

    
      
          
            
  
Welcome to KubeEdge’s documentation!


[image: _images/KubeEdge_logo.png]
 [https://kubeedge.io]

KubeEdge is an open source system for extending native containerized
application orchestration capabilities to hosts at Edge.



	KubeEdge Home [https://kubeedge.io]






Getting Started


	Welcome to KubeEdge
	Why KubeEdge?

	First Steps





	How to contribute
	Email and chat

	Getting started

	Reporting bugs and creating issues





	Roadmap
	Release 1.0

	Release 2.0 and Future





	Support
	Community










General Concepts


	What is KubeEdge
	Advantages

	Components

	Architecture

	Getting involved





	Beehive
	Beehive Overview

	Message Format

	Register Module

	Channel Context Structure Fields

	Module Operations

	Message Operations










Edge Concepts


	EdgeD
	Overview

	Pod Management

	Pod Lifecycle Event Generator

	Secret Management

	Probe Management

	ConfigMap Management

	Container GC

	Image GC

	Status Manager

	Volume Management

	MetaClient





	EventBus
	Overview

	Topic

	Flow chart





	MetaManager
	Overview

	Insert Operation

	Update Operation

	Delete Operation

	Query Operation

	Response Operation

	NodeConnection Operation

	MetaSync Operation





	Edgehub
	Overview

	Get CloudHub URL

	Keep Alive

	Publish Client Info

	Route To Cloud

	Route To Edge





	DeviceTwin
	Overview

	Operations Performed By Device Twin Controller

	Modules

	Tables










Cloud Concepts


	Edge Controller
	Edge Controller Overview

	Operations Performed By Edge Controller

	Downstream Controller:

	Upstream Controller:

	Controller Manager:





	CloudHub
	CloudHub Overview










Setup


	Pre-requisites

	Setup KubeEdge
	Prerequisites

	Install docker

	Install kubeadm/kubectl

	Install Kubernetes

	Install mosquitto

	Authentication

	Build

	Run KubeEdge

	Deploy Application

	Run Edge Unit Tests

	Run Edge Integration Tests





	Cross Compiling KubeEdge
	For ARM Architecture from x86 Architecture





	Integrate with HuaweiCloud [Intelligent EdgeFabric (IEF)
	Intelligent EdgeFabric (IEF)










Guides


	MQTT Message Topics
	Subscribe Topics





	Unit Test Guide
	Unit Test

	Mocks

	Ginkgo

	Writing UT using GoMock










Troubleshooting


	FAQs









          

      

      

    

  

    
      
          
            
  
Welcome to KubeEdge

KubeEdge is an open source system for extending native containerized application orchestration capabilities to hosts at Edge.


Why KubeEdge?

Learn about KubeEdge and the KubeEdge Mission here




First Steps

To get the most out of KubeEdge, start by reviewing a few introductory topics:


	Setup - Install KubeEdge


	Integrate with IEF - Integrate with the Intelligent Edge Fabric cloud


	Contributing - Contribute to KubeEdge


	Troubleshooting - Troubleshoot commonly occurring issues. GitHub issues are here [https://github.com/kubeedge/kubeedge/issues]










          

      

      

    

  

    
      
          
            
  
How to contribute

Kubeedge is Apache 2.0 licensed and accepts contributions via GitHub pull requests. This document outlines some of the conventions on commit message formatting, contact points for developers, and other resources to help get contributions into kubeedge.


Email and chat


	Email: kubeedge [https://groups.google.com/forum/?hl=en#%21forum/kubeedge]


	Slack: kubeedge [https://join.slack.com/t/kubeedge/shared_invite/enQtNDg1MjAwMDI0MTgyLTQ1NzliNzYwNWU5MWYxOTdmNDZjZjI2YWE2NDRlYjdiZGYxZGUwYzkzZWI2NGZjZWRkZDVlZDQwZWI0MzM1Yzc]







Getting started


	Fork the repository on GitHub


	Read the setup for build instructions







Reporting bugs and creating issues

Reporting bugs is one of the best ways to contribute. However, a good bug report has some very specific qualities, so please read over our short document on reporting bugs before submitting a bug report. This document might contain links to known issues, another good reason to take a look there before reporting a bug.


Contribution flow

This is a rough outline of what a contributor’s workflow looks like:


	Create a topic branch from where to base the contribution. This is usually master.


	Make commits of logical units.


	Make sure commit messages are in the proper format (see below).


	Push changes in a topic branch to a personal fork of the repository.


	Submit a pull request to kubeedge/kubeedge.


	The PR must receive an approval from two maintainers.




Thanks for contributing!




Code style

The coding style suggested by the Golang community is used in kubeedge. See the style doc [https://github.com/golang/go/wiki/CodeReviewComments] for details.

Please follow this style to make kubeedge easy to review, maintain and develop.




Format of the commit message

We follow a rough convention for commit messages that is designed to answer two
questions: what changed and why. The subject line should feature the what and
the body of the commit should describe the why.

scripts: add test codes for metamanager

this add some unit test codes to imporve code coverage for metamanager

Fixes #12





The format can be described more formally as follows:

<subsystem>: <what changed>
<BLANK LINE>
<why this change was made>
<BLANK LINE>
<footer>





The first line is the subject and should be no longer than 70 characters, the second line is always blank, and other lines should be wrapped at 80 characters. This allows the message to be easier to read on GitHub as well as in various git tools.









          

      

      

    

  

    
      
          
            
  
Roadmap


Release 1.0

KubeEdge will provide the fundamental infrastructure and basic functionalities for IOT/Edge workload. This includes:


	K8s Application deployment through kubectl from Cloud to Edge node(s)


	K8s configmap, secret deployment through kubectl from Cloud to Edge node(s) and their applications in Pod


	Bi-directional and multiplex network communication between Cloud and edge nodes


	K8s Pod and Node status querying with kubectl at Cloud with data collected/reported from Edge


	Edge node autonomy when its getting offline and recover post reconnection to Cloud


	Device twin and MQTT protocol for IOT devices talking to Edge node







Release 2.0 and Future


	Build service mesh with KubeEdge and Istio


	Enable function as a service at Edge


	Support more types of device protocols to Edge node such as AMQP, BlueTooth, ZigBee, etc.


	Evaluate and enable super large scale of Edge clusters with thousands of Edge nodes and millions of devices


	Enable intelligent scheduling of apps. to large scale of Edge nodes


	etc.










          

      

      

    

  

    
      
          
            
  
Support

If you need support, start with the troubleshooting guide, and work your way through the process that we’ve outlined.


Community

Slack channel:

We use Slack for public discussions. To chat with us or the rest of the community, join us in the KubeEdge Slack [https://kubeedge.slack.com] team channel #general. To sign up, use our Slack inviter link here [https://join.slack.com/t/kubeedge/shared_invite/enQtNDg1MjAwMDI0MTgyLTQ1NzliNzYwNWU5MWYxOTdmNDZjZjI2YWE2NDRlYjdiZGYxZGUwYzkzZWI2NGZjZWRkZDVlZDQwZWI0MzM1Yzc].

Mailing List

Please sign up on our mailing list [https://groups.google.com/forum/#%21forum/kubeedge]







          

      

      

    

  

    
      
          
            
  
What is KubeEdge

KubeEdge is an open source system extending native containerized application orchestration and device management to hosts at the Edge. It is built upon Kubernetes and provides core infrastructure support for networking, application deployment and metadata synchronization between cloud and edge. It also supports MQTT and allows developers to author custom logic and enable resource constrained device communication at the Edge. Kubeedge consists of a cloud part and an edge part. Both edge and cloud parts are now opensourced.


Advantages

The advantages of Kubeedge include mainly:


	Edge Computing

With business logic running at the Edge, much larger volumes of data can be secured & processed locally where the data is produced. This reduces the network bandwidth requirements and consumption between Edge and Cloud. This increases responsiveness, decreases costs, and protects customers’ data privacy.



	Simplified development

Developers can write regular http or mqtt based applications, containerize these, and run them anywhere - either at the Edge or in the Cloud - whichever is more appropriate.



	Kubernetes-native support

With KubeEdge, users can orchestrate apps, manage devices and monitor app and device status on Edge nodes just like a traditional Kubernetes cluster in the Cloud



	Abundant applications

It is easy to get and deploy existing complicated machine learning, image recognition, event processing and other high level applications to the Edge.








Components

KubeEdge is composed of these components:


	Edged: an agent that runs on edge nodes and manages containerized applications.


	EdgeHub: a web socket client responsible for interacting with Cloud Service for edge computing (like Edge Controller as in the KubeEdge Architecture). This includes syncing cloud-side resource updates to the edge and reporting edge-side host and device status changes to the cloud.


	CloudHub:: A web socket server responsible for watching changes at the cloud side, caching and sending messages to EdgeHub.


	EdgeController: an extended kubernetes controller which manages edge nodes and pods metadata so that the data can be targeted to a specific edge node.


	EventBus: an MQTT client to interact with MQTT servers (mosquitto), offering publish and subscribe capabilities to other components.


	DeviceTwin: responsible for storing device status and syncing device status to the cloud. It also provides query interfaces for applications.


	MetaManager: the message processor between edged and edgehub. It is also responsible for storing/retrieving metadata to/from a lightweight database (SQLite).







Architecture

[image: ../_images/kubeedge_arch.png]KubeEdge Architecture




Getting involved

There are many ways to contribute to Kubeedge, and we welcome contributions!

Read the contributor’s guide to get started on the code.







          

      

      

    

  

    
      
          
            
  
Beehive


Beehive Overview

Beehive is a messaging framework based on go-channels for communication between modules of KubeEdge. A module registered with beehive can communicate with other beehive modules if the name with which other beehive module is registered or the name of the group of the module is known.
Beehive supports following module operations:


	Add Module


	Add Module to a group


	CleanUp (remove a module from beehive core and all groups)




Beehive supports following message operations:


	Send to a module/group


	Receive by a module


	Send Sync to a module/group


	Send Response to a sync message







Message Format

Message has 3 parts


	Header:


	ID: message ID (string)


	ParentID: if it is a response to a sync message then parentID exists (string)


	TimeStamp: time when message was generated (int)


	Sync: flag to indicate if message is of type sync (bool)






	Route:


	Source: origin of message (string)


	Group: the group to which the message has to be broadcasted (string)


	Operation: what’s the operation on the resource (string)


	Resource: the resource to operate on (string)






	Content: content of the message (interface{})







Register Module


	On starting edge_core,  each module tries to register itself with the beehive core.


	Beehive core maintains a map named modules which has module name as key and implementation of module interface as value.


	When a module tries to register itself with beehive core, beehive core checks from already loaded modules.yaml config file to check if the module is enabled. If it is enabled, it is added in the modules map or else it is added in the disabled modules map.







Channel Context Structure Fields


(Important for understanding beehive operations)


	channels: channels is a map of string(key) which is name of module and chan(value) of message which will used to send message to the respective module.


	chsLock: lock for channels map


	typeChannels: typeChannels is is map of string(key)which is group name and (map of string(key) to chan(value) of message ) (value) which is map of name of each module in the group to the channels of corresponding module.


	typeChsLock: lock for typeChannels map


	anonChannels: anonChannels is a map of string(parentid) to chan(value) of message which will be used for sending response for a sync message.


	anonChsLock: lock for anonChannels map









Module Operations


Add Module


	Add module operation first creates a new channel of message type.


	Then the module name(key) and its channel(value) is added in the channels map of channel context structure.


	Eg: add edged module




coreContext.Addmodule(“edged”)








Add Module to Group


	addModuleGroup first gets the channel of a module from the channels map.


	Then the module and its channel is added in the typeChannels map where key is the group and in the value is a map in which (key is module name and value is the channel).


	Eg: add edged in edged group. Here 1st edged is module name and 2nd edged is the group name.




coreContext.AddModuleGroup(“edged”,”edged”)








CleanUp


	CleanUp deletes the module from channels map and deletes the module from all groups(typeChannels map).


	Then the channel associated with the module is closed.


	Eg: CleanUp edged module




coreContext.CleanUp(“edged”)










Message Operations


Send to a Module


	Send gets the channel of a module from channels map.


	Then the message is put on the channel.


	Eg: send message to edged.




coreContext.Send(“edged”,message) 








Send to a Group


	Send2Group gets all modules(map) from the typeChannels map.


	Then it iterates over the map and sends the message on the channels of all modules in the map.


	Eg: message to be sent to all modules in edged group.




coreContext.Send2Group(“edged”,message) message will be sent to all modules in edged group.








Receive by a Module


	Receive gets the channel of a module from channels map.


	Then it waits for a message to arrive on that channel and returns the message. Error is returned if there is any.


	Eg: receive message for edged module




msg, err := coreContext.Receive("edged")








SendSync to a Module


	SendSync takes 3 parameters, (module, message and timeout duration)


	SendSync first gets the channel of the module from the channels map.


	Then the message is put on the channel.


	Then a new channel of message is created and is added in anonChannels map where key is the messageID.


	Then it waits for the message(response) to be received on the anonChannel it created till timeout.


	If message is received before timeout, message is returned with nil error or else timeout error is returned.


	Eg: send sync to edged with timeout duration 60 seconds




response, err := coreContext.SendSync("edged",message,60*time.Second)








SendSync to a Group


	Get the list of modules from typeChannels map for the group.


	Create a channel of message with size equal to the number of modules in that group and put in anonChannels map as value with key as messageID.


	Send the message on channels of all the modules.


	Wait till timeout. If the length of anonChannel = no of modules in that group, check if all the messages in the channel have parentID = messageID. If no return error else return nil error.


	If timeout is reached,return timeout error.


	Eg: send sync message to edged group with timeout duration 60 seconds




err := coreContext.Send2GroupSync("edged",message,60*time.Second)








SendResp to a sync message


	SendResp is used to send response for a sync message.


	The messageID for which response is sent needs to be in the parentID of the response message.


	When SendResp is called, it checks if for the parentID of response message , there exists a channel is anonChannels.


	If channel exists, message(response) is sent on that channel.


	Or else error is logged.




coreContext.SendResp(respMessage)













          

      

      

    

  

    
      
          
            
  
EdgeD


Overview

EdgeD is an edge node module which manages pod lifecycle. It helps user to deploy containerized workloads or applications at the edge node. Those workloads could perform any operation from simple telemetry data manipulation to analytics or ML inference and so on. Using kubectl command line interface at the cloud side, user can issue commands to launch the workloads.

Docker container runtime is currently supported for container and image management. In future other runtime support shall be added, like containerd etc.,

There are many modules which work in tandom to achive edged’s functionalities.

[image: ../../_images/edged-overall.png]EdgeD OverAll

Fig 1: EdgeD Functionalities




Pod Management

It is handles for pod addition, deletion and modification. It also tracks the health of the pods using pod status manager and pleg.
Its primary jobs are as follows:


	Receives and handles pod addition/deletion/modification messages from metamanager.


	Handles separate worker queues for pod addition and deletion.


	Handles worker routines to check worker queues to do pod operations.


	Keeps separate cache for config map and secrets respectively.


	Regular cleanup of orphaned pods




[image: ../../_images/pod-addition-flow.png]Pod Addition Flow

Fig 2: Pod Addition Flow

[image: ../../_images/pod-deletion-flow.png]Pod Deletion Flow

Fig 3: Pod Deletion Flow

[image: ../../_images/pod-update-flow.png]Pod Updation Flow

Fig 4: Pod Updation Flow




Pod Lifecycle Event Generator

This module helps in monitoring pod status for edged. Every second, using probe’s for liveliness and readyness, it updates the information with pod status manager for every pod.

[image: ../../_images/pleg-flow.png]PLEG Design

Fig 5: PLEG at EdgeD




Secret Management

At edged, Secrets are handled separately. For its operations like addition, deletion and modifications; there are separate set of config messages or interfaces.
Using these interfaces, secrets are updated in cache store.
Below flow diagram explains the message flow.

[image: ../../_images/secret-handling.png]Secret Message Handling

Fig 6: Secret Message Handling at EdgeD

Also edged uses MetaClient module to fetch secret from Metamanager (if available with it) else cloud. Whenever edged queries for a new secret which Metamanager doesn’t has, the request is forwared to cloud. Before sending the response containing the secret, it stores a copy of it and send it to edged.
Hence the subsequent query for same secret key will be responded by Metamanger only, hence reducing the response delay.
Below flow diagram shows, how secret is fetched from metamanager and cloud. The flow of how secret is saved in metamanager.

[image: ../../_images/query-secret-from-edged.png]Query Secret

Fig 7: Query Secret by EdgeD




Probe Management

Probe management creates to probes for readiness and liveliness respectively for pods to monitor the containers. Readiness probe helps by monitoring when the pod has reached to running state. Liveliness probe helps in monitoring the health of pods, if they are up or down.
As explained earlier PLEG module uses its services.




ConfigMap Management

At edged, ConfigMap are also handled separately. For its operations like addition, deletion and modifications; there are separate set of config messages or interfaces.
Using these interfaces, configMaps are updated in cache store.
Below flow diagram explains the message flow.

[image: ../../_images/configmap-handling.png]ConfigMap Message Handling

Fig 8: ConfigMap Message Handling at EdgeD

Also edged uses MetaClient module to fetch configmap from Metamanager (if available with it) else cloud. Whenever edged queries for a new configmaps which Metamanager doesn’t has, the request is forwared to cloud. Before sending the response containing the configmaps, it stores a copy of it and send it to edged.
Hence the subsequent query for same configmaps key will be responded by Metamanger only, hence reducing the response delay.
Below flow diagram shows, how configmaps is fetched from metamanager and cloud. The flow of how configmaps is saved in metamanager.

[image: ../../_images/query-configmap-from-edged.png]Query Configmaps

Fig 9: Query Configmaps by EdgeD




Container GC

Container garbage collector is an edged routine which wakes up every minute, collecting and removing dead containers using the specified container gc policy
The policy for garbage collecting containers we apply takes on three variables, which can be user-defined. MinAge is the minimum age at which a container can be garbage collected, zero for no limit. MaxPerPodContainer is the max number of dead containers any single pod (UID, container name) pair is allowed to have, less than zero for no limit. MaxContainers is the max number of total dead containers, less than zero for no limit as well. Gernerally the oldest containers are removed first.




Image GC

Image garbage collector is an edged routine which wakes up every 5 secs, collects information about disk usage based on the policy used.
The policy for garbage collecting images we apply takes two factors into consideration, HighThresholdPercent and LowThresholdPercent. Disk usage above the high threshold will trigger garbage collection, which attempts to delete unused images until the low threshold is met. Least recently used images are deleted first.




Status Manager

Status manager is as an independent edge routine, which collects pods statuses every 10 seconds and forwards this information with cloud using metaclient interface to the cloud.

[image: ../../_images/pod-status-manger-flow.png]Status Manager Flow

Fig 10: Status Manager Flow




Volume Management

Volume manager runs as an edge routine which brings out the information of which volume(s) are to be attached/mounted/unmounted/detached based on pods scheduled on the edge node.

Before starting the pod, all the specified volumes referenced in pod specs are attached and mounted, Till then the flow is blocked and with it other operations.




MetaClient

Metaclient is an interface of Metamanger for edged. It helps edge to get configmap and secret details from metamanager or cloud.
It also sends sync messages, node status and pod status towards metamanger to cloud.







          

      

      

    

  

    
      
          
            
  
EventBus


Overview

Eventbus acts as an interface for sending/receiving messages on mqtt topics.

It supports 3 kinds of mode:


	internalMqttMode


	externalMqttMode


	bothMqttMode







Topic

eventbus subscribes to the following topics:

- $hw/events/upload/#
- SYS/dis/upload_records
- SYS/dis/upload_records/+
- $hw/event/node/+/membership/get
- $hw/event/node/+/membership/get/+
- $hw/events/device/+/state/update
- $hw/events/device/+/state/update/+
- $hw/event/device/+/twin/+





Note: topic wildcards




	wildcard
	Description





	#
	It must be the last character in the topic, and matches the current tree and all subtrees.



	+
	It matches exactly one item in the topic tree.







Flow chart


1. eventbus sends messages from external client

[image: ../../_images/eventbus-handleMsgFromClient.jpg]eventbus sends messages from external client




2. eventbus sends response messages to external client

[image: ../../_images/eventbus-handleResMsgToClient.jpg]eventbus sends response messages to external client









          

      

      

    

  

    
      
          
            
  
MetaManager


Overview

MetaManager is the message processor between edged and edgehub.
It’s also responsible for storing/retrieving metadata to/from a lightweight database(SQLite).

Metamanager receives different types of messages based on the operations listed below :


	Insert


	Update


	Delete


	Query


	Response


	NodeConnection


	MetaSync







Insert Operation

Insert operation messages are received via the cloud when new objects are created.
An example could be a new user application pod created/deployed through the cloud.

[image: ../../_images/meta-insert.png]Insert Operation

The insert operation request is received via the cloud by edgehub. It dispatches the
request to the metamanager which saves this message in the local database.
metamanager then sends an asynchronous message to edged. edged processes the insert request e,g.
by starting the pod and populates the response in the message.
metamanager inspects the message, extracts the response and sends it back to edged
which sends it back to the cloud.




Update Operation

Update operations can happen on objects at the cloud/edge.

The update message flow is similar to an insert operation. Additionally, metamanager checks if the resource being updated has changed locally.
If there is a delta, only then the update is stored locally and the message is
passed to edged and response is sent back to the cloud.

[image: ../../_images/meta-update.png]Update Operation




Delete Operation

Delete operations are triggered when objects like pods are deleted from the
cloud.

[image: ../../_images/meta-delete.png]Delete Operation




Query Operation

Query operations let you query for metadata either locally at the edge or for some remote resources like config maps/secrets from the cloud. edged queries this
metadata from metamanager which further handles local/remote query processing and
returns the response back to edged. A Message resource can be broken into 3 parts
(resKey,resType,resId) based on separator ‘/’.

[image: ../../_images/meta-query.png]Query Operation




Response Operation

Responses are returned for any operations performed at the cloud/edge. Previous operations
showed the response flow either from the cloud or locally at the edge.




NodeConnection Operation

NodeConnection operation messages are received from edgeHub to give information about the cloud connection status. metamanager tracks this state in-memory and uses it in certain operations
like remote query to the cloud.




MetaSync Operation

MetaSync operation messages are periodically sent by metamanager to sync the status of the
pods running on the edge node. The sync interval is configurable in conf\edge.yaml
( defaults to 60 seconds ).

meta:
    sync:
        podstatus:
            interval: 60 #seconds











          

      

      

    

  

    
      
          
            
  
Edgehub


Overview

Edge hub is a web socket client, which is responsible for interacting with Huawei Cloud IEF service.
It supports functions like sync cloud side resources update, report edged side host and device status changes.

It acts as the communication link between the edge and the cloud.
It forwards the messages received from the cloud to the corresponding module at the edge and vice-versa.

The main functions performed by edgehub are :-


	Get CloudHub URL


	Keep Alive


	Publish Client Info


	Route to Cloud


	Route to Edge







Get CloudHub URL

The main responsibility of get cloudHub URL is to contact the placement server and get the URL of cloudHub.


	A HTTPS client is created using the certificates provided


	A get request is sent to the placement URL


	ProjectID and NodeID are added to the body of the response received from the placement URL to form the cloudHub URL.




bodyBytes, _ := ioutil.ReadAll(resp.Body)
url := fmt.Sprintf("%s/%s/%s/events", string(bodyBytes), ehc.config.ProjectID, ehc.config.NodeID)








Keep Alive

A keep-alive message or heartbeat is sent to cloudHub after every heartbeatPeriod.




Publish Client Info


	The main responsibility of publish client info is to inform the other groups or modules regarding the status of connection to the cloud.


	It sends a beehive message to all groups (namely metaGroup, twinGroup and busGroup), informing them whether cloud is connected or disconnected.







Route To Cloud

The main responsibility of route to cloud is to receive from the other modules (through beehive framework), all the
messages that are to be sent to the cloud, and send them to cloudHub through the websocket connection.

The major steps involved in this process are as follows :-


	Continuously receive messages from beehive Context


	Send that message to cloudHub


	If the message received is a sync message then :

3.1 If response is received on syncChannel then it creates a map[string] chan containing the messageID of the message as key

3.2 It waits for one heartbeat period to receive a response on the channel created, if it does not receive any response on the channel within the specified time then it times out.

3.3 The response received on the channel is sent back to the module using the SendResponse() function.





[image: ../../_images/route-to-cloud.png]Route to Cloud




Route To Edge

The main responsibility of route to edge is to receive messages from the cloud (through the websocket connection) and
send them to the required groups through the beehive framework.

The major steps involved in this process are as follows :-


	Receive message from cloudHub


	Check whether the route group of the message is found.


	Check if it is a response to a SendSync() function.


	If it is not a response message then the message is sent to the required group


	If it is a response message then the message is sent to the syncKeep channel




[image: ../../_images/route-to-edge.png]Route to Edge







          

      

      

    

  

    
      
          
            
  
DeviceTwin


Overview

DeviceTwin module is responsible for storing device status, dealing with device attributes, handling device twin operations, creating a membership
between the edge device and edge node, syncing device status to the cloud and syncing the device twin information between edge and cloud.
It also provides query interfaces for applications. Device twin consists of four sub modules (namely membership module, communication
module, device module and device twin module) to perform the responsibilities of device twin module.




Operations Performed By Device Twin Controller

The following are the functions performed by device twin controller :-


	Sync metadata to/from db ( Sqlite )


	Register and Start Sub Modules


	Distribute message to Sub Modules


	Health Check





Sync Metadata to/from db ( Sqlite )

For all devices managed by the edge node , the device twin performs the below operations :-


	It checks if the device in the device twin context (the list of devices are stored inside the device twin context), if not it adds a mutex to the context.


	Query device from database


	Query device attribute from database


	Query device twin from database


	Combine the device, device attribute and device twin data together into a single structure and stores it in the device twin context.







Register and Start Sub Modules

Registers the four device twin modules and starts them as separate go routines




Distribute Message To Sub Modules


	Continuously listen for any device twin message in the beehive framework.


	Send the received message to the communication module of device twin


	Classify the message according to the message source, i.e. whether the message is from eventBus, edgeManager or edgeHub,
and fills the action module map of the module (ActionModuleMap is a map of action to module)


	Send the message to the required device twin module







Health Check

The device twin controller periodically ( every 60 s ) sends ping messages to submodules. Each of the submodules updates the timestamp in a map for itself once it receives a ping.
The controller checks if the timestamp for a module is more than 2 minutes old and restarts the submodule if true.






Modules

DeviceTwin consists of four modules, namely :-


	Membership Module


	Twin Module


	Communication Module


	Device Module





Membership Module

The main responsibility of the membership module is to provide membership to the new devices added through the cloud to the edge node.
This module binds the newly added devices to the edge node and creates a membership between the edge node and the edge devices.

The major functions performed by this module are:-


	Initialize action callback map which is a map[string]Callback that contains the callback functions that can be performed


	Receive the messages sent to membership module


	For each message the action message is read and the corresponding function is called


	Receive heartbeat from the heartbeat channel and send a heartbeat to the controller




The following are the action callbacks which can be performed by the membership module :-


	dealMembershipGet


	dealMembershipUpdated


	dealMembershipDetail




dealMembershipGet:    dealMembershipGet()  gets the information  about the devices associated with the particular edge node, from the cache.


	The eventbus first receives a message on its subscribed topic (membership-get topic).


	This message arrives at the  devicetwin controller, which further sends the message to membership module.


	The membership module gets the devices associated with the edge node from the cache (context) and sends the information to the communication module.
It also handles errors that may arise while performing the  aforementioned process and sends the error to the communication module instead of device details.


	The communication module sends the information to the  eventbus component which further publishes the result on the
specified MQTT topic (get membership result topic).

[image: ../../_images/membership-get.png]Membership Get()





dealMembershipUpdated:  dealMembershipUpdated() updates the membership details of the node.
It adds the devices, that were newly added, to the edge group and removes the devices, that were removed,
from the edge group and updates device details, if they have been altered or updated.


	The eventbus module receives the message that arrives on the subscribed topic and forwards the message
to devicetwin controller which further forwards it to the membership module.


	The membership  module adds devices that are newly added, removes devices that have been recently
deleted and also updates the devices that were already existing in the database as well as in the cache.


	After updating the details of the devices a  message is sent to the communication module of the device twin, which sends the message to eventbus module to be published on the given MQTT topic.

[image: ../../_images/membership-update.png]Membership Update





dealMembershipDetail:   dealMembershipDetail() provides the membership details of the edge node, providing information
about the devices associated with the edge node, after removing the membership details of
recently removed devices.


	The eventbus module receives the message that arrives on the subscribed topic,the message is then forwarded  to the
devicetwin controller which further forwards it to the membership module.


	The membership  module adds devices that are mentioned in the message, removes
devices that that are not present in the cache.


	After updating the details of the devices a  message is sent to the communication module of the device twin.

[image: ../../_images/membership-detail.png]Membership Detail








Twin Module

The main responsibility of the twin module is to deal with all the device twin related operations. It can perform
operations like device twin update, device twin get and device twin sync-to-cloud.

The major functions performed by this module are:-


	Initialize action callback map (which is a  map of action(string) to the callback function that performs the requested action)


	Receive the messages sent to twin module


	For each message the action message is read and the corresponding function is called


	Receive heartbeat from the heartbeat channel and send a heartbeat to the controller




The following are the action callbacks which can be performed by the twin module :-


	dealTwinUpdate


	dealTwinGet


	dealTwinSync




dealTwinUpdate: dealTwinUpdate() updates the device twin information for a particular device.


	The devicetwin update message can either be received by edgehub module from the cloud or from
the MQTT broker through the eventbus component (mapper will publish a message on the device twin update topic) .


	The message is then sent to the device twin controller from where it is sent to the device twin module.


	The twin module updates the twin value in the database and sends the update result message to the communication module.


	The communication module will in turn send the publish message to the MQTT broker through the eventbus.

[image: ../../_images/devicetwin-update.png]Device Twin Update





dealTwinGet: dealTwinGet() provides the device twin  information for a particular device.


	The eventbus component  receives the message that arrives on the subscribed twin get topic and forwards the message to devicetwin controller, which further sends the message to twin module.


	The twin module gets the devicetwin related information for the particular device and sends it to the communication module, it also handles errors that arise when the device is not found or if any internal problem occurs.


	The communication module sends the information to the eventbus component, which publishes the result on the topic specified .

[image: ../../_images/devicetwin-get.png]Device Twin Get





dealTwinSync: dealTwinSync() syncs the device twin information to the cloud.


	The eventbus module receives the message on the subscribed twin cloud sync topic .


	This message is then sent to the devicetwin controller from where it is sent to the twin module.


	The twin module then syncs the twin information present in the database and sends the synced twin results to the communication module.


	The communication module further sends the information to edgehub component which will in turn send the updates to the cloud through the websocket connection.


	This function also performs operations like publishing the updated twin details  document, delta of the device twin as well as the update result (in case there is some error) to a specified topic through the communication module,
which sends the data to edgehub, which will send it to eventbus which publishes on the MQTT broker.




[image: ../../_images/sync-to-cloud.png]Sync to Cloud




Communication Module

The main responsibility of communication module is to ensure the communication functionality between device twin  and the other components.

The major functions performed by this module are:-


	Initialize action callback map which is a map[string]Callback that contains the callback functions that can be performed


	Receive the messages sent to communication module


	For each message the action message is read and the corresponding function is called


	Confirm whether the actions specified in the message are completed or not, if the action is not completed then redo the action


	Receive heartbeat from the heartbeat channel and send a heartbeat to the controller




The following are the action callbacks which can be performed by the communication module :-


	dealSendToCloud


	dealSendToEdge


	dealLifeCycle


	dealConfirm




dealSendToCloud: dealSendToCloud() is used to send data to the cloudHub component.
This function first ensures that the cloud is connected, then sends the message to the edgeHub module (through the beehive framework),
which in turn will forward the message to the cloud (through the websocket connection).

dealSendToEdge:  dealSendToEdge() is used to send data to the other modules present at the edge.
This function sends the message received to the edgeHub module using beehive framework.
The edgeHub module after receiving the message will send it to the required recipient.

dealLifeCycle:   dealLifeCycle() checks if the cloud is connected and the state of the twin is disconnected, it then changes the status
to connected and sends the node details to edgehub. If the cloud is disconnected then, it sets the state of the twin
as disconnected.

dealConfirm:     dealConfirm() is used to confirm the event. It checks whether the type of the message is right and
then deletes the id from the confirm map.




Device Module

The main responsibility of the device module is to perform the device related operations like dealing with device state updates
and device attribute updates.

The major functions performed by this module are :-


	Initialize action callback map (which is a  map of action(string) to the callback function that performs the requested action)


	Receive the messages sent to device module


	For each message the action message is read and the corresponding function is called


	Receive heartbeat from the heartbeat channel and send a heartbeat to the controller




The following are the action callbacks which can be performed by the device module :-


	dealDeviceUpdated


	dealDeviceStateUpdate




dealDeviceUpdated: dealDeviceUpdated() deals with the operations to be performed when a device attribute update is encountered.
It updates the changes to the device attributes, like addition of attributes, updation of attributes and deletion of attributes,
in the database. It also sends the result of the device attribute update to be  published to the eventbus component
through the communicate module of devicetwin. The eventbus component further publishes the result on the specified topic.

[image: ../../_images/device-update.png]Device Update

dealDeviceStateUpdate:  dealDeviceStateUpdate() deals with the operations to be performed when a device status update is encountered.
It updates the state of the device as well as the last online time of the device in the database.
It also sends the update state result, through the communication module,  to the cloud through the edgehub module and to the  eventbus module which in turn
publishes the result on the specified topic of the MQTT broker.

[image: ../../_images/device-state-update.png]Device State Update






Tables

DeviceTwin module creates three tables in the database, namely :-


	Device Table


	Device Attribute Table


	Device Twin Table





Device Table

Device table contains the data regarding the devices added to a particular edge node.
The following are the columns present in the device table :




	Column Name
	Description





	ID
	This field indicates the id assigned to the device



	Name
	This field indicates the name of the device



	Description
	This field indicates the description of the device



	State
	This field indicates the state of the device



	LastOnline
	This fields indicates when the device was last online




Operations Performed :-

The following are the operations that can be performed on this data :-


	Save Device: Inserts a device in the device table


	Delete Device By ID: Deletes a device by its ID from the device table


	Update Device Field: Updates a single field in the device table


	Update Device Fields: Updates multiple fields in the device table


	Query Device: Queries a device from the device table


	Query Device All: Displays all the devices present in the device table


	Update Device Multi: Updates multiple columns of multiple devices in the device table


	Add Device Trans: Inserts device, device attribute and device twin in a single transaction, if any of these operations fail,
then it rolls back the other insertions


	Delete Device Trans: Deletes device, device attribute and device twin in a single transaction, if any of these operations fail,
then it rolls back the other deletions







Device Attribute Table

Device attribute table contains the data regarding the device attributes associated with a particular device in the edge node.
The following are the columns present in the device attribute table :




	Column Name
	Description





	ID
	This field indicates the id assigned to the device attribute



	DeviceID
	This field indicates the device id of the device associated with this attribute



	Name
	This field indicates the name of the device attribute



	Description
	This field indicates the description of the device attribute



	Value
	This field indicates the value of the device attribute



	Optional
	This fields indicates whether the device attribute is optional or not



	AttrType
	This fields indicates the type of attribute that is referred to



	Metadata
	This fields describes the metadata associated with the device attribute




Operations Performed :-

The following are the operations that can be performed on this data :


	Save Device Attr: Inserts a device attribute in the device attribute table


	Delete Device Attr By ID: Deletes a device attribute by its ID from the device attribute table


	Delete Device Attr: Deletes a device attribute from the device attribute table by filtering based on device id and device name


	Update Device Attr Field: Updates a single field in the device attribute table


	Update Device Attr Fields: Updates multiple fields in the device attribute table


	Query Device Attr: Queries a device attribute from the device attribute table


	Update Device Attr Multi: Updates multiple columns of multiple device attributes in the device attribute table


	Delete Device Attr Trans: Inserts device attributes, deletes device attributes and updates device attributes in a single transaction.







Device Twin Table

Device twin table contains the data related to the device device twin associated with a particular device in the edge node.
The following are the columns present in the device twin table :




	Column Name
	Description





	ID
	This field indicates the id assigned to the device twin



	DeviceID
	This field indicates the device id of the device associated with this device twin



	Name
	This field indicates the name of the device twin



	Description
	This field indicates the description of the device twin



	Expected
	This field indicates the expected value of the device



	Actual
	This field indicates the actual value of the device



	ExpectedMeta
	This field indicates the metadata associated with the expected value of the device



	ActualMeta
	This field indicates the metadata associated with the actual value of the device



	ExpectedVersion
	This field indicates the version of the expected value of the device



	ActualVersion
	This field indicates the version of the actual value of the device



	Optional
	This fields indicates whether the device twin is optional or not



	AttrType
	This fields indicates the type of attribute that is referred to



	Metadata
	This fields describes the metadata associated with the device twin




Operations Performed :-

The following are the operations that can be performed on this data :-


	Save Device Twin: Inserts a device twin in the device twin table


	Delete Device Twin By Device ID: Deletes a device twin by its ID from the device twin table


	Delete Device Twin: Deletes a device twin from the device twin table by filtering based on device id and device name


	Update Device Twin Field: Updates a single field in the device twin table


	Update Device Twin Fields: Updates multiple fields in the device twin table


	Query Device Twin: Queries a device twin from the device twin table


	Update Device Twin Multi: Updates multiple columns of multiple device twins in the device twin table


	Delete Device Twin Trans: Inserts device twins, deletes device twins and updates device twins in a single transaction.












          

      

      

    

  

    
      
          
            
  
Edge Controller


Edge Controller Overview

Controller(also known as edgecontroller) is the bridge between Kubernetes Api-Server and edgecore




Operations Performed By Edge Controller

The following are the functions performed by Edge controller :-


	Downstream Controller:Sync add/update/delete event to edgecore from K8s Api-server


	Upstream Controller:Sync watch and Update status of resource and events(node, pod and configmap) to K8s-Api-server and also subscribe message from edgecore


	Controller Manager:Creates manager Interface which implements events for managing ConfigmapManager LocationCache and podManager







Downstream Controller:


Sync add/update/delete event to edge


	Downstream controller:Watches K8S-Api-server and send updates to edgecore via cloudHub


	Sync (pod,configmap,secret) add/update/delete event to edge via cloudHub


	Creates Respective manager (pod, configmap, secret) for handling events by calling manager interface


	Locates configmap and secret should be send to which node




[image: ../../_images/DownstreamController.png]Downstream Controller






Upstream Controller:


Sync watch and Update status of resource and events


	UpstreamController receives messages from edgecore and sync the updates to K8S-Api-server


	Creates stop channel to dispatch and stop event to handle pods, configMaps, node and secrets


	Creates message channel to update Nodestatus, Podstatus, Secret and configmap related events


	Gets Podcondition information like Ready, Initialized, Podscheduled and Unschedulable details


	Below is the information for PodCondition


	Ready:PodReady means the pod is able to service requests and should be added to the load balancing pools for all matching services


	PodScheduled:It represents status of the scheduling process for this pod


	Unschedulable:It means scheduler cannot schedule the pod right now, may be due to insufficient resources in the cluster


	Initialized:It means that all Init containers in the pod have started sucessfully


	ContainersReady:It indicates whether all containers in the pod are ready






	Below is the information for PodStatus


	PodPhase:Current condition of the pod


	Conditions:Details indicating why the pod is in this condition


	HostIP:IP address of the host to which pod is assigned


	PodIp:IP address allocated to the Pod


	QosClass:Assigned to the pod based on resource requirement




[image: ../../_images/UpstreamController.png]Upstream Controller










Controller Manager:


Creates manager Interface and implements ConfigmapManager LocationCache and podManager


	Manager defines the Interface of a manager, ConfigManager, Podmanager, secretmanager implements it


	Manages OnAdd, OnUpdate and OnDelete events which will be updated to the respective edge node from the K8s-Api-server


	Creates an eventManager(configMaps, pod, secrets) which will start a CommonResourceEventHandler, NewListWatch and a newShared Informer for each event to Sync(add/update/delete)event(pod, configmap, secret) to edgecore via cloudHub


	Below is the List of handlers created by controller Manager


	CommonResourceEventHandler:NewcommonResourceEventHandler creates CommonResourceEventHandler used for Configmap and pod Manager


	NewListWatch:Creates a new ListWatch from the specified client resource namespace and field selector


	NewSharedInformer:Creates a new Instance for the Listwatcher
















          

      

      

    

  

    
      
          
            
  
CloudHub


CloudHub Overview

CloudHub is a web socket client, which is the mediator between EdgeController and the Edge side.
Its function is enable the communication between edge and the EdgeController.

The connection to the edge(through EdgeHub module) is done through the HTTP over websocket connection.
For internal communication it directly communicates with the EdgeController.
All the request send to CloudHub are of context object which are stored in channelQ along with the
mapped channels of event object marked to its nodeID.

The main functions performed by CloudHub are :-


	Get message context and create ChannelQ for events


	Create http connection over websocket


	Serve websocket connection


	Read message from edge


	Write message to edge


	Publish message to Controller





Get message context and create ChannelQ for events:

The context object is stored in a channelQ.
For all nodeID channel is created and the message is converted to event object
Event object is then passed through the channel.




Create http connection over websocket:


	TLS certificates are loaded through the path provided in the context object


	HTTP server is started with TLS configurations


	Then HTTP connection is upgraded to websocket connection receiving conn object.


	ServeConn function the serves all the incoming connections







Read message from edge:


	First a deadline is set for keepalive interval


	Then the JSON message from connection is read


	After that Message Router details are set


	Message is then converted to event object for cloud internal communication


	In the end the event is published to EdgeController







Write Message to Edge:


	First all event objects are received for the given nodeID


	The existence of same request and the liveness of the node is checked


	The event object is converted to message structure


	Write deadline is set. Then the message is passed to the websocket connection







Publish Message to EdgeController:


	A default message with timestamp, clientID and event type is sent to controller
every time a request is made to websocket connection


	If the node gets disconnected then error is thrown and an event describing
node failure is published to the controller.












          

      

      

    

  

    
      
          
            
  
Pre-requisites

For best understanding of the guides, it’s useful to have some knowledge of
the following systems:


	Kubernetes [https://kubernetes.io/docs/tutorials/kubernetes-basics/]


	Mosquitto [https://github.com/eclipse/mosquitto]


	Docker [https://docs.docker.com/v17.09/engine/docker-overview/#docker-engine]








          

      

      

    

  

    
      
          
            
  
Setup KubeEdge


Prerequisites

To use KubeEdge, you will need to have docker installed. If you don’t, please follow these steps to install docker.




Install docker

For ubuntu:

# Install Docker from Ubuntu's repositories:
apt-get update
apt-get install -y docker.io

# or install Docker CE 18.06 from Docker's repositories for Ubuntu or Debian:
apt-get update && apt-get install apt-transport-https ca-certificates curl software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
add-apt-repository \
   "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
   $(lsb_release -cs) \
   stable"
apt-get update && apt-get install docker-ce=18.06.0~ce~3-0~ubuntu





For centOS:

# Install Docker from CentOS/RHEL repository:
yum install -y docker

# or install Docker CE 18.06 from Docker's CentOS repositories:
yum install yum-utils device-mapper-persistent-data lvm2
yum-config-manager \
    --add-repo \
    https://download.docker.com/linux/centos/docker-ce.repo
yum update && yum install docker-ce-18.06.1.ce





KubeEdge’s Cloud(edgecontroller) connects to Kubernetes master to sync updates of node/pod status. If you don’t have Kubernetes setup, please follow these steps to install Kubernetes using kubeadm.




Install kubeadm/kubectl

For Ubuntu:

apt-get update && apt-get install -y apt-transport-https curl
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
cat <<EOF >/etc/apt/sources.list.d/kubernetes.list
deb https://apt.kubernetes.io/ kubernetes-xenial main
EOF
apt-get update
apt-get install -y kubelet kubeadm kubectl
apt-mark hold kubelet kubeadm kubectl





For CentOS:

at <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-x86_64
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
exclude=kube*
EOF

# Set SELinux in permissive mode (effectively disabling it)  

setenforce 0
sed -i 's/^SELINUX=enforcing$/SELINUX=permissive/' /etc/selinux/config

yum install -y kubelet kubeadm kubectl --disableexcludes=kubernetes

systemctl enable --now kubelet








Install Kubernetes

To initialize Kubernetes master, follow the below step:

kubeadm init





After initializing Kubernetes master, we need to expose insecure port 8080 for edgecontroller/kubectl to work with http connection to api-server
Please follow below steps to enable http port in apiserver

vi /etc/kubernetes/manifests/kube-apiserver.yaml
# Add the following flags in spec: containers: -command section
- --insecure-port=8080
- --insecure-bind-address=0.0.0.0





KubeEdge uses MQTT for communication between deviceTwin and devices. KubeEdge supports 3 MQTT modes:


	0 - internalMqttMode: internal mqtt broker is enabled


	1 - bothMqttMode: internal as well as external broker are enabled


	2 - externalMqttMode: only external broker is enabled




Use mode field in edge.yaml [https://github.com/kubeedge/kubeedge/blob/master/edge/conf/edge.yaml] to select the desired mode

mqtt:
    server: tcp://127.0.0.1:1883 # external mqtt broker url.
    internal-server: tcp://127.0.0.1:1884 # internal mqtt broker url.
    mode: 0 # 0: internal mqtt broker enable only. 1: internal and external mqtt broker enable. 2: external mqtt broker enable only.
    qos: 0 # 0: QOSAtMostOnce, 1: QOSAtLeastOnce, 2: QOSExactlyOnce.
    retain: false # if the flag set true, server will store the message and can be delivered to future subscribers.
    session-queue-size: 100 # A size of how many sessions will be handled. default to 100.





To use kubeedge in double mqtt or external mode, make sure you have mosquitto in your environment. If you do not already have it, you may install as follows.




Install mosquitto

For ubuntu:

apt install mosquitto





For centOS:

yum install mosquitto





See mosquitto official website [https://mosquitto.org/download/] for more information.




Authentication

KubeEdge has certificate based authentication/authorization between cloud and edge. Certificates can be generated using openssl. Please follow the steps below to generate certificates.


Install openssl

If openssl is not already present using below command to install openssl

apt-get install openssl








Generate Certificates

RootCA certificate and a cert/key pair is required to have a setup for KubeEdge. Same cert/key pair can be used in both cloud and edge.

# Generete Root Key
openssl genrsa -des3 -out rootCA.key 4096
# Generate Root Certificate
openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 1024 -out rootCA.crt
# Generate Key
openssl genrsa -out kubeedge.key 2048
# Generate csr, Fill required details after running the command
openssl req -new -key kubeedge.key -out kubeedge.csr
# Generate Certificate
openssl x509 -req -in kubeedge.csr -CA rootCA.crt -CAkey rootCA.key -CAcreateserial -out kubeedge.crt -days 500 -sha256 










Build


Clone KubeEdge

git clone https://github.com/kubeedge/kubeedge.git $GOPATH/src/github.com/kubeedge/kubeedge
cd $GOPATH/src/github.com/kubeedge/kubeedge








Build Cloud

cd $GOPATH/src/github.com/kubeedge/kubeedge/cloud/edgecontroller
make # or `make edgecontroller`








Build Edge

cd $GOPATH/src/github.com/kubeedge/kubeedge/edge
make # or `make edgecontroller`





KubeEdge can also be cross compiled to run on ARM based processors.
Please click Cross Compilation for the instructions.






Run KubeEdge


Run Cloud

cd $GOPATH/src/github.com/kubeedge/kubeedge/cloud/edgecontroller
# run edge controller
# `conf/` should be in the same directory as the binary
# verify the configurations before running cloud(edgecontroller)
./edgecontroller








Run Edge

We have provided a sample node.json to add a node in kubernetes. Please make sure edge-node is added in kubernetes. Run below steps to add edge-node

kubectl apply -f $GOPATH/src/github.com/kubeedge/kubeedge/build/node.json





# run mosquitto
mosquitto -d -p 1883

# run edge_core
# `conf/` should be in the same directory as the binary
# verify the configurations before running edge(edge_core)
./edge_core
# or
nohup ./edge_core > edge_core.log 2>&1 &





If you are using HuaweiCloud IEF, then the edge node you created should be running (check it in the IEF console page).






Deploy Application

Try out a sample application deployment by following below steps

kubectl apply -f $GOPATH/src/github.com/kubeedge/kubeedge/build/deployment.yaml





Note:
Currently, for edge node, we must use hostPort in the Pod container spec so that the pod comes up normally, or the pod will be always in ContainerCreating status. The hostPort must be equal to containerPort and can not be 0.




Run Edge Unit Tests

make edge_test





To run unit tests of a package individually

export GOARCHAIUS_CONFIG_PATH=$GOPATH/src/github.com/kubeedge/kubeedge/edge
cd <path to package to be tested>
go test -v








Run Edge Integration Tests

make edge_integration_test






Details and use cases of integration test framework

Please find the link [https://github.com/kubeedge/kubeedge/tree/master/edge/test/integration] to use cases of intergration test framework for kubeedge









          

      

      

    

  

    
      
          
            
  
Cross Compiling KubeEdge


For ARM Architecture from x86 Architecture

Clone KubeEdge

# Build and run KubeEdge on a ARMv6 target device.

git clone https://github.com/kubeedge/kubeedge.git $GOPATH/src/github.com/kubeedge/kubeedge
cd $GOPATH/src/github.com/kubeedge/kubeedge/edge
sudo apt-get install gcc-arm-linux-gnueabi
export GOARCH=arm
export GOOS="linux"
export GOARM=6                             #Pls give the appropriate arm version of your device  
export CGO_ENABLED=1
export CC=arm-linux-gnueabi-gcc
make # or `make edge_core`











          

      

      

    

  

    
      
          
            
  
Try KubeEdge with HuaweiCloud (IEF)


Intelligent EdgeFabric (IEF) [https://www.huaweicloud.com/product/ief.html]

Note: The HuaweiCloud IEF is only available in China now.


	Create an account in HuaweiCloud [https://www.huaweicloud.com].


	Go to IEF [https://www.huaweicloud.com/product/ief.html] and create an Edge node.


	Download the node configuration file (<node_name>.tar.gz).


	Run cd $GOPATH/src/github.com/kubeedge/kubeedge/edge to enter edge directory.


	Run bash -x hack/setup_for_IEF.sh /PATH/TO/<node_name>.tar.gz to modify the configuration files in conf/.










          

      

      

    

  

    
      
          
            
  
MQTT Message Topics

KubeEdge uses MQTT for communication between deviceTwin and devices/apps.
EventBus can be started in multiple MQTT modes and acts as an interface for sending/receiving messages on relevant MQTT topics.

The purpose of this document is to describe the topics which KubeEdge uses for communication.
Please read Beehive documentation for understanding about message format used by KubeEdge.


Subscribe Topics

On starting EventBus, it subscribes to these 5 topics:

1. "$hw/events/node/+/membership/get"
2. "$hw/events/device/+/state/update"
3. "$hw/events/device/+/twin/+"
4. "$hw/events/upload/#"
5. "SYS/dis/upload_records"





If the the message is received on first 3 topics, the message is sent to deviceTwin, else the message is sent to cloud via edgeHub.

We will focus on the message expected on the first 3 topics.


	"$hw/events/node/+/membership/get":
This topics is used to get membership details of a node i.e the devices that are associated with the node.
The response of the message is published on "$hw/events/node/+/membership/get/result" topic.


	"$hw/events/device/+/state/update”:
This topic is used to update the state of the device. + symbol can be replaced with ID of the device whose state is to be updated.


	"$hw/events/device/+/twin/+":
The two + symbols can be replaced by the deviceID on whose twin the operation is to be performed and any one of(update,cloud_updated,get) respectively.




Following is the explanation of the three suffix used:


	update: this suffix is used to update the twin for the deviceID.


	cloud_updated: this suffix is used to sync the twin status between edge and cloud.


	get: is used to get twin status of a device. The response is published on "$hw/events/device/+/twin/get/result" topic.










          

      

      

    

  

    
      
          
            
  
Unit Test Guide

The purpose of this document is to give introduction about unit tests and to help contributors in writing unit tests.


Unit Test

Read this article [http://softwaretestingfundamentals.com/unit-testing/] for a simple introduction about unit tests and benefits of unit testing. Go has its own built-in package called testing and command called go test.For more detailed information on golang’s builtin testing package read this document [https://golang.org/pkg/testing/%5D].




Mocks

The object which needs to be tested may have dependencies on other objects. To confine the behavior of the object under test, replacement of the other objects by mocks that simulate the behavior of the real objects is necessary.
Read this article [https://medium.com/@piraveenaparalogarajah/what-is-mocking-in-testing-d4b0f2dbe20a] for more information on mocks.

GoMock is a mocking framework for Go programming language.
Read godoc [https://godoc.org/github.com/golang/mock/gomock] for more information about gomock.

Mock for an interface can be automatically generated using GoMocks [https://github.com/golang/mock] mockgen package.

Note There is gomock package in kubeedge vendor directory without mockgen. Please use mockgen package of tagged version v1.1.1 of GoMocks github repository [https://github.com/golang/mock] to install mockgen and generate mocks. Using higher version may cause errors/panics during execution of you tests.

There is gomock package in kubeedge vendor directory without mockgen. Please use mockgen package of tagged version v1.1.1 of GoMocks github repository [https://github.com/golang/mock] to install mockgen and generate mocks. Using higher version may cause errors/panics during execution of you tests.

Read this article [https://blog.codecentric.de/en/2017/08/gomock-tutorial/] for a short tutorial of usage of gomock and mockgen.




Ginkgo

Ginkgo [https://onsi.github.io/ginkgo/] is one of the most popular framework for writing tests in go.

Read godoc [https://godoc.org/github.com/onsi/ginkgo] for more information about ginkgo.

See a sample [https://github.com/kubeedge/kubeedge/blob/master/pkg/metamanager/dao/meta_test.go] in kubeedge where go builtin package testing and gomock is used for writing unit tests.

See a sample [https://github.com/kubeedge/kubeedge/blob/master/pkg/devicetwin/dtmodule/dtmodule_test.go] in kubeedge where ginkgo is used for testing.




Writing UT using GoMock


Example : metamanager/dao/meta.go

After reading the code of meta.go, we can find that there are 3 interfaces of beego which are used. They are Ormer [https://github.com/kubeedge/kubeedge/blob/master/vendor/github.com/astaxie/beego/orm/types.go], QuerySeter [https://github.com/kubeedge/kubeedge/blob/master/vendor/github.com/astaxie/beego/orm/types.go] and RawSeter [https://github.com/kubeedge/kubeedge/blob/master/vendor/github.com/astaxie/beego/orm/types.go].

We need to create fake implementations of these interfaces so that we do not rely on the original implementation of this interface and their function calls.

Following are the steps for creating fake/mock implementation of Ormer, initializing it and replacing the original with fake.


	Create directory mocks/beego.


	use mockgen to generate fake implementation of the Ormer interface




mockgen -destination=mocks/beego/fake_ormer.go -package=beego github.com/astaxie/beego/orm Ormer






	destination : where you want to create the fake implementation.


	package : package of the created fake implementation file


	github.com/astaxie/beego/orm : the package where interface definition is there


	Ormer : generate mocks for this interface





	Initialize mocks in your test file. eg meta_test.go




mockCtrl := gomock.NewController(t)
defer mockCtrl.Finish()
ormerMock = beego.NewMockOrmer(mockCtrl)






	ormermock is now a fake implementation of Ormer interface. We can make any function in ormermock return any value you want.


	replace the real Ormer implementation with this fake implementation. DBAccess is variable to type Ormer which we will replace with mock implemention




dbm.DBAccess = ormerMock






	If we want Insert function of ormer interface which has return types as (int64,err) to return (1 nil), it can be done in 1 line in your test file using gomock.




ormerMock.EXPECT().Insert(gomock.Any()).Return(int64(1), nil).Times(1)





Expect() : is to tell that a function of ormermock will be called.

Insert(gomock.Any()) : expect Insert to be called with any parameter.

Return(int64(1), nil) : return 1 and error nil

Times(1): expect insert to be called once and return 1 and nil only once.

So whenever insert is called, it will return 1 and nil, thus removing the dependency on external implementation.









          

      

      

    

  

    
      
          
            
  
FAQs

This page contains a few commonly occuring questions.
For further support please contact us using the support page





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  The documentation for the KubeEdge project resides at https://docs.kubeedge.io.



          

      

      

    

  

    
      
          
            
  
Reporting bugs

If any part of the kubeedge project has bugs or documentation mistakes, please let us know by opening an issue. We treat bugs and mistakes very seriously and believe no issue is too small. Before creating a bug report, please check that an issue reporting the same problem does not already exist.

To make the bug report accurate and easy to understand, please try to create bug reports that are:


	Specific. Include as much details as possible: which version, what environment, what configuration, etc. If the bug is related to running the kubeedge server, please attach the kubeedge log (the starting log with kubeedge configuration is especially important).


	Reproducible. Include the steps to reproduce the problem. We understand some issues might be hard to reproduce, please includes the steps that might lead to the problem.


	Isolated. Please try to isolate and reproduce the bug with minimum dependencies. It would significantly slow down the speed to fix a bug if too many dependencies are involved in a bug report.


	Unique. Do not duplicate existing bug report.


	Scoped. One bug per report. Do not follow up with another bug inside one report.




We might ask for further information to locate a bug. A duplicated bug report will be closed.





          

      

      

    

  _images/eventbus-handleMsgFromClient.jpg
send message
send message

Topic ts load/#
sl opic eventsapoad/ =
Topics SYS/dis/upload_records e
Message
eventBus (7 g broker
send message message
Topicievent/node/+/membership/get
deviceTwin events/device/+/state/update
event/device/+/twin/+

Eventbus sends messages from external client





_images/eventbus-handleResMsgToClient.jpg
send response,

send response

edgehub

Topic: events/upload/#
Topic: SYS/dis/upload_records/+

deviceTwin

send response

event/node/+/membership/get/

Topic:event/device/+/twin/+
e/+/state/update/s,

Topicievents/de:

send
response

Message
broker

eventBus
send

response

Eventbus sends response messages to external client





_images/devicetwin-update.png
1. twin update
message

2.sendto
device twin

twin module devicetwin controller edgehub

1. send the message recelved
on the devicetwin

update topic

5. gt update result

eventbus
communication modue

4.update devicetwin
detalls

6. send the update
result 0 be published.

Devicetwin Update Operation





_images/edged-overall.png
Pod Management Probe Management Volume Management

Pod Lifecycle Event Container Garbage. Image Garbage
Generator Collection Collection

‘Secret Management Conftap) Container Runtime

Management

Pod Status
Management

MetaClient






_images/membership-get.png
devicetwin

1. send the subscribed
‘message received on membership
get opic

membership
module

devicetwin controller eventbus

4. send the message to
be published on the
et membership result oplc

3. get the lst of
devices from the context

communication modue

Memebership Get Operation





_images/membership-update.png
devicetwin

1. send the message recelved
‘onthe device update topic

membership module devicetwin controller eventbus

5. send the membership
update result to be published

4. send membership
update result

communication modue

3. update membership
detall in database as
well In the cache.

Membership Update Operation





_images/kubeedge_arch.png
Q

KubeEdge

8 —kubectl-

cloud part

docker]

Pod/Volume/...

Devices|

edge part






_images/membership-detail.png
devicetwin

1. send the message recelved
‘onthe device update topic

membership module devicetwin controller eventbus

5. send the membership.
details 1o be published

4. send membership
detai result.

communication modue

3.Add the devices
mentioned in the message
& remove thatdevice £ it
does not already exist in the cache

‘Membership Detail Operation





_images/meta-delete.png
Delete Operation





_images/meta-insert.png
Insert Operation





_images/device-state-update.png
6. send the device state

update.

result o the cloud

on the device state

1 1 send he message e
; updte topic

twin module devicetwin controller eventbus edgehub

5.send the device state
update.
result o be published

4. send device sate update:
result

communication modue

3. update device
sate detals 5.send device state update

result

Device State Update Operation





_images/device-update.png
devicetwin

1. send the message recelved
‘onthe device update topic

twin module devicetwin controller eventbus

4. send device atribute
update result

5. send device attrbute.
update result to be published

communication modue

3.update device
atrbute detals

Device Update Operation





_images/UpstreamController.png
CloudPart

REST Client

Update Pod/pod status
Query configmap/secret
Creates Stopimessage channel
Update Pod condition






_images/configmap-handling.png
Message Handle Configmap
And/nelete/upm

|——configmap message—pp! |
to edge node Post configmap |

,—add/dele1e/updme—>|
post

message to edged nfigmap

dd/delbte/update

message to edged | Add configmap extracted___|
from message content P

| |—insert configmap to cache.
|
|

|

! Update/Delete
|—— configmap extracted
from message content

Y

et configmap from cache
I_G gl

< Retum configmap data_ _|
from cache

| |
If Exists |

| updateoelete
1

configmap from cache ™






_images/devicetwin-get.png
devicetwin

1. send the subscribed
‘message received on twin
get opic

twin module devicetwin controller eventbus

4. send the message to
be published on the
i result toplc:

3. get the twin
information from the context

communication modue

Devicetwin Get Operation





_images/meta-query.png
Remote Query Operation
From Edge To Cloud

Local Query Operation At Edge





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to KubeEdge’s documentation!
        


        		
          Welcome to KubeEdge
          
            		
              Why KubeEdge?
            


            		
              First Steps
            


          


        


        		
          How to contribute
          
            		
              Email and chat
            


            		
              Getting started
            


            		
              Reporting bugs and creating issues
              
                		
                  Contribution flow
                


                		
                  Code style
                


                		
                  Format of the commit message
                


              


            


          


        


        		
          Roadmap
          
            		
              Release 1.0
            


            		
              Release 2.0 and Future
            


          


        


        		
          Support
          
            		
              Community
            


          


        


        		
          What is KubeEdge
          
            		
              Advantages
            


            		
              Components
            


            		
              Architecture
            


            		
              Getting involved
            


          


        


        		
          Beehive
          
            		
              Beehive Overview
            


            		
              Message Format
            


            		
              Register Module
            


            		
              Channel Context Structure Fields
              
                		
                  (Important for understanding beehive operations)
                


              


            


            		
              Module Operations
              
                		
                  Add Module
                


                		
                  Add Module to Group
                


                		
                  CleanUp
                


              


            


            		
              Message Operations
              
                		
                  Send to a Module
                


                		
                  Send to a Group
                


                		
                  Receive by a Module
                


                		
                  SendSync to a Module
                


                		
                  SendSync to a Group
                


                		
                  SendResp to a sync message
                


              


            


          


        


        		
          EdgeD
          
            		
              Overview
            


            		
              Pod Management
            


            		
              Pod Lifecycle Event Generator
            


            		
              Secret Management
            


            		
              Probe Management
            


            		
              ConfigMap Management
            


            		
              Container GC
            


            		
              Image GC
            


            		
              Status Manager
            


            		
              Volume Management
            


            		
              MetaClient
            


          


        


        		
          EventBus
          
            		
              Overview
            


            		
              Topic
            


            		
              Flow chart
              
                		
                  1. eventbus sends messages from external client
                


                		
                  2. eventbus sends response messages to external client
                


              


            


          


        


        		
          MetaManager
          
            		
              Overview
            


            		
              Insert Operation
            


            		
              Update Operation
            


            		
              Delete Operation
            


            		
              Query Operation
            


            		
              Response Operation
            


            		
              NodeConnection Operation
            


            		
              MetaSync Operation
            


          


        


        		
          Edgehub
          
            		
              Overview
            


            		
              Get CloudHub URL
            


            		
              Keep Alive
            


            		
              Publish Client Info
            


            		
              Route To Cloud
            


            		
              Route To Edge
            


          


        


        		
          DeviceTwin
          
            		
              Overview
            


            		
              Operations Performed By Device Twin Controller
              
                		
                  Sync Metadata to/from db ( Sqlite )
                


                		
                  Register and Start Sub Modules
                


                		
                  Distribute Message To Sub Modules
                


                		
                  Health Check
                


              


            


            		
              Modules
              
                		
                  Membership Module
                


                		
                  Twin Module
                


                		
                  Communication Module
                


                		
                  Device Module
                


              


            


            		
              Tables
              
                		
                  Device Table
                


                		
                  Device Attribute Table
                


                		
                  Device Twin Table
                


              


            


          


        


        		
          Edge Controller
          
            		
              Edge Controller Overview
            


            		
              Operations Performed By Edge Controller
            


            		
              Downstream Controller:
              
                		
                  Sync add/update/delete event to edge
                


              


            


            		
              Upstream Controller:
              
                		
                  Sync watch and Update status of resource and events
                


              


            


            		
              Controller Manager:
              
                		
                  Creates manager Interface and implements ConfigmapManager LocationCache and podManager
                


              


            


          


        


        		
          CloudHub
          
            		
              CloudHub Overview
              
                		
                  Get message context and create ChannelQ for events:
                


                		
                  Create http connection over websocket:
                


                		
                  Read message from edge:
                


                		
                  Write Message to Edge:
                


                		
                  Publish Message to EdgeController:
                


              


            


          


        


        		
          Pre-requisites
        


        		
          Setup KubeEdge
          
            		
              Prerequisites
            


            		
              Install docker
            


            		
              Install kubeadm/kubectl
            


            		
              Install Kubernetes
            


            		
              Install mosquitto
            


            		
              Authentication
              
                		
                  Install openssl
                


                		
                  Generate Certificates
                


              


            


            		
              Build
              
                		
                  Clone KubeEdge
                


                		
                  Build Cloud
                


                		
                  Build Edge
                


              


            


            		
              Run KubeEdge
              
                		
                  Run Cloud
                


                		
                  Run Edge
                


              


            


            		
              Deploy Application
            


            		
              Run Edge Unit Tests
            


            		
              Run Edge Integration Tests
              
                		
                  Details and use cases of integration test framework
                


              


            


          


        


        		
          Cross Compiling KubeEdge
          
            		
              For ARM Architecture from x86 Architecture
            


          


        


        		
          Integrate with HuaweiCloud [Intelligent EdgeFabric (IEF)
          
            		
              Intelligent EdgeFabric (IEF)
            


          


        


        		
          MQTT Message Topics
          
            		
              Subscribe Topics
            


          


        


        		
          Unit Test Guide
          
            		
              Unit Test
            


            		
              Mocks
            


            		
              Ginkgo
            


            		
              Writing UT using GoMock
              
                		
                  Example : metamanager/dao/meta.go
                


              


            


          


        


        		
          FAQs
        


      


    
  

_images/DownstreamController.png
CloudPart

Rest Client
s

EdgePart

Update podconfightap
Add
Delete

Creates manager to hande (pod,configmap,secret)
Locates confightap and Secret to be send to which node

TopWebsocket





_images/pod-addition-flow.png
Add pod
iessage to-
edge node

EdgeHub

| Postaddpod
[— messageto

MetaManager

edged

|
| |
postaddpod |
b— message to
edged |

EdgeD

Message

Handler

|

|

|

|

Get the pod information |
from message content

T and add it to pod manager.>:

same pod information i added to pod

Probe
Manager

Pod Manager

manager.

namespace/podname as the ke
1

|
|
|
|
|
|
|
|
|
‘Then pod information is added to

[————pod addition worker queue. tis added with s assigned
y.

Pod Addition

Queue

|
|
|
|
|
|
|
|
|
|

Pod Add Worker
Routine

Keep awatch on
addition queue

(& Get pod from queue-

“queue for the pod

|
|
|
|
|
|
|
|,< Mark as Done in
|
L

1. Get pod info from pod manager
2. Create pod directory

3. Attach and mount volumes it
configured

4. Get secrets i configured

5. Ensure image exists and if not
download using container runtime|
6. Start the pod using container
runtime.

7. Markit as Done in pod addition
queue.

1 N A PPN T PN






_images/KubeEdge_logo.png
KubeEdge





_images/pod-deletion-flow.png
Delete pod
iessage to-
edge node

EdgeHub [l MetaManager

|
| Postdeletepod |

r edged
|
|
|
|
|
|
|
|
|
|
|
|

messageto Py

EdgeD

Message

Handler

edged |

Pod Manager

Delete the pod |
from pod manager P

|
Terminate the pod by setting

Status Probe
Manager Manager

the status of the pod as terminated >,

|
T
|

|

|

|

|

|

|

|

|

|

|

Remove the probes allocated for the pod |
and clear the cached results >,
|

|

t

|

|
|
T
1






_images/meta-update.png
1. update
‘message . send resp

3. check if resource unchanged

2. send to
‘meta manager

Update From Cloud To Edge

5. send

2. check if resource unchanged Update 6. get response

4. send update
to cloud

‘Update From Edge To Cloud





_images/pleg-flow.png
Status

Manager

Pod Container
Manager Manager

Scan every 1 sec b Getall pods——pl

| |
[€— — — —Retums podist— — — — —

Looping for each || et pod statu
pod |

77777777 Returns with current pod status — — — — — — — —

Update pod statu: —
| P s )
UpdatePodstatus modifies the given
Podstatus with the appropriate Ready
state for each container based on
container running status, cached
probe results and worker states

| IR A N, 4 ENE—.

77777 —Returns updated pod status with readyness factor— — — — — —

Sets pod status with status manager-

i i e B
P [ . AP S

T
|
]
1
]
|






_images/query-configmap-from-edged.png
| Use MetaClient Query service © pl
gel configmaps from Me'aMznﬂgE

m m S
|

|
ery to MetaManager for configmap:
Queries configmaps in local DB

!
If configmaps already saved in |
—  MetaManager'slocal DB, — —

respond the same. |

1

A

Responds to EdgeD for
 further pod deployment”

from Cloud via EdgeHub
|
|
|

-
|
|
|
|
|
|
| Insert the new configmaps
| received from cloud to local DB
|
|

!

Send configmaps data to MetaClient— —

 further pod deployment”

RespondstoEdgeDfor | |
| |

| i confy
gmaps notpresent, query__

__ Response from Cloud __ _ _
’éi with configmaps data

——auery for configmaps to Cloud
K
-

_Response from Cloud
with configmaps data’

PPN |





_images/query-secret-from-edged.png
m S m m
Add pnd |

Response from Cloud__

with secret data

b message to——p! |
| edge node | Postadd pod | I |
messageto ——b)
! edged Postadd pod ! !
| | message to ————pl |
! ! ! edged Extracts secrets from !
| | | imagepullsecrets from |
| | | pod spec |
| | | | Use Metalient Query senvice to__ |
| | | got secret from Metamanager P
| [ Query to MetaManager for secret— — — — — — — -
| | | | |
| | Queries secret | |
| | ¢ If secret already saved in MetaManager's local DB, R
respond the same
! ! ! ' RespondstoEdgenfor _ _ |
| | | l< ‘further pod deployment !
IF secret not present, query_
: K< rom loud i Edetiub JI
< Query for secret to Cloud—
Sl a I
|
|

| ke
ponse from Cloud
with secret data >,
Insert the new secret
received from cloud to local DB

|
|
! : ds to EdgeD

__ _RespondstoEdgeDfor _ _
: :< further pod deployment JI





_images/pod-status-manger-flow.png
m m S

Every 10 secs | | |
I 1 1 1
For m-wnd J | | | |
Send pod status—p! | | |
| | | | |
| i send pod status »r | |
| | | | |
| | 1. Queries pod status from local DB | |
| | 2. Checkif the new pod status and | |
from db s same.
! ! If pod status is same with ! | |
|_ _Responds same Ok message_ K<~ — —MetaManager's local DB,- — — | |
< to EdgeD -1 respond OK | |
| | If pod status differs, then | |
| | insert/update itin local DB | |
¢ Post update message to,
| | Cloud via EdgeHub > |
| | | Post update message to_
Cloud
| | | | |
| (& — — Hespond OKto EdgeD— — — — | |
Igg esponds same Ok message__| | | |
I ¢ I I I I
| | | | |
| | | | |
1 1 1 1 1
1 1 1 1 1
| | | | |






_images/pod-update-flow.png
Update pod
message to
edge node

EdgeHub

| Postupdate pod

|

gt
message to

edged L

-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

MetaManager

Post up:

mess:
ed

EdgeD

ate pod

ge to

Message

Handler

--9-

;|

Update pod information

Pod Manager

‘with pod manager.

S

same pod information i added to pod
manager.

Probe

Manager

|
|
|
|
|
:
|
|

Pod Deletion

Then based on deletionTimestamp field, pod information is added to |

pod adtion (if deleteTimeStamp is ni)or deletion worker queue. —J

Itis added with its assigned namespace/podname as the key.
1

Queue

Pod Remove
Worker Routine

For deletion worker
case, keep a watch

- Get pod from queue-

_Markas Donein _
‘queue for the pod

1. Get pod info from pod
manager

2Terminate the pod using
container runtime.

For addition worker
case, keep a watch
on addition queue

| PSP | PN PSPPI NP IS

Process is same as mentioned in
earlier flow diagram of pod addition

oo






_images/route-to-cloud.png
2.Send message
(websocket)

Device Twin

Meta Manager

1. Receive message
(Beehive Framework)

1. Receive message
(Beehive Framework)

1. Receive message
(Beehive Framework)

Event Bus





_images/route-to-edge.png
1. Receive message
(websocket)

Device Twin

Meta Manager

2. Send message
(Beehive Framework)

2. Send message
(Beehive Framework)

2. Send message
(Beehive Framework)

Event Bus





_images/secret-handling.png
m S
Add/DeIeIe/updme

secret message
to edge node

Post secret

,—add/dele1e/updme—>|

message to edged

post
dd/del
messagt

secret

Message
Handler

te/update—pp!

to edged

|
|
|
|
Add secret extracted |
from message content P

Update/Delete
secret extracted
from message content

b—nsert secret to cach
|
|

-
7

et secret from cache—Pb)

|

|

| _Return secretdata __|
| from cache |
| I Exists |
| ¢ Update/oelete
L | secret from cache’ |
1 1






_static/comment-bright.png





_images/sync-to-cloud.png
6. send latest devicetwin|
information to cloud

devicetwin 1. send the subscribed
‘message received on twin

cloudsync topic

2.send msg,

twin module devicetwin controller eventbus edgehub

5.send the twin resul to
be sent o the cloud

4. get the synced twin
result

communication modue

. Sync the device twin
information

Devicetwin Cloud Syne Operation





_static/ajax-loader.gif





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/favicon.png





_static/file.png





_static/plus.png





_static/kubeedge-logo-only.png





_static/minus.png





_static/up-pressed.png





_static/up.png





