kozmic Documentation
Release 0.0.1

Anton Romanovich

June 14, 2016

Contents

1 System Overview
1.1 Whatis Kozmic CI7 e e
1.2 Why Kozmic CI? e e e e e e e e e e
1.3 Kozmic CI Philosophy e
1.4 BasiCS. e e e e e e e e e e e e e e e e e
1.5 More About Hooksand Jobs
1.6 BaseImages e e
2 Installation and Set Up
2.1 TheFastWay e
2.2 TheUsual Way o o e e e e e e e
3 Reference
3.1 JobWorkflow L e e e e e e e
3.2 HowScripts Are Run e e e e e e
33 Exampleso e e e e e e e e e e e e
4 Configuration
4.1 Variables L e e e e
5 Internals Reference
5.0 Core . . o e e e e e e e e
5.2 Packages OVEIVIEW o o v i it i e e e e e e e e e e e e e e e
6 Contributing
6.1 Runningthe components i i v i i e e e e e e e e e e e
6.2 RUNNINZESLS o v v o o e
6.3 Working withthe database e
6.4 Compiling the documentation e
7 Changelog
7.1 0.0.1: 18 May 2014 L e e
8 Contact
Python Module Index

ANt

o

13
13
13
14

17
17

19
19
26

29
29
29
30
30

31
31

33

35

kozmic Documentation, Release 0.0.1

Kozmic CI is a self-hosted continuous integration service. It is written in Python, integrated with GitHub and powered

by Docker.

Thanks to Docker, it provides immutable build environments and powerful build dependencies caching mechanism.

projects/27/history/

mediasite/adlift-show

mediasite/mailtank

mediasite/adlift-client
6 days age

mailtank-ru/rsstank
ago

§

aromanovich/yearinpictures
ago

§

mediasite/chat
days ago

mediasite/mailtank-
designer

mediasite/adlift-click
16 days

g

mediasite/unistorage
25 days

e

mediasite/zavhoz
amonth ago

mediasite/gpor

mediasite/adlift-client

Latest Build Build History Settings
Message

fix tests for #243

fixes #243

Merge pull request #242 from mediasite/241-
migrate-invalid-users Add migration for invalid
users

Add migration for invalid users (closes #241)
Merge pull request #240 from
mediasite/requirements [WIP] YnopsinoueHb!
3aBMCUMOCTU

Rename requirements directory

Rearrange requirements

Merge pull request #239 from
mediasite/restrict-format-template-size

Restrict banner format template size

Calculate template size in bytes instead of
chars

Fix test

Drop Fabric

DoCc o gEE Bp @gOoo-

Update regs

Commit
4ada0as8 (i243-bootstrap3)
25c61da (i243-bootstrap3)

1690bce (master)

d408c1c (241-migrate-invalid-users)

14d90af (master)

1716896 (requirements)
elfe5fc (requirements)

f75c9dc (master)

2c8969Db (restrict-format-template-size)

1d35d91 (restrict-format-template-size)
969d493 (restrict-format-template-size)

58a6808 (restrict-format-template-size)

Duration

2 minutes

2 minutes

2 minutes

3 minutes

4 minutes

4 minutes

4 minutes

a few seconds

2 minutes

2 minutes

4 minutes

a few seconds

Finished
6 days ago
6 days ago

13 days ago

13 days ago

17 days ago

18 days ago
18 days ago

19 days ago

a month ago

a month ago
a month ago

a month ago

Contents

kozmic Documentation, Release 0.0.1

mediasite/adlift-show

mediasite/mailtank
days ago

mediasite/adlift-client
days

U

mailtank-ru/rsstank

§
:

aromanovich/yearinpictures
ago

§

mediasite/chat
9 days

4

mediasite/mailtank-
designer

11 days

mediasite/adlift-click
16 days.

i

mediasite/unistorage
25 days

g

mediasite/zavhoz
amonth

mediasite/gpor

mediasite/adlift-show

Latest Build Build

#

Status

Started at
Finished at
Author

Commit message
Commit branch
Commit SHA

"Tests (default wheezy

Started at
Finished at
Duration
Return code

< Restart
Pulling "kozmic/
Downloading/unpa
Running setup.

Downloading/unpat
Running setup.

warning: no
warning: no
warning: no
warning: no
warning: no
warning: no
warning: no

History Settings

62

22:26:29, Mar 02

22:37:18, Mar 02

Andy Mikhaylenko

Add JSONP as an option for generating slot JS
79-render-js-callback

f6363b8665

box with Python 2.7)" job e

22:26:29, Mar 02
22:37:18, Mar 02
11 minutes

0

debian:wheezy" Docker image...
cking uwsg @ (from —r requirements/basic.txt (line 1))
py egg_info for package uwsgi

cking Flasl 10.1 (from -r requirements/basic.txt (line 2))
py egg_info for package Flask

files found matching 'x' under directory 'tests’

previously-included files matching 'x.pyc' found under directory 'docs'
previously-included files matching 'x.pyo' found under directory ‘docs’
previously-included files matching 's.pyc' found under directory ‘tests'
previously-included files matching 'x.pyo' found under directory 'tests'
previously-included files matching '*.pyc' found under directory 'examples’
previously-included files matching 's.pyo' found under directory ‘examples’

Contents

kozmic Documentation, Release 0.0.1

| Kozmic CI

[) e EPISEEEEE W/ projects /27 [settings/

mediasite/adlift-show

mediasite/mailtank

mediasite/adlift-client

]

mailtank-ru/rsstank
6 days ago

aromanovich/yearinpictures
8 ago

l

mediasite/chat
9 days

&
e

mediasite/mailtank-
designer

11 days ago

mediasite/adlift-click
16 days

g

mediasite/unistorage
25

§
t

mediasite/zavhoz
amonth ago

mediasite/gpor

et ——

mediasite/adlift-client

Latest Build Build History Settings

Hooks

Tests (default wheezy box with Python 2.7) @ Edit O Delete

© Addanew hook = @ Restore hooks on GitHub

Badge
You can use the status buttons to show the current status of your project.

Members
@ramm (owner)
-)
"nelthere (manager)

0 aromanovich (manager)
@ m8rge (manager)

Contents

kozmic Documentation, Release 0.0.1

. ErmmEemeee m/ projects /27 /hooks/21/edit/

1] \(F

mediasite/mailtank

mediasite/adlift-client

mailtank-ru/rsstank

aromanovich/yearinpictures
8 days ago

mediasite/chat

mediasite/mailtank-
designer

mediasite/adlift-click
16 days ago

mediasite/unistorage
25 days

mediasite/zavhoz

mediasite/gpor

£ Sync projects with GitHub

Latest Build Build History Settings Edit Hook

Title *

Tests (default wheezy box with Python 2.7)

Docker base image *

kozmic/debian:wheezy

Install script

#!/bin/bash
set -e # Exit if any command returns a non-zero status

sudo apt-get update
sudo apt-get install -y --force-yes mongodb-10gen

DU U W

sudo pip install -r requirements/devel.txt
It will be run as an executable, so do not forget to put a shebang directive at the beginning.

See the ion about hook

Tracked files

requirements/basic.txt
requirements/devel.txt

Enter one path per line, the order doesn't matter. Tracked files may include both regular files and directories.

Results of the install script are cached. The cache is invalidated whenever the base Docker image, the install script or any of the tracked files

change. Remember to list here all the files used by the install script (such as pip's requirements.txt, Gemfile, etc).

Build script *

#1/bin/bash
set -e # Exit if any command returns a non-zero status

1

2

3

4 sudo /etc/init.d/mongodb start

5

6 py.test --cov=adlift --cov-report=term

It will be run as an executable, so do not forget to put a shebang directive at the beginning.

Save

echo 'deb http://downloads-distro.mongodb.org/repo/debian-sysvinit dist 10gen' | sudo tee /etc/apt/sous

N

Contents

CHAPTER 1

System Overview

1.1 What is Kozmic CI?

Kozmic CI is a Docker powered continuous integration platform integrated with GitHub.

It is written in Python using Flask and Celery. It uses Docker for a job isolation and dependencies caching, MySQL
as a data storage, Redis as a pub-sub implementation and uWSGI as a websockets framework.

1.2 Why Kozmic CI?

There are plenty of continuous integration tools out there and they all have pros and cons.

Some of them are very powerful but rather complex to use, like Jenkins CI or TeamCity. Sometimes something simpler
would be enough. Something like Travis CI seems a good way to go until you don’t constantly find yourself littering
the commit history trying to debug the over-complicated .travis.yml, or want to use a custom VM image for your
builds.

Kozmic CI is intended to be somewhere in between: to be easy to set up on your own server, configure and use, but
flexible enough to be capable of performing any kind of job.

And hey, it is powered by Docker! Docker is cool! :)

1.3 Kozmic CI Philosophy

Kozmic CI is made with simplicity in mind.

It doesn’t do much by itself. It delegates job isolation and dependencies caching to Docker. It uses GitHub as
an authentication and authorization provider. It doesn’t maintain any VM images with pre-installed languages and
databases. It doesn’t even introduce a build configuration format.

You are free to use your favorite scripting language to describe a build. You’ll probably have to learn some Bash while
writing build scripts, but in return you’ll be given control, predictability and ease of debugging.

The lack of “official” images with pre-installed stuff is a deliberate choice. You have to set up the environment yourself
— it encourages you to keep your testing environment close to the production one and pin your requirements. And
then you’ll not one day be surprised by a broken build when the official VM image is upgraded.

https://www.docker.io/

kozmic Documentation, Release 0.0.1

1.4 Basics

Kozmic Cl is tightly integrated with GitHub.

There are users and projects. Kozmic users correspond to GitHub users, Kozmic projects correspond GitHub reposi-
tories.

A user can have either one of the following roles.
* An owner, can view, configure and delete the project
* A manager, can view and configure the project
* A member, can only view the project
Projects’ memberships are determined by GitHub permissions.
* The owner is the user who created the project
* Managers are those users who can push and pull from the GitHub repository
* Members are those users who can only pull from the GitHub repository

A project can have one or more hooks which map one-to-one to GitHub webhooks. A Kozmic hook defines a job to
be performed when the corresponging GitHub hook is triggered.

A Kozmic build is basically a set of the jobs triggered by the same GitHub commit. If all the jobs have succeeded, the
build is considered successful. If any of the jobs has failed, the build is considered failed. A build status is reported to
GitHub as a Commit Status.

1.5 More About Hooks and Jobs

As it has been mentioned above, hooks describe jobs.

To configure a hook, you must specify a Docker base image and a build script. A build script is just an executable.
It must start with a shebang sequence (i.e., # ! /bin/bash) and everything that follows is completely up to you. You
can use your favorite scripting language: bash, Python, Perl, basically anything that present in the base image.

In short, what Kozmic CI will do is to pull that Docker image from Central Registry and run the build script in it. The
job is considered successful when the build script exits with zero return code and failed otherwise.

Also you can specify an install script and it’s tracked files.
The install script is an executable, much like the build script. Tracked files are a list of paths in the repository.

The install script runs before the build script. The result of a running the install script, a Docker container, is promoted
to a Docker image and cached. During the next job, if neither the install script or it’s tracked filed have changed, the
install script will be skipped and the cached image will be reused for running the build script.

That provides a really powerful tool for caching dependencies.

1.6 Base Images

Kozmic CI runs builds in isolated Docker containers that offer a clean environment for every build.
These containers are created using base images. A base image is a Docker image that meets a few requirements:
1. It must have the following packages installed:

* bash

6 Chapter 1. System Overview

kozmic Documentation, Release 0.0.1

* sudo
s git
* openssh-client
2. It must have a user named kozmic with sudo rights without password check

At this point Kozmic CI supports base images that are only hosted on a Central Registry provided by the Docker
project.

To tell Kozmic CI use particular base image for running a job, you must specify it’s repository name in the hook
settings. Repository names look like <username>/<repo_name>, i.e. kozmic/ubuntu-base. You can also
specify a tag from that repository, i.e. kozmic/ubuntu-base:12.04.

The specified base image will be pulled from the registry before running the first job.

Kozmic CI provides a number of “official” base images: https://index.docker.io/u/kozmic/. They are all built using
Trusted Build service and their Dockerfiles are hosted on GitHub. If some of the base images is missing something,
or you built a base image for your own needs and think that it may be useful for others — please feel free to submit a
pull request or open an issue.

1.6. Base Images 7

https://index.docker.io/
https://index.docker.io/u/kozmic/
http://blog.docker.io/2013/11/introducing-trusted-builds/
https://github.com/aromanovich/kozmic-images

kozmic Documentation, Release 0.0.1

8 Chapter 1. System Overview

CHAPTER 2

Installation and Set Up

2.1 The Fast Way

Kozmic CI offers a Docker-based single-node distribution.

It has some limitations, but it’s the fastest and easiest way to get started.

2.1.1 Step 1: Install Docker

If you use Digital Ocean, you can just create a droplet from an image with pre-installed Docker:

@ Select Image

Linux Distributions Applications My Images My Backups Destroyed Droplets
Applications (BETA)
LAMP on Ubuntu 12.04 MEAN on Ubuntu 12.04.3 Ruby on Rails on Ubunt...
Redmine on Ubuntu 12.04 Ghost 0.4.0 on Ubuntu ... GitLab 6.5.1 CE
Docker 0.8 Ubuntu 13.04 x64
Dokku-v0.2.1 on Ubuntu... Docker 0.8 Ubuntu 13.0... @ Wordpress on Ubuntu 13.10

If you use Ubuntu 13.04 or later, installing Docker is just as simple as that:

apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 36A1D7869245C8950F966E92D8576A8BA88D21E9
echo deb http://get.docker.io/ubuntu docker main > /etc/apt/sources.list.d/docker.list
apt—-get update

apt-get install -f lxc-docker

If you use another OS, take a look at Docker installation instructions.

https://www.digitalocean.com/?refcode=429df247edf9
https://www.docker.io/gettingstarted/#h_installation

kozmic Documentation, Release 0.0.1

2.1.2 Step 2: Register a new application on GitHub

Go to https://github.com/settings/applications/new and create a new application.

Set the homepage URL to http://my-server-ip-or-addr and the authorization callback URL to
http://my-server—ip-or—-addr/_auth/auth-callback.

2.1.3 Step 3: Start Kozmic ClI

Create a directory for Kozmic CI logs:

‘mkdir -p $HOME/kozmic-ci/log

Create a data-only container that will be used to persist the Kozmic CI data:

‘docker run -v /var/lib/docker -v /var/lib/mysqgl --name kozmic-data ubuntu:12.04 true
Run Kozmic CI:
JOB=$ (docker run —-e=SECRET KEY=xxxxx \
—e=CITHUB CLIENT TD=XXXXXXXXXXXXXXXXXXXX \
—e=GITHUB CLIENT SECRET=XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXKXKZZ \
—e=SERVER_NAME=XXX.XXX.XXX.XXX \
-p=80:80 \

-p=8080:8080 \

——volumes—from kozmic-data \
-v=SHOME/kozmic—-ci/log:/var/log \
—-privileged -d aromanovich/kozmic:0.0.1)

docker logs S$JOR

A few comments:

* SECRET_KEY must be set to a unique, unpredictable value. It must be kept the same if you are restarting or
updating Kozmic CI container.

e GITHUB_CLIENT_ID and GITHUB_CLIENT_SECRET must contain the OAuth client id and secret of your
GitHub application.

e SERVER_NAME must contain an IP address or domain name of the machine. It must be accessible from the
outside Internet.

e —p=80:80 -p=8080:8080 binds the container ports to the host system.

e —v=$HOME/kozmic—ci/log:/var/log mounts the directory from the host into the container which make
is possible to see what’s going on inside.

e ——privileged key is required for running Docker within Docker.

After starting the container, take a look at the 1ogs directory content and make sure that it doesn’t say any errors.
That’s it!

2.2 The Usual Way

The usual way is to not use Docker-based distribution, but manually deploy each of the three components:
* A web application that implements Ul and exposes webhooks (kozmic)

* A uWSGlI-application that sends a job log into a websocket (tailer)

10 Chapter 2. Installation and Set Up

https://github.com/settings/applications/new
http://blog.docker.io/2013/09/docker-can-now-run-within-docker/

kozmic Documentation, Release 0.0.1

* A Celery-worker that runs jobs
These components require Python 2.7, MySQL, Redis and Docker.
A Kozmic CI's Dockerfile is pretty much self-documenting about how to deploy them.

It uses Supervisor for running all the components (see the last three sections of supervisor.conf) and uWSGI as an
application server for kozmic and tailer (see kozmic-uwsgi.ini and tailer-uwsgi.ini).

You will also have to use manage . py to run the database migrations:

KOZMIC_CONFIG=kozmic.config_local.Config ./manage.py db upgrade

If you’re planning to use Kozmic CI status images in GitHub README files, they must be served through HTTPS to
prevent GitHub from caching them (see KOZMIC USE_HTTPS_FOR_BADGES setting).

tailer must be run using uWSGI that is listed in its requirements (. /requirements/tailer.txt).

2.2. The Usual Way 11

https://github.com/aromanovich/kozmic-ci/tree/master/docker/Dockerfile
http://supervisord.org/
https://github.com/aromanovich/kozmic-ci/blob/master/docker/files/supervisor.conf
https://uwsgi-docs.readthedocs.io/en/latest/
https://github.com/aromanovich/kozmic-ci/blob/master/docker/files/kozmic-uwsgi.ini
https://github.com/aromanovich/kozmic-ci/blob/master/docker/files/tailer-uwsgi.ini

kozmic Documentation, Release 0.0.1

12 Chapter 2. Installation and Set Up

CHAPTER 3

Reference

It’s important to understand how jobs are performed in order to efficiently use Kozmic CI features such as dependencies
caching.

As it has been mentioned earlier, Kozmic CI uses Docker for a job isolation and dependencies caching.
A job is defined by a hook. A hook consists of:

* Docker base image

* Build script

* Install script (optional)

* Tracked files (optional)

3.1 Job Workflow

Here’s what Kozmic CI does when GitHub triggers the hook.
* The Docker base image is pulled from the Central registry.

« If the install script is specified and it hasn’t been run before or if the base image, the install script itself or some
of tracked files have been changed, the install script is run and the resulting container is promoted to an image
and cached.

Otherwise this step is skipped.

 The build script is run in a Docker container created either from a cached image (if the install script is specified)
or Docker base image.

If either the install script or the build script exits with a return code different from zero, the job considered failed.

3.2 How Scripts Are Run

Install scripts are processed the same way as build scripts. The only difference is that a result of an install script, a
container, is cached.

1. A container is created from that image. It’s /kozmic directory is a volume and mounted to the host machine.

2. The script to be run is placed in that directory, along with some auxiliary files: a helper for running the script, a
file to which the script output will be written, deploy key, etc.

3. If the project’s repository is private, ssh—agent is started and the private deploy key is added to it.

13

kozmic Documentation, Release 0.0.1

4. The repository is cloned to /kozmic/src and the required commit is checked out.

5. Finally, the script is run in the /kozmic/src directory from the kozmic user. /kozmic directory and it’s
content owned by kozmic user.

Note: Changes that the install script makes to the /kozmic directory will not be cached.

3.3 Examples

3.3.1 MySQL and Python

Suppose the project is written in Python and uses MySQL. Here’s an example of a hook configuration.
Docker base image: kozmic/ubuntu:12.04.

Install script:

#!/bin/bash
set —e # Exit if any command returns a non-zero status

sudo su <<EOF

pip install -r ./requirements/basic.txt
pip install -r ./requirements/dev.txt
EOF

Tracked files:

requirements/basic.txt
requirements/dev.txt

Build script:

#!/bin/bash
set -e

sudo su <<EOF

/usr/bin/mysqgld_safe &

sleep 3 # Give it time to start

mysqgl —-e 'create database rsstank_test character set utf8 collate utf8_general_ci;'
EOF

cp ./rsstank/config_local.py-kozmic ./rsstank/config_local.py
./test.sh

We run pip from root because it sets up packages system-wide.

MySQL is already set up in the kozmic/ubuntu:12.04 image. It has to be started manually before the tests,
because Docker doesn’t use Ubuntu’s init system.

3.3.2 MongoDB and Python

Here’s another example for a project that uses MongoDB.
Docker base image: kozmic/debian:wheezy.

Install script:

14 Chapter 3. Reference

kozmic Documentation, Release 0.0.1

#!/bin/bash
set -e # Exit if any command returns a non-zero status

echo 'deb http://downloads-distro.mongodb.org/repo/debian-sysvinit dist 10gen'
sudo tee /etc/apt/sources.list.d/mongodb.list

sudo apt-get update

sudo apt-get install -y —--force-yes mongodb-10gen

sudo pip install -r requirements/devel.txt

\

Tracked files:

requirements/basic.txt
requirements/dev.txt

Build script:

#!/bin/bash
set -e # Exit if any command returns a non-zero status

sudo /etc/init.d/mongodb start

py.test —--cov=adlift --cov-report=term

3.3. Examples

15

kozmic Documentation, Release 0.0.1

16 Chapter 3. Reference

CHAPTER 4

Configuration

An environment variable KOZMIC_CONFIG tells the application (kozmic.create_app() and tailer)
which config to use. For example, to run a development server you can use the following command:
KOZMIC_CONFIG=kozmic.config_local.DevelopmentConfig ./manage.py runserver

4.1 Variables

SECRET_KEY A secret string. Used for signing cookie-based sessions, as a passphrase for private deploy keys, etc.

SERVER_NAME The name and port number of the server (e.g., ’kozmic-ci.company.com’ or
r7127.0.0.1:5000").

SESSION_COOKIE DOMAIN The domain for the session cookie. If this is not set, the cookie will be valid for all
subdomains of SERVER NAME.

Note: If you’re using an IP address as a SERVER NAME, you must specify the same IP address in
SESSION _COOKIE_DOMAIN. Otherwise cookies will not work.

KOZMIC_GITHUB_CLIENT_ ID GitHub OAuth app client id
KOZMIC_GITHUB_CLIENT SECRET GitHub OAuth app client secret
BROKER_URL Celery broker URL (default: ’ redis://localhost:6379/0")
MAIL_DEFAULT SENDER “From” e-mail address to be used for notifications
KOZMIC_REDIS_HOST Redis host (default: ’ localhost’)
KOZMIC_REDIS_PORT Redis port (default: 6379)
KOZMIC_REDIS_DATABASE Redis database (default: 0)

KOZMIC_STALL_TIMEOUT Number of seconds since the last job output after which the job is considered “hung”
and it’s Docker container gets killed (default: 900)

KOZMIC_ENABLE_EMAIL NOTIFICATIONS Whether e-mail notification enabled? (default: True)

KOZMIC_CACHED_IMAGES_LIMIT The maximum number of cached Docker images (a cached image is a result
of an install script) per project (default: 3)

KOZMIC_USE_HTTPS_FOR_BADGES If you're planning to use Kozmic CI status images in GitHub README
files, they must be served through HTTPS to prevent GitHub from caching them.

This variable only affects the UI and used for showing a correct badge URL (default: False)

17

kozmic Documentation, Release 0.0.1

SQLALCHEMY DATABASE_URI SQLAlchemy connection string (default: ' mysgl+pymysqgl://kozmic:@127.0.0.1/kozm

TAILER URL_TEMPLATE URL template to be wused to get a websocket URL for a job.
Must point to a tailer application instance and contain Jjob_id variable. (e.g.,
"ws://kozmic-ci.example.com:8080/{job_id}/");

DOCKER_URL Docker API URL (default: "unix://var/run/docker.sock’)

The default configuration expects to find an SMTP server on a local machine on port 25. It can be changed:
http://pythonhosted.org/Flask-Mail/#configuring-flask-mail.

18 Chapter 4. Configuration

http://pythonhosted.org/Flask-Mail/#configuring-flask-mail

CHAPTER 5

Internals Reference

5.1 Core

5.1.1 kozmic.models

class kozmic.models.RepositoryBase
A base repository class to be used by HasRepositories mixin.

gh_id = Column(None, Integer(), table=None, nullable=False)
GitHub id

gh_name = Column(None, String(length=200), table=None, nullable=False)
GitHub name (i.e., kozmic)

gh_full_name = Column(None, String(length=200), table=None, nullable=False)
GitHub full name (i.e., aromanovich/kozmic)

gh_ssh_clone_url = Column(None, String(length=200), table=None, nullable=False)
SSH clone url

gh_https_clone_url = Column(None, String(length=200), table=None, nullable=False)
HTTPS clone url

is_public = Column(None, Boolean(), table=None, nullable=False)
Is the repository public?

classmethod from_gh_repo (gh_repo)
Constructs an instance of cls from gh_repo.

class kozmic.models.HasRepositories
Mixin that adds repositories relationship to the model. Repositories are stored in separate tables for each
parent. Repository attribute contains model (inherited from RepositoryBase) mapped to the parent’s
repositories table.

This pattern is well described in “Hand Coded Applications with SQLAlchemy” presentation by Mike Bayer.

class kozmic.models.User (**kwargs)
User account.

repositories
Set of user repositories.

organizations
Set of user organizations in which user has admin rights to at least one repository (see Organization).

19

http://techspot.zzzeek.org/files/2012/hand_coded_with_sqla.key.pdf

kozmic Documentation, Release 0.0.1

gh_id
GitHub user id

gh_login
GitHub user login

gh_name
Human-readable GitHub name

gh_access_token
OAuth access token

gh_avatar_url
GitHub avatar URL

repos_last_synchronized at
The last time when the user’s repositories and organizations were synced with GitHub

email
E-mail address

get_identity ()
Returns user’s flask.ext.principal.Identity.

get_available_projects (annotate_with_latest_builds=False)
Returns list of Projects that user has access to. If annotate_with_latest_builds is specified, returns list
of pairs (Projects, Build) where the second element is the latest project build or None if the project

was never built.

gh
An authenticated GitHub session for this user.

Type github3.github.GitHub

get_gh_org_repos ()
Retrieves data from GitHub API and returns a pair of values:

l.set of github3.orgs.Organization in which the current user has at least one repository with
admin rights;

2.dict mapping these organization’ ids to lists of github3.repo.Repository to which the cur-
rent user has admin access.

get_gh_repos ()
Retrieves data from GitHub API and returns a list of the user owned repositories.

Return type list of github3.repo.Repository

sync_memberships_with_github ()
Does the same as Pro ject.sync_memberships _with github (), but for the user. Returns True
if there were not any GitHub errors; False otherwise.

class kozmic.models.Organization (**kwargs)
Stores a set of organization repositories that a user has admin access to.

Different Kozmic users, but members of the same GitHub organization, will have their own Organization
entries with possibly different sets of repositories (because they are possibly members of different teams).

repositories

20 Chapter 5. Internals Reference

http://docs.python.org/library/stdtypes.html#set
http://docs.python.org/library/stdtypes.html#dict

kozmic Documentation, Release 0.0.1

gh_id
GitHub organization id

gh_login
GitHub organization login

gh_name
Human-readable GitHub name

user
User whose admin rights is reflected by this organization

class kozmic.models .DeployKey (passphrase, key_size=2048)
An RSA deploy key pair.

gh_id
GitHub deploy key id

rsa_private_key
RSA private deploy key in PEM format encrypted with the app secret key

rsa_public_key
RSA public deploy key in OpenSSH format

ensure ()
If the corresponding GitHub deploy key does not exist, creates it. Returns True if there weren’t GitHub
API errors; False otherwise.

delete(()
Deletes the public key from GitHub. Returns True if it has been successfully deleted (or was missing);
False otherwise.

class kozmic.models.Project (**kwargs)
Project is a GitHub repository that is being watched by Kozmic CI.
gh_id
GitHub repo id

gh_name
GitHub repo name (i.e., kozmic)

gh_full name

GitHub repo full name (i.e., aromanovich/kozmic)
gh_login

GitHub repo owner (user or organization) login

gh_ssh_clone_url
SSH repo clone url

gh_https_clone_url
HTTPS clone url
is_public
Is the project’s repository public?
deploy_ key
Deploy key
members

Project members

owner
Project owner

5.1. Core 21

kozmic Documentation, Release 0.0.1

gh
Project’s GitHub.
Type github3.repos.Repository
delete ()

Deletes the project and it’s corresponding GitHub entities such as hooks, deploy key, etc. Returns True if
they all have been successfully deleted (or were missing); False otherwise.

get_latest_build (ref=None)
Return type Build

sync_memberships_with_github ()
Synchronizes project members with GitHub.

GitHub _repository members_ with admin and push rights become project managers, other _repository
members_ become project members.

Returns True if there were not any GitHub errors; False otherwise.

class kozmic.models.Hook (**kwargs)

Reflects a GitHub hook.

gh_id
GitHub hook id

title
Title

install_script
Install script

build_script
Script to be run at hook call

docker_image
Name of a Docker image to run build script in (for example, “ubuntu” or “aromanovich/ubuntu-kozmic”).
Specified docker image is pulled from index.docker.io before build

project
Project

ensure ()
If the corresponding GitHub hook does not exist, creates it. If it exists, but has wrong configuration,
re-configures it. Returns True if there weren’t GitHub API errors; False otherwise.

delete ()
Deletes the project hook. Returns True if it’s corresponding GitHub hook is missing or has been success-
fully deleted; False otherwise.

class kozmic.models.TrackedFile (**kwargs)

Reflecs a tracked file.

path
Path within git repository

hook
Hook

class kozmic.models.Build (**kwargs)

Reflects a project commit that triggered a project hook.

22

Chapter 5. Internals Reference

kozmic Documentation, Release 0.0.1

number
Build number (within a project)

gh_commit_ref
Commit reference (branch on which the commit was pushed)

gh_commit_sha
Commit SHA

gh_commit_author
Commit author

gh_commit_message
Commit message

created_at
Created at

status

Build status, one of the following strings: ‘enqueued’, ‘success’, ‘pending’, ‘failure’, ‘error’
project

Project

calculate number ()
Computes and sets number.

started_at
Time the first job has started or None if there is no started jobs yet.

finished at
Time the last job has finished or None if there is no finished jobs yet.

set_status (status, target_url="", description="")
Sets status and posts it on GitHub.

class kozmic.models.HookCall (**kwargs)
Reflects a fact that GitHub triggered a project hook.

created_at
Created at

gh_payload
JSON payload from a GitHub webhook request

hook
Hook

build
Build

class kozmic.models.Job (**kwargs)
A job that caused by a hook call.

started_at
Time the job has started or None

finished at
Time the job has finished or None

return_code
Return code

5.1. Core

23

kozmic Documentation, Release 0.0.1

stdout
Job log

task_uuid
uuid of a Celery task that is running a job

build
Build

hook_call
HookCall

get_cache_id()
Returns a string that can be used for tagging a Docker image built from the install script. A cache id
changes whenever the base Docker image, the install script or any of the tracked files is changed.

Note: Requires that Docker is running and Docker base image
(self.hook_call.hook.docker_image) is pulled.

started ()
Sets started_at and updates build status. Must be called when the job is started.

finished (return_code)
Sets finished at and updates bui1d status. Must be called when the job is finished.

tailer_url
URL of a websocket that streams a job log in realtime.

permanent_url
A permanent URL of the job.

is_finished ()
Is the job finished?

status
One of the following values: ‘enqueued’, ‘success’, ‘pending’, ‘failure’, ‘error’.

5.1.2 kozmic.perms

kozmic.perms.project_owner = <functools.partial object>

Project owner need

kozmic.perms.project_manager = <functools.partial object>

Project manager need

kozmic.perms.project_member = <functools.partial object>

Project member need

kozmic.perms.delete_project (id)

Returns a Permission to delete the project identified by id.

kozmic.perms.manage_project (id)

Returns a Permission to manage the project identified by id.

kozmic.perms.view_project (id)

Returns a Permission to view the project identified by id.

24

Chapter 5. Internals Reference

kozmic Documentation, Release 0.0.1

5.1.3 kozmic.builds.tasks
kozmic.builds.tasks.do_job (hook_call_id)
A Celery task that does a job specified by a hook call.

Creates a Job instance and executes a build script prescribed by a triggered Hook. Also sends job output to
Job.task_uuid Redis pub-sub channel and updates build status.

Parameters hook_call_id - int, HookCall identifier

kozmic.builds.tasks.restart_job (id)
A Celery task that restarts a job.

Parameters id —int, Job identifier
class kozmic.builds.tasks.Publisher (redis_client, channel)
Parameters
e redis_client — Redis client
* channel (str)— pub/sub channel name

class kozmic.builds.tasks.Tailer (log_path, publisher, container, kill_timeout=600)
A daemon thread that waits for additional lines to be appended to a specified log file. Once there is a new line,
it does the following:

1.Translates ANSI sequences to HTML tags;
2.Sends the line to a Redis pub/sub channel,;
3.Pushes it to Redis list of the same name.

If the log file does not change for kill_timeout seconds, specified Docker container will be killed and
corresponding message will be appended to the log file.

Once the thread has finished, has_killed_container tells whether the :param:‘container® has stopped
by itself or been killed by a timeout.

Parameters
* log_path (str) — path to the log file to watch
* publisher (Publisher)— publisher

* container (dictionary returned by docker.Client.create_container()) —
container to kill

* kill_timeout (int)— number of seconds since the last log append after which kill the
container

class kozmic.builds.tasks.Builder (docker, message_queue, docker_image, script, working_dir,
clone_url, commit_sha, deploy_key=None)
A thread that starts a script in a container and waits for it to complete.

One of the following attributes is not None once the thread has finished:

return_code
Integer, a build script’s return code if everything went well.

exc_info
exc_infotriple (type, value, traceback) if something went wrong.
Parameters

¢ docker (docker.Client) - Docker client

5.1. Core 25

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int

kozmic Documentation, Release 0.0.1

* message_queue (Queue.Queue) — a queue to which put an identi-
fier of the started Docker container. Identifier is a dictionary returned by
docker.Client.create_container (). Builder will block until the message

is acknowledged by calling Queue . Queue.task_done ().
* deploy_key (2-tuple of strings) - a pair of strings (private key, passphrase)

* docker_image (str) — a name of Docker image to be used for build_script exe-
cution. The image has to be already pulled from the registry.

* working_dir (str)— path of the directory to be mounted in container’s /kozmic path
e clone_url (str)— SSH clone URL

e commit_sha (str)— SHA of the commit to be checked out

5.2 Packages Overview

5.2.1 kozmic

kozmic.__init__ .create_app (config=None)
Returns a fully configured F Lask application.

Parameters config — a config object or it’s name. Will be passed directly to
flask.config.Config.from_object (). If not specified, the value of
KOZMIC_CONFIG environment variable will be used. If KOZMIC_CONFIG is not spec-
ified, " kozmic.config.DefaultConfig’ will be used.

5.2.2 kozmic.accounts

kozmic.accounts.bp
flask.Blueprint that gives users a means to manage their account settings.

5.2.3 kozmic.auth

kozmic.auth.bp
flask.Blueprint that implements an authentication through GitHub.

5.2.4 kozmic.builds

kozmic.builds.bp
flask.Blueprint that implements webhooks to be triggered by GitHub and serves status badges.

Note: Does not require authentication.

5.2.5 kozmic.projects

kozmic.projects.bp
flask.Blueprint that provides all the means for managing and viewing projects.

26 Chapter 5. Internals Reference

http://docs.python.org/library/queue.html#Queue.Queue
http://docs.python.org/library/queue.html#Queue.Queue.task_done
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

kozmic Documentation, Release 0.0.1

5.2.6 kozmic.repos
kozmic.repos.bp
flask.Blueprint that gives users the abilities to:
1.View list of GitHub repositories they have admin access to

2.Create kozmic.models.Project for any of them

5.2. Packages Overview

27

kozmic Documentation, Release 0.0.1

28 Chapter 5. Internals Reference

CHAPTER 6

Contributing

This document is far from extensive, but hopefully it gives an idea of how to deploy a development version of Kozmic
CI and get started.

* Clone the source code from GitHub repository: https://github.com/aromanovich/kozmic-ci

* Install the Python dependencies using pip:

pip install -r requirements/kozmic.txt
pip install -r requirements/tailer.txt
pip install -r requirements/dev.txt

» Take a look at Configuration variables and fill the configuration file kozmic/config_local.py using
kozmic/config_local.py-dist asan example.

6.1 Running the components

* Run the development server:

KOZMIC_CONFIG=kozmic.config_local.DevelopmentConfig ./manage.py runserver

* Run the Celery worker:

KOZMIC_CONFIG=kozmic.config_local.DevelopmentConfig \
celery worker —-A kozmic.entry_point.celery -1 debug

* Run the tailer component:

KOZMIC_CONFIG=kozmic.config_local.DevelopmentConfig \
uwsgi —--http-socket :8080 —--gevent 5 —--gevent-monkey-patch -H ~/Envs/kozmic/ \
--module tailer:app

Note that tailer app has to be run using uWSGI that is listed in requirements/tailer.txt. If you use a
virtual environment (which is strongly advised), path to it must be specified using —H argument.

6.2 Running tests

* Runall tests: . /test.sh
* Run tests that don’t require Docker: . /test.sh -m "not docker"

* Run the particular test: . /test.sh -k TestUserDB

29

https://github.com/aromanovich/kozmic-ci

kozmic Documentation, Release 0.0.1

6.3 Working with the database

./manage.py db provides an interface to Alembic, a database migration tool. Run . /manage.py db --help
to figure out what commands it has. The most useful are:

* Apply database migrations:

KOZMIC_CONFIG=kozmic.config_local.DevelopmentConfig ./manage.py db upgrade

* Automatically generate a new migration:

KOZMIC_CONFIG=kozmic.config_local.DevelopmentConfig ./manage.py db migrate

6.4 Compiling the documentation

cd docs
KOZMIC_CONFIG=kozmic.config_local.DevelopmentConfig make html

30 Chapter 6. Contributing

https://alembic.readthedocs.io/en/latest/index.html

CHAPTER 7

Changelog

7.1 0.0.1: 18 May 2014

The first public release.

31

kozmic Documentation, Release 0.0.1

32 Chapter 7. Changelog

CHAPTER 8

Contact

¢ Issues on GitHub: https://github.com/aromanovich/kozmic-ci/issues
» Twitter: @antonromanovich

* Private email: anthony.romanovich [at] gmail

33

https://github.com/aromanovich/kozmic-ci/issues
https://twitter.com/antonromanovich

kozmic Documentation, Release 0.0.1

34 Chapter 8. Contact

Python Module Index

Kk

kozmic

kozmic.
kozmic.
.builds, 26
kozmic.
kozmic.
kozmic.

kozmic

kozmic.
kozmic.

.__init__,26

accounts, 26
auth, 26

builds.tasks, 24
models, 19
perms, 24
projects, 26
repos, 26

35

kozmic Documentation, Release 0.0.1

36 Python Module Index

Index

B

bp (in module kozmic.accounts), 26
bp (in module kozmic.auth), 26
bp (in module kozmic.builds), 26
bp (in module kozmic.projects), 26
bp (in module kozmic.repos), 27
BROKER_URL

setting, 17
Build (class in kozmic.models), 22
build (kozmic.models.HookCall attribute), 23
build (kozmic.models.Job attribute), 24
build_script (kozmic.models.Hook attribute), 22
Builder (class in kozmic.builds.tasks), 25

C

calculate_number() (kozmic.models.Build method), 23
create_app() (in module kozmic.__init__), 26
created_at (kozmic.models.Build attribute), 23
created_at (kozmic.models.HookCall attribute), 23

D

delete() (kozmic.models.DeployKey method), 21
delete() (kozmic.models.Hook method), 22
delete() (kozmic.models.Project method), 22
delete_project() (in module kozmic.perms), 24
deploy_key (kozmic.models.Project attribute), 21
DeployKey (class in kozmic.models), 21
do_job() (in module kozmic.builds.tasks), 25
docker_image (kozmic.models.Hook attribute), 22
DOCKER_URL

setting, 18

E

email (kozmic.models.User attribute), 20

ensure() (kozmic.models.DeployKey method), 21
ensure() (kozmic.models.Hook method), 22
exc_info (kozmic.builds.tasks.Builder attribute), 25

F

finished() (kozmic.models.Job method), 24

finished_at (kozmic.models.Build attribute), 23

finished_at (kozmic.models.Job attribute), 23

from_gh_repo() (kozmic.models.RepositoryBase class
method), 19

G

get_available_projects() (kozmic.models.User method),
20

get_cache_id() (kozmic.models.Job method), 24

get_gh_org_repos() (kozmic.models.User method), 20

get_gh_repos() (kozmic.models.User method), 20

get_identity() (kozmic.models.User method), 20

get_latest_build() (kozmic.models.Project method), 22

gh (kozmic.models.Project attribute), 21

gh (kozmic.models.User attribute), 20

gh_access_token (kozmic.models.User attribute), 20

gh_avatar_url (kozmic.models.User attribute), 20

gh_commit_author (kozmic.models.Build attribute), 23

gh_commit_message (kozmic.models.Build attribute), 23

gh_commit_ref (kozmic.models.Build attribute), 23

gh_commit_sha (kozmic.models.Build attribute), 23

gh_full_name (kozmic.models.Project attribute), 21

gh_full_name (kozmic.models.RepositoryBase attribute),
19

gh_https_clone_url (kozmic.models.Project attribute), 21

gh_https_clone_url (kozmic.models.RepositoryBase at-
tribute), 19

gh_id (kozmic.models.DeployKey attribute), 21

gh_id (kozmic.models.Hook attribute), 22

gh_id (kozmic.models.Organization attribute), 20

gh_id (kozmic.models.Project attribute), 21

gh_id (kozmic.models.RepositoryBase attribute), 19

gh_id (kozmic.models.User attribute), 20

gh_login (kozmic.models.Organization attribute), 21

gh_login (kozmic.models.Project attribute), 21

gh_login (kozmic.models.User attribute), 20

gh_name (kozmic.models.Organization attribute), 21

gh_name (kozmic.models.Project attribute), 21

gh_name (kozmic.models.RepositoryBase attribute), 19

gh_name (kozmic.models.User attribute), 20

gh_payload (kozmic.models.HookCall attribute), 23

37

kozmic Documentation, Release 0.0.1

gh_ssh_clone_url (kozmic.models.Project attribute), 21
gh_ssh_clone_url (kozmic.models.RepositoryBase
attribute), 19

H

HasRepositories (class in kozmic.models), 19
Hook (class in kozmic.models), 22

hook (kozmic.models.HookCall attribute), 23
hook (kozmic.models.TrackedFile attribute), 22
hook_call (kozmic.models.Job attribute), 24
HookCall (class in kozmic.models), 23

install_script (kozmic.models.Hook attribute), 22
is_finished() (kozmic.models.Job method), 24
is_public (kozmic.models.Project attribute), 21
is_public (kozmic.models.RepositoryBase attribute), 19

J

Job (class in kozmic.models), 23

K

kozmic.__init__ (module), 26
kozmic.accounts (module), 26
kozmic.auth (module), 26
kozmic.builds (module), 26
kozmic.builds.tasks (module), 24
kozmic.models (module), 19
kozmic.perms (module), 24
kozmic.projects (module), 26
kozmic.repos (module), 26
KOZMIC_CACHED_IMAGES_LIMIT

setting, 17
KOZMIC_ENABLE_EMAIL_NOTIFICATIONS

setting, 17
KOZMIC_GITHUB_CLIENT_ID

setting, 17
KOZMIC_GITHUB_CLIENT_SECRET

setting, 17
KOZMIC_REDIS_DATABASE

setting, 17
KOZMIC_REDIS_HOST

setting, 17
KOZMIC_REDIS_PORT

setting, 17
KOZMIC_STALL_TIMEOUT

setting, 17
KOZMIC_USE_HTTPS_FOR_BADGES

setting, 17

M

MAIL_DEFAULT_SENDER
setting, 17

manage_project() (in module kozmic.perms), 24
members (kozmic.models.Project attribute), 21

N

number (kozmic.models.Build attribute), 22

O

Organization (class in kozmic.models), 20
organizations (kozmic.models.User attribute), 19
owner (kozmic.models.Project attribute), 21

P

path (kozmic.models. TrackedFile attribute), 22
permanent_url (kozmic.models.Job attribute), 24
Project (class in kozmic.models), 21

project (kozmic.models.Build attribute), 23
project (kozmic.models.Hook attribute), 22
project_manager (in module kozmic.perms), 24
project_member (in module kozmic.perms), 24
project_owner (in module kozmic.perms), 24
Publisher (class in kozmic.builds.tasks), 25

R

repos_last_synchronized_at
tribute), 20
repositories (kozmic.models.Organization attribute), 20
repositories (kozmic.models.User attribute), 19
RepositoryBase (class in kozmic.models), 19
restart_job() (in module kozmic.builds.tasks), 25
return_code (kozmic.builds.tasks.Builder attribute), 25
return_code (kozmic.models.Job attribute), 23
rsa_private_key (kozmic.models.DeployKey attribute),
21
rsa_public_key (kozmic.models.DeployKey attribute), 21

S

SECRET_KEY
setting, 17
SERVER_NAME
setting, 17
SESSION_COOKIE_DOMAIN
setting, 17
set_status() (kozmic.models.Build method), 23
setting
BROKER_URL, 17
DOCKER_URL, 18
KOZMIC_CACHED_IMAGES_LIMIT, 17
KOZMIC_ENABLE_EMAIL_NOTIFICATIONS,
17
KOZMIC_GITHUB_CLIENT _ID, 17
KOZMIC_GITHUB_CLIENT_SECRET, 17
KOZMIC_REDIS_DATABASE, 17
KOZMIC_REDIS_HOST, 17

(kozmic.models.User at-

38

Index

kozmic Documentation, Release 0.0.1

KOZMIC_REDIS_PORT, 17
KOZMIC_STALL_TIMEOUT, 17
KOZMIC_USE_HTTPS_FOR_BADGES, 17
MAIL_DEFAULT_SENDER, 17
SECRET_KEY, 17
SERVER_NAME, 17
SESSION_COOKIE_DOMAIN, 17
SQLALCHEMY_DATABASE_URI, 17
TAILER_URL_TEMPLATE, 18
SQLALCHEMY_DATABASE_URI
setting, 17
started() (kozmic.models.Job method), 24
started_at (kozmic.models.Build attribute), 23
started_at (kozmic.models.Job attribute), 23
status (kozmic.models.Build attribute), 23
status (kozmic.models.Job attribute), 24
stdout (kozmic.models.Job attribute), 23
sync_memberships_with_github()
(kozmic.models.Project method), 22
sync_memberships_with_github() (kozmic.models.User
method), 20

T

Tailer (class in kozmic.builds.tasks), 25
tailer_url (kozmic.models.Job attribute), 24
TAILER_URL_TEMPLATE

setting, 18
task_uuid (kozmic.models.Job attribute), 24
title (kozmic.models.Hook attribute), 22
TrackedFile (class in kozmic.models), 22

U

User (class in kozmic.models), 19
user (kozmic.models.Organization attribute), 21

Vv

view_project() (in module kozmic.perms), 24

Index

39

	System Overview
	What is Kozmic CI?
	Why Kozmic CI?
	Kozmic CI Philosophy
	Basics
	More About Hooks and Jobs
	Base Images

	Installation and Set Up
	The Fast Way
	The Usual Way

	Reference
	Job Workflow
	How Scripts Are Run
	Examples

	Configuration
	Variables

	Internals Reference
	Core
	Packages Overview

	Contributing
	Running the components
	Running tests
	Working with the database
	Compiling the documentation

	Changelog
	0.0.1: 18 May 2014

	Contact
	Python Module Index

