

Welcome to Kool’s documentation!

Kool is an open source platform for online classroom management.

User’s Guide

	Introduction

	Getting Started
	Prerequisites

	Installing Kool

	Basic Usage

	Advanced Usage
	Table

	Queries

	Advanced queries

Extending Kool

	Extending Kool
	Contrib

	Storage

API Reference

	API documentaiton
	kool.contrib.auth.user

	kool.contrib.auth.group

	kool.contrib.auth.permission

	kool.contrib.courses.course

	kool.contrib.quizzes.question

	kool.contrib.quizzes.quiz

	kool.db.flatfile.database

	kool.db.flatfile.queries

	kool.db.flatfile.storages

Additional Notes

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

	Changelog
	Version Numbering

	v0.0.1 (2017-09-10)

	Upgrade Notes

Introduction

Currently, teachers who manage online classes use several tools with different purposes. For example, they can use one application for distributing content (mailing lists, custom websites), one application for quizzes and homework submission, one application to manage gradebooks, another for classroom discussion (forums, webconferencing or chat), and several others. The aim for this project is to consolidate the necessary functionality into one standalone solution while keeping it lightweight, easy to deploy & use, and also make it easy to add new functionality.

Getting Started

Prerequisites

	Python3 [https://docs.python.org/3/tutorial/]

	Virtualenv [https://docs.python.org/3/tutorial/venv.html]

	Pip [https://pip.pypa.io/en/stable/quickstart/]

Installing Kool

To install Kool from PyPI, run:

$ python install kool

If you prefer to install from source, download the latest version from Releases [https://github.com/edasi/kool/releases]. Thereafter, extract and run:

$ python setup.py install

Basic Usage

The current version support creation of users, courses and quizzes. It also includes a flatfile database implementation of csv storage. The database can be configured as below:

$ vim kool/db/flatfile/database.py

Under class FlatFileDB(object):, set default values as below:

DEFAULT_DB = '<enter database name>'
DEFAULT_TABLE = '<enter default table name>'
DEFAULT_STORAGE = <set default storage>

Once you are done with setting default database configs. You can proceed to load classes from the library. For example to initialize class User with some new user, run:

>>> from kool.contrib.auth import User, Group, Permission
>>> user = User(first_name='John', last_name='Doe', email='john@doe.com', password='secretpwd')

To make the record persistent, call save() method for it to be written to a csv file.

>>> user.save()
1
>>>

Once you have a table object, you can insert records by:

>>> user.insert({'first_name': 'Mary', 'last_name': 'Doe', 'email': 'mary@doe.com', 'password': 'secretpwd'})
2
>>>

To get all records stored in a table, run:

>>> user.all()
[{'_id': '1', 'email': 'john@doe.com', 'groups': '[]', 'password': 'bcrypt_sha256$$2b$12$8XUv6hUS/Zs7Hjw8U/ArqOHdj/WeutsReeTWgchVpET7HczuMVpIi', 'is_active': 'True', 'last_modified': '2017-09-09 23:18:23.917851', 'first_name': 'John', 'date_created': '2017-09-09 23:18:23.918017', 'last_name': 'Doe', 'permissions': '[]'}, {'_id': '2', 'email': 'mary@doe.com', 'groups': '', 'password': 'secretpwd', 'is_active': '', 'last_modified': '', 'first_name': 'Mary', 'date_created': '', 'last_name': 'Doe', 'permissions': ''}]
>>>

Passwords are securely stored as a bcrypt sha 256 hash code.

To filter a specific record from a table, run:

>>> from kool.db.models import where
>>> user.filter(where('first_name')=='John')
[{'_id': '1', 'email': 'john@doe.com', 'groups': '[]', 'password': 'bcrypt_sha256$$2b$12$8XUv6hUS/Zs7Hjw8U/ArqOHdj/WeutsReeTWgchVpET7HczuMVpIi', 'is_active': 'True', 'last_modified': '2017-09-09 23:18:23.917851', 'first_name': 'John', 'date_created': '2017-09-09 23:18:23.918017', 'last_name': 'Doe', 'permissions': '[]'}]
>>>

Call the update() method to modify a record:

>>> user.email = 'john@gmail.com'
>>> user.update()
2
>>> user.filter(where('first_name')=='John')
[{'_id': '2', 'email': 'john@gmail.com', 'groups': '[]', 'password': 'bcrypt_sha256$$2b$12$8XUv6hUS/Zs7Hjw8U/ArqOHdj/WeutsReeTWgchVpET7HczuMVpIi', 'is_active': 'True', 'last_modified': '2017-09-09 23:38:12.813258', 'first_name': 'John', 'date_created': '2017-09-09 23:18:23.918017', 'last_name': 'Doe', 'permissions': '[]'}]
>>>

To delete an existing record:

>>> user.delete()
>>> user.filter(where('first_name')=='John')
[]
>>>

Advanced Usage

Kool has a models.py file that allows database operations to be applied on a class that inherits from it.
Look at the models API for allowed operations.

Table

Table is composed of records which are made up of multiple fields. Each Record is identified by rid which is a proxy to the _id field in the table files. In this flat file database implementation, every table represents a file. Multiple files makeup a database. The Table class provides methods to perform CRUD and Query operations on its data.

To obtain a Table object without instantiating the class you can use the class method table() which takes a class as an argument and returns an equivalent Table object of the class:

>>> from kool.db.models import table
>>> from kool.contrib.auth import User
>>> user_table = table(User)

Queries

Queries allows data to be requested from a table or combination of tables. The result is generated as list of flatfile records. To query a table, you need an object of type Table.

Query operations include providing a condition as an argument to query methods any(), filter(), matches(), and all(). Conditions are made up by comparing values using binary operators (==, <, >, >=, <=, ~). Two ways of performing queries are:

	Classical style:

>>> from kool.db.models import where
>>> user_table.filter(where('value') == True)

	ORM-like style:

>>> from kool.db.models import Query
>>> User = Query()
>>> user_table.filter(User.first_name == 'John')
>>> user_table.filter(User['last_name'] == 'Doe')
>>> user_table.filter(User.age >= 21)

Advanced queries

Additionally, you can perform complex queries by using logical expressions to modify or combine queries as show below:

>>> # Logical AND:
>>> user_table.filter((User.name == 'John') & (User.age <= 26))

>>> # Logical OR:
>>> user_table.filter((User.name == 'John') | (User.name == 'Mary'))

Other operations that can be performed include:

Check the existence of a field:

>>> user_table.filter(User.first_name.exists())

Perform a Regular expression. The field has to match the regex:

>>> user_table.filter(User.first_name.matches('[aZ]*'))

Perform a Custom test:

>>> test_func = lambda s: s == 'John'
>>> user_table.filter(User.first_name.test(test_func))

Custom test with parameters:

>>> def test_func(val, m, n):
>>> return m <= val <= n
>>> user_table.filter(User.age.test(test_func, 18, 21))
>>> user_table.filter(User.age.test(test_func, 21, 30))

Note

When using & or |, make sure you wrap the conditions on both sides with parentheses or Python will mess up the comparison.

How to Extend Kool

Kool library allows extending of its contrib and storage modules and modifying its behavior.

Contrib

The contrib module is directory structure is as shown below:

.
├── auth
│ ├── group.py
│ ├── hasher.py
│ ├── permission.py
│ ├── user.py
├── courses
│ ├── course.py
└── quizzes
 ├── question.py
 └── quiz.py

Below is an example of extending class User to Student:

>>> from kool.contrib.auth import User
>>> class Student(User):
... pass
...
>>> student = Student(first_name='John', last_name='Doe', email='john@doe.com', password='secretpwd')
>>> student.save()
1
>>>

Storage

Storage provides a way of making data persistent in the Kool library. By default, Kool supports CSV file storage. If you wish to continue storing data with the flatfile database implementation, you can extend the base Storage class and write your preferred implementation.

For example, to create a JSON file storage:

class JSONStorage(Storage):
 """
 Store the data in a JSON file.
 """

 def __init__(self, path, create_dirs=False, **kwargs):
 """
 Create a new instance.
 Also creates the storage file, if it doesn't exist.
 :param path: Where to store the JSON data.
 :type path: str
 """

 super(JSONStorage, self).__init__()
 touch(path, create_dirs=create_dirs) # Create file if not exists
 self.kwargs = kwargs
 self._handle = open(path, 'r+')

 def close(self):
 self._handle.close()

 def read(self):
 # Get the file size
 self._handle.seek(0, os.SEEK_END)
 size = self._handle.tell()

 if not size:
 # File is empty
 return None
 else:
 self._handle.seek(0)
 return json.load(self._handle)

 def write(self, data):
 self._handle.seek(0)
 serialized = json.dumps(data, **self.kwargs)
 self._handle.write(serialized)
 self._handle.flush()
 self._handle.truncate()

Much of the storage implementation was borrowed from TinyDB [https://github.com/msiemens/tinydb]. So, have a look at it for more examples.

API documentaiton

kool.contrib.auth.user

kool.contrib.auth.group

kool.contrib.auth.permission

kool.contrib.courses.course

kool.contrib.quizzes.question

kool.contrib.quizzes.quiz

kool.db.flatfile.database

kool.db.flatfile.queries

kool.db.flatfile.storages

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our
project and our community a harassment-free experience for everyone,
regardless of age, body size, disability, ethnicity, gender identity and
expression, level of experience, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual
attention or advances

	Trolling, insulting/derogatory comments, and personal or political
attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or
electronic address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of
acceptable behavior and are expected to take appropriate and fair
corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit,
or reject comments, commits, code, wiki edits, issues, and other
contributions that are not aligned to this Code of Conduct, or to ban
temporarily or permanently any contributor for other behaviors that they
deem inappropriate, threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public
spaces when an individual is representing the project or its community.
Examples of representing a project or community include using an
official project e-mail address, posting via an official social media
account, or acting as an appointed representative at an online or
offline event. Representation of a project may be further defined and
clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may
be reported by contacting the project team contact at orenge at ut dot ee.
All complaints will be reviewed and investigated and will result in a
response that is deemed necessary and appropriate to the circumstances.
The project team is obligated to maintain confidentiality with regard to
the reporter of an incident. Further details of specific enforcement
policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in
good faith may face temporary or permanent repercussions as determined
by other members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor
Covenant [http://contributor-covenant.org], version 1.4, available at
http://contributor-covenant.org/version/1/4 [http://contributor-covenant.org/version/1/4/]

Changelog

Version Numbering

Kool subscribes to Semantic Versioning guidelines as stipulated at semver.org [http://semver.org/]

v0.0.1 (2017-09-10)

	Initial release of Kool.

Upgrading to Newer Releases

No upgrade to initial release for now. Please check later.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Kool’s documentation!

 		
 Introduction

 		
 Getting Started

 		
 Prerequisites

 		
 Installing Kool

 		
 Basic Usage

 		
 Advanced Usage

 		
 Table

 		
 Queries

 		
 Advanced queries

 		
 Extending Kool

 		
 Contrib

 		
 Storage

 		
 API documentaiton

 		
 kool.contrib.auth.user

 		
 kool.contrib.auth.group

 		
 kool.contrib.auth.permission

 		
 kool.contrib.courses.course

 		
 kool.contrib.quizzes.question

 		
 kool.contrib.quizzes.quiz

 		
 kool.db.flatfile.database

 		
 kool.db.flatfile.queries

 		
 kool.db.flatfile.storages

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 Changelog

 		
 Version Numbering

 		
 v0.0.1 (2017-09-10)

 		
 Upgrade Notes

_static/up.png

_static/up-pressed.png

