
kwiver-doctest Documentation
Release 1.0

Keith Fieldhouse

December 29, 2015

Contents

1 Getting Started 3
1.1 Environment . 3
1.2 Quickstart . 3
1.3 Preview . 4

2 Documenting Code 5
2.1 Python Code . 5
2.2 Module Documentation Example . 5
2.3 Command Documentation Example . 6

3 Indices and tables 7

Python Module Index 9

i

ii

kwiver-doctest Documentation, Release 1.0

Contents:

Contents 1

kwiver-doctest Documentation, Release 1.0

2 Contents

CHAPTER 1

Getting Started

We have adopted Sphinx as the documentation engine for the KWIVER project. Sphinx’s focus on making writing
documentation as easy as possible while still providing excellent support for generating documentation was espeially
attractive. This project serves as an example Sphinx documented project and contains meta-documentation about how
the documentation process for KWIVER projects works.

1.1 Environment

Sphinx is a Python based tool and requires a number of Python modules in addition to the Sphinx module itself. At the
KWIVER project, we frequently use the Miniconda project from Continuum to provide out Python environment. This
provides a cross-platorm (Windows, Linux and Mac OS X), consistent environment that’s easy to install and maintain.

Miniconda provides it’s own package manager, conda which can be used to install most of the packages required for
Sphinx based documnetation. Conda also supports the creation of Python “sandboxes” or virtual environments. We
typically keep a “Sphinx” environment available, which can be created this way:

conda create -n Sphinx sphinx sphinx_rtd_theme

Which will install the Sphinx tools (and all of Sphinx’s dependencies) and the Sphinx ReadTheDocs theme (which is
the current default KWIVER theme)

Once you’ve created the Sphinx environment you activate it this way:

source activate Sphinx

1.2 Quickstart

Sphinx provides a command that initializes a project with a Sphinx configuration file and stubs for some key documen-
tation files called sphinx-quickstart. We create a docs directory within our KWIVER projects that contains
these files. While you’re at it, you may wish to create a .gitignore file containing docs/_build (at least) to
avoid seeing the projects’ documentation build artificats in your git status results.

When you run sphinx-quickstart in the docs directory it will ask a you a series of questions. In general you’ll have
to decide on the answers to may of these based on the needs of your project but there are some key settings that are
useful:

• We use .rst as the source file suffix

• We turn on the EPub builder

• We turn on autodoc, intersphinx and viewcode

3

http://sphinx-doc.org/
http://kwiver.org/
http://python.org
http://conda.pydata.org/miniconda.html
https://www.continuum.io/
http://conda.pydata.org/docs/
http://readthedocs.org

kwiver-doctest Documentation, Release 1.0

• We use index.rst as our anchor document

Once you’ve run sphinx-quickstart, you can edit index.rst to begin writing your documentation. We find
the Sphinx reStructuredText Primer to be a useful introduction to the documentation format used by Sphinx.

For KWIVER projects, we typically edit the conf.py file to change html_theme to sphinx_rtd_theme.

1.3 Preview

Since reStructuredText is a mark up syntax that you work with in a text editor, you will need some means to see what
your rendered documentation will look like. While you can simply run make html in your docs directory and open
the resulting .html file, this can become somewhat tedious. If you install the livereload module in your Sphinx
environment (pip install livereload should do the trick) you can use the following Python script:

from livereload import Server, shell
server = Server()
server.watch("*.rst", shell('make html', cwd='.')) #'*
server.serve(root='_build/html')

Save this in your docs directory as sphinx_server.py and run it with this command:

python sphinx_server.py

Then, you can browse to http://localhost:5500/ to see your rendered documentation. The livereload
module will notice whenever you save a new version of one of your *.rst files and will re-run sphinx to provide an
updated view of you rendered documentation.

4 Chapter 1. Getting Started

http://sphinx-doc.org/rest.html

CHAPTER 2

Documenting Code

2.1 Python Code

Sphinx started as a Python documentation tool and as a result, has strong capabilities in this area. In particular, it
is capable of extracting Python “docstrings” and inserting them into your overall documentation collection as you
dictate.

In the KWIVER project we use docstrings to document individual module, classes, members and functions. To include
this text in our documentation, we need to make sure that Sphinx can “import” our modules without side effects.
Primarily this means that there should be no executable code (beyond function, class and variable definitions) in your
modules. If you want to make your module executable on the command line for convenience or testing purposes, use
the following construct to guard that code:

if __name__ == "__main__":
executable code when your module is called directly on the command line goes here

You’ll also need to make sure that Sphinx can find your modules by making sure their locations are on the Python
path. You can do this by editing conf.py in your docs directory. Since Sphinx’s configuration file is an actual
Python file, you can use sys.path to adjust the Python path. Typically for KWIVER projects we keep python code
in the the python directory and python based commands in the bin directory, both of which are peers of the docs
directory. Given this, we can add the following lines to top of our conf.py file:

import sys
import os

sys.path.insert(0,"../python")
sys.path.insert(0,"../bin")

Sphinx runs with the docs directory as its current working directory, so these relative paths work.

2.2 Module Documentation Example

To include a module’s documentation you use Sphinx’s automodule command like this:

.. automodule:: kwiver_doctest
:members:

What follows is documentation found in the kwiver_doctest.py module included with this repository.

5

kwiver-doctest Documentation, Release 1.0

2.2.1 kwiver_doctest Module

The module level documentation can contain reStructuredText in it just like the .rst files that make up a documena-
tion collection.

kwiver_doctest.sample_function(foo)
This is sample function documentation

Parameters foo (string) – A sample parameter

Returns True on success, or False on failure

Return type bool

Raises AttributeError, KeyError

Function documentation has special tags. Click on the “source” link associated with this function to see how
this function was documented. See the Sphinx info field documentation for further details:

2.3 Command Documentation Example

For the KWIVER project, we use the argparse module to parse our command line arguments. Among other things,
this allows us to use the sphinx-argparse extension which will automatically document commands based on the help
text included when the parser is built. In order to use it you’d invoke it like this:

.. argparse::
:ref: kwiver-doctest-command.cli_parser
:prog: kwiver-doctest-command

Which results in output like this:

Compute compute something useful based on input and argurments.

usage: kwiver-doctest-command [-h] [-o OUTPUT_FILEPATH] [-v] [-c CONFIG]
input_file

Positional arguments:

input_file Input Data file

Options:

-o, --output-filepath Path to a file to output feature vector to. Otherwise the feature vector is
printed to standard out. Output is saved in numpy binary format (.npy
suffix recommended).

-v=False, --verbose=False Print additional debugging messages. All logging goes to standard
error.

-c, --config Configuration file

In order for this to work, you command mus tbe on the Python path that you set up in conf.py and there must be a
symbol (either a function call or a variable) at the root level of the module that Sphinx can use to access the argparse
object so that it can introspect the help text. If you use a function (like we have here with cli_parser()) make
sure that the function only creates the argparse object becuase it will be exectued within the Sphinx process when
the documentation is generated.

6 Chapter 2. Documenting Code

https://docs.python.org/library/string.html#module-string
https://docs.python.org/library/functions.html#bool
http://sphinx-doc.org/domains.html#signatures
https://sphinx-argparse.readthedocs.org/en/latest/

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

7

kwiver-doctest Documentation, Release 1.0

8 Chapter 3. Indices and tables

Python Module Index

k
kwiver_doctest, 5

9

kwiver-doctest Documentation, Release 1.0

10 Python Module Index

Index

K
kwiver_doctest (module), 5

S
sample_function() (in module kwiver_doctest), 6

11

	Getting Started
	Environment
	Quickstart
	Preview

	Documenting Code
	Python Code
	Module Documentation Example
	Command Documentation Example

	Indices and tables
	Python Module Index

