

Krail documentation

This documentation is in 3 parts

	Tutorial. As you would expect, this is a step by step tutorial.

	User Guide. Notes on how to do things, collated by feature

	Developer Guide. Notes on why things are done the way they are. In truth, this is really a loose collection of technical notes optimistically called a “developer guide”

Please do give feedback, whether it is something you do like or something you do not like.

Enjoy

David Sowerby

Contents:

Tutorial

	Introduction to the Tutorial

	Getting Started
	Creating a Krail application with Gradle
	Preparation

	Create a build file

	Create the Project

	Import the Project to your IDE

	Eclipse

	Krail preparation

	Exploring the Basic Application

	Summary

	Download from GitHub

	Page Navigation
	Defining a Page

	Introducing I18N
	Create an I18N Annotation

	Add a Page - direct method
	Defining the I18NKeys

	Using the Pages

	View the Pages

	Add a Page - Annotation method

	Choosing the Method

	Moving a Set of Pages

	Navigation
	Add some public pages

	Getting the Navigator

	Adding some components

	Navigating with Parameters

	Excluding a page from Navigation

	Summary

	Download from GitHub

	Themes
	Replacing a UI

	User Notifications
	Sending the Message

	Current methods of presentation

	Different methods of presentation

	Summary

	Download from GitHub

	Options
	Out of the Box

	Working example
	Setting up the options

	Using Hierarchies

	Option Data Types

	Summary

	Download from GitHub

	Configuration from INI files
	Overview

	Example

	User Access Control
	Example

	Move the Pages

	User accounts

	Credentials Store
	Permission Strings

	Page Permission

	Option permission

	Authentication

	Authorisation

	Using the Realm

	Control Access Through Code

	Control Access Through Annotations

	Summary

	Download from GitHub

	I18N
	Elements of I18N

	Direct translation
	Message with Parameters

	Pattern sources
	Selecting pattern sources

	Components and Validation
	Preparation
	Set up a page

	Translations

	Grid

	Drilldown and Override

	Form
	About the form

	Summary

	Download from GitHub

	Persistence - JPA
	Example

	Prepare build

	Create a Page

	Configure connections

	Prepare the service

	Prepare the Entity

	Prepare the user interface

	Data
	Using the EntityManager

	DAO

	Persistence for Option

	Guice & Scopes
	Introduction

	Singleton

	VaadinSessionScoped

	UIScoped

	Applying a scope

	

	Event Bus
	Introduction

	The Tutorial task

	Create a page

	Message receivers
	Base class

	Receiver for each bus

	Completing the View

	Demonstrating the result

	Summary

	Download from GitHub

	Services
	Lifecycle
	Causes

	Push
	Fixing the Refresh Problem
	Modify the UI

	Broadcast a message

	Verifying the change

	Using a Push Message

	Footnote

	Summary

	Download from GitHub

	Create a project Using Eclipse
	Acknowledgement

	Introduction

	Install Vaadin-Plugin

	Create a new Vaadin Project

	Apply Krail-Dependency

	Create a Hierarchy

	Functional Testing

User Guide

	Introduction to the User Guide

	Bootstrap
	Bootstrap File
	Sample File

	File Content

	Injector Scope
	Accessing the Injector
	Deserialisation

	View and UI Factory

	Serialization
	Serialization and Shiro / JPA

	Guice Deserialization for View and UI instances
	Call Sequence

	Matching constructor parameters with fields

	Excluding fields

	Non-Serializable classes

	Making your classes ‘Guice Serializable’

	Forms
	Overview

	Defining a Form

	Form construction
	Validation

	Model to Presentation mapping
	Defaults

	Changing defaults

	Register a new mapping

	Model to Presentation Converters
	Adding / Replacing Converters

	License

Developer Guide

	Introduction to the Developer Guide
	Accuracy
	Up to date sections

	Goals and Objectives
	Terminology

	Goals

	Objectives

	Priorities

	Krail Team Goals
	Priorities

	Spek Limitation

	Documentation

	Bootstrap
	Injector Location

	Guice Bindings

	Bootstrap file

	Detecting the Environment

	Configuration
	Objective

	Configuration levels
	Level 0 - Requires a re-compile

	Level 1 - Loadable configuration

	Level 2 - Dynamic options

	Event Bus
	Overview

	Publishing Messages

	Subscribing to Messages

	Automatic Subscription

	Services and Messages

	Functional Testing
	Component Ids
	Affect on Performance

	Page Loading

	Functional Test Support

	Guice Scopes
	Vaadin Environment
	UI Scope

	Vaadin Session Scope

	Singleton

	AOP

	I18N
	Introduction

	The Basics
	The Pattern

	The Key

	The Bundle

	Bundle Reader

	Pattern Source

	Translate

	Current Locale

	Configuration

	Managing Keys

	Managing Locale
	CurrentLocale

	Using I18N with Components

	Extending I18N

	Validation

	Options and Hierarchies
	Relationship to Configuration

	Layers of Options

	Controlling the Options

	Hierarchies

	Storing the Options

	OptionKey

	Page Navigation
	When to use a UI or View

	URI and Route

	Push
	Background

	Krail, Push and Vertx

	Adaptations

	Detecting the Environment

	Persistence
	Introduction

	Terminology

	Identity

	Multiple Persistence Units from the same provider

	Option
	Testing Bindings

	Pattern

	EntityProvider or EntityManagerProvider

	Generic DAO

	Serialisation
	Scope of impact

	Objectives

	Options and Obstacles
	Use of Injector.injectMembers

	Proxy serialisation

	Bespoke transient field initialiser

	Conclusion

	Services
	Managing the Lifecycle
	State Changes and Causes

	Service Instantiation

	Testing
	Introduction

	ResourceUtils

	VaadinService

	User Access Control

	Validation
	Introduction

	Use standard javax Validation

	Use a different message for a single use of a javax annotation

	Change a javax message for all uses

	Move all translations to one source
	standard

	additional built-ins

	Create a Custom Validation
	The annotation

	The Constraint Validator

	The Key

	Vertx
	Injector scope

	License

Glossary

	Glossary

Introduction to the Tutorial

Welcome to the Krail Tutorial. It is definitely better to work through
the Tutorial in sequence, but if you want to skip a step, you will find
a link at the end of each chapter so that you can clone each stage from
a GitHub repository.

There is also a developers guide, but to be honest that is more like a
collection of rough notes at the moment, until I can find time to write
it properly.

Note

This tutorial is based on the Vaadin 7 version of Krail - it should still be possible to follow it, but it will not be updated until the move to Eclipse Vert.x is done (or fails!)

Please do give feedback, whether it is something you do like or
something you do not like.

Enjoy

David Sowerby

Getting Started

This Tutorial will take you through some of the basic steps of getting
an application up and running, quickly, with Krail.

Krail encourages prototyping, by providing a lot of default
functionality so that you can see early results. Most of that
functionality can then be modified or replaced. The aim is to give the
Krail developer the best of both worlds - quick results, but still the
freedom to modify things however they wish.

Creating a Krail application with Gradle

Preparation

This tutorial assumes that you have Gradle already installed. The Vaadin
Gradle plugin used here requires Gradle 4+

It is also assumed that you will be using Git for version control, and
have it installed.

Earlier versions of this tutorial code allowed a download at every step,
but regrettably that proved time consuming to maintain - there are some
useful checkpoints in the code, though, if you look through the Git log

You can, however, download the code for the entire Tutorial from
GitHub [https://github.com/davidsowerby/krail-tutorial]

Create a build file

Command Line

Change to your Git root directory, for example:

cd /home/david/git

Create a directory for your project (called “krail-tutorial” in this
case), and initialise it for git.

mkdir krail-tutorial
cd krail-tutorial
git init
gedit build.gradle

You will now have an empty build file open. Cut and paste the following
into the file & save it

 plugins {
 id "com.devsoap.plugin.vaadin" version "1.2.3"
 id 'eclipse-wtp'
 id 'idea'
 }

vaadin {
 version = '8.2.0' // This version should match that used by the version of Krail you are using
 logToConsole = true
}

vaadinCompile {
 widgetset 'com.example.tutorial.widgetset.tutorialWidgetset'
}

sourceCompatibility = '1.8'

repositories {
 jcenter()
}

dependencies {
 compile(group: 'uk.q3c.krail', name: 'krail', version: '0.14.0.0')
}

configurations.all {
 resolutionStrategy {
 // GWT requires an old version of the validation API. Changing to a newer version breaks widgetset compile but throws no errors
 force 'javax.validation:validation-api:1.0.0.GA'
 }
}

task wrapper(type: Wrapper) {
 gradleVersion = '4.4.1'
}

	The first entry is for a Vaadin Gradle
plugin [https://github.com/johndevs/gradle-vaadin-plugin], and
provides some valuable Vaadin specific Gradle tasks

	The ‘eclipse’ and ‘idea’ plugins are optional, but useful for
generating IDE specific files.

	We need to tell the vaadin-gradle plugin which version of Vaadin to
use - this must match the version being used by the version of Krail
selected

	Krail requires Java 8, hence the line “sourceCompatibility = ‘1.8’”

	Of course, you cannot do without Krail …​

	There is a version conflict to resolve, between the dependencies of
the various component parts of Krail. The ResolutionStrategy is there
to resolve those version conflicts. GWT requires an older version of
the javax validation API - if you don’t force the correct version to
be used, then the widgetset compile will fail - and worse, it fails
without any error messages.

	finally, the gradle-vaadin plugin needs Gradle at version 4+, so we
will create a Gradle
wrapper [https://docs.gradle.org/current/userguide/gradle_wrapper.html]
task

Now save the file and add it to Git

git add build.gradle

And finally, create a Gradle wrapper:

gradle wrapper

Create the Project

The Vaadin Gradle plugin makes things easier for us. From the command
line:

gradle vaadinCreateProject

Import the Project to your IDE

IDEA

	From the command line

gradle idea

	In IDEA, start the import: File | Open and select
krail-tutorial/build.gradle

	In the import dialog:

	Ensure that JDK 1.8 is selected

	Use “default gradle wrapper”

	Select “Create directories for empty content roots
automatically”

Tip

IDEA may prompt you to add the project VCS root - say yes if it
does.

	Delete the pacakge com.example.krailtutorial completely - we will
create our own shortly. There are a couple of generated files in
these folders, but they can be deleted.

	To reduce what goes in to Git, let’s just add a simple .gitignore
file at the project root:

.classpath
.idea
.project
build/*
out
classes
.gradle/

*.iml
*.ipr
*.iws

	Right click on the project folder and select Git | Add to add all
files to Git.

Eclipse

Please see this contribution

Krail preparation

Guice and DI

This tutorial does not attempt to describe Guice, or Dependency
Injection - which is what Krail is based on - but even if you are not
familiar with either you may find that Krail is a good way to become so.
The Guice
documentation [https://github.com/google/guice/wiki/Motivation] is a
very good introduction to the principles - and for reference, Krail uses
constructor
injection [https://github.com/google/guice/wiki/Injections] with one
or two specific exceptions.

Setting up the application

Let’s keep all the application configuration in one place and create a
package under src/main/java:

>com.example.tutorial.app

Create a Servlet

You may have noticed when you deleted the groovy folders, that a
TutorialServlet had been generated. We do need one, but not that
one!

In the com.example.tutorial.app package, create a class
TutorialServlet, extended from BaseServlet:

package com.example.tutorial.app;

import com.google.inject.Inject;
import com.google.inject.Singleton;
import uk.q3c.krail.core.guice.BaseServlet;
import uk.q3c.krail.core.ui.ScopedUIProvider;

@Singleton
public class TutorialServlet extends BaseServlet {

@Inject
public TutorialServlet(ScopedUIProvider uiProvider) {
 super(uiProvider);
}

Define a Widgetset

If you are familiar with Vaadin, you will be familiar with widgetsets.
However, if you are not, they can seem a bit of a mystery. The Vaadin
documentation [https://vaadin.com/book/vaadin7/-/page/intro.html] is
generally very good, but one thing which does not seem to be clear is
when to use the in-built widgetset and when to specify your own. We find
it easier just to start by defining your own at the project set up
stage. To set this up, we need to modify the Servlet:

@Singleton
public class TutorialServlet extends BaseServlet {

 @Inject
 public TutorialServlet(ScopedUIProvider uiProvider) {
 super(uiProvider);
 }

 @Override
 protected String widgetset() {
 return "com.example.tutorial.widgetset.tutorialWidgetset";
 }
}

In the build.gradle file, add a vaadin closure set logToConsole - it
provides a little extra console output during a build. It is useful, but
not essential.

vaadin{
 logToConsole = true
 version = '7.7.10'
}

Complete Build file

The full build.gradle file should look like this:

plugins {
 id "com.devsoap.plugin.vaadin" version "1.2.3"
 id 'eclipse-wtp'
 id 'idea'
}

vaadin {
 version = '7.7.10' // This version should match that used by the version of Krail you are using
 logToConsole = true
}

sourceCompatibility = '1.8'

repositories {
 jcenter()
}

dependencies {
 compile 'uk.q3c.krail:krail:0.10.0.0'
}

configurations.all {
 resolutionStrategy {
 // GWT requires an old version of the validation API. Changing to a newer version breaks widgetset compile but throws no errors
 force 'javax.validation:validation-api:1.0.0.GA'
 }
}

task wrapper(type: Wrapper) {
 gradleVersion = '4.1'
}

Create a Servlet Module

In the com.example.tutorial.app package, create a class
TutorialServletModule, extended from BaseServletModule:

package com.example.tutorial.app;

import uk.q3c.krail.core.guice.BaseServletModule;

public class TutorialServletModule extends BaseServletModule {

@Override
 protected void configureServlets() {
 serve("/*").with(TutorialServlet.class);
 }
}

Create a Binding Manager

In Krail terminology, the Binding Manager is a central point of Guice
configuration. Guice modules specify how things are bound together, and
the Binding Manager selects which modules to use. All Krail applications
use their own Binding Manager, usually sub-classed from
DefaultBindingManager. To create one for the tutorial:

In the com.example.tutorial.app package, create a class
BindingManager, extended from DefaultBindingManager

package com.example.tutorial.app;

import com.google.inject.Module;
import uk.q3c.krail.core.guice.DefaultServletContextListener;

import java.util.List;

public class BindingManager extends DefaultBindingManager {

@Override
protected void addAppModules(List<Module> baseModules) {

}

@Override
protected Module servletModule() {
 return new TutorialServletModule();
}

Notice that we override servletModule() to let Guice know about our
TutorialServletModule

Create web.xml

	Create a new directory, src/main/webapp/WEB-INF

	Then create a web.xml file. Note that the listener refers to our
BindingManager. This could be the only xml you will use for the
entire project

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://java.sun.com/xml/ns/javaee"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 id="WebApp_ID" version="3.0">
 <display-name>Krail Tutorial</display-name>
 <context-param>
 <description>
 Vaadin production mode
 </description>
 <param-name>productionMode</param-name>
 <param-value>false</param-value>
 </context-param>

 <filter>
 <filter-name>guiceFilter</filter-name>
 <filter-class>com.google.inject.servlet.GuiceFilter</filter-class>
 <async-supported>true</async-supported>
 </filter>
 <filter-mapping>
 <filter-name>guiceFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <listener>
 <listener-class>com.example.tutorial.app.BindingManager</listener-class>
 </listener>

</web-app>

Adding Some Pages

That’s all the plumbing that is needed to get started - but we do not
have any pages yet, so there’s nothing to see. We will take a shortcut
for the Tutorial and use some that already exists - you will see how the
relationship between Guice modules and pages could be very convenient
for building modular applications.

The SystemAccountManagementPages class in Krail is a set of not very
useful pages (it just meant as an example) composed as a Guice module.
We will add that module to the Binding Manager. Note that we use the
addSitemapModules() method - we could just add all modules in
addAppModules(), the separation is purely for clarity.

@Override
 protected void addSitemapModules(List<Module> baseModules) {
 baseModules.add(new SystemAccountManagementPages());
}

The complete BindingManager now looks like:

package com.example.tutorial.app;

import com.google.inject.Module;
import uk.q3c.krail.core.guice.DefaultServletContextListener;
import uk.q3c.krail.core.navigate.sitemap.SystemAccountManagementPages;

import java.util.List;

public class BindingManager extends DefaultBindingManager {

@Override
protected void addAppModules(List<Module> baseModules) {

}

@Override
protected Module servletModule() {
 return new TutorialServletModule();
}

@Override
protected void addSitemapModules(List<Module> baseModules) {
 baseModules.add(new SystemAccountManagementPages());
}

Theme(s)

You could actually launch the Tutorial application now, but if you did
it would look terrible - it has no CSS applied. To give the application
some style we need to apply a Vaadin theme. It is possible to use themes
from the Vaadin theme jar, but it is advisable to extract them and serve
them statically, as recommended by the Vaadin
documentation [https://vaadin.com/book/-/page/themes.creating.html#themes.creating.builtin]:

The built-in themes included in the Vaadin library JAR are served
dynamically from the JAR by the servlet. Serving themes and widget sets
statically by the web server is more efficient._

So let’s do that now.

	Find the vaadin-themes.jar. The easiest way is to search the
{$user.home}/gradle directory - it should have been downloaded with
the other Vaadin jars. If for any reason it is not there, you can
download it from JCenter or Maven Central

	extract the jar

	locate the theme folders - you will find them in the VAADIN/themes
folder

	copy folders for the themes you want - for the Tutorial, just copy
all of them - into src/main/webapp/VAADIN/themes.

	delete the automatically created KrailTutorial theme

For readers less familiar with Vaadin, “reindeer” is the default style,
and “valo” is the most recent.

Build and Run

The one aspect of the build that tends to give problems is the widgetset
compile - it seems very sensitive. We therefore suggest compiling it
first by executing:

gradle vaadinCompile

from either the command line or IDE. You can see whether it has compiled
by checking the src/main/webapp/VAADIN/widgetsets folder - it should
have contents. (A compile failure usually creates a widgetsets folder,
but leaves it empty)

We can now build and run the application - set up a run configuration in
your IDE to take the war output and run it on Tomcat or whichever
application server you are using:

Run Configuration in IDEA

Run | Edit Configurations

 + | Tomcat Server | Local

Name: Tutorial

Deployment: + | artifact | tutorial.war

Application context: /tutorial

	refresh Gradle

	Build | Rebuild project

	Run Tutorial

Run Configuration in Eclipse

tbd

…. you should now see something like this:

[image: Screenshot]

Exploring the Basic Application

There are a few things to see, even in this very basic implementation.

[image: Screenshot]

	The “screen” presentation is provided by DefaultApplicationUI -
UI in this context refers to the Vaadin concept of UI, which is
generally equivalent to a browser tab.

	DefaultApplicationUI contains a number of components and both the
UI and its components can be replaced, sub-classed or modified. All
the parts described below are pluggable components, held by the UI:

	The Application Header is just a panel to hold things like logos

	The navigation tree, navigation menu, breadcrumb and sub-page
panel menu are all navigation-aware components. You can navigate
pages by clicking on any of them, or just change the URL directly.
These navigation components are tied to a Sitemap, which defines
the structure of the site, and the Views used to represent each
page. You will see how this works when we create some new pages.

	The Locale selector will not do much yet, as there are no
alternative Locales defined - that will be covered later in the
Tutorial.

	The login panel offers a login button and a login status - we will
log in in a moment

	The message bar is just a place for messages to the user.

	The View area (in blue) is where all the work is done - it is here
that you will put forms and tables etc.

Of course, as a developer, you will almost certainly have logged in by
now, but in case you have not - you can use any user name, and a
password of “password”, so that you can pretend to be a real user with a
memorable password …

A couple of things have changed now you have logged in:

	You will no longer be on the login page - that’s a bit obvious, but
it is worth noting that even the rules for where to navigate to after
log in is a replaceable element.

	There is now an extra page in the navigation components, called
‘Private’ - this represents a restricted area of the site, where only
authorised users can have access. The other pages are all “public”.

	The login panel shows your user name, and now offers a “logout”
button.

This is achieved using two major components, the DefaultRealm (a
very simple implementation of the Apache Shiro Realm) and
PageController, a Krail component used to control the display of
pages authorised by your Realm implementation. We will come back to
these when we look at User Access Control.

Now try this sequence:

	Login

	Click on “Private” and you will see that it jumps to “Private home” -
this is configurable behaviour - it is a redirect so that there does
not need to be a view if the “Private” page itself will never be
shown

	Logout. You will now be on the logout page (which by default does not
appear in the navigation components - also configurable behaviour)

	Press the browser ‘back’ button - and a notification will pop up
saying that “private/home is not a valid page”. Even though you
know this is not the case, this message is deliberate, as it means
that if a user tries to guess a url that they are not authorised for,
they will not even get confirmation that the page exists.

	Look at the message bar and you will see that the same message has
appeared there. We will look at user
notifications and how they are
handled a bit later.

It should be noted that although the Tutorial uses the idea of a
‘private’ set of pages, how you define and authorise access to pages is
extremely flexible, and mostly a matter of how you want to do it.

Summary

You have created a basic application, and can have already seen:

	Integration with User Access Control from Apache Shiro

	a pluggable set of pages

	Navigation aware components acting together

	User notifications

Download from GitHub

To get to this point straight from GitHub:

git clone https://github.com/davidsowerby/krail-tutorial.git
cd krail-tutorial
git checkout --track origin/krail_0.10.0.0

Revert to commit Getting Started completed

Page Navigation

Clearly we will want to add some new pages, but first we must know what
constitutes the definition of a page

Defining a Page

A page is represented by a URI, which maps to a specified KrailView
class. The name of the page is presented to the user in navigation aware
components, so that name must be Locale sensitive. Once the page is
defined, it becomes part of the Krail Sitemap, which forms the heart
of the navigation system.

There are two ways to add pages to Krail and make use of the navigation
features, and you can use
either one, or both. These are the “direct” method or “annotation”
method. We will use both methods.

Because the page name is locale sensitive, we will first need to provide
I18N support.

Introducing I18N

You may think that it is premature to be considering I18N at this stage
- especially if you are writing an application which will only use one
language. However, Krail treats I18N as a first class citizen, and you
will find the result of these steps surprisingly useful even in a single
Locale application. You could read the full I18N
description now, or just follow these
steps, as we will come back to I18N later in the Tutorial.

Create an I18N Annotation

	create a package ‘i18n’, under ‘com.example.tutorial’

	create two Enum classes, one called ‘LabelKey’ and one called
‘DescriptionKey’. Each should implement the I18NKey interface

package com.example.tutorial.i18n;
import uk.q3c.krail.i18n.I18NKey;

public enum LabelKey implements I18NKey {
}

package com.example.tutorial.i18n;
import uk.q3c.krail.i18n.I18NKey;

public enum DescriptionKey implements I18NKey {
}

The names of these classes can be anything, it is the I18NKey
interface which is important.

This is all we need for our I18N integration for now, so we can get on
with adding pages.

Add a Page - direct method

The “direct” method simply means pages are defined directly in a Guice
module. We will start by adding some private pages (“private” means they
will be available only to authorised users).

	To keep our pages separate, create a package ‘pages’, under
‘com.example.tutorial’

	Create a class ‘MyPages’ and extend it from DirectSitemapModule
and provide

	implement the abstract define() method

package com.example.tutorial.pages;

import uk.q3c.krail.core.navigate.sitemap.DirectSitemapModule;

public class MyPages extends DirectSitemapModule{

 @Override
 protected void define() {

 }
}

We will use the define() method to provide our page definitions. We
will create three pages, one at the the site root, with two sub-pages,
which we want to look something like this in the navigation tree:

> Finance
>> Accounts
>> Payroll

	enter the following in the define() method

package com.example.tutorial.pages;

import uk.q3c.krail.core.navigate.sitemap.DirectSitemapModule;
import uk.q3c.krail.core.shiro.PageAccessControl;
import com.example.tutorial.i18n.LabelKey;

public class MyPages extends DirectSitemapModule{

 @Override
 protected void define() {
 addEntry("private/finance", FinanceView.class, LabelKey.Finance,
 PageAccessControl.PERMISSION);
 addEntry("private/finance/accounts", AccountsView.class, LabelKey.Accounts,
 PageAccessControl.PERMISSION);
 addEntry("private/finance/payroll", PayrollView.class, LabelKey.Payroll,
 PageAccessControl.PERMISSION);
 }
}

Make sure you get the right LabelKey - there is one in Krail core as
well.

You will have compile errors, but let’s look at what these entries mean.

	The first parameter is the URI segment, and we generally keep to all
lowercase. The second and third entries are subpages, so need a
qualified path.

	The second parameter is the class to use as a View - we haven’t
created them yet.

	The third parameter is the page name, is locale-sensitive and
therefore an I18NKey

	The fourth parameter determines what sort of access control is
applied to the page. We want controlled access to these pages, so
this parameter is set to PERMISSION

We’ll make it easier by extending the Grid3x3ViewBase base class from
the Krail core - this just gives us a 3x3 grid to place components in.

Tip

Extending ViewBase or one of its sub-classes is usually the easiest
way to create your views, but however you do it, you must implement
KrailView. ViewBase can also help with
deserialization.

	create the 3 views we want … AccountsView, FinanceView and
PayrollView … just by extending Grid3x3ViewBase and injecting
Translate (only FinanceView is shown here):

package com.example.tutorial.pages;

import com.google.inject.Inject;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.view.Grid3x3ViewBase;

public class FinanceView extends Grid3x3ViewBase {

 @Inject
 protected FinanceView(Translate translate) {
 super(translate);
 }
}

Defining the I18NKeys

By default, if Krail’s I18NProcessor cannot find the value of an
I18NKey, it uses the name of the enum instead, with underscores
replaced with spaces. This means that as long as you are comfortable
with breaking the ‘all-uppercase’ convention for enum constant names,
you can get started quickly by not defining any values for the I18NKeys.
This is great for prototyping, and even if your application uses a
language with accents and diacriticals, the enum name may be good enough
for a prototype.

	Add the required constants to LabelKey

package com.example.tutorial.i18n;

import uk.q3c.krail.i18n.I18NKey;

public enum LabelKey implements I18NKey {
 Accounts, Payroll, Finance
}

Using the Pages

Now we have defined the pages in a Guice module, we need to tell the
BindingManager to include them:

@Override
 protected void addSitemapModules(List<Module> baseModules) {
 baseModules.add(new SystemAccountManagementPages());
 baseModules.add(new MyPages());
}

View the Pages

Run the application again. When the application starts the new pages
will not be visible - but that is what we should expect, as we said
these pages needed permission to view.

	Log in (any username, password=’password’), and you will see the
pages, under ‘Private’, in the navigation tree and menu.

You may be wondering whether these pages need to be under the ‘Private’
branch. At the moment they do, but only because of the very simple
access control rules supplied by DefaultRealm. You can actually
define any logical structure, and we will see how to control permissions
in the User Access Control section of the
Tutorial.

Add a Page - Annotation method

The second method of defining a page is to use an annotation on a
KrailView implementation. To begin with, we need to tell Krail where
to look for annotated views - this reduces the amount of scanning Krail
has to do at start up. To do that we:

	create a new class in the ‘pages’ package, “AnnotatedPagesModule” and
extend AnnotationSitemapModule

	implement the define() method

	add an entry in the define method, as below:

package com.example.tutorial.pages;

import com.example.tutorial.i18n.LabelKey;
import uk.q3c.krail.core.navigate.sitemap.AnnotationSitemapModule;

public class AnnotatedPagesModule extends AnnotationSitemapModule {

 @Override
 protected void define() {
 addEntry("com.example.tutorial.pages",LabelKey.Accounts);
 }
}

The call to addEntry tells Krail to recursively scan the
com.example.tutorial.pages package for classes with a
@View annotation. Multiple calls to addEntry can be made. The
second parameter should be an I18NKey from the same enum that you
are going to use in your @View annotations. The value you supply to
the addEntry method is just a sample, it just needs to be from the
same class. This is necessary because of the limitations on what Java
allows as Annotation parameter types

Now that this is done, any views in the ‘pages’ package, annotated with
@View, will be added to the Sitemap.

	create another view, “PurchasingView” in the pages package,
sub-classed from Grid3x3ViewBase:

package com.example.tutorial.pages;

import com.google.inject.Inject;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.navigate.sitemap.View;
import uk.q3c.krail.core.shiro.PageAccessControl;
import uk.q3c.krail.core.view.Grid3x3ViewBase;

@View(uri = "private/finance/purchasing",pageAccessControl = PageAccessControl.PERMISSION,labelKeyName = "Purchasing")
public class PurchasingView extends Grid3x3ViewBase {

 @Inject
 protected PurchasingView(Translate translate) {
 super(translate);
 }
}

	create the ‘Purchasing’ constant for LabelKey ` public enum
LabelKey implements I18NKey { Accounts, Payroll, Finance, Purchasing
} `

	tell the BindingManager to include the module we have just
created

@Override
 protected void addSitemapModules(List<Module> baseModules) {
 baseModules.add(new SystemAccountManagementPages());
 baseModules.add(new MyPages());
 baseModules.add(new AnnotatedPagesModule());
 }

	Run the application, log in and you will see that “Purchasing” has
been added to the Finance page.

Choosing the Method

You can mix Direct and Annotation sitemap entries however you wish, but
that can get a bit confusing to manage. Which method you choose is
mostly a matter of preference, but there is one feature of the direct
method you should be aware of.

Our direct pages module looks currently looks like this: `
addEntry(“private/finance”, FinanceView.class, LabelKey.Finance,
PageAccessControl.PERMISSION); addEntry(“private/finance/accounts”,
AccountsView.class, LabelKey.Accounts, PageAccessControl.PERMISSION);
addEntry(“private/finance/payroll”, PayrollView.class, LabelKey.Payroll,
PageAccessControl.PERMISSION); ` There is a lot of repetition in the
URIs, so there is an alternative, by setting a rootURI which is
applied to all pages:

package com.example.tutorial.pages;

import com.example.tutorial.i18n.LabelKey;
import uk.q3c.krail.core.navigate.sitemap.DirectSitemapModule;
import uk.q3c.krail.core.shiro.PageAccessControl;

public class MyPages extends DirectSitemapModule {

[source,java]

public MyPages() {
 rootURI = "private/finance";
}

@Override
protected void define() {
 addEntry("", FinanceView.class, LabelKey.Finance,
 PageAccessControl.PERMISSION);
 addEntry("accounts", AccountsView.class, LabelKey.Accounts,
 PageAccessControl.PERMISSION);
 addEntry("payroll", PayrollView.class, LabelKey.Payroll,
 PageAccessControl.PERMISSION);
}

}

	update MyPages so it is as above

	run the application and you will see that the pages appear in the
same way as before

Moving a Set of Pages

We can easily move all the pages of a Direct module by changing the
rootUri - they can be moved anywhere in the Sitemap, as a set, as
long the Sitemap maintains a logical structure. We will need to keep the
finance pages on the “Private” branch for now, because of the Access
Control rules, but as an example, let’s suppose we decide that it should
have a rootURI of “private/finance-department” instead:

	modify the Binding Manager as below, to provide a different rootURI
as the module is constructed:

@Override
 protected void addSitemapModules(List<Module> baseModules) {
 baseModules.add(new SystemAccountManagementPages());
 baseModules.add(new MyPages().rootURI("private/finance-department"));
 baseModules.add(new AnnotatedPagesModule());
 }

	modify the annotated view (otherwise the Sitemap will break because
there is no longer a “private/finance” page

package com.example.tutorial.pages;

import com.google.inject.Inject;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.navigate.sitemap.View;
import uk.q3c.krail.core.shiro.PageAccessControl;
import uk.q3c.krail.core.view.Grid3x3ViewBase;

@View(uri = "private/finance-department/purchasing",pageAccessControl = PageAccessControl.PERMISSION,labelKeyName = "Purchasing")
public class PurchasingView extends Grid3x3ViewBase {

 @Inject
 protected PurchasingView(Translate translate) {
 super(translate);
 }
}

	Run the application and check that new URI is being used.

Tip

If you do want to set the rootURI directly in the module, you need
to do so in the constructor, or it will prevent the fluent method
shown above from working.

Tip

This feature of moving blocks of pages is available only with Direct pages. Although it might be possible to do something similar with annotated
pages by mapping packages to URIs, there are currently no plans to
do so.

Navigation

Add some public pages

Add a couple of public pages:

	in the pages package create “MyPublicPages” class, extended from
DirectSitemapModule with a couple of pages defined. Note that we
are going to put these as ‘roots’ of the tree, as rootUri is set
to an empty string.:

package com.example.tutorial.pages;

import com.example.tutorial.i18n.LabelKey;
import uk.q3c.krail.core.navigate.sitemap.DirectSitemapModule;
import uk.q3c.krail.core.shiro.PageAccessControl;

public class MyPublicPages extends DirectSitemapModule {

public MyPublicPages() {
 rootURI = "";
}

@Override
protected void define() {
 addEntry("news", NewsView.class, LabelKey.News, PageAccessControl.PUBLIC);
 addEntry("contact-us", ContactUsView.class, LabelKey.Contact_Us, PageAccessControl.PUBLIC);

}

	Create the views, extended from`Grid3x3ViewBase`:

package com.example.tutorial.pages;

import com.google.inject.Inject;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.view.Grid3x3ViewBase;

public class ContactUsView extends Grid3x3ViewBase {

@Inject
protected ContactUsView(Translate translate) {
 super(translate);
}

package com.example.tutorial.pages;

import com.google.inject.Inject;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.view.Grid3x3ViewBase;

public class NewsView extends Grid3x3ViewBase {

@Inject
protected NewsView(Translate translate) {
 super(translate);
}

	And add the LabelKey constants

public enum LabelKey implements I18NKey {
 Accounts, Payroll, Finance, News, Contact_Us, Purchasing
}

	Finally, update the BindingManager to include this new set of
pages:

@Override
 protected void addSitemapModules(List<Module> baseModules) {
 baseModules.add(new SystemAccountManagementPages());
 baseModules.add(new MyPages().rootURI("private/finance-department"));
 baseModules.add(new AnnotatedPagesModule());
 baseModules.add(new MyPublicPages());
 }

Getting the Navigator

We will do just a little bit more with these views to help demonstrate
navigation - we’ll just add some buttons to direct us to different URIs.
First, though, we need access to Krail’s Navigator. We will inject
it into both views, using constructor injection:

package com.example.tutorial.pages;

import com.google.inject.Inject;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.navigate.Navigator;
import uk.q3c.krail.core.view.Grid3x3ViewBase;

public class ContactUsView extends Grid3x3ViewBase {

private Navigator navigator;

@Inject
protected ContactUsView(Translate translate, Navigator navigator) {
 super(translate);
 this.navigator = navigator;
}

package com.example.tutorial.pages;

import com.google.inject.Inject;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.navigate.Navigator;
import uk.q3c.krail.core.view.Grid3x3ViewBase;

public class NewsView extends Grid3x3ViewBase {

private Navigator navigator;

@Inject
protected NewsView(Translate translate, Navigator navigator) {
 super(translate);
 this.navigator = navigator;
}

Adding some components

	Add buttons and actions in the doBuild method of NewsView:

@Override
 protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 Button navigateToContactUsBtn = new Button("Contact Us");
 Button navigateToPrivatePage = new Button("Accounts");
 navigateToContactUsBtn.addClickListener(c -> navigator.navigateTo("contact-us"));
 navigateToPrivatePage.addClickListener(c->navigator.navigateTo("private/finance-department/accounts"));
 setCentreCell(new VerticalLayout(navigateToContactUsBtn,navigateToPrivatePage));
 }

The first two lines just create the buttons. The second two lines add
click listeners, which are set up to use the`Navigator`to direct us to
the chosen page. Then the buttons are added to a VerticalLayout which is put in the centre cell of the grid.

	Run the application, but do not log in.

	Click on the “News” page

	Press the “Contact Us” button, and you will be taken to the “Contact
Us” page

	Press the browser back button, and you will be back on the “News”
page

	Press the “Accounts” button - and you a notification will appear to
say that the page does not exist. As mentioned earlier, the same
notification is given whether you are not authorised or the page does
not exist.

	Log in

	Press the “Accounts” button again, and as you are now authorised, you
will be at the “Accounts” page

Navigating with Parameters

A common requirement is to land on a page with parameters - a record id,
for example, so the page know which data to load. We are going to add a
“Contact Detail” page to simulate this.

	Just as we’ve done before, add the page to ‘’‘MyPublicPages’‘’,
create the view and add the LabelKey constant:

package com.example.tutorial.pages;

import com.example.tutorial.i18n.LabelKey;
import uk.q3c.krail.core.navigate.sitemap.DirectSitemapModule;
import uk.q3c.krail.core.shiro.PageAccessControl;

public class MyPublicPages extends DirectSitemapModule {

public MyPublicPages() {
 rootURI = "";
}

@Override
protected void define() {
 addEntry("news", NewsView.class, LabelKey.News, PageAccessControl.PUBLIC);
 addEntry("contact-us", ContactUsView.class, LabelKey.Contact_Us, PageAccessControl.PUBLIC);
 addEntry("contact-us/contact-detail", ContactDetailView.class, LabelKey.Contact_Detail, PageAccessControl.PUBLIC);
}

package com.example.tutorial.pages;

import com.google.inject.Inject;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.view.Grid3x3ViewBase;

public class ContactDetailView extends Grid3x3ViewBase {

@Inject
protected ContactDetailView(Translate translate) {
 super(translate);
}

Receiving parameters

To set ContactDetailView up to receive parameters all we need to do
is override either the afterBuild method or the loadData method.
Using loadData (even if you are not loading data) means you won’t
forget to call super.afterBuild() first …​

package com.example.tutorial.pages;

import com.google.inject.Inject;
import com.vaadin.ui.FormLayout;
import com.vaadin.ui.Label;
import uk.q3c.krail.core.view.Grid3x3ViewBase;
import uk.q3c.krail.core.view.component.AfterViewChangeBusMessage;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;
import uk.q3c.krail.i18n.Translate;

public class ContactDetailView extends Grid3x3ViewBase {
 private Label idLabel;
 private Label nameLabel;

@Inject
protected ContactDetailView(Translate translate) {
 super(translate);
}

@Override
protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 idLabel = new Label();
 idLabel.setCaption("id");
 nameLabel = new Label();
 nameLabel.setCaption("name");
 setCentreCell(new FormLayout(idLabel, nameLabel));
}

@Override
protected void loadData(AfterViewChangeBusMessage busMessage) {
 idLabel.setValue(busMessage.getToState()
 .getParameterValue("id"));
 nameLabel.setValue(busMessage.getToState()
 .getParameterValue("name"));
}

The process in loadData() is straightforward. The busMessage is just an event, and it carries a reference to the navigation state we are navigating from, and the state we are navigating to. This is represented by NavigationState,
which also contains any parameters that have been passed with the URI.

Sending parameters

To send parameters, construct a NavigationState, specifying the
parameters to go with it and call Navigator.navigateTo(NavigationState)

	Update ContactUsView to add a button whose click listener builds
the NavigationState, adds parameters, then calls the
Navigator.

@Override
protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 Button navigateWithParametersBtn = new Button("Navigate with parameters");
 NavigationState navState = new NavigationState().virtualPage("contact-us/contact-detail")
 .parameter("id", "33")
 .parameter("name", "David");
 navigateWithParametersBtn.addClickListener(c->navigator.navigateTo(navState));
 setCentreCell(navigateWithParametersBtn);
}

	Run the application

	select “Contact Us”

	click on “Navigate with Parameters”

	You will now be at the “Contact Detail” page with the parameter
values displayed.

Excluding a page from Navigation

If you think about the use of the “Contact Detail” page, it does not
actually make sense for it to appear in the navigation components - the
only time you would want to access this page is with some parameters to
set its contents:

	Modify the page entry in MyPublicPages, by setting the
positionIndex parameter to < 0

 @Override
protected void define() {
 addEntry("news", NewsView.class, LabelKey.News, PageAccessControl.PUBLIC);
 addEntry("contact-us", ContactUsView.class, LabelKey.Contact_Us, PageAccessControl.PUBLIC);
 addEntry("contact-us/contact-detail", ContactDetailView.class, LabelKey.Contact_Detail, PageAccessControl.PUBLIC,-1);
}

	Run the application, and the page will no longer appear in the
navigation components, but is actually still there:

	Go to the “Contact Us” page

	Press the “Navigate with Parameters” button

	The “Contact Detail” page appears as before.

Summary

	You have explored two methods of defining new pages, using Direct and
Annotated methods.

	You have created navigation actions from code

	You have passed parameters to a page, as you typically might to load
data

	You have excluded a page from navigation, but still make it part of
the Sitemap

	You have “attached” an existing set of pages to a part of the Sitemap
different from its default location

Download from GitHub

To get to this point straight from GitHub:

git clone https://github.com/davidsowerby/krail-tutorial.git
cd krail-tutorial
git checkout --track origin/krail_0.10.0.0

Revert to commit Pages and Navigation Complete

Themes

The Vaadin
handbook [https://vaadin.com/book/vaadin7/-/page/application.html]
provides a full explanation of its architecture, and the role of the UI
component.

For the purposes of this Tutorial, it is enough to consider the UI
to be a representation of a browser tab. The DefaultApplicationUI is
provided by Krail as a start point, but you may want to change elements
of it or replace it completely. The first Tutorial section gave an
overview of the
DefaultApplicationUI if you
need a refresher.

Replacing a UI

To use your own UI:

	in the package com.example.tutorial.app, create a class TutorialUI,
and sub-class DefaultApplicationUI. As you can see, it uses a lot
of injected objects - hopefully your IDE will create the constructor
for you.

	don’t forget the @Inject annotation for the constructor - it is
very easy to miss when using IDE auto-completion

package com.example.tutorial.app;

import com.google.inject.Inject;
import com.vaadin.data.util.converter.ConverterFactory;
import com.vaadin.server.ErrorHandler;
import uk.q3c.krail.i18n.CurrentLocale;
import uk.q3c.krail.core.i18n.I18NProcessor;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.navigate.Navigator;
import uk.q3c.krail.option.Option;
import uk.q3c.krail.core.push.Broadcaster;
import uk.q3c.krail.core.push.PushMessageRouter;
import uk.q3c.krail.core.ui.ApplicationTitle;
import uk.q3c.krail.core.ui.DefaultApplicationUI;
import uk.q3c.krail.core.user.notify.VaadinNotification;
import uk.q3c.krail.core.view.component.*;

public class TutorialUI extends DefaultApplicationUI {

[source]

@Inject
protected TutorialUI(Navigator navigator, ErrorHandler errorHandler, ConverterFactory converterFactory, ApplicationLogo logo, ApplicationHeader header, UserStatusPanel userStatusPanel, UserNavigationMenu menu, UserNavigationTree navTree, Breadcrumb breadcrumb, SubPagePanel subpage, MessageBar messageBar, Broadcaster broadcaster, PushMessageRouter pushMessageRouter, ApplicationTitle applicationTitle, Translate translate, CurrentLocale currentLocale, I18NProcessor translator, LocaleSelector localeSelector, VaadinNotification vaadinNotification, Option option) {
 super(navigator, errorHandler, converterFactory, logo, header, userStatusPanel, menu, navTree, breadcrumb, subpage, messageBar, broadcaster,
 pushMessageRouter, applicationTitle, translate, currentLocale, translator, localeSelector, vaadinNotification, option);
}

}
`
- Configure the`BindingManager`to use this new UI. In this case we override a specific`BindingManager`method, because we need to override the default:
`
@Override
protected Module uiModule() {
 return new DefaultUIModule().uiClass(TutorialUI.class).applicationTitleKey(LabelKey.Krail_Tutorial);
}
`
- Add the new key to`LabelKey```, which your IDE will probably do for you.
- Run the application and confirm that the application title has changed in the browser tab

= Themes

At the moment there is no alternative for setting the theme except by using the *@Theme* annotation provided by Vaadin. On the new `TutorialUI`
- Set the theme with @Theme("valo")

@Theme(“valo”) public class TutorialUI extends DefaultApplicationUI {

@Inject
protected TutorialUI(Navigator navigator, ErrorHandler errorHandler, ConverterFactory converterFactory, ApplicationLogo logo, ApplicationHeader header, UserStatusPanel userStatusPanel, UserNavigationMenu menu, UserNavigationTree navTree, Breadcrumb breadcrumb, SubPagePanel subpage, MessageBar messageBar, Broadcaster broadcaster, PushMessageRouter pushMessageRouter, ApplicationTitle applicationTitle, Translate translate, CurrentLocale currentLocale, I18NProcessor translator, LocaleSelector localeSelector, VaadinNotification vaadinNotification, Option option) {
 super(navigator, errorHandler, converterFactory, logo, header, userStatusPanel, menu, navTree, breadcrumb, subpage, messageBar, broadcaster,
 pushMessageRouter, applicationTitle, translate, currentLocale, translator, localeSelector, vaadinNotification, option);

}

}

- Run the application and observe the different appearance.

Valo is the most recent theme from Vaadin. "Reindeer" is the default, which you have been using until now. For more information about themes, see the [Vaadin Documentation](https://vaadin.com/book/-/page/themes.html).

#Summary
This was a short tutorial, covering the creation of a new UI, registering it, and setting a Theme.

#Download from GitHub
To get to this point straight from GitHub:

git clone https://github.com/davidsowerby/krail-tutorial.git cd
krail-tutorial git checkout –track origin/krail_0.10.0.0

Revert to commit _UI & Theme complete_

User Notifications

Notifying users with messages seems a small topic, and typical UI code contains numerous calls to message boxes of one form or another.
Consistency, however, can easily be lost, especially when there is a
need for I18N as well. There are also times when you want the message to
go to more than one place - for example both a splash message, and
repeated in the message bar at the bottom of the screen as you have
already seen.

Vaadin provides the Notification specifically for that purpose.

Krail provides a mechanism to support any method of presenting the
message, but the message despatch is always from the UserNotifier

Sending the Message

	Make the UserNotifier available to the NewsView by injecting
it into the constructor

	Add the sendNotificationBtn button

	Set the button’s click listener to despatch the notification with a
call to userNotifier.notifyError. There are warning and
information calls available as well.

	add the button to the VerticalLayout in the call to
setCentreCell

package com.example.tutorial.pages;

import com.example.tutorial.i18n.LabelKey;
import com.google.inject.Inject;
import com.vaadin.ui.Button;
import com.vaadin.ui.VerticalLayout;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.navigate.Navigator;
import uk.q3c.krail.core.user.notify.UserNotifier;
import uk.q3c.krail.core.view.Grid3x3ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;

public class NewsView extends Grid3x3ViewBase {

 private Navigator navigator;
 private UserNotifier userNotifier;

 @Inject
 protected NewsView(Translate translate,Navigator navigator, UserNotifier userNotifier) {
 super(translate);
 this.navigator = navigator;
 this.userNotifier = userNotifier;
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 Button navigateToContactUsBtn = new Button("Contact Us");
 Button navigateToPrivatePage = new Button("Accounts");
 Button sendNotificationBtn = new Button("Send notification");
 navigateToContactUsBtn.addClickListener(c -> navigator.navigateTo("contact-us"));
 navigateToPrivatePage.addClickListener(c -> navigator.navigateTo("private/finance-department/accounts"));
 sendNotificationBtn.addClickListener((c -> userNotifier.notifyError(LabelKey.Do_Not_do_That)));
 setCentreCell(new VerticalLayout(navigateToContactUsBtn, navigateToPrivatePage, sendNotificationBtn));
 }
}

Current methods of presentation

If you look at the constructor for TutorialUI you will see the
MessageBar and VaadinNotification instances being injected. The
MessageBar is the component presented at the bottom of the screen,
and VaadinNotification is a wrapper for the Vaadin Notification
class. Both just listen for notification messages via the Event Bus `
@Inject protected TutorialUI(Navigator navigator, ErrorHandler
errorHandler, ConverterFactory converterFactory, ApplicationLogo logo,
ApplicationHeader header, UserStatusPanel userStatusPanel,
UserNavigationMenu menu, UserNavigationTree navTree, Breadcrumb
breadcrumb, SubPagePanel subpage, MessageBar messageBar, Broadcaster
broadcaster, PushMessageRouter pushMessageRouter, ApplicationTitle
applicationTitle, Translate translate, CurrentLocale currentLocale,
I18NProcessor translator, LocaleSelector localeSelector,
VaadinNotification vaadinNotification, Option option) { ` - Run the
application and go to the “News Page”, press the “Send Notification”
button, and the message will appear as a Vaadin ‘Splash’ notification
and in the message bar at the bottom of the screen.

Different methods of presentation

If you wanted to provide your own methods of presenting user
notifications, it is very easy to do, while still keeping the
consistency of a single despatch point for user notifications - just
copy the structure of DefaultVaadinNotification and provide your own
method of presenting the messages.

Summary

At first this seems an almost trivial topic, but we would strongly
recommend using UserNotifier from the start. This will give you
consistency, and enable a very quick and simple change of notification
method(s) later.

Download from GitHub

To get to this point straight from GitHub:

git clone https://github.com/davidsowerby/krail-tutorial.git
cd krail-tutorial
git checkout --track origin/krail_0.10.0.0

Revert to commit User Notification Complete

Options

Krail sees Options as the top layer of
configuration.
Options give users as much control as the Krail developer wants to give
them, at runtime. They can be used for anything which you would
typically find in a settings / preferences / options menu.

Out of the Box

Let’s start with what Krail provides out of the box, the
SimpleHierarchy. When looking for option values, this provides 3
levels:

	the user level value

	the system level value

	a default, hard-coded value

The process is very simple - starting from the top of the hierarchy, the
user level, Krail looks for the first defined value, and uses that. The
user and system level would normally be in persistence, and the default
coded level is there so that even if persistence is inaccessible, or not
yet populated, the system behaves in a predictable way.

This could be described as the user level value overriding the system
level, which in turn overrides the default coded level.

Working example

We will demonstrate this with a page on which the user can select the
news topics they wish to see.

	In the ‘pages’ package create a new view, ‘MyNews’, extended from
Grid3x3View

	Add 3 Labels with some example text, for CEO News, Items for Sale and
Vacancies

package com.example.tutorial.pages;

import com.google.inject.Inject;
import com.vaadin.ui.Label;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.view.Grid3x3ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;

public class MyNews extends Grid3x3ViewBase {

 @Inject
 protected MyNews(Translate translate) {
 super(translate);
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 Label ceoNews = new Label("CEO News");
 Label itemsForSale = new Label("Items for Sale");
 Label vacancies = new Label("Vacancies");
 ceoNews.setSizeFull();
 itemsForSale.setSizeFull();
 vacancies.setSizeFull();
 setMiddleLeft(itemsForSale);
 setCentreCell(ceoNews);
 setMiddleRight(vacancies);
 }
}

	In the ‘pages’ package create a new direct pages module,
“MyOtherPages”

package com.example.tutorial.pages;

import com.example.tutorial.i18n.LabelKey;
import uk.q3c.krail.core.navigate.sitemap.DirectSitemapModule;
import uk.q3c.krail.core.shiro.PageAccessControl;

public class MyOtherPages extends DirectSitemapModule {
 /**
 * {@inheritDoc}
 */
 @Override
 protected void define() {
 addEntry("private/my-news", MyNews.class, LabelKey.My_News, PageAccessControl.PERMISSION);
 }
}
`
- Add this new module to the`BindingManager`
`
 @Override
 protected void addSitemapModules(List<Module> baseModules) {
 baseModules.add(new SystemAccountManagementPages());
 baseModules.add(new MyPages().rootURI("private/finance-department"));
 baseModules.add(new AnnotatedPagesModule());
 baseModules.add(new SystemAdminPages());
 baseModules.add(new MyPublicPages());
 baseModules.add(new MyOtherPages());
 }

	add the constant “My_News” to LabelKey

	run the application, log in and navigate to “My News” just to make
sure it works. You should see the three items across the centre of
the page.

At the moment these “news channels” will always appear. Now we need to
make them optional - after all, you may not want to see the vacancies,
but you will always want to see what the CEO has to say, won’t you?

Setting up the options

In order to use options a class must implement OptionContext - in
this case we will use a sub-interface of it VaadinOptionContext

	Modify MyNews to implement VaadinOptionContext and implement
the stubs of the methods.

	create a constructor and inject Option into it

	annotate the constructor with @Inject

	return option from optionInstance()

The result should look like this:

package com.example.tutorial.pages;

import com.google.inject.Inject;
import com.vaadin.data.Property;
import com.vaadin.ui.Label;
import uk.q3c.krail.core.option.VaadinOptionContext;
import uk.q3c.krail.core.view.Grid3x3ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.option.Option;

public class MyNews extends Grid3x3ViewBase implements VaadinOptionContext {

 private final Option option;

 @Inject
 protected MyNews(Translate translate, Option option) {
 super(translate);
 this.option = option;
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 Label ceoNews = new Label("CEO News");
 Label itemsForSale = new Label("Items for Sale");
 Label vacancies = new Label("Vacancies");
 ceoNews.setSizeFull();
 itemsForSale.setSizeFull();
 vacancies.setSizeFull();
 setMiddleLeft(itemsForSale);
 setCentreCell(ceoNews);
 setMiddleRight(vacancies);
 }

 @Override
 public Option optionInstance() {
 return option;
 }

 @Override
 public void optionValueChanged(Property.ValueChangeEvent event) {

 }
}

Options are nothing more than key-value pairs, but we want the keys to
be unique across the whole application, and we want them to have a
default value so that there is always a value, and, therefore, always
predictable behaviour. We will also want them to be presented to users
so they can choose a value - which means the option needs a
Locale-sensitive name and description. The OptionKey provides all of
these features.

	define a key for each news channel. They do not have to be public and
static, but it can be useful if they are

public static final OptionKey<Boolean> ceoVisible = new OptionKey<>(true, MyNews.class, LabelKey.CEO_News_Channel);
public static final OptionKey<Boolean> itemsForSaleVisible = new OptionKey<>(true, MyNews.class, LabelKey.Items_For_Sale_Channel);
public static final OptionKey<Boolean> vacanciesVisible = new OptionKey<>(true, MyNews.class, LabelKey.Vacancies_Channel);

The real key - the one that is used in persistence - is made up of the
context, the name key and qualifiers (if used). The context is there to
help ensure easily managed uniqueness. Qualifiers are not used in this
example, and are only really necessary if you want something like “Push
Button 1”, “Push Button 2” - you can use the qualifier for the final
digit.

Note

An option value is just an object to Krail. Supported data types will be determined by your choice of persistence. However, the core provides a utility class DataConverter, to help with the process of translating to String for persistence.

We will make use of these keys in the optionValueChanged method, to
hide or show the news channels:

	make the Label items into fields instead of local variables

	add the code to make the channels visible or hidden depending on the
option value

@Override
public void optionValueChanged(Property.ValueChangeEvent event) {
 ceoNews.setVisible(option.get(ceoVisible));
 itemsForSale.setVisible(option.get(itemsForSaleVisible));
 vacancies.setVisible(option.get(vacanciesVisible));
}

Finally, we need to make sure these options are processed as part of the build, so we call optionValueChanged from doBuild

@Override
protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage); ceoNews = new Label("CEO News");
 itemsForSale = new Label("Items for Sale"); vacancies = new Label("Vacancies");
 ceoNews.setSizeFull(); itemsForSale.setSizeFull();
 vacancies.setSizeFull(); setMiddleLeft(itemsForSale);
 setCentreCell(ceoNews); setMiddleRight(vacancies);
 optionValueChanged(null); }

Now we have options but we do not have any way of changing them. We will use OptionPopup to enable that …

Inject OptionPopup into the constructor

@Inject public MyNews(Option option, OptionPopup optionPopup) {
 this.option = option;
 this.optionPopup = optionPopup;
}

	Add a button in doBuild() to invoke the popup

popupButton=new Button ("options");
popupButton.addClickListener(event->optionPopup.popup(this,LabelKey.News_Options));
setBottomCentre(popupButton);

This is how the whole class should look now:

package com.example.tutorial.pages;

import com.example.tutorial.i18n.LabelKey;
import com.google.inject.Inject;
import com.vaadin.data.Property;
import com.vaadin.ui.Button;
import com.vaadin.ui.Label;
import uk.q3c.krail.core.option.OptionPopup;
import uk.q3c.krail.core.option.VaadinOptionContext;
import uk.q3c.krail.core.view.Grid3x3ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.option.Option;
import uk.q3c.krail.option.OptionKey;

public class MyNews extends Grid3x3ViewBase implements VaadinOptionContext {

 public static final OptionKey<Boolean> ceoVisible = new OptionKey<>(true, MyNews.class, LabelKey.CEO_News_Channel);
 public static final OptionKey<Boolean> itemsForSaleVisible = new OptionKey<>(true, MyNews.class, LabelKey.Items_For_Sale_Channel);
 public static final OptionKey<Boolean> vacanciesVisible = new OptionKey<>(true, MyNews.class, LabelKey.Vacancies_Channel);

 private final Option option;
 private final OptionPopup optionPopup;
 private Label ceoNews;
 private Label itemsForSale;
 private Label vacancies;
 private Button popupButton;

 @Inject
 protected MyNews(Translate translate, Option option, OptionPopup optionPopup) {
 super(translate);
 this.option = option;
 this.optionPopup = optionPopup;
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 ceoNews = new Label("CEO News");
 itemsForSale = new Label("Items for Sale");
 vacancies = new Label("Vacancies");
 ceoNews.setSizeFull();
 itemsForSale.setSizeFull();
 vacancies.setSizeFull();

 popupButton=new Button("options");
 popupButton.addClickListener(event->optionPopup.popup(this,LabelKey.News_Options));
 setBottomCentre(popupButton);

 setMiddleLeft(itemsForSale);
 setCentreCell(ceoNews);
 setMiddleRight(vacancies);
 optionValueChanged(null);
 }

 @Override
 public Option optionInstance() {
 return option;
 }

 @Override
 public void optionValueChanged(Property.ValueChangeEvent event) {
 ceoNews.setVisible(option.get(ceoVisible));
 itemsForSale.setVisible(option.get(itemsForSaleVisible));
 vacancies.setVisible(option.get(vacanciesVisible));
 }
}

	Run the application, and login as user “eq”

	Select the “My News” page

	click on the “options” button

The OptionPopup scans the OptionContext for OptionKey fields
and presents them for modification by the user

	Un-check the CEO news (he won’t know, honestly) , and the CEO channel
will disappear (you might need to move the popup).

	Logout

	Now log in as user “fb”

	Go to the “My News” page and you will find that the CEO channel is
back again - because you are a different user

	logout

	log back in as “eq”, and as you would expect, the CEO channel is
hidden.

We have demonstrated here that options are associated with users. What
we haven’t seen is what happens if the system level option changes.

In fact, at the moment there are no system level values defined, so if
there is no user level value, then the default coded value is used.

	Still logged in as user “eq”, open the options popup and click “Reset
to Default” for the CEO channel.

	The “CEO News Channel” checkbox becomes checked, and CEO channel
re-appears

This is the expected behaviour - we coded a default value of “true” for
the OptionKey. Now to demonstrate changing the system level value:

	In doBuild(), add a new button, “systemOptionButton”, and
configure it to change the option value at system level

	We also want to call optionValueChanged so we can see the impact
of the change

	and of course we need to put the button on the page

systemOptionButton = new Button("system option");
systemOptionButton.addClickListener(event -> {
 option.set(ceoVisible, 1, false);
 optionValueChanged(null);
});
setBottomRight(systemOptionButton);

	Run the application and login as “eq”

	Navigate to “My News” and you will see that the CEO channel is back -
the default OptionStore is in-memory, so values are lost when we
restart the application

	Try pressing “system option”. You will be told that you do not have
permission for that action. (There is a
bug [https://github.com/davidsowerby/krail/issues/624] which
presents the stacktrace instead of a user notification)

	Click on the splash message to clear it

We will come to User Access Control in detail
later, but for now it is enough to know that DefaultRealm - which
provides the authorisation rules - allows users to set their own
options, but only allows the ‘admin’ user to set system level options.

	Log out, and log back in as ‘admin’. Yes it is the same password.

	Navigate to “My News” and press “system option” again.

	The ‘admin’ user has permission, so now you will se that the CEO News
channel has disappeared.

	press “options” to get the popup, and check “CEO News Channel”.

	The item re-appears.

	Press “Reset to Default” for the CEO News Channel and the checkbox is
cleared again.

This is demonstrating that the “Override” principle mentioned earlier.
If a user has set an option, it is used. If there is no user level
value, the system level value is used. Failing that, then the hard code
default value is used.

Using Hierarchies

If you think about it, this hierarchy principle could be used in other
scenarios. You could have hierarchies based on geographic location -
maybe city, country, region. Or another based on job - maybe
function, department, team, role. The structure of these may be
available from other systems - HR, Identity Management, Facilities
systems - or you could define them yourself. You can have as many
hierarchies as you wish, and we will come back to this subject later to
create a hierarchy of our own.

Option Data Types

When using the default in memory store, Krail can use any data type for an option. However, most persistence providers will want to confine
Option values to a single table, and DataConverter provides support for that, by translating Option values to String and back again.

This supports most primitive data types , Enum and I18NKey. Collections cannot be used directly, but are supported through uk.q3c.util.data.collection.DataList.

AnnotationOptionList enables the use of a list of Annotation classes.

See uk.q3c.util.DefaultDataConverter for the complete list of supported types.

Summary

We have:

	introduced options, and their purpose

	demonstrated their hierarchical nature

	seen that user access control is applied to options

	shown that OptionKey provides a full key definition, enabling the OptionPopup to populate without any further coding

Download from GitHub

To get to this point straight from GitHub:

	git clone https://github.com/davidsowerby/krail-tutorial.git

	cd krail-tutorial

	git checkout –track origin/krail_0.10.0.0

Revert to commit Options and UserHierarchies Complete

Configuration from INI files

In the previous section we covered the use of options, and mentioned
that Krail sees Options as the top layer of
configuration.

This Tutorial has so far covered the top layer and part of the bottom
layer. The “bottom layer” includes the configuration we have done using
Guice and Guice modules, but includes anything which requires a
recompile (for example, annotations)

The middle layer is the one provided by the facility to load ini files
(and other formats), and that is what we will explore in this section

Overview

Krail integrates Apache Commons
Configuration [https://commons.apache.org/proper/commons-configuration/]
to provide support for this form of loading configuration, which extends
well beyond just ini files. (See the Apache documentation for more
information).

More specifically, Krail captures configuration information in an
instance of ApplicationConfiguration, which allows a set of
configuration values to override a previous set (when they have the same
property names). This is similar in principle to the way
options work.

Example

	In the ‘pages’ package create a new view, ‘IniConfigView’, extended
from Grid3x3ViewBase

	Override the doBuild() method (you will get some compile errors)

package com.example.tutorial.pages;

import com.google.inject.Inject;
import com.vaadin.ui.Alignment;
import com.vaadin.ui.Button;
import com.vaadin.ui.Label;
import uk.q3c.krail.config.ApplicationConfiguration;
import uk.q3c.krail.core.view.Grid3x3ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;
import uk.q3c.krail.i18n.Translate;

public class IniConfigView extends Grid3x3ViewBase {

[source]

private final ApplicationConfiguration applicationConfiguration;
private Label tutorialQualityProperty;
private Label connectionTimeoutProperty;
private Label tutorialCompletedProperty;

@Inject
protected IniConfigView(Translate translate, ApplicationConfiguration applicationConfiguration) {
 super(translate);
 this.applicationConfiguration = applicationConfiguration;
}

@Override
protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 Button showConfigButton = new Button("Show config");
 tutorialQualityProperty = new Label();
 showConfigButton.addClickListener(event -> showConfig());
 setTopCentre(tutorialQualityProperty);
 setMiddleCentre(showConfigButton);
 getGridLayout().setComponentAlignment(tutorialQualityProperty, Alignment.MIDDLE_CENTER);
 connectionTimeoutProperty = new Label();
 tutorialCompletedProperty = new Label();
 setTopRight(tutorialCompletedProperty);
 setTopLeft(connectionTimeoutProperty);

}
private void showConfig() {
 tutorialQualityProperty.setValue("Tutorial quality is: " + applicationConfiguration.getString("tutorial.quality"));
 tutorialCompletedProperty.setValue("Tutorial completed: "+ applicationConfiguration.getString("tutorial.completed"));
 connectionTimeoutProperty.setValue("The timeout is set to: " + applicationConfiguration.getString("connection.timeout"));
}

}
`
This sets up a button to show the config, and labels to display the values. Loading the config into a singleton instance of`ApplicationConfiguration``` actually happens at application startup.

We can inject `ApplicationConfiguration` anywhere in the application to gain access to the configuration data loaded from the ini files (or any of the many other sources https://commons.apache.org/proper/commons-configuration/[Apache Commons Configuration] supports)

Note the `showConfig()` method could equally be placed directly in the lambda expression for `showConfigButton`

* Include this new page in `MyOtherPages`
[source]

addEntry("ini-config", IniConfigView.class, LabelKey.Ini_Config, PageAccessControl.PUBLIC);

= More layers

When an application comprises multiple libraries, there may be a need for multiple sets of configuration. You can add as many configuration files as you require.

== Adding ini files

* create a file 'krail.ini' in _src/main/webapp/WEB-INF_
* you may be familiar with the extended properties file format …. populate it with:
`
[tutorial]
quality=good
completed=false
`
*

create another file 'moreConfig.ini' in WEB-INF, with this content:

quality=brilliant

timeout=1000

This will be used to show a property overriding another, while also adding new properties.

== Configure Guice

We now need to set up the Guice configuration so it knows about the additional file. You can sub-class `ApplicationConfigurationModule` , and then tell the `BindingManager` about it, or more easily, simply add the configs as part of the the `BindingManager` entry like this:

[source]

 @Override
 protected Module applicationConfigurationModule() {
 return new KrailApplicationConfigurationModule().addConfig("moreConfig.ini",98,false).addConfig("krail.ini",100,true);
 }

Be aware that the order that the files are processed is important if they contain the same (fully qualified) property names. If you look at the javadoc for `addConfig()` you will see that the second parameter determines the order (priority) of loading, with a lower value being the highest priority (0 is therefore the highest priority)

* Run the application and select the "Ini Config" page
*

Press "Show config" and you will see the values provided by _krail.ini_ and _moreConfig.ini_ combined:

** _tutorial.completed_ from _krail.ini_ is unchanged as there is no value for it in _moreConfig.ini_
** _connection.timeout_ is a new property from _moreConfig.ini_
** _tutorial.quality_ from _krail.ini_ has been overridden by the value in _moreConfig.ini_

= Fail early

If an ini file is essential for the operation of your application, `addConfig()` allows you to specify that. Both the examples have the 'optional' parameter set to 'false', but of course both files are present.

* add another config to the `BindingManager entry`, but do not create the corresponding file
`
@Override
protected Module applicationConfigurationModule() {
 return new KrailApplicationConfigurationModule()
 .addConfig("moreConfig.ini",98,false)
 .addConfig("essential.ini",99,false)
 .addConfig("krail.ini",100,true);
}
`
* run the application and it will fail early with a `FileNotFoundException` (Note: there is currently a https://github.com/davidsowerby/krail/issues/531[bug] which causes a timeout rather than an exception)
* change the 'optional' parameter to true and the application will run
[source]

 @Override
 protected Module applicationConfigurationModule() {
 return new KrailApplicationConfigurationModule()
 .addConfig("moreConfig.ini",98,false)
 .addConfig("essential.ini",99,false)
 .addConfig("krail.ini",100,false);
 }

The final versions of the files should be:

[source]

package com.example.tutorial.app;

import com.example.tutorial.i18n.LabelKey;
import com.example.tutorial.pages.AnnotatedPagesModule;
import com.example.tutorial.pages.MyOtherPages;
import com.example.tutorial.pages.MyPages;
import com.example.tutorial.pages.MyPublicPages;
import com.google.inject.Module;
import uk.q3c.krail.core.config.KrailApplicationConfigurationModule;
import uk.q3c.krail.core.guice.DefaultServletContextListener;
import uk.q3c.krail.core.navigate.sitemap.SystemAccountManagementPages;
import uk.q3c.krail.core.sysadmin.SystemAdminPages;
import uk.q3c.krail.core.ui.DefaultUIModule;

import java.util.List;

public class BindingManager extends DefaultBindingManager {

 @Override
 protected Module servletModule() {
 return new TutorialServletModule();
 }

 @Override
 protected void addAppModules(List<Module> modules) {

 }

 @Override
 protected void addSitemapModules(List<Module> baseModules) {
 baseModules.add(new SystemAccountManagementPages());
 baseModules.add(new MyPages().rootURI("private/finance-department"));
 baseModules.add(new AnnotatedPagesModule());
 baseModules.add(new SystemAdminPages());
 baseModules.add(new MyPublicPages());
 baseModules.add(new MyOtherPages());
 }

 @Override
 protected Module uiModule() {
 return new DefaultUIModule().uiClass(TutorialUI.class).applicationTitleKey(LabelKey.Krail_Tutorial);
 }

 @Override
 protected Module applicationConfigurationModule() {
 return new KrailApplicationConfigurationModule()
 .addConfig("moreConfig.ini",98,false)
 .addConfig("essential.ini",99,true)
 .addConfig("krail.ini",100,true);
 }
}

[source]

package com.example.tutorial.pages;

import com.google.inject.Inject;
import com.vaadin.ui.Alignment;
import com.vaadin.ui.Button;
import com.vaadin.ui.Label;
import uk.q3c.krail.config.ApplicationConfiguration;
import uk.q3c.krail.core.view.Grid3x3ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;
import uk.q3c.krail.i18n.Translate;

public class IniConfigView extends Grid3x3ViewBase {

 private final ApplicationConfiguration applicationConfiguration;
 private Label tutorialQualityProperty;
 private Label connectionTimeoutProperty;
 private Label tutorialCompletedProperty;

 @Inject
 protected IniConfigView(Translate translate, ApplicationConfiguration applicationConfiguration) {
 super(translate);
 this.applicationConfiguration = applicationConfiguration;
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 Button showConfigButton = new Button("Show config");
 tutorialQualityProperty = new Label();
 showConfigButton.addClickListener(event -> showConfig());
 setTopCentre(tutorialQualityProperty);
 setMiddleCentre(showConfigButton);
 getGridLayout().setComponentAlignment(tutorialQualityProperty, Alignment.MIDDLE_CENTER);
 connectionTimeoutProperty = new Label();
 tutorialCompletedProperty = new Label();
 setTopRight(tutorialCompletedProperty);
 setTopLeft(connectionTimeoutProperty);

 }
 private void showConfig() {
 tutorialQualityProperty.setValue("Tutorial quality is: " + applicationConfiguration.getString("tutorial.quality"));
 tutorialCompletedProperty.setValue("Tutorial completed: "+ applicationConfiguration.getString("tutorial.completed"));
 connectionTimeoutProperty.setValue("The timeout is set to: " + applicationConfiguration.getString("connection.timeout"));
 }
}

= Summary

* We have loaded an ini file
* we have demonstrated the principle of overriding the the values in one ini file with those from another
* We have demonstrated ensuring an early fail if a file is missing
* We have demonstrate making the presence of an ini file optional

Apache Commons Configuration supports much more than just ini files, and can support https://commons.apache.org/proper/commons-configuration/userguide_v1.10/overview.html#Configuration_Sources[variety of sources] - Krail will just accept anything that Apache Commons Configuration provides

= Download from GitHub

To get to this point straight from GitHub:

[source,bash]

git clone https://github.com/davidsowerby/krail-tutorial.git
cd krail-tutorial
git checkout --track origin/krail_0.10.0.0

Revert to commit _Configuration from ini file complete_

User Access Control

You have seen some aspects of Krail’s User Access Control already, and
are probably aware that it provides this by integrating Apache
Shiro [http://shiro.apache.org/]. This Tutorial will not attempt to
cover the whole of Shiro’s capability - Shiro’s own documentation does a
good job of that already.

What we will do, however, is demonstrate some of the features of Shiro,
within a Krail context:

	Implementing a Realm. Implement a trivial Realm to provide
authentication and authorisation

	Page Access Control. This is Krail specific use of Shiro features
to determine whether a user has permission to access a page

	Coded access. Checking from code whether a user has permissions
to do something

	Access Control annotations. This will demonstrate the use of
Shiro’s annotations, as an alternative to using coded access

Krail does not yet provide any user management capability (the
management of users, groups & roles etc) as this is often provided via
LDAP, Active Directory or Identity Management systems. There is an open
ticket [https://github.com/davidsowerby/krail/issues/226] for it, so
it may be developed one day.

Example

We will take this opportunity to tidy up our site, and limit who can use
different parts of the site. This is what we want to achieve:

	the ‘finance’ pages should be on their own branch

	public pages will remain available to any user

	private pages will be limited to just 2 users, “eq” and “fb”

	both users will have access to the ‘private’ branch

	both users will be able to change their own options

	‘fb’ will be able to access the finance pages, but ‘eq’ will not.

	there will be an ‘admin’ user who can access all pages and change all
options

At this point we must stress that this is going to be a trivial example
of User Access Control, and to do it properly you need to consult the
Shiro documentation. This Tutorial should give you some useful pointers,
however.

Move the Pages

To move the ‘finance’ pages:

	change the line in the BindingManager to put the MyPages root
URI at finance instead of private/finance-department

baseModules.add(new MyPages().rootURI("finance"));

	In the PurchasingView change the uri parameter to be
finance/purchasing

package com.example.tutorial.pages;

import com.google.inject.Inject;
import uk.q3c.krail.core.navigate.sitemap.View;
import uk.q3c.krail.core.shiro.PageAccessControl;
import uk.q3c.krail.core.view.Grid3x3ViewBase;
import uk.q3c.krail.i18n.Translate;

@View(uri = "finance/purchasing", pageAccessControl = PageAccessControl.PERMISSION, labelKeyName = "Purchasing")
public class PurchasingView extends Grid3x3ViewBase {

 @Inject
 protected PurchasingView(Translate translate) {
 super(translate);
 }
}

	In NewsView.doBuild() change the button event to point to the new
page location ` navigateToPrivatePage.addClickListener(c ->
navigator.navigateTo(“finance/accounts”)); `

User accounts

	create a new package, ‘com.example.tutorial.uac’

	in that package create a new class “TrivialUserAccount” - it is
obvious what it does

package com.example.tutorial.uac;

import java.util.Arrays;
import java.util.List;

public class TrivialUserAccount {

[source]

private String password;
private List<String> permissions;
private String userId;

public TrivialUserAccount(String userId, String password, String... permissions) {
 this.userId = userId;
 this.password = password;
 this.permissions = Arrays.asList(permissions);
}

public String getUserId() {
 return userId;
}

public String getPassword() {
 return password;
}

public List<String> getPermissions() {
 return permissions;
}

}

<div class=”admonition note”> <p class=”first admonition-title”>Note</p>
<p class=”last”>You may notice that there is no “role” in this user
account. You can certainly use Shiro’s roles in Krail, but we prefer to
use permissions for the <a
href=”https://shiro.apache.org/authorization.html#Authorization-ElementsofAuthorization”
target=”“>reasons given by the Shiro team.</p> </div>

Credentials Store

	create a class “”TrivialCredentialsStore” as somewhere to keep the
user accounts:

package com.example.tutorial.uac;

import com.google.inject.Inject;

import java.util.HashMap;
import java.util.Map;

public class TrivialCredentialsStore {
 private Map<String, TrivialUserAccount> store = new HashMap<>();

 @Inject
 protected TrivialCredentialsStore() {
 }

 public TrivialCredentialsStore addAccount(String userId, String password, String... permissions) {
 store.put(userId, new TrivialUserAccount(userId, password, permissions));
 return this;
 }

 public TrivialUserAccount getAccount(String principal) {
 return store.get(principal);
 }
}

	define the users’ credentials to meet our requirements - we’ll just
put them in the constructor

@Inject
protected TrivialCredentialsStore() {
 addAccount("eq", "eq", "page:view:private:*","option:edit:SimpleUserHierarchy:eq:0:*:*");
 addAccount("fb", "fb", "page:view:private:*","page:view:finance:*","option:edit:SimpleUserHierarchy:fb:0:*:*");
 addAccount("admin", "password", "page:view:*","option:edit:*");
}

Permission Strings

What we have done here is give users specific credentials. The userId
and password are obvious. The permission strings use Shiro’s
WildcardPermission.

This is a very flexible way of defining
permissions [https://shiro.apache.org/permissions.html]. Krail uses
the WildcardPermission to define page and option approval.

Page Permission

So for example, a page with a url of:

private/apage/asubpage/id=1

is translated by Krail’s PagePermission into a Shiro compatible
syntax of:

page:view:private:apage:asubpage

This represents:

	resource type (‘page’)

	action (‘view’)

	resource instance (the Url with the ‘/’ transposed to a ‘:’ to match
the Shiro syntax)

	the url parameter is ignored, because it is not part of the page
definition

This is then compared, by Shiro, with the permission a user has been
given. Both ‘eq’ and ‘fb’ have been given a permission: `
page:view:private:* ` which translates to “for a resource type page,
this user can view any with a url starting with private”

The ‘admin’ user has been given permission to view any page, simply by
wildcarding all pages

page:view:*

Option permission

An Option follows a similar pattern, provided by OptionPermission

	resource type (‘option’)

	action (‘edit’)

	resource instance (an option) structured [hierarchy]:[user
id]:[hierarchy level index]:[context]:[option
name]:[qualifier]:[qualifier]

Thus the option permissions given to ‘eq’ and ‘fb’ only allow them to
edit their own options in the SimpleUserHierarchy. This is set by
giving permission only at the user level, hierarchy level index = 0

Again the ‘admin’ user is all-powerful, with permission to edit any
option:

option:edit:*

Authentication

Shiro has the concept of a Realm, where the rules for Authentication
and Authorisation are defined - by you, as they will be application
specific. Shiro offers a number of ways to implement
Realm [https://shiro.apache.org/static/1.2.2/apidocs/org/apache/shiro/realm/Realm.html],
and here we will just provide a trivial example, combining
authentication and authorisation into one Realm

We will sub-class AuthorizingRealmBase, as that provides a mechanism
for enabling the cache via Guice.

	in the package, ‘com.example.tutorial.uac’ create a class
“TutorialRealm”, extending AuthorizingRealmBase

package com.example.tutorial.uac;

import uk.q3c.krail.core.shiro.AuthorizingRealmBase;

public class TutorialRealm extends AuthorizingRealmBase {

}

	We want to use our TrivialCredentialsStore, so we will inject
that into the constructor

	Caching obviously is not needed for this trivial case, but we will
pass Optional<CacheManager> to AuthorizingRealmBase. This
will allow us to demonstrate enabling the cache from Guice.

public class TutorialRealm extends AuthorizingRealmBase {

 private TrivialCredentialsStore credentialsStore;

 @Inject
 protected TutorialRealm(Optional<CacheManager> cacheManagerOpt, TrivialCredentialsStore credentialsStore) {
 super(cacheManagerOpt);
 this.credentialsStore = credentialsStore;
 }
}

	provide the authentication logic by overriding
doGetAuthenticationInfo()

@Override
protected AuthenticationInfo doGetAuthenticationInfo(AuthenticationToken token) throws AuthenticationException {
 TrivialUserAccount userAccount = credentialsStore.getAccount((String) token.getPrincipal());
 if (userAccount == null) {
 return null;
 }
 String tokenCredentials = new String((char[])token.getCredentials());
 if(userAccount.getPassword().equals(tokenCredentials)) {
 return new SimpleAuthenticationInfo(userAccount.getUserId(),token.getCredentials(),"TutorialRealm");
 }else{
 return null;
 }
}

This logic returns null if the user account is not found, or the
password supplied by the token does not match the credentials. If
authentication is successful, a populated instance of
SimpleAuthenticationInfo is returned

Authorisation

	override doGetAuthorizationInfo() to provide the authorisation
logic

@Override
protected AuthorizationInfo doGetAuthorizationInfo(PrincipalCollection principals) {
 TrivialUserAccount userAccount = credentialsStore.getAccount((String) principals.getPrimaryPrincipal());
 if (userAccount != null) {
 SimpleAuthorizationInfo info = new SimpleAuthorizationInfo();
 info.setStringPermissions(new HashSet<>(userAccount.getPermissions()));
 return info;
 }
 return null;
}

This logic returns a populated SimpleAuthorizationInfo instance if
the user account is found, or null if not

Using the Realm

	override the shiroModule() method in the BindingManager to
use the new Realm

	enable the cache as shown

@Override
protected Module shiroModule() {
 return new DefaultShiroModule().addRealm(TutorialRealm.class).enableCache();
}

*

run the application and check to see if we have met our requirements:

	log in as ‘eq’, with password ‘eq’

	private pages should be visible, but not the finance pages or
system admin pages

	you should still be able to modify options on the “My News” page

	pressing the “system option” button on “My News” will result in a
“You do not have permission” message

	log out

	log in as ‘fb’ - try a wrong password if you like, the correct
password should be ‘fb’

	private and finance pages should be visible, but not system
admin pages

	you should still be able to modify options on the “My News” page

	pressing the “system option” button on “My News” will result in a
“You do not have permission” message

	log out

	log in as ‘admin’, password= ‘password’

	private, finance and system admin pages pages should all be
visible

	you should still be able to modify options on the “My News” page

	pressing the “system option” button on “My News” remove the CEO news

So far this has all been done using page and option permissions. The
visibility of pages is actually managed through PageAccessControl
which limits what is made available to the navigation components. You
can take also direct control using code or Shiro annotations.

Control Access Through Code

At the moment the “system option” button on “My News” can result in a
“You do not have permission” message. It does not make much sense to
make the button available to a user who is not allowed to use it, so
let’s hide the button unless the user has permission.

	to get access to the current Shiro Subject, we inject a
SubjectProvider

	modify MyNews to do so:

@Inject
public MyNews(Option option, OptionPopup optionPopup, SubjectProvider subjectProvider, Translate translate) {
 super(translate);
 this.option = option;
 this.optionPopup = optionPopup;
 this.subjectProvider = subjectProvider;
}

	in MyNews.doBuild() make the visibility conditional on the user
having permission

if (subjectProvider.get().isPermitted("option:edit:SimpleUserHierarchy:*:1:*:*")) {
 systemOptionButton.setVisible(true);
}else{
 systemOptionButton.setVisible(false);
}

Here we have asked Shiro to confirm permission at the most specific
level, as recommended by Shiro. This permission string is checking that
the user has permission to edit any option at level 1 (the ‘system’
level) in the SimpleUserHierarchy

	run the application and log in as ‘eq’ or ‘fb’ and you will not be
able to see the “system option” button. Log in as ‘admin’, however,
and the “system option” button is visible.

Control Access Through Annotations

Shiro provides a set of
annotations [https://shiro.apache.org/java-annotations-list.html] to
cover most circumstances. We will use @RequiresPermissions as an
example

	on the MyNews page add another button in doBuild()

payRiseButton = new Button("request a pay rise");
payRiseButton.addClickListener(event-> requestAPayRise());
setBottomLeft(payRiseButton);

	inject the UserNotifier

@Inject
public MyNews(Option option, OptionPopup optionPopup, SubjectProvider subjectProvider, Translate translate, UserNotifier userNotifier) {
 super(translate);
 this.option = option;
 this.optionPopup = optionPopup;
 this.subjectProvider = subjectProvider;
 this.userNotifier = userNotifier;
}

	create the requestAPayRise method

	use userNotifier to give feedback

	create the enum constant
DescriptionKey.You_just_asked_for_a_pay_increase

protected void requestAPayRise() {
 userNotifier.notifyInformation(DescriptionKey.You_just_asked_for_a_pay_increase);
}

	We want to restrict who can use the method, so we will annotate it
with a new permission

@RequiresPermissions("pay:request-increase")
protected void requestAPayRise() {
 userNotifier.notifyInformation(DescriptionKey.You_just_asked_for_a_pay_increase);
}

Nobody currently has permission to do this, so let’s allow user ‘eq’ to
do this

	modify the entry for ‘eq’ in TrivialCredentialsStore to add this
permission

addAccount("eq", "eq", "page:view:private:*","option:edit:SimpleUserHierarchy:eq:0:*:*","pay:request-increase");

	run the application

	log in as ‘eq’

	navigate to “My News” and press “request a pay rise”.

	A notification pops up to confirm the request. (Unfortunately it
doesn’t say what will happen to the request)

	log in as ‘fb’ or ‘admin’

	navigate to “My News” and press “request a pay rise”.

	you receive a “not permitted” message

Summary

We have: - Shown how to control access to pages
 - Shown how access
control is applied to Options
 - Shown how to control access using
code
 - Shown how to control access using annotations
 - Built a
very simple credential store with user accounts
 - Demonstrated some
uses of Shiro’s Wildcard permissions

Download from GitHub

To get to this point straight from GitHub:

git clone https://github.com/davidsowerby/krail-tutorial.git
cd krail-tutorial
git checkout --track origin/krail_0.10.0.0

Revert to commit User Access Control Complete

I18N

We had a very brief
introduction to Krail’s
implementation of I18N in an earlier section of the Tutorial, and this
gave us the LabelKey and DescriptionKey enum classes.

In this section we will cover most of the rest of Krail’s I18N
functionality.

Elements of I18N

A complete I18N “transaction” requires the following components:

	a key to identify a pattern

	Locale-specific patterns for as many languages you wish to support

	arguments to populate variables in the pattern (if there are any)

	a method for selecting the the correct language and applying the
arguments to the pattern

	a way of knowing which Locale to use

Direct translation

Open up MyNews and you will recall that we have used String
literals in a number of places. This is going to make life difficult if
ever we want to translate this application - and even if we just want to
use the same phrase in a number of different places.

Let’s replace the following literal (in doBuild()`) with
something more robust:

popupButton = new Button("options");

with

popupButton = new Button(getTranslate().from(LabelKey.Options));

	create the ‘Options’ enum constant in LabelKey

This simple step gives you:

	refactoring support for the key

	a default translation, which is the enum’s name() method with
underscores transposed to spaces.

	a way to provide an alternative phrase, without changing the enum key
(we will see that shortly)

	an application which requires no code changes if additional language
support is needed one day

Message with Parameters

Now let us add a banner to the page, which will include some variable
information.

	in doBuild() add: ` Label bannerLabel = new Label();
getGridLayout().addComponent(bannerLabel,0,0,1,0); `

So far, all the I18 patterns have been simple - they have had no
parameters. Now we want a more complex message with some dynamic
elements to it.

At this stage, you may want to consider a convention for naming your
keys. In general we feel it is best to group them with a feature, and
then perhaps consider splitting them further:

	Labels : short, usually one or two words, no parameters, generally
used as captions

	Descriptions : longer, typically several words, no parameters,
generally used in tooltips

	Messages : contains parameter(s).

This is just a convention - which we will use in this Tutorial - but it
is entirely your decision how you organise your keys.

To stick to this convention, we will now rename the key classes we have
already created:

	Rename LabelKey to TutorialLabelKey

	Rename DescriptionKey to TutorialDescriptionKey

Creating a Key class

Assuming you have followed this Tutorial from the start, you have
already seen how to create a key
class. We are going to add
another now:

	in the ‘com.example.tutorial.i18n’ package, create an Enum class
called ‘TutorialMessageKey’. It should implement the I18NKey
interface

	create a TutorialMessageKey constant Banner

package com.example.tutorial.i18n;

import uk.q3c.krail.i18n.I18NKey;

public enum TutorialMessageKey implements I18NKey {
 Banner
}

This is going to be a long message, and because it has parameters, the
default translation cannot be taken from the key name. We will use a
class based method for defining the pattern:

	in the ‘com.example.tutorial.i18n’ package, create a class
‘TutorialMessages’ (the naming convention is important here - in
order to find values for keys, the default is to assume, for example,
that ‘LabelKey’ will map to ‘Labels’ - although this can be changed
by overriding I18NKey.bundleName()

	override the loadMap() method

package com.example.tutorial.i18n;

import uk.q3c.krail.i18n.EnumResourceBundle;

public class TutorialMessages extends EnumResourceBundle<TutorialMessageKey>{
 @Override
 protected void loadMap() {

[source]

}

}

Here you will see that we are extending EnumResourceBundle but for
type safety, genericised with TutorialMessageKey. The loadMap()
method enables entries to be put in a map.

	now associate the Banner key with an I18N pattern - using a
static import makes it more readable:

package com.example.tutorial.i18n;

import uk.q3c.krail.i18n.EnumResourceBundle;

import static com.example.tutorial.i18n.TutorialMessageKey.*;

public class TutorialMessages extends EnumResourceBundle<TutorialMessageKey> {

 @Override
 protected void loadMap() {
 put(Banner,"The temperature today is {1}. The CEO has noticed that her news channel {0}.");
 }
}

Each of the parameters - {n} - will take a value we supply as an
argument. The arguments:

	must be supplied in the order of the numbers in the {n}, not the
order in which they appear in the pattern (because different
languages may require parameters in a different order).

	must match the number of parameters. If not, the whole translation is
abandoned and the pattern string is returned unchanged. (Note:
This is the default behaviour of Translate), but as of Krail
0.10.0.0 Translate offers different levels of “strictness”
regarding the matching of parameters to arguments. See the javadoc
for detail.

Now let's display the banner:

- set up a random temperature
- choose a key depending on whether the CEO News channel is selected
- add two keys to ```TutorialLabelKey```, **is_selected** and **is_not_selected**
- create a ```Label``` using the translated message with the two arguments (remember that 'temperature' is the second parameter, *{1}* in the pattern, even though it appears first). In the ```doBuild``` method of ```MyNews``` add:

int temperature = (new Random().nextInt(40))-10;
TutorialLabelKey selection = (option.get(ceoVisible)) ? TutorialLabelKey.is_selected : TutorialLabelKey.is_not_selected;

Label bannerLabel = new Label(getTranslate().from(TutorialMessageKey.Banner, selection, temperature));
getGridLayout().addComponent(bannerLabel,0,0,2,0);

Parameters passed as ```I18NKey``` constants are also translated. These are currently the only parameter types that are localised, see [open ticket](https://github.com/davidsowerby/krail/issues/428).

- Run the application, log in and and navigate to "MyNews" (login = 'eq', 'eq'),
 - the banner has been expanded to include the variable values
- click on "options" and change the value for CEO New Channel - but the label does not change, because the banner has no way of knowing the option value has changed.
- To fix this
 - make ```bannerLabel``` a field
 - move the code to set the bannerLabel value to ```optionValueChanged```
 - move 'optionValueChanged(null);' to the end of ```doBuild()```

The full code for ```doBuild()``` method is now:

@Override
protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 ceoNews = new Label("CEO News");
 itemsForSale = new Label("Items for Sale");
 vacancies = new Label("Vacancies");
 ceoNews.setSizeFull();
 itemsForSale.setSizeFull();
 vacancies.setSizeFull();

 popupButton = new Button(getTranslate().from(TutorialLabelKey.Options));
 popupButton.addClickListener(event -> optionPopup.popup(this, TutorialLabelKey.News_Options));
 setBottomCentre(popupButton);

 systemOptionButton = new Button("system option");
 systemOptionButton.addClickListener(event -> {
 option.set(ceoVisible, 1, false);
 optionValueChanged(null);
 });
 setBottomRight(systemOptionButton);

 setMiddleLeft(itemsForSale);
 setCentreCell(ceoNews);
 setMiddleRight(vacancies);

 if (subjectProvider.get().isPermitted("option:edit:SimpleUserHierarchy:*:1:*:*")) {
 systemOptionButton.setVisible(true);
 } else {
 systemOptionButton.setVisible(false);
 }

 payRiseButton = new Button("request a pay rise");
 payRiseButton.addClickListener(event -> requestAPayRise());
 setBottomLeft(payRiseButton);

 bannerLabel = new Label();
 getGridLayout().addComponent(bannerLabel,0,0,2,0);

 optionValueChanged(null);

}


```optionValueChanged()``` is now:





@Override
public void optionValueChanged(Property.ValueChangeEvent event) {
    ceoNews.setVisible(option.get(ceoVisible));
    itemsForSale.setVisible(option.get(itemsForSaleVisible));
    vacancies.setVisible(option.get(vacanciesVisible));
    int temperature = (new Random().nextInt(40)) - 10;
    TutorialLabelKey selection = (option.get(ceoVisible)) ? TutorialLabelKey.is_selected : TutorialLabelKey.is_not_selected;
    bannerLabel.setValue(getTranslate().from(TutorialMessageKey.Banner, selection, temperature));
}





- Rerun the application, login and select 'My News' page, and try changing the option to display the CEO new channel.  The banner will update to demonstrate that she really is watching you ...

#Translation from Annotations

When using Vaadin components, it is often more convenient to use an ```Annotation``` instead of calling ```Translate``` directly - this keeps the ```I18NKey```s with the fields using them.

To achieve this, we need an annotation that is specific to our ```I18NKey``` implementations (we cannot use annotations from Krail core, because of the limitations Java places on ```Annotation``` parameters)

- in the package 'com.example.tutorial.i18n', create a new Annotation class called "TutorialCaption".  Note the ```@I18NAnnotation``` - this tells Krail's ```I18NAnnotationProcessor``` that this annotation is used for I18N.





package com.example.tutorial.i18n;

import uk.q3c.krail.i18n.I18NAnnotation;

import java.lang.annotation.ElementType; import
java.lang.annotation.Retention; import
java.lang.annotation.RetentionPolicy; import
java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME) @Target({ElementType.FIELD,
ElementType.TYPE}) @I18NAnnotation public @interface TutorialCaption {

TutorialLabelKey caption();

TutorialDescriptionKey description();





}

The annotation itself can be called anything, but it must be annotated `@I18NAnnotation`, and its methods be one or more of:

. `I18NKey implementation` caption() - _used for component captions_
. `I18NKey implementation` description() - _used for component tooltips_
. `I18NKey implementation` value() - _used where a component implements the Property interface, typically Label_
. `String locale()` - _a locale String to force use of a specific locale for this annotation_ (see `Locale.toLanguageTag()` for the String format)

You may combine these methods in any way you wish - Krail's I18N annotation scanner (`I18NProcessor`) just looks for annotations which are annotated with `@I18NAnnotation` and for any methods in them which match those listed above.

* remove the translate method from the construction of `popupButton` in `doBuild()`
`
popupButton = new Button();
`
* replace it by annotating the `popupButton` field
`
@TutorialCaption(caption = TutorialLabelKey.Options,description= TutorialDescriptionKey.Select_your_options)
private Button popupButton;
`
* create the constant for `TutorialDescriptionKey`

Before we run the app, let's also use update the name key for the View

* update the constructor:
[source]
----
    @Inject
    public MyNews(Option option, OptionPopup optionPopup, SubjectProvider subjectProvider, Translate translate, UserNotifier userNotifier) {
        super(translate);
        nameKey = TutorialLabelKey.My_News;
        this.option = option;
        this.optionPopup = optionPopup;
        this.subjectProvider = subjectProvider;
        this.userNotifier = userNotifier;
    }
----

The need to do this manually should be fixed by this https://github.com/davidsowerby/krail/issues/625[open issue].

*

Run the application, log in and and navigate to "MyNews" (login = 'eq', 'eq')

** The "Options" button will be the same as before, but of course the caption is generated by the annotation
** The tooltip for the "Options" button will now say "Select your options"
** The tab should now say "Krail Tutorial My News"

== Limitations

Naturally, you cannot use variable values with an annotation - by its very nature, `Annotation` will only take static values. For I18N patterns which requires dynamic values, therefore, you will need to use a direct call to `Translate`.

= Multi-Language

Even though Krail's approach to handling I18N is actually very useful even in a single language application, the whole point of I18N is, of course, to support multiple languages / Locales.

By default, `I18NModule` defaults everything to *Locale.UK*. This section assumes that you are familiar with the standard Java approach to I18N. For those not familiar with it, there are many online resources if you need them.
<a name="config-methods"></a>

== Methods of configuration

Krail uses the `I18NModule` to configure how I18N operates. There are two fundamental ways to define that configuration (as with most modules):

. Use fluent methods provided by the module, to use at the point of construction in the `BindingManager`.
. Sub-class `I18NModule`and use the sub-class in the `BindingManager`

It really does not matter which method you use. We will use method 2 for this example, but then show how method 1 would achieve the same result, but not actually apply it.

* in the package 'com.example.tutorial.i18n', create a new class 'TutorialI18NModule' extending from `I18NModule`
* override the `define()` method
```java
package com.example.tutorial.i18n;

import uk.q3c.krail.core.i18n.KrailI18NModule;

public class TutorialI18NModule extends KrailI18NModule {
}
`
- override the`define()``` method to define everything we need to.
- set the default locale explicitly, and add another Locale that we want to support. (The default locale is automatically a supported locale)

[source]

@Override
 protected void define() {
 defaultLocale(Locale.UK);
 supportedLocales(Locale.GERMANY);
 }
}

* use the new class in `BindingManager`
`
@Override
protected Module i18NModule() {
return new TutorialI18NModule();
}
`
* in the package 'com.example.tutorial.i18n', create an new class 'TutorialMessages_de' extended from `TutorialMessages`
[source]

package com.example.tutorial.i18n;

import static com.example.tutorial.i18n.TutorialMessageKey.Banner;

public class TutorialMessages_de extends TutorialMessages {
 @Override
 protected void loadMap() {
 put(Banner, "Die Temperatur ist heute {1}. Der CEO hat bemerkt, dass ihre Nachrichten-Kanal {0}");
 }
}

To translate the keys used for parameter _{0}_ we need to do the same for `TutorialLabelKeys` - but do not have a `TutorialLabels` class - so far, all translation defaulted to the key name.

* create a new class 'TutorialLabels', extended from `EnumResourceBundle`
* implement `loadMap()`
[source]

package com.example.tutorial.i18n;

import uk.q3c.krail.i18n.EnumResourceBundle;

public class TutorialLabels extends EnumResourceBundle<TutorialLabelKey>{
 @Override
 protected void loadMap() {

 }
}

* create a new class 'TutorialLabels_de' extended from `TutorialLabels`
* put the translations into the map

package com.example.tutorial.i18n;

import uk.q3c.krail.i18n.EnumResourceBundle;

import static com.example.tutorial.i18n.TutorialLabelKey.*;

public class TutorialLabels_de extends
EnumResourceBundle<TutorialLabelKey>{ @Override protected void loadMap()
{ put(is_selected, “aktiviert ist”); put(is_not_selected, “nicht
aktiviert ist”); put(Options, “die Optionen”); } }

- run the application, and:
 - in the Locale selector, top right of the page, select "Deutsch" (the selector takes its selection list from the supported locales you have defined)
 - a popup will inform you, in German, of the change
 - a number, but not all items have changed language (Krail has some translations built in, and these are the ones which have changed. Hopefully, the number of translations will increase over time - if you can contribute, please do)
 - log in and navigate to 'MyNews'
 - most of the page will still be in English (we have not provided translations for it all) but the banner and Options button should now be in German.
 - change the language back to English - and the banner stays in German, while the Options button switches back to English.

Why is this happening? Well, currently there is nothing to tell this view that it should re-write the banner when there is a change in language. The *@Caption* annotation handles that automatically, but for a manual translation we need to respond to a language change message.

* move the logic for populating the banner to its own method
`
private void populateBanner() {
int temperature = (new Random().nextInt(40)) - 10;
TutorialLabelKey selection = (option.get(ceoVisible)) ? TutorialLabelKey.is_selected : TutorialLabelKey.is_not_selected;
bannerLabel.setValue(getTranslate().from(TutorialMessageKey.Banner, selection, temperature));
}
`
* `optionValueChanged()` should now look like this
[source]

@Override
public void optionValueChanged(Property.ValueChangeEvent event) {
 ceoNews.setVisible(option.get(ceoVisible));
 itemsForSale.setVisible(option.get(itemsForSaleVisible));
 vacancies.setVisible(option.get(vacanciesVisible));
 populateBanner();
}

= CurrentLocale and responding to change

You have been using `CurrentLocale` without being aware of it - `Translate` refers to it when a call is made to `Translate.from()`. A little explanation is now needed.

[source,CurrentLocale``` holds the currently selected locale for a user. It is first populated from a combination of things like Web Browser settings, and whatever you have defined in the ```KrailI18NModule``` - the logic is in described in the ```DefaultCurrentLocale``` javadoc.]

When a change is made to the current locale (in our case, using the ```LocaleSelector```), ```CurrentLocale``` publishes a ```LocaleChangeBusMessage``` via the session [Event Bus](tutorial-event-bus.md). We need to intercept that message, and respond to it by updating the banner.

- make this View an event bus listener and subscribe to the session Event Bus

@Listener @SubscribeTo(SessionBus.class)
public class MyNews extends Grid3x3ViewBase implements OptionContext {
`
- register a handler for the message - the annotation and the message type are the important parts - the method can be called anything
- call`populateBanner`to update its text
`
@Handler
protected void localeChanged(LocaleChangeBusMessage busMessage) {
 populateBanner();
}

	Run the application, log in and navigate to ‘MyNews’

	Changing locale now immediately updates the banner

Pattern sources

So far we have used the class-based method for defining I18N patterns.
Krail originally supported the traditional properties files, but that
has now been withdrawn as we saw no benefit to using it.

You can, however, use any source - a database, REST service or any other
service which can provide patterns via a pluggable DAO. Through Guice
configuration, each source is identified by an annotation. Krail
provides an in-memory map as a source, annotated with @InMemory.
Being in memory, it is not very useful except for testing - later you
will see a JPA implementation)

Selecting pattern sources

Let’s add a database source (which for now will actually be an in-memory
map, until we add persistence)

	in TutorialI18NModule, define two pattern sources - class and
in-memory (previously we were using the default - class only). The
order they are declared is significant, as that is also the order
they queried.

@Override
protected void define() {
defaultLocale(Locale.UK);
supportedLocales(Locale.GERMANY);
source(InMemory.class);
source(ClassPatternSource.class);

}
`
- The`DefaultBindingManager.addPersistenceModules()`defines a default, in-memory store with a PatternDao implementation - no changes are therefore needed to`BindingManager``` to include this.

If you were to run the application now, nothing will have changed. We have set the order of bundle sources so that "in-memory store" is queried first - of course nothing will be found as it is empty - and the "class", which will return the same as before.

To prove this works, we need to put a value in to the in-memory store:

* in 'MyNews' add `PatternSource` and a provider for `PatternDao`. Note the *@InMemory* annotation on `PatternDao`.

We do not generally need to access the `PatternDao` directly, except putting values into store - the Krail core takes care of reading patterns from the sources you have defined in the `KrailI18NModule`
`
@Inject
protected MyNews(Translate translate, Option option, OptionPopup optionPopup, SubjectProvider subjectProvider, UserNotifier userNotifier, @InMemory
 Provider<PatternDao> patternDaoProvider, PatternSource patternSource) {
 super(translate);
 nameKey=TutorialLabelKey.My_News;
 this.option = option;
 this.optionPopup = optionPopup;
 this.subjectProvider = subjectProvider;
 this.userNotifier = userNotifier;
 this.patternDaoProvider = patternDaoProvider;
 this.patternSource = patternSource;
}
`
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">We find that injecting a Dao provider (as opposed to a Dao directly) removes potential issues with persistence sessions, and recommend it as standard practice</p>
</div>

* provide a way to enter a value for one key
** `in MyNews.doBuild()` add the code below
[source]

 i18NTextBox = new TextField();
 i18NTextBox.setCaption("enter a value for LabelKey.is_selected");
 submitButton = new Button("submit");
 PatternCacheKey cacheKeyUK = new PatternCacheKey(TutorialLabelKey.is_selected, Locale.UK);
 submitButton.addClickListener(event -> {
 patternSource.clearCache();
 patternDaoProvider.get().write(cacheKeyUK, i18NTextBox.getValue());
 populateBanner();
 });
 FormLayout formLayout = new FormLayout(i18NTextBox, submitButton);
 setTopRight(formLayout);

* change the entry for the banner to use only the first two columns (so that we can use the top right cell)
[source]

 getGridLayout().addComponent(bannerLabel, 0, 0, 1, 0);

This provides a `TextField` to capture some input, and a submit button to submit the value to the in memory store and update the banner. The `PatternSource` is only needed to clear the cache (to ensure we capture the new value).

* Run the application, login and navigate to 'MyNews'
* Make sure that the CEO New Channel is selected (we defined an I18N value for this)
* Enter some text in the "enter a value for LabelKey.is_selected", and press 'submit'
* The banner will update immediately with the text you entered
* change the Locale selector to "Deutsch" and note that the German translation is still used - we only set a value for Locale.UK

You may recall that we defined the bundle sources like this, and noted that the declaration order of sources is important:

@Override protected void define() { defaultLocale(Locale.UK);
supportedLocales(Locale.GERMANY); source(InMemory.class);
source(ClassPatternSource.class);

}

This means that the **@InMemory** source is checked first for a value - if there is one, it is used, and the **ClassPatternSource** is not queried. We just created a value in the in-memory store, so that is the one that is used -this demonstrates is why the order of declaration is important.

If you refer to the Javadoc for ```I18NModule``` (which ```KrailI18NModule``` inherits) you will see that there are methods which enable very specific settings for the order of sources. We will not cover that in this Tutorial, but leave you to experiment.

#Changing Krail Core values

We have just demonstrated changing the value for a specific key - exactly the same technique can be used to change (or add new languages to) Krail core ```I18NKey```s. This does require exporting the keys to a bundle source with mutable values (probably a database). The ```PatternUtility``` class provides methods to support that process.

#Methods of configuration revisited

Earlier [in this section](tutorial-i18n-components-validation.md#config-methods) we elected to sub-class ```KrailI18NModule``` as a way of configuring it, resulting in this ```define()``` method:

@Override protected void define() { defaultLocale(Locale.UK);
supportedLocales(Locale.GERMANY); source(InMemory.class);
source(ClassPatternSource.class); } ` with this BindingManager entry `
@Override protected Module i18NModule() { return new
TutorialI18NModule(); }

Because the `KrailI18NModule` methods used are all fluent, we could achieve exactly the same by just changing the `BindingManager` like this:
`
@Override
protected Module i18NModule() {
 return new KrailI18NModule().defaultLocale(Locale.UK)
 .supportedLocales(Locale.GERMANY)
 .source(InMemory.class)
 .source(ClassPatternSource.class);
}
`

The choice is yours!

= Summary

There is still more to cover under the "I18N" heading, so the next section will cover more of how to use Krail's I18N with Vaadin components. In this section we have:

* used `Translate` to translate an `I18NKey` directly
* translated a message with parameters
* created a *@Caption* annotation for use with your own `I18NKey`s
* added support for an additional language
* been introduced to the `CurrentLocale` class
* seen how to respond to a change of Locale message from the Event Bus
* set up a new bundle source, and determined the order of querying sources
* cleared the pattern cache
* configured Guice modules fluently and directly

= Download from GitHub

To get to this point straight from GitHub, https://github.com/davidsowerby/krail-tutorial[clone] using branch *step08*

To get to this point straight from GitHub:

[source,bash]

git clone https://github.com/davidsowerby/krail-tutorial.git
cd krail-tutorial
git checkout --track origin/krail_0.10.0.0

Revert to commit _I18N Complete_

Components and Validation

The previous section provided an extensive description of Krail’s I18N
mechanism, and gave an example of using annotations to manage the
captions of a Vaadin component. This section addresses the use of I18N
annotations with Vaadin Components in more detail.

Preparation

Set up a page

We will build a new page:

	in MyOtherPages add a new page entry ` addEntry(“i18n”,
I18NDemoView.class, TutorialLabelKey.I18N, PageAccessControl.PUBLIC);
`

	in package ‘com.example.tutorial.pages’, create a new class
‘I18NDemoView’ extended from ViewBase

	implement the doBuild() method

	create the enum constant TutorialLabelKey.I18N

package com.example.tutorial.pages;

import com.google.inject.Inject;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.view.ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;

public class I18NDemoView extends ViewBase {

 @Inject
 protected I18NDemoView(Translate translate) {
 super(translate);
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {

 }
}

Translations

	add the following translations to TutorialLabels_de, creating
keys where necessary

put(News, "Nachrichten");
put(Last_Name, "Nachname");
put(First_Name, "Vorname");
put(No, "Nein");
put(Yes, "Ja");

	in the ‘com.example.tutorial.i18n’ package, create the
‘TutorialDescriptions’ class

package com.example.tutorial.i18n;

import uk.q3c.krail.i18n.EnumResourceBundle;

import static com.example.tutorial.i18n.TutorialDescriptionKey.*;

public class TutorialDescriptions extends EnumResourceBundle<TutorialDescriptionKey> {
 @Override
 protected void loadMap() {
 put(Interesting_Things, "Interesting things that have happened in the world.");
 put(Yes,"Press for Yes");
 put(No, "Press for No");
 }
}

	also create the Descriptions_de class

package com.example.tutorial.i18n;

import static com.example.tutorial.i18n.TutorialDescriptionKey.*;

public class TutorialDescriptions_de extends TutorialDescriptions {
 @Override
 protected void loadMap() {
 put(Interesting_Things, "Interessante Dinge, die in der Welt haben geschehen");
 put(You_just_asked_for_a_pay_increase, "Sie haben für eine Lohnerhöhung gebeten");
 put(Yes, "Drücken Sie für Ja");
 put(No, "Drücken Sie für Nein");
 }
}

[source]

#Add different component types

The mix of components we will use should cover all the situations you will encounter - many of the components are treated the same way for I18N, so we do not need to use every available component.

package com.example.tutorial.pages;

import com.google.inject.Inject;
import com.vaadin.ui.*;
import uk.q3c.krail.core.view.ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;
import uk.q3c.krail.i18n.Translate;

public class I18NDemoView extends ViewBase {
 private Grid grid;
 private Label label;
 private Table table;
 private TextField textField;

[source]

@Inject
protected I18NDemoView(Translate translate) {
 super(translate);
}

@Override
protected void doBuild(ViewChangeBusMessage busMessage) {
 textField = new TextField();
 label = new Label();
 table = new Table();
 grid = new Grid();
 VerticalLayout layout = new VerticalLayout(textField, label, table, grid);
 Panel panel = new Panel();
 panel.setContent(layout);
 setRootComponent(panel);
}

}

[source]

<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">When you sub-class from ViewBase, make sure you set the root component in your doBuild() method</p>
</div>

- Add the same **@TutorialCaption** to each field:

@TutorialCaption(caption = TutorialLabelKey.News, description = TutorialDescriptionKey.Interesting_Things)
`
- The result should be
`
package com.example.tutorial.pages;

import com.example.tutorial.i18n.TutorialCaption;
import com.example.tutorial.i18n.TutorialDescriptionKey;
import com.example.tutorial.i18n.TutorialLabelKey;
import com.google.inject.Inject;
import com.vaadin.ui.*;
import uk.q3c.krail.core.view.ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;
import uk.q3c.krail.i18n.Translate;

public class I18NDemoView extends ViewBase {
 @TutorialCaption(caption = TutorialLabelKey.News, description = TutorialDescriptionKey.Interesting_Things)
 private Grid grid;
 @TutorialCaption(caption = TutorialLabelKey.News, description = TutorialDescriptionKey.Interesting_Things)
 private Label label;
 @TutorialCaption(caption = TutorialLabelKey.News, description = TutorialDescriptionKey.Interesting_Things)
 private Table table;
 @TutorialCaption(caption = TutorialLabelKey.News, description = TutorialDescriptionKey.Interesting_Things)
 private TextField textField;

[source]

@Inject
protected I18NDemoView(Translate translate) {
 super(translate);
}

@Override
protected void doBuild(ViewChangeBusMessage busMessage) {
 textField = new TextField();
 label = new Label();
 table = new Table();
 grid = new Grid();
 VerticalLayout layout = new VerticalLayout(textField, label, table, grid);
 Panel panel = new Panel();
 panel.setContent(layout);
 setRootComponent(panel);
}

}

[source]

- Run the application and go to the 'I18N' page
- All 4 components will be present, each with a caption of 'News' and a tooltip of 'Interesting things that have happened in the world.'
- Changing Locale with the Locale Selector changes the language
- but only the ```TextField``` looks complete

##Labels

Often with ```Label``` components you want to set the value of the component statically, which you can also do with an annotation. Actually you can do that using Krail's I18N mechanism for any component which implements the ```com.vaadin.data.Property``` interface and accepts a ```String``` value.

We have a choice to make now. Remember that:

1. The name of an I18N annotation does not matter, it just needs to be annotated with ```@I18NAnnotation```
1. The ```I18NAnnotationProcessor``` can handle multiple annotations on the same component
1. The annotation methods can be any combination of ```caption()```, ```description()```, ```value()``` or ```locale()```
1. We need to specify which ```I18NKey``` we use (that is, the enum class - Java will not allow an interface as a type)

We could:

1. Add the value() method to **@Caption**
1. We could create a **@Value** annotation with only the ```value()``` method
1. We could create a caption specifically for Labels

... and quite few more choices, too. Remember, though, that you cannot specify a default value of **null** in an annotation, so if you want to have an annotation method that is often not used, the best way is to specify a "null key", which should probably return an empty ```String``` from ```Translate```

TutorialDescriptionKey value() default TutorialDescriptionKey.NULLKEY;

For the Tutorial, we will create a @TutorialValue annotation, which
has only a value() method.

	in the ‘com.example.tutorial.i18n’ package create a new annotation
‘Value’

	we will use TutorialDescriptionKey for values, as they can be
quite long

package com.example.tutorial.i18n;

import uk.q3c.krail.i18n.I18NAnnotation;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.FIELD, ElementType.TYPE})
@I18NAnnotation
public @interface TutorialValue {

 TutorialDescriptionKey value();
}

	Add a @TutorialValue Annotation to the Label

@TutorialCaption(caption = TutorialLabelKey.News, description = TutorialDescriptionKey.Interesting_Things)
@TutorialValue(value = TutorialDescriptionKey.You_just_asked_for_a_pay_increase)
private Label label;
[source]

- Run the application and go to the 'I18N' page
 - The ```Label``` now has a value. Actually, we could have done the same with the ```TextField```, but that isn't usually what you would want.
 - Change the locale with the Locale Selector, and all the captions, tooltips & label value will change language

##Table

A ```Table``` has column headers which may need translation. If a ```Table``` propertyId is an ```I18NKey``` it will be translated - otherwise it is ignored by the Krail ```I18NProcessor```.

- add a 'setupTable' method to ```I18NDemoView```

private void setupTable() {
 table.addContainerProperty(TutorialLabelKey.First_Name, String.class, null);
 table.addContainerProperty(TutorialLabelKey.Last_Name, String.class, null);
 table.setHeight("100px");
 table.setWidth("200px");
}

Grid

In a very similar way to Table, Grid may need column headings
translated. If a Grid propertyId is an I18NKey it will be
translated - otherwise it is ignored by the Krail I18NProcessor.

	add a ‘setupGrid()’ method

private void setupGrid(){
 grid.addColumn(TutorialLabelKey.First_Name, String.class);
 grid.addColumn(TutorialLabelKey.Last_Name, Integer.class);
}

	call these setup methods from doBuild()

@Override
protected void doBuild(ViewChangeBusMessage busMessage) {
 textField = new TextField();
 label = new Label();
 table = new Table();
 grid = new Grid();
 setupTable();
 setupGrid();
 VerticalLayout layout = new VerticalLayout(textField, label, table, grid);
 Panel panel = new Panel();
 panel.setContent(layout);
 setRootComponent(panel);

}

	Run the application and go to the I18N page

	the Table and grid now have column headings

	Change the locale with the Locale Selector, and all the captions,
tooltips, column headings & label value will change language

Drilldown and Override

There is another scenario that Krail’s I18N processing supports. Assume
you have a class which contains components with I18N annotations and you
want to make it re-usable. Let’s see how that would work.

	in the ‘com.example.tutorial.i18n’ package, create a new class
‘ButtonBar’, with @TutorialCaption on the buttons

	annotate the class with @I18N - this tells the I18NProcessor
to drill down into this class to look for more I18N annotations. This
annotation can be applied to a field or a class, but for a re-usable
component it makes more sense to put it on the class.

package com.example.tutorial.i18n;

import com.vaadin.ui.Button;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Panel;
import uk.q3c.krail.core.i18n.I18N;

@TutorialCaption(caption = TutorialLabelKey.News, description = TutorialDescriptionKey.Interesting_Things)
@I18N
public class ButtonBar extends Panel {

 @TutorialCaption(caption = TutorialLabelKey.Yes, description = TutorialDescriptionKey.Yes)
 private Button yesButton;
 @TutorialCaption(caption = TutorialLabelKey.No, description = TutorialDescriptionKey.No)
 private Button noButton;

 public ButtonBar() {
 yesButton = new Button();
 noButton = new Button();
 HorizontalLayout layout = new HorizontalLayout(yesButton,noButton);
 this.setContent(layout);
 }
}

	add two instances of this class to our I18NDemoView.doBuild().
Note that even when they are not directly nnotated, these still need
to be fields (and not local variables) for the I18NProcessor to
find the class annotations.

	include them in the layout

@Override
protected void doBuild(ViewChangeBusMessage busMessage) {
textField = new TextField();
label = new Label();
table = new Table();
grid = new Grid();
buttonBar1 = new ButtonBar();
buttonBar2 = new ButtonBar();
setupTable();
setupGrid();
VerticalLayout layout = new VerticalLayout(buttonBar1,buttonBar2, textField, label, table, grid);
Panel panel = new Panel();
panel.setContent(layout);
setRootComponent(panel);
}
[source]

- on the buttonBar1 field, annotate with a different **@TutorialCaption**

@TutorialCaption(caption = TutorialLabelKey.CEO_News_Channel,description = TutorialDescriptionKey.Interesting_Things)
private ButtonBar buttonBar1;

	Run the application and the two button bars will be at the top of the
page

	button bar 1 displays the caption you set at field level (overriding
the class annotations)

	button bar 2 displays the caption set at class level

You could also override the drilldown specified by the ButtonBar class,
simply by annotating the field with @I18N(drilldown=false) -
although we cannot think why you might want to do that !

Form

Vaadin replaced its original Form with a BeanFieldGroup, which is
essentially a form without the layout. Krail replaces that with its own
BeanFieldGroupBase, which also provides integration with Krail’s
I18N.

To demonstrate this we need to create an entity.

	create a new package ‘com.example.tutorial.form’

	in this new package create a class ‘Person’, and include some
familiar javax validation annotations, @Min and @Size

package com.example.tutorial.form;

import uk.q3c.krail.persist.KrailEntity;

import javax.persistence.Id;
import javax.persistence.Version;
import javax.validation.constraints.Max;
import javax.validation.constraints.Min;
import javax.validation.constraints.Size;

public class Person implements KrailEntity<Long,Integer> {

 @Min(0) @Max(150)
 private int age;
 @Size(min = 3)
 private String firstName;
 @Id
 private Long id;

 @Size(min=3)
 private String lastName;
 @Version
 private Integer version;

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public void setAge(int age) {
 this.age = age;
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public int getAge() {
 return age;
 }

 public String getFirstName() {
 return firstName;
 }

 @Override
 public Long getId() {
 return id;
 }

 @Override
 public Integer getVersion() {
 return version;
 }

 public String getLastName() {
 return lastName;
 }
}

	Modify build.gradle to include javax.persistence - we have not yet
introduced persistence, but we need the API for the entity

	Depending on the IDE you are using, you may need to refresh Gradle

dependencies {
 // remember to update the Vaadin version below if this version is changed
 compile(group: 'uk.q3c.krail', name: 'krail', version: '0.10.0.0')
 compile 'javax.persistence:persistence-api:1.0.2'
}

	in package ‘com.example.tutorial.form’, create ‘PersonForm’ and
create the enum constatns as required

package com.example.tutorial.form;

import com.example.tutorial.i18n.TutorialCaption;
import com.example.tutorial.i18n.TutorialDescriptionKey;
import com.google.inject.Inject;
import com.google.inject.Provider;
import com.vaadin.data.Property;
import com.vaadin.ui.Button;
import com.vaadin.ui.Panel;
import com.vaadin.ui.TextField;
import com.vaadin.ui.VerticalLayout;
import com.vaadin.ui.themes.ValoTheme;
import uk.q3c.krail.core.i18n.I18N;
import uk.q3c.krail.core.i18n.I18NProcessor;
import uk.q3c.krail.option.Option;
import uk.q3c.krail.core.ui.form.BeanFieldGroupBase;
import uk.q3c.krail.core.validation.BeanValidator;

import static com.example.tutorial.i18n.TutorialLabelKey.*;

@I18N
public class PersonForm extends BeanFieldGroupBase<Person> {
 @TutorialCaption(caption = Submit, description = TutorialDescriptionKey.Submit)
 private final Button submitButton;
 private final Person person;
 @TutorialCaption(caption = First_Name, description = TutorialDescriptionKey.Enter_your_first_name)
 private TextField firstName;

 @TutorialCaption(caption = Last_Name, description = TutorialDescriptionKey.Enter_your_last_name)
 private TextField lastName;
 @TutorialCaption(caption = Age, description = TutorialDescriptionKey.Age_of_the_Person)
 private TextField age;
 @TutorialCaption(caption = Person_Form, description = TutorialDescriptionKey.Person_Details_Form)
 private Panel layout;

 @Inject
 public PersonForm(I18NProcessor i18NProcessor, Provider<BeanValidator> beanValidatorProvider, Option option) {
 super(i18NProcessor, beanValidatorProvider, option);
 firstName = new TextField();
 lastName = new TextField();
 age = new TextField();

 person = new Person();
 person.setAge(44);
 person.setFirstName("Mango");
 person.setLastName("Chutney");
 submitButton = new Button();
 submitButton.addClickListener(event -> {
 try {
 this.commit();
 } catch (CommitException e) {
 e.printStackTrace();
 }
 });
 layout = new Panel(new VerticalLayout(firstName, lastName, age, submitButton));
 layout.setStyleName(ValoTheme.PANEL_WELL);
 setBean(person);
 }

 /**
 * {@inheritDoc}
 */
 @Override
 public void optionValueChanged(Property.ValueChangeEvent event) {

 }

 public Panel getLayout() {
 return this.layout;
 }
}

About the form

The class simply extends BeanFieldGroupBase , with the required
entity type as a generic parameter - in this case, Person. Like its
Vaadin counterpart, BeanFieldGroupBase does not concern itself with
the presentation of data, or the layout of that presentation. That is
the part we must provide.

You will recognise the fields and captions from the earlier part of this
Tutorial section - they are just Vaadin components with
@TutorialCaption annotations. However, it should be noted that the
names of the components must match the field names of the entity to
enable automatic transfer of data between the presentation layer and
data model.

The constructor simply extends BeanFieldGroupBase and your IDE will
probably auto-complete the necessary parameters. Don’t forget the
@Inject annotation though.

Within the constructor we simply build the presentation components, and
define the submit button to invoke the commit() method, which will
transfer data from the presentation layer back to the model - in this
case the person bean.

Finally, the getLayout() method just enables a consumer class to
identify the base component to place within a View.

There is an open
ticket [https://github.com/davidsowerby/krail/issues/431] to provide
more support for Forms.

	Now we need to use the form, by injecting it in to I18NDemoView

@Inject
protected I18NDemoView(Translate translate, PersonForm personForm) {
 super(translate);
 this.personForm = personForm;
}

*

and add it to the layout in doBuild(): ` VerticalLayout layout =
new VerticalLayout(personForm.getLayout(), buttonBar1, buttonBar2,
textField, label, table, grid); `

*

Run the application, and navigate to the I18N page

	The form will display at the top of the page with the values we have
set

	change a value which breaks validation (for example, age = 443), and
a validation message will appear

	change language with the Locale selector, and the language of the
captions etc will change, including the validation message.

There is a more information about the Apache Bval validation integration
in the Developer Guide

Summary

In this section we have:

	created and used I18N @TutorialCaption and @TutorialValue
annotations

	seen how to manage Table and Grid column names for I18N

	created a re-usable I18N enabled component

	seen how to override a class I18N annotation

	created a form, with I18N integrated validation

Download from GitHub

To get to this point straight from GitHub:

git clone https://github.com/davidsowerby/krail-tutorial.git
cd krail-tutorial
git checkout --track origin/krail_0.10.0.0

Revert to commit I18N Components and Validation Complete

Persistence - JPA

JPA support for Krail is provided by the
krail-jpa [https://github.com/davidsowerby/krail-jpa] library, which
in turn is mostly provided by Apache Onami
Persist [https://onami.apache.org/persist/]. This was chosen in
preference to
guice-persist [https://github.com/google/guice/wiki/GuicePersist],
primarily for its ability to support multiple concurrent database
instances.

A useful comparison of Onami Persist and Guice Persist can be found
here [https://onami.apache.org/persist/guicePersist.html].

Krail assumes that one day you will want to use multiple persistence
units - that may not be the case, but makes it easier if it is required.
All this requires is to use an annotation to identify a persistence
source, and it gives you an element of standardisation and
future-proofing.

A generic Dao is provided (primarily for use in lambdas, but also there
if that is just the way you prefer to work). Implementations are also
provided for the Krail core - for OptionDao and I18N PatternDao

A reasonable understanding of JPA is assumed.

Example

We will

	create a page,

	configure two database connections (one HSQLDB and one Apache Derby),

	demonstrate some simple transactions

	demonstrate the use of JPAContainer to provide Tables, with two
databases,

	demonstrate integration with Krail I18N and Option

We will not:

	Attempt to demonstrate all of the standard JPA capability - for that
a JPA tutorial would be more appropriate

Prepare build

	include krail-jpa in the build, by adding it to build.gradle
dependencies

	replace the existing javax dependency with krail-jpa. (The existing
javax.persistence api is included in krail-jpa)

dependencies {
 compile 'uk.q3c.krail:krail:0.10.0.0'
 compile 'uk.q3c.krail:krail-jpa:0.10.0.0'
}

Create a Page

If you have followed the whole Tutorial, you will be an expert at this
by now

	add a public page to MyOtherPages

addEntry("jpa", JpaView.class, TutorialLabelKey.JPA, PageAccessControl.PUBLIC);

	create JpaView in package ‘com.example.tutorial.pages’, extended from
ViewBase

package com.example.tutorial.pages;

import com.google.inject.Inject;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.view.ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;

public class JpaView extends ViewBase {

 @Inject
 protected JpaView(Translate translate) {
 super(translate);
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {

 }
}

	add the constant ‘JPA’ to LabelKey

Configure connections

This is one occasion where it may be more desirable to sub-class the
relevant Guice module than use fluent methods. There is a lot that can
be configured for a database instance, so configuration objects are
used.

	create a new package ‘com.example.tutorial.jpa’

	in this package create ‘TutorialJpaModule’ extended from JpaModule

package com.example.tutorial.jpa;

import uk.q3c.krail.persist.jpa.common.JpaModule;

public class TutorialJpaModule extends JpaModule {

 @Override
 protected void define() {

 }
}

	add two persistence units in the define() method ` @Override
protected void define() { addPersistenceUnit(“derbyDb”,
DerbyJpa.class, derbyConfig()); addPersistenceUnit(“hsqlDb”,
HsqlJpa.class, hsqlConfig()); } `

	create the ‘DerbyJpa’ and ‘HsqlJpa’ annotations - these are Guice
Binding Annotations (denoted by @BindingAnnotation), which will
enable you to select which persistence unit you want to use from
within the application.

package com.example.tutorial.jpa;

import com.google.inject.BindingAnnotation;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)
@BindingAnnotation
public @interface DerbyJpa {
}

package com.example.tutorial.jpa;

import com.google.inject.BindingAnnotation;

import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

@Retention(RetentionPolicy.RUNTIME)
@BindingAnnotation
public @interface HsqlJpa {
}

	create a temporary folder for our Derby database. For this Tutorial
we will just use the module constructor, though this is not a
recommended approach for production!

public class TutorialJpaModule extends JpaModule {
 File userHome = new File(System.getProperty("user.home"));
 File tempDir = new File(userHome, "temp/krail-tutorial");

 public TutorialJpaModule() {

 try {
 FileUtils.forceMkdir(tempDir);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

	Provide a configuration object for each connection, using the
derbyConfig() and hsqlConfig() methods. These are standard
JPA configuration settings composed into a configuration object:

private DefaultJpaInstanceConfiguration derbyConfig() {
 DefaultJpaInstanceConfiguration config = new DefaultJpaInstanceConfiguration();
 File dbFolder = new File(tempDir, "derbyDb");

 config.transactionType(DefaultJpaInstanceConfiguration.TransactionType.RESOURCE_LOCAL)
 .db(JpaDb.DERBY_EMBEDDED)
 .autoCreate(true)
 .url(dbFolder.getAbsolutePath())
 .user("test")
 .password("test")
 .ddlGeneration(DefaultJpaInstanceConfiguration.Ddl.DROP_AND_CREATE);
 return config;
}

private DefaultJpaInstanceConfiguration hsqlConfig() {
 DefaultJpaInstanceConfiguration config = new DefaultJpaInstanceConfiguration();
 config.db(JpaDb.HSQLDB)
 .autoCreate(true)
 .url("mem:test")
 .user("sa")
 .password("")
 .ddlGeneration(DefaultJpaInstanceConfiguration.Ddl.DROP_AND_CREATE);
 return config;
}

	update the BindingManager to make it aware of this new module.
This would override the use of the default InMemoryModule, but we
want that as well for demonstration purposes ` @Override protected
void addPersistenceModules(List<Module> modules) {
super.addPersistenceModules(modules); modules.add(new
TutorialJpaModule()); } `

	Unfortunately we still need a minimal persistence.xml file, so we
need to

	create folder src/main/resources/META-INF

	create the following persistence.xml file in that folder

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="derbyDb">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 </properties>

 </persistence-unit>

 <persistence-unit name="hsqlDb">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 </properties>

 </persistence-unit>
</persistence>

Prepare the service

	configure the TutorialServletModule to add the
PersistenceFilter

package com.example.tutorial.app;

import org.apache.onami.persist.PersistenceFilter;
import uk.q3c.krail.core.guice.BaseServletModule;

public class TutorialServletModule extends BaseServletModule {

 @Override
 protected void configureServlets() {
 filter("/*").through(PersistenceFilter.class);
 serve("/*").with(TutorialServlet.class);
 }
}

Prepare the Entity

	Update the Person entity we used earlier, to be JPA compliant

	add the @Entity class annotation

	use auto-generated id

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

Prepare the user interface

	set up the basic layout components in JpaView ` @Override
protected void doBuild(ViewChangeBusMessage busMessage) { Panel panel
= new Panel(); setRootComponent(panel); } `

In JpaView we want to show a table each for the Derby and HSQLDB
connections. A Vaadin Table uses a Container to provide the
data, and in this case a JPAContainer.

	To get a container, we need to inject a JpaContainerProvider for
each persistence unit, identified by their annotations, @DerbyJpa
and @HsqlJpa

package com.example.tutorial.pages;

import com.example.tutorial.jpa.DerbyJpa;
import com.example.tutorial.jpa.HsqlJpa;
import com.google.inject.Inject;
import com.vaadin.ui.Panel;
import uk.q3c.krail.core.option.jpa.JpaContainerProvider;
import uk.q3c.krail.core.view.ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;
import uk.q3c.krail.i18n.Translate;

public class JpaView extends ViewBase {

 private JpaContainerProvider derbyContainerProvider;
 private JpaContainerProvider hsqlContainerProvider;

 @Inject
 protected JpaView(Translate translate, @DerbyJpa JpaContainerProvider derbyContainerProvider, @HsqlJpa JpaContainerProvider hsqlContainerProvider) {
 super(translate);
 this.derbyContainerProvider = derbyContainerProvider;
 this.hsqlContainerProvider = hsqlContainerProvider;
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {
 Panel panel = new Panel();
 setRootComponent(panel);
 }
}

	completing the layout so that the JPA data is presented in Vaadin
Tables, via JPAContainers, JpaView should be like this:

package com.example.tutorial.pages;

import com.example.tutorial.form.Person;
import com.example.tutorial.jpa.DerbyJpa;
import com.example.tutorial.jpa.HsqlJpa;
import com.google.inject.Inject;
import com.vaadin.addon.jpacontainer.JPAContainer;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Panel;
import com.vaadin.ui.Table;
import com.vaadin.ui.VerticalLayout;
import uk.q3c.krail.core.option.jpa.JpaContainerProvider;
import uk.q3c.krail.core.view.ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.persist.ContainerType;

public class JpaView extends ViewBase {

 private JpaContainerProvider derbyContainerProvider;
 private JpaContainerProvider hsqlContainerProvider;
 private JPAContainer<Person> derbyContainer;
 private JPAContainer<Person> hsqlContainer;
 private Table derbyTable;
 private Table hsqlTable;

 @Inject
 protected JpaView(Translate translate, @DerbyJpa JpaContainerProvider derbyContainerProvider, @HsqlJpa JpaContainerProvider hsqlContainerProvider) {
 super(translate);
 this.derbyContainerProvider = derbyContainerProvider;
 this.hsqlContainerProvider = hsqlContainerProvider;
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {
 derbyContainer=derbyContainerProvider.get(Person.class, ContainerType.CACHED);
 hsqlContainer=hsqlContainerProvider.get(Person.class, ContainerType.CACHED);
 derbyTable = new Table("",derbyContainer);
 hsqlTable = new Table("",hsqlContainer);

 VerticalLayout derbyLayout = new VerticalLayout(derbyTable);
 VerticalLayout hsqlLayout = new VerticalLayout(hsqlTable);

 HorizontalLayout horizontalLayout=new HorizontalLayout(derbyLayout,hsqlLayout);
 Panel panel = new Panel();
 panel.setContent(horizontalLayout);
 setRootComponent(panel);
 }
}

The Vaadin `Table`s, are using containers from the
`JpaContainerProvider`s to provide the data

	Now we need to provide the I18N captions for the Table components

@TutorialCaption(caption = TutorialLabelKey.Derby_Table, description = TutorialDescriptionKey.Table_connected_to_DerbyDb)
private Table derbyTable;
@TutorialCaption(caption = TutorialLabelKey.HSQL_Table, description = TutorialDescriptionKey.Table_connected_to_HsqlDb)
private Table hsqlTable;

	run the application just to make sure you have everything correctly
set up so far. There is no data to display yet, so all you will see
is two empty tables.

Data

	in JPAView, create a convenience method for creating new people.
This is so much quicker than the conventional method for creating
people, but nowhere near as much fun. ` private Person
createPerson() { Person p = new Person(); int i=new
Random().nextInt(5000); p.setAge(i % 80); p.setFirstName(“First name
“+i); p.setLastName(“Last name ” + i); return p; } `

There are different ways of accessing the data.

Using the EntityManager

This is the method recommended by the Apache Onami team:

	inject an EntityManagerProvider (The Onami provider, not the
Vaadin provider) for each persistence unit, using the binding
annotations to identify them

@Inject
protected JpaView(Translate translate, @DerbyJpa JpaContainerProvider derbyContainerProvider, @HsqlJpa JpaContainerProvider hsqlContainerProvider,@DerbyJpa EntityManagerProvider derbyEntityManagerProvider, @HsqlJpa EntityManagerProvider hsqlEntityManagerProvider) {
 super(translate);
 this.derbyContainerProvider = derbyContainerProvider;
 this.hsqlContainerProvider = hsqlContainerProvider;
 this.derbyEntityManagerProvider = derbyEntityManagerProvider;
 this.hsqlEntityManagerProvider = hsqlEntityManagerProvider;
}

	create a method to undertake the transaction

@Transactional
protected void addWithEntityMgr(EntityManagerProvider entityManagerProvider) {
 final EntityManager entityManager = entityManagerProvider.get();
 entityManager.persist(createPerson());
}

	add two buttons to call the addWithEntityMgr method, and refresh
the container (so that we can see the changes)

	add the buttons to the vertical layouts. The complete doBuild()
method now looks like this:

@Override
protected void doBuild(ViewChangeBusMessage busMessage) {
 derbyContainer=derbyContainerProvider.get(Person.class, ContainerType.CACHED);
 hsqlContainer=hsqlContainerProvider.get(Person.class, ContainerType.CACHED);
 derbyTable = new Table("",derbyContainer);
 hsqlTable = new Table("",hsqlContainer);

 derbyEntityMgrButton = new Button();
 derbyEntityMgrButton.addClickListener(event -> {
 addWithEntityMgr(derbyEntityManagerProvider);
 derbyContainer.refresh();
 });
 hsqlEntityMgrButton = new Button();
 hsqlEntityMgrButton.addClickListener(event -> {
 addWithEntityMgr(hsqlEntityManagerProvider);
 hsqlContainer.refresh();
 });

 VerticalLayout derbyLayout = new VerticalLayout(derbyTable, derbyEntityMgrButton);
 VerticalLayout hsqlLayout = new VerticalLayout(hsqlTable, hsqlEntityMgrButton);

 HorizontalLayout horizontalLayout=new HorizontalLayout(derbyLayout,hsqlLayout);
 Panel panel = new Panel();
 panel.setContent(horizontalLayout);
 setRootComponent(panel);
}

	give the buttons captions and descriptions

@TutorialCaption(caption = TutorialLabelKey.Add_with_entity_manager, description = TutorialDescriptionKey.Add_with_entity_manager)
private Button derbyEntityMgrButton;
@TutorialCaption(caption = TutorialLabelKey.Add_with_entity_manager, description = TutorialDescriptionKey.Add_with_entity_manager)
private Button hsqlEntityMgrButton;

	run the application and press the buttons

	you will see that each persistence unit is operating separately,
just by use of the binding annotations

DAO

There is a lot of debate about the value of using DAOs; we generally
only use them where there is a particular value in doing so. One such
case, we believe, is where you are using a lot of Java 8 lambdas to
respond, for example, to button clicks. JPA would require a separate,
annotated method for each type of response needed.

For this use case Krail provides a generic DAO for the simple JPA calls
to avoid the need for creating those annotated methods.

	inject the DAO for each persistence unit

@Inject
protected JpaView(Translate translate, @DerbyJpa JpaContainerProvider derbyContainerProvider, @HsqlJpa JpaContainerProvider hsqlContainerProvider,
 @DerbyJpa EntityManagerProvider derbyEntityManagerProvider, @HsqlJpa EntityManagerProvider hsqlEntityManagerProvider, @DerbyJpa JpaDao_LongInt derbyDao, @HsqlJpa JpaDao_LongInt hsqlDao) {
 super(translate);
 this.derbyContainerProvider = derbyContainerProvider;
 this.hsqlContainerProvider = hsqlContainerProvider;
 this.derbyEntityManagerProvider = derbyEntityManagerProvider;
 this.hsqlEntityManagerProvider = hsqlEntityManagerProvider;
 this.derbyDao = derbyDao;
 this.hsqlDao = hsqlDao;
}

	DAOs are not bound automatically, so we add them to the persistence
unit configuration in TutorialJpaModule by calling
useLongIntDao() on the JpaInstanceConfiguration (on both
configs)

private DefaultJpaInstanceConfiguration derbyConfig() {
 DefaultJpaInstanceConfiguration config = new DefaultJpaInstanceConfiguration();
 File dbFolder = new File(tempDir, "derbyDb");

 config.transactionType(DefaultJpaInstanceConfiguration.TransactionType.RESOURCE_LOCAL)
 .db(JpaDb.DERBY_EMBEDDED)
 .autoCreate(true)
 .url(dbFolder.getAbsolutePath())
 .useLongIntDao()
 .user("test")
 .password("test")
 .ddlGeneration(DefaultJpaInstanceConfiguration.Ddl.DROP_AND_CREATE);
 return config;
}

private DefaultJpaInstanceConfiguration hsqlConfig() {
 DefaultJpaInstanceConfiguration config = new DefaultJpaInstanceConfiguration();
 config.db(JpaDb.HSQLDB)
 .autoCreate(true)
 .url("mem:test")
 .useLongIntDao()
 .user("sa")
 .password("")
 .ddlGeneration(DefaultJpaInstanceConfiguration.Ddl.DROP_AND_CREATE);
 return config;
}

	add buttons to JpaView.doBuild()

//add with Dao
derbyDaoButton = new Button();
derbyDaoButton.addClickListener(event -> {
 derbyDao.save(createPerson());
 derbyContainer.refresh();
});
hsqlDaoButton = new Button();
hsqlDaoButton.addClickListener(event -> {
 hsqlDao.save(createPerson());
 hsqlContainer.refresh();
});

	include them in the layout ` VerticalLayout derbyLayout = new
VerticalLayout(derbyTable, derbyEntityMgrButton, derbyDaoButton);
VerticalLayout hsqlLayout = new VerticalLayout(hsqlTable,
hsqlEntityMgrButton, hsqlDaoButton); `

	give them I18N captions and descriptions

@TutorialCaption(caption = TutorialLabelKey.Add_with_DAO, description = TutorialDescriptionKey.Add_with_DAO)
private Button derbyDaoButton;
@TutorialCaption(caption = TutorialLabelKey.Add_with_DAO, description = TutorialDescriptionKey.Add_with_DAO)
private Button hsqlDaoButton;

	run the application, navigate to JPA

	the “add with DAO” buttons work in the same way as the “add with
EntityManager” buttons

Persistence for Option

addEntry(“jpa/option”, JpaOptionView.class, LabelKey.Options,
PageAccessControl.PUBLIC);

- create a new class JpaOptionView in the 'pages' package

[source]

package com.example.tutorial.pages;

import com.example.tutorial.i18n.Caption;
import com.example.tutorial.i18n.DescriptionKey;
import com.example.tutorial.i18n.LabelKey;
import com.example.tutorial.jpa.DerbyJpa;
import com.google.inject.Inject;
import com.vaadin.addon.jpacontainer.JPAContainer;
import com.vaadin.data.Property;
import com.vaadin.ui.Button;
import com.vaadin.ui.HorizontalLayout;
import com.vaadin.ui.Panel;
import com.vaadin.ui.Table;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.option.*;
import uk.q3c.krail.persist.ContainerType;
import uk.q3c.krail.persist.VaadinContainerProvider;
import OptionEntity;
import uk.q3c.krail.core.persist.inmemory.InMemoryContainer;
import uk.q3c.krail.core.view.ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;
import uk.q3c.krail.persist.jpa.common.JpaContainerProvider;
import uk.q3c.krail.persist.jpa.option.JpaOptionEntity;

import javax.annotation.Nonnull;

public class JpaOptionView extends ViewBase implements OptionContext {

 public static final OptionKey<String> anyOldText = new OptionKey<>("default text", MyNews.class, LabelKey.Age, DescriptionKey.Age_of_the_Person);
 private final VaadinContainerProvider inMemoryContainerProvider;
 private final JpaContainerProvider derbyContainerProvider;
 private JPAContainer<JpaOptionEntity> derbyContainer;
 private InMemoryContainer inMemoryContainer;

 @Caption(caption = LabelKey.In_Memory, description = DescriptionKey.Interesting_Things)
 private Table inMemoryTable;
 @Caption(caption = LabelKey.Derby, description = DescriptionKey.Interesting_Things)
 private Table derbyTable;
 private Option option;
 private OptionPopup optionPopup;

 @Caption(caption = LabelKey.Options, description = DescriptionKey.Interesting_Things)
 private Button optionPopupButton;

 @Inject
 protected JpaOptionView(Translate translate, @InMemory VaadinContainerProvider inMemoryContainerProvider, @DerbyJpa JpaContainerProvider
 derbyContainerProvider, OptionPopup
 optionPopup, Option option) {
 super(translate);
 this.inMemoryContainerProvider = inMemoryContainerProvider;
 this.derbyContainerProvider = derbyContainerProvider;
 this.optionPopup = optionPopup;
 this.option = option;
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {
 optionPopupButton = new Button();
 optionPopupButton.addClickListener(event -> optionPopup.popup(this, LabelKey.Options));
 inMemoryTable = new Table();
 derbyTable = new Table();
 inMemoryContainer = (InMemoryContainer) inMemoryContainerProvider.get(OptionEntity.class, ContainerType.CACHED);
 derbyContainer = derbyContainerProvider.get(JpaOptionEntity.class, ContainerType.CACHED);
 inMemoryTable.setContainerDataSource(inMemoryContainer);
 derbyTable.setContainerDataSource(derbyContainer);

 HorizontalLayout horizontalLayout = new HorizontalLayout(optionPopupButton, inMemoryTable, derbyTable);
 setRootComponent(new Panel(horizontalLayout));

 }

 @Override
 public Option getOption() {
 return option;
 }

 @Override
 public void optionValueChanged(Property.ValueChangeEvent event) {
 inMemoryContainer.refresh();
 derbyContainer.refresh();
 }
}

There is quite a lot in this class, but you have seen most of it already - these are the key points:

* an `OptionKey` is defined purely for demonstrating a change of value
* We are injecting ContainerProviders to provide Vaadin Container instances fro the Vaadin Tables
* A Vaadin `Table` is used for each persistence source to present the data
* the `OptionPopup` is used so that we can change the value of an `Option`
* the `optionValueChanged()` method refreshes the both `Container` (and associated `Table`) instances when an `Option` value is changed

We also need to update _persistence.xml_ to include `JpaOptionEntity`:

[source,xml]

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="derbyDb">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>uk.q3c.krail.persist.jpa.option.JpaOptionEntity</class>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 </properties>

 </persistence-unit>

 <persistence-unit name="hsqlDb">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 </properties>

 </persistence-unit>
</persistence>

Now to check what is happening:

* run the application and log in (for example 'eq'/'eq') so that you can change the option value
* navigate to "JPA | Options"
* click the "Options" button and change the option value
* the "In Memory" table will update

== Changing to JPA

* configure the JPA provider to bind an `OptionDao`. This is done by amending the config in `TutorialJpaModule` to include a call to `provideOptionDao()`:
[source]

 private DefaultJpaInstanceConfiguration derbyConfig() {
 DefaultJpaInstanceConfiguration config = new DefaultJpaInstanceConfiguration();
 File dbFolder = new File(tempDir, "derbyDb");

 config.transactionType(DefaultJpaInstanceConfiguration.TransactionType.RESOURCE_LOCAL)
 .db(JpaDb.DERBY_EMBEDDED)
 .autoCreate(true)
 .url(dbFolder.getAbsolutePath())
 .user("test")
 .useLongIntDao()
 .provideOptionDao()
 .password("test")
 .ddlGeneration(DefaultJpaInstanceConfiguration.Ddl.DROP_AND_CREATE);
 return config;
 }

* select *@DerbyJpa* as the active source for `Option` by modifying the `BindingManager`:
[source]

@Override
protected Module optionModule() {
 return new OptionModule().activeSource(DerbyJpa.class);
}

* Run the application and log in
* navigate to "JPA | Options"
* click the "Options" button and change the option value
* the "Derby" table will update instead of the "In Memory" table

= Persistence for I18N

Persistence for I18N patterns is a little different to persistence for `Option`. For `Option`, there is only ever one source in use, but as we have already seen, we can use multiple sources for I18N patterns, working in a hierarchy.

To demonstrate this we will go back to the JPA page - and if you wish to check first, you will see that none of the Tutorial display for this page is translated.

We will simulate a real world requirement to hold translations in a database by adding a translation to the Derby source, and then updating the configuration and see the translation take effect.

This is also what you would do if you want to change or add translations to the Krail core - export the patterns to a mutable source and update / add the translations.

* add the *@DerbyJpa* pattern dao to the constructor injections
`
@Inject
protected JpaView(Translate translate, @DerbyJpa JpaContainerProvider derbyContainerProvider, @HsqlJpa JpaContainerProvider hsqlContainerProvider,
 @DerbyJpa EntityManagerProvider derbyEntityManagerProvider, @HsqlJpa EntityManagerProvider hsqlEntityManagerProvider, @DerbyJpa
 JpaDao_LongInt derbyDao, @HsqlJpa JpaDao_LongInt hsqlDao, @DerbyJpa PatternDao patternDao) {
super(translate);
this.derbyContainerProvider = derbyContainerProvider;
this.hsqlContainerProvider = hsqlContainerProvider;
this.derbyEntityManagerProvider = derbyEntityManagerProvider;
this.hsqlEntityManagerProvider = hsqlEntityManagerProvider;
this.derbyDao = derbyDao;
this.hsqlDao = hsqlDao;
this.patternDao = patternDao;
}
`
* create a button to insert a new value into the Derby pattern table:
[source]

derbyPatternButton = new Button();
derbyPatternButton.addClickListener(event->{patternDao.write(new PatternCacheKey(LabelKey.Derby_Table, Locale.GERMANY),"Tafel aus Derby");});

VerticalLayout derbyLayout = new VerticalLayout(derbyTable, derbyEntityMgrButton, derbyDaoButton,derbyPatternButton);

* provide a caption and description
[source]

@Caption(caption = LabelKey.Insert_Pattern_value, description = DescriptionKey.Insert_Pattern_value)
private Button derbyPatternButton;

* In the same way as we did for `Option`, set up the Derby configuration in `TutorialJpaModule` to produce a pattern dao by a call to `providePatterDao()`
[source]

private DefaultJpaInstanceConfiguration derbyConfig() {
 DefaultJpaInstanceConfiguration config = new DefaultJpaInstanceConfiguration();
 File dbFolder = new File(tempDir, "derbyDb");

 config.transactionType(DefaultJpaInstanceConfiguration.TransactionType.RESOURCE_LOCAL)
 .db(JpaDb.DERBY_EMBEDDED)
 .autoCreate(true)
 .url(dbFolder.getAbsolutePath())
 .useLongIntDao()
 .provideOptionDao()
 .providePatternDao()
 .user("test")
 .password("test")
 .ddlGeneration(DefaultJpaInstanceConfiguration.Ddl.DROP_AND_CREATE);
 return config;
}

* instruct the I18NModule to use *@DerbyJpa* as a source - we will put it in first place to ensure that it is picked up first - but we still want to use the Class based definitions if there is nothing in the Derby source:
[source]

@Override
protected Module i18NModule() {
 return new TutorialI18NModule().source(DerbyJpa.class)
 .source(ClassPatternSource.class);
}

* add the JPA pattern entity to _persistence.xml_
[source,xml]

<?xml version="1.0" encoding="UTF-8" ?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
 version="2.0" xmlns="http://java.sun.com/xml/ns/persistence">
 <persistence-unit name="derbyDb">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>uk.q3c.krail.persist.jpa.option.JpaOptionEntity</class>
 <class>uk.q3c.krail.persist.jpa.i18n.JpaPatternEntity</class>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 </properties>

 </persistence-unit>

 <persistence-unit name="hsqlDb">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <exclude-unlisted-classes>false</exclude-unlisted-classes>
 <properties>
 </properties>

 </persistence-unit>
</persistence>

* run the application and navigate to "JPA"
* press the "Insert Pattern Value" button to save a translation for "Derby Table" into the *@DerbyJpa* PU
* use the Locale selector to change to "Deutsch"
* The caption for the Derby table now shows the German translation

= Summary

We have :

* configured two database connections (one HSQLDB and One Apache Derby),
* kept the In Memory source, working in conjunction with JPA sources
* demonstrated some simple transactions using method annotation
* demonstrated transactions from within a lambda
* used the generic DAO for both JPA sources
* used JPA containers, with sources identified by annotation
* configured `Option` to use JPA persistence
* configured I18N to use JPA for pattern persistence
* demonstrated the hierarchical nature of I18N pattern sources, so that there is always a translation

= Download from GitHub

To get to this point straight from GitHub, https://github.com/davidsowerby/krail-tutorial[clone] using branch *step09*

Guice & Scopes

For this short section we will not be actually adding to the Tutorial
application - it is time for just a little bit of theory.

Introduction

As a developer you will be familiar with the idea of scope, even if you
have never used Guice before - Guice scopes are no different in
principle than considering the scope, for example, of a local vs global
variable. The Guice
documentation [https://github.com/google/guice/wiki] is an excellent
place to start for understanding Guice itself, and the section on
scopes [https://github.com/google/guice/wiki/Scopes] is particularly
relevant.

In this section we will consider the way in which scopes are implemented
by Krail.

Singleton

A Singleton has only one instance in the application. Krail uses the
standard Guice Singleton with no changes. All Singletons must be thread
safe.

VaadinSessionScoped

The unique environment* of a VaadinSession requires a custom Guice
scope of @VaadinSessionScoped - and is generally equivalent to a
browser instance. Classes of this scope should be thread safe, as a
Vaadin Session may use multiple threads.

UIScoped

The Vaadin UI [https://vaadin.com/api/com/vaadin/ui/UI.html] is
generally equivalent to a browser tab, and requires a custom Guice scope
of @UIScoped. Classes of this scope do not need to be thread safe.

Applying a scope

All of the above scopes may be applied as described
here [https://github.com/google/guice/wiki/Scopes#applying-scopes]

Note that the standard web annotation of *@SessionScoped appears to
work except when using with Vaadin Push - but has not been tested
thoroughly.

Event Bus

Introduction

Krail integrates the event bus provided by
MBassador [https://github.com/bennidi/mbassador]. For more
information about the integration itself, see the this project’s
contribution to the MBassador
documentation [https://github.com/bennidi/mbassador/wiki/Guice-Integration].

There is no point duplicating MBassador’s documentation here, but in
brief, MBassador enables the use of synchronous or asynchronous event
(message) buses. MBassador is a sophisticated, high performance event
bus, and it is strongly recommended that you read its documentation to
get the best from it.

 There is a logical correlation between an
event bus and a Guice scope, and that is what Krail provides - an event
bus for Singleton, VaadinSession and UI scopes as described in the
Guice Scopes chapter. These can be
accessed by:

	annotation (@UiBus, @SessionBus, @GlobalMessageBus)

	provider (UIBusProvider, SessionBusProvider,
GlobalBusProvider)

The Tutorial task

We will create 3 buttons to publish messages, and receivers for events
of each scope (UI, Session and Global). By sending messages via the
different buses we will be able to see how scope affects where the
messages are received.

Create a page

If you have followed the Tutorial up to this point you will now be a
complete expert in creating pages. However, just in case you have
stepped in to the Tutorial part way through (do developers really do
that?), this is what you need to do:

	Amend the OtherPages module by adding the following line to the
define() method:

addEntry("events", EventsView.class, LabelKey.Events, PageAccessControl.PERMISSION);

	create the enum constant for the page

	create the view EventsView in com.example.tutorial.pages (code
is provided later)

	create a package com.example.tutorial.eventbus

	in this new package, create a TutorialMessage class

	Our TutorialMessage will carry a String message and the sender.
Copy the following:

package com.example.tutorial.eventbus;

import uk.q3c.krail.eventbus.BusMessage;

public class TutorialMessage implements BusMessage {

 private final String msg;
 private Object sender;

 public TutorialMessage(String msg, Object sender) {
 this.msg = msg;
 this.sender = sender;
 }

 public String getMsg() {
 return msg + " from " + Integer.toHexString(sender.hashCode());
 }
}

Message receivers

We will create a simple component to accept messages from a bus and
display them in a TextArea, and use this as a base class for each
message receiver.

Base class

	create a new class, MessageReceiver in
com.example.tutorial.eventbus

	copy the code below

package com.example.tutorial.eventbus;

import com.vaadin.ui.Panel;
import com.vaadin.ui.TextArea;
import net.engio.mbassy.listener.Handler;

public abstract class MessageReceiver extends Panel {
 private final TextArea textField;

 public MessageReceiver() {
 this.setSizeFull();
 this.textField = new TextArea();
 textField.setSizeFull();
 textField.setRows(8);
 setContent(textField);
 }

 public String getText() {
 return textField.getValue();
 }

 @Handler
 public void addMsg(TutorialMessage tutorialMessage) {
 String s = getText();
 textField.setValue(s+"\n"+tutorialMessage.getMsg());
 }
}

The @Handler annotation ensures the addMsg() method intercepts
all TutorialMessage events which are passed by the bus(es) which the
class is subscribed to. We will subscribe in the following sub-classes,
so that each one intercepts TutorialMessage events for a specific
bus - but you can subscribe to multiple buses.

Receiver for each bus

	create three sub-classes, GlobalMessageReceiver,
SessionMessageReceiver and UIMessageReceiver each extending
MessageReceiver, in com.example.tutorial.eventbus

package com.example.tutorial.eventbus;

import net.engio.mbassy.listener.Listener;
import uk.q3c.krail.eventbus.GlobalBus;
import uk.q3c.krail.eventbus.SubscribeTo;

@Listener @SubscribeTo(GlobalBus.class)
public class GlobalMessageReceiver extends MessageReceiver {
}

package com.example.tutorial.eventbus;

import net.engio.mbassy.listener.Handler;
import net.engio.mbassy.listener.Listener;
import uk.q3c.krail.core.eventbus.SessionBus;
import uk.q3c.krail.eventbus.SubscribeTo;

@Listener @SubscribeTo(SessionBus.class)
public class SessionMessageReceiver extends MessageReceiver {

}

package com.example.tutorial.eventbus;

import net.engio.mbassy.listener.Listener;
import uk.q3c.krail.eventbus.SubscribeTo;
import uk.q3c.krail.core.eventbus.UIBus;

@Listener @SubscribeTo(UIBus.class)
public class UIMessageReceiver extends MessageReceiver {
}

The @Listener annotation marks the class as an MBassador bus
subscriber. The @SubscribeTo annotation is a Krail annotation to
identify which bus or buses the class should be subscribed to. The
@SubscribeTo annotation is processed by Guice AOP, therefore the
class must be instantiated by Guice for it to work.

You could achieve the same by injecting a bus and directly subscribing:

globalBusProvider.get().subscribe(this)

Completing the View

	cut and paste the code below into EventsView

package com.example.tutorial.pages;

import com.example.tutorial.eventbus.*;
import com.example.tutorial.i18n.Caption;
import com.example.tutorial.i18n.DescriptionKey;
import com.example.tutorial.i18n.LabelKey;
import com.google.inject.Inject;
import com.vaadin.ui.Button;
import uk.q3c.krail.eventbus.GlobalBusProvider;
import uk.q3c.krail.core.eventbus.SessionBusProvider;
import uk.q3c.krail.core.eventbus.UIBusProvider;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.view.Grid3x3ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;

public class EventsView extends Grid3x3ViewBase {
 private final UIBusProvider uiBusProvider;
 private final GlobalBusProvider globalBusProvider;
 @Caption(caption = LabelKey.Singleton, description = DescriptionKey.Singleton)
 private Button singletonSendBtn;
 @Caption(caption = LabelKey.Session, description = DescriptionKey.Session)
 private Button sessionSendBtn;
 @Caption(caption = LabelKey.UI, description = DescriptionKey.UI)
 private Button uiSendBtn;
 @Caption(caption = LabelKey.Refresh, description = DescriptionKey.Refresh)
 private Button refreshBtn;
 private SessionBusProvider sessionBusProvider;
 private GlobalMessageReceiver singletonMessageReceiver;
 private MessageReceiver sessionMessageReceiver;
 private MessageReceiver uiMessageReceiver;

 @Inject
 protected EventsView(Translate translate,UIBusProvider uiBusProvider, SessionBusProvider sessionBusProvider, GlobalBusProvider globalBusProvider,
 GlobalMessageReceiver singletonMessageReceiver, SessionMessageReceiver sessionMessageReceiver, UIMessageReceiver uiMessageReceiver) {
 super(translate);
 this.uiBusProvider = uiBusProvider;
 this.sessionBusProvider = sessionBusProvider;
 this.singletonMessageReceiver = singletonMessageReceiver;
 this.sessionMessageReceiver = sessionMessageReceiver;
 this.uiMessageReceiver = uiMessageReceiver;
 this.globalBusProvider = globalBusProvider;
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 constructEventSendButtons();
 layoutReceivers();
 refreshBtn = new Button();
 setTopRight(refreshBtn);
 }

 private void layoutReceivers() {
 setTopCentre(singletonMessageReceiver);
 setMiddleCentre(sessionMessageReceiver);
 setBottomCentre(uiMessageReceiver);
 }

 private void constructEventSendButtons() {
 singletonSendBtn = new Button();
 sessionSendBtn = new Button();
 uiSendBtn = new Button();
 singletonSendBtn.addClickListener(click -> {
 String m = "Singleton";
 globalBusProvider.get()
 .publish(new TutorialMessage(m,this));
 });
 sessionSendBtn.addClickListener(click -> {
 String m = "Session";
 sessionBusProvider.get()
 .publish(new TutorialMessage(m,this));
 });
 uiSendBtn.addClickListener(click -> {
 String m = "UI";
 uiBusProvider.get()
 .publish(new TutorialMessage(m,this));
 });
 setTopLeft(singletonSendBtn);
 setMiddleLeft(sessionSendBtn);
 setBottomLeft(uiSendBtn);
 }
}

	create the enum constants

The constructEventSendButtons() method provides a button for each
bus to send a message.

A bus for each scope is injected into the constructor using BusProviders

The Refresh button appears to do nothing, but that will become clear
later.

A MessageReceiver is injected for each bus (remember these need to
be instantiated by Guice)

Demonstrating the result

	run the application

	open a browser, which we will call browser 1 tab 1

	login as ‘admin’, ‘password’

	navigate to the Event Bus page

	open a second browser tab at the same URL - we will call this browser
1 tab 2 (now that surprised you!)

	in browser 1 tab 1 press each of the 3 buttons, Singleton, Session
and UI

	Messages will appear in all 3 text areas

	Switch to tab 2 (there will be no messages visible yet)

If you know Vaadin, you will be familiar with this situation - the
Vaadin client is unaware that changes have been made on the server, so
the display has not been updated. It will only update when the client is
prompted to get an update from the server. (We will come back to this
when we address Vaadin Push). For our purposes,
we just click the Refresh button. This actually does nothing except
cause the client to poll the server for updates.

	click Refresh

	the Singleton and Session text areas will contain a message from the
same source, but the UI area will be empty

This demonstrates the scope of the event buses. The UI bus is of UIScope
- which means it relates to a browser tab (unless embedded). The session
scope relates to a browser instance, and therefore appears in both tabs,
and a singleton scope applies to an application and also appears in both
tabs.

	open a second browser instance (if you are using Chrome, be aware
that Chrome does odd things with browser instances - to be certain
you have a separate instance, it is better to use Firefox as the
second instance)

	in browser 2, login as ‘admin’, ‘password’

	navigate to the Event Bus page

	switch back to browser 1 tab 1 and press each of the 3 buttons,
Singleton, Session and UI again

	switch browser 2 tab 1

	press Refresh

	Only the Singleton text area will contain a message

This is what we expect - a Vaadin session relates to a browser instance,
so a session message will not appear in browser 2 - only the Singleton
will

Summary

	We have covered the 3 defined event buses provided by Krail, with
Singleton, Session and UI scope

	We have seen how to subscribe to a bus

	We have seen how to publish to a bus

	We have identified a challenge with refreshing the Vaadin client

Download from GitHub

To get to this point straight from GitHub,
clone [https://github.com/davidsowerby/krail-tutorial] using branch
step10

Services

The Guice documentation strongly recommends making Guice modules fast
and side effect
free [https://github.com/google/guice/wiki/ModulesShouldBeFastAndSideEffectFree].
It also provides an example interface for starting and stopping
services.

Krail extends that idea with a more comprehensive lifecycle for a
Service, and also adds dependency management. For example, in order to
start a Database Service, it may be necessary to load configuration
values from a file or web service first.

Lifecycle

The lifecycle is defined by Service.State and the standard cycle
comprises states:

	INITIAL, STARTING, RUNNING, STOPPING, STOPPED plus a state of FAILED

The transient states of STARTING and STOPPING are there because some
services may take a while to fully start or stop.

Causes

package com.example.tutorial.service;

import com.example.tutorial.i18n.LabelKey; import
com.google.inject.Inject; import
uk.q3c.krail.eventbus.GlobalBusProvider; import
uk.q3c.krail.service.AbstractService; import
uk.q3c.krail.service.ServiceModel; import uk.q3c.krail.i18n.I18NKey;
import uk.q3c.krail.i18n.Translate;

@Singleton public class ServiceA extends AbstractService {

@Inject
protected ServiceA(Translate translate, ServicesModel serviceModel, GlobalBusProvider globalBusProvider) {
 super(translate, serviceModel, globalBusProvider);
}

@Override
protected void doStop() throws Exception {

}

@Override
protected void doStart() throws Exception {

}

@Override
public I18NKey getNameKey() {
 return LabelKey.ServiceA;
}

}

[source]

package com.example.tutorial.service;

import com.example.tutorial.i18n.LabelKey;
import com.google.inject.Inject;
import uk.q3c.krail.eventbus.GlobalBusProvider;
import uk.q3c.krail.service.AbstractService;
import uk.q3c.krail.service.ServiceModel;
import uk.q3c.krail.i18n.I18NKey;
import uk.q3c.krail.i18n.Translate;

@Singleton
public class ServiceB extends AbstractService {

 @Inject
 protected ServiceB(Translate translate, ServicesModel serviceModel, GlobalBusProvider globalBusProvider) {
 super(translate, serviceModel, globalBusProvider);
 }

 @Override
 protected void doStop() throws Exception {

 }

 @Override
 protected void doStart() throws Exception {

 }

 @Override
 public I18NKey getNameKey() {
 return LabelKey.ServiceB;
 }
}

[source]

package com.example.tutorial.service;

import com.example.tutorial.i18n.LabelKey;
import com.google.inject.Inject;
import uk.q3c.krail.eventbus.GlobalBusProvider;
import uk.q3c.krail.service.AbstractService;
import uk.q3c.krail.service.ServiceModel;
import uk.q3c.krail.i18n.I18NKey;
import uk.q3c.krail.i18n.Translate;

@Singleton
public class ServiceC extends AbstractService {

 @Inject
 protected ServiceC(Translate translate, ServicesModel serviceModel, GlobalBusProvider globalBusProvider) {
 super(translate, serviceModel, globalBusProvider);
 }

 @Override
 protected void doStop() throws Exception {

 }

 @Override
 protected void doStart() throws Exception {

 }

 @Override
 public I18NKey getNameKey() {
 return LabelKey.ServiceC;
 }
}

[source]

package com.example.tutorial.service;

import com.example.tutorial.i18n.LabelKey;
import com.google.inject.Inject;
import uk.q3c.krail.eventbus.GlobalBusProvider;
import uk.q3c.krail.service.AbstractService;
import uk.q3c.krail.service.ServiceModel;
import uk.q3c.krail.i18n.I18NKey;
import uk.q3c.krail.i18n.Translate;

@Singleton
public class ServiceD extends AbstractService {

 @Inject
 protected ServiceD(Translate translate, ServicesModel serviceModel, GlobalBusProvider globalBusProvider) {
 super(translate, serviceModel, globalBusProvider);
 }

 @Override
 protected void doStop() throws Exception {

 }

 @Override
 protected void doStart() throws Exception {

 }

 @Override
 public I18NKey getNameKey() {
 return LabelKey.ServiceD;
 }
}

Note that each has a different name key - this is also used by getServiceKey(), which is used to uniquely identify a Service class. This approach is used to overcome the changes in class name which occur when using enhancers such as Guice AOP. This means that each Service class must have a unique name key.

As Services often are, these are all Singletons, although they do not have to be.

== Registering Services

All Service classes must be registered. We can do that very simply by sub-classing `AbstractServiceModule` and using the methods it provides

* create a new class `TutorialServicesModule` in _com.example.tutorial.service_
* copy the code below
[source]

package com.example.tutorial.service;

import com.example.tutorial.i18n.LabelKey;
import uk.q3c.krail.service.AbstractServiceModule;
import uk.q3c.krail.service.Dependency;

public class TutorialServicesModule extends AbstractServiceModule {

 @Override
 protected void registerServices() {
 registerService(LabelKey.ServiceA, ServiceA.class);
 registerService(LabelKey.ServiceB, ServiceB.class);
 registerService(LabelKey.ServiceC, ServiceC.class);
 registerService(LabelKey.ServiceD, ServiceD.class);
 }

 @Override
 protected void defineDependencies() {

 }
}

* include the module in the `BindingManager`:
[source]

@Override
protected void addAppModules(List<Module> baseModules) {
 baseModules.add(new TutorialServicesModule());
}

== Monitor the Service status

Fur the purposes of the Tutorial, we will create a simple page to monitor the status of the Services.

* In `MyOtherPages` add the entry:
[source,java]

addEntry("services", ServicesView.class, LabelKey.Services, PageAccessControl.PUBLIC);

* create `ServicesView` in the _com.example.tutorial.pages_ package
[source]

package com.example.tutorial.pages;

import com.example.tutorial.i18n.Caption;
import com.example.tutorial.i18n.DescriptionKey;
import com.example.tutorial.i18n.LabelKey;
import com.example.tutorial.service.ServiceA;
import com.example.tutorial.service.ServiceB;
import com.example.tutorial.service.ServiceC;
import com.example.tutorial.service.ServiceD;
import com.google.inject.Inject;
import com.vaadin.ui.Button;
import com.vaadin.ui.Panel;
import com.vaadin.ui.TextArea;
import com.vaadin.ui.VerticalLayout;
import net.engio.mbassy.listener.Handler;
import net.engio.mbassy.listener.Listener;
import uk.q3c.krail.eventbus.GlobalBus;
import uk.q3c.krail.eventbus.SubscribeTo;
import uk.q3c.krail.service.ServiceBusMessage;
import uk.q3c.krail.core.view.Grid3x3ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;
import uk.q3c.krail.i18n.Translate;

@Listener
@SubscribeTo(GlobalBus.class)
public class ServicesView extends Grid3x3ViewBase {

 private ServiceA serviceA;
 private ServiceB serviceB;
 private final ServiceC serviceC;
 private final ServiceD serviceD;

 @Caption(caption = LabelKey.Start_Service_A, description = DescriptionKey.Start_Service_A)
 private Button startABtn;
 @Caption(caption = LabelKey.Stop_Service_D, description = DescriptionKey.Stop_Service_D)
 private Button stopDBtn;
 @Caption(caption = LabelKey.Stop_Service_C, description = DescriptionKey.Stop_Service_C)
 private Button stopCBtn;
 @Caption(caption = LabelKey.Stop_Service_B, description = DescriptionKey.Stop_Service_B)
 private Button stopBBtn;
 private Translate translate;
 @Caption(caption = LabelKey.State_Changes,description = DescriptionKey.State_Changes)
 private TextArea stateChangeLog;
 @Caption(caption = LabelKey.Clear,description = DescriptionKey.Clear)
 private Button clearBtn;

 @Inject
 protected ServicesView(Translate translate,ServiceA serviceA, ServiceB serviceB, ServiceC serviceC, ServiceD serviceD) {
 super(translate);
 this.translate = translate;
 this.serviceA = serviceA;
 this.serviceB = serviceB;
 this.serviceC = serviceC;
 this.serviceD = serviceD;
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 createButtons();
 createStateMonitor();

 }

 private void createStateMonitor() {
 stateChangeLog = new TextArea();
 stateChangeLog.setSizeFull();
 stateChangeLog.setRows(8);
 getGridLayout().addComponent(stateChangeLog,0,1,2,1);
 clearBtn = new Button();
 clearBtn.addClickListener(click->stateChangeLog.clear());
 setBottomCentre(clearBtn);
 }

 @Handler
 protected void handleStateChange(ServiceBusMessage serviceBusMessage) {
 String serviceName = translate.from(serviceBusMessage.getService()
 .getNameKey());
 String logEntry = serviceName + " changed from " + serviceBusMessage.getFromState()
 .name() + " to " + serviceBusMessage.getToState().name()+", cause: " +
 serviceBusMessage.getCause();
 String newline = stateChangeLog.getValue().isEmpty() ? "" : "\n";
 stateChangeLog.setValue(stateChangeLog.getValue()+newline+logEntry);
 }

 private void createButtons() {
 startABtn = new Button();
 startABtn.addClickListener(click -> serviceA.start());

 stopDBtn = new Button();
 stopDBtn.addClickListener(click -> serviceD.stop());

 stopCBtn = new Button();
 stopCBtn.addClickListener(click -> serviceC.stop());

 stopBBtn = new Button();
 stopBBtn.addClickListener(click -> serviceB.stop());

 Panel panel = new Panel();
 VerticalLayout layout = new VerticalLayout(startABtn, stopDBtn, stopCBtn, stopBBtn);
 panel.setContent(layout);
 setTopLeft(panel);
 }
}

* create the enum constants

Here we set up some buttons to start and stop services in `createButtons()`

We use the link:tutorial-event-bus.md[Event Bus] to create a simple monitor for state changes in `createStateMonitor()`

* run the application and try pressing 'Start Service A' - a message will appear in the state changes log

== Defining Dependencies

So far, all the Services operate independently - there are no dependencies specified. Let us assume we want service A to depend on the other 3 services, each with a different one of the 3 dependency types. We will also mix up using Guice and *Dependency* annotations, though you would probably use only one method to avoid confusion.

=== Dependencies with Guice

* add the following to the `defineDependencies()` method in the `TutorialServicesModule`:
[source,java]

addDependency(LabelKey.ServiceA,LabelKey.ServiceB, Dependency.Type.ALWAYS_REQUIRED);
addDependency(LabelKey.ServiceA,LabelKey.ServiceC, Dependency.Type.REQUIRED_ONLY_AT_START);

=== Dependencies by Annotation

In `ServiceA` we inject `ServiceD` and store in a field in order to annotate it as a dependency (which you would need anyway if you wish to access `ServiceD`).

* Modify ServiceA
[source,java]

 @Dependency(required = false)
 private ServiceD serviceD;

 @Inject
 protected ServiceA(Translate translate, ServicesModel serviceModel, GlobalBusProvider globalBusProvider, ServiceD serviceD) {
 super(translate, serviceModel, globalBusProvider);
 this.serviceD = serviceD;
 }

This marks the dependency, ServiceD, as optional

== Testing Dependencies

* run the application
* navigate to the 'Services' page
* press 'Start Service A'
* Note that all 4 services show in the state changes log as 'STARTED' - `ServiceA` has automatically called all its dependencies to start. The order they start in is arbitrary, as they are started in parallel threads, but `ServiceA` will not start until all its required dependencies have started.
* press 'Clear'
* press 'Start Service A' again - nothing happens. Attempts to start/stop a service which is already started/stopped are ignored.
* press 'Stop ServiceD' - only `ServiceD` stops
* press 'Stop ServiceC' - only `ServiceC` stops
* press 'Stop ServiceB' - `ServiceB` and `ServiceA` stop. `ServiceA` has cause of DEPENDENCY_STOPPED

When `ServiceD` and `ServiceC` are stopped they do not affect `ServiceA`, as they are declared as "optional" and "required only at start".
When `ServiceB` is stopped, however, `ServiceA` also stops because that dependency was declared as "always required"

= Summary

* We have created services by sub-classing `AbstractService`
* We have defined dependencies between services using Guice
* We have defined dependencies between services using the *@Dependency* annotation
* We have demonstrated the interaction between services, when starting and stopping services with different dependency types

= Download from GitHub

To get to this point straight from GitHub, https://github.com/davidsowerby/krail-tutorial[clone] using branch *step11*

Push

You may recall from the Event Bus chapter that
a Vaadin client is unaware of changes made on the server. We had to
force the client to poll the server for updates by clicking a button.

To overcome this, Vaadin introduced ‘Push’ in version 7.1, a feature
used to push messages from server to client.

Krail implements the process described in the Vaadin
Handbook [https://vaadin.com/book/-/page/advanced.push.html] and
extends it slightly:

	a Broadcaster is implemented to enable any registered UI to push
messages

	ScopedUI automatically registers with the Broadcaster, so that any UI
can push a message

	ScopedUI listens for broadcast messages and distributes them via the
UI Event Bus as instances of PushMessage

Fixing the Refresh Problem

Modify the UI

	Add a @Push annotation to the TutorialUI

@Theme("valo")
@Push
public class TutorialUI extends DefaultApplicationUI {

Broadcast a message

	remove the refresh button (we will no longer need that), and its
@Caption

When we press the Send Message buttons, we want to push a message as
well. In EventsView:

	inject the Broadcaster and make it a field:

	modify each button click listener to broadcast (push) a message with
a call to broadcaster.broadcast():

package com.example.tutorial.pages;

import com.example.tutorial.eventbus.*;
import com.example.tutorial.i18n.Caption;
import com.example.tutorial.i18n.DescriptionKey;
import com.example.tutorial.i18n.LabelKey;
import com.google.inject.Inject;
import com.vaadin.ui.Button;
import uk.q3c.krail.eventbus.GlobalBusProvider;
import uk.q3c.krail.core.eventbus.SessionBusProvider;
import uk.q3c.krail.core.eventbus.UIBusProvider;
import uk.q3c.krail.i18n.Translate;
import uk.q3c.krail.core.push.Broadcaster;
import uk.q3c.krail.core.view.Grid3x3ViewBase;
import uk.q3c.krail.core.view.component.ViewChangeBusMessage;

public class EventsView extends Grid3x3ViewBase {
 private final UIBusProvider uiBusProvider;
 private final GlobalBusProvider globalBusProvider;
 private Broadcaster broadcaster;
 @Caption(caption = LabelKey.Singleton, description = DescriptionKey.Singleton)
 private Button singletonSendBtn;
 @Caption(caption = LabelKey.Session, description = DescriptionKey.Session)
 private Button sessionSendBtn;
 @Caption(caption = LabelKey.UI, description = DescriptionKey.UI)
 private Button uiSendBtn;
 private SessionBusProvider sessionBusProvider;
 private GlobalMessageReceiver singletonMessageReceiver;
 private MessageReceiver sessionMessageReceiver;
 private MessageReceiver uiMessageReceiver;

 @Inject
 protected EventsView(Translate translate, UIBusProvider uiBusProvider, SessionBusProvider sessionBusProvider, GlobalBusProvider globalBusProvider,
 GlobalMessageReceiver singletonMessageReceiver, SessionMessageReceiver sessionMessageReceiver, UIMessageReceiver uiMessageReceiver,
 Broadcaster broadcaster) {
 super(translate);
 this.uiBusProvider = uiBusProvider;
 this.sessionBusProvider = sessionBusProvider;
 this.singletonMessageReceiver = singletonMessageReceiver;
 this.sessionMessageReceiver = sessionMessageReceiver;
 this.uiMessageReceiver = uiMessageReceiver;
 this.globalBusProvider = globalBusProvider;
 this.broadcaster = broadcaster;
 }

 @Override
 protected void doBuild(ViewChangeBusMessage busMessage) {
 super.doBuild(busMessage);
 constructEventSendButtons();
 layoutReceivers();
 }

 private void layoutReceivers() {
 setTopCentre(singletonMessageReceiver);
 setMiddleCentre(sessionMessageReceiver);
 setBottomCentre(uiMessageReceiver);
 }

 private void constructEventSendButtons() {
 singletonSendBtn = new Button();
 sessionSendBtn = new Button();
 uiSendBtn = new Button();
 singletonSendBtn.addClickListener(click -> {
 String m = "Singleton";
 globalBusProvider.get()
 .publish(new TutorialMessage(m, this));
 broadcaster.broadcast("refresh", m, this.getRootComponent());

 });
 sessionSendBtn.addClickListener(click -> {
 String m = "Session";
 sessionBusProvider.get()
 .publish(new TutorialMessage(m, this));
 broadcaster.broadcast("refresh", m, getRootComponent());
 });
 uiSendBtn.addClickListener(click -> {
 String m = "UI";
 uiBusProvider.get()
 .publish(new TutorialMessage(m, this));
 broadcaster.broadcast("refresh", m, getRootComponent());
 });
 setTopLeft(singletonSendBtn);
 setMiddleLeft(sessionSendBtn);
 setBottomLeft(uiSendBtn);
 }
}

Verifying the change

We will now do the same sequence of tasks as for the Event
Bus, but without pressing the refresh button

	refresh Gradle

	run the application

	open a browser, which we will call browser 1 tab 1

	login as ‘admin’, ‘password’

	navigate to the Event Bus page

	open a second browser tab at the same URL - we will call this browser
1 tab 2

	in browser 1 tab 1 press each of the 3 buttons, Singleton, Session
and UI

	Messages will appear in all 3 text areas

	Switch to tab 2

	the Singleton and Session text areas will contain a message from the
same source, but the UI area will be empty

This demonstrates the scope of the event buses. The UI bus is of UIScope
- which means it relates to a browser tab (unless embedded). The session
scope relates to a browser instance, and therefore appears in both tabs,
and a singleton scope applies to an application and also appears in both
tabs.

	open a second browser instance (if you are using Chrome, be aware
that Chrome does odd things with browser instances - to be certain
you have a separate instance, it is better to use Firefox as the
second instance)

	in browser 2, login as ‘admin’, ‘password’

	navigate to the Event Bus page

	switch back to browser 1 tab 1 and press each of the 3 buttons,
Singleton, Session and UI again

	switch browser 2 tab 1

	Only the Singleton text area will contain a message, as expected

Using a Push Message

You may have noticed that we did not actually use the PushMessage,
just broadcasting it was enough to prompt the client to poll changes
from the server. We could, however, pick them up and use them as they
are captured by the ScopedUI and despatched via the UI Bus. To
demonstrate this we will simply show the push messages in the UI state
change log:

	Modify MessageReceiver by adding a getter

public TextArea getTextField() {
 return textField;
}

	Modify UIMessageReceiver to capture PushMessage instances and
update the state change log:

package com.example.tutorial.eventbus;

import net.engio.mbassy.listener.Handler;
import net.engio.mbassy.listener.Listener;
import uk.q3c.krail.eventbus.SubscribeTo;
import uk.q3c.krail.core.eventbus.UIBus;
import uk.q3c.krail.core.push.PushMessage;

@Listener
@SubscribeTo(UIBus.class)
public class UIMessageReceiver extends MessageReceiver {

 @Handler
 public void pushMessage(PushMessage pushMessage) {
 String s = getText();
 getTextField().setValue(s + "\n" + "Push message was originally from: "+pushMessage.getMessage());
 }
}

	run the application

	press any of the send message buttons, and an additional “push”
message will appear in all the UI state log texts, of any UIs
(browser tabs) you have open

Footnote

Vaadin Push can be a little quirky. This Tutorial was developed using
Tomcat 8, and also checked on Tomcat 7 - but if you use something else
and get problems, it is worth checking Vaadin’s notes on the
subject [https://vaadin.com/wiki/-/wiki/Main/Working+around+push+issues]
first.

Summary

	We have broadcast a push message and seen that it causes the client
to poll for updates, enabling immediate client refresh from a server
based change.

	we have intercepted the push message after it has been re-distributed
via the UI Bus

Download from GitHub

To get to this point straight from GitHub,
clone [https://github.com/davidsowerby/krail-tutorial] using branch
step12

Create a project Using Eclipse

Acknowledgement

Thanks to Dirk Lietz [https://github.com/Odhrean] for contributing
this chapter. If you have any questions regarding this chapter please
refer them to the contributor

Introduction

A short how-to set up krail as a library in a new Vaadin-Project in
Eclipse

Install Vaadin-Plugin

Install the Vaadin Plugin for Eclipse [https://vaadin.com/eclipse]

Create a new Vaadin Project

File -> New -> Other … Vaadin -> Vaadin 7 Project

Give it a Name and select the Target-Runtime (Apache Tomcat v8) and Java
1.8 Select the Deployment configuration : Servlet (default)

Hit Button Finish (or Next to configure some more Details like Pakage
Names)

A new Vaadin-Project will now be created with ivy-dependency
Management [http://ant.apache.org/ivy/] set up

Apply Krail-Dependency

Open ivysettings.xml and add the jcenter repository in the
<resolvers> section: `xml <!– jcenter –> <ibiblio name=”jcenter”
root=”http://jcenter.bintray.com" m2compatible=”true”/> `

Open ivy.xml and add the krail-library in the <dependencies>
section `xml <!– The core of krail –> <dependency org=”uk.q3c.krail”
name=”krail” rev=”0.9.3” /> `

The whole ivy.xml file could look like (with krail-kpa add on set
up):

<?xml version="1.0"?>
<!DOCTYPE ivy-module [
 <!ENTITY vaadin.version "7.4.6">
 <!ENTITY krail.version "0.9.3">
 <!ENTITY krail-jpa.version "0.8.8">
]>
<ivy-module version="2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance[http://www.w3.org/2001/XMLSchema-instance]"
 xsi:noNamespaceSchemaLocation="http://ant.apache.org/ivy/schemas/ivy.xsd"[http://ant.apache.org/ivy/schemas/ivy.xsd"]
 <info organisation="com.example" module="tutorial" />
 <configurations>
 <!-- The default configuration, which should be deployed to the server -->
 <conf name="default" />
 <!-- A configuration only needed when compiling the widget set. Should
 not be deployed to the server -->
 <conf name="widgetset-compile" />
 <!-- A configuration used in compilation of server side classes only.
 Should be deployed to the server -->
 <conf name="nodeploy" />
 </configurations>
 <dependencies defaultconf="default" defaultconfmapping="default->default">
 <!-- The core of krail -->
 <dependency org="uk.q3c.krail" name="krail" rev="&krail.version;" />

[source]

 <!-- Add-On krail-jpa -->
 <dependency org="uk.q3c.krail" name="krail-jpa" rev="&krail-jpa.version;" />

 <!-- The core server part of Vaadin -->
 <dependency org="com.vaadin" name="vaadin-server" rev="&vaadin.version;" />

 <!-- Vaadin themes -->
 <dependency org="com.vaadin" name="vaadin-themes" rev="&vaadin.version;" />

 <!-- Push support -->
 <dependency org="com.vaadin" name="vaadin-push" rev="&vaadin.version;" />

 <!-- Servlet 3.0 API -->
 <dependency org="javax.servlet" name="javax.servlet-api" rev="3.0.1" conf="nodeploy->default" />

 <!-- Precompiled DefaultWidgetSet -->
 <dependency org="com.vaadin" name="vaadin-client-compiled"
 rev="&vaadin.version;" />

 <!-- Vaadin client side, needed for widget set compilation -->
 <dependency org="com.vaadin" name="vaadin-client" rev="&vaadin.version;"
 conf="widgetset-compile->default" />

 <!-- Compiler for custom widget sets. Should not be deployed -->
 <dependency org="com.vaadin" name="vaadin-client-compiler"
 rev="&vaadin.version;" conf="widgetset-compile->default" />
</dependencies>

</ivy-module>

Create a Hierarchy

to be written

Functional Testing

Krail provides some support for Functional Testing out of the box. This
is still in development, but there may be parts of it you may find
useful.

See Functional Testing in the Developer Guide for more detail.

Introduction to the User Guide

This document aims to assist the Krail developer to understand how to develop an application based on Krail, by dipping in and out of features
as required.

A Tutorial is available to walk through the process, step by step.

If you are are interested in the reasons for some of the development decisions made in Krail, take a look at the Developer Guide..

Bootstrap

In order to allow the same application code to run in both Vertx and
Servlet environments, a bootstrap sequence is used. This is only really
needed so that the Guice Injector can be held in a location suitable for
the environment, so that it can be retrieved during deserialisation. As a side
effect, it has the additional benefit of simplifying basic application configuration.

Bootstrap File

A file called ‘krail-bootstrap.yml’ should be placed in src/main/resources.

Sample File

A minimal example file.

version: 1
collator: uk.q3c.krail.core.guice.CoreBindingsCollator
modules:
 - com.example.myapp.MyAppModule1
servlet:
 modules:
 - uk.q3c.krail.core.env.ServletEnvironmentModule
vertx:
 modules:
 - uk.q3c.krail.core.env.VertxEnvironmentModule

File Content

version

Optional, defaults to 1.

collator

Required. A fully qualified reference to your implementation of BindingsCollator, or you could even leave it as
uk.q3c.krail.core.guice.CoreBindingsCollator and add your own modules as below.

modules

Optional. Fully qualified references to modules you want to add to the
collator. These will apply to both Servlet and Vertx environments.

servlet

Required if you intend to run the application in a Servlet environment.

servlet/modules

Required if you intend to run the application in a Servlet environment.
Modules to be added to the collator only for the Servlet environment.
Unless its bindings are replaced elsewhere you will need at least
uk.q3c.krail.core.guice.ServletEnvironmentModule as shown in the
example.

vertx

Required if you intend to run the application in a Vertx environment.

vertx/modules

Required if you intend to run the application in a Vertx environment.
Modules to be added to the collator only for the Vertx environment.
Unless its bindings are replaced elsewhere you will need at least
uk.q3c.krail.core.guice.VertxEnvironmentModule as shown in the
example.

Injector Scope

The scope of the Guice Injector can be significant. A @Singleton is
described by Guice as “per application”, and is therefore per Injector.

In most situations the injector scope is per JVM ClassLoader - the same
as a static variable.

Of course, different environments treat ClassLoaders in different ways.

The important part for Krail is the “per application” definition for
Guice.

Accessing the Injector

It is normally considered bad practice to access the injector directly -
the whole point of IoC is to hand over control. But as always there are
special cases.

In Krail there are two scenarios where it is considered reasonable to
access the injector directly:

Deserialisation

SerializationSupport is used to re-inject Guice supplied transient dependencies,
following deserialisation. Deserialisation occurs without any reference to Guice of course, so without this intervention, transient dependencies
would be null.

View and UI Factory

The MasterSitemap is a central component of Krail, and it uses KrailView classes as part of the site definition. At the moment, the
most practical way to deal with this is to instantiate these views with the injector, when they are needed.

When support for multiple views and UIs per route is implemented, dynamic
construction based on potentially any selection criteria will be
required. There may be a better way, but currently it is looking like
this will continue to need access to the injector as well.
(See issues 664 [https://github.com/davidsowerby/krail/issues/664] and 665 [https://github.com/davidsowerby/krail/issues/665])

Serialization

When Vaadin serialises to the session, it serialises the entire UI. This
means anything contained within the UI is also serialized. If you follow
the Krail approach of constructor injection for Views and UIs, it will
mean that those dependencies will also be serialized, unless, of course,
they are marked as transient.

This clearly could affect the amount that needs to be
serialized/deserialized - you may want to reduce that by making
dependencies transient (or you may just have dependencies which
cannot be serialized), but that in turn means you need a way to
reconstruct the transient fields.

Serialization and Shiro / JPA

Anything which uses Guice AOP generates a byte enhanced class produced
by cglib. This causes serialization problems, and is a feature of
anything which uses cglib. At the moment the only way round this is to
use manual coding instead of AOP supported annotations. For example,
instead of using:

@RequiresPermission()
public void doSomething(){

}

use

if (subjectProvider.get().isPermitted("page:view:private")) {
 userNotifier.notifyInformation(LabelKey.Yes);
}

There is an open
issue [https://github.com/KrailOrg/krail/issues/686] to provide more
support.

Guice Deserialization for View and UI instances

ViewBase and ScopedUI use SerializationSupport to make the
management of this situation simpler, designed in a way for sub-classes
to make use of this facility.

When instances or sub-classes of ViewBase and ScopedUI are
deserialized, a standard Java readObject() is invoked method, and
SerializationSupport used to re-inject transient fields using
the Guice Injector. Hooks are also provided to allow you to intervene
with your own logic at various points.

Caution

To enable this to work, certain conditions apply. Sub-classes of ViewBase and ScopedUI :

	must have non-Serializable fields must be marked transient,
as normal

	will only attempt to re-inject transient fields which have a null
value at the time it invokes
SerializationSupport.injectTransientFields() - see the call
sequence below

	must have an exact match between the type of the constructor
parameter and the type of the field that it is associated with

	will raise an exception if, after completing the sequence of
calls below, there are still null transient fields

Call Sequence

This is the sequence of calls made during deserialization. Note that
injection by SerializationSupport will only inject into null
transient fields

	beforeDeserialization()

	default deserialization

	beforeTransientInjection()

	SerializationSupport injects transients

	afterTransientInjection()

	SerializationSupport checks for null transients, and raises
exception if any found (unless excluded)

Matching constructor parameters with fields

In order to match a constructor parameter with its field for automatic
re-injection, they must both be of exactly the same type (and not just
assignable). In the case of Guice, the type includes the use of binding
annotations.

This means that where a binding annotation is used on a constructor
parameter, its associated field must also have the same binding
annotation.

Java example

In Java, we must annotate the field to match a constructor parameter
that uses a binding annotation. Your IDE may flag a warning that you
have a binding annotation without @Inject - this can be ignored /
suppressed. If you do annotate the field with @Inject, then outside of
deserialization, Guice will inject the field twice, once via the
constructor, and once directly to the field.

public class MyView extends ViewBase {

 @Named("1) // to match its constructor parameter
 private transient Widget widget1;

 @Inject
 protected MyView(Translate translate, SerializationSupport serializationSupport, @Named("1") Widget widget1){
 super(translate, serializationSupport)
 this.widget1=widget1
 }

}

Kotlin example

Because Kotlin declares a property rather than a separate constructor
parameter and field, the property needs to be annotated in a way that
causes Kotlin’s code generator to correctly annotate its Java output:

class MyView @Inject constructor(translate:Translate, serializationSupport:SerializationSupport, @field:Named("1") @param:Named("1") @Transient val widget1:Widget) : ViewBase(translate,serializationSupport)

Excluding fields

If for some reason you want a transient field to be null at the end of
the deserialization process, fields can be excluded from injection and
the final check, by overriding the ViewBase or ScopedUI method
beforeDeserialization() or beforeTransientInjection() to set the
exclusions

protected void beforeTransientInjection(){
 serializationSupport.setExcludedFieldNames(ImmutableList.of("thisField"));
}

Tip

Guice, Binding Annotations and Inheritance. There is an
“interesting” side effect from using Guice binding annotations. It
is very easy to provide the binding on a superclass constructor
parameter, and then forget to put it on the equivalent sub-class
constructor parameter - meaning you have injected something
different via the sub-class. Your IDE and compiler will not tell
you. This Serialization routine will tell you if you do so. This was
not really a design choice, just a bit of luck!

Non-Serializable classes

This list is not exhaustive, but identifies some of the commonly used
Krail classes which cannot be made Serializable. For these, use the
method described above to re-inject them.

	BusProvider implementations which use MBassador. This currently applies to all BusProvider implementations.

	PubSubSupport from MBassador

Making your classes ‘Guice Serializable’

Where you need to deserialize your own classes that are constrcuted by Guice, but has non-Serializable dependencies, you can still use SerializationSupport,
within the standard readObject() deserialization method:

Java

 private void readObject(ObjectInputStream inputStream) throws ClassNotFoundException, IOException {
 inputStream.defaultReadObject();
 serializationSupport.deserialize(this);
 }

Kotlin

@Throws(ClassNotFoundException::class, IOException::class)
private fun readObject(inputStream: ObjectInputStream) {
 inputStream.defaultReadObject()
 serializationSupport.deserialize(this)
}

This combines the calls above, and invokes defaultReadObject(), injectTransients() and checkForNullTransients() If you want to exclude any fields, just set serializationSupport.excludedFieldNames before invoking deserialize()

Usually this happens when an object is created by a factory which then supplies Guice-constructed dependencies and some stateful element to the constructor - this is typical of a situation which Guice AssistedInject is used.

Caution

Some tests failed when using Guice AssistedInject with Serialization - we avoid using it, and use manually coded factories instead where needed. To be fair though, we are not completely sure there is a real problem, see open issue [https://github.com/KrailOrg/krail/issues/705]

Java

 public class MyObjectFactory{

 public MyObjectFactory (String statefulElement, MyNonSerializableDependency dependency){
 //etc
 }

 private void readObject(ObjectInputStream inputStream) throws ClassNotFoundException, IOException {
 inputStream.defaultReadObject();
 this.dependency = serializationSupport.getInjector().getInstance(MyNonSerializableDependency.class);
 }

 }

Forms

Overview

Vaadin provides some support for Forms with Binder, but Krail takes that further. It makes the definition of a Form part of the Sitemap by assigning a FormConfiguration to a SitemapNode.

The Form class takes that configuration and builds the form with UI components (TextField etc) and integrates Krail’s I18N and JSR 303 validation.

Two Form types are currently provided:

	simple, which displays/edits selected properties form a given entity class

	list, which displays a table of selected properties, for one more instance of the same entity class

Additional form types can easily be added.

Defining a Form

To construct a form in Krail (using a Person entity as an example):

	Define your form configuration as a sub-class of FormConfiguration, for example PersonFormConfiguration

	using either the Direct or Annotation method of creating a Sitemap entry, set the viewClass to Form.class

	set the viewConfiguration to PersonFormConfiguration.class

Form construction

As part of Krail’s navigation process, the view for a given URI is looked up from the Sitemap. The viewClass is constructed via Guice, and an instance of the viewConfiguration passed to it (in this example an instance of PersonFormConfiguration

	Form invokes FormTypeSelector to acquire the correct FormBuilder

	FormBuilder uses FormConfiguration in combination with FormSupport to construct appropriate UI components (TextFields etc) and bind them to enity data. The binding is carried out by KrailBeanValidationBinder, which also takes care of integrating JSR303 validation and I18N.

Validation

Validation can be defined by JSR303 annotations on the entity or directly within the FormConfiguration

Model to Presentation mapping

FormSupport provides the mappings of data types to presentation Fields, along with data converters. These mappings are defined in Guice and can therefore be easily extended or overruled.

Defaults

For each property (the Model) that is being bound to the user interface, a component (the Presentation) is needed. To enable the automatic creation of presentation elements, FormSupport.fieldFor() uses a map of data types to Vaadin Fields - for example, a String is mapped to a TextField.

Default mappings are provided by the FormModule, but these can be overridden for specific instances within FormConfiguration.

Changing defaults

To change the default Model to Presentation mappings, sub-class FormModule override bindDefaultDataClassMappings, and replace FormModule with your sub-class in your BindingsCollator

Register a new mapping

A new data type can be registered, by creating another Guice module which contributes a MapBinder as below

Kotlin

class MyMappingModule : AbstractModule() {

 override fun configure() {
 val fieldLiteral = object : TypeLiteral<AbstractField<*>>() {}
 val dataClassLiteral = object : TypeLiteral<Class<*>>() {}
 val dataClassToFieldMap: MapBinder<Class<*>, AbstractField<*>> = MapBinder.newMapBinder(binder(), dataClassLiteral, fieldLiteral)

 // bind new data types
 dataClassToFieldMap.addBinding(MyDataClass::class.java).to(WidgetField::class.java)
 }

Model to Presentation Converters

Where the model and presentation type are the same, clearly no conversion is needed, although a NoConversionConverter is actually used to transfer the data.

Where a converter is needed - for example, to display an integer in a TextField, a StringToIntegerConverter is needed - this converter type is provided by FormSupport.converterFor()

Ultimately this uses an implementation of ConverterFactory to instantiate the converter itself. The default implementation DefaultConverterFactory, iterates through all ConverterSets classes defined via Guice until it finds one to match the desired model and presentation class, or throws an exception if none found.

By default there is just one ConverterSet, the BaseConverterSet.

Adding / Replacing Converters

Converters can be added by defining your own ConverterSet, and adding it in one of two ways:

	sub-class ConverterModule and override the define() method to provide bindings to additional ConverterSet implementations, and replace ConverterModule in your BindingsCollator

	create a new module using ConverterModule as an example (in particular the MultiBinder), and add the new module to your BindingsCollator

License

Krail is licensed under Apache 2.0 [http://www.apache.org/licenses/LICENSE-2.0]

Introduction to the Developer Guide

This guide is aimed at those who are developing Krail itself, or are
just interested in the reasons behind some of the design choices made.

Accuracy

Please note that some of this this guide is still a fairly random
collection of notes, and has not kept up to date with releases.

Up to date sections

These sections, however, are considered to be up to date:

	Goals

	Bootstrap

	Push

	Serialisation

	Vertx

Goals and Objectives

Terminology

	Krail developer - someone developing an application based on Krail

	Krail team - the team which writes Krail itself

Goals

	To produce a framework which enables a Krail developer to produce a
reliable and complete business application quickly which:

	is easy to change and adapt to changing requirements

	enables the Krail developer to concentrate on business
requirements rather than technical requirements

	re-uses existing, well proven code wherever possible

	supports a microservices architecture

	supports a traditional servlet based architecture

Objectives

	provide a microservices architecture using Eclipse Vert.x

	enable the use of the same code in a servlet environment with minimal
configuration changes

	allow the Krail developer to develop in just Java or Kotlin as much
as possible, minimising the need for CSS, HTML, XML etc

Priorities

	A Vert.x solution is a higher priority than the Servlet solution. If
compromises are absolutely necessary, then it is the Servlet solution
which should be adjusted.

Krail Team Goals

These goals relate only to Krail itself, not the application developed
on Krail. They are still goals, but considered less important than the
“business” goals described above.

	Everything in a single language - the current mix of Java, Kotlin and
Groovy should migrate eventually to Kotlin only. This applies to
source, test code and build scripts.

	A common test framework. There is currently a mix of Junit Java,
JUnit Kotlin and Spock. Ideally this will all migrate to Spek
(Kotlin) - but may have to include JUnit Kotlin to enable Vertx
testing.

	Kotlin based build. This could be either Gradle with Kotlin script
(in place of Groovy scripts) or
Kobalt [https://github.com/cbeust/kobalt]. Kobalt needs to be
assessed before making a switch

	A single development lifecycle, but with optional steps. This is
currently provided by the KayTee plugin [https://github.com/davidsowerby/kaytee-plugin], but that
is not at production standard. It is, however, a companion product to
Krail

Priorities

	Migrating to an all Kotlin solution is not urgent. It can be carried
out when the opportunity arises.

	New code can be accepted in Java if it offers new or improved
functionality.

	New tests should ideally be in Spek but note the limitation below.
JUnit tests in Kotlin or Java can also be accepted if really
necessary.

Spek Limitation

The current version of Spek (1.1.5) does not play well with JUnit.
Specifically this causes the Spek tests not to execute, when JUnit is
used in the same test run. This can lead to false positives, and the
only solution is to hold Spek tests separately.

It is hoped that version 2.0 of Spek will resolve this

Documentation

	Documentation should be kept with and maintained at the same time as
its associated code. This is not currently achieved because all the
documentation is in the main Krail repository. Since the move to
Sphinx / ReST, it may be achievable using an include [http://docutils.sourceforge.net/docs/ref/rst/directives.html#include]

	Javadoc (or Kotlin equivalent) does not need to state the obvious.
But, if you think you would benefit from some notes when you come
back to the code in 5 years’ time - then write those notes.

Bootstrap

In order to allow the same application code to run in both Vertx and Servlet environments, a bootstrap sequence is needed.

This was originally enables the Guice Injector to be held in a location
suitable to the environment, so that it can be retrieved during deserialisation

It also sets the value of the @RuntimeEnvironment option, so that the application may make other adjustments if needed.

Injector Location

In a standard Servlet environment, a static variable is the simplest way to hold a reference to the Guice Injector. This is provided by
InjectorHolder, but should usually only be accessed through InjectorLocator - this enables the code to be application portable,
because the InjectorLocator implementation is environment specific.

In a Vertx environment, the injector instance is held in Vertx.currentContext. Again, to ensure portability, access should be
through InjectorLocator

Guice Bindings

Environment specific bindings are defined in ServletEnvironmentModule and VertxEnvironmentModule, for:

	InjectorLocator

	SerializationSupport

Bootstrap file

This is described in the User Guide <../userguide/userguide-bootstrap>`

Detecting the Environment

The Bootstrap process provides detection of the runtime environment, which can be accessed by Guice injection

Java

public class MyClass {

 @Inject
 protected MyClass(@RunningOn RuntimeEnvironment runtimeEnvironment){

 }
}

Kotlin

class MyClass @Inject constructor(@RunningOn runtimeEnvironment:RuntimeEnvironment)

Configuration

Objective

As it says at the start of the Tutorial, the objective is to give you,
the Krail developer, the best of both worlds - quick results, but still
the freedom to modify things however you wish. Of course, as with any
form of freedom, there is also responsibility. So if you break
something, you can guess who will be expected to fix it !

Configuration levels

Configuration is possible at multiple levels, and how you use them is
largely up to you.

Level 0 - Requires a re-compile

When making fundamental changes - for example using a different
implementation for a specific interface - reconfiguration is through
Guice modules. As these are in code, this will of course require a
recompile. Guice annotations also play a part in this. Krail is
programmed almost entirely to interfaces, so at this level of
configuration you could change just about anything. Or, indeed, break
just about anything. Also in this category is the use of the EventBus,
since you can choose to accept or send messages and act upon them as
required. You will see examples of this throughout the Tutorial.

Level 1 - Loadable configuration

Even in small applications, there are times when it is inconvenient to
require a recompile in order to change system behaviour. Krail
integrates Apache Commons
Configuration [https://commons.apache.org/proper/commons-configuration],
which provides support for many formats for loading configuration. Krail
uses the extended properties file format itself (basically an ini file
with sections). It is also possible to merge multiple inputs, thus
supporting a modular approach if you build a Krail application with
multiple libraries or modules. It is up to you to ensure the files are
loaded when needed, but not unnecessarily often. There will be at least
one example of this in the Tutorial.

Level 2 - Dynamic options

A further level of configuration is provided through the Option
class. This enables the update of options as the application is running
- it is up to the application to dynamically update if that is required.
This configuration is also multi-layered, so that there is the
potential, for example, to have options set at system, department and
individual user level (Krail does not determine this structure of this
hierarchy, as that it application dependent, it simply provides a
mechanism to enable it). Option is typically used to allow users to make
their own choices, but also provide typical defaults based on one or
more hierarchies they are a member of. This is quite a large subject and
therefore has its own section, Option and UserHierarchy.

Event Bus

Krail uses a publish - subscribe Event Bus in place of the common Event
Listener based Observer pattern. The Guava EventBus
page [https://code.google.com/p/guava-libraries/wiki/EventBusExplained]
gives a good summary of the reasons for choosing this approach (under
One Minute Guide). In fact, the idea was originally to use the Guava
implementation, but MBassador [https://github.com/bennidi/mbassador]
was chosen in its place because:

	it supports both weak and strong references (weak by default). Guava
supports only strong references.

	it supports synchronous and asynchronous buses

Overview

Most of the work is done in the EventBusModule, which binds bus
instances to match the Krail scopes of @Singleton,
@VaadinSessionScope and @UIScope. You don’t have to use all
three, but there is a natural correlation between a bus and a scope.

The 3 implementations are represented by 3 binding annotations
@GlobalMessageBus, @SessionBus and @UIBus respectively -
each of which also is used to bind implementations for bus
configuration, bus configuration error handlers and publication error
handlers.

This means that by simple configuration changes in EventBusModule, you
have 3 possible bus implementations matching Guice scopes, with each
having individual configuration objects, individual error handlers if
required and a choice between synchronous and asynchronous messaging.

The EventBusModule also uses Guice AOP to automatically subscribe
classes annotated with @Listener.

The @GlobalMessageBus is asynchronous by default, as most of the
publishers and subscribers are likely to be @Singletons, and
therefore thread-safe. The other 2 buses are synchronous.

All of the Guice configuration can of course be changed by replacing /
sub-classing EventBusModule and updating your BindingManager in the
usual way.

Publishing Messages

Simply inject the @GlobalMessageBus, @SessionBus or @UIBus
you want:

public class MyClassWithPublish {

private final eventBus;

 @Inject
 protected MyClassWithPublish(@SessionBus PubSubSupport eventBus){
 this.eventBus=eventBus;
 }

}

Use an existing BusMessage implementation, or create your own
message class - which can be anything which implements the
BusMessage interface. (There are no methods in the interface, it is
there for type safety and to help identify message classes). At the
appropriate point in your code, publish your message: ` public void
someMethod(){ …​. do stuff …​ eventBus.publish (new MyBusMessage(this,
someMoreInfo)); } `

Subscribing to Messages

Annotate the class with @Listener (which can also specify strong
references)

Annotate the method within the listener class which will handle the
message with @Handler. The method must have a single parameter of
the type of message you want to receive

@Handler
public void MyMessageHandlerMethod(MyBusMessage busMessage){

 MyClassWithPublish sender = busMessage.getSender();

}

There are some other very useful features such as Filters and Priority
.. see the MBassador documentation [https://github.com/bennidi/mbassador].

Automatic Subscription

During object instantiation, Guice AOP uses an InjectionListener in the
EventBusModule to intercept all objects whose class is annotated
with @Listener. The rules defining which bus to subscribe to are defined
in an implementation of EventBusAutoSubscriber, which you can of course
replace by binding a different implementation. The default
implementation uses the @SubscribeTo to complement the association
rules:

if a @SubscribeTo annotation is present, the buses defined by the
annotation are used, and no others (Services are an exception, see
below) if a @SubscribeTo annotation has no arguments, it is
effectively the same as saying “do not subscribe to anything even though
this class is marked with a @Listener” if there is no @SubscribeTo
annotation a Singleton is subscribed to the @GlobalMessageBus
anything else is subscribed to @SessionBus Note that @Listener
and @SubscribeTo are inherited, so can be used on super-classes, but
be overridden if re-defined in a sub-class.

Services and Messages

Service implementations make use of the Event Bus to automate starting /
stopping and restarting interdependent services. Many Service
implementations are @Singletons (though they do not have to be), so
the @GlobalMessageBus is used and ALL Service objects are
automatically subscribed though AbstractService to the
@GlobalBus. It is probably unwise to change that.

Functional Testing

For a functional test, exercised through the user interface, it is
likely you would want to use one of the tools designed for just that
purpose. Currently these would most likely be one of:

	Vaadin TestBench

	Selenide

	Selenium

Vaadin TestBench is obviously Vaadin aware, but has a licence cost.
Selenide is free and open source. Both use Selenium underneath to remove
some of the issues of testing in an AJAX environment.

Component Ids

All the above tools provide various methods of detecting an element
within a web page. The most robust is to use a CSS Selector, which in
Vaadin’s case is provided by a Component.id

To assist testing, Krail automatically assigns a hierarchical id to
selected components. This is done by an implementation of
ComponentIdGenerator

This id is in the form of
MyView-component-nestedcomponent-nestedcomponent to whatever depth is
defined by your views and components. By default, anything which
implements Layout is ignored, as these do not usually declare any
components, and are not usually required for functional testing.

You can, however, use @AssignComponentId annotation to change this

Affect on Performance

Using CSS selectors makes robust testing through the UI a lot easier,
but does have the penalty of incurring additional network traffic for
all the extra labels, which you might not want in a production
environment - though if performance is not an issue, they could also be used for application monitoring.

There is an outstanding issue [https://github.com/davidsowerby/krail/issues/662] to make it
possible to switch this feature off via configuration.

Page Loading

One of the problems with automated testing is knowing when a page is ready to be tested.
A PageLoading message is despatched on the MessageBus as the transition from one page to another is started, followed by a Page Ready message once the page has been built and data has been loaded.

In SimpleUI, the PageLoadingMessage sets the NavigationBar title to “Loading …”. When the PageReadyMessage is received, the title is set to the name of the View. This can be used by functional test code to determine whether the page is ready for testing.

Functional Test Support

VaadinTestBench has been replaced by Selenide [http://selenide.org/]
for Functional Testing. This solution is not as complete as TestBench,
but covers many use cases.

Component ids are now generated automatically to support functional
testing.

A FunctionalTestSupport object provides a model of route to View /
UI, and the components they contain.

To complement this, there is some early but useful work held currently
in the test-app project which generates Page Objects for functional
testing. These, along with some framework code, enable testing using
Selenide, and could be extended easily for use with Vaadin TestBench -
the objective it to enable the use of different test tools without
changing the tests

See GeneratorPageObjects and the other classes in
uk.q3c.krail.functest, in the test-app [https://github.com/davidsowerby/krail-testApp] project

The code behind this will eventually become a separate library.

Guice Scopes

This section considers Guice and in particular its relationship with Vaadin

To understand Guice itself, the Guice documentation [https://github.com/google/guice/wiki] is a good place
to start. This documentation only addresses points which relate to its use in Krail

If you think you are not are not familiar with the idea of scopes,
actually you probably are - at its simplest level, the principles are no
different to thinking of variables having scope.

Vaadin Environment

The Vaadin architecture [https://vaadin.com/book/vaadin7/-/page/architecture.html]
is significantly different to a typical Web environment. There are three scopes used by Krail to reflect Vaadin’s design:

UI Scope

UI Scope represents a Vaadin UI instance, and is generally equivalent to
a browser tab. To give a class this scope, apply the @UIScoped
annotation to the class and instantiate with Guice.

Vaadin Session Scope

Vaadin session scope represents a VaadinSession and is generally
equivalent to a browser instance. To give a class this scope, apply the
@VaadinSessionScoped annotation to the class and instantiate with
Guice.

Singleton

A Singleton has only one instance in the application. To give a class
this scope, apply the @Singleton annotation to the class and
instantiate with Guice.

Singleton classes must be thread safe.

AOP

Guice AOP [https://github.com/google/guice/wiki/AOP] is used by
Krail, and if you are not familiar with it the main points to note are:

	Guice AOP works only on method interception

	It does NOT work on private, static or final methods - this is
very easy to forget when stubbing methods with an IDE!

	For Guice AOP to work, Guice must instantiate the object

I18N

THIS SECTION IS OUT OF DATE & REQUIRES REVIEW

Introduction

Early in the development of Krail it was decided to support I18N as an
integral part of the development. Although many applications only need
to support one language, trying to add internationalisation (I18N) later
can be a major challenge. I18N requires the separation of literal
strings into files for translation, but this actually makes good sense
even if only one language is required, since it keeps a good separation
between the use of messages and the exact wording of them. In addition,
the need for parameterised messages will occur regardless of the number
of languages supported - so we concluded that it makes sense to always
write an application as if I18N will be required. And if one day your
single language application suddenly has to go multilingual, the only
thing required will be the translations.

The Basics

In the context of I18N, each piece of text needs a pattern, optionally
with placeholders for variable values, and a key to look up that pattern
for one or more Locales - then there needs to be something to bring it
all together to find the right pattern for a selected Locale, fill in
variable values and provide the result.

The Pattern

The pattern needs to be of the form:

The {1} task completed {0} iterations in {2} seconds

Different languages may require the parameters to be in a different order - the number in the {0} represents
the order in which the values should be assigned, so for this example values of 5, “last”, 20 will become:

The last task completed 5 iterations in 20 seconds

The Key

A key in Krail is an enum. This has many advantages over the usual
approach of using String constants, especially when combining modules
which may need to define their own keys in isolation from each other.
They are also more refactor-friendly. An I18N key class must implement
the I18NKey interface:

public enum LabelKey implements I18NKey { Yes, No, Cancel }

A key class represents a “bundle”.

The Bundle

The term “bundle” is used throughout native Java I18N support and Krail
uses the term in a similar way. It represents an arbitrary set of keys
and the collection of patterns, of potentially multiple languages, that
go with the keys. An enum implementation I18NKey class therefore
represents a set of keys for a bundle.

Bundle Reader

Patterns potentially come from different sources. Krail supports the
property file system used by native Java. It also provides a class based
implementation, and the Krail JPA module provides a database
implementation. All of these - and others if required - implement a
BundleReader interface to read a pattern from a file, class, database -
perhaps a web service - or wherever the implementation is designed to
work with.

Pattern Source

The PatternSource combines inputs from potentially multiple
BundleReader`s into one source. This is configurable through `I18NModule
to query the readers in whatever order is required - the first to return
a value is used. If necessary a different order for each Bundle, so a
database source could be the primary for one bundle and secondary for
another.

Translate

The Translate class is the final step in bringing the pieces together.
It looks up the pattern for a Locale, via the PatternSource, and
combines that with the parameter values it is given. For the example
above the call would be:

translate.from (MessageKey.Task_Completion, Locale.UK, 5, "last", 20)

If Translate cannot find a pattern, it will default to using the key
name (with underscores replaced with spaces). This is useful when
prototyping, as the pattern can still be meaningful even if not strictly
accurate. That’s why you will find many of the Krail examples break with
the convention of using all uppercase for the I18NKey enum constants.

Note that if “last” also need to be translated, Translate will accept
and perform a nested translation on an I18NKey (though the nested value
cannot have parameters - if that is required, two calls to Translate
will be needed)

translate.from (MessageKey.Task_Completion, Locale.UK, 5, LabelKey.last, 20)

You do not always have to specify the Locale - the default is to use
CurrentLocale.

Current Locale

The CurrentLocale implementation holds the currently selected locale
for the user. The default implementation checks things like the browser
locale and user options to decide which locale to use. CurrentLocale can
be injected anywhere it is required, and the Translate class will use it
if no specific Locale is supplied when calling the from() method.

Configuration

A number of things can be configured in the I18NModule, part of the
Guice based configuration - it is worth checking the javadoc for this.
Some configuration is also available via Option.

Managing Keys

To make it just a little easier to find values in what can be a long
list, the Krail core uses 3 enum classes to define message patterns:

	Labels : short, usually one or two words, no parameters, generally
used as captions

	Descriptions : longer, typically several words, no parameters,
generally used in tooltips

	Messages : contains parameter(s).

Note that this is simply a convention - you can call them whatever you
wish.

For each there is enum lookup key class:

	LabelKey,

	DescriptionKey,

	MessageKey.

For a class implementation there needs also to be a corresponding map of
value (default names of Labels, Descriptions and Messages) extended from
EnumResourceBundle. For a property file implementation there needs
to be a file (or set of files for different languages)

Using enums as I18N keys has some advantages, particularly for type
checking and refactoring - but it also has a disadvantage. Enums cannot
be extended. To provide your own keys (which you will unless you only
use those provided by Krail) you will need to define your own I18NKey
implementation, as described in the Tutorial - Extending I18N.

Managing Locale

CurrentLocale

`CurrentLocale` holds the locale setting for the current `VaadinSession`. Once a user has logged in, it is also possible to set the locale for a specific component, using the annotations described below.

Using I18N with Components

A typical component will need a caption, description (tooltip) and potentially a value. These need to be set in a way which recognises the correct locale, and potentially to update if a change of locale occurs.

@Caption

The @Caption annotation marks a component as requiring translation, and can provide caption and description

@Caption(caption=LabelKey.Yes, description=DescriptionKey.Confirm_Ok)

The application UI invokes the I18NProcessor to perform the translation during initialisation of any components it contains directly. When a view becomes current, its components are also scanned for @18N annotations and translated. I18NProcessor also updates the component’s locale, so that values are displayed in the correct format.

When CurrentLocale is changed, any UIs associated with the same VaadinSession are informed, and they each update their own components, and their current view. When a view is changed, if the current locale is different to that previously used by the view, then the View and its components are updated with the correct translation.

When a field or class is annotated with @I18N, the scan drills down to check for more annotations, unless the annotation is on a core Vaadin component (something with a class name starting with ‘com.Vaadin’) - these clearly cannot contain I18N annotations. and therefore no drill down occurs.

@Description

Similar to @Caption, but without the caption !

@Value

Usually, it is the caption and description which would be subject to internationalisation, but there are occasions when it is a component’s value which should be handled this way - a Label is commonly an example of this. Because the use of value is a little inconsistent in this context it has its own annotation.

Multiple annotations

You can apply multiple annotations - but note that if you define the locale differently in the two annotations, the result is indeterminate (that is, it could be either of the two locales that have been set).

Composite Components and Containers

There are occasions when an object contains components, and may not be a component itself, or possibly just not need translation.

For example, you have a composite component MyComposite which itself does not need a caption or description - but it contains components which do. For these cases, simply annotate it with @18N without any parameters, and I18NProcessor will scan MyComposite for any fields which need processing.

If `MyComposite is intended to be re-usable, it would probably be better to annotate the class with @I18N, so that it does not need to be annotated each time it is used.

Extending I18N

Annotation parameters cannot be generics, so will need to provide your own equivalent of @Caption, @Description and @Value to use your keys for annotating components for translation. The method for doing this is described in the Tutorial - Extending I18N.

Validation

The messages used in validation can be supported in the same way .. see the Validation section for details.

Options and Hierarchies

The idea of providing users with options is a standard requirement for
many applications, whether it is just letting them decide what they see
on a page, or maybe the news feed they get. Krail provides an
implementation which should be flexible enough for any application, with
a minimum of effort. This guide describes the structure and principles
behind Options - for detail of how to use them, please refer to the Tutorial.

Relationship to Configuration

Krail sees Option as the final layer of configuration. In practice,
what matters is that the Krail developer has a huge amount of
flexibility and control in managing configuration, including users’
individual options.

Layers of Options

At its simplest, a user should be able to select and save options, then
retrieve them from persistence next time they use the system. The user
may not have used the system before, though, so we need some defaults to
start with. In Krail these defaults are provided in code, as the
Option.get() method requires a default value - this also ensures
that behaviour is predictable if option values are missing.

So we have a user defined value for an option and a coded default. But
now suppose we think it would be better if we could change some options
for all users - “system options” in effect. Or to make things a bit more
complicated, we want to set some options at system level, and allow
users to override just some of them.

This is nothing more than a simple hierarchy, represented in Krail by
UserHierarchy. If we simply say that values at the user level
override those at system level, then we almost have what we want. And
only allowing authorised users to change some of the Option values,
those become system level options. So for this simple, 2 level
hierarchy, the logic for retrieving an option value is quite simply to
take the first non-null value we find from the following order:

	user level

	system level

	coded default

Controlling the Options

Of course, you don’t have to give all users the facility to change all
options - you may restrict changing some options values, for example, to
sys admins, to provide consistency across the whole system.

Accessing options is always through the Option interface. This enables a
simple, consistent API for storing and retrieving options.

Hierarchies

What has been described above is a simple, 2 layer, UserHierarchy
implementation, and this is the default provided by Krail. But that may
not be enough for you. Perhaps you are developing an application for a
large, complex organisation, and what you would really like to do is
have layers like those described above, but structured by geography or
company structure - or maybe both.

That is easily achievable with your own implementation of
OptionLayerDefinition. This interface has a method which returns a
list (an ordered hierarchy) based on parameters of user and hierarchy
name. For a specific user this may return “London, Europe” for
geography, and “Engineering, Automotive, Off Road” for company structure
- the data for these would probably both be obtained from another
corporate system.

The principles described above remain the same, however - so for this
example, Option will return the first non-null value found from a
location hierarchy of:

	user

	city

	continent

	system

	coded default

There can be up to 98 layers between user and system levels, though we
can think of no sane reason for wanting that many.

Storing the Options

None of this is of any use unless the option values can be stored. As
with the rest of Krail, an interface, OptionStore, and a default
implementation are provided. In this case, the default implementation is
not very useful, as it only store the options in memory. A persistent
version is planned, but in the meantime you could provide your own
persistent implementation and bind it through a sub-class of
OptionModule.

OptionKey

Page Navigation

The Vaadin UI classes, Views and Navigator are all closely involved in
the process of navigation. The Vaadin documentation gives a good
description of how it works, but Krail brings some additional features
to it.

In brief, the UI class represents a browser tab, and a View is placed
within the UI. The View is then changed in response to navigation
changes. You can have multiple UI classes, and multiple View classes. In
Krail, the selection of which View to display is derived from the URI.

When to use a UI or View

One question which arises quite quickly is what should be part of a UI,
and what should be in a View. For example a header bar could go in
either. Our inclination is to use a UI containing only elements which
will always appear on every page. Most of the user interface is then
provided through the View.

Krail makes the use of Views even easier, and as a result probably makes
the use of the UI class to hold user interface components less useful.

URI and Route

A central part of the way navigation works in Krail is the interpretation of the URI. The default implementation of URIFragmentHandler, is StrictURIFragmentHandler.

This provides a more strict interpretation of the UriFragment than Vaadin does by default. It requires that the URI structure is of the form:

http://example.com/domain#!finance/report/risk/id=1223/year=2012

This can be with or without the bang after the hash, depending on the useBang setting

where:

finance/report/risk/

is a “route” and is represented by a KrailView

and everything after it is paired parameters. If a segment within the paired parameters is malformed, it is ignored, and when the URI is reconstructed, will disappear. So for example:

http://example.com/domain#!finance/report/risk/id=1223/year2012

would be treated as:

http://example.com/domain#!finance/report/risk/id=1223

The year parameter has been dropped because it has no “=”

Optionally you can use hash(#) or hashBang(#!). Some people get excited about hashbangs. Try Googling it

Push

Background

The Vaadin-provided ‘push to browser’ mechanism uses Atmosphere [https://github.com/Atmosphere/atmosphere], and this proved to be challenging for the author of the vertx-vaadin [https://github.com/mcollovati/vertx-vaadin] library, which Krail uses to run on Vertx.

Vertx also provides a ‘push to browser’ facility, but one which is an integral part of the Vertx Event Bus [https://vertx.io/docs/vertx-core/js/#event_bus], with much greater functionality. In the words of the Vertx documentation:

The event bus forms a distributed peer-to-peer messaging system spanning multiple server nodes and multiple browsers.

Krail, Push and Vertx

For good reasons, therefore, vertx-vaadin [https://github.com/mcollovati/vertx-vaadin] uses the Vertx push mechanism. In order to accommodate that, some changes are needed for Krail.

The push connection is managed by the Vaadin UI (ScopedUI in Krail), with an embedded helper implementation of PushConfiguration. The simple task of using a different connection (SockJSConnection for Vertx, AtmospherePushConnection for Servlet environments), is made complicated by the closed nature of the Vaadin code structure.

There are two places which need the correct connection to be set, as described in the related issue [https://github.com/mcollovati/vertx-vaadin/issues/14], namely:

	ScopedUI constructor or init method

	the PushConfiguration.setPushMode() method

The first is perfectly simple. The second, however, causes problems.

	the PushConfigurationImpl.setPushMode() method constructs and sets the connection using new AtmospherePushConnection() - this would mean that disabling and then re-enabling would switch back to the Atmosphere connector.

	The default implementation of PushConfiguration, PushConfigurationImpl is constructed in the declaration of the pushConfiguration field of UI

	the pushConfiguration field of UI is private and has no setter

Adaptations

Various methods of getting round these restrictions were considered, and all have their pros and cons. The simplest, if rather nasty hack, of replacing the default PushConfiguration by reflection was reluctantly considered the better option rather than duplicating a lot of the native Vaadin code. This is done by calling overridePushConfiguration() in the ScopedUI constructor.

This change is complemented by a new PushConfiguration implementation , KrailPushConfiguration, which is a direct lift of Vaadin code with the setPushMode() method changed to allow the construction of the correct push connection.

Detecting the Environment

KrailPushConfiguration needs to know which environment (Servlet or Vertx) it is running in. The Bootstrap process provides detection of the runtime environment, which is accessed by Guice injection.

Persistence

Introduction

There are currently two forms of persistence made available in Krail:

	the krail-jpa [https://github.com/davidsowerby/krail-jpa] module,
and

	the “In Memory” classes - which are not strictly speaking persistent,
but offer the same API to aid a fast development start up and some
testability.

This section provides guidance on what a persistence implementation
should provide to the Krail core. Both the In Memory and JPA
implementations can be viewed as a way of understanding how this works.

For ease of description, the persistence provider here is
unimaginatively called “XXXX” - although that may mean something to
Australian readers.

Terminology

Throughout this section the terms “Persistence Unit” is used in the
manner defined by JPA.

Identity

Very often an application will use a single persistence unit. However,
this should not become a constraint, as other applications require
multiple persistence untis. Krail should therefore enable the selection
and use of multiple persistence units, if that is what the application
requires.

Each Persistence Unit, and is associated services, must therefore be
identifiable by an Annotation. The Annotation itself currently has no
specific requirements.

Multiple Persistence Units from the same provider

Ideally, the persistence provider will support multiple persistence
units for the same source type - for example, the krail-jpa module
supports multiple PUs, each identified by their own unique annotation.
The In Memory persistence provided by Krail, however, offers only a
single PU, although that is identified by an annotation as required
above. At the time of writing, an OrientDb library is being considered,
which would only provide a single PU - but this would still be required
to carry an annotation as required above.

Option

Krail core uses the Option class extensively, and by default,
Option values are stored in an “in memory”, volatile store. A
persistence provider must provide support for Option, accessible to
both the Krail developer’s application and the Krail core.

Option requires a DAO implementation to read and set Option
values. To support the presentation of Option values to the end
user, an implementation of OptionContainerProvider is required.
The Guice Module used to configure the PU must also provide a fluent method for the BindingManager`
to enable the Option support for the PU.

The detailed requirements are therefore:

	XXXXOptionDao which extends the OptionDao interface, with
a Guice binding to the Identity annotation

	DefaultXXXXOptionDao as the default implementation of
XXXXOptionDao

	The binding of XXXXOptionDao to DefaultXXXXOptionDao must be
available to the Krail developer to override

	XXXXOptionContainerProvider which extends the
OptionContainerProvider interface, with a Guice binding to the
Identity annotation

	DefaultXXXXOptionContainerProvider as the default implementation
for XXXXOptionContainerProvider

	The binding of
XXXXOptionContainerProvider`to `DefaultXXXXOptionContainerProvider
must be available to the Krail developer to override

	The Guice module should be called XXXXModule

	The XXXXModule must provide a a fluent method
provideOptionDao() which will create all the bindings listed
above.

	If the provideOptionDao() method for a PU is not invoked before
the Guice Injector is created, the bindings listed above should NOT
be created

Testing Bindings

The bindings for a PU enabled by invoking provideOptionDao() should
return instances as defined below:

@XXXX1 OptionDao should return DefaultXXXXOptionDao

Pattern

The Krail core uses I18N patterns extensively, and by default are read
from EnumResourceBundle instances. A persistence provider must
provide support for reading and writing I18N patterns. Support for
writing is required in order to enable the copying of I18N patterns, and
the provision of translations from within the Krail application.

EntityProvider or EntityManagerProvider

Generic DAO

Serialisation

A Krail application would originally have only required to support
serialisation in a high availability (HA) environment. In general, using
sticky sessions in a clustered environment would be sufficient.

In addition to HA, running a Krail application on Vert.x places a
further requirement for serialisation support. This introduces all the
usual Java serialisation issues of non-Serializable classes.

Specifically, Vaadin is designed in such a way that it holds the entire
UI state to memory, and therefore needs to serialise it to session when
HA or other circumstances need to move a session.

Scope of impact

Given that the entire UI state needs to be serialised, this includes
anything which implements the UI or KrailView, plus, of course,
anything which they in turn require.

Even though components themselves should be Serializable, the
largest impact is on views. The emphasis in these notes is on views, but
applies equally to UI implementations.

The design pattern for Krail has been to use Guice constructor injection
of many and varied dependencies into implementations of KrailView.
More of these dependencies could undoubtedly implement Serializable,
but there will always be cases where this is not possible.

The use of Guice introduces a further challenge - in order to be certain
that dependencies are resolved consistently, Guice should be used to
re-construct any transient dependencies after deserialisation.

Objectives

	Use Guice to re-construct any transient dependencies after
deserialisation

	Must allow for transients which are either reconstructed by Guice or
by developer code (a @NotGuice annotation?)

	Make the process as simple and clear as possible for Krail
application developers

	If possible, make transition to a non-native serialisation process an
easy option.

	Allow Krail developers to populate other transient fields as they
need to, before and/or after the injections

Options and Obstacles

In order to meet objective 1), any potential resolution requires that
the Guice Injector is available during deserialisation.

Use of Injector.injectMembers

This would be very easy to implement in a readObject - a simply call
(hooks for the developer to use before and after the injections have
been ignored for this example):

private void readObject(ObjectInputStream in) throws ClassNotFoundException, IOException {
 in.defaultReadObject();
 getInjector().injectMembers(this)
}

Obstacles

	This will only work with field or method injection - any
non-serialisable fields would have to be field or method injected.
While this would work, it imposes a restriction on constructor
injection.

	This would mean abandoning or modifying constructor injection for all
the current KrailView implementations

	Field injection has its own limitations, and most see it as a less
attractive option. Difficulty of testing is usually overstated
especially with the introduction of Bound
Fields [https://github.com/google/guice/wiki/BoundFields], and the
choices are discussed in the Guice
documentation [https://github.com/google/guice/wiki/Injections].

	Even if Field injection were considered a good option, it would
remove the choice from a Krail application developer.

Proxy serialisation

An old
post [https://groups.google.com/forum/#!topic/google-guice/T9VMiv6pgLw]
the author made a long time ago, may also provide an answer. The
relevant part is copied below:

If you can hook the objects that you want serialized by adding a
writeReplace() method, then you can use a serializable proxy to ship
each over the wire. The proxy would contain the Key corresponding to
the binding of the object. The trick here is establishing the
reverse mapping from { object => key }, but it’s possible through
use of either the provision API or plain java code (I’ve done the
latter myself).

The proxy would have a readResolve() method that can find a handle
to the injector on the JVM (several options exist for how to do
this), and then it would return “injector.getInstance(key).” This
solution would allow you to have non-serializable types as “private
final transient” instance vars on a serializable object. Looks
strange, but it’s possible.

As another solution, if you could only hook the deserialization
code, you could then declare the non-serializable types as non-final
and use member injection when types are deserialized (via
“injector.injectMembers(deserializedObject)”).

Obstacles

	Key is not serialisable, and nor is TypeLiteral, which would be
an alternative. Guava
TypeToken [https://github.com/google/guava/wiki/ReflectionExplained]
may be an option

	Defining a proxy would need to cater for generics, which is
complicated by Key not being serialisable

	Reflection is still required

	Fields would have to be annotated with binding annotations where
there are two instances of the same type being injected - there is no
other way to match a constructor parameter to the field it is
assigned to.

	If we can serialise a representation of the key on write, we could
just as easily construct the key on read, and just inject an instance
from that Key

Bespoke transient field initialiser

It would seem possible to create a routine to populate transient fields
by reflection, using an Injector, as part of readObject, in ViewBase
This might mean repeating the binding annotations on fields (but without
the @Inject), where there are multiple injections of the same type.

Obstacles

	Fields would have to be annotated with binding annotations where
there are two instances of the same type being injected - there is no
other way to match a constructor parameter to the field it is
assigned to.

Conclusion

Of these choices, the Bespoke transient field initialiser seems to
offer the best solution, in that it all it requires is that the Krail
developer annotates transient fields with binding annotations where
needed.

Services

Managing the Lifecycle

State Changes and Causes

The following table summarises the changes of state and cause, depending
on the old state and the call made. If any call is made that does not
appear in these tables, or listed under Ignored Calls, an exception
is thrown.

No errors during call

This table assumes no errors occur during the call

	old state

	full call

	short call

	new state & cause

	INITIAL

	start(STARTED)

	start()

	RUNNING, STARTED

	RUNNING

	stop(STOPPED)

	stop()

	STOPPED, STOPPED

	RUNNING

	stop(FAILED)

	fail()

	FAILED, FAILED

	RUNNING

	stop(DEPENDENCY_S
TOPPED)

	dependencyStop()

	STOPPED,
DEPENDENCY_STOPPE
D

	RUNNING

	stop(DEPENDENCY_F
AILED)

	dependencyFail()

	STOPPED,
DEPENDENCY_FAILED

	STOPPED

	start(STARTED)

	start()

	RUNNING, STARTED

	FAILED

	
	reset()

	INITIAL, RESET

Error occurs during call

This table assumes that an error occurs during the call

	old state

	full call

	short call

	new state & cause

	INITIAL

	start(STARTED)

	start()

	FAILED,
FAILED_TO_START*

	STOPPED

	start(STARTED)

	start()

	FAILED,
FAILED_TO_START*

	INITIAL

	start(STARTED)

	start()

	INITIAL,
DEPENDENCY_FAILED
**

	STOPPED

	start(STARTED)

	start()

	STOPPED,
DEPENDENCY_FAILED
**

	RUNNING

	stop(STOPPED)

	stop()

	FAILED,
FAILED_TO_STOP

	RUNNING

	stop(FAILED)

	fail()

	FAILED, FAILED

	RUNNING

	stop(DEPENDENCY_S
TOPPED)

	dependencyStop()

	FAILED,
FAILED_TO_STOP

	RUNNING

	stop(DEPENDENCY_F
AILED)

	dependencyFail()

	FAILED,
FAILED_TO_STOP

	FAILED

	
	reset()

	FAILED,
FAILED_TO_RESET

	Error in the Service that was called

	Error in a dependency of the Service that was called

Ignored Calls

A call to start() when the state is STARTING or RUNNING is ignored A
call to stop(), fail(), dependencyStop(), dependencyFail() when the
state is INITIAL, RESETTING, STOPPED or FAILED is ignored A call to
reset() when the state is INITIAL or RESETTING is ignored

Service Instantiation

When a Service is instantiated through Guice, AOP in the ServicesModule
calls ServicesModel.addService, which also creates all its dependencies
from the ‘template’ provided by the ServicesModel.classGraph

This means that the instanceGraph should always have a complete set of
dependencies for any Service instantiated through Guice.

Testing

Introduction

This pages captures some tips and techniques to assist you in testing
your application.

ResourceUtils

The ResourceUtils class is part of the core, and is used to look up
various directories, and can be used to manipulate the environment when
testing. In the VaadinService example you can see that it is used to
retrieve the user’s home directory, but what is not immediately obvious
is that is also used to determine the application base directory and
configuration directory, and these are derived from the VaadinService.
If you have mocked the VaadinService, as described, then you can set up
application configuration however you wish for testing.

VaadinService

You will often find that your test needs a VaadinService to run, but of
course is not usually available in a test environment - unless you are
running full functional testing. To overcome this, we mock the service,
with the help of ResourceUtils like this:

static VaadinService vaadinService;

@BeforeClass
public static void setupClass() {
 vaadinService = mock(VaadinService.class);
 when(vaadinService.getBaseDirectory()).thenReturn(ResourceUtils.userTempDirectory());
 VaadinService.setCurrent(vaadinService);
}

User Access Control

So what actually happens?

Krail has a MasterSitemap, which contains all the page definitions
for the whole site. This is built from the page definitions you provide
using either the direct method or annotation method you covered in
Tutorial - Pages and
Navigation.

When a user logs in, the MasterSitemap is copied to a user-specific
instance of UserSitemap. However, only those pages which the user is
authorised to see are actually copied across, and displayed in the
navigation components. This means that either the pages must be public,
or the user must have permissions to see them in order for them to be
displayed.

During the process of copying from the MasterSitemap to the
UserSitemap, each page is checked to see whether the user has permission
to view it - if not, then it is not copied to the UserSitemap. This
provides one layer of security, and it also means that any attempt by a
user to access a url not in the UserSitemap is rejected with a “page
does not exist” message, not a “page is not authorised”.

Validation

Introduction

Krail uses the Apache BVal [http://bval.apache.org/] implementation
of JSR303 [https://jcp.org/en/jsr/detail?id=303] to provide
validation. It also integrates Apache BVal with the Krail I18N
framework, so that all I18N requirements can be managed through the same
process. These are some of the things you may want to do with
validation.

Validation is invoked automatically through Krail’s implementation of
BeanFieldGroup (basically a form without the layout), once its
fields have been annotated.

Use standard javax Validation

That’s easy. Just use it the same way as you always
do [http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html]. This
also true of the additional constraints Bval provides (@NotEmpty and
@Email)

Use a different message for a single use of a javax annotation

If you want to change a message in just one or two places, for example,
to change a validation failure of @Min to say: “speed really, really
must be less than 20” you could use standard javax and provide a message
pattern: ` @Min (value=20, message=”{0} really, really must be less
than {1}” private int speed; ` This is ok for one language but it will
not translate. A better option might be: ` @Min (value=20,
message=”{com.example.ValidationKey.MinReally}”) private int speed; `
Note the “{}” around the message, this denotes a message key rather than
a pattern. Note also that this must be a valid I18NKey.

This method means you can take advantage of Krail’s translation
mechanism, but you do lose the type-safety Krail normally provides by
using enum keys. There are no alternatives because of Java’s limitations
on what can be declared in an annotation.

Change a javax message for all uses

If you want to change the message for all uses, there is a facility
within the Bval implementation to do that. Krail provides a method in
KrailValidationModule to assist.

public class MyValidationModule extends KrailValidationModule{

[source]

@Override
protected void define() {
 addJavaxValidationSubstitute(Min.class,com.example.ValidationKey.Min);
}

}

Move all translations to one source

You may wish to put all your translations into one place, rather than
have the validation translations held separately. There could be many
good reasons for doing so, and there is an open
ticket [https://github.com/davidsowerby/krail/issues/319] to provide
a utility to migrate the standard keys and patterns to the I18N source
of your choice. You will need to provide a set of I18NKeys for the
validation messages (the full set of keys used by Apache Bval are listed
below). Then, by using the substitution method shown above, all standard
javax.validation.constraints and org.apache.bval.constraints messages
can directed to use the new Krail keys.

standard

javax.validation.constraints.Null.message=must be null
javax.validation.constraints.NotNull.message=may not be null
javax.validation.constraints.AssertTrue.message=must be true
javax.validation.constraints.AssertFalse.message=must be false
javax.validation.constraints.Min.message=must be greater than or equal
to {value} javax.validation.constraints.Max.message=must be less than or
equal to {value} javax.validation.constraints.Size.message=size must be
between {min} and {max}
javax.validation.constraints.Digits.message=numeric value out of bounds
(<{integer} digits>.<{fraction} digits> expected)
javax.validation.constraints.Past.message=must be a past date
javax.validation.constraints.Future.message=must be a future date
javax.validation.constraints.Pattern.message=must match the following
regular expression: {regexp}
javax.validation.constraints.DecimalMax.message=must be less than or
equal to {value} javax.validation.constraints.DecimalMin.message=must be
greater than or equal to {value}

additional built-ins

org.apache.bval.constraints.NotEmpty.message=may not be empty
org.apache.bval.constraints.Email.message=not a well-formed email
address

Create a Custom Validation

There are many cases where a custom validator can be useful, and Apache
Bval does enable the creation of custom validators. With one small
addition, a custom validation can also integrate neatly with Krail’s
enum based I18N. There are three parts to the creation of a custom
validator - the validator itself, the annotation used to invoke it and
the key for the message. Most of this is standard JSR303 - the only
difference in the annotation is the messageKey() method needed to
enable the use of Krail I18N keys.

The annotation

import javax.validation.Constraint;
import javax.validation.Payload;
import java.lang.annotation.Documented;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;
import com.example.ValidationKey;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.RUNTIME;

@Target({ METHOD, FIELD, ANNOTATION_TYPE, CONSTRUCTOR, PARAMETER })
@Retention(RUNTIME)
@Documented
@Constraint(validatedBy = {AdultValidator.class})
public @interface Adult {
 ValidationKey messageKey() default ValidationKey.Must_be_an_Adult;

 String message() default "krail";

 Class<?>[] groups() default { };

 Class<? extends Payload>[] payload() default {};

 long value() default 18;

 /**
 * Defines several <code>@Adult</code> annotations on the same element
 * @see @Adult
 *
 *
 */
 @Target({ METHOD, FIELD, ANNOTATION_TYPE, CONSTRUCTOR, PARAMETER })
 @Retention(RUNTIME)
 @Documented
 @interface List {
 Adult[] value();
 }
}

The Constraint Validator

public class AdultValidator implements ConstraintValidator<Adult, Number> {

 private long minValue;

 public void initialize(Adult annotation) {
 this.minValue = annotation.value();
 }

 public boolean isValid(Number value, ConstraintValidatorContext context) {
 if (value == null) {
 return true;
 } else if (value instanceof BigDecimal) {
 return ((BigDecimal) value).compareTo(BigDecimal.valueOf(minValue)) != -1;
 } else if (value instanceof BigInteger) {
 return ((BigInteger) value).compareTo(BigInteger.valueOf(minValue)) != -1;
 } else {
 return value.longValue() >= minValue;
 }

 }
}

The Key

public enum ValidationKey implements I18NKey {
 Too_Big, Must_be_an_Adult
}

Vertx

There are a couple of libraries on Github which provide Guice
integration with Vert.x, but don’t meet Krail’s requirements.

Injector scope

It would be entirely possible to have Singleton scope be equivalent to
Vert.x instance scope. At first sight, this looks attractive, but it
would promote data sharing in a distributed application.

This would reduce the isolation / encapsulation between services and is
therefore considered to be a “bad thing”.

The Krail implementation considers a Verticle as Singleton scope (the
Injector is created in the Verticle), encouraging the use of
asynchronous events rather than sharing data.

License

Krail is licensed under Apache 2.0 [http://www.apache.org/licenses/LICENSE-2.0]

Glossary

	Fragment

	See URI

	Route

	See URI

	Sitemap

	The Krail Sitemap describes, as you would expect, the structure of the application. However, it is not just a passive output from a site, but an integral part of the application design - it brings together a route, its associated View and an I18N key for translating the page title.

	View

	A View is almost as described in the Vaadin handbook - the only difference with a KrailView, as opposed to a standard Vaadin View, is that is modified to work with Krail’s Guice enabled navigation.

	URI

	Of course there is only one correct definition of ‘URI’, but in a Krail context it is the way the structure of the URI is interpreted which becomes important. This interpretation is defined by an implementation of URIFragmentHandler, and Krail’s default implementation is StrctURIFragmentHandler. See the javadoc for that class for a definition of how it separates ‘pages’ from parameters.
As Krail has evolved, the terminology used to describe various elements of a URI has become a bit confused. This section sets out how it should be - but at the moment, other documentation (and method / field naming) are inconsistent. Hopefully the planned move to Vert.x will not change anything further

These terms assume the use of StrictURIFragmentHandler

By example:

	URI::

	com.example.myapp/#members/detail/id=1 - the whole thing

	baseUri::

	com.example.myapp/

	fragment::

	members/detail/id=1

	route ::

	members/detail

	parameters::

	id=1

Index

 F
 | R
 | S
 | U
 | V

F

 	
 	Fragment

R

 	
 	Route

S

 	
 	Sitemap

U

 	
 	URI

V

 	
 	View

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Krail documentation

 		
 Introduction to the Tutorial

 		
 Getting Started

 		
 Creating a Krail application with Gradle

 		
 Preparation

 		
 Create a build file

 		
 Create the Project

 		
 Import the Project to your IDE

 		
 Eclipse

 		
 Krail preparation

 		
 Exploring the Basic Application

 		
 Summary

 		
 Download from GitHub

 		
 Page Navigation

 		
 Defining a Page

 		
 Introducing I18N

 		
 Create an I18N Annotation

 		
 Add a Page - direct method

 		
 Defining the I18NKeys

 		
 Using the Pages

 		
 View the Pages

 		
 Add a Page - Annotation method

 		
 Choosing the Method

 		
 Moving a Set of Pages

 		
 Navigation

 		
 Add some public pages

 		
 Getting the Navigator

 		
 Adding some components

 		
 Navigating with Parameters

 		
 Excluding a page from Navigation

 		
 Summary

 		
 Download from GitHub

 		
 Themes

 		
 Replacing a UI

 		
 User Notifications

 		
 Sending the Message

 		
 Current methods of presentation

 		
 Different methods of presentation

 		
 Summary

 		
 Download from GitHub

 		
 Options

 		
 Out of the Box

 		
 Working example

 		
 Setting up the options

 		
 Using Hierarchies

 		
 Option Data Types

 		
 Summary

 		
 Download from GitHub

 		
 Configuration from INI files

 		
 Overview

 		
 Example

 		
 User Access Control

 		
 Example

 		
 Move the Pages

 		
 User accounts

 		
 Credentials Store

 		
 Permission Strings

 		
 Page Permission

 		
 Option permission

 		
 Authentication

 		
 Authorisation

 		
 Using the Realm

 		
 Control Access Through Code

 		
 Control Access Through Annotations

 		
 Summary

 		
 Download from GitHub

 		
 I18N

 		
 Elements of I18N

 		
 Direct translation

 		
 Message with Parameters

 		
 Pattern sources

 		
 Selecting pattern sources

 		
 Components and Validation

 		
 Preparation

 		
 Set up a page

 		
 Translations

 		
 Grid

 		
 Drilldown and Override

 		
 Form

 		
 About the form

 		
 Summary

 		
 Download from GitHub

 		
 Persistence - JPA

 		
 Example

 		
 Prepare build

 		
 Create a Page

 		
 Configure connections

 		
 Prepare the service

 		
 Prepare the Entity

 		
 Prepare the user interface

 		
 Data

 		
 Using the EntityManager

 		
 DAO

 		
 Persistence for Option

 		
 Guice & Scopes

 		
 Introduction

 		
 Singleton

 		
 VaadinSessionScoped

 		
 UIScoped

 		
 Applying a scope

 		

 		
 Event Bus

 		
 Introduction

 		
 The Tutorial task

 		
 Create a page

 		
 Message receivers

 		
 Base class

 		
 Receiver for each bus

 		
 Completing the View

 		
 Demonstrating the result

 		
 Summary

 		
 Download from GitHub

 		
 Services

 		
 Lifecycle

 		
 Causes

 		
 Push

 		
 Fixing the Refresh Problem

 		
 Modify the UI

 		
 Broadcast a message

 		
 Verifying the change

 		
 Using a Push Message

 		
 Footnote

 		
 Summary

 		
 Download from GitHub

 		
 Create a project Using Eclipse

 		
 Acknowledgement

 		
 Introduction

 		
 Install Vaadin-Plugin

 		
 Create a new Vaadin Project

 		
 Apply Krail-Dependency

 		
 Create a Hierarchy

 		
 Functional Testing

 		
 Introduction to the User Guide

 		
 Bootstrap

 		
 Bootstrap File

 		
 Sample File

 		
 File Content

 		
 Injector Scope

 		
 Accessing the Injector

 		
 Deserialisation

 		
 View and UI Factory

 		
 Serialization

 		
 Serialization and Shiro / JPA

 		
 Guice Deserialization for View and UI instances

 		
 Call Sequence

 		
 Matching constructor parameters with fields

 		
 Excluding fields

 		
 Non-Serializable classes

 		
 Making your classes â��Guice Serializableâ��

 		
 Forms

 		
 Overview

 		
 Defining a Form

 		
 Form construction

 		
 Validation

 		
 Model to Presentation mapping

 		
 Defaults

 		
 Changing defaults

 		
 Register a new mapping

 		
 Model to Presentation Converters

 		
 Adding / Replacing Converters

 		
 License

 		
 Introduction to the Developer Guide

 		
 Accuracy

 		
 Up to date sections

 		
 Goals and Objectives

 		
 Terminology

 		
 Goals

 		
 Objectives

 		
 Priorities

 		
 Krail Team Goals

 		
 Priorities

 		
 Spek Limitation

 		
 Documentation

 		
 Bootstrap

 		
 Injector Location

 		
 Guice Bindings

 		
 Bootstrap file

 		
 Detecting the Environment

 		
 Configuration

 		
 Objective

 		
 Configuration levels

 		
 Level 0 - Requires a re-compile

 		
 Level 1 - Loadable configuration

 		
 Level 2 - Dynamic options

 		
 Event Bus

 		
 Overview

 		
 Publishing Messages

 		
 Subscribing to Messages

 		
 Automatic Subscription

 		
 Services and Messages

 		
 Functional Testing

 		
 Component Ids

 		
 Affect on Performance

 		
 Page Loading

 		
 Functional Test Support

 		
 Guice Scopes

 		
 Vaadin Environment

 		
 UI Scope

 		
 Vaadin Session Scope

 		
 Singleton

 		
 AOP

 		
 I18N

 		
 Introduction

 		
 The Basics

 		
 The Pattern

 		
 The Key

 		
 The Bundle

 		
 Bundle Reader

 		
 Pattern Source

 		
 Translate

 		
 Current Locale

 		
 Configuration

 		
 Managing Keys

 		
 Managing Locale

 		
 CurrentLocale

 		
 Using I18N with Components

 		
 Extending I18N

 		
 Validation

 		
 Options and Hierarchies

 		
 Relationship to Configuration

 		
 Layers of Options

 		
 Controlling the Options

 		
 Hierarchies

 		
 Storing the Options

 		
 OptionKey

 		
 Page Navigation

 		
 When to use a UI or View

 		
 URI and Route

 		
 Push

 		
 Background

 		
 Krail, Push and Vertx

 		
 Adaptations

 		
 Detecting the Environment

 		
 Persistence

 		
 Introduction

 		
 Terminology

 		
 Identity

 		
 Multiple Persistence Units from the same provider

 		
 Option

 		
 Testing Bindings

 		
 Pattern

 		
 EntityProvider or EntityManagerProvider

 		
 Generic DAO

 		
 Serialisation

 		
 Scope of impact

 		
 Objectives

 		
 Options and Obstacles

 		
 Use of Injector.injectMembers

 		
 Proxy serialisation

 		
 Bespoke transient field initialiser

 		
 Conclusion

 		
 Services

 		
 Managing the Lifecycle

 		
 State Changes and Causes

 		
 Service Instantiation

 		
 Testing

 		
 Introduction

 		
 ResourceUtils

 		
 VaadinService

 		
 User Access Control

 		
 Validation

 		
 Introduction

 		
 Use standard javax Validation

 		
 Use a different message for a single use of a javax annotation

 		
 Change a javax message for all uses

 		
 Move all translations to one source

 		
 standard

 		
 additional built-ins

 		
 Create a Custom Validation

 		
 The annotation

 		
 The Constraint Validator

 		
 The Key

 		
 Vertx

 		
 Injector scope

 		
 License

 		
 Glossary

_images/basic-screenshot.png
©© Krail - Google Chrome

}> Krail x David
% +» @ @ D localhost Qo em=
sopicaton Header gl UnieaKingiom) < YOS | _togin

Login Public Home

> System Account

“This is the DefaultPublicHomeView

Message Bar

_images/basic-screenshot2.png
) Krail x

opicatanvesoer

> Sysiem Account

Locale
Selector

Breadcrumb

Application
header

Navigation
Menu

Login panel

View Area

Navigation
Tree

Message Bar
Sub-page
panel

Messago B

