains.

' iMessage Encryption Key

. {4/ Kind private key, RSA, 1280-bit
Local tems LI Usace Decryet,Derve, Sign, U
& system
O System Roots
New Keychain ;
Add Keychain.. }
Delete Keychain “login” |
Lock Keychain “login” ;
Change Settings for Keychain “login”. !
|

Ghange Password for Keychain

Category hasaile-—Sehsmaluing

_images/KC10.png
/D) Pivacyemor x|
000 /0 prvacy e A=Y

€ C | A repsyiocainost a4t */Bo 4o s

‘Your connection is not private
Attackers migh be trying t steal your information fom localho (o sxample,
passwrds, mossages, orcredt cards). NET-ERRL GERT_AUTHORTY_INVALID

L) Automaticaty repor detads of possbie security ncicants to Google. Privcy poly

“This server could not prove tht s localhost; s security cortficate is not trusted by
Your computer's operating system. This may be caused by a misconfiguration or an
attacker intercepting your connection. Learn more.

Proceed olocahost nsate

_images/S2.png
Configuration

Filters Clear
v STATUS
O Error 0
Awaming 0
Edied .
Nondefau s
Has Ovrides 0
v SCOPE Clear

Gateway 1
HiveServer2 2
Hive Metastore Server 0
WebHCat Server 0

v CATEGORY Clear
Advanced 14
Cloudera Navigator 5
Hive Metastore Database 1
Logs 5

ain kH
Monitoring B
Performance 0
Palicy File Rased Sentry 4

Search

Hive Warehouse Directory
hive metastore warehouse dir

ZooKeeper Service

MapReduce Service

Hive (Service-Wide)

Iuser/hive/warehouse

Hive (Service-Wide)
® ZooKeeper

© none

Hive (Service-Wide)

® YARN (MR2 Included)

Sentry Service

Hive (Service-Wide) C

Sentry

© none

‘Spark On YARN Service

HBase Service

Hive (Senvice-Wide) &
© Spark

© none

Hive (Service-Wide)

1 Edited Value

Reason for change

Switch to the classic layout Role Groups.

‘Show Al Descriptions

e

e

e

(2]

Save Changes

_static/minus.png

_images/S1.png
Edited 0

Non-default 3
Has Overrides 0
CoPE Clear

ZooKeeper Service

dmin Groups

sentryservice admin group

Gateway 1
Sentry Server 0
v CATEGORY Clear
Advanced 5
Cloudera Navigator 4
Logs 2

;|

Performance 0
Pors and Addresses 0
Resource Management 0
Security 1
Sentry Server Database 6
Stacks Collection 0

Allowed Connecting Users
sentrysenvice allow.connect

Sentry (Service-Wide)

ZooKeeper

© none

Sentry (Service-Wide)

hive i;
impala [+ =)
hue + -
sentryAdmin + -
‘Sentry (Service-Wide)

hive [+~
impala + -
hue [+~
hdfs + -

-

_static/file.png

_images/SN1.png
cloudera Clusters Hosts Diagnostics -~ Audits Charts

Home

Status All Health Issues [T}] Configuration ~ AllRecent Commands

ONNORNONNORKORION MO

4 Impala Deploy Client Configuration

Cloudera QuickStart (coH5.7.0... ~ Charts
= Hosts Add a Service Cluster CPU
i HBase |
H Start |
HDFS |
e Stop ‘ NO DATA
@ Hive Restart |
) Hue Rolling Restart |
|
|

B Kev\alue Deploy Kerberos Client Configuration

30 minutes preceding October 28, 20°

Try Cloudera Enterprise Data Hub Edif

30m 1h 2h 6h 12h 1d

Cluster Disk 10

NO DATA

_images/S3.png
Hadoop Secure Authorization
hadoop security.authorization

Authorized Users

Authorized Groups

Authorized Admin Users

Authorized Admin Groups

HDFS (Service-Wide) [J

HDFS (Service-Wide)

HDFS (Service-Wide)
+

HDFS (Service-Wide)

HDFS (Service-Wide)
+

Enable Access Control Lists
dfs.namenode.acls.enabled

HDFS (Service-Wide) ¥ C

Enable Sentry Synchronization

HDFS (Service-Wide) [J

Display | 25

v Per Page

<«

1 Edited Value

Reason for change

Save Changes

_static/plus.png

_images/SN3.png
cloudera Support~ cl

Add a Sentry Service to Cloudera QuickStart

Customize Role Assignments for Sentry

‘You can customize the role assignments for your new service here, but note that if assignments are made incorrectly, such as assigning too many roles to a single host, performance will

suffer.
‘You can also view the role assignments by host. ERVEIEIERLE
Bl sentry Server x 1 New Bl Gatevay
quickstart.cloudera Select hosts
Back 028008

192.168.56.101:7180/cmf/clusters/1/add-service/index?serviceType=SENTRY#

_static/up.png

_images/SN2.png
% Key-Value Store Indexer
1 MapReduce

@ Oozie
® b Sentry

3% Solr
<1 Spark
<1 Spark (Standalone)

@ Sqoop 1 Client
@ Sqoop 2

' YARN (MR2 Included)
A& ZooKeeper

Back

activated or the Kafka package is installed.
Key-Value Store Indexer listens for changes in data inside tables contained in HBase and indexes them using Solr.

Apache Hadoop MapReduce supports distributed computing on large data sets across your cluster (requires HDFS). YARN (MapReduce 2 Included) is
recommended instead. MapReduce is included for backward compatibility.

Oozie is a workflow coordination service to manage data processing jobs on your cluster.

Sentry service stores authorization policy metadata and provides clients concurrent and secure access to this metadata.
Solr is a distributed service for indexing and searching data stored in HDFS.

Apache Spark is an open source cluster computing system. This service runs Spark as an application on YARN.

Apache Spark is an open source cluster computing system. This is the standalone version of the service which does not use YARN for resource
management. Cloudera recommends using Spark on YARN instead of this standalone version.

Configuration and connector management for Sqoop 1.

Sqoop is a tool designed for efficiently transferring bulk data between Apache Hadoop and structured datastores such as relational databases. The
version supported by Cloudera Manager is Sqoop 2.

Apache Hadoop MapReduce 2.0 (MRv2), or YARN, is a data computation framework that supports MapReduce applications (requires HDFS).

Apache ZooKeeper is a centralized service for maintaining and synchronizing configuration data.

_static/up-pressed.png

_images/R1.png
Ranger UAccess Manager Audit & Settings

©Success -
Policy updated successfully

e, D

Policy ID Policy Name status Audit Logging Groups users Action

5 sandbox_hadoop-1-20160229184056

7 HDFS Global Allow

_static/comment.png

_images/NoteRTD.png
The setup wizard is designed for easy installation of all components on one node.

_static/comment-close.png

_images/R3.png
Ranger UAcessManager [Audit & Settings

Policy Name * | ranger_superuser_policy

il

Hive Database * | [x *] include

table +([xF] include

Hive Column* | [*] include

Description

Audit Logging

User and Group Permissions :

Permissions. Select Group. Select User Permissions. Delegate Admin
L Phcer T croee Porop | ndea Loce e]
) [oriie]) ® a

Select Group

_static/down.png

_images/R2.png
£ Settings

Policy Name Status
Sandbox_hive-1-20160229183752 [Enabled |
Sandbox_hive-2-20160229183752 [Enabled |
Hive Global Tables Allow
Hive Global UDF Allow
Call_Details_Table
Customer_Details_Table
Hive Demo Table Loader
Hive Demo UDF Loader

it Logging

Groups.

Add N

Action

@
@
@
@
@
@
@
@

_static/down-pressed.png

_images/R4.png
Ranger UAcessManager [Au

Edit Policy

Policy Details :

poliyp B

Policy Name * | hive_user_policy_kylo

Description | Grant access to hive user access

to kylo folders

Audit Logging

User and Group Permissions :

Resource Path * | [/model.db/ | [/app/warehousel | [x /etl

recursive

Permissions Select Group

Select User

Select Group

™

Delegate Admin

a

_images/Heading1RTD.png
Preface

_images/Heading2.png
s [IVLEieess &ML TV LITR pPEUEDSAIT &9 TIWIV WUWVRV 'V V-

Configure the ext-config Folder

_images/Heading1.png
Preface

nav.xhtml

 Table of Contents

 		
 Welcome to the Kylo Project

 		
 Features

 		
 FAQ

 		
 About Kylo

 		
 What is Kylo?

 		
 What are Kylo’s origins?

 		
 What does Kylo mean?

 		
 What software license is Kylo provided under?

 		
 Who uses Kylo?

 		
 What skills are required for a Kylo-based Data Lake implementation?

 		
 Enterprise Support

 		
 Is enterprise support available for Kylo?

 		
 Are professional services and consulting available for Kylo?

 		
 Is enterprise training available for Kylo?

 		
 Are commercial managed services available for Kylo?

 		
 Architecture

 		
 What is the deployment architecture?

 		
 What are the individual component/technologies involved in a Kylo deployment?

 		
 Is Kylo compatible with Cloudera, Hortonworks, Map R, EMR, and vanilla Hadoop distributions?

 		
 Does Kylo support either Apache NiFi or Hortonworks DataFlow (HDF)? What is the difference?

 		
 Can Kylo be used in the cloud?

 		
 Does Kylo support high-availability (HA) features?

 		
 Metadata

 		
 What type of metadata does Kylo capture?

 		
 How does Kylo support metadata exchange with 3rd party metadata servers

 		
 What is Kylo’s metadata server?

 		
 How extensible is Kylo metadata model?

 		
 Are there any business-related data captured, or are they all operational metadata?

 		
 What does the REST API look like?

 		
 Does the Kylo application provide a visual lineage?

 		
 What type of process metadata do we capture?

 		
 Development Lifecycle

 		
 What’s the pipeline development process using Kylo?

 		
 Does deployment of new templates or feeds require restart?

 		
 Can new feeds be created in automated fashion instead of manually through the UI?

 		
 Tool Comparisons

 		
 Is Kylo similar to any commercial products?

 		
 Is Kylo’s operations dashboard similar to Cloudera Manager and Apache Ambari?

 		
 Is Kylo’s metadata server similar to Cloudera Navigator, Apache Atlas?

 		
 How does Kylo compare to traditional ETL tools like Talend, Informatica, Data Stage?

 		
 What is Kylo’s value-add over plain Apache NiFi?

 		
 Scheduler

 		
 How does Kylo manage job priority?

 		
 Can Kylo support complicated ETL scheduling?

 		
 What’s the difference between “timer” and “cron” schedule strategies?

 		
 Does Kylo support 3rd party schedulers

 		
 Does Kylo support chaining feeds? One data feed consumed by another data feed?

 		
 Security

 		
 Does Kylo support roles?

 		
 What authentication methods are available?

 		
 What security features does Kylo support?

 		
 Is Kylo PCI compliant?

 		
 Data Ingest

 		
 What is Kylo’s standard batch ingest workflow?

 		
 Does Kylo support batch and streaming?

 		
 Which raw formats does Kylo support?

 		
 Which target formats for Hive does Kylo support?

 		
 How does “incremental” loading strategy of a data feed work?

 		
 Can Kylo ingest from relational databases?

 		
 Terminology

 		
 Apache NiFi Terminology

 		
 Processor

 		
 FlowFile

 		
 Connection

 		
 Relationship

 		
 Flow/Dataflow

 		
 Controller Service

 		
 NAR files

 		
 Template

 		
 Kylo Terminology

 		
 Registered Template

 		
 Category

 		
 Input Processor or Source

 		
 Feed

 		
 Job

 		
 Step

 		
 Service

 		
 Release Notes

 		
 Latest Stable Release

 		
 Release 0.8.4 (November 29, 2017)

 		
 Previous Releases

 		
 Release 0.8.3.3 (October 16, 2017)

 		
 Release 0.8.3.2 (October 10, 2017)

 		
 Release 0.8.3.1 (September 20, 2017)

 		
 Release 0.8.3 (Aug 30, 2017)

 		
 Release 0.8.2.6 (October 16, 2017)

 		
 Release 0.8.2.5 (October 11, 2017)

 		
 Release 0.8.2.4 (September 18, 2017)

 		
 Release 0.8.2.3 (September 15, 2017)

 		
 Release 0.8.2.2 (September 12, 2017)

 		
 Release 0.8.2 (July 12, 2017)

 		
 Release 0.8.1 (May 24, 2017)

 		
 Release 0.8.0 (Apr 19, 2017)

 		
 Release 0.7.1 (Mar 13, 2017)

 		
 Release 0.7.0 (Feb. 13, 2017)

 		
 Release 0.6.2 (Feb. 7, 2017)

 		
 Release 0.6.1 (Jan. 26, 2017)

 		
 Release 0.6.0 (Jan. 19, 2017)

 		
 Release 0.5.0 (Dec. 14, 2016)

 		
 Release 0.4.3 (Nov. 18, 2016)

 		
 Release 0.4.2 (Nov. 4, 2016)

 		
 Release 0.4.1 (Oct. 20, 2016)

 		
 Release 0.4.0 (Oct. 4, 2016)

 		
 Release 0.3.2 (Sept. 19, 2016)

 		
 Release 0.3.1 (Aug. 17, 2016)

 		
 Release 0.3.0 (Aug. 10, 2016)

 		
 Release 0.2.0 (June 22, 2016)

 		
 Downloads

 		
 Latest Kylo Distribution (0.8.4)

 		
 Kylo Distribution (0.8.3.3)

 		
 Kylo Distribution (0.8.3)

 		
 Plugins

 		
 Overview

 		
 Installation Methods

 		
 Installation Components

 		
 Default Installation Locations

 		
 Demo Sandbox

 		
 Review Dependencies

 		
 Supported Operating Systems

 		
 Supported Hadoop Distributions

 		
 Edge Node Hardware Requirements

 		
 Kylo Stack Dependencies

 		
 Linux Tools

 		
 Service Accounts

 		
 Network Ports

 		
 Default HDFS Locations (for standard ingest)

 		
 Prepare Install Checklist

 		
 Create Service Accounts

 		
 Option 1: Install all users/groups on single node

 		
 Option 2: Run individual useradd commands

 		
 Prepare Offline TAR

 		
 Generate the TAR file

 		
 Install Kylo

 		
 RPM Install

 		
 DEB Install

 		
 TAR File Install

 		
 TAR File Upgrade

 		
 Install Additional Components

 		
 Database Preparation

 		
 Create Kylo Database and User

 		
 Option 1: Setup Wizard Installation

 		
 Setup Wizard Deployment Guide

 		
 Option 2: Manual Installation

 		
 Manual Deployment Guide

 		
 Enable Kerberos

 		
 Enable Kerberos for NiFi

 		
 Enable Kerberos for Kylo

 		
 Test Client

 		
 Additional Configuration

 		
 Edit the Properties Files

 		
 Kylo HDP Demo Sandbox Example

 		
 Kylo Cloudera Demo Sandbox Example

 		
 Kylo Application Properties

 		
 Common Configuration Properties

 		
 Kylo Operations

 		
 Database Connection

 		
 Kylo

 		
 Hive

 		
 JMS

 		
 JMS - ActiveMQ

 		
 JMS - Amazon SQS

 		
 Kylo SSL

 		
 Security

 		
 Security - Authentication

 		
 NiFi Rest

 		
 NiFi Rest SSL

 		
 NiFi Flow/Template Injection

 		
 Unused properties

 		
 Grant HDFS Privileges

 		
 Option 1: Grant super user privileges

 		
 Grant Superuser HDFS Privileges

 		
 Option 2: Control access through Ranger or Sentry

 		
 Option 3: Manage the HDFS permissions yourself

 		
 Start Services

 		
 Start Kylo and NiFi

 		
 Test Services

 		
 Import Templates

 		
 Import from the command line

 		
 Import from the Kylo UI

 		
 Create Sample Feed

 		
 Create a dropzone folder on the edge node for file ingest

 		
 Create a category in Kylo

 		
 Create a data ingest feed

 		
 Run the sample feed

 		
 Validate Configuration

 		
 Validate Hive Thrift Connection

 		
 Validate Spark Shell

 		
 Validate Search

 		
 HDP 2.5 Kerberos/Ranger Cluster Deployment Guide

 		
 About

 		
 Cluster Topography

 		
 Known Issues

 		
 Prepare a Checklist

 		
 Prepare the HDP Cluster

 		
 Prepare the Kylo Edge Node

 		
 Prepare the NiFi Edge Node

 		
 Create the Keytabs for “nifi” and “kylo” Users

 		
 Install NiFi on the NiFi Edge Node

 		
 Install the Kylo Application on the Kylo Edge Node

 		
 Create Folders for NiFi standard-ingest Feed

 		
 Create Ranger Policies

 		
 Import Kylo Templates

 		
 Create Data Ingest Feed Test

 		
 Overview

 		
 Adjust Memory

 		
 Optimizing Performance

 		
 Change Java Home

 		
 Log File Management

 		
 Configuring Log Output

 		
 Yarn Cluster Mode Configuration

 		
 Overview

 		
 Requirements

 		
 Step 1: Add the Data Nucleus Jars

 		
 Step 2: Add the hive-site.xml File

 		
 Step 3: Validate and Split Records Processor

 		
 Configure Spark Modes

 		
 Overview

 		
 Configuration

 		
 Server Mode

 		
 Managed Mode

 		
 Multi-User Mode

 		
 Kerberos

 		
 Postgres Metastore Configuration

 		
 Introduction

 		
 Kylo Services Configuration

 		
 Step 1: Ensure the Postgres driver is on the classpath

 		
 Step 2: Update the application.properties

 		
 Elasticsearch NiFi Template Changes

 		
 Step 1: Copy the Postgres JAR file to NiFi

 		
 Step 2: Create a Controller Service for Postgres Connection

 		
 Step 3: Update “Query Hive Table Metadata” Processor

 		
 Overview

 		
 Encrypt Passwords

 		
 Encrypting Configuration Property Values with Spring CLI

 		
 Enable Kerberos for Kylo

 		
 Prerequisites

 		
 Configuration Steps

 		
 Enble Kerberos for NiFi

 		
 Prerequisites

 		
 Types of Processors to be Configured

 		
 HDFS

 		
 Hive

 		
 Spark

 		
 Configuration Steps

 		
 Configure Ranger

 		
 Prerequisite

 		
 Java

 		
 Kylo

 		
 Optional: Delete/Disable HDFS/HIVE Global Policy

 		
 Create a NiFi Super User Policy in Hive

 		
 Create a Hive User Policy in the HDFS Repository

 		
 Configure Sentry

 		
 Prerequisite

 		
 Java

 		
 Cluster Requirements

 		
 Grant Sentry Admin Access to NiFi User

 		
 Enabling Sentry for Hive

 		
 Change Hive Warehouse Ownership

 		
 Disable Impersonation for HiveServer2

 		
 Yarn Setting For Hive User

 		
 Enabled Sentry

 		
 Administrative Privilege

 		
 Enabled HDFS ACL

 		
 Enable SSL for Kylo

 		
 Overview

 		
 1. Changes to Kylo UI

 		
 2. Changes to Nifi

 		
 Enable SSL for NiFi

 		
 Configure Authentication

 		
 Overview

 		
 Built-In Pluggable Authentication Profiles

 		
 auth-kylo

 		
 auth-file

 		
 auth-ldap

 		
 auth-ad

 		
 auth-simple

 		
 auth-cache

 		
 User Group Handling

 		
 JAAS Application Configuration

 		
 Creating a Custom Authentication Plugin

 		
 Configure Kerberos SPNEGO

 		
 Configuration

 		
 auth-krb-spnego

 		
 auth-kylo

 		
 auth-ad

 		
 Kerberos Configuration

 		
 Verifying Access

 		
 Test Environment

 		
 Configure Access Control

 		
 Overview

 		
 Authorization

 		
 Default Users and Groups

 		
 Service-Level Authorization

 		
 Entity-Level Authorization

 		
 Roles

 		
 Why Two Levels of Access Control?

 		
 Roles and Permissions Required for Common Activities

 		
 Template Actions

 		
 Category Actions

 		
 Feed Actions

 		
 Data Source Actions

 		
 Enable Hive User Impersonation

 		
 Overview

 		
 Requirements

 		
 Kylo Configuration

 		
 NiFi Cluster

 		
 Purpose

 		
 Prerequisite

 		
 Install a Second NiFi Node

 		
 Enable NiFi Clustering

 		
 Start Each Node

 		
 Kylo Cluster

 		
 ModeShape Configuration

 		
 Kylo Configuration

 		
 Quartz Scheduler Configuration

 		
 Service Monitoring

 		
 Testing - (as of Kylo 0.8.4)

 		
 Troubleshooting

 		
 NiFi & Kylo Provenance

 		
 Introduction

 		
 Setup

 		
 Event Processing

 		
 Nifi Processors

 		
 ImportSqoop Processor

 		
 About

 		
 Starter template

 		
 Configuration

 		
 Drivers

 		
 Passwords

 		
 TriggerFeed

 		
 Trigger Feed Overview

 		
 Obtaining the Dependent Feed Execution Context

 		
 Trigger Feed JSON Payload

 		
 Example Flow

 		
 Kylo Templates

 		
 Setup templates

 		
 Import Kylo template

 		
 Import reusable template

 		
 Import flow template

 		
 Update template

 		
 Indicating Flow Failures

 		
 Available templates

 		
 Data Ingest

 		
 Data Transformation

 		
 Kylo Datasources

 		
 Introduction

 		
 JDBC

 		
 Locations

 		
 Spark configuration

 		
 Configuration examples

 		
 Oracle

 		
 MariaDB / MySQL

 		
 Perfomance considerations while importing data

 		
 Feed Lineage

 		
 Introduction

 		
 Feed Connections

 		
 Connected by Preconditions

 		
 Connected through Datasources

 		
 Getting Started

 		
 How it works

 		
 Datasource Definitions

 		
 Registration on Startup

 		
 Registration via REST

 		
 Datasource Definition Structure

 		
 Datasource Types

 		
 Registering Datasources with a Template

 		
 Styling the Feed Lineage User Interface

 		
 S3 & Data Wrangler

 		
 Problem

 		
 Solution

 		
 S3 Data Ingest Template

 		
 Problem

 		
 Introduction

 		
 1. S3 Data Ingest Template Overview

 		
 1.1 Template processors pull defaults from application.properties

 		
 1.2 Non-reusable portion of template

 		
 1.3 Reusable portion of Template

 		
 2. Sandbox Walk-Through

 		
 2.1 Prerequisites

 		
 2.2 Launch an EC2 instance using the Sandbox AMI

 		
 2.3 Configuring core-site.xml and hive-site.xml

 		
 2.4 Get Nifi Ready

 		
 2.5 Get Kylo Ready

 		
 2.6 Import the Template

 		
 2.7 Create the Data Ingest Feed

 		
 2.8 Test the Feed

 		
 3. Further Reference

 		
 Azure Data Ingest Template

 		
 Problem

 		
 Intro

 		
 Configuration

 		
 Modify HDFS processor in template

 		
 Known Limitations

 		
 Default FS

 		
 Single container

 		
 SUSE Configuration

 		
 Overview

 		
 ActiveMQ

 		
 Elasticsearch

 		
 Configuration Properties

 		
 Overview

 		
 1. Configuration Sources

 		
 2. Property Resolution Options

 		
 Validator Tuning

 		
 Setting RDD Persistence Level

 		
 Specifying Number of RDD Partitions

 		
 Kylo & Global Search

 		
 Elasticsearch 5 support

 		
 Elasticsearch (rest client) [default]

 		
 Elasticsearch (native client)

 		
 Solr

 		
 Service Monitor Plugins

 		
 Introduction

 		
 Monitor Services via Cloudera Manager

 		
 Installation

 		
 Configuration

 		
 Restart Kylo

 		
 Monitor Services via Ambari

 		
 Installation

 		
 Configuration

 		
 Restart Kylo

 		
 JMS Providers

 		
 Introduction

 		
 Kylo Configuration

 		
 ActiveMQ

 		
 Amazon SQS

 		
 Nifi Configuration

 		
 Active MQ

 		
 Amazon SQS

 		
 Database Upgrades

 		
 Overview

 		
 1. Automatic Upgrades

 		
 2. Manual Upgrades

 		
 Icons and Colors

 		
 Spark Streaming - Twitter Sentiment Analysis

 		
 About

 		
 How it Works

 		
 Prerequisites

 		
 Configuration

 		
 Spark Configuration

 		
 Twitter Sentiment template

 		
 Kafka response feed

 		
 Scripts

 		
 Create your feed

 		
 Monitor your feed in Kylo

 		
 Ambari Service Monitor Plugin

 		
 Purpose

 		
 Enable Plugin

 		
 Contributing

 		
 Introduction

 		
 Why Contribute

 		
 Reporting Issues

 		
 Introducing New Functionality

 		
 Plugins

 		
 Pull Requests

 		
 Development Guidelines

 		
 Pull Requests

 		
 Before you start

 		
 Committing your change

 		
 Submitting a pull request

 		
 Developer Guide

 		
 Dependencies

 		
 Install Maven 3

 		
 Optional - Add Java 8 to Bash Profile

 		
 Install Virtual Box

 		
 Install the RPM Tool on your Mac

 		
 Clone Project from Github

 		
 Import the Project into your IDE

 		
 Perform a Maven Build

 		
 Install and Configure the Hortonworks Sandbox

 		
 Install the Kylo Applications

 		
 Running in the IDE

 		
 IntelliJ Configuration

 		
 Eclipse Configuration

 		
 Web Development

 		
 Angular Material Notes

 		
 Plugin APIs

 		
 Kylo UI

 		
 Spark Functions

 		
 Kylo Services

 		
 REST API

 		
 Documentation

 		
 Authentication

 		
 Clean Kylo From Box

 		
 Cloudera Docker Sandbox

 		
 About

 		
 Prerequisites

 		
 Installation

 		
 Step 1: Create an EC2 instance

 		
 Step 2: Create Script to Start Docker Container

 		
 Step 3: Login to the Cloudera Container and Start Cloudera Manager

 		
 Step 4: Install Kylo in the Docker Container

 		
 Shutting down the container when not in use

 		
 Starting up an Existing EC2 instance and Cloudera Docker Container

 		
 Hortonworks Sandbox Config

 		
 Introduction

 		
 Install and Configure the Hortonworks Sandbox

 		
 Add Virtual Box Shared Folder

 		
 Open VM Ports

 		
 Startup the Sandbox

 		
 Kerberos Install Cloudera

 		
 Prerequisite

 		
 Java

 		
 Install Java Cryptography Extensions (JCE)

 		
 Test Java Cryptography Extension

 		
 Install Kerberos

 		
 Install Kerberos on Cloudera Cluster

 		
 KeyTab Generation

 		
 Kerberos Install HDP

 		
 Prerequisite

 		
 Java

 		
 Install Java Cryptography Extensions (JCE)

 		
 Test Java Cryptography Extension

 		
 Install Kerberos

 		
 Install Kerberos on an HDP Cluster

 		
 Spark Function Definitions

 		
 Data Types

 		
 Definitions

 		
 Spark Conversion String Syntax

 		
 Column Functions

 		
 Resources

 		
 Metadata Events

 		
 Event Source

 		
 Example Feed Change Listener

 		
 Operations Guide

 		
 Purpose

 		
 Scope

 		
 Audience

 		
 Abbreviations

 		
 Introduction

 		
 Common Definitions

 		
 User Interface

 		
 Dashboard Page

 		
 Key Performance Indicators

 		
 Feed Health

 		
 Active Jobs

 		
 Understanding Job Status

 		
 Job Status

 		
 Job Exit Codes

 		
 Controlling Jobs

 		
 Feed History Page

 		
 Job History Page

 		
 Job Detail Drill-Down

 		
 Job Status Info

 		
 Job Parameters

 		
 Job Context Data

 		
 Step Context Data

 		
 Scheduler Page

 		
 Changing an SLA

 		
 Filtering Job History

 		
 Data Table Operations

 		
 Charts and Pivot Tables

 		
 Software Components

 		
 Installation

 		
 Application Configuration

 		
 Application Properties

 		
 Kylo Metadata

 		
 NiFi Data

 		
 Startup and Shutdown

 		
 Log Files

 		
 Additional Configuration

 		
 Configuring JVM Memory

 		
 Service Status Configuration

 		
 Migrating Templates and Feeds

 		
 Exporting Registered Templates

 		
 Importing Registered Templates

 		
 Exporting Feeds

 		
 Importing Feeds

 		
 Altering Feed Configurations

 		
 Updating Sensitive Properties in NiFi

 		
 Continuous Integration / Continuous Deployment (CICD)

 		
 Migrating Kylo and NiFi Extensions

 		
 Operational Considerations

 		
 Troubleshooting & Tips

 		
 Tuning the ExecuteSparkJob Processor

 		
 Problem

 		
 Solution

 		
 Dealing with non-standard file formats

 		
 Problem

 		
 Solution

 		
 Merge Table fails when storing as Parquet using HDP

 		
 Problem

 		
 Solution

 		
 NiFi becomes non-responsive

 		
 Problem

 		
 Solution

 		
 Automated Feed and Template Importing

 		
 Problem

 		
 Solution

 		
 Spark job failing on sandbox with large file

 		
 Problem

 		
 Solution

 		
 NiFi hangs executing Spark task step

 		
 Problem

 		
 Solution

 		
 Spark SQL fails on empty ORC and Parquet tables

 		
 Problem

 		
 Solution

 		
 High Performance NiFi Setup

 		
 Problem

 		
 Solution

 		
 RPM install fails with ‘cpio: read’ error

 		
 Problem

 		
 Solution

 		
 Accessing Hive tables from Spark

 		
 Problem

 		
 Solution

 		
 Compression codec not found for PutHDFS folder

 		
 Problem

 		
 Solution

 		
 Creating a cleanup flow

 		
 Problem

 		
 Solution

 		
 Accessing S3 from the data wrangler

 		
 Problem

 		
 Solution

 		
 Dealing with XML files

 		
 Problem

 		
 Solution

 		
 XML Explode

 		
 Dealing with fixed width files

 		
 Problem

 		
 Solution

 		
 Dealing with custom SerDe or CSV files with quotes and escape characters

 		
 Problem

 		
 Solution

 		
 Configuration on a Node with Small Root Filesystem

 		
 Problem

 		
 Solution

 		
 GetTableData vs ImportSqoop Processor

 		
 Problem

 		
 Solution

 		
 Using machine learning functions

 		
 Problem

 		
 Solution

 		
 Sqoop requires JDK on Kylo sandbox

 		
 Problem

 		
 Solution

 		
 Validator is unable to process policy JSON file

 		
 Problem

 		
 Solution

 		
 Creating a feed fails due to java.sql.BatchUpdateException

 		
 Problem

 		
 Solution

 		
 When using Solr, indexing schema with large number of fields throws exception

 		
 Problem

 		
 Solution

 		
 Prioritize jobs based on an attribute value

 		
 Problem

 		
 Solution

 		
 EsIndexException in Kylo services logs

 		
 Problem

 		
 Solution

 		
 Best Practices

 		
 Organizational Roles

 		
 Role separation

 		
 Designers

 		
 Administrators

 		
 Operations

 		
 Users

 		
 Designers

 		
 NiFi Template Design

 		
 Template re-use

 		
 Reusable Flows

 		
 Streaming Templates

 		
 Error Handling

 		
 Preserve Edge Resources

 		
 Generalize Templates

 		
 Chaining Feeds

 		
 One-Time Setup and Deletion

 		
 Clean-up

 		
 Lineage Tracking

 		
 Idempotence

 		
 Environment Portability

 		
 Data Confidence

 		
 Data Ingestion

 		
 Cleanup Intermediate Data

 		
 Data Cleansing and Standardization

 		
 Validation

 		
 Data Profiling

 		
 RDBMS Data

 		
 File Ingest

 		
 Character Conversion and Hive

 		
 Development Patterns

 		
 Development Process

 		
 Automated Deployment

 		
 Template Export/Import

 		
 Feed Export/Import

 		
 Version Control

 		
 General Deployment Guidelines

 		
 Users

 		
 When to Use Snapshot

 		
 When to Use Timer (vs. Cron)

 		
 Wrangling

 		
 Service Level Agreements

 		
 Administrators

 		
 Back-Pressure

 		
 Business Metadata

 		
 Security

 		
 Security Vulnerabilities

_images/1.png
@ Ambai- Sondbox x YL

€ - € [} 192168.1108:8080/#/main/dashboard/metrics

© HOFS.
© MapReduce2
© vaRN

ate

© Hie

o Hease

amg

 sqoop

© Ooze

© Zookeeper

@ Fakon

@ som

@ Fume

& Ambari Metrics.
© Atas

@ waka

@ Knox
 sider

& spark

Actions +

Metrcs | Heatmaps
Mec Actons +

HOFS Disk Usage.

-

CPU Usage

NoDaa Avalable

NameNode Uptime

25.3 min

ResourceManager

o)

Supervisors Live

01

Confi History

DataNodes Live

n

Cluster Load

NoData Avaable

HBase Master Heap

ResourceManager
Uptime

24.6 min

Flume Live

01

HOFS Links

NameNode
Socondary NameNode
1 DataNodes

NameNode Heap

N

10%

HBase Links

Mo Active Master
1 Rogionservers
o

NodeManagers Live

n

Stack and Versions.

Servce Accounts
Memory Usage Network Usage

NoData Avalable NoData Avaable
NameNode RPC NameNode CPUWIO
HBase Ave Load HBase Master Uptime
YARN Memory YARN Links

% 1 NodeManagers

i
|
|

_images/2.png
168.1.108

Enable Kerberos Wizard

Get Started

e: This pro ed and clu
t, might urity administra

What type of KDC do
® Existing MIT KD
Existing Act

Mana

Existing MIT KD

Following prerequisites needs to be checked to progress ahead in the wizard.

th th and KDC admin ho

p on the Ambari r host and all

. ==l
' 25-11-2015

_images/1_0doctheme.png
[KylolO / kylo @Unwatch~ © HStar 4

<»Code (U lIssues 0 I’ Pull requests 1 [l Projects 0 I Wiki 4~Pulse i Graphs %} Settings

_images/2-feed-lineage-datasources.png
Feed Lineage Datasources

Select datasources that should track feed lineage

. Fetch RDBMS Data - DatabaseDatasource - SOURCE
. Filesystem - DirectoryDatasource - SOURCE

. Merge Table - HiveDatasource - DESTINATION

Upload to HDFS - HDFSDatasource - DESTINATION

Archive Originals - HDFSDatasource - DESTINATION

Failed Flow - DirectoryDatasource - DESTINATION

PREVIOUS STEP

REGISTER

_images/metadata-property.png
Additional Properties

Ignore Hidden Files

. Input Directory

Default Value (Supports Expressions)

/var/${metadata.category.systemName}/${metadata.systemFeedName}

Render as

[Allow userinput? Text ¥

Keep Source File

_images/ops-mgr-complete.png
Dashboard

SEARCH
Operations ~
Services Health Feed Health Data Confidence Job Activity
Dashboard Monitors All Service Health Monitors Al Feed Health Validates Data Integrity Currently Running Jobs
1
B, services
0 Jobs 0 Total
A Alerts o
2 0 2 0 0 0 0
B SLA Assessments Healthy Unhealthy Healthy Unhealthy || Healthy Unhealthy Running

() SLAschedule
Feed Health Filter

M charts
ALL RUNNING HEALTHY UNHEALTHY STREAMING

Feed Manager ~

users.test_feed_1
o Feeds © HEALTHY, COMPLETED 1 min ago 1 min 10 sec

Feed Health Staws Since Last Run Time
3 categories

Tables system.index_text_service

© HEALTHY COMPLETED 1 min ago 2sec
9 s Feed Health Staws Since Last Run Time
12 visual Query

Rowsperpage 5w 1-20f2 < >

Admin ~

_images/metadata-provider-selector-service.png
Configure Controller Service

SETTINGS PROPERTIES COMMENTS

Required field +

Property Value

Implementation REST API
REST Client URL https://localhost:8444/proxy/metadata
REST Client User Name dladmin

REST Client Password Sensitive value set

O ®© ®© 00

SSL Context Service StandardSSLContextService =>

CANCEL APPLY

_images/runtime-property.png
v Feed Details

Choose a Feed Input

GetFile

Input Directory

$${config.${metadata.feedName}.input-dir}

_images/propertiesshell.png
default = FILE:/var/log/krb5libs.log
kdc = FILE:/var/log/krbSkdc.log
admin_server = FILE:/var/log/kadmind.log

_images/search_schema_exists.png
users.test_feed_1

tableName keyword

test_feed_1
tableName test_feed_1
registration_dttm timestamp

id int

first_name

string

_images/search_data_exists.png
users.test_feed_1

kylo_table.keyword test_feed_1
kylo_table test_feed_1
id 157

first_name

last_name Rose

users.test_feed_1

kylo_table.keyword test_feed_1
kylo_table test_feed_1
id 282

first_name

last_name Patterson

users.test_feed_1

kylo_table.keyword test_feed_1
kylo_table test_feed_1
id 292

first_name

last_name Fuller

users.test_feed_1

kylo_table.keyword test_feed_1
kylo_table test_feed_1
id 398

first_name

last_name Flores

_images/standard-ssl-context-service.png
Configure Controller Service

SETTINGS PROPERTIES COMMENTS

Required field +

Property Value

Keystore Filename © | Novalue set

Keystore Password © | No value set

Key Password © | Novalue set

Keystore Type © | No value set

Truststore Filename © /opt/nifi/truststores/kylo-ui-trustore.jks
Truststore Password © | Sensitive value set

Truststore Type @ JKS

SSL Protocol e TLS

CANCEL

_images/shell.png
$ java version "1.7.0_80"
$ Java(TM) SE Runtime Environment (build 1.7.0_80-b15)
$ Java HotSpot(TM) 64-Bit Server VM (build 24.80-bll, mixed mode)

$ echo $JAVA_HOME
$ /usr/java/jdk1.7.0_8@

_images/image9.png
Feed Health

ALL RUNNING HEALTHY

test.test_listfile_state_on_update_feed

® HEALTHY

test.test_generate_flowfile__put

® HEALTHY

templates.kafka pub
® HEALTHY

Imci_debug.test_listfile_permissions

© UNHEALTHY

Imci_debug.sample ingest 2

® HEALTHY

UNHEALTHY

COMPLETED

Status

ABANDONED

Status

ABANDONED

Status

RUNNING

Status

ABANDONED

Status

3 days 19 hrs 34 min 56 sec

Since

3 days 20 hrs 58 min 43 sec

Since

53 days 19 hrs 23 min 7 sec

Since

2 days 20 hrs 25 min 21 sec

Since

10 days 16 hrs 59 min 21 sec

Since

Rows per page

0 sec

Last Run Time

26 hr 1 min 4 sec

Last Run Time

23 hr 20 min 54 sec

Last Run Time

Last Run Time

341 hr 55 min 31 sec

Last Run Time

5w 1-50f12

_images/image8.png
QO Alerts

Imci_debug.test_listfile_permissions
1 ALERT

MAPREDUCE2
1 ALERT

HDFS
1 ALERT

Feed

3 days ago

Service

aminute ago

Service

aminute ago

_images/inlinecodeRTD.png
4. The “Execute Script” processor from the data-transformation reusable template requires access
to the Scala script.

a. Change “MainArgs” to: ${transform_script_file:substringAfterLast('/')}

b. Add the following to “Extra Files”: ¢{transform script_file}

_images/inlinecode.png
a. Change “MainArgs” to:
*“¢${transform_script_file:substringAfterLast('/')} "

b. Add the following to “Extra Files”: " ‘${transform_script_file} "

_images/kylo-cluster-test2.png
Kylo Cluster seAcH

Is Kylo Clustered @

Cluster Members.
Kylo- sandbox-59542
Kylo- sandbox-43958.

Send a Message

SendaMessage m

Received Messages

Test Message 1 Kylo - sandbox-43958 07.01:44

Message From oate

_images/kylo-cluster-test1.png
Kylo Cluster Global

SEARCH

Is Kylo Clustered @

Cluster Members
Kylo - sandbox-59542
Kylo - sandbox-43958

Send a Message

Send a Message
e m
Received Messages

Test Message from Node 2
Message

Kylo - sandbox-59542

From

07:01:57

Date

_images/kylo-cluster2.png
Service Components e Service Details

Kylo - sandbox-20892 All 2 nodes are connected. Currently connected to this node. There are 2 mem.. 0 Alerts 05/06/2017 at 7:43 Kylo Cluster

®© HEALTHY Message Alerts Last Checke ®© HEALTHY

Kylo - sandbox-53398 All 2 nodes are connected. There are 2 members in the cluster. 0 Alerts 05/06/2017 at 7:43 05/06/2017 at 7:43
®© HEALTHY Message Alerts Last Checke Last Checke

_images/kylo-cluster1.png
Service Health

database
® HEALTHY

Kylo Cluster
® HEALTHY
NiFi

® HEALTHY

Filter

1

Component(s)

2

Component(s)

2

Component(s)

None

Alerts

None

Alerts

None

Alerts

Rows per page

5

1-3013

_images/kylo-logo-orange.png

_images/kylo-kafka-spark-twitter-stream.png
Kylo < Dashboard Q s
Operations A
Dashboard s
LAST MINUTE LAST 3 MINUTES LAST 5 MINUTES Last Refreshed
B, services
£ Jobs
[.
A Alrts 100% 39.46/sec 12 sec Feed Details
—F concerts.artist_sentiment
[SLAschedule 9 i= @
. " RUNNING
Success Rate Incoming Flow Rate Flow Duration

[chars Status
Feed Manager v Flow Rate 11,837

Monitor the ate of the feed flows Flows Started
Admin v

@Completed @ Started
206, 11818

Flows Finished

100
100 10
" Flows Running
g 120
& 100 39.46 / sec
H
Fows Rate
£ "
© 12 sec
40] Flow Duration
0
o 100%
® s » SuccesstlEvents
& & &

Time Feed Manager

