

Kotlin for Python Developers

Kotlin: it’s new, it’s hot, it’s exciting! If you’re a Python developer,
you might be interested in Kotlin for Android development. If you’re
a PyCharm user, you might want to write an IDE plugin, using Kotlin.

In both cases, you’re looking to to add Kotlin to your programming arsenal.
This documentation teaches Kotlin – from the perspective of a Python
developer who knows nothing about Kotlin, Java, Gradle, or the JVM.

	About This Guide
	Why You’ll Like This Guide

	Contributing

	Setup
	The Language

	The IDE

	The Project

	Project Layout

	Hello World
	The REPL

	First File

	Braces

	Quotation Marks

	Comments

	Variables

	String Templates

	Functions

	Conditionals

	Looping

	Classes

	Variables and Types

	Conditionals

	Sequences and Looping

	Functions

	Classes

	Packages and Imports

Indices and tables

	Index

	Module Index

	Search Page

About This Guide

In no time at all, Kotlin has become an important language to learn,
with videos and tutorials and examples and…everything you could
want.

Unless you’re a Python dev. Kotlin is “better Java”, but most
resources presume you know Java and its ecosystem. It sure would be
nice if this shiny new toy was explained in Python terms.

That’s what we’re doing in this guide. Assuming you know nothing about
Java, Gradle, etc., we’re going to get you productive in Kotlin and
IntelliJ. If you’re not a Python developer, you will likely still
find this guide useful.

Why You’ll Like This Guide

	Explained in terms of Python

	Presumes no Java knowledge

	Hand-holding and hands-on

	Text, code, and video

	Co-written by Hadi Hariri, a leading spokesperson for Kotlin

Contributing

We want this guide to be community-oriented and collaborative. Did we
do something stupid? File a ticket or even send us a pull request.

Setup

Before jumping into features of the language, let’s get ourselves setup.
Both
Kotlin [https://try.kotlinlang.org/]
and
Python [http://pythonfiddle.com]
have sites that let you enter and evaluate code in
a browser. For our purposes, let’s compare getting a real, local setup for
each language.

The Language

Getting Python and Java installed are similar exercise, but with different
obstacles. For Python, while two of the major platforms ship a Python,
everybody on earth will beat you over the head if you use “the system
Python”. For Java, it is not installed by default on most platforms.

Thus, both Python and Java mean an initial, joyful step into the “How do I
install it?” thicket.

This is covered in depth elsewhere, so we’ll skip it. From a Pythonista’s
perspective, it’s pretty similar. You have to make some choices about which
Java distribution, but we have some dirty laundry here as well – 2 vs. 3,
python.org vs. platform-y Homebrew etc. vs. Anaconda, PyPy vs. Jython vs.
weird experiment of the week.

Call this one a tie.

The IDE

We’re JetBrains: we’re going to use the IDE as the entry point for
making a project. For both Python and Kotlin, you might make your new
project environment from the command line and then open it.

Let’s use the IDE make our project, following along with the very-useful
Getting Started with IntelliJ IDEA [https://kotlinlang.org/docs/tutorials/getting-started.html]
documentation.

The Project

In PyCharm, you fire it up and have 3 choices: create a new project from
scratch, open a directory on disk, or get a clone from a VCS system. In the
first, you can choose from some project templates, but you then have the
important part regarding this article:

[screenshot of create new project]

In Python, we’re encouraged to put each project in isolation using
virtual environments. Yet because it is optional, people forget to, and
create a world of hurt for themselves. Or they decide to do it, and are
confronted with choices and complexity which hurt their brain. PyCharm
helps make some of that pain go away:

[screenshot of new interpeter screen]

With two decisions – project type and project interpreter – you now have a
new project and environment. PyCharm made some decisions for you, the level
of magic is one degree away.

When creating a Kotlin project, you’ll confront some technologies that you
are unfamiliar with. These are important decisions. Let’s walk through
them.

Go through step by step: SDK, facets, Gradle, class paths – all from a
Python perspective

Virtual environments and
package management
are places where Python is behind. At the same time, the complexity is
limited. Java (and for that matter, NodeJS) have stronger stories, but you
can’t take a step in without feeling pretty dumb about the huge concepts
that you don’t know.

I wanted to be impartial and call this one against Python. I can’t. It’s a
draw.

Project Layout

In Python, that’s about it. You could, at this point, just make a .py
file and nobody would complain. Maybe a .gitignore.

You could, of course, be a grown-up and make a Python package. You’d then
be teleported into a world of confusion: setup.py vs.
requirements.txt (vs. Pipfile vs. buildout.cfg), MANIFEST.in,
setup.cfg, do I put my sources under project_name or
src/project_name. But those are university politics, not state-ordered
mandates.

Talk about: src/main/kotlin/someFile.kt and whether that path matters,
vs. com.pauleveritt.projectname and how that affects choices.

Hello World

Java is installed, our IDE has a project open, we’re ready to write some
code. In this step we breeze through a light treatment of many Kotlin
concepts, all from the Python perspective.

The REPL

Python has an interactive interpreter, aka REPL, which makes it easy to
play around and learn. It’s a dynamic language, so this makes sense. As
it turns out, Kotlin (in IntelliJ) has a REPL also.

Opening the Kotlin REPL is easy. You can use the Tools | Kotlin menu
or search for the action:

[image: ../_images/REPL_open.png]
In Python we have the Python Console tool window, which opens the
Python interpreter in the context of your project. The Kotlin REPL is
the same idea.

Let’s type in some code:

[image: ../_images/REPL.png]
Here we typed a line of Kotlin code and executed it with Cmd-Enter (macOS.)
We could have clicked the green play button, which triggers the run action
just like Cmd-Enter. Kotlin evaluated our line, letting Kotlin/Java do
a mountain of machinery behind the scenes.

The REPL can handle multiple lines:

[image: ../_images/REPL_state.png]
As this is our first foray into Kotlin, let’s analyze this small bit of
code from the Python perspective:

	1
2

	val msg = "Hello Kotlin"
print(msg)

	We declare variables with var (which allows re-assignment) or
val (which is like a constant). Python doesn’t have var.

	Double quotes for strings

	No semicolons!

	A print function (like Python 3, but unlike Python 2)

All in all…other than var, it’s exactly like Python.

Click the red X to close the REPL and let’s start writing some Kotlin code.

First File

In Python, we’d make a .py file and start typing in some code. From
Python’s semantics, there are almost no rules about the file itself – name,
location, etc. For example, here is a minimum hello_world.py:

	1
2

	# Python
print("Hello World")

We can start the same in Kotlin. IntelliJ has created a src directory
for you. Right-click on that and create a file at
src/hello_world/hello_world.kt:

	1
2
3

	fun main(args: Array<String>) {
 print("Hello World")
}

Here’s the equivalent Python file to mimic a main function:

	1
2
3
4
5
6

	# Python
def main():
 print("Hello World")

main()

Python uses def to define a function, Kotlin uses fun. We’ll talk
more about this in Functions.

The Kotlin file shows the standard Kotlin “entry point”: by convention,
the file being executed must have a function named main which accepts
a single argument, an array of strings. Kotlin itself then calls this
main function. This is a bit similar to the common (but not required)
Python run block. For example, this file in Python might look like this:

	1
2
3
4
5
6
7

	# Python
def main():
 print("Hello World")

if __name__ == '__main__':
 main()

In this Python example, we had to both detect that the module was
being run (instead of imported) and then call the appropriate “main”
function.

We saw strong typing in the Kotlin function definition. Python of course
has typing, but it is at run time and is inferred. (We’ll discuss
type hinting in the section on Variables and Types.)

Time to run this, which really means, compile and execute. If you’re
familiar with PyCharm run configurations and gutter icons, it’s
similar. Click the Kotlin symbol in the gutter for line 1 and select
Run:

[TODO screenshot of running it]

Note

IntelliJ prompted us to Run 'Hello_worldKT'. What’s
Hello_worldKT? Answer: To make Java happy, Kotlin generated
a Java class behind the scenes.

When you clicked this, there was a lag that you don’t get in Python.
This the build/compile phases from Java. It’s incremental, so it
is faster after the first time.

Now that we’ve run our program, let’s breeze through some
head-to-head comparisons on a few programming language basics.

Braces

This is the most obvious point: like most other programming languages,
Kotlin delimits blocks with braces. Python uses indentation.

Quotation Marks

Switching between languages, or even projects, means swinging back
and forth between single versus double quotes for strings. For example,
TypeScript prefers double quotes, but ReactJS ES6 applications prefer
single quotes. And they are both (sort of) JavaScript!

Python’s PEP 8 style guide doesn’t prefer one or the other, but
most Python projects seem to use single quotes. In fact, Python has
triple quoted strings!

	1
2
3
4
5

	# Python
hello = 'world' # best
hello = "world" # ok
hello = """
 world""" # triple

Java (and Kotlin) use a single quote for a single character value and
double quotes for strings. Triple-quotes indicates a
raw string [https://kotlinlang.org/docs/reference/basic-types.html#strings]:

	1
2
3
4
5
6
7

	// Kotlin
val c = 'C' // character
val hello = "hello" // string
val raw_string = """
 line 1
 line 2
"""

Comments

Kotlin supports the two familiar styles of comments: end-of-line and
block comments:

	1
2
3
4
5

	val hello = "world" // Kotlin line comment
/*
 Let's leave out
 these lines
*/

IntelliJ (and thus PyCharm) as an IDE makes it easy to comment and uncomment
lines and selections with Cmd-/.

Python, of course, only uses hash # as the comment symbol,
with no block comments:

	1
2
3
4
5

	#
Python multiline commments
have a lot of hashes.

hello = 'world' # Python comment

Variables

Python doesn’t have any special syntax for declaring a variable. You
just assign something:

	1
2

	# Python
hello = 'world'

Kotlin, though, does. In fact Kotlin has two keywords: one to declare
a read-only immutable value, and one for a mutable variable:

	1
2
3

	// Kotlin
val hello = "world" // Read-only, val == value
var hello = "world" // Can be re-assigned, var == variable

Where’s the Java-style type noise? Good news – Kotlin can infer the type.
The above is the same as being explicit:

	1
2

	// Kotlin
val hello: String = "hello"

Also, like Python, you can initialize a variable without
assigning it:

	1
2

	// Kotlin
var hello

Of course with Python 3.6 variable annotations, we can make Python look
much more like Kotlin. We cover this in the section on Variables and Types.

String Templates

Python – the “there should be one way to do things” language –
actually has several ways to do string templates:

	1
2
3
4
5
6

	# Python
msg = 'World'
print('Hello %s' % msg) # Original
print('Hello {msg}'.format(msg=msg)) # Python 3 (then 2)
print(f'Hello {msg}') # Python 3.6
print(f'Hello {msg.upper()}') # Expressions

Kotlin also has string templates with expressions:

	1
2
3
4

	// Kotlin
msg = "World"
print("Hello $msg")
print("Hello ${msg.toUpperCase()}")

Functions

Python functions can be very simple:

	1
2
3

	# Python
def four():
 return 2 + 2

No curly braces, just indentation. Kotlin’s simplest case is pretty close:

	1
2
3
4

	// Kotlin
fun four(): Int {
 return 2 + 2
}

Kotlin adds the curly braces and has to define the return type (which can
be omitted if there is no return value.)

But watch this – a function expression:

	1
2

	// Kotlin
fun four() = 2 + 2

Admit it, that’s pretty sexy. Function expressions are a big new idea
which we’ll cover in the section on Functions.

Passing in function arguments is straightforward in Python:

	1
2
3

	# Python
def combine(x, y):
 return x + y

How does that compare to Kotlin?

	1
2
3
4

	// Kotlin
fun sum(a: Int, b: Int): Int {
 return a + b
}

You have to provide the type information on the function arguments and
return value.

Conditionals

Let’s take a quick look at things like conditionals and looping. In
Python, an if/then/else is straightforward, with use of indentation:

	1
2
3
4
5

	# Python
if a > b:
 return a
else:
 return b

Kotlin looks quite similar, adding parenthesis (optional in Python) and
braces:

	1
2
3
4
5
6

	// Kotlin
if (a > b) {
 return a
} else {
 return b
}

We’ll cover more on this in Conditionals.

Looping

Let’s compare looping over sequences. Simple Python example:

	1
2
3
4

	# Python
items = ('apple', 'banana', 'kiwi')
for item in items:
 print(item)

Here we’ve created an immutable sequence (a tuple) in items. We looped
over it in the most basic way possible.

In Kotlin, we have a different construct for making the sequence. Looping
is similar, though we use a parentheses after for:

	1
2
3
4
5

	// Kotlin
val items = listOf("apple", "banana", "kiwi")
for (item in items) {
 println(item)
}

In this case we used println. In Python, the print function always
makes a newline unless you ask it not to.

Both Python and Kotlin have rich and interesting control structures,
giving both power and terseness. We’ll see more in Sequences and Looping.

Classes

Lots to cover later on this, so for now, let’s just view the simplest couple
of cases. The minimum in Python:

	1
2
3

	# Python
class Message:
 pass

In Kotlin:

	1
2

	// Kotlin
class Message

It’s hard to tell which of those have the smaller conceptual density. And
who cares – they’re both tiny! Let’s add a constructor, some variables,
and methods. First in Python:

	1
2
3
4
5
6
7
8
9

	# Python
class Message:
 greeting = 'Hello'

 def __init__(self, person):
 self.person = person

 def say_hello(self):
 return f'{self.greeting} {self.person}'

This class has a “constructor” with one argument, which is assigned as an
instance attribute. The class attribute of greeting is used in a
method say_hello which returns an evaluated f-string.

How about the type hinting flavor for Python 3.5+?

	1
2
3
4
5
6
7
8
9

	# Python
class Message:
 greeting = 'Hello'

 def __init__(self, person: str):
 self.person = person

 def say_hello(self) -> str:
 return f'{self.greeting} {self.person}'

Let’s see this in Kotlin:

	1
2
3
4
5
6
7
8

	// Kotlin
class Message(val person: String) {
 val greeting = "Hello"

 fun sayHello(): String {
 return "$greeting $person"
 }
}

That constructor syntax, right in the middle of the class name line, is
unusual and cool. It helps to reduce the typing versus Python’s constructor.
We’ll go into more depth on this in the section on Classes.

Variables and Types

JavaScript ES6 and TypeScript do (let and const.)

As we’ll see
later, Kotlin lets you skip the syntax by inferring type information,
but it is still at compile time.

Kotlin will let you know to use a val when you use a var unnecessarily

	Inferred types versus explicit

	The compiler will fail on re-assignment of val

	Scope: top-level versus local

Class variables: properties and fields covered in classes

	Types on variables

	Basic types https://kotlinlang.org/docs/reference/basic-types.html#basic-types

Conditionals

Sequences and Looping

	1..5 vs. range(5) (and “a”..”z”)

	2 in range(5) (the in operator)

	if else vs. if then

	if “expressions” (Python doesn’t have this) var maxValue:Int = if (a > b) a else b but multiple lines (only the last value is used in the block)

	when (aka switch)…Python doesn’t have this:

when (x) {
 !in 1..20 -> println(“x is 1”)
 21,22 -> println(“x is 22 or 23”)
 else -> {
 // Some set of lines in a block
 println(“x is greater than 22”)
 }
}

	etc.

generators, iterators

Functions

Looking at the Kotlin code itself:

	This special main function has a contract…it’s going to be
passed an argument

	We see the first hint of typing. It’s mandatory in Kotlin…sort of.
In this case we have an array of strings. With Python 3.6 variable
annotations for optional type hinting, this would be:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	import sys
from typing import List

def main(args: List[str]):
 print("Hello World")

if __name__ == '__main__':
 main(sys.argv)

	Whereas Python terminates the function line with a colon and uses
indentation for the block, Kotlin uses the standard curly braces
syntax

Python’s weird if __name__ block is ugly, and reveals a certain
something about packaging being added after-the-fact, but shows
that Python is ready to just let you do damn fool stupid stuff at
module scope. For instance, run your program. Kotlin has a bit of a
formal contract to meet when executing an “entry point”.

Note

Don’t like typing the boilerplate? PyCharm has a Live
Template main for generating the run block at the
bottom. So does Kotlin. We’ll show this in the video
for this segment.

Kotlin has another syntactic convenience: you aren’t required to
say that the function returns nothing.

Function expressions

If using Python 3.5+ type hinting, that would be:

	1
2

	 def sum(a: int, b:int) -> int:
 return a + b

Not too shabby. This will be a recurring point: we’ll compare Kotlin not
just with “normal” Python, but also against type-hinted-Python.

	Function argument typing and return value typing

Classes

	Defining a class with a method but no constructor, P has “self”

	Creating instance of class does NOT require new in either

	Class variables access in P via self or class name

	P can assign instance attributes whenever it wants (within __ limitations), change types whenever, no concept of public/private

	Constructors

	Binding of constructor arguments to instance attributes (assignment, usage)

? - What happens if I don’t do var in the constructor? It’s unresolved later, but where does it go?

In fact, Kotlin has a rich, multi-layered approach to
construction. Our class attribute greeting is marked as immutable
(and should be marked with the optional private) as well.

In some ways, Python is clunkier in this example. We have the magic of
“dunder” names on important methods, such as the “constructor”. The symbol
of self is sprinkled in to give the instance scope a placeholder. And
quite obviously, Kotlin’s primary constructor – right after the class
name – is terse and doesn’t require assigning each value to “self”.

Note

Python’s __init__ is called a constructor, but as its name implies,
it is actually an initializer. The __new__ method is the factory.

	Kotlin does some magic behind-the-scenes creation of Java classes
named from the file name, because Java needs classes

Packages and Imports

Java Packages, imports, namespaces

Installing Python packages

	Creating a package, then creating a class in that package

	Package namespaces

	Importing from a package/non-package

? - What are the magic places that com.hello might find class World? In src, src/main/kotlin ?

	Installing packages

	Sharing packages

	Making “executables”

Index

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/REPL_state.png
Search Everywhere Double ¢
Project View %1
Go to File {:380

Gu | Type help for help, :quit for quit

B | printin("Hello Kotlin")
Bl feto kotin

var x = “Hello Kotlin"

println(x)
Hello Kotlin

_static/ajax-loader.gif

_static/comment-close.png

 Skip to content

 		

 Features

 		

 Business

 		

 Explore

 		

 Marketplace

 		

 Pricing

 This repository

 Sign in
 or
 Sign up

 		

 Watch

 397

 		

 Star

 9,893

 		

 Fork

 1,555

 google/fonts

 Code

 Issues
 293

 Pull requests
 37

 Insights

 Permalink

 Branch:
 master

 Switch branches/tags

 		
 Branches

 		
 Tags

 alexeiva-cyr-historic

 davelab6-1310

 khmer-no-latin

 master

 pangolin

 tools/sanity_check-family-naming

 unicode_names-fix

 Nothing to show

 Nothing to show

 Find file

 Copy path

 fonts/ofl/lato/Lato-BoldItalic.ttf

 Fetching contributors…

 [image:]
 Cannot retrieve contributors at this time

 Download
 History

 682 KB

 View Raw

 Jump to Line

 Go

 		© 2017 GitHub, Inc.

 		Terms

 		Privacy

 		Security

 		Status

 		Help

 		Contact GitHub

 		API

 		Training

 		Shop

 		Blog

 		About

 You can't perform that action at this time.

 You signed in with another tab or window. Reload to refresh your session.
 You signed out in another tab or window. Reload to refresh your session.

nav.xhtml

 Table of Contents

 		
 Kotlin for Python Developers

 		
 About This Guide

 		
 Why You’ll Like This Guide

 		
 Contributing

 		
 Setup

 		
 The Language

 		
 The IDE

 		
 The Project

 		
 Project Layout

 		
 Hello World

 		
 The REPL

 		
 First File

 		
 Braces

 		
 Quotation Marks

 		
 Comments

 		
 Variables

 		
 String Templates

 		
 Functions

 		
 Conditionals

 		
 Looping

 		
 Classes

 		
 Variables and Types

 		
 Conditionals

 		
 Sequences and Looping

 		
 Functions

 		
 Classes

 		
 Packages and Imports

_images/REPL.png
Search Everywhere Double ¢
Project View %1
Go toFile 030

ry/Java/JavaVirtuaWachines/jdkL.
Welcone to Kotlin version 1.1.4-3 (JRE 1.
Type :help for help, :quit for quit

println("Hello Kotlin")
Hello Kotlin

_images/REPL_open.png
Enter action or option name:

(Qiotl rel)

[EKotiRPL Kot
Check Partial Body Resolve
Android Lint for Kotlin: FrameLayout can ber...
Android Lint for Kotlin: Unprotected SMS Broa...
Android Lint for Kotlin: Receiver does not re.
Android Lint for Kotlin: Class is not registe...
Android Lint for Kotlin: Missing recycle()
Android Lint for Kotlin: Unsafe Protected Bro...
Android Lint for Kotlin: Using RTL attributes.

Android Lint for Kotlin: Using private resour..
Press 4 or ~ tonavigate through the history.

=
E

 Skip to content

 		

 Features

 		

 Business

 		

 Explore

 		

 Marketplace

 		

 Pricing

 This repository

 Sign in
 or
 Sign up

 		

 Watch

 397

 		

 Star

 9,893

 		

 Fork

 1,555

 google/fonts

 Code

 Issues
 293

 Pull requests
 37

 Insights

 Permalink

 Branch:
 master

 Switch branches/tags

 		
 Branches

 		
 Tags

 alexeiva-cyr-historic

 davelab6-1310

 khmer-no-latin

 master

 pangolin

 tools/sanity_check-family-naming

 unicode_names-fix

 Nothing to show

 Nothing to show

 Find file

 Copy path

 fonts/ofl/lato/Lato-Italic.ttf

 Fetching contributors…

 [image:]
 Cannot retrieve contributors at this time

 Download
 History

 706 KB

 View Raw

 Jump to Line

 Go

 		© 2017 GitHub, Inc.

 		Terms

 		Privacy

 		Security

 		Status

 		Help

 		Contact GitHub

 		API

 		Training

 		Shop

 		Blog

 		About

 You can't perform that action at this time.

 You signed in with another tab or window. Reload to refresh your session.
 You signed out in another tab or window. Reload to refresh your session.

