

KUDOS Documentation

KUDOS is a skeleton operating system for exploring operating systems
concepts. It is intended for:

	teaching operating system concepts, and

	to serve as a baseline for open-ended student projects.

	Introduction
	Expected Background Knowledge

	How to Use This Documentation

	Exercises

	References

	Source Code Overview
	kudos

	userland

	Using KUDOS
	Compiling the kernel

	Compiling the userland programs

	Writing to the virtual disk

	Booting the system

	Example: Compile and run halt

	How KUDOS Bootstraps
	Booting KUDOS/x86_64 with GRUB2

	Starting Subsystems

	System Calls
	How System Calls Work

	System Calls in KUDOS

	Exercises

	Kernel Threads
	Kernel Threads API

	Controlling Kernel Threads

	Low-Level Synchronization
	Interrupts

	Spinlocks

	Exercises

	Advanced Synchronization
	Sleep Queue

	Semaphores

	Exercises

	Device Drivers
	Interrupt Handlers

	Device Abstraction Layers

	Device Driver Initialization

	Generic Character Device

	Generic Block Device

	Built-in Drivers
	TTY

	Polling TTY Driver

	Interrupt-driven TTY Driver

	Disk Driver

	Timer Driver

	Metadevice Drivers

	Exercises

	Filesystems
	Filesystem Conventions

	Filesystem Layers

	Virtual Filesystem
	Return Values

	Limits

	Internal Data Structures

	VFS Operations

	File Operations

	Filesystem Operations

	Trivial Filesystem
	TFS Driver Module

	Appendix
	More about the tfstool

Introduction

The KUDOS operating system is heavily based upon the BUENOS operating
system, and this documentation is heavily based upon the accompanying
“BUENOS Roadmap”.

BUENOS was originally developed at Aalto University [https://www.niksula.hut.fi/], Finland. KUDOS is a continuation of the
BUENOS effort at the Department of Computer Science at the University of
Copenhagen (DIKU) [http://www.diku.dk/], Denmark. For more information about
BUENOS visit the project homepage at: http://www.niksula.hut.fi/u/buenos/.

The KUDOS system supports multiple CPUs, provides threading and a wide
variety of synchronization primitives. It also includes skeleton code for
userland program support, partial support for a virtual memory subsystem, a
trivial filesystem, and generic drivers for textual input and output.

Currently, KUDOS can run on top of YAMS, Yet Another MIPS Simulator,
originally developed alongside BUENOS, or on an x86-64 simulator like QEMU;
the latter will be the focus of this manual. All that you
need to know, is that KUDOS is, at least in principle, a cross-platform
operating system.

The main idea of KUDOS is to give you a real, working multiprocessor
operating system kernel which is as small and simple as possible. KUDOS
could be quite easily ported to other architectures; only device drivers and
boot code need to be modified. A virtual machine environment is used because
of easier development, static hardware settings and device driver simplicity,
not because unrealistic assumptions are needed by the kernel.

If you are a student participating in an operating systems project
course, the course staff has probably already set up a development
environment for you. If they have not, you must acquire YAMS (see
below for details) and compile it. You also need a MIPS32 ELF cross
compiler to compile KUDOS for use with YAMS.

Expected Background Knowledge

Since the KUDOS system is written using the C programming language, you
should be able to program in C. For an introduction to the C programming
language, see the classical reference [KR], or the more modern, and perhaps
more accessible, [ModernC].

We also expect that you are taking a course on operating systems or otherwise
know the basics about operating systems. You can still find OS textbooks very
handy when doing the exercises. We recommend that you get a hold of the book
“Operating Systems: Three Easy Pieces”[OSTEP], if you are in a more
classical mood, [Stallings] or [Tanenbaum], or the more system approach found in [BOH].

Since you are going to interact directly with the hardware quite a
lot, you should know something about hardware. A classical introduction on
this can be found in the book [COD5e], while [BOH] again gives a complete perspective of computing systems.

Since kernel programming generally involves a lot of synchronization issues, a
course on concurrent programming is recommended to be taken later on. One good
book in this field is [Andrews]. These issues are also handled in the
operating systems books cited above, but the approach is different.

How to Use This Documentation

This documentation is designed to be used both as read-through introduction and
as a reference guide. To get most out of this document you should probably:

	Read usage and autoref{sec:overview} (system
overview) carefully.

	Skim through the whole document to get a good overview.

	Before designing and implementing your assignments, carefully read all
chapters on the subject matter.

	Use the document as a reference when designing and implementing your
improvements.

Exercises

Each chapter in this document contains a set of exercises. Some of
these are meant as simple thought challenges and some as much more
demanding and larger programming exercises.

The thought exercises are meant for self study and they can be used to
check that the contents of the chapter were understood. The
programming exercises are meant to be possible assignments on
operating system project courses.

The exercises look like this:

	This is a theoretical exercise.

	⌨ This is a programming task.

References

	[KR]	Brian Kernighan and Dennis Ritchie. The C Programming Language, 2nd Edition. Prentice-Hall, 1988.

	[ModernC]	Jens Gustedt. Modern C. Unpublished, 2015. Available for free from http://icube-icps.unistra.fr/index.php/File:ModernC.pdf.

	[OSTEP]	Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Systems: Three Easy Pieces. Arpaci-Dusseau Books, 2015.Available for free from http://pages.cs.wisc.edu/~remzi/OSTEP/.

	[Stallings]	William Stallings. Operating Systems: Internals and Design Principles, 4th edition. Prentice-Hall, 2001.

	[Tanenbaum]	Andrew Tanenbaum. Modern Operating Systems, 2nd edition. Prentice-Hall, 2001.

	[COD5e]	David A. Patterson and John L. Hennessy. Computer Organization and Design, 5th edition. Elsevier, 2014.

	[Andrews]	Gregory R. Andrews., Foundations of multithreaded, parallel and distributed programming. Addison-Wesley Longman, 2000.

	[BOH]	(1, 2) Randal E. Bryant and David R. O’Hallaron, Computer Systems: A Programmer’s Perspective, Pearson, 2016.

Source Code Overview

The KUDOS source code is split into two main subdirectories:

	kudos – operating system proper, and

	userland – containing userland programs.

The KUDOS source code also contains a subdirectory called tools, containing
useful tools for running KUDOS (see Using KUDOS for an overview), and
docs, containing the source code for this documentation. You should not
need to touch either of these subdirectories.

kudos

The kernel source code is split into subsystems stored in subdirectories. A
subsystem typically consists of some C-files and a subsys.mk. To add a new
subsystem, list it in the MODULES variables in kudos/Makefile. To add
new C-files to a subsystem, list them in the FILES variable of the
subsys.mk. A subsystem may also contain architecture-specific
implementations in designated sub-subdirectories, such as mips32 and
x86-64.

Currently, the kernel contains the following subsystems:

kudos/init/

Kernel initialization and entry point. This directory contains the functions
that KUDOS will execute to bootstrap itself. See bootstrapping-kudos for
documentation of this subsystem.

kudos/kernel/

Thread handling, context switching, scheduling and synchronization. Also
various core functions used in the KUDOS kernel reside here (e.g. panic and
kmalloc). Documentation coming soon.

kudos/proc

Userland processes. Starting of new userland processes, loading userland
binaries and handling exceptions and system calls from userland. See
System Calls for documentation about the system call interface.
Documentation about the rest of this subsystem is coming soon.

kudos/vm

Virtual memory subsystem. Managing the available physical memory and page
tables. Documentation coming soon.

kudos/fs

Filesystem abstractions and the Trivial Filesystem (TFS). Documentation coming
soon.

kudos/drivers

Low level device drivers and their interfaces. See Device Drivers and
Built-in Drivers for documentation of this subsystem.

kudos/lib

Miscellaneous library code (kwrite, kprintf, various string-handling
functions, a random number generator, etc.). Documentation coming soon.

kudos/util

Utilities for using KUDOS (e.g. tfstool used for writing the Trivial
Filesystem disk files). See Appendix for more information about
tfstool.

userland

Userland programs. These are not part of the kernel. They can be used to test
the userland implementation of KUDOS by saving them to a Trivial Filesystem
disk file and booting KUDOS with that. See Using KUDOS for information
on how to do that.

Using KUDOS

The KUDOS system requires the following software to run:

	Qemu

	GNU Binutils

	GNU GCC

	GNU Make

Note that the makefile for KUDOS sets x86-64 standard target, but KUDOS also has a mips32 target.

Compiling the kernel

You can compile the operating system by running make in the kudos/
subdirectory of KUDOS. You can also type make -C kudos/ from the root KUDOS
source directory.

After compiling the system, you should have a binary named kudos-x86_64 in
that directory. This is your entire operating system, in one file!

Compiling the userland programs

Userland programs are compiled using the same compiler used for compiling
KUDOS.

To compile userland binaries, go to the userland/ subdirectory of KUDOS and
run make. You can also type make -C kudos/ from the root KUDOS source
directory.

To run these programs in KUDOS, they need to be copied to a virtaul
disk, where KUDOS can find them.

If you wish to add your own userland binary, list the source files in the
SOURCES variable at the beginning of your userland/Makefile.

Writing to the virtual disk

KUDOS has a The Trivial Filesystem (TFS) implementation and a tool tfstool
for managing TFS volumes. To get a summary of the arguments that tfstool
accepts, you can run it without any arguments.

tfstool itself is documented in the Appendix.

By default, the file containing the TFS volume is named store.file.

Booting the system

Before KUDOS can be booted, you have to compile both KUDOS and the userland
programs. When that is done, you have to create a virtual disk and
copy the userland program to the virtual disk.

To boot KUDOS we need to open a terminal window, and change the directory
to the KUDOS directory. When the directory is change, run
./run_qemu.sh.
A window should open and show you a boot menu. By pressing e
you can change the kernel parameters that KUDOS uses. Currently
KUDOS supports the following kernel parameters:

	initprog: the name of the file in the YAMS disk that the kernel starts at
the first thread.

	randomseed: the initial seed for KUDOS’ random number generator.

Example: Compile and run halt

In this subsection, we will go through the compilation and running of the
halt userland program handed out together with KUDOS.

Once you have a version of KUDOS extracted on your system, build the kernel and
the userland programs:

~/kudos$ make -C kudos
~/kudos$ make -C userland

Create a disk image called store.file with 16384 blocks (8 MB):

~/kudos$./kudos/util/tfstool create store.file 16384 disk

Then transfer the userland program halt onto the store.file virtual disk:

~/kudos$./kudos/util/tfstool write store.file userland/halt halt

To start qemu and boot qemu, first make run_qemu.sh executeable:

~/kudos$ chmod 755 run_qemu.sh

make sure to have the latest version of xorriso:

~/kudos$ sudo apt-get update
~/kudos$ sudo apt-get install xorriso

and finally you can run the halt program:

~/kudos$./run_qemu.sh halt

This should open a new qemu window and boot KUDOS.

Run ./kudos/util/tfstool list store.file to list the files currently stored in the KUDOS TFS
disk.

How KUDOS Bootstraps

This section explains the bootup process of KUDOS from the first instruction
ever executed by the CPU(s) to the point when userland processes can be
started. This is not an introduction to running KUDOS in YAMS, for that,
we refer you to Using KUDOS.

Modern CPUs have at least two modes of operation: a kernel mode, which allows
for all assembly instructions, including privileged instructions, to be
executed, and user mode, which does not allow privileged instructions to be
executed.

Assembly code is both architecture-specific, and difficult to write and
maintain. We therefore wish to keep the amount of assembly code in the kernel
source code to the absolute minimum, running C code as soon as possible after
boot.

In order to run C code, an expandable region of memory called a “stack” is
required. When a function is called, depending upon the specific call
conventions, function parameters are pushed onto the stack (or placed in
registers), and space for local variables is allocated. The return address of
the function, i.e. the address of the next instruction to be executed after the
function completes execution is also pushed onto the stack.

The stack pointer is a CPU register that contains the memory address
corresponding to the top of the stack. The program counter / instruction
pointer registers contain the memory address of the next instruction to be
executed by the CPU. This instruction is fetched from memory, and the CPU
performs the corresponding operation on the values contained in the specified
CPU registers. Machine instructions can read and write data from specified
memory addresses into CPU registers.

Booting KUDOS/x86_64 with GRUB2

On boot, the BIOS, which is mapped to a specific location in memory, is run.
The BIOS detects what hardware is present, placing this information in memory,
and runs a bootloader on a specified device, e.g. a hard disk.

GRUB is a generic bootloader, which can be used by operating systems that
support the multiboot specification [https://www.gnu.org/software/grub/manual/multiboot/multiboot.html], such as
KUDOS. When the bootloader starts, the CPU is in 16-bit real mode.

GRUB loads a kernel image, and begins its execution at the entry point, which
was defined when linking, by setting the instruction pointer to this memory
address. It starts this execution in 32-bit protected mode. Protected mode
provides memory protection, i.e. user and kernel modes, such that processes
cannot interfere with one another’s execution. This allows for a multi-tasking
operating system, as the kernel is protected from interference by processes
running in user mode.

There is a clash of terminology here; a CPU in protected mode has the ability
to switch between user and kernel mode, whereas real mode provides no such
protection.

The entry point is kudos/init/x86_64/_boot.S, which sets up long mode (64
bit mode), and a stack for the execution of C code, before jumping to the
architecture-specific init function, located in
kudos/init/x86_64/main.c.

Starting Subsystems

To provide operating system service, various subsystems are required, in order
to coordinate resource usage. These are started in the respective,
architecture-specific init functions in init/$ARCH/main.c.

	stalloc

	Provides permanent, static kernel memory allocation.

	polltty

	Allows input from the keyboard, and text output to the display. This is a
polling device, so getting input/putting output requires repeatedly checking
the status of the keyboard/display in a busy-wait loop.

	interrupt

	Allows devices and user processes to interrupt the CPU when they have an
event that must be handled. This can be used to prevent the CPU from having to
poll. The same subsystem handles exceptions.

	thread_table

	Allows the operating system to have mutiple threads of execution. It is
initialised, by creating a thread table to keep track of the threads. A
thread of execution is (the state of) some running code, e.g. registers such
as the instruction pointer.

	sleep_queue

	A syncronization mechanism, allowing threads to wait on resources currently
in use by other threads.

	semaphore

	Another, high-level, inter-thread syncronization mechanism.

	device

	Stores information about I/O devices, such as the TTY device, in a device
table. In KUDOS, devices implement generic interfaces, minimizing code
duplication.

	vfs

	The Virtual File-System (VFS) is a generic file-system abstraction over more
specific file-systems, such as the KUDOS Trivial File System (TFS).

	sheduler

	Performs the actual switching of threads on and off CPU cores, saving the
context of the thread, such as its registers.

	vm

	Allows the operating system to place pages non-contiguously in memory, by
mapping addresses from physical addresses to virtual addresses. Once this
subsystem has been initialised, the stalloc subsystem is disabled.

Finally, a new thread is created and run on the CPU instead of the current
thread. On kudos-mips32 the other CPUs are now released from the wait-loop.
The new thread executes the architecture-independent function
init_startup_thread (defined in kudos/init/common.c) which sets up the
last two things:

	All filesystems implementing the VFS interface are made available, or
mounted, by vfs_mount_all.

	The program corresponding to the initprog argument given at boot is
loaded into memory, and execution continues at the address of the first
instruction in this program. If no initprog argument was given, the
function init_startup_fallback is called instead.

System Calls

System calls are an interface through which userland programs can call kernel
functions, mainly those that are I/O-related, and thus require kernel mode
privileges. Userland code cannot of course call kernel functions directly,
since this would imply access to kernel memory, which would break the userland
sandbox and userland programs could corrupt the kernel at their whim. This
means that the system call handlers in the kernel should be written very
carefully. A userland program should not be able to affect normal kernel
functionality no matter what arguments it passes to the system call (this is
called bullet proofing the system calls).

How System Calls Work

A system call is made by first placing the arguments for the system call and
the system call function number in predefined registers. In KUDOS, the
standard MIPS32 argument registers a0, a1, a3, and a3 are used
for this purpose. The system call number is placed in a0, and its three
arguments in a1, a2 and a3. If there is a need to pass more
arguments for a system call, this can be easily achieved by making one of the
arguments a memory pointer which points to a structure containing rest of the
arguments. The return value of the system call is placed in a predefined
register by the system call handler. In KUDOS the standard return value
register v0 is used.

After the arguments are in place, the special machine instruction syscall
is executed. The syscall instruction, in one, atomic instruction, does the
following:

	sets the CPU core into kernel mode,

	disables interrupts, and

	causes a system call exception.

When an instruction causes an exception, while the CPU core is in user mode,
control is transfered to the user exception handler (defined in
kudos/proc/$ARCH/exception.c).

The system call exception is then handled as follows (note that not all details
are mentioned here):

	The context is saved as with any exception or interrupt.

	As we notice that the cause of the exception was a system call, interrupts
are enabled and the system call handler is called. Enabling interrupts (and
also clearing the EXL bit) results in the thread running as a normal thread
rather than an exception handler.

	The system call handler gets a pointer to the user context as its argument.
The system call number and arguments are read from the registers saved in
the user context, and an appropriate handler function is called for each
system call number. The return value is then written to the v0 register
saved in the user context.

	The program counter in the saved user context is incremented by one
instruction, since it points to the syscall instruction which generated
this exception.

	Interrupts are disabled (and EXL bit set), and the thread is again running
as an exception handler.

	The context is restored, which also restores the thread to user mode.

The last step above uses a “return from exception” instruction, eret, which
in one, atomic instruction, does the following:

	clears the exception flag,

	enables interrupts,

	sets the CPU core into user mode, and finally,

	jumps to the address in the EPC register on MIPS co-processor 0.

Note: You cannot directly change thread/process (i.e. call scheduler) when
in syscall or other exception handlers, since it will mess up the stack. All
thread changes should be done through (software) interrupts (e.g. calling
thread_switch).

System Calls in KUDOS

KUDOS userland has a wrapper function for the syscall instruction, so there
is no need for the user to write code in assembly. In addition, some syscall
wrappers, with proper handling of syscall argumets are implemented in
userland/lib.c. These wrappers, or rather, library functions, are
described below.

When implementing the system calls, the interface must remain binary
compatible with the unaltered KUDOS. This means that the already existing
system call function numbers must not be changed and that return value and
argument semantics are exactly as described below. When adding system calls not
mentioned below the arguments and return value semantics can of course be
defined as desired.

Halting the Operating System

void syscall_halt(void)

This is the only system call already implemented in KUDOS. It will unmount
all mounted filesystems and then power off the machine (YAMS will terminate).
This system call is the only method for userland processes to cause the
machine to halt.

Process Related

int syscall_spawn(char const *filename, char const **argv)

	Create a new (child) user process which loads the file identified by
filename and executes the code in it.

	argv specifies the arguments passed to the main() function
of the new process, not including the name of the process
itself.

	Returns the process ID of the new process, or a negative number on
error.

void syscall_exit(int retval)

	Terminate the running process with the exit code retval.

	This function halts the process and never returns.

	retval must be positive, as a negative value indicates a system
call error in syscall_join() (see next).

int syscall_join(int pid)

	Wait until the child process identified by pid is finished
(i.e. calls process_exit()).

	Returns the exit code of the child, i.e., the value the child passed
to syscall_exit() (or returned from main()).

	Returns a negative value on error.

File-System Related

	int syscall_read(int filehandle, void *buffer, int length)

	
	Read at most length bytes from the file identified by
filehandle into buffer.

	The read starts at the current file position, and the file
position is advanced by the number of bytes actually read.

	Returns the number of bytes actually read (e.g. 0 if the file
position is at the end of file), or a negative value on error.

	If the filehandle is 0, the read is done from stdin
(the console), which is always considered to be an open file.

	Filehandles 1 and 2 cannot be read from, and attempt to do so will
always return an error code.

	int syscall_write(int filehandle, const void *buffer, int length)

	
	Write length bytes from buffer to the open file
identified by filehandle.

	Writing starts at the current file position, and the file
position is advanced by the number of bytes actually written.

	Returns the number of bytes actually written, or a negative
value on error. (If the return value is less than length but
≥ 0, it means that some error occured but that the file was still
partially written).

	If the filehandle is 1, the write is done to stdout (the
console), which is always considered to be an open file.

	If the filehandle is 2, the write is done to stderr (
typically, also the console), which is always considered to be an open
file.

	Filehandle 0 cannot be written to and attempt to do so will always
return an error code.

	int syscall_open(const char *pathname)

	
	Open the file addressed by pathname for reading and writing.

	Returns the file handle of the opened file (non-negative), or a negative
value on error.

	Never returns values 0, 1 or 2, because they are reserved for stdin,
stdout and stderr.

	int syscall_close(int filehandle)

	
	Close the open file identified by filehandle.

	filehandle is no longer a valid file handle after this call.

	Returns zero on success, other numbers indicate failure (e.g.
filehandle is not open so it can’t be closed).

	int syscall_create(const char *pathname, int size)

	
	Create a file addressed by pathname with an initial size of size.

	The initial size means that at least size bytes, starting from the
beginning of the file, can be written to the file at any point in the
future (as long as it is not deleted), i.e. the file is initially
allocated size bytes of disk space.

	Returns 0 on success, or a negative value on error.

	int syscall_delete(const char *pathname)

	
	Remove the file addressed by pathname from the filesystem it resides
on.

	Returns 0 on success, or a negative value on error.

	Note that it is impossible to implement a clean solution for the delete
interaction with open files at the system call level. You are not
expected to do that at this time (filesystem chapter has a separate
exercise for this particular issue).

	int syscall_seek(int filehandle, int offset)

	
	Set the file position of the open file identified by filehandle to
offset.

	Returns 0 on success, or a negative value on error.

	int syscall_filecount(const char *pathname)

	
	Get the number of files in a directory.

	Returns 0 on success, or a negative value on error.

	int syscall_file(const char *pathname, int nth, char *buffer)

	
	Put the name of the nth file in the directory addressed by
pathname into buffer.

	Returns 0 on success, or a negative value on error.

Exercises

	⌨ Implement a new system call syscall_hello in KUDOS with the system
call number 0xAAA. As a result of issuing the system call, KUDOS should
print “Hello, World!” to the terminal and return to the user.

You will need to define this system call number in kudos/proc/syscall.h,
handle it in kudos/proc/syscall.c, define a wrapper for it in
userland/lib.h, and write the wrapper itself in userland/lib.c. Last,
but not least, write a userland program userland/hello.c (similar to
userland/halt.c) to test it.

You can use either the polling TTY, or the interrupt-driven TTY device
driver.

Kernel Threads

A thread of execution is the execution of a sequence of instructions. The
context of a thread is the contents of the CPU registers at a given point of
execution, including things like the program counter, stack pointer, and
co-processor registers. A thread may be interrupted, or pre-empted, its
context stored in memory, only to be restored, and thread re-entered at a
later point in time. A thread may be pre-empted to let another thread re-enter
and do some other useful work. A scheduler decides which thread gets to go
next.

On a uniprocessor system threads offer the illusion of having multiple,
co-operating CPUs, while offering truly concurrent execution on a
multiprocessor system.

Code for a multithreaded system must be written in a re-entrant fashion,
i.e. such that execution may be interrupted and re-entered at any given point,
except within otherwise demarcated critical regions of the code. Code for a
multiprocessor system must furthermore ensure exclusive access to data
structures shared across multiple threads of execution.

KUDOS is designed to be a multithreaded system. It achieves this goal in two
fundamental ways: It has a pre-emptive, round-robin scheduler, and is
designed to be a symmetric multiprocessing (SMP) system, which means that it
supports multiple CPU cores, running each either own thread, while sharing the
same physical memory.

Threads are a fundamental kernel construct, which allows to implement more
nuanced userland threads of execution, such as userland threads and userland
processes.

Kernel Threads API

The kernel threads API, defined in kudos/kernel/thread.h and implemented in
kudos/kernel/thread.c, provides functions for setting up kernel threads in
the kernel thread table, and for kernel threads to interact with the scheduler.

	void thread_table_init(void)

	Initialisation of thread table and idle thread for threading subsystem.

The following two functions are used by a thread to create a new thread, and
mark it as ready to run:

	TID_t thread_create(void (*func)(uint32_t), uint32_t arg)

	Finds the first free entry in the thread table, and sets up a thread for the
given function. This function does not cause the thread to be run, and the
thread’s resultant state is NONREADY.

	void thread_run(TID_t t)

	Causes the thread’s state in the thread table to be updated to READY,
allowing the scheduler to allocate the thread to a CPU core.

The following function can be used by a kernel thread to manipulate itself:

	void thread_switch(void)

	Perform voluntary context switch. An interrupt is invoked, causing the scheduler to
reschedule. Interrupts must be enabled when this function is called, and the interrupt
state is restored prior to the function returning.

	void thread_yield(void)

	Macro pointing to thread_switch. The name “switch” is used when, for
instance, the thread goes to sleep, whereas the name yielding implies no
actual effect.

	void thread_finish(void)

	Called automatically when the thread’s function terminates or voluntarily by
the thread to “commit suicide”. Tidies up after thread.

	TID t thread_get_current_thread(void)

	Returns the TID of the calling thread.

Controlling Kernel Threads

To keep track of threads, a thread table is used. This is a fixed size array of
elements of type thread_table_t, each entry being a structure describing
one thread. The size of this array, or maximum possible number of threads, is
defined by CONFIG_MAX_THREADS in kudos/kernel/config.h. The thread
table itself is thread_table, defined in kudos/kernel/thread.c. The
index into thread_table_t corresponds to the kernel thread id (TID).

A thread_table_t has (among others) the following fields:

	context_t *context

	Thread context, i.e. all CPU registers, including the program counter (PC)
and the stack pointer (SP), which always refers to the thread’s stack area.

	context_t *user_context

	Pointer to thread’s userland context; NULL for kernel-only threads.

	thread_state_t state

	The current state of the thread. Possible values are: FREE, RUNNING,
READY, SLEEPING, NONREADY and DYING.

	pagetable_t *pagetable

	Pointer to the virtual memory mapping for this thread; NULL if the thread
does not have a page table.

	pid_t pid

	Process identifier for corresponding userland process. Thread creation sets
this to a negative value.

	_kthread_t thread_data

	Padding to 64 bytes for context switch code. If structure is modified, the
architecture-specific paddings in _thread.h must be updated.

A thread may correspond to a userland process, and the thread table then stores
the process’ context, page table, and PID. For cross-architecture
compatibility, architecture-specific padding is defined in the
architecture-specific _thread.h.

As the thread table is shared between all threads, of which several may be
executing concurrently, it must be protected from concurrent updates, using a
kernel lock.

Low-Level Synchronization

KUDOS is designed to support multiple threads of execution. To
avoid threads getting in the way of one another, KUDOS provides a number of
low-level synchronization primitives. These can be used to demarcate a critical
region, and ensure exclusive access to a kernel resource.

The low-level primitives can then be used in more advanced
synchronization techniques.

Interrupts

KUDOS has a pre-emptive, round-robin scheduler. To prevent a thread from being
pre-empted it is sufficient to disable interrupts. On a uniprocessor system,
it is therefore sufficient to demarcate a critical section as follows:

	Include kudos/kernel/interrupt.h at the top of your file.

	Declare a variable of type interrupt_status_t.

	Set this variable to the return value of _interrupt_disable.

	Have your, preferably short-lived, critical section.

	Call _interrupt_set_state with the state stored above, i.e. restore the
interrupt state.

Spinlocks

KUDOS is designed to be a symmetric multiprocessing (SMP) system, which means
that it supports multiple CPU cores, having each their own thread of
execution, while sharing the same physical memory. This can lead to
a whole new class of race conditions, where multiple concurrent threads access
the same memory location at (what appears to be) exactly the same time.

A spinlock is the most basic, low-level synchronization primitive for
multiprocessor systems. A spinlock is acquired by repeatedly checking the
lock’s value until it is available (busy-waiting or “spinning”), and then
setting the value to taken. This requires an atomic test-and-set or
read-modify-write mechanism; the architecture specific details are covered
below.

In KUDOS, a spinlock is implemented as a signed integer, having the following
meanings:

	Value
	Meaning

	0
	Free

	Positive
	Taken

	Negative
	Reserved for future use

To achieve low-level interprocessor synchronization, interrupts must be
disabled and a spinlock must be acquired. This method must be used in
interrupt handlers, otherwise other code may run before the interrupt is
fully handled.

Attempting to acquire a spinlock with interrupts disabled completely ties up
the processor (the processor enters a busy-wait loop). To ensure fair service,
other processors should release their spinlocks, and do so as quickly as
possible. Code regions protected by spinlocks should be kept as short as
possible.

Spinlocks should not be moved around in memory, i.e. they cannot be memory
managed by the virtual memory subsystem, and so must be statically allocated in
kernel memory. This should not be a problem, as spinlocks are purely a
kernel-level synchronization primitive.

x86_64 Exchange and test

The x86_64 architecture provides a instruction called xchg
(exchange), which exchanges two values, either from a register
to a register or from a register to a memory location. The instruction
is always atomic, which means no other process/processor can do
the same with the same memory location, at the same time.

This mechanism can be used to implement a spinlock.
The first thing to do is to load the value 1 into a register, say rax. We
can now use the instruction xchg to exchange the value
of the spinlock with the value of the register rax.
Remember the spinlock is free if it equals 0 and busy if it
equals to 1. Either way the spinlock know have the value 1, since
it just exchanged its value with a register that was 1.
If the new value of the register rax equals 0, it means that
the spinlock was free before and the spinlock is now acquired.
If on the other it equals 1, then it means that it was busy, and
we have to jump back and try again.

For an implementation of a spinlock for the x86_64 architecture, see
kudos/kernel/x86_64/spinlock.S

Spinlock API

The low-level assembly routines implement the architecture-independent
interface specified in kudos/kernel/spinlock.h. Recall that interrupts
must always be disabled when a spinlock is held, otherwise Bad Things™ will
happen.

	void spinlock_reset(spinlock_t *slock)

	Initializes the specified spinlock to be free. Should be done before any
processor attempts to acquire the spinlock. This is really an alias to
spinlock_release.

	void spinlock_acquire(spinlock_t *slock)

	Acquire specified spinlock; while waiting for lock to be free, spin.

	x86_64

	
	Set rax to 1.

	xchg the register rax and slock.

	Test if the value of rax is 0.

	If step 3 is False, go to step 2.

	void spinlock_release(spinlock_t *slock)

	Free the specified spinlock. This does not check whether the spinlock is
actually held by the processor. In general, there is no way to check this,
and so requires a strict programming practice: Spinlocks should only be
“released” if acquired.

	x86_64

	
	Write 0 to slock.

Exercises

	Do we need spinlocks on a uniprocessor system?

	Why must interrupts be disabled when acquiring and holding a spinlock?
Consider the requirement that spinlocks should be held only for a very
short time. Is the problem purely efficiency or will something actually
break if a spinlock is held with interrupts enabled?

Advanced Synchronization

The low-level synchronization primitives,
such as disabling interrupts and spinlocks, can be used to implement more
advanced synchronization techniques. Kernel-level KUDOS supports sleep
queues and semaphores.

Sleep Queue

As a spinlock busy-waits until the resource is free, it wastes clock-cycles.
Another synchronization method, a sleep queue, allows a thread to register
itself as waiting on a specific resource held by another thread, and then
voluntarily give up the CPU to other threads until the resource is available.
The resource is identified by an address in kernel memory, so that the same
address is used by both the thread holding the resource, and the thread waiting
on the resource. When the resource is released by the thread holding it, the
state of the thread waiting on it is updated, so that it will be eligible to
run again.

API

The sleep queue API is defined in kudos/kernel/sleepq.h, but should not
be used frivolously. See the following section for notes on how to
correctly use the sleep queue API.

void sleepq_init(void)

Initializes the internal sleep queue data structured. Must be called on boot.

void sleepq_add(void *resource)

Adds the currently running thread to the sleep queue, sleeping on the given
resource. To maximize multithreading, threads should sleep on exactly the
resource that they need (e.g. array element instead of en entire array).

The thread does not go to sleep when calling this function; its state is
simply set to SLEEPING. An explicit call to thread_switch is needed.
See the following section for details.

void sleepq_wake(void *resource)

Wakes the first thread waiting for the given resource from the queue. If no
threads are waiting for the given resource, do nothing.

void sleepq_wake_all(void *resource)

As sleepq_wake, but wakes up all threads which are waiting on the given
resource.

Using the Sleep Queue Correctly

There is much more to using the sleep queue than just using the sleep queue API
(defined in kudos/kernel/sleepq.h). To wait on a resource, you will need a
dedicated resource spinlock. For details about why all of the below steps are
necessary, see the sleep queue implementation notes below.

Sleeping on a Resource

Disable interrupts
Acquire the resource spinlock
While we want to sleep :
 sleepq_add (resource) // Thread state set to SLEEPING
 Release the resource spinlock // Spinlock cannot be held when not on CPU
 thread_switch () // Voluntarily yield CPU to other threads
 Acquire the resource spinlock // Thread state must now be RUNNING
End While
Use the resource
Release the resource spinlock
Restore the interrupt mask

Disabling interrupts and acquiring the resource spinlock ensures that the
thread will be in the sleep queue before another thread attempts to wake it. If
another thread was run, which called sleepq_wake before the sleepq_add
call was complete, then the resource may be free, but the first thread would
still be waiting on it!

Awaking Threads Sleeping on a Resource

Disable interrupts
Acquire the resource spinlock
Use the resource
If wishing to wake up something
 sleepq_wake (resource) or sleepq_wake_all (resource)
End If
Release the resource spinlock
Restore the interrupt mask

Implementation

In KUDOS, the sleep queue is implemented as a statically-sized hashtable,
sleepq_hashtable. This hashtable is intimately connected with the
sleeps_on and next fields of the thread_table_t, which form part of
the hashtable data structure. The hashtable itself is protected from concurrent
access by multiple threads with a spinlock sleepq_slock. The implementation
will acquire and release the thread_table_slock as it becomes necessary.

Interrupts must be disabled, and the sleepq_slock must be held, before any
sleep queue operations are carried out. The user however, should merely disable
interrupts, or better yet, follow the recipes given above.

Each entry in the hashtable corresponds to the hashed value of resource
addresses; the same entry may correspond to multiple resources that hash to the
same key. A value is a TID_t, corresponding to the thread_table_t of
the first thread waiting on a resource with this key. The sleeps_on field
of the thread_table_t is used to store the (non-hashed) address of the
actual resource that the thread is waiting for – it is 0 if the thread is not
waiting on any resource. This next field of the thread_table_t,
contains the TID_t of the next thread waiting on a resource with this hash,
if any. New threads are added to the end of this linked list, and threads are
awoken from the beginning of the chain, to avoid potentially having to run
through the whole list. Note that that as multiple resources will have the same
hash, the first thread in the chain isn’t necessarily the one awoken.

[image: _images/sleepq.svg]An illustration of the sleep queue hashtable.

void sleepq_init(void)

Sets all hashtable values to -1 (free).

void sleepq_add(void *resource)

Adds the currently running thread into the sleep queue. The thread is added to
the sleep queue hashtable. The thread does not go to sleep when calling this
function; its state is simply set to SLEEPING. An explicit call to
thread_switch is needed. The thread will sleep on the given resource
address.

Implementation:

	Assert that interrupts are disabled. Interrupts need to be disabled
because the thread holds a spinlock and because otherwise the thread
can be put to sleep by the scheduler before it is actually ready to
do so.

	Set the current thread’s sleeps on field to the resource.

	Lock the sleep queue structure.

	Add the thread to the queue’s end by hashing the address of given
resource.

	Unlock the sleep queue structure.

void sleepq_wake(void *resource)

Wakes the first thread waiting for the given resource from the queue. If
no threads are waiting for the given resource, do nothing.

Implementation:

	Disable interrupts.

	Lock the sleep queue structure.

	Find the first thread waiting for the given resource by hashing the
resource address and walking through the chain.

	Remove the found thread from the sleep queue hashtable.

	Lock the thread table.

	Set sleeps on to zero on the found thread.

	If the thread is sleeping, add it to the scheduler’s ready list by calling
scheduler add to ready list.

	Unlock the thread table.

	Unlock the sleep queue structure.

	Restore the interrupt mask.

void sleepq_wake_all(void *resource)

As sleepq_wake, but wakes up all threads which are waiting on the given
resource.

Semaphores

Interrupt disabling, spinlocks and sleep queue provide the low level
synchronization mechanisms in KUDOS. However, these methods have their
limitations; they are cumbersome to use and thus error prone and they also
require uninterrupted operations when doing processing on a locked resource.
Semaphores are higher level synchronization mechanisms which solve these
issues, and additionally can allow multiple units of a resource to be available
to be accounted for. A semaphore can be thought of as a variable with an
integer value. The resource protected by a binary semaphore can either be
available (1), or locked (0, or a negative value indicating number of waiters).
The counting semaphores implemented in KUDOS can have any value, with positive
values indicating the number of units of a resource currently available. Three
different operations are defined on a conceptual semaphore:

Initialization A semaphore may be initialized to any non-negative value
indicating the number of concurrent accesses that may occur/units of resource
available.

The P-operation (semaphore P()) decrements the value of the semaphore. If
the value becomes negative, the calling thread will block by being added to the
sleep queue waiting on this semaphore, until awakened by some other thread’s
V-operation.

The V-operation (semaphore V()) increments the value of the semaphore. If
the resulting value is not positive, one thread blocking in P-operation will be
unblocked.

API

The KUDOS semaphores API is defined in kudos/kernel/semaphore.h.

semaphore_t *semaphore_create(int value)

Creates a new semaphore, by finding the first unused semaphore in semaphore
table, and initializes its value to the specified value.

Implementation:

	Assert that the given value is non-negative.

	Disable interrupts.

	Acquire spinlock semaphore table slock.

	Find free semaphore in the semaphore table and set its creator to the current thread.

	Release the spinlock.

	Restore the interrupt status.

	Return NULL if no semaphores were available (in step 5).

	Set the initial value of the semaphore to value.

	Reset the semaphore spinlock.

	Return the allocated semaphore.

void semaphore_destroy(semaphore_t *sem)

Destroys the given semaphore sem, freeing its entry in the semaphore_table.

void semaphore V(semaphore_t *sem)

Increments the value of sem by one. If the value was originally negative
(there are waiters), wakes up one waiter.

Implementation:

	Disable interrupts.

	Acquire sem‘s spinlock.

	Increment the value of sem by one.

	If the value was originally negative, wake up one thread from sleep queue
which is sleeping on this semaphore.

	Release the spinlock.

	Restore the interrupt status.

void semaphore P(semaphore t *sem)

Decreases the value of sem by one. If the value becomes negative, block
(sleep). Conceptually the value of the semaphore is never below zero, since
this call returns only after the value is non-negative.

Implementation:

	Disable interrupts.

	Acquire sem‘s spinlock.

	Decrement the value of sem by one.

	If the value becomes negative, start add current thread to sleep queue,
waiting on this semaphore, and simultaneously release the spinlock.

	Else, release the spinlock.

	Restore the interrupt status.

Implementation

KUDOS semaphores are implemented in kudos/kernel/semaphore.h.

Semaphores are implemented as a static array of semaphore structures with the name semaphore
table. When semaphores are ”created”, they are actually allocated from this table. A spin-
lock semaphore table slock is used to prevent concurrent access to the semaphore table. A
semaphore is defined by semaphore_t, which is a structure with three fields:

spinlock_t slock

Spinlock which must be held when accessing the semaphore data.

int value

The current value of the semaphore. If the value is negative,
it indicates that thread(s) are waiting for the semaphore to
be incremented. Conceptually the value of a semaphore is
never below zero since calls from semaphore P() do not
return while the value is negative.

TID_t

The thread ID of the thread that created this semaphore.
Negative value indicates that the semaphore is unallocated
(not yet created). The creator information is useful for
debugging purposes.

Exercises

	Suppose you need to implement periodic wake-ups for threads. For example,
threads can go to sleep and then they are waked up every time a timer interrupt
occurs. In this case a resource spinlock is not needed to use the sleep queue.
Why can the functions sleepq_add, sleepq_wake and sleepq_wake_all
be called without holding a resource spinlock in this case?

	Some synchronization mechanisms may be used in both threads and interrupt
handlers, some cannot. Which of the following functions can be called from a
interrupt handler (why or why not?):

	interrupt disable()

	interrupt enable()

	spinlock acquire()

	spinlock release()

	sleepq add()

	sleepq wake()

	sleepq wake all()

	semaphore V()

	semaphore P()

Device Drivers

Since KUDOS is a realistic operating system, it can use hardware devices to
interact with the outside world. Hardware devices include things like consoles,
disks and network interface adapters.

Device drivers provide an interface between the hardware devices and the
operating system. Device drivers use two hardware-provided mechanisms
intensively: they depend on hardware generated interrupts and command the
hardware with memory mapped I/O.

Most hardware devices generate interrupts when they have completed the previous
action or when some asynchronous event, such as user input, occurs. Device
drivers implement handlers for these interrupts and react to events.

Memory mapped I/O is an interface to the hardware components. The underlying
machine provides certain memory addresses which are actually ports in hardware.
This makes it possible to send and receive data to and from hardware
components. Certain components also support block data transfers with direct
memory access (DMA). In DMA the data is copied between main memory and the
device without going through the CPU. Completion of DMA transfer usually causes
an interrupt.

Interrupt driven device drivers can be thought to have two halves, top and
bottom. The top half is implemented as a set of functions which can be called
from threads to get service from the device. The bottom half is the interrupt
handler which is run asynchronously whenever an interrupt is generated by the
device. It should be noted that the bottom half might be called also when the
interrupt was actually generated by some other device which shares the same
interrupt request channel (IRQ).

Top and bottom halves of a device driver typically share some data structures
and require synchronized access to that data. The threads calling the service
functions on the top half might also need to sleep and wait for the device.
Resource waiting (also called blocking or sleeping) is implemented by using the
sleep queue or semaphores. The syncronization on the data structures however
needs to be done on a lower level since interrupt handlers cannot sleep and
wait for access to the data. Thus the data structures need to be synchronized
by disabling interrupts and acquiring a spinlock which protects the data. In
interrupt handlers interrupts are already disabled and only spinlock acquiring
is needed.

Interrupt Handlers

All device drivers include an interrupt handler. When an interrupt occurs the
system needs to know which interrupt handlers need to be called. This mechanism
is implemented with an interrupt handler registration scheme. When the device
drivers are initialized, they will register their interrupt handler to be
called whenever specified interrupts occur. When an interrupt occurs, the
interrupt handling mechanism will then call all interrupt handlers which are
registered with the occured interrupt. This means that the interrupt handler
might be called although the device has not generated an interrupt.

The registered interrupt handlers are kept in the table interrupt handlers
which holds elements of type interrupt entry t. The fields of this structure
are described in the following table:

	Type
	Name
	Explanation

	device_t
	device
	The device for which this
interrupt is registered.

	uint32_t
	irq
	The interrupt mask. Bits 8
through 15 indicate the
interrupts that this handler
is registered for. The
interrupt handler is called
whenever at least one of
these interrupts has occured.

	void (*) (device_t *)
	handler
	The interrupt handler
function called when an
interrupt occurs. The
argument given to this
function is device.

Fields in structure interrupt entry_t.

void interrupt_register (uint32_t irq, void (*handler)(device_t *), device_t device)

	Registers an interrupt handler for the device. irq is an interrupt
mask, which indicates the interrupts this device has registered. Bits 8
through 15 indicate the registered interrupts. handler is the interrupt
handler called when at least one of the specified interrupts has occured.
This function can only be called during bootup.

	Implementation:
	Find the first unused entry in interrupt_handlers.

	Insert the given parameters to the found table entry.

void interrupt_handle (uint32_t cause)

	Called when an interrupt has occured. The argument cause contains the
Cause register. Goes through the registered interrupt handlers and calls
those interrupt handlers that have registered the occured interrupt.

	Implementation:
	Clear software interrupts.

	Call the appropriate interrupt handlers.

	Call the scheduler if appropriate.

Device Abstraction Layers

The device driver interface in KUDOS contains several abstraction layers. All
device drivers must implement standard interface functions (initialization
function and possibly interrupt handler) and most will also additionally
implement functions for some generic device type. Three generic device types
are provided in KUDOS: generic character device (gcd), generic block
device (gbd) and generic network device (gnd). These can be thought as
“superclasses” from which the actual device drivers are inherited.

Generic character device is a device which provides uni- or bidirectional
bytestream. The only such device preimplemented in KUDOS is the console.
Generic block device is a device which provides random read/write access to
fixed sized blocks. The only such device implemented is the disk driver. These
interfaces could also be used to implement stream based network protocol or
network block device, for example. The interface for generic network device is
also given.

All device drivers must have an initialization function. A pointer to this
function must be placed in the drivers_available array in
drivers/$ARCH/drivers.c, together with a designated name and a device
typecode identifier. Device typecodes which are defined in
drivers/device.h. The system will initialize the device drivers on bootup
for each device in the system by calling these initialization functions. This
initialization is done by device_init(), found in
drivers/$ARCH/device.c.

Device Driver Initialization

Every device driver’s initialization function must return a pointer to the
device descriptor (device_t) for this device, described in
kudos/drivers/device.h.

Device driver initialization code is called from init() on bootup. The
function called is:

void device_init(void)

Finds all devices connected to the system and attempts to initialize
device drivers for them.

Implementation:

	Loop through the device descriptor area of YAMS.

	For each found device, try to find the driver by scanning through the list
of available drivers (drivers_available in
kudos/drivers/$ARCH/drivers.c).

	If a matching driver is found, call its initialization function
and print the match to the console. Store the initialized driver
instance to the device driver table device_table.

	Otherwise print a warning about an unrecognized device.

After device drivers are initialized, we must have some mechanism to get a
handle of a specific device. This can be done with the device_get function:

device_t *device_get(uint32_t typecode, uint32_t n)

Finds initialized device driver based on the type of the device and sequence
number. Returns nth initialized driver for device with type typecode. The
sequencing begins from zero. If device driver matching the specifield type and
sequence number if not found, the function returns NULL.

Generic Character Device

The generic character device (GCD) is an abstraction for any character-buffered
(stream based) I/O device (e.g. a terminal). A GCD specifies read and write
functions for the device, which have the same syntax for every GCD. Thus, when
using GCD for all character device implementations, the code which reads or
writes them does not have to care whether the device is a TTY or some other
character device.

The generic character device is implemented as a structure with the fields
described in the gcd_t structure in kudos/drivers/gcd.h.

Generic Block Device

The generic block device (GBD) is an abstraction of a block-oriented device
(e.g. a disk). GBD consists of a function interface and a request data
structure that abstracts the blocks to be handled. All functions are
implemented by the actual device driver.

The function interface is provided by the gbd_t data structure in
kudos/drivers/gbd.h. To use this interface, it is necessary to describe
requests in detail; for this, the gbd_request_t data structure is used.
This structure includes all necessary information related to the reading or
writing of a block.

The GBD interface supports both synchronous and asynchronous calls (see the
gbd.h file for the practical details).

In case of asynchronous calls, the gbd interface functions will return
immediately. This means that the user must wait on an associated kernel
semaphore before continuing. Memory reserved for the request may not be
released until the semaphore is released. The thread using a GBD device must be
very careful especially with reserving memory from function stacks (ie. static
allocation). If the function is exited before the request is served, the memory
area of the request may corrupt.

In case of synchronous calls, the gbd interface functions will block until
the request is handled. The memory of the request data structure may be
released when control is returned.

Built-in Drivers

KUDOS ships with several built-in working drivers. The drivers for the MIPS
target are all designed to work with YAMS hardware. The purpose of this section
is to show how one can create actual drivers for for the KUDOS device driver
interface.

TTY

TTY roughly stands for “teletype”, and in this context refers to a class of
drivers that provide a low-level interface for terminal-style user interaction.
KUDOS comes with both a polling, and
interrupt-driven TTY driver built-in. The former
works by repeatedly polling the keyboard device, which can waste precious
clock-cycles, while the latter relies on an interrupt handler to wake up the
kernel thread when input from the keyboard actually becomes available.

Historically, TTY drivers also implement a line discipline, and the KUDOS TTY
drivers are no exception.

Polling TTY Driver

Two separate drivers are provided for the TTY (the terminal). The first one is
implemented by polling and the other with interrupt handlers.

Polling means that the kernel again and again asks the (virtual, in this case)
hardware if anything new has come up. Depending on interrupt handlers means
that the hardware signals the kernel when a change has occurred.

The polling driver is needed when booting up, since interrupts are disabled. It
is also useful in kernel panic situations, because interrupt handlers might not
be relied on in such error cases.

Perhaps the easiest way to use the polling TTY driver is using the built-in
functions kwrite and kprintf (defined in kudos/lib/libc.h). See
kudos/drivers/polltty.h and kudos/drivers/$ARCH/polltty.c for the
implementation and documentation of the driver itself.

Interrupt-driven TTY Driver

The interrupt driven (i.e. the asynchronous) TTY driver is the terminal device
driver used most of the kernel terminal I/O-routines. The terminal driver has
two functions to provide output to the terminal and input to the kernel. Both
of these happen asynchronously. i.e. the input handling is triggered when the
user presses a key on the keyboard. The output handler is invoked when some
part of the kernel requests a write. The asynchronous TTY driver is implemented
in drivers/$ARCH/tty.c and implements the generic character device
interface.

The following functions implement the TTY driver:

device_t *tty_init(io_descriptor_t *desc)

Initialize a driver for the TTY defined by desc. This function is called
once for each TTY driver present in the YAMS virtual machine.

Implementation:

	Allocate memory for one device_t.

	Allocate memory for one gcd_t and set generic_device to point to
it.

	Set gcd->device to point to the allocated device_t, gcd->write
to tty_write and gcd->read to tty_read.

	Register the interrupt handler (tty_interrupt_handle).

	Allocate a structure that has (small) read and write buffers and head and
count variables for them, and a spinlock to synchronize access to the
structure and real_device to point to it. The first tty driver’s
spinlock is shared with kprintf() (i.e. the first tty device is shared
with polling TTY driver).

	Return a pointer to the allocated device_t.

void tty_interrupt_handle(device_t *device)

Handle interrupts concerning device. This function is never called
directly from kernel code, instead it is invoked from interrupt handler.

Implementation if WIRQ (write interrupt request) is set:

	Acquire the driver spinlock.

	Issue the WIRQD into COMMAND (inhibits write interrupts).

	Issue the Reset WIRQ into COMMAND.

	While WBUSY is not set and there is data in the write buffer, Reset WIRQ
and write a byte from the write buffer to DATA.

	Issue the WIRQE into COMMAND (enables write interrupts).

	If the buffer is empty, wake up the threads sleeping on the write buffer.

	Release the driver spinlock.

Implementation if RIRQ (read interrupt request) is set:

	Acquire the driver spinlock.

	Issue the Reset RIRQ command to COMMAND. If this caused an error, panic
(serious hardware failure).

	Read from DATA to the read buffer while RAVAIL is set. Read all available
data, even if the read buffer becomes filled (because the driver expects us
to do this).

	Release the driver spinlock.

	Wake up all threads sleeping on the read buffer.

static int tty_write(gcd_t *gcd, void *buf, int len)

Write len bytes from buf to the TTY specified by gcd.

Implementation:

	Disable interrupts and acquire driver spinlock.

	As long as write buffer is not empty, sleep on it (release-reacquire for
the spinlock).

	Fill the write buffer from buf.

	If WBUSY is not set, write one byte to the DATA port. (This is needed
so that the write IRQ is raised. The interrupt handler will write the rest
of the buffer.)

	If there is more than one byte of data to be written, release the spinlock
and sleep on the write buffer.

	If there is more data in buf, repeat from step 3.

	Release spinlock and restore interrupt state.

	Return the number of bytes written.

static int tty_read(gcd_t *gcd, void *buf, int len)

Read at least one and at most len bytes into buf from the TTY specified
by gcd.

Implementation:

	Disable interrupts and acquire driver spinlock.

	While there is no data in the read buffer, sleep on it (release-reacquire
for the spinlock).

	Read MIN(len, data-in-readbuf) bytes into buf from the read buffer.

	Release spinlock and restore interrupt state.

	Return the number of bytes read.

Disk Driver

The disk driver implements the Generic Block Device (GBD) interface. The driver
is interrupt-driven and provides both synchronous (blocking) and asynchronous
(non-blocking) operating modes for request. The driver has three main parts:

	An initialization function, which is called in startup when a disk is found.

	An interrupt handler.

	Functions which implement the GBD interface (read, write and information
inquiring).

The disk driver maintains a queue of pending requests. The queue insertion is
handled in disk scheduler, which currently just inserts new requests at the end
of the queue. This queue, as well as access to the disk device, is protected by
a spinlock. The spinlock and queue are stored in driver’s internal data. The
internal data also contains a pointer to the currently served disk request.

The disk driver is implemented and documented in kudos/drivers/$ARCH/disk.c.
Note how the fields modified by both the inquiring and interrupt-ready parts of
the driver are marked as volatile, so that the compiler won’t optimize
access to them (store them in registers and assume that value is valid later,
which would be a flawed approach because of interrupts, which can change the
values of the variables asynchronously).

Timer Driver

The Timer driver allows to set timer interrupts at certain intervals. The
timer_set_ticks() C function works as a front-end for the
_timer_set_ticks assembler function. The C function takes anumber of
processor clock cycles after the timer interrupt is wanted to happen, and it
passes it to the assembler function that does all work.

A timer interrupt is caused by using CP0 registers Count and
Compare. The Count register contains the current cycle count, and the
Compare register contains the cycle number where the timer interrupt is to
happen. The assembler function simply adds the number of cycles to the current
cycle count and writes it to the Compare register.

The timer driver is implemented and documented in kudos/drivers/timer.c and
kudos/drivers/$ARCH/_timer.S.

Metadevice Drivers

“Metadevices” is a name for those devices documented in the YAMS documentation
as non-peripheral devices (the 0x100 series). They don’t really interface
to any specific device but rather to the system itself (the motherboard main
chipset, firmware or similar). The metadevices and their drivers are very
simple, and they are as follows.

See kudos/drivers/metadev.h and kudos/drivers/$ARCH/metadev.c for the
implementation and description of the following metadevices.

Meminfo

The system memory information device provides information about the amount of
memory present in the system.

RTC

The Real Time Clock (RTC) device provides simulated real time data, such as
system uptime and clock speed. It is a wrapper to the RTC device I/O ports.

Shutdown

The (software) shutdown device is used to either halt the system by dropping to
the YAMS console (firmware console) or “poweroff” the system by exiting YAMS
completely.

CPU Status

Each processor has its own status device. These devices can be used to count
the number of CPUs on the system or to generate interrupts on any CPU.

Exercises

	Both kwrite and kprintf use the polling TTY driver. Why?

Filesystems

A “filesystem” is an organization of “files” into a system, often backed by
some sort of long-term storage device. Before the kernel or userland can
perform file operations, the filesystem has to be properly “mounted”. Modern
operating systems support the mounting of multiple filesystems, and provide a
virtual filesystem layer.

KUDOS is no exception.

KUDOS supports one filesystem, called the Trivial Filesystem.
Filesystems are managed and accessed through a layer called the
Virtual Filesystem layer which represents a union of all mounted
filesystems.

The Trivial Filesystem supports only the most primitive filesystem operations
and does not enable concurrent access to the filesystem. Only one request
(read, write, create, open, close, etc.) is allowed to be in action at any
given time. TFS enforces this restriction internally.

Filesystem Conventions

Files on filesystems are addressed by filenames. In KUDOS, filenames can have
at most 15 alphanumeric characters. The full path to a file is called an
absolute pathname and it must contain the volume (mount-point or filesystem) on
which the file is, possibly a directory path, and finally, the name of the
file within that directory.

An example of a valid filename is shell. A full absolute path to a shell might
be [disk]shell or [disk]bin/shell. Here shell is the name of a
file, disk is a volume name (you could also call it a disk, filesystem or
mount-point). If directories are used, bin is a name of a directory.
Directories have the same restrictions on filenames as files do (directory are
really just files). Directory names in a path are separated by /.

Filesystem Layers

Typically a filesystem is located on a disk (but it can also be a network
filesystem or even totally virtual). Disks are accessed through Generic lock
Devices (see Device Drivers). At boot time, the system will try to mount
all available filesystem drivers on all available disks through their GBDs. The
mounting is done into a virtual filesystem.

Virtual Filesystem is a super-filesystem which contains all attached (mounted)
filesystems. The same access functions are used to access disk, networked and
fully virtual filesystems. An example of a “fully virtual filesystem” is the
proc filesystem on Linux, which makes a range of process-related
information available from under the /proc directory. The actual filesystem
driver is recognized from the volume name part of a full absolute pathname
provided to the access functions.

	Files
	Purpose

	vfs.[hc]
	Virtual Filesystem implementation

	filesystems.[hc]
	Available filesystems

	tfs.[hc]
	Trivial Filesystem implementation

Virtual Filesystem

Virtual Filesystem (VFS) is a subsystem which unifies all available filesystems
into one big virtual filesystem. All filesystem operations are done through it.
Different mounted filesystems are referenced with names, which are called
mount-points or volumes.

VFS provides a set of file access functions (see File Operations) and a
set of filesystem access functions (see Filesystem Operations). The file
access functions can be used to open files on any filesystem, close open files,
read and write open files, create new files and delete existing files.

The filesystem manipulation functions are used to mount filesystems into VFS,
unmount filesystems, and get information about mounted filesystems (e.g. the
amount of free space on a volume). A mechanism for forceful unmounting of all
filesystems is also provided. This mechanism is needed when the system performs
shutdown, to prevent filesystem corruption.

To be able to provide these services, VFS keeps track of mounted filesystems
and open files. VFS is thread-safe and synchronizes all its own operations and
data structures. However TFS, which is accessed through VFS, does not provide
proper concurrent access, it simply allows only one operation at a time.

Return Values

All VFS operations return non-negative values as an indication of successful
operation and negative values as failures. The return value VFS_OK is
defined to be zero, and indicates success. The rest of the pre-defined return
values are negative. The full list of is as follows:

	VFS_OK

	The operation succeeded.

	VFS_NOT_SUPPORTED

	The requested operation is not supported and thus failed.

	VFS_INVALID_PARAMS

	The parameters given to the called function were invalid and the operation
failed.

	VFS_NOT_OPEN

	The operation was attempted on a file which was not open and thus failed.

	VFS_NOT_FOUND

	The requested file or directory does not exist.

	VFS_NO_SUCH_FS

	The referenced filesystem or mount-point does not exist.

	VFS_LIMIT

	The operation failed because some internal limit was hit. Typically this
limit is the maximum number of open files or the maximum number of mounted
filesystems.

	VFS_IN_USE

	The operation couldn’t be performed because the resource was busy.
(Filesystem unmounting was attempted when filesystem has open files, for
example.)

	VFS_ERROR

	Generic error, might be hardware related.

	VFS_UNUSABLE

	The VFS is not in use, probably because a forceful unmount has been requested
by the system shutdown code.

Limits

VFS limits the length of strings in filesystem operations. Filesystem
implementations and VFS file and filesystem access users must make sure to use
these limits when interacting with VFS.

The maximum length of a filename is defined to be 15 characters plus one
character for the end of string marker, i.e. VFS_NAME_LENGTH is set to 16.

The maximum path length, including the volume name (mount-point), possible
absolute directory path and filename is defined to be 255 plus one character
for the end of string marker, i.e. VFS_PATH_LENGTH is set to 256.

Internal Data Structures

VFS has two primary data structures: the table of all mounted filesystems and
the table of open files.

The table of all filesystems, vfs_table, is structured as follows:

	Type
	Name
	Description

	sempahore_t *
	sem
	A binary semaphore used for
exclusive access to the
filesystems table.

	vfs_entry_t[CONFIG_MAX_FILESYSTEMS]
	filesystems
	The filesystems table itself.

A vfs_entry_t itself has the following fields:

	Type
	Name
	Description

	fs_t *
	filesystem
	The filesystem driver for this
mount-point. If NULL, this
entry is unused.

	char[VFS_NAME_LENGTH]
	mountpoint
	The name of this mount-point.

The table is initialized to contain only NULL filesystems. All access to
this table must be protected by acquiring the semaphore used to lock the table
(vfs_table.sem). New filesystems can be added to this table whenever there
are free rows, but only filesystems with no open files can be removed from the
table.

The table of open files (openfile_table) is structured as follows:

	Type
	Name
	Description

	semaphore_t *
	sem
	A binary semaphore
used for exclusive
access to this
table.

	openfile_entry_t[CONFIG_MAX_OPEN_FILES]
	files
	Table of open files.

The open files table is also protected by a semaphore (openfile_table.sem).
Whenever the table is altered, this semaphore must be held.

An openfile_entry_t itself has the following fields:

	Type
	Name
	Description

	fs_t *
	filesystem
	The filesystem in which this
open file is located. If NULL,
this is a free entry.

	int
	fileid
	A filesystem defined id for
this open file. Every file in a
filesystem must have a
unique id. Ids do not need
to be globally unique.

	int
	seek_position
	The current seek position in
the file.

If access to both tables is needed, the semaphore for vfs_table must be
held before the openfile_table semaphore can be lowered. This convention is
used to prevent deadlocks.

In addition to these, VFS uses two semaphores and two integer variables to
track active filesystem operations. The first semaphore is vfs_op_sem,
which is used as a lock to synchronize access to the three other variables. The
second semaphore, vfs_unmount_sem, is used to signal pending unmount
operations when the VFS becomes idle.

The initial value of vfs_op_sem is one and vfs_unmount_sem is initially
zero. The integer vfs_ops is a zero initialized counter which indicates the
number of active filesystem operations on any given moment. Finally, the
boolean vfs_usable indicates whether VFS subsystem is in use. VFS is out of
use before it has been initialized and it is turned out of use when a forceful
unmount is started by the shutdown process.

VFS Operations

The virtual filesystem is initialized at the system bootup by calling the
following function:

	void vfs_init(void)

	
	Initializes the virtual filesystem. This function is called before virtual
memory is initialized.

	Implementation:
	Create the semaphore vfs_table.sem (initial value 1) and the semaphore
openfile_table.sem (initial value 1).

	Set all entries in both vfs_table and openfile_table to free.

	Create the semaphore vfs_op_sem (initial value 1) and the semaphore
vfs_unmount_sem (initial value 0).

	Set the number of active operations (vfs_ops) to zero.

	Set the VFS usable flag (vfs_usable).

When the system is being shut down, the following function is called to unmount
all filesystems:

	void vfs_deinit(void)

	
	Force unmounts on all filesystems. This function must be used only at
system shutdown.

	Sets VFS into unusable state and waits until all active filesystem
operations have been completed. After that, unmounts all filesystems.

	Implementation:
	Call semaphore_P on vfs_op_sem.

	Set VFS usable flag to false.

	If there are active operations (vfs_ops > 0): call semaphore_V
on vfs_op_sem, wait for operations to complete by calling
semaphore_P on vfs_unmount_sem, re-acquire the vfs_op_sem
with a call to semaphore_P.

	Lock both data tables by calling semaphore_P on both
vfs_table.sem and openfile_table.sem.

	Loop through all filesystems and unmount them.

	Release semaphores by calling semaphore_V on
openfile_table.sem, vfs_table.sem and vfs_op_sem.

To maintain count on active filesystem operations and to wake up pending
forceful unmount, the following two internal functions are used. The first one
is always called before any filesystem operation is started and the latter when
the operation has finished.

	static int vfs_start_op(void)

	
	Start a new VFS operation. A VFS operation is anything that touches a
filesystem.

	Returns VFS_OK if the operation can continue, or error (negative value)
if the operation cannot be started (VFS is unusable). If the operation
cannot continue, it should not later call vfs_end_op.

	Implementation:
	Call semaphore_P on vfs_op_sem.

	If VFS is usable, increment vfs_ops by one.

	Call semaphore_V on vfs_op_sem.

	If VFS was usable, return VFS_OK, else return VFS_UNUSABLE.

	static void vfs_end_op(void)

	
	End a started VFS operation.

	Implementation:
	Call semaphore_P on vfs_op_sem.

	Decrement vfs_ops by one.

	If VFS is not usable and the number of active operations is zero, wake
up pending forceful unmount by calling semaphore_V on
vfs_unmount sem.

	Call semaphore_V on vfs_op_sem.

File Operations

The primary function of the virtual filesystem is to provide unified access to
all mounted filesystems. The filesystems are accessed through file operation
functions.

Before a file can be read or written it must be opened by calling vfs_open:

	openfile_t vfs_open(char *pathname)

	
	Opens the file addressed by pathname. The name must include both the full
pathname and the filename. (e.g. [root]shell.mips32)

	Returns an open file identifier. Open file identifiers are non-negative
integers. On error, negative value is returned.

	Implementation:
	Call vfs_start_op. If an error is returned by it, return immediately
with the error code VFS_UNUSABLE.

	Parse pathname into volume name and filename parts.

	If filename is not valid (too long, no mount point, etc.), call
vfs_end_op and return with error code VFS_ERROR.

	Acquire locks to the filesystem table and the open file table.

	Find a free entry in the open file table. If no free entry is found (the
table is full), free the locks, call vfs_end_op, and return with the
error code VFS_LIMIT.

	Find the filesystem specified by the volume name part of the pathname
in the filesystem table. If the volume is not found, return with the same
procedure as for a full open file table, except that the error code is
VFS_NO_SUCH_FS.

	Allocate the found free open file entry by setting its filesystem field.

	Free the filesystem and the open file table locks.

	Call the filesystem’s internal open function. If the return value
indicates an error, lock the open file table, mark the entry free and
free the lock. Call vfs_end_op and return the error given by the
filesystem.

	Save the file identifier returned by the filesystem in the
open file table.

	Set file’s seek position to zero (beginning of the file).

	Call vfs_end_op.

	Return the row number in the open file table as the open file
identifier.

Open files must be properly closed. If a filesystem has open files, the
filesystem cannot be unmounted except on shutdown where unmount is forced. The
closing is done by calling vfs_close:

	int vfs_close(openfile_t file)

	
	Closes an open file file.

	Returns VFS_OK (zero) on success, negative on error.

	Implementation:
	Call vfs_start_op. If an error is returned by it, return immediately
with the error code VFS_UNUSABLE.

	Lock the open file table.

	Verify that the given file is really open, otherwise, free the open file
table lock and return VFS_INVALID_PARAMS.

	Call close on the actual filesystem for the file.

	Mark the entry in the open file table free.

	Free the open file table lock.

	Call vfs_end_op.

	Return the return value given by the filesystem when close was called.

The seek position within the file can be changed by calling:

	int vfs_seek(openfile_t file, int seek position)

	
	Seek the given open file to the given seek position.

	The position is not verified to be within the file’s size and behavior on
exceeding the current size of the file is filesystem dependent.

	Returns VFS_OK on success, negative on error.

	Implementation:
	Call vfs_start_op. If an error is returned by it, return immediately
with the error code VFS_UNUSABLE.

	Lock the open file table.

	Verify that the given file is really open, otherwise, free the open file
table lock and return VFS_INVALID_PARAMS.

	Set the new seek position in open file table.

	Free the open file table.

	Call vfs_end_op.

	Return VFS_OK.

	int vfs_read(openfile_t file, void *buffer, int bufsize)

	
	Reads at most bufsize bytes from the given file into the buffer. The read
is started from the current seek position and the seek position is updated to
match the new position in the file after the read.

	Returns the number of bytes actually read. On most filesystems, the
requested number of bytes is always read when available, but this behaviour
is not guaranteed. At least one byte is always read, unless the end of file
or error is encountered. Zero indicates the end of file and negative values
are errors.

	Implementation:
	Call vfs_start_op. If an error is returned by it, return immediately
with the error code VFS_UNUSABLE.

	Verify that the given file is really open, otherwise return
VFS_INVALID_PARAMS.

	Call the internal read function of the filesystem.

	Lock the open file table.

	Update the seek position in the open file table.

	Free the open file table.

	Call vfs_end_op.

	Return the value returned by the filesystem’s read.

	int vfs_write(openfile_t file, void *buffer, int datasize)

	
	Writes at most datasize bytes from the given buffer into the open
file.

	The write is started from the current seek position and the seek position
is updated to match the new place in the file.

	Returns the number of bytes written. All bytes are always written unless
an unrecoverable error occurs (filesystem full, for example). Negative
values are error conditions on which nothing was written.

	Implementation:
	Call vfs_start_op. If an error is returned by it, return immediately
with the error code VFS_UNUSABLE.

	Verify that the given file is really open, otherwise return
VFS_INVALID_PARAMS.

	Call the internal write function of the filesystem.

	Lock the open file table.

	Update the seek position in the open file table.

	Free the open file table.

	Call vfs_end_op.

	Return the value returned by the filesystem’s write.

Files can be created and removed by the following two functions:

	int vfs_create(char *pathname, int size)

	
	Creates a new file with given pathname. The size of the file will be
size. The pathname must include the mount-point (full name would
be [root]shell.mips32, for example).

	Returns VFS_OK on success, negative on error.

	Implementation:
	Call vfs_start_op. If an error is returned by it, return immediately
with the error code VFS_UNUSABLE.

	Parse the pathname into volume name and file name parts.

	If the pathname was badly formatted or too long, call vfs_end_op
and return with the error code VFS_ERROR.

	Lock the filesystem table. (This is to prevent unmounting of the
filesystem during the operation. Unlike read or write, we do not have an
open file to guarantee that unmount does not happen.)

	Find the filesystem from the filesystem table. If it is not found, free
the table, call vfs_end_op and return with the error code
VFS_NO_SUCH_FS.

	Call the internal create function of the filesystem.

	Free the filesystem table.

	Call vfs_end_op.

	Return the value returned by the filesystem’s create.

	int vfs_remove(char *pathname)

	
	Removes the file with the given pathname. The pathname must include the
mount-point (a full name would be [root]shell.mips32, for example).

	Returns VFS_OK on success, negative on failure.

	Implementation:
	Call vfs_start_op. If an error is returned by it, return immediately
with the error code VFS_UNUSABLE.

	Parse the pathname into the volume name and file name parts.

	If the pathname was badly formatted or too long, call vfs_end_op
and return with the error code VFS_ERROR.

	Lock the filesystem table. (This is to prevent unmounting of the
filesystem during the operation. Unlike read or write, we do not have an
open file to guarantee that unmount does not happen.)

	Find the filesystem from the filesystem table. If it is not found, free
the filesystem table, call vfs end op and return with the error code
VFS_NO_SUCH_FS.

	Call the internal remove function of the filesystem.

	Free the filesystem table by calling semaphore V on vfs table.sem.

	Call vfs_end_op.

	Return the value returned by the filesystem’s remove.

Filesystem Operations

In addition to providing an unified access to all filesystems, VFS also
provides functions to mount and unmount filesystems. Filesystems are
automatically mounted at boot time with the function vfs_mount_all, which
is described below.

The file kudos/fs/filesystems.c contains a table of all available
filesystem drivers. When an automatic mount is attempted, this table is
traversed by the filesystems_try_all function to find a driver that matches
the filesystem on the disk, if any.

	void vfs_mount_all(void)

	
	Mounts all filesystems found on all disks attached to the system. Tries all
known filesystems until a match is found. If no match is found, prints a
warning and ignores the disk in question.

	Called in the system boot up sequence.

	Implementation:

	For each disk in the system do the following steps:

	Get the device entry for the disk by calling device_get.

	Dig the generic block device entry from the device descriptor.

	Attempt to mount the filesystem on the disk by calling
vfs_mount_fs with NULL as the volumename (see below).

To attach a filesystem manually either of the following two functions can be
used. The first one probes all available filesystem drivers to initialize one
on the given disk and the latter requires the filesystem driver to be
pre-initialized.

	int vfs_mount_fs(gbd_t *disk, char *volumename)

	
	Mounts the given disk to the given mountpoint (volumename).
volumename must be non-empty. The mount is performed by trying
out all available filesystem drivers listed in the filesystems array
in kudos/fs/fileystems.c. The first match (if any) is used as the
filesystem driver for the disk.

	If NULL is given as the volumename, the name returned by the
filesystem driver is used as the mount-point.

	Returns VFS_OK (zero) on success, negative on error (no matching
filesystem driver or too many mounted filesystems).

	Implementation:

	Try the init functions of all available filesystems in
kudos/fs/filesystems.c by calling filesystems_try_all.

	If no matching filesystem driver was found, print warning and
return the error code VFS_NO_SUCH_FS.

	If the volumename is NULL, use the name stored into
fs_t->volume name by the filesystem driver.

	If the volumename is an empty string, unmount the filesystem
driver from the disk and return VFS_INVALID_PARAMS.

	Call vfs_mount (see below) with the filesystem driver instance
and volumename.

	If vfs_mount returned an error, unmount the filesystem driver
from the disk and return the error code given by it.

	Return with VFS_OK.

	int vfs_mount(fs_t *fs, char *name)

	
	Mounts an initialized filesystem driver fs into the VFS mount-point
name.

	Returns VFS_OK on success, negative on error. Typical errors are
VFS_LIMIT (too many mounted filesystems) and VFS-ERROR
(mount-point was already in use).

	Implementation:
	Call vfs_start_op. If an error is returned by it, return
immediately with the error code VFS_UNUSABLE.

	Lock the filesystem table by calling semaphore_P on
vfs_table.sem.

	Find a free entry on the filesystem table.

	If the table was full, free it by calling semaphore_V on
vfs_table.sem, call vfs_end_op and return the error
code VFS_LIMIT.

	Verify that the mount-point name is not in use. If it is, free
the filesystem table by calling semaphore_V on vfs_table.sem,
call vfs_end_op and return the error code VFS_ERROR.

	Set the mountpoint and fs fields in the filesystem table to
match this mount.

	Free the filesystem table by calling semaphore_V on vfs_table.sem.

	Call vfs_end_op.

	Return VFS_OK.

To find out the amount of free space on given filesystem volume, the following
function can be used:

	int vfs_getfree (char *filesystem)

	
	Finds out the number of free bytes on the given filesystem, identified by
its mount-point name.

	Returns the number of free bytes, negative values are errors.

	Implementation:

	Call vfs_start_op. If an error is returned by it, return
immediately with the error code VFS_UNUSABLE.

	Lock the filesystem table by calling semaphore_P on
vfs_table.sem. (This is to prevent unmounting of the filesystem
during the operation. Unlike read or write, we do not have an open
file to guarantee that unmount does not happen.)

	Find the filesystem by its mount-point name filesystem.

	If the filesystem is not found, free the filesystem table by calling
semaphore_V on vfs_table.sem, call vfs_end_op and return
the error code VFS_NO_SUCH_FS.

	Call filesystem’s getfree function.

	Free the filesystem table by calling semaphore_V on
vfs_table.sem

	Call vfs_end_op.

	Return the value returned by filesystem’s getfree function.

Trivial Filesystem

Trivial File System (TFS) is, as its name implies, a very simple file system.
All operations are implemented in a straightforward manner without much
consideration for efficiency, there is only simple synchronization and no
bookkeeping for open files, etc. The purpose of the TFS is to give students a
working (although not thread-safe) filesystem and a tool (see
Using KUDOS) for moving data between TFS and the native filesystem of
the platform on which KUDOS is being developed.

When students implement their own filesystem, the idea is that files can be
moved from the native filesystem to the TFS using the TFS tool, and then they
can be moved to the student filesystem using KUDOS itself. This way students
don’t necessarily need to write their own tool(s) for the simulator platform.
It is, of course, perfectly acceptable to write your own tool(s).

Trivial filesystem uses the native block size of a drive (must be predefined).
Each filesystem contains a volume header block (block number 0 on disk). After
header block comes block allocation table (BAT, block number 1), which uses one
block. After that comes the master directory block (MD, block number 2), also
using one block. The rest of the disk is reserved for file header (inode) and
data blocks. The following figure illustrates the structure of a TFS volume:

[image: _images/tfs.svg]An illustration of the disk blocks on a TFS volume.

Note that all multibyte data in TFS is big-endian. This is not a problem in
the MIPS32 version of KUDOS, since YAMS is big-endian also, but in the x86-64
version of KUDOS this is a problem, since x86-64 is little-endian. This means
that we need to go through the function from_big_endian32 (defined in
kudos/lib/libc.h) when dealing with TFS. For x86-64 this function
translates the value into little-endian, for MIPS32 this function does nothing.

The volume header block has the following structure. Other data may be present
after these fields, but it is ignored by TFS.

	Offset
	Type
	Name
	Description

	0x00
	uint32_t
	magic
	Magic number, must
be 3745 (0x0EA1)
TFS volumes.

	0x04
	char[TFS_VOLNAME_MAX]
	volname
	Name of the volume,
including the
terminating zero

The block allocation table is a bitmap which records the free and reserved
blocks on the disk, one bit per block, 0 meaning free and 1 reserved. For a
512-byte block size, the allocation table can hold 4096 bits, resulting in a
2MB disk. Note that the allocation table includes also the three first blocks,
which are always reserved.

The master directory consists of a single disk block, containing a table of the
following 20-byte entries. This means that a disk with a 512-byte block size
can have at most 25 files (512/20 = 25.6).

	Offset
	Type
	Name
	Description

	0x00
	uint32_t
	inode
	Number of the disk
block containing the
file header (inode) of
this file.

	0x04
	char[TFS_FILENAME_MAX]
	name
	Name of the file,
including the
terminating zero.

This means that the maximum file name length is actually
TFS_FILENAME_MAX-1.

A file header block (“inode”) describes the location of the file on the disk
and its actual size. The contents of the file is stored to the allocated
blocks in the order they appear in the block list (the first TFS_BLOCK_SIZE
bytes are stored to the first block in the list etc.). A file header block has
the following structure:

	Offset
	Type
	Name
	Description

	0x00
	uint32_t
	filesize
	Size of the file in bytes. When compiling
for x86-64 this field is big-endian so the
conversion function is used on this field.

	0x04
	uint32_t[TFS_BLOCKS_MAX]
	block
	Blocks allocated for this file. Unused
blocks are marked as 0 as a precaution
(since block 0 can never be a part of any
file). When compiling for x86-64 this field
is big-endian so the conversion function is
used on this field.

With a 512-byte block size, the maximum size of a file is limited to 127 blocks
(512/4 − 1) or 65024 bytes.

Note that this specification does not restrict the block size of the device on
which a TFS can reside. However, the KUDOS TFS implementation and the TFS tool
do not support block sizes other than 512 bytes. Note also that even though the
TFS filesystem size is limited to 2MB, the device (disk image) on which it
resides can be larger, the remaining part is just not used by the TFS.

TFS Driver Module

The KUDOS TFS module implements the Virtual File System interface with the
following functions.

	fs_t * tfs_init(gbd t *disk, uint32_t sector)

	
	Attempts to initialize a TFS on the given disk (a generic block device,
actually) at the given sector sector. If the initialization succeeds, a
pointer to the initialized filesystem structure is returned. If not
(e.g. the header block does not contain the right magic number or the
block size is wrong), NULL is returned.

	Implementation:
	Check that the block size of the disk is supported by TFS.

	Allocate semaphore for filesystem locking (tfs->lock).

	Allocate a memory page for TFS internal buffers and data and the
filesystem structure (fs_t).

	Read the first block of the disk and check the magic number.

	Initialize the TFS internal data structures.

	Store disk and the filesystem locking semaphore to the internal data
structure.

	Copy the volume name from the read block into fs_t.

	Set fs_t function pointers to TFS functions.

	Return a pointer to the fs_t.

	int tfs_unmount (fs_t *fs)

	
	Unmounts the filesystem. Ensures that the filesystem is in a “clean” state
upon exit, and that future operations will fail with VFS_NO_SUCH_FS.

	Implementation:
	Wait for active operation to finish by calling semaphore_P on
tfs->lock.

	Deallocate the filesystem semaphore tfs->lock.

	Free the memory page allocated by tfs_init.

	int tfs_open(fs_t *fs, char *filename)

	
	Opens a file for reading and writing. TFS does not keep any status
regarding open files, the returned file handle is simply the inode
block number of the file.

	Implementation:
	Lock the filesystem by calling semaphore_P on tfs->lock.

	Read the MD block.

	Search the MD for filename.

	Free the filesystem by calling semaphore_V on tfs->lock.

	If filename was found the MD, return its inode block number,
otherwise return VFS_NOT_FOUND.

	int tfs_close(fs_t *fs, int fileid)

	Does nothing, since TFS does not keep status for open files.

	int tfs_create(fs_t *fs, char *filename, int size)

	
	Creates a file with the given name and size (TFS files cannot be resized
after creation).

	The file will contain all zeros after creation.

	Implementation:
	Lock the filesystem by calling semaphore_P on tfs->lock.

	Check that the size of the file is not larger than the maximum file size
that TFS can handle.

	Read the MD block.

	Check that the MD does not contain filename.

	Find an empty slot in the MD, return error if the directory is full.

	Add a new entry to the MD.

	Read the BAT block.

	Allocate the inode and file blocks from BAT, and write the block numbers and the
filesize to the inode in memory.

	Write the BAT to disk.

	Write the MD to disk.

	Write the inode to the disk.

	Zero the content blocks of the file on disk.

	Free the filesystem by calling semaphore_V on tfs->lock.

	Return VFS_OK.

	int tfs_remove(fs_t *fs, char *filename)

	
	Removes the given file from the directory and frees the blocks allocated
for it.

	Implementation:
	Lock the filesystem by calling semaphore_P on tfs->lock.

	Read the MD block.

	Search the MD for filename, return error if not found.

	Read the BAT block.

	Read inode block.

	Free inode block and all blocks listed in the inode from the BAT.

	Clear the MD entry (set inode to 0 and name to an empty string).

	Write the BAT to the disk.

	Write the MD to disk.

	Free the filesystem by calling semaphore_V on tfs->lock.

	Return VFS_OK.

	int tfs_read (fs_t *fs, int fileid, void *buffer, int bufsize, int offset)

	
	Reads at most bufsize bytes from the given file into the given buffer.
The number of bytes read is returned, or a negative value on error. The
data is read starting from given offset. If the offset equals the file
size, the return value will be zero.

	Implementation:
	Lock the filesystem by calling semaphore_P on tfs->lock.

	Check that fileid is sane (≥ 3 and not beyond the end of the
device/filesystem).

	Read the inode block (which is fileid).

	Check that the offset is valid (not beyond end of file).

	For each needed block do the following:
	Read the block.

	Copy the appropriate part of the block into the right place in
buffer.

	Free the filesystem by calling semaphore_V on tfs->lock.

	Return the number of bytes actually read.

	int tfs_write(fs_t *fs, int fileid, void *buffer, int datasize, int offset)

	
	Writes (at most) datasize bytes to the given file. The number of bytes
actually written is returned. Since TFS does not support file resizing, it
may often be the case that not all bytes are written (which should actually
be treated as an error condition). The data is written starting from the
given offset.

	Implementation:
	Lock the filesystem by calling semaphore_P on tfs->lock.

	Check that fileid is sane (≥ 3 and not beyond the end of the
device/filesystem).

	Read the inode block (which is fileid).

	Check that the offset is valid (not beyond end of file).

	For each needed block do the following:
	If only part of the block will be written, read the block.

	Copy the appropriate part of the block from the right place in
buffer.

	Write the block.

	Free the filesystem by calling semaphore_V on tfs->lock.

	Return the number of bytes actually written.

	int tfs_getfree(fs_t *fs)

	
	Returns the number of free bytes on the filesystem volume.

	Implementation:
	Lock the filesystem by calling semaphore_P on tfs->lock.

	Read the BAT block.

	Count the number of zeroes in the bitmap. If the disk is smaller than
the maximum supported by TFS, only the first appropriate number of bits
are examined (of course).

	Get number of free bytes by multiplying the number of free blocks by
block size.

	Free the filesystem by calling semaphore_V on tfs->lock.

	Return the number of free bytes.

Appendix

More about the tfstool

The utility program, tfstool, which is shipped with KUDOS, provides a way
to transfer files to a filesystem KUDOS understands. tfstool can be used
to create a Trivial Filesystem (TFS, documentation about TFS coming soon) to a
given file, to examine the contents of a file containing a TFS, and to transfer
files to the TFS. KUDOS implementation of TFS does not include a way to
initialize the filesystem, so using tfstool is the only way to create a new
TFS. tfstool is also used to move userland binaries to TFS. When you write
your own filesystem to KUDOS, you might find it helpful to leave TFS intact.
This way you can still use tfstool to transfer files to the KUDOS system
without writing another utility program for your own filesystem.

The implementation of the tfstool is provided in the kudos/util/
directory. The KUDOS Makefile can be used to compile it to the executable
kudos/util/tfstool. Note that tfstool is compiled with the native
compiler, not the cross-compiler used to compile KUDOS. The implementation
takes care of byte-order conversion (big-endian, little-endian) if needed.

To get a summary of the arguments that tfstool accepts you may run it
without arguments:

$ kudos/util/tfstool
KUDOS Trivial Filesystem (TFS) Tool
...

The accepted commands are also explained below:

create <filename> <size> <volume-name>

Create a new TFS volume and write it to file <filename>. The total size of
the file system will be <size> 512-byte blocks. Note that the three first
blocks are needed for the TFS header, the TFS master directory, and the TFS
block allocation table. <size> must therefore be at least 3. The created
volume will have the name <volume-name>.

Note that the number of blocks must be the same as the setting in
yams.conf.

list <filename>

List the files found in the TFS volume residing in <filename>.

write <filename> <local-filename> [<TFS-filename>]

Write a file from the local system (<local-filename>) to the TFS volume
residing in the file <filename>. The optional fourth argument specifies the
filename to use for the file inside the TFS volume. If not given,
<local-filename> will be used.

Note that you probably want to give a <TFS-filename>, since otherwise you
end up with a TFS volume with files named like userland/halt.mips32, which
can cause confusion since TFS does not support directories.

read <filename> <TFS-filename> [<local-filename>]

Read a file (<TFS-filename>) from TFS volume residing in the file filename
to the lo- cal system. The optional fourth argument specifies the filename in
the local system. If not given, the <TFS-filename>> will be used.

delete <filename> <TFS-filename>

Delete the file with name <TFS-filename> from the TFS volume residing in
the file <filename>.

Index

 This is the source code for [image: Documentation Status] [https://kudos.readthedocs.org/en/latest/?badge=latest].

Building Locally

You need 3 Python packages:

pip3 install –user sphinx sphinx-autobuild sphinx_rtd_theme

Then you can just use make:

make html

Contexts and Context Switching

A context is the state of some particular computational process, such as a
thread, and includes the CPU registers and stack. A context switch occurs when
threads are switched in and out, which must occur opaquely for the
computational process itself: in practice done by saving and restoring the
program counter and stack pointer registers. The context of a thread is saved
in the context t structure, which is usually referenced by a pointer in thread
t in the thread table (see section 3.1.1). Contexts are always stored in the
stack of the corresponding thread.

Context switching is traditionally the most bizarre piece of code in most
operating systems, as the context switch code must be written in assembler to
be able to store registers etc, and is thus very architecture specific.

Context Switching in kudos-mips32

	Type
	Field name
	Explanation

	uint32_t
	cpu_regs
	MIPS32 CPU registers,
except zero, k0 and k1

Userland Processes

KUDOS has currently implemented a very simple support for processes
run in userland. Basically processes differ from threads in that they
have an individual virtual memory address space. Userland processes
won’t of course have an access to kernel code except via system
calls. There is currently no separate process table.

Processes are started as regular kernel threads. During process
startup in the function process_start(), function
thread_go_to_userland() is called. This function will switch the
thread to user mode by setting the user mode bit in the CP0 status
register. After this, a context switch is done. Next time the thread
is switched to running mode it will run in user mode. It is
critically important that you understand this design: a “process” is
really just a name for a kernel thread that executes code in user
mode. Not every kernel thread supports a process, but every process
is associated with a kernel thread. A syscall makes the kernel thread
switch from user mode to kernel mode, but it is still the same kernel
thread that runs.

Processes have their own virtual memory address space. In the case of
user processes this space is limited to user mapped segment of the
virtual memory address space. Individual virtual memory space is
provided by creating a pagetable for the process. This is done by
calling vm_create_pagetable(). Because of the limitations of the
current virtual memory system, the whole pagetable must fit to the TLB
at once. This limits the memory space to 16 pages (16 * 4096
bytes). Both the userland binary and the memory allocated for the data
must fit in this limited space.

Because processes are run in kernel threads, the thread_table_t
structure has a few fields for (userland) processes. In context
switches user_context is set to point to the saved user context of
the process (register contents and other such state). The context
follows the regular context_t data structure. The pagetable field
is provided for the pagetable created during process startup. The
process_id field is currently not used. It could be used for example
as an index to a separate process table.

Process Startup

New processes can currently be started by calling the function
process_start(). The function needs to be modified before used to
implement the spawn system call, but it can be used to fire up test
processes:

void process_start(char const *executable, char const **argv)

	Starts one userland process. The code and data for the process is
loaded from file texttt{executable}.

	The thread calling this function will be used to run the process. A
call to this function will never return.

Implementation:

	Retrieve the thread ID of the running kernel thread.

	Setup the running thread for running a process, using a call to
setup_new_process() (described below).

	Set the page table of the running kernel thread to the page table
we created for the process, by calling process_set_pagetable().
This function _must_ be called from the kernel thread that will run
the process - for now, this is the same thread that calls
process_start().

	Setup the user context - this involves setting every register to
zero, except for the instruction pointer and the stack pointer,
which will be set to their proper values (determined by the call to
setup_new_process()).

	Go to user mode using the just created user context.

Most of the interesting work is done by the setup_new_process()
function. You do not need to understand the details of its
implementation (although it is well commented and not particularly
complicated, except for some address arithmetic). You will however
need to understand its interface:

int setup_new_process(TID_t thread,
 const char *executable,
 const char **argv_src,
 virtaddr_t *entry_point, virtaddr_t *stack_top)

	Prepares the given kernel thread (specified by thread ID) for
executing a user process.

	Loads a program from the given file name - this must be a file
containing an executable in ELF format.

	Memory will be pre-allocated for stack, static data, and code, as
indicated in the executable. A page table will be created and and
stored in the pagetable field of the given thread.

	argv_src must be a NULL-terminated array of C strings. These
will also be copied into the memory of the process. This is used to
setup the argv array that will be passed to the main()
function of the new process.

	*entry_point will be set to the desired initial value of the
instruction pointer.

	*stack_top will be set to the desired initial value of the stack
pointer.

Exception Handling

When an exception occurs in user mode the context switch code switches
the current thread from user context to kernel context. The thread
will resume its execution in kernel mode in function
user_exception_handle(). This function will handle the TLB misses
and system calls caused by the userland process:

void user_exception_handle(int exception)

	This function is called when an exception has occured in user
mode. Handles the given exception.

	Dispatches system calls to the syscall handler, panics the kernel on
other exceptions.

Threads

A thread of execution is the execution of a sequence of instructions. The
context of a thread is the contents of the CPU registers at a given point of
execution, including things like the program counter, stack pointer, and
co-processor registers. A thread may be interrupted, or pre-empted, its
context stored in memory, only to be restored, and thread re-entered at a
later point in time. A thread may be pre-empted to let another thread re-enter
and do some other useful work. A scheduler decides which thread gets to go
next.

On a uniprocessor system threads offer the illusion of having multiple,
co-operating CPUs, while offering truly concurrent execution on a
multiprocessor system.

Code for a multithreaded system must be written in a re-entrant fashion,
i.e. such that execution may be interrupted and re-entered at any given point,
except within otherwise demarkated critical regions of the code. Code for a
multiprocessor system must futhermore ensure exclusive access to data
structures shared across multiple threads of execution.

KUDOS is designed to be a multithreaded system. It achieves this goal in two
fundamental ways: It has a pre-emptive, round-robin scheduler, and is
designed to be a symmetric multiprocessing (SMP) system, which means that it
supports multiple CPU cores, running each either own thread, while sharing the
same physical memory.

Virtual Memory

By definition, Virtual Memory (VM) provides an illusion of unlimited sequential memory
regions to threads and processes. Also the VM subsystem should isolate processes
so that they cannot see or manipulate memory allocated by other processes. The
current KUDOS implementation does not achieve these goals. Instead, it provides
tools and utility functions which are useful when implementing a real and working
virtual memory subsystem.

Currently the VM subsystem has primitive page tables for threads and processes,
utilities to manipulate hardware Translation Lookaside Buffer (TLB) and a simple
mechanism for allocating and freeing physical pages. There is no swapping, the
pagetables are inefficient to use and hardware TLB is used in a very limited
way. Kernel threads must also manipulate allocated memory directly by pages.

As result of this simple approach, the system can support only 16 pages of
mappings (64 kB) for each (userland) process. These 16 mappings can be fit into
the TLB and are currently put in place by calling tlb_fill after the
scheduler has changed threads. The system does not handle TLB exceptions,
and thus the kernel implementation does not use mapped memory.

A proper system uses virtual addresses for processes, and uses physical
addresses for hardware. Because of this, simple mapping macros are available
for easy conversion. These macros are ADDR_PHYS_TO_KERNEL() and
ADDR_KERNEL_TO_PHYS(), defined in kudos/vm/mips32/mem.h. Note that the
macros can support only kernel region addresses which are within the first 512MB
of physical memory. See below for description on address regions.

Hardware Support for Virtual Memory

The hardware in YAMS supports virtual memory with two main mechanisms: memory
segmentation and the TLB. The system doesn’t support
hardware page tables. All page table operations and data structures are defined
by the operating system. The page size of the hardware is 4 KiB (4096 bytes). All
mappings are done in page-sized chunks.

Memory segmentation means that addresses of different regions of the address space
behaves differently. The system has a 32-bit address space.

If the topmost bit of an address is 0 (the first 2GiB of address space), the address
is valid to use even if the CPU is in user mode (i.e. not in kernel mode). This region of
addresses is called the “user-mapped region” and it is used by userland programs and
in the kernel when userland memory is manipulated. This region is mapped. Mapping
means that the addresses do not refer to real memory addresses, but the real memory
page is looked up from TLB when an address in this region is used. The TLB is
described in more detail in its own subsection.

The rest of the address space is reserved for the operating system kernel and
will generate an exception if used while the CPU is in user (non-privileged) mode.
This space is divided into four segments: kernel unmapped uncached, kernel
unmapped, supervisor mapped and kernel mapped. Each segment is 512MiB in
size. The supervisor mapped region is not used in KUDOS. The kernel unmapped
uncached region is also not used in KUDOS except for memory mapped I/O-devices
(YAMS doesn’t have caches).

The kernel-mapped region behaves just like the user-mapped region, except that
it is usable only in kernel mode. This region can be used for mapping memory areas
for kernel threads. The area is currently unused, but its usage might be needed in
a proper VM implementation.

The kernel unmapped region is used for static data structures in the kernel and
also for the kernel binary itself. The region maps directly to the first 512MiB of
system memory (just strip the most significant bit of an address).
In some parts of the system the term physical memory address is used. Physical
addresses starts from 0 and extends to the top of the machine’s
real memory. These are used for example in the TLB to point to actual pages of memory
and in device drivers when doing DMA data transfers.

[image: _images/yams-virtual-memory.png]
YAMS virtual memory layout

KUDOS Virtual Memory Initialization

During the virtual memory Initialization (functions vm_init and physmem_init) a
bitmap data structure physmem_free_pages is created to keep track of available
physical memory pages. The ability to do arbitrary length permanent memory reservations
(i.e. stalloc()) is disabled, so that stalloc() does not mess up the dynamically
reserved pages.

Page bitmap

The page bitmap (also called a page pool) is a data structure containing the status
of all physical pages.
The status of a physical page is either free or reserved. The status information
of the n‘th page is kept in the n‘th bit in the page bitmap, zero meaning free and
one meaning reserved.

A spinlock is provided to secure the synchronous access to the page bitmap. It is
need to prevent two or more threads from reserving the same physical page.

void vm_init ()

	Initialize the virtual memory and disable stalloc()

	
	Implementation:

	
	Call physmem_init()

	Disable future calls to stalloc()

void physmem_init ()

	Initialize the page bitmap. After this, it is known which pages may be used by virtual memory system for dynamic memory reservation. Statically reserved pages are marked as reserved.

	
	Implementation:

	
	Find the total number of physical pages.

	Reserve space for the page bitmap physmem_free_pages, note that this is still a permanent memory reservation.

	Get the number of statically reserved memory pages, reserved by stalloc().

	Mark all statically reserved pages in the page bitmap as ones.

The following page handling functions is provided to manipulate the page bitmap:

physaddr_t physmem_allocblock(void)

	Returns the physical address of the first free page and marks it as
reserved. Returns zero, if no free page is available.

	The function finds the first zero bit from the page bitmap, and marks it to
one. The physical address is calculated by multiplying the bit number with the
page size.

void physmem_freeblock(void *ptr)

	Frees a physical page by setting its corresponding bit to zero.

	Asserts that the page is reserved and that the page is not statically reserved.

Pagetables and Memory Mapping

	Type
	Name

	
uint32_t

uint32_t

tlb_entry_t[PAGE_TABLE_ENTRIES]

	
ASID

valid_count

entries

Table of pagetable_t.

	ASID: Address space identifier. The entries placed in the TLB will be set with this ASID. Only entries in the TLB with an ASID matching with the ASID of the currently running thread will be valid. In KUDOS we use ASID == Thread ID.

	valid_count: Number of valid mapping entries in this pagetable.

	tlb_entry_t[PAGE_TABLE_ENTRIES]: The actual page mapping entries in the form accepted by the hardware TLB.

KUDOS uses very primitive pagestables to store memory mappings for userlands processes.
Each thread entry in kudos has a private pagetable entry (pagetable_t *pagetable)
in its data structur (thread_table_t).
If the entry is NULL, then the thread is a kernel-only thread. If the entry is not NULL,
then the thread is used in userland.

The pagetable stores virtual address physical address mapping pairs for the
process. Virtual addresses are private for the process, but physical addresses are
global and refer to actual physical memory locations. The pagetable is stored in
pagetable t structure described in the table above.

Before a thread can use memory mapping, the thread must create a pagetable by calling the function
vm_create_pagetable() giving its thread ID as the argument. This pagetable
is then stored in thread’s information structure. For an example on usage, see
process_start() in proc/process.c. Note that the current VM implementation
cannot handle TLB dynamically, which means that TLB must be filled
with proper mappings manually before running threads (userland processes) which
needs them. This can be achieved by calling tlb_fill() (see proc/mips32/_proc.c:
process_set_pagetable() and kernel/mips32/interrupt.c: interrupt_handle() for current
usage).

When the thread no longer needs its memory mappings, it must destroy its
pagetable by calling vm_destroy_pagetable(). Note that this only clears the mappings,
but does not invalidate the pagetable entry in thread information structure,
free the physical pages used in mappings or clear the TLB. These things must be
handled by the thread wishing to free memory (eg. a dying userland process).

pagetable t * vm create pagetable (uint32 t asid)

	Create a new pagetable. Returns a pointer to the newly created pagetable.

	Argument asid defines the address space identifier associated with this page table. In KUDOS we use asids which equal to thread IDs.

	A pagetable_t occupies one hardware page (4096 bytes).

	
	Implementation:

	
	Reserve one physical memory page, this page will contain one pagetable_t structur.

	Set the ASID field in the newly created pagetable_t structur.

	Set the number of valid mappings to zero.

	Return a pointer to the newly created pagetable_t structur.

void vm_destroy_pagetable(pagetable_t *pagetable)

	Frees the given pagetable_t structur.

	The pagetable must not be used after it has been freed. The freeing is done when a userland
process terminates.

	Note: that this function does not invalidate any entries present in the TLB.

	
	Implementation:

	
	Free the page used for the pagetable_t structur, by calling the physmem_freeblock() function.

Memory mappings can be added to pagetables by calling the vm_map(). The current TLB
implementation cannot handle more than 16 pagetable mappings currectly. Mappings can be removed
one by one with the vm_unmap() function. The dirty bit of a mapping can be changed by calling
vm_set_dirty().

vm_map(pagetable_t *pagetable, physaddr_t physaddr, virtaddr_t vaddr, int flags)

	Maps the given virtual address (vaddr) to the given physical address (physaddr) in the context of the given pagetable. The addresses must be page aligned (4096 bytes).

	If dirty is true, the mapping is marked dirty (read/write mapping). If false, the mapping will be clean (read-only).

	
	Implementation:

	
	If the pagetable already contains the pair entry for the given virtual address (page), the pair entry is filled. Pagetables use the hardware TLB’s mapping definitions where even and odd pages are mapped to the same entry but can point to different physical pages.

	Else creates new mapping entry, fills the appropriate fields and invalidates the pairing (not yet mapped) entry.

void vm_unmap(pagetable_t *pagetable, virtaddr_t vaddr)

	Unmaps the given virtual address (vaddr) from given pagetable. The address must be page aligned and mapped in this pagetable.

	
	Implementation:

	
	This function is not implemented.

void vm_set_dirty(pagetable_t *pagetable, virtaddr_t vaddr, int dirty)

	Sets the dirty bit to dirty of a given virtual address (vaddr) in the context of the given pagetable. The address must be page aligned (4096 bytes).

	If dirty is true (1), the mapping is marked dirty (read/write mapping). If false (0), the mapping will be clean (read-only).

	
	Implementation:

	
	Find the mapping of the given virtual address.

	Set the dirty bit, if the mapping is found.

	If the mapping is not found, PANIC.

TLB

Most modern processors access virtual memory through a Translation Lookaside
Buffer (TLB). It is an associative table inside the memory management unit (MMU,
CP0 in MIPS32) which consists of a small number of entries similar to page table
entries mapping virtual memory pages to physical pages.

When the address of a memory reference falls into a mapped memory range
(0x00000000-0x7fffffff or 0xc0000000-0xffffffff in MIPS) the virtual page
of the address is translated into a physical page by the MMU hardware by looking
it up in the TLB and the resulting physical address is used for the reference. If the
virtual page has no entry in the TLB, a TLB exception occurs.

TLB dual entries and ASID in MIPS32 architectures

In the MIPS32 architecture, one TLB entry always maps two consecutive pages, even
and odd. This needs to be taken into account when implementing the TLB handling
routines, as a new mapping may need to be added to an already existing TLB entry.
One might think that the consecutive pages could be mapped in separate entries,
leaving the other page in the entry as invalid, but this would result in duplicate
TLB matches and thus cause undefined behavior.

A MIPS32 TLB entry also has an Address Space ID (ASID) field. When the
CP0 is checking for a TLB match, the ASID of the entry must match the
current ASID for the processor, specified in the EntryHi register (or the global bit
is on). Thus, when using different
ASID for each thread, the TLB need not necessarily be invalidated when switching
between threads.

KUDOS uses the tlb_entry_t structure to store page mappings. The entries in
this structure are compatible with the hardware TLB. The fields are described in
table below.

The exception handler in kernel/mips32/exception.c should dispatch TLB exceptions
to the following functions, implemented in vm/mips32/tlb.c (note that the current implementation
does not dispatch TLB exceptions):

void tlb_modified_exception(void)

	Called in case of a TLB modified exception.

void tlb_load_exception(void)

	Called in case of a TLB miss exception caused by a load reference.

void tlb_store_exception(void)

	Called in case of a TLB miss exception caused by a store reference.

TLB miss exception, Load reference

The cause of this exception is a memory load operation for which either no entry
was found in the TLB (TLB refill) or the entry found was invalid (TLB invalid).
These cases can be distinguished by probing the TLB for the failing page number.
The exception code is EXCEPTION_TLBL.

TLB miss exception, Store reference

This exception is the same as the previous except that the operation which caused
it was a memory store. The exception code is EXCEPTION_TLBS.

TLB modified exception

This exception occurs if an entry was found for a memory store reference but the
entry’s D bit is zero, indicating the page is not writable. The D bit can be used both
for write protection and pagetable coherence when swapping is enabled (dirty/not
dirty). The exception code is EXCEPTION_TLBM.

TLB wrapper functions in KUDOS

The following wrapper functions to CP0 TLB operations, implemented in vm/mips32/_tlb.S,
are provided so that writing assembler code is not required.

void _tlb_get_exception_state(tlb_exception_state_t *state)

	Get the state parameters for a TLB exception and place them in state.

	This is usually the first function called by all TLB exception handlers.

	
	Implementation:

	
	Copy the BadVaddr register to state->badvaddr.

	Copy the VPN2 field of the EntryHi register to state->badvpn2.

	Copy the ASID field of the EntryHi register to state->asid.

void _tlb_set_asid(uint32_t asid)

	Sets the current ASID for the CP0 (in EntryHi register).

	Used to set the current address space ID after operations that modified the EntryHi register.

	
	Implementation:

	
	Copy asid to the EntryHi register.

uint32_t _tlb_get_maxindex(void)

	Returns the index of the last entry in the TLB. This is one less than the number of entries in the TLB.

	
	Implementation:

	
	Return the MMU size field of the Conf1 register

int _tlb_probe(tlb_entry_t *entry)

	Probes the TLB for an entry defined by the VPN2, dummy1 and ASID fields of entry.

	Returns an index to the TLB, or a negative value if a matching entry was not found.

	
	Implementation:

	
	Load the EntryHi register with VPN2 and ASID.

	Execute the TLBP instruction.

	Return the value in the Index register.

int _tlb_read(tlb_entry_t *entries, uint32_t index, uint32_t num)

	Reads num entries from the TLB, starting from the entry indexed by index. The entries are placed in the table addressed by entries.

	Only MIN(TLBSIZE-index, num) entries will be read.

	Returns the number of entries actually read, or a negative value on error.

	
	Implementation:

	
	Load the Index register with index.

	Execute the TLBR instruction.

	Move the contents of the EntryHi, EntryLo0 and EntryLo1 registers to corresponding fields in entries.

	Advance index and entries, and continue from step 1 until enough entries are read.

	Return the number of entries read.

int _tlb_write(tlb_entry_t *entries, uint32_t index, uint32_t num)

	Writes num entries to the TLB, starting from the entry indexed by index. The entries are read from the table addressed by entries.

	Only MIN(TLBSIZE-index, num) entries will be written.

	Returns the number of entries actually written, or a negative value on error.

	
	Implementation:

	
	Load the Index register with index.

	Fill the EntryHi, EntryLo0 and EntryLo1 registers from entries.

	Execute the TLBWI instruction.

	Advance index and entries, and continue from step 1 until enough entries are written.

	Return the number of entries written.

void _tlb_write_random(tlb_entry_t *entry)

	Writes the entry to a “random” entry in the TLB. The entry is read from entry.

	Note that if this function is called more than once, it is not guaranteed that the newest write will not overwrite the previous, although this is usually the case. This function should only be called to write a single entry.

	
	Implementation:

	
	Fill the EntryHi, EntryLo0 and EntryLo1 registers from entry.

	Execute the TLBWR instruction. The following function should be used only until a proper VM implementation is done:

	Type
	Name

	
unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

unsigned int

	
VPN2:19

dummy1:5

ASID:8

dummy2:6

PFN0:20

C0:3

D0:1

V0:1

G0:1

dummy3:6

PFN1:20

C1:3

D1:1

V1:1

G1:1

Table of tlb_entry_t.

	VPN2: Virtual page pair number. These are the upper 19 bits of a virtual address. VPN2 describes which consecutive 2 page (8192 bytes) region of virtual address space this entry maps.

	dummy1: Unused.

	ASID: Address space identifier. When ASID matches CP0 setted ASID this entry is valid. In KUDOS, we use mapping ASID = thread_id.

	dummy2: Unused.

	PFN0: Physical page number for even page mapping (VPN2 + 0 bit).

	C0: Cache settings. Not used.

	D0: Dirty bit for even page. If this is 0, page is write protected. If 1 the page can be written to.

	V0: Valid bit for even page. If this bit is 1, this entry is valid.

	G0: Global bit for even page. Cannot be used without the global bit of odd page.

	dummy3: Unused.

	PFN1: Physical page number for odd page mapping (VPN2 + 1 bit).

	C1: Cache settings. Not used.

	D1: Dirty bit for odd page. If this is 0, page is write protected. If 1 the page can be written to.

	V1: Valid bit for odd page. If this bit is 1, this entry is valid.

	G1: Global bit for odd page. Cannot be used without the global bit of even page. If both bits are 1, the mapping is global (ignores ASID), otherwise mapping is local (checks ASID).

	Type
	Name

	
uint32_t

uint32_t

uint32_t

	
badvaddr

badvpn2

asid

Table of tlb_exception_state_t.

	badvaddr: Contains the failing virtual address.

	badvpn2: Contains the VPN2 (bits 31..13) of the failing virtual address

	asid: Contains the ASID of the reference that caused the failure. Only the lowest 8 bits are used.

Kernel Overview

Although aiming for simplicity, the KUDOS kernel is still quite a complicated
piece of software.

To understand how the kernel is built, we must first understand what it actually
does. The kernel is a mediator between userland processes and machine hardware
to provide services for processes. It is also responsible for providing the
userland processes a private sandbox in which to run. Further, the kernel also
provides various high level services such as filesystems, which act on top of
the raw device drivers.

On the kernel side of these boundaries lies the important system call interface
code. The system call interface is a set of functions which can be called from
userland programs. These functions can then call almost any function inside the
kernel to implement the required functionality. Kernel functions cannot be
called directly from userland programs, which protects kernel integrity and
makes sure that the userland sandbox doesn’t leak.

The kernel also contains the device drivers. Device drivers are pieces of code
which know how to use a particular piece of hardware. Device drivers are
usually divided into two parts: the top and bottom halves. One part reacts on
hardware signals (an “interrupt handler”), and the other part is a set of
functions which can be called from within the kernel to send signals to the
hardware.

Threading

Now we have seen an overview of various kernel services, but we still don’t have
anything which can call these service functions. The core of any kernel,
including KUDOS, is its threading and context switching functionality.
Threading is provided by a special threading library in KUDOS. The threading
system makes it possible to execute threads in separate instances of program
execution. Each thread runs independently of each other, alternating their
turns on the CPU(s). The context switching system is used to switch one thread
out of a CPU and to put a new one on it. Threads themselves are unaware of
these switches, unless they intentionally force themselves out of execution,
i.e. go to sleep.

When starting a thread it is given a function which it executes. When the
function ends, the thread dies. The thread can also commit suicide by
explicitly killing itself. The kernel does not allow threads to kill other
threads. Each userland program runs inside one thread. When the actual
userland code is being run, the thread cannot see the kernel memory. It can
only use the system call layer.

Threads can be pre-empted at any point, both when in kernel and when in user
mode. Pre-empting means that the thread is taken out of execution in favor of
some other thread. The only way to prevent pre-empting is to disable
interrupts.

Since the kernel includes many data structures, and since multiple threads can
be run simultaneously (we can have multiple CPUs), all data has to be protected
from other threads. The protection can be done with exclusive access, achieved
with various synchronization mechanisms.

Virtual Memory

The virtual memory subsystem in KUDOS affects the whole kernel, interacts with
hardware and also with the userland.

The VM subsystem is responsible for all memory handling operations in the
kernel. Its main function is to provide an illusion of private memory spaces
for userland processes, but its services are also used in the kernel. Since
memory can be accessed from any part of the system, virtual memory interacts
directly with all system components.

[image: _images/kudos-memory.png]
The KUDOS memory structure.

The physical memory usage in KUDOS for its mips32 target can be seen in the
picture above. At the left side of the figure, memory addresses can be seen.
At the bottom is the beginning of the system main memory (address zero) and at
the top the end of the physical memory.

The kernel uses part of this physical memory for its code (kernel image),
interrupt handling routines and data structures, including thread stacks. The
rest of the memory is at the mercy of the VM.

As in any modern hardware, memory pages (4096 byte regions in our case) can be
mapped in YAMS. The mapped addresses are also called virtual addresses.
Mapping means that certain memory addresses do not actually refer to physical
memory. Instead, they are references to a structure which maps these
addresses to the actual addresses. This makes it possible to provide the
illusion of exclusive access to userland processes. Every userland process has
code at address 0x00001008, for example. In reality this address is in the
mapped address range, and thus the code is actually on a private physical memory
page for each process.

Support for Multiple Processors

KUDOS is a multiprocessor operating system, with pre-emptive
kernel threading. All kernel functions are thread-safe (re-entrant)
except for those that are used only during the bootup process.

Most code explicitly concerning SMP support is found in the bootstrap code.
Unlike in real systems, where usually only one processor starts at boot and it
is up to it to start the other processors, in YAMS all processors will start
executing code simultaneously and at the same address (0x80010000). To
handle this, each processor must “know” its own number, to facilitate code that
branches to different locations based which CPU (otherwise all CPUs would be
doomed to run the same code forever, which is plainly inefficient).

Another place where the SMP support is directly evident is in the context switch
code, and in the code initializing data structures used by the context switching
code. Each processor must have its own stack when handling interrupts, and each
processor has its own current thread. To account for these, the context
switching code must know the processor on which it runs.

For the most part, the SMP support should be completely transparent, although it
means that synchronization issues must be handled more carefully.

Kernel programming

Kernel programming differs somewhat from programming user programs.

The most significant difference is memory usage. In the MIPS32 architecture,
which YAMS emulates, the memory is divided into segments. Kernel code can
access all these segments, while user programs can only access the first
segment called the user mapped segment. In this segment the first bit of the
address is 0. If the first bit is 1, the address belongs to one of the
kernel segments and is not usable in userland. The most important kernel
segment in KUDOS is the kernel unmapped segment, where addresses start with
the bit sequence 100. These addresses point to physical memory locations.
In the kernel, most addresses are like this.

For initializing the system, KUDOS provides a function kmalloc (for “kernel
malloc”) to allocate memory in arbitrary-size chunks. This memory is
permanently allocated and cannot be freed. Before initializing the virtual
memory system, kmalloc is used to allocate memory. After the initialization
of the virtual memory system, kmalloc can no longer be used. Instead,
memory is allocated page by page from the virtual memory system. These pages
can be freed later.

Stacks and contexts

A stack is always needed when running code that is written in C (otherwise we
cannot have C functions). The kernel provides a valid stack for user programs
so the programmer does not need to think about this. In the kernel, however, no
one provides us with a valid stack. Every kernel thread must have its own
stack. In addition, every CPU must have an interrupt stack because thread
stacks cannot be easily used for interrupt processing. If a kernel thread is
associated with a user process, the user process must also have its own stack.
KUDOS already sets up kernel stacks and interrupt stacks appropriately.

Because the kernel and interrupt stacks are statically allocated, their size is
limited. This means that large structures and tables cannot be allocated on the
stack (in C, the variables declared inside a function are stack-allocated).
Note also that recursive functions allocate space from the stack for each
recursion level. Deeply recursive functions should thus not be used.

Code can be run in several different contexts. A context consists of a stack
and CPU register values. In the kernel there are two different contexts.
Kernel threads are run in a normal kernel context with the thread’s stack.
Interrupt handling code is run in an interrupt context with the CPU’s interrupt
stack. These two contexts differ in a fundamental way. In the kernel context
the current context can be saved and resumed later. Thus interrupts can be
enabled, and blocking operations can be called. In the interrupt context this
is not possible, so interrupts must be disabled, and no blocking operations can
be called. In addition, if a kernel thread is associated with a userland
process, it must also have a userland context.

Working with a text input/output console

In the kernel, reading from and writing to the console is done by using the
polling TTY driver. The kprintf and kwrite functions can be used to
print informational messages to the user. Userland console access should not be
handled with these functions. The interrupt driven TTY driver should be used
instead.

Busy waiting

In the kernel, special attention has to be given to synchronization issues.
Busy waiting must be avoided whenever possible. The only place where busy
waiting is acceptable is when using the spinlock implementation, which is
already implemented for you. Because spinlocks use busy waiting, they should
never be held for a long time.

Floating point numbers

YAMS does not support floating point numbers, so they cannot be used with
KUDOS’ mips32 target either. If an attempt to execute a floating point
instruction is made, a co-processor unusable exception will occur (since the
floating point unit is co-processor 1 in the MIPS32 architecture.)

Naming conventions

Some special naming conventions have been used when programming KUDOS. These
might help you find a function or a variable when you need it. Functions are
generally named as filename_action – where filename is the name of the
file where the function resides, and action tells what the function does.
Global variables are named similarly.

C calling conventions

Normally, a C compiler handles function calling conventions (mostly argument
passing) transparently. Sometimes in kernel code the calling convention issues
need to be handled manually. Manual calling convention handling is needed when
calling C routines from an assembly program or when manipulating thread
contexts in order to pass arguments to starting functions.

Arguments are passed to all functions in MIPS32 argument registers A0,
A1, A2 and A3. When more than 4 arguments are needed, the rest are
passed on the stack. The arguments are put onto the stack so that the 1st
argument is in the lowest memory address.

There is one thing to note: the stack frame for arguments must always be
reserved, even when all arguments are passed in the argument registers. The
frame must have space for all arguments. Arguments which are passed in
registers need not to be copied into this reserved space.

More about the tfstool

The utility program, tfstool, which is shipped with KUDOS, provides a way
to transfer files to a filesystem KUDOS understands. tfstool can be used
to create a Trivial Filesystem (TFS, documentation about TFS coming soon) to a
given file, to examine the contents of a file containing a TFS, and to transfer
files to the TFS. KUDOS implementation of TFS does not include a way to
initialize the filesystem, so using tfstool is the only way to create a new
TFS. tfstool is also used to move userland binaries to TFS. When you write
your own filesystem to KUDOS, you might find it helpful to leave TFS intact.
This way you can still use tfstool to transfer files to the KUDOS system
without writing another utility program for your own filesystem.

The implementation of the tfstool is provided in the kudos/util/
directory. The KUDOS Makefile can be used to compile it to the executable
kudos/util/tfstool. Note that tfstool is compiled with the native
compiler, not the cross-compiler used to compile KUDOS. The implementation
takes care of byte-order conversion (big-endian, little-endian) if needed.

To get a summary of the arguments that tfstool accepts you may run it
without arguments:

$ kudos/util/tfstool
KUDOS Trivial Filesystem (TFS) Tool
...

The accepted commands are also explained below:

create <filename> <size> <volume-name>

Create a new TFS volume and write it to file <filename>. The total size of
the file system will be <size> 512-byte blocks. Note that the three first
blocks are needed for the TFS header, the TFS master directory, and the TFS
block allocation table. <size> must therefore be at least 3. The created
volume will have the name <volume-name>.

Note that the number of blocks must be the same as the setting in
yams.conf.

list <filename>

List the files found in the TFS volume residing in <filename>.

write <filename> <local-filename> [<TFS-filename>]

Write a file from the local system (<local-filename>) to the TFS volume
residing in the file <filename>. The optional fourth argument specifies the
filename to use for the file inside the TFS volume. If not given,
<local-filename> will be used.

Note that you probably want to give a <TFS-filename>, since otherwise you
end up with a TFS volume with files named like userland/halt.mips32, which
can cause confusion since TFS does not support directories.

read <filename> <TFS-filename> [<local-filename>]

Read a file (<TFS-filename>) from TFS volume residing in the file filename
to the lo- cal system. The optional fourth argument specifies the filename in
the local system. If not given, the <TFS-filename>> will be used.

delete <filename> <TFS-filename>

Delete the file with name <TFS-filename> from the TFS volume residing in
the file <filename>.

 _static/ajax-loader.gif

_static/up.png

_static/comment-close.png

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

nav.xhtml

 Table of Contents

 		KUDOS Documentation

 		Introduction

 		Expected Background Knowledge

 		How to Use This Documentation

 		Exercises

 		References

 		Source Code Overview

 		kudos

 		kudos/init/

 		kudos/kernel/

 		kudos/proc

 		kudos/vm

 		kudos/fs

 		kudos/drivers

 		kudos/lib

 		kudos/util

 		userland

 		Using KUDOS

 		Compiling the kernel

 		Compiling the userland programs

 		Writing to the virtual disk

 		Booting the system

 		Example: Compile and run halt

 		How KUDOS Bootstraps

 		Booting KUDOS/x86_64 with GRUB2

 		Starting Subsystems

 		System Calls

 		How System Calls Work

 		System Calls in KUDOS

 		Halting the Operating System

 		Process Related

 		File-System Related

 		Exercises

 		Kernel Threads

 		Kernel Threads API

 		Controlling Kernel Threads

 		Low-Level Synchronization

 		Interrupts

 		Spinlocks

 		x86_64 Exchange and test

 		Spinlock API

 		Exercises

 		Advanced Synchronization

 		Sleep Queue

 		API

 		Using the Sleep Queue Correctly

 		Implementation

 		Semaphores

 		API

 		Implementation

 		Exercises

 		Device Drivers

 		Interrupt Handlers

 		Device Abstraction Layers

 		Device Driver Initialization

 		Generic Character Device

 		Generic Block Device

 		Built-in Drivers

 		TTY

 		Polling TTY Driver

 		Interrupt-driven TTY Driver

 		device_t *tty_init(io_descriptor_t *desc)

 		void tty_interrupt_handle(device_t *device)

 		static int tty_write(gcd_t *gcd, void *buf, int len)

 		static int tty_read(gcd_t *gcd, void *buf, int len)

 		Disk Driver

 		Timer Driver

 		Metadevice Drivers

 		Meminfo

 		RTC

 		Shutdown

 		CPU Status

 		Exercises

 		Filesystems

 		Filesystem Conventions

 		Filesystem Layers

 		Virtual Filesystem

 		Return Values

 		Limits

 		Internal Data Structures

 		VFS Operations

 		File Operations

 		Filesystem Operations

 		Trivial Filesystem

 		TFS Driver Module

 		Appendix

 		More about the tfstool

_images/yams-virtual-memory.png
OxFFFFFFFF

0xE0000000

0xC0000000

0xA0000000

0x80000000

Ox00000000 -

.Kernel mapped

Supervisor Mapped

Kernel unmapped Uncached

Kernel unmapped

User mapped

_static/up-pressed.png

_static/comment-bright.png

_images/kudos-memory.png
end of physical memory

static memory end

KERNEL ENDS HERE

000010000

Ox00000000

Dynamic memory allocated using pagepool

Memory allocated by stalloc

kemel image

Stack for OS initialization code

Interrupt vectors

_static/minus.png

_static/file.png

