
kr_docs Documentation
Release 0

KumarRobotics

Oct 02, 2019

Contents

1 Suggested Readings 3

2 Software 7

3 Hardware 11

4 Setting up your build environment 27

5 Common Issues 31

6 Indices and tables 33

i

ii

kr_docs Documentation, Release 0

This is the index for the KR github docs. This documentation will cover the following topics:

• Guidelines when using the organization repository.

• Recommended practices when developing in ROS.

• Useful tips and tricks for streamlining your development process.

The documentation is very much a work in progress and will continue to be updated as time goes by. Report inaccu-
racies to the maintainer [Chao].

Contents:

Contents 1

mailto:quchao@seas.upenn.edu

kr_docs Documentation, Release 0

2 Contents

CHAPTER 1

Suggested Readings

For running experiments on real robotics platforms a lot of tools can come in handy. Following are some of the
software/tools to get familarized with before diving into running robots in the lab.

Please follow it thoroughly and enjoy the learning!

1.1 Ubuntu

Most software for UAVs and robots in lab runs on Ubuntu 18.04 LTS. Please install this particular version, a lot of
other software specifically depends on it. We strongly suggest to install a native system, don’t virtualize. Do not
use Virtual Box, although it works fine, the drop in performance is really noticeable, especially when simulating a
real-time flying drone.

1.2 Bash

Bash is the standard/default shell in Ubuntu. Most of the time, when you work in the terminal, you use bash to run
programs, for scripting and to manage your file system.

Skills needed:

• moving through a file system

• writing and running simple shell scripts

• mounting devices (fdisk, mount, sync, umount)

• common commands:

– grep, |, echo, ssh, scp, rsync, cat

3

kr_docs Documentation, Release 0

1.3 GIT - code versioning system

GIT is a powerful versioning system. All our code is stored and versioned using GIT. It allows collaborative work
between many people and can be managed completely from the terminal. Our repositories are hosted at

Tutorials:

•

•

Skills needed:

• cloning repositories

• committing changes

• pushing and pulling changes to a server

• branching

• merging

• fixing conflicts (will come as they appear :-))

1.4 TMUX - terminal multiplexer

Tmux is a command line utility that allows splitting a terminal to multiple panels and creating windows (tabs). It is
similar to e.g. Terminator, but runs completely in the command line. Thus it can be used over ssh.

It is scriptable, which makes it ideal for automating simulations, where multiple programs are running in parallel.

•

•

1.5 Tmuxinator - automating tmux

Tmux itself is very powerful, tmuxinator is just adding some cream on it. Tmuxinator uses .xml files containing the
description of a tmux session. It allows to define and automate complex multi-terminal setups for e.g. development
(one session per program) and simulations.

•

1.6 Vim

Everyone should use a tool that is right for the job. Well, for our purposes (C++, ROS, python, bash), Vim is very well
suited. A lot of the time, you will find yourself in need of editing a code remotely (over ssh), and Vim can provide
IDE-like features even in that situation.

Learning Vim is about changing the paradigm of programming - it’s more about controlling a machine (synthesizer)
that edits a text, rather than moving a cursor with a mouse and then typing the text.

Working in the terminal, using e.g. tmux and vim can also help you put away your mouse. Yes, a mouse is not an ideal
tool for programming, though it has its use in gaming, 3D modeling, video editing and so on. Without a mouse, you
will become much more productive, and your carpal tunnels will thank you.

4 Chapter 1. Suggested Readings

kr_docs Documentation, Release 0

Give it a chance, have a look at following videos:

•

•

1.7 ROS - Robot Operating System

ROS is a middleware between Ubuntu and C++. Thanks to it, our programs can talk to each other asynchronously,
even though they don’t have to “know” each other necessarily. It also allows simple control of your software from the
terminal. A lot of robotic stuff has been already programmed in ROS, including sensor drivers, visualization, planning,
etc., thus we don’t need to reinvent the wheel. Getting into ROS is simple, just follow tutorials on their webpage and
don’t be afraid to experiment. You can’t break the drone in simulation :-).

Tutorials:

Required skills: The more, the better, most of it will come as your start working on a project.

1.7. ROS - Robot Operating System 5

kr_docs Documentation, Release 0

6 Chapter 1. Suggested Readings

CHAPTER 2

Software

2.1 C++

2.1.1 Modern C++

Targeting c++11

c++11 is the most recent ISO standard for the c++ language. It adds numerous features which improve the language
and the standard library. We recommend adopting c++11. Some packages in the KR github may depend on your
compiler having support for the new specification.

Since version 4.8, GCC implements all of the c++11 features. GCC 4.8 is pre-installed in Ubuntu 14.04 (Trusty) and
works with ROS Indigo out of the box.

Setting up GCC 4.8 on Ubuntu 12.04

The Ubuntu 12.04 (Precise) repositories do not contain a package for GCC 4.8. PPAs for toolchain test builds are
available. In order to install gcc and g++ version 4.8, execute the following commands:

sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-4.8 g++-4.8

You should then update the links in /usr/bin so that they point to the newer version of gcc. This is achieved by
executing:

sudo update-alternatives --remove-all gcc
sudo update-alternatives --remove-all g++
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-4.8 20
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-4.8 20
sudo update-alternatives --config gcc
sudo update-alternatives --config g++

7

http://www.stroustrup.com/C++11FAQ.html
http://www.codeproject.com/Articles/570638/Ten-Cplusplus-Features-Every-Cplusplus-Developer
http://gcc.gnu.org/gcc-4.8/cxx0x_status.html
https://launchpad.net/~ubuntu-toolchain-r

kr_docs Documentation, Release 0

You will then need to update boost to 1.54 in order to use the new compiler.

Source: ubuntuhandbook.org

Enabling c++11 in CMake

c++11 features are enabled with the compiler switch: -std=c++11. Adding this option to your CMakeLists.txt file
is very simple:

add_definitions("-std=c++11")

2.1.2 C++ IDE

2.1.3 C++ Style Guide

Google C++ Style Guide ROS C++ Style Guide

2.2 Git Workflow

2.2.1 Git Branching Model

For simplicity, we use GitHub Flow, which will be summarized here.

GitHub Flow

• Anything in the master branch is deployable

• To work on something new, create a descriptively named branch off the master (ie: feature/
handle-frame-drops)

• Commit to that branch locally and regularly push your work to the same named branch on the server

• When you need feedback or help, or you think the branch is ready for mergin, open a pull request

• After someone else has reviewed and signed off on the feature, you can merge it into master

• Once it is merged and pushed to master, you can and should deploy immediately

Master branch

The origin/master is the main branch where the code of HEAD always reflects a demo-ready state. We treat
the master branch as read-only, such that no code should be directly committed to it. Instead, the master branch
moves forward only by merging from topic branches.

Topic branches

The topic branches always have a limited life time, since they will be removed eventually. Try to keep the commits in
a single branch tightly related, and give it a descriptive name.

We recommend using the following prefixes in branch names:

• feature/ - New features.

8 Chapter 2. Software

http://ubuntuhandbook.org/index.php/2013/08/install-gcc-4-8-via-ppa-in-ubuntu-12-04-13-04/
http://google-styleguide.googlecode.com/svn/trunk/cppguide.html
http://wiki.ros.org/CppStyleGuide
http://scottchacon.com/2011/08/31/github-flow.html

kr_docs Documentation, Release 0

• fix/ - Bug fixes.

• refactor/ - Code movement or restructuring.

Pull requests and code review

We follow the shared repository model. You do not need to fork the repository. Simply use topic branches to sandbox
new work. Use the following workflow for development:

1. Create a topic branch off of master for new work:

$ git checkout -b fix/handle-frame-drops

2. Develop your code inside the branch. Commit liberally to track your changes.

3. Regularly push your branch to the server (origin):

$ git push origin fix/handle-frame-drops

4. When you are ready for a code review, or simply want some feedback, initiate a pull request. Go to the repository
that you are working on on Github, switch to your branch, and click the Pull Request button.

5. Github defaults to merging into master. You can click the Edit button and change the merge target to
some-other-branch.

6. Get someone else to review your changes. Revise & iterate until convergence.

7. Merge your branch. You can merge directly through Github by clicking the Merge pull request button.

To merge locally:

Checkout the changes if you don't already have the branch locally
git fetch origin
git checkout fix/handle-frame-drops

Make sure the branch is up-to-date and resolve any conflicts
git merge master

Fast-forward master, and update the server
git checkout master
git merge fix/handle-frame-drops
git push origin master

8. Optionally, tidy up defunct branches you do not intend to develop anymore.

Delete local topic branch:

git branch -d fix/handle-frame-drops

If you are dealing with pull request on Github, it will prompt you whether to delete the branch or not after
merging. Otherwise, you can do this to clean up the remote topic branch:

assume remote branch not deleted by Github
git push origin --delete fix/handle-frame-drops
git remote prune origin

2.2. Git Workflow 9

https://help.github.com/articles/using-pull-requests
https://help.github.com/articles/using-pull-requests
https://help.github.com/articles/merging-a-pull-request

kr_docs Documentation, Release 0

2.3 Test

Google Test

2.4 LaTeX

2.4.1 Tikz and PGFPlots

Subsample plots

If you have too much data to plot, your document may take quite a while to compile. To speed things up, you can
subsample the data. To plot only a subset, you can follow the discussion here and modify the addplot command in
your tikz file.

\addplot[<your options here>,each nth point={100}] ...

10 Chapter 2. Software

https://code.google.com/p/googletest/
http://tex.stackexchange.com/questions/47787/how-to-select-a-finite-number-of-samples-from-the-file-when-plotting-using-pgfpl

CHAPTER 3

Hardware

There are 4 sections under hardware

3.1 Motion Capture

3.1.1 Indoor Motion Capture

The instruction for using indoor Vicon system can be found .

3.1.2 Outdoor Motion Capture

The instruction for using indoor Qualisys system can be found .

3.2 Network

3.2.1 Network Setup

Indoor Network Setup

To ensure your robot has continuous and reliable network connection, you should use wpa_supplicant if you
don’t have a display for the robot.

Here are the steps for setting up wpa_supplicant.

0. First of all, ask for a static ip for your robot in the mrsl network.

1. add wpa_supplicant.conf to /etc/wpa_supplicant/:

11

kr_docs Documentation, Release 0

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
ap_scan=1
fast_reauth=1

network={
ssid="mrsl_airrouterhp"
scan_ssid=1
key_mgmt=NONE

}

2. modify /etc/network/interfaces so that it looks like:

auto lo
iface lo inet loopback

auto start wlan0 interface
auto wlan0
use static ip for wlan0
iface wlan0 inet static
your desired ip
address 192.168.129.xyz
gateway 192.168.129.1
netmask 255.255.255.0
wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

auto eth0
iface eth0 inet static
address 192.168.1.abc
netmask 255.255.255.0

3. The next time your power on your robot, it will automatically connect to the router you specified in
wpa_supplicant.conf. And if will reconnect even if you lose connection temporarily.

4. A sample interfaces file can be found here.

Outdoor Network Setup

For large-scale outdoor experiments, we need ad reliable long-range wifi connection between the robot and the ground
station. To this end, we use Ubiquiti wireless products. Both bullet M and PicoStation M are good choices.

We recommend using PicoStation simply because it is easier to strip the case off.

We use Ubiquiti products mainly for its airMax technology, which is designed for outdoors wireless communication.

Below we describe in detail how to setup airMax connection between two Ubiquiti devices. We use a Bullet M in
Access Point mode to serve as a ground station and a PicoStation M in Station mode, which can be seen as a client.

Access Point (Ground Station)

1. On your computer, add a new Ethernet connection from Ubuntu Network Manager.

2. In IPv4 Settings tab, change Method to Manual

3. Add an Address, here we use 192.168.1.200, with Netmask 255.255.255.0. You can leave the Gate-
way and DNS servers empty.

4. Power up the Bullet M and connect to your computer via Ehternet.

12 Chapter 3. Hardware

https://gist.github.com/versatran01/9f42f24efa36b08f53d6
http://www.ubnt.com/products/
http://dl.ubnt.com/AirMax_ppt.pdf

kr_docs Documentation, Release 0

5. Make sure you are on the network configuration you just setup. Then open a browser window with the following
ip address 192.168.1.20, which is the default address for Bullet M.

6. The default Username and Password are both ubnt.

7. In the first tab left to MAIN, select Enable for airMAX, then click Change and Apply. Notice that all the
changes you made will be cancelled if you switch tab without applying those changes.

8. In WIRELESS tab, make the following changes. The rest can be left as default.

Item Value
Wireless Mode Access Point
SSID ubnt (anyname)
Channel Width 20 MHz (recommended)

9. In NETWORK tab, make the following changes.

Item Value
Network Mode Bridge
Management IP address Static
IP Address 192.168.1.20
Netmask 255.255.255.0
Gateway IP 192.168.1.1

Station (Client)

1. On your robot, make sure your ethernet interface (eth0) is on the same subnet as the Access Point, which should
be 192.168.1.abc.

2. Power up the PicoStation M and connect to your robot via Ethernet.

3. Open a browser window with the folloing IP address 192.168.1.20 (default).

4. Again, he default Username and Password are both ubnt.

5. In WIRELESS tab, make the folloing changes. The rest can be left as default.

Item Value
Wireless Mode Station
SSID ubnt (same as AP)
Channel Width Auto 20/40 MHz

6. In NETWORK tab, make the following changes. Note that IP Address should be something other than 20 and
abc.

Item Value
Network Mode Bridge
Management IP address Static
IP Address 192.168.1.21
Netmask 255.255.255.0
Gateway IP 192.168.1.1

3.2. Network 13

kr_docs Documentation, Release 0

7. In MAIN tab, remember the WLAN0 MAC of this device. Then go back to the Access Point setup page on
your computer. In WIRELESS tab, select Enable for MAC ACL and Allow for Policy. And add the above
MAC to the list by clicking on ACL. . . .

Now you should have established airMAX connection between the Bullet M and the PicoStation M. In MAIN tab of
the Access Point, you will see something like this.

Internet Sharing from Your Computer

Often, it is convenient to have internet access on your robot.

1. Add the following two lines to your ethernet interface in /etc/network/interfaces:

gateway 192.168.1.200 # IP address of your laptop
dns-nameservers 192.168.129.1 8.8.8.8 # for internet access

2. Put the following function in your .bashrc, then you can enable and disable sharing via sharenet on/
off:

function sharenet()
{

if [$# -eq 0]; then
echo "usage: sharenet <on/off>"
return 0

fi

local if_from=wlan0
local if_to=eth0
check command-line commands
cmd=$1
case $cmd in

on)
sudo su -c "echo 1 > /proc/sys/net/ipv4/ip_forward"
echo "Enable sharing internet from $if_from to $if_to"
sudo /sbin/iptables -A FORWARD -i $if_to -o $if_from -j ACCEPT
sudo /sbin/iptables -A FORWARD -i $if_from -o $if_to -m state --state

→˓RELATED,ESTABLISHED -j ACCEPT
sudo /sbin/iptables -t nat -A POSTROUTING -o $if_from -j MASQUERADE
;;

off)
sudo su -c "echo 0 > /proc/sys/net/ipv4/ip_forward"
echo "Disable sharing internet from $if_from to $if_to"
;;

*)
(continues on next page)

14 Chapter 3. Hardware

kr_docs Documentation, Release 0

(continued from previous page)

echo "sharenet: $1: invalid command"
echo "usage: sharenet <on/off>"
;;

esac
}

3.2.2 Wifi Test

On 2014-12-17, we conducted a test comparing bullet airmax connection to normal wifi connection.

Test Setup

The test uses 1 base station, which is a bullet-M2HP with an EnGenius EAG-2408 antenna. There are three clients
who connect to the station:

1. Bullet-M2HP with small antenna

2. Bullet-M2HP with medium antenna

3. Intel 7260HMW IEEE 802.11AC, dual-band, 2x2 Wi-Fi

The bullets are connected to the base station via Airmax, while the Intel card is connected to the base station via
normal wireless connection. The Channel Spectrum Width is set to 40 MHz, which gives a max TX rate of 150 Mbps.

3.2. Network 15

kr_docs Documentation, Release 0

We picked 6 points at Penn Park with various distances to the base station (which is located at point A), and we test
the connection at those points with the three configuration mentioned above.

Test Results

airmax

The following images show comparision of airmax capacity, quality and signal strength at different distances using
two different antenna with airmax enabled.

16 Chapter 3. Hardware

kr_docs Documentation, Release 0

3.2. Network 17

kr_docs Documentation, Release 0

Note that even though Point D is significantly closer to base station than Point E, it experienced worse connection.
That is because D is below A while E is on a bridge and above A.

bandwidth

The following image shows comparision of bandwidth at different distances using the above configuration and normal
wifi.

18 Chapter 3. Hardware

kr_docs Documentation, Release 0

Summary

It seems like the client’s antenna size does not make a huge difference in coneection quality.

• If you are doing experiments in open space and within 100 meters, then you can probably get away with normal
wireless connection.

• If your robot needs to go further away and you want to monitor its status, then you should switch to Ubiquiti
airMAX connection.

• If you need good connection even at more than 400 meters away, then you should buy a better station/antenna.

We will do some more tests in 2015 in Biglervielle and California and will update this report later.

3.2.3 Chrony

Chrony lets you syncronize the clocks of multiple devices so you can have consistent timestamps.

To install chrony run sudo apt install chrony

If you don’t know where chrony.conf is run whereis chrony

Setting up chronyd (server)

To allow devices with all ip adress in the network 192.168.1., add the following line to chrony.conf:

allow 192.168.1.1/24

Setting up chronyc (client)

Assuming master’s ip 192.168.1.55 and client ip will be 192.168.1.115

chrony.conf

server 192.168.1.55 iburst
makestep 0.0001 10
maxchange 1000000.000001 1 1
rtcsync

/etc/network/interfaces

source /etc/network/interfaces.d/*

auto lo
iface lo inet loopback

auto eth0
iface eth0 inet dhcp
iface default inet dhcp
auto wlan0
#iface wlan0 inet dhcp
iface wlan0 inet static

(continues on next page)

3.2. Network 19

kr_docs Documentation, Release 0

(continued from previous page)

address 192.168.1.115
netmask 255.255.255.0
gateway 192.168.1.1
dns-nameservers 192.168.129.5
wpa-conf /etc/wpa_supplicant/wpa_supplicant.conf

/etc/wpa_supplicant/wpa_supplicant.conf

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=ssh
ap_scan=1

network={
ssid="windy"
proto=RSN
key_mgmt=NONE
pairwise=CCMP TKIP
group=CCMP TKIP

}

3.3 Computation

3.3.1 Intel NUC

Intel NUC is a common computation platform being used at KumarRobotics. They are usually mounted on bigger
platform such as Pelican and DJI S900/1000.

This page is dedicated to record problems and solutions that we encountered while working with the NUC.

Ubuntu Installation

The NUC boots to the Ubuntu live USB and installing the OS to the internal mSATA SSD completes without an issue.
The problem can be that the NUC wouldn’t see the drive as a EFI boot target, and it would refuse to boot from the
drive. The NUC has problems with custom EFI boot locations, the NUC expects there to be a file named bootx64.efi
located in the /EFI/BOOT folder on the EFI partition, and if that file is named something else and/or located elsewhere,
the computer can’t recognize the drive as a boot target. The Debian distros will usually try to place a bootloader named
grubx64.efi in a folder named /EFI/[distro name], so the NUC wouldn’t try to boot from the drive.

From Ubuntu live USB drive, finish the operating system installation but don’t reboot. Instead, open a terminal window
and type the following.

sudo mount /dev/sda1 /mnt
sudo mkdir /mnt/EFI/BOOT
sudo cp /mnt/EFI/ubuntu/* /mnt/EFI/BOOT
sudo mv /mnt/EFI/BOOT/grubx64.efi /mnt/EFI/BOOT/bootx64.efi

This assumes sda1 is your EFI boot drive partition. It might be different if you have multiple hard drives/usb con-
nected. Hopefully this issue would be fixed with an updated BIOS release.

20 Chapter 3. Hardware

http://www.intel.com/content/www/us/en/nuc/overview.html
http://www.asctec.de/en/uav-uas-drone-products/asctec-pelican/
http://www.dji.com/product/spreading-wings-s900

kr_docs Documentation, Release 0

Improper Shutdown

If your NUC shutdowns due to low battery power, then it may not boot up properly the next time. This is described in
detail here.

The reason why this is happening is because in /boot/grub/grub.cfg, the following logic sets the timeout to
-1 after a power failure.

if ["${recordfail}" = 1] ; then
set timeout=-1

else
...

But we don’t want to modify this file directly because it will be overwritten after every kernel update. The workaround
to fix this problem is by setting a config variable GRUB_RECORDFAIL_TIMEOUT which will be read by /etc/
grub.d/00_header.

Open /etc/default/grub, add the following line in the file.

GRUB_RECORDFAIL_TIMEOUT=5

Here 5 is just a random number I picked. After this modification run

sudo update-grub

Then reboot and verify that in boot/grub/grub.cfg the set timeout=-1 has been successfully changed to
set timeout=5.

Waiting for Network Configuration

Sometimes when you boot up Ubuntu, it will stuck at the booting screen for a long time saying it is waiting for network
configuration. This can be annoying. Here’s how to disable it.

1. Open /etc/init/failsafe.conf

2. Change the first 3 sleep command to sleep x where x is some small value, like 5.

3. Or if you don’t want to wait at all, simply comment out the following lines.

$PLYMOUTH message --text="Waiting for network configuration..." || :
sleep 40

$PLYMOUTH message --text="Waiting up to 60 more seconds for network configuration.
→˓.." || :
sleep 59

3.3.2 Pixhawk

Setting up a new Pixhawk for autonomous flight with MAVROS

Cable (UART to USB)

Tx - Rx

Rx - Tx

3.3. Computation 21

https://bugs.launchpad.net/ubuntu/+source/grub2/+bug/872244

kr_docs Documentation, Release 0

Grnd - Grnd

cables

Linux

Create a new udev rule

cd /etc/udev/rules.d/
sudo vim 99-pixhawk.rules

Add the following line:

SUBSYSTEM=="tty", ATTRS{idVendor}=="xxxx", ATTRS{idProduct}=="yyyy",
ATTRS{serial}=="zzzz", SYMLINK+="ttyPixhawk", RUN+="/bin/stty -F /dev/
ttyPixhawk 921600 raw -echo"

You can find your idVendor and idProduct running lsusb, identify which one is your device. The device will be
either the pixhawk itself or the UART adapter. Do this using the interface you will use for autonomy later. If you’re
using more than one device with same ids add serial as well.

Bus 002 Device 007: ID 26ac:0032 In this case idVendor = 26ac and idProduct = 0032.

udevadm info -a -n /dev/ttyUSB1 | grep -E '{serial}|{idVendor}|{idProduct}' |
head -n 3

Reboot you computer: sudo reboot now

Pixhawk (QGC)

Connect your Pixhawk to a computer using the micro-usb port and open QGroundControl.

Go To vehicle setup -> params and set:

• MAV_1_CONFIG = TELEM 2 (reboot pixhawk after changing this)

• MAV_1_MODE = Onboard

22 Chapter 3. Hardware

https://docs.qgroundcontrol.com/en/getting_started/download_and_install.html

kr_docs Documentation, Release 0

• SER_TEL2_BAUD = 921600

Test

<launch>
<!-- vim: set ft=xml noet : -->
<!-- example launch script for PX4 based FCU's -->

<arg name="fcu_url" default="/dev/ttyPixhawk:921600"/>
<arg name="gcs_url" default="" />
<arg name="tgt_system" default="1" />
<arg name="tgt_component" default="1" />
<arg name="log_output" default="screen" />
<arg name="fcu_protocol" default="v2.0" />
<arg name="respawn_mavros" default="false" />

<include file="$(find mavros)/launch/node.launch">
<arg name="pluginlists_yaml" value="$(find mavros)/launch/autonomy/

→˓px4_pluginlists.yaml" />
<arg name="config_yaml" value="$(find mavros)/launch/autonomy/px4_

→˓config.yaml" />

<arg name="fcu_url" value="$(arg fcu_url)" />
<arg name="gcs_url" value="$(arg gcs_url)" />
<arg name="tgt_system" value="$(arg tgt_system)" />
<arg name="tgt_component" value="$(arg tgt_component)" />
<arg name="log_output" value="$(arg log_output)" />
<arg name="fcu_protocol" value="$(arg fcu_protocol)" />
<arg name="respawn_mavros" default="$(arg respawn_mavros)" />

</include>
</launch>

Useful links

http://wiki.ros.org/mavros

Pixhawk docs for setting up companion computer

3.3.3 Odroid

Some introductions to odroid goes here.

Update Kernel

Updating the kernel: Follow the instructions from here or run the following

sudo -s
wget -O /usr/local/bin/odroid-utility.sh https://raw.githubusercontent.com/mdrjr/
→˓odroid-utility/master/odroid-utility.sh
chmod +x /usr/local/bin/odroid-utility.sh
odroid-utility.sh

3.3. Computation 23

https://dev.px4.io/v1.9.0/en/companion_computer/pixhawk_companion.html
https://github.com/mdrjr/odroid-utility

kr_docs Documentation, Release 0

3.4 Robot

3.4.1 Scarab

The instruction for using scarabs can be found .

3.4.2 Snapdragon Flight

The instructions for setting up Snapdragon Flight boards can be found .

3.4.3 Clearpath Jackal

3.4.4 Fetch

3.5 Sensor

3.5.1 Serial Devices Permission and Ownership

Some ROS driver which access resources in /devwill fail to launch, stating that they cannot open the device or access
the resource.

Perform ls /dev/tty* to see if there is a serial device connected. The default could be /dev/ttyACM0 or
/dev/ttyUSB0. If the device is connected, then you probably need to fix a permission issue.

By default, TTY devices in /dev are owned by the root user. You can do the following to grant yourself access.

Simple fix: giving temporary access to <username>:

sudo chown <username> /dev/ttyACM0

Permanent fix: adding <username> to dialout group:

usermod -a -G dialout <username>

3.6 Thrust Stand Testing

There comes a time in every engineer’s life, when they must measure thrust coefficients and efficiency from propeller-
motor combinations. This is that.

3.6.1 RC Benchmark Series 1580 Thrust Stand and Dynamometer

Necessary hardware:

• RC Benchmark 1580 Board

• RC Benchmark structure (including two 2kg load cells and one 5kg load cell)

• Calibration hardware (200g mass, beam, and screws)

• Mini USB Type-B Cable

24 Chapter 3. Hardware

kr_docs Documentation, Release 0

• Computer with RC Benchmark software installed

• Motor and Propeller

• ESC (appropriately spec’d for motor/prop combo)

• Power Supply (with appropriate voltage/current/power ratings)

• Power Cables (stripped on one end)

• Non-reflective tape

• Reflective tape

• Optical Sensor and cable

• 4x motor mounting screws

• Corresponding screw driver

• 2x C-clamps

Performing a Thrust Test:

1. Assuming the thrust stand has already been assembled, clamp down the bottom of the structure to a flat surface.

2. Download the RC Benchmark Software here: https://rcbenchmark.gitlab.io/docs/en/dynamometer/software/
dynamometer-software-download.html

3. Connect the RC Benchmark board to your computer via the Mini-USB Type B cable and press the “Connect”
button on the left side of the RC Benchmark software.

4. Under the “Utilities” tab, perform a thrust calibration and, if necessary, a torque calibration. When you are done,
reclamp the thrust stand to your work surface.

5. Connect the power cables from your ESC to the respective positive and negative screw terminals labeled, “ESC”,
on top of the PCB.

6. Connect the signal cables from your ESC to the header pins labeled, “ESC”. (Note: Colors may vary, but Black
will “always” be ground/negative.)

7. Connect the power cables from your power supply to the respective positive and negative screw terminals la-
beled, “Power Input” and “Ground”, respectively.

8. Tape the motor’s side with non-reflective tape. Usually, the motor’s metal housing will already be reflective, so
you may or may not need to tape an additional small strip of reflective tape on the motor.

9. Mount the propeller/motor combination to the thrust stand. (Note: for small motors, you may need to create an
mounting adapter.)

10. Mount the optical RPM sensor relatively close the the motor. Connect the sensor cables to one of the headers
labeled, “S1”, “S2”, or “S3”. (Note: The board does not by default provide power to sensor. You will need to
provide an external 5V source from your ESC, power supply, or with a wire bridge from one of the board’s 5V
sources.)

11. Optional: To use the electrical RPM sensor, connect a jumper cable from the pin labeled, “RPM probe”, to one
of the ESC leads. Then, under “Utilities”, adjust the value for the “Number of Poles” setting to match your
motor.

12. Connect the motor leads to the ESC.

13. Turn on your power supply and adjust the voltage and current limit accordingly.

14. Under the “Setup” tab, set working units to the system you prefer, select a folder to be your working directory,
and flash the latest firmware if it is not up-to-date.

15. Under the “Safety Cutoffs” tab, adjust the cutoffs to values appropriate to your prop/motor combination.

3.6. Thrust Stand Testing 25

https://rcbenchmark.gitlab.io/docs/en/dynamometer/software/dynamometer-software-download.html
https://rcbenchmark.gitlab.io/docs/en/dynamometer/software/dynamometer-software-download.html

kr_docs Documentation, Release 0

16. Under the “Manual Control” tab, navigate to the “ESC” scrollbar, where you can adjust the duty cycle to check
the direction the motor is spinning. If the motor is spinning the wrong way, switch the order of two of the three
motor cables.

17. Under the “Automatic Control” tab, click the “Script” drop box and select “Sweep - continuous”. Here, you can
adjust the minimum and maximum PWM values, and total time, among other things. When you are ready, zero
the load cells by pressing “Tare Load Cells”, then press the “Run” button followed by the “Start” button to begin
the test.

Important: Make sure that the propeller is either pointed toward or away from you in case the propeller breaks. For
larger propellers, you will want to use the caged enclosure located in the motion capture space at PERCH. Lastly,
always wear safety glasses when doing thrust tests.

Tips & Troubleshooting:

• Make sure to fasten your ESC and power cabling securely with cable ties. Dangling power cables can affect the
readings.

• For testing multiple motors, it may be a good idea to solder screw terminals to your ESC to avoid repeatedly
soldering connectors to the motor leads.

• It is a good idea to periodically perform a calibration on the ESC. First, remove the propeller from the motor
and, under “Manual Control”, uncheck the box under the ESC scrollbar. Set the scrollbar to its maximum and
check the box. The ESC should audibly indicate via the motor that it is in calibration mode. Uncheck and
recheck the box, then set the scrollbar to its minimum position. The ESC will cause the motor to emit a tone if
the calibration was successfull. You can check this by adjusting the scroll bar.

• To obtain a thrust/rpm curve, the voltage supplied to the ESC is not extremely important, and you can just use
the nominal battery voltage of your system. If you would like map the duty cycle(therefore voltage) to thrust
more accurately, you can run tests at your maximum and minimum voltages and interpolate.

• For further details beyond this quick-start guide, RCBenchmark’s online documentation can be found here:
https://rcbenchmark.gitlab.io/docs/en/series-1580.html

26 Chapter 3. Hardware

https://rcbenchmark.gitlab.io/docs/en/series-1580.html

CHAPTER 4

Setting up your build environment

4.1 catkin

Catkin is the recommended dependency manager for use with ROS. Most packages added to the KR github will be
intended for use with catkin. Instructions for setting up a catkin workspace are available on the ROS wiki. Adding a
new package to your catkin workspace is straightforward.

4.1.1 Linking packages into your catkin workspace

When managing a large project with multiple packages, it is usually convenient to keep your workspace separate from
the git folder. This is achieved by symbolically linking your packages into the catkin src folder.

Example

For the following example we suppose the following directory structure exists:

~/Documents/catkin <-- Root of the catkin workspace
~/Documents/code <-- Folder where you store your git repositories

If you wanted to clone the bluefox2 package and add it to your catkin workspace, you would do the following:

cd ~/Documents/code
git clone https://github.com/KumarRobotics/bluefox2
ln -s bluefox2 ~/Documents/catkin/src/bluefox2

Of course, you do not have to link to the root of a git repository. You can link to any folder which is itself a catkin
package, or which contains catkin packages.

4.2 Qt Creator

Qt Creator is a fast, powerful and, cross-platform c++ development IDE. It is actively maintained by the Digia corpo-
ration, and is freely available under the LGPL licensing scheme. Qt integrates easily with cmake projects, and offers

27

http://wiki.ros.org/catkin
http://wiki.ros.org/catkin/Tutorials
http://wiki.ros.org/catkin/Tutorials/CreatingPackage
https://github.com/KumarRobotics/bluefox2
http://qt-project.org/wiki/category:tools::qtcreator
http://www.digia.com/

kr_docs Documentation, Release 0

an elegant GUI development toolkit for Qt - the recommended platform for building graphical ROS applications.

4.2.1 Launching Qt Creator

In order to access the necessary environment variables (ROS_PACKAGE_PATH, ROS_MASTER_URI, etc) Qt Creator
must be started from the command line. Alternatively, you can make a desktop launcher by following the instructions
here.

4.2.2 ROS Packages in Qt Creator

To use Qt Creator with your ROS package. Create a new project with the File -> New File or Project
action. Select the Import Project -> Import Existing Project, as illustrated below:

Assign your project a sensible name, and select the location as the package directory (in which your src directory
resides):

You will be asked to import files. Select directories which contain headers and source files. When prompted to select
project options, you should NOT add the IDE files to version control - these are specific to your machine.

28 Chapter 4. Setting up your build environment

http://wiki.ros.org/rqt
http://wiki.ros.org/IDEs#QtCreator

kr_docs Documentation, Release 0

Lastly, you must configure the Qt Creator build settings correctly. Navigate to the Projects menu in the mode
selector (accessible from Window -> Show Mode Selector).

Append build to the build directory (you may need to create this directory yourself). Then add a custom build
step which performs the operation cmake .. (.. is the argument). You may also optionally add -j4 to the make
arguments in order to parallelize builds. See the image below for an example of valid settings.

If you wish for Qt Creator to index a set of headers that are not on the default path, add them to your .includes file
in QtCreator. For example:

4.2. Qt Creator 29

kr_docs Documentation, Release 0

include
build/devel/include

will index your project headers and generated project headers (such as messages).

4.2.3 Better Qt Creator

Themes

Qt creator ships with aweful color schemes. You should change it to increase your productivity. Go get qtcreator-
themes for better color schemes.

Beautifier

Beautifier is QtCreator plugin that helps you format your code. It supports astyle, clang-format and uncrustify. We
recommend using clang-format. To get clang-format, just do:

sudo apt-get install clang-format-3.5

Go to Help -> About Plugins..., under C++ click Beautifier. Then restart.

After restart, go to Tools -> Options -> Beautifier, and setup your clang-format.

30 Chapter 4. Setting up your build environment

https://github.com/gareth-cross/qtcreator-themes
https://github.com/gareth-cross/qtcreator-themes

CHAPTER 5

Common Issues

5.1 Common ROS Problems

5.1.1 GCC fails to find headers for generated messages

You may wish to compile a package (in catkin) which contains msg files to be used by other packages (or a pack-
age which depends on said messages). The order of compilation is important here. If dependencies are improperly
specified, GCC may fail to compile when you include generated message headers.

For example, you might have the package structure:

my_workspace/
my_library/
msg/MyMessage.msg
src/my_library.cpp
CMakeLists.txt
package.xml
...

my_node/
src/my_node.cpp
CMakeLists.txt
package.xml
...

Evidently, my_node must declare a dependency on my_library in both CMakeLists.txt and package.
xml. However, my_library and my_node should also both declare a dependency on the exported targets of
my_library. Otherwise, catkin may attempt to compile my_library.cpp and my_node.cpp before the
header for MyMessage.msg has been generated, causing build failure. Exported targets include the messages and
services defined by a package.

This additional dependency is specified by adding the following to both make files:

add_dependencies(${PROJECT_NAME} ${catkin_EXPORTED_TARGETS})

31

kr_docs Documentation, Release 0

You may optionally specify the exported targets of only one package, like so:

add_dependencies(${PROJECT_NAME} ${my_library_EXPORTED_TARGETS})

See here for details.

32 Chapter 5. Common Issues

ttp://answers.ros.org/question/52744/how-to-specify-dependencies-with-foo_msgs-catkin-packages/

CHAPTER 6

Indices and tables

• genindex

• search

33

	Suggested Readings
	Software
	Hardware
	Setting up your build environment
	Common Issues
	Indices and tables

