

Getting Started

	User Guide
	Install Kolibri

	Access Kolibri

	Manage Kolibri

	Coach

	Learner

	Frequently Asked Questions

What is Kolibri?

Kolibri is a Learning Management System / Learning App designed to run on low-power devices, targeting the needs of
learners and teachers in contexts with limited infrastructure. A user can install Kolibri and serve the app on a local
network, without an internet connection. Kolibri installations can be linked to one another, so that user data and
content can be shared. Users can create content for Kolibri and share it when there is network access to another
Kolibri installation or the internet.

At its core, Kolibri is about serving educational content. A typical user (called a Learner) will log in to Kolibri
to consume educational content (videos, documents, other multimedia) and test their understanding of the content by
completing exercises and quizzes, with immediate feedback. A user’s activity will be tracked to offer individualized
insight (like “next lesson” recommendations), and to allow user data to be synced across different installations –
thus a Kolibri learner can use his or her credentials on any linked Kolibri installation, for instance on different
devices at a school.

User Guide

	Install Kolibri
	System requirements
	Operating systems

	Supported Browsers

	Video playback

	Hardware requirements

	Windows
	Install

	Uninstall

	Upgrade

	Linux
	Install

	Uninstall

	Upgrade

	OSX
	Install

	Uninstall

	Upgrade

	Android
	Install

	Uninstall

	Upgrade

	Advanced installation options
	Generic installation (pip install)

	Debian/Ubuntu: Subscribe to updates through a PPA

	Raspberry Pi

	Initial Setup

	Access Kolibri
	Starting Kolibri on Windows
	Kolibri Taskbar Options

	Starting Kolibri on Linux and OSX

	Starting Kolibri on Android

	Accessing Kolibri from Other Devices in the Network

	Change Language

	Manage Kolibri
	Default User Roles
	Kolibri Super Users

	Assign Additional Permissions

	Manage Device
	Assign Permissions

	Manage Content
	Import Content Channel to Kolibri

	Export from Kolibri to Local Drive

	Manage Facility

	Manage Users
	Create a New User Account

	Select Users by Type

	Edit User’s Account

	Manage Classes
	Add New Class

	Delete Class

	Edit Class and Enroll Users

	Manage Data

	Get support

	Coach
	Recent Activity View

	Topic Activity View

	Manage Groups
	Create a New Group

	Assign Learners to Group

	Move learners between groups

	Rename Group

	Delete Group

	Manage Exams
	Create New Exam

	Change Exam Visibility

	Activate/Deactivate Exam

	View Exam Report

	Delete Exam

	Rename Exam

	Learner
	Access Kolibri

	Learn
	Recommended

	Topics

	Search

	Content types

	Exams

	Frequently Asked Questions
	Network Terminology
	About IP addresses

	Troubleshoot Network Problems

	Working with Kolibri from the Command Line
	Start/Stop Kolibri

	Import Content Channels from Internet

	Import Content Channels from a Local Drive

	Export Content Channels

	Create a New Super User

	Change Language

Install Kolibri

Warning

Kolibri is not released yet, so these guides are Work in Progress !

To install Kolibri, check the system requirements first and then follow the procedure for the operating system on your device.

System requirements

Operating systems

	Windows Vista, 7, 8.1, 10

	(planned) Linux: Any system with Python 3.4

	(planned) Mac OSX 10.9, 10.10 and 10.11

	(planned) Debian/Raspberry Pi packages: Wheezy or later

	(planned) Ubuntu packages: 14.04, 15.10, 16.04 - anything that’s not end-of-life.

Limited support

TODO

Supported Browsers

	IE10+, Microsoft Edge

	Firefox

	Chrome

	(planned) Safari

	(planned) Epiphany on Raspberry Pi

	(planned) others on Android and iOS.

Known issues:

TODO

Video playback

Videos are MP4 encoded. On Ubuntu/Debian systems, install the Ubuntu restricted extras package [https://apps.ubuntu.com/cat/applications/ubuntu-restricted-extras/].

Hardware requirements

TODO - REVIEW this whole section

Clients

Very old desktops and very low-power computers can be used as client devices to access Kolibri. For instance, some deployments are known to use first-gen Raspberry Pi as desktop computers.

It is always a good idea to do a practical test, but when you want to deploy Kolibri, usually it’s not necessary to scale your hardware. The main concern is that your system needs a video card and driver that can play the videos.

Servers

Kolibri hardware requirements as a server are next to nothing.

	256 MB

	500 MHz CPU

	Hard drive space depends on the size of the content channels you intend to import into Kolibri

If you have a center with less than 30 computers, a device as simple as a Raspberry Pi is known to work fine as a server.

TODO - REVIEW with RPi package reqs if necessary

Note

In case you are deploying on Linux and want an efficient setup, use the kolibri-raspberry-pi package, it doesn’t require a specific architecture, but it’s required to use if you deploy on a system with specs equivalent to or smaller than Raspberry Pi.

Windows

To install or uninstall Kolibri on Windows, follow these steps.

Install

	Download Kolibri.

	Double-click the downloaded .exe file.

	Select the language for the installation.

	Follow the instructions in the installation wizard window.

	Once the installation finishes, Kolibri will auto-start and open in the default browser on your computer.

	Proceed with the Initial Setup of your facility.

Warning

Windows firewall will prompt you to allow the Python process needed to run Kolibri. Click Allow access to accept and proceed.

[image: Allow the Python process needed to run Kolibri.]
Allow the Python process needed to run Kolibri.

TODO - Update links for the installer.

Uninstall

	Open the Windows Control Panel.

	Select Programs and Features option.

	Select Kolibri from the list of programs.

	Click the button Uninstall/Change and follow the instructions.

Upgrade

To upgrade Kolibri, follow these steps.

	Download the new version of Kolibri.

	Double-click the downloaded .exe file.

	Follow the instructions in the installation wizard window.

	Once the installation of the upgrade is finished, Kolibri will auto-start and open in the default browser on your computer.

	Go explore the new and improved Kolibri features!

Linux

Warning

Linux installer is not yet available!

Install

	Download Kolibri.

	Run the command:

sudo dpkg -i kolibri-installer-filename.deb

	Follow the instructions in the installation wizard window.

	Once you have Kolibri installed on your system, proceed with the Initial Setup of your facility.

TODO - Update links for the installer, and review the system service options.

Uninstall

	Open up Software on Ubuntu and locate the Kolibri. Press Remove.

OR

	Use apt-get remove <name of package>. You need to know the name of the package you installed, most probably kolibri.

Upgrade

TODO - Review

To upgrade Kolibri, follow these steps.

	Download the new version of Kolibri.

	Start the installer.

	Follow the instructions in the installation wizard window.

	Once the installation of the upgrade is finished, Kolibri will auto-start and open in the default browser on your computer.

	Go explore the new and improved Kolibri features!

OSX

Warning

OSX installer is not yet available!

Install

	Download Kolibri.

	Double-click the downloaded .pkg file.

	Follow the instructions in the installation wizard window.

	Once you have Kolibri installed on your system, proceed with the Initial Setup of your facility.

Uninstall

TODO

Upgrade

TODO - Review

To upgrade Kolibri, follow these steps.

	Download the new version of Kolibri.

	Start the installer.

	Follow the instructions in the installation wizard window.

	Once the installation of the upgrade is finished, Kolibri will auto-start and open in the default browser on your computer.

	Go explore the new and improved Kolibri features!

Android

Warning

Final Android installer is not yet available!

Install

	Allow the installation of Kolibri on your Android device.

Warning

This beta version of Kolibri Android installer is not yet available on Play Store, and in order to install it, you need to change a security setting (these steps may be slightly different depending on the device model and Android version):

	Open your device’s Settings app.

	Under Personal, tap Security.

	Under Device administration, tap Unknown sources.

	Download the Kolibri :url-android-installer:`Android installer <>` (*.apk file).

	Tap the downloaded .apk file.

	Wait until the installation finishes.

	Once you have Kolibri installed, tap Open and proceed with the Initial Setup of your facility.

TODO - Update links for the installer.

Uninstall

TODO - Review

	Open your device’s Settings app.

	Under Apps, tap Kolibri.

	Tap Uninstall button.

Upgrade

TODO - Review

To upgrade Kolibri, follow these steps.

	Uninstall the previous version.

	Download the new version of Kolibri.

	Tap the downloaded .apk file.

	Wait until the installation finishes.

	Tap Open and go explore the new and improved Kolibri features!

Advanced installation options

Warning

Advanced installation options are not yet available!

Generic installation (pip install)

Once Kolibri is released, you may install it as a standard package from PyPi using this command:

$ pip install kolibri --pre

Debian/Ubuntu: Subscribe to updates through a PPA

TODO - REVIEW this whole section once PPA is ready

We maintain a PPA on Launchpad [https://launchpad.net/~learningequality/+archive/ubuntu/kolibri] and if you are connected to the internet, this will also give you automatic updates.

On Ubuntu, do this:

sudo apt-get install software-properties-common python-software-properties
sudo su -c 'echo "deb http://ppa.launchpad.net/learningequality/kolibri" >
...
sudo apt-get update
sudo apt-get install kolibri

Raspberry Pi

TODO - once RPi deb is ready

Initial Setup

To do the initial setup of after the installation, follow these steps.

Note

You need to do the initial setup only once, the first time you start Kolibri after the installation.

	Select the default language for Kolibri.

[image: Select the default Kolibri language.]
Select the default Kolibri language.

Tip

You can change the user interface language later, from the user menu in the upper right corner.

	Name your facility. A Facility is the location where you installed Kolibri, such as a school or a training center.

[image: Select the name for the facility where Kolibri is running.]
Select the name for the facility where Kolibri is running.

	Create the Admin account. This Admin user will be a Super User able to manage all the device content, and all the rest of the facility users and their permisions.

[image: Select the username and password for the facility Super User.]
Select the username and password for the facility Super User.

	Choose a Facility setup. Click the Setup details for more information about user permissions for each setup type.

	Facility type

	Users

	
Admin managed

For schools and other formal learning contexts.

	
	Admins must create all user accounts.

	Users can sign in without password.

	Users cannot edit their account information.

	
Self-managed

For parent-child learning, homeschooling

or suplementary individual learning.

	
	Guests can create their own accounts.

	Users can edit their account information.

	
Informal and personal use

For libraries, orphanages, correctional

facilities, youth centers, computer labs,

and other non-formal learning contexts.

	
	Guests can create their own accounts.

	Users can edit their account information.

[image: Choose a Facility setup.]
Choose a Facility setup.

[image: View the Facility setup details.]
View the Facility setup details.

	Once you finish the initial setup, proceed to import some content, and create users (if you chose the Admin-managed facility setup). Make sure to check how to configure other computers in the network to access Kolibri.

Access Kolibri

Starting Kolibri on Windows

To start Kolibri on Windows, just double-click the desktop shortcut. You will see the notification message Kolibri is starting, please wait….

When you see the notification Kolibri is running…, Kolibri will open in the browser with the URL http://127.0.0.1:8080.

Kolibri Taskbar Options

While it is running, Kolibri will display an icon in the Windows taskbar (usually at bottom right, near the clock), that allows you to stop it and configure other settings.

[image: Kolibri taskbar options.]
Kolibri taskbar options.

	Use the Load in browser option to open Kolibri in the browser.

	By default Kolibri will start running every time you start the computer where it is installed. Uncheck the Run Kolibri at system startup option if you prefer to start it manually from the desktop shortcut.

	When installed, Kolibri will open in the browser everytime it is started. Uncheck the option Open browser when Kolibri starts if you prefer to have it running in the background, and to open it manually in the browser by typing the URL http://127.0.0.1:8080 in the address bar.

	Select Exit to stop Kolibri. You will be prompted to confirm the selection, after which Kolibri will stop. You will have to close the browser (or the tab) manually.

Note

Remember to configure other computers in the network to access Kolibri content.

Starting Kolibri on Linux and OSX

Warning

Final Kolibri installer for Linux and OSX is not released yet, so these steps are Work in Progress!

TODO - REVIEW when the DEB installer is finished

Open the default browser at http://127.0.0.1:8080 displaying the Kolibri start page.

Note

Remember to configure other computers in the network to access Kolibri content.

Starting Kolibri on Android

Warning

Final Kolibri installer for Android is not released yet, so these steps are Work in Progress!

Tap the Kolibri icon on your device.

Accessing Kolibri from Other Devices in the Network

While Kolibri is up and running on the device where you installed it, other computers, tablets, even mobile phones in the same Local Area Network (LAN) can access its learning contents.

	To access the content on the same device/computer where Kolibri is running, open the browser at the address http://127.0.0.1:8080/.

	To access the content from other devices in the same network, you need to know the IP address of one where where Kolibri is running. For example, if Kolibri is on a device/computer with IP address 192.168.0.104, you can access it from others in the same network by opening the browser and typing the address http://192.168.0.104:8080.

Note

Use the ipconfig command on Windows or ifconfig command on Linux/OSX to find out the IP address of the device running the Kolibri.

TODO - IP of the Android device?

Change Language

To change language in which Kolibri user interface is displayed, follow these steps.

	Open your user menu in the upper right corner.

	Select the Change language option.

	Choose the desired language.

	Click Select to confirm.

Manage Kolibri

Default User Roles

Kolibri users by default can be divided in 3 different roles with respective access to features.

	Default user roles

	
	Learners can:

	
	View content and have their progress tracked

	
	Coaches can:

	
	View content and have their progress tracked

	View Coach dashboard and track progress of other users and usage stats for individual exercises

	Create/Edit/Delete Groups in Classes and add users to them

	Create/Edit/Delete Exams and assign them to users

	
	Admins can:

	
	View content and have their progress tracked

	View Coach dashboard and track progress of other users and usage stats for individual exercises

	Create/Edit/Delete other Admins, Coaches, and Learners

	Create/Edit/Delete Groups in Classes and add users to them

	Create/Edit/Delete Classes and enroll users in them

	View/Edit Facility configuration settings

	Export Detail and Summary logs usage data

Kolibri Super Users

Kolibri Super users have all device permissions and are able to assign them to other users. Therefore Super users can:

	
	View content and have their progress tracked

	View Coach dashboard and track progress of other users and usage stats for individual exercises

	Create/Edit/Delete other Admins, Coaches, and Learners

	Create/Edit/Delete Groups in Classes and add users to them

	Create/Edit/Delete Classes and enroll users in them

	View/Edit Facility configuration settings

	Export Detail and Summary logs usage data

	Import/Export Content channels

	View/Edit Permissions of other users

Assign Additional Permissions

By default, only Super users can view the Device dashboard, import/export Content channels in Kolibri, and modify Permissions for other users. However, depending on the needs of the institution, Super users can also grant these permissions to other users.

Manage Device

You can manage content and permissions for the device where Kolibri is running from the Device dashboard.

Note

To manage device settings you must have the appropriate permissions.

Assign Permissions

You can assign additional permissions to Kolibri users which will provide them access to more features compared to their user roles. To manage permissions for Kolibri users, use the Permission tab in the Device dashboard.

[image: manage permissions]

Permission to Manage Content

To grant permission to manage content channels in Kolibri to another user, follow these steps.

	Click Edit permissions for the chosen user.

	Under Device Permissions activate the option Can import and export content channels.

	Click Save changes to apply and finish.

[image: grant permissions to manage content]

The users who have been granted the permissions to manage content channels will have a black key indicator in front of their name, and will be able to see the Device dashboard with the Content tab.

Super User Permissions

To grant Super user permissions to another user, follow these steps.

	Click Edit permissions for the chosen user.

	Activate the option Make superuser.

	Click Save changes to apply and finish.

[image: grant superuser permissions]

The users who have been granted the Super user permissions will have a yellow key indicator in front of their name, and will be able to see the Device dashboard with both the Content and Permissions tabs.

[image: permissions indicators]

Manage Content

Note

To manage Kolibri content channels you must have the appropriate permissions.

Kolibri Content Channel is a collection of educational resources (video, audio or document files) prepared and organized by the content curator for their use in Kolibri. Each Kolibri Content Channel has its own Content Channel ID in Kolibri Studio [https://studio.learningequality.org/accounts/login/]. In order to import channels in Kolibri, you need the channel ID from the content curator who assembled it.

You can import and export Content Channels for Kolibri in the Content tab of the Device dashboard.

[image: manage content page with list of available channels]

Import Content Channel to Kolibri

To import Content Channel to Kolibri, follow these steps.

	Click Import button in My Channels pane.

	Choose the source option (Internet or Local Drives).

[image: choose source for importing content]

Import Content Channel from the Internet

If the computer where Kolibri is running has an Internet connection with the sufficient bandwidth, follow these steps to import content channels.

	Choose option for Internet.

	Enter Content ID for the desired channel from Kolibri Studio.

	Click Import button, and confirm the import.

	Wait for the content to be downloaded and click Close for the new channel to appear under the My Channels heading.

[image: enter content id to import channel from Internet]

[image: wait for import channel to finish]

Import Content Channel from a Local Drive

If the computer where Kolibri server is running does not have access to Internet or has insufficient bandwidth, you have the option to receive content channels stored on an external drive (USB stick or hard disk). Follow these steps to import content channels.

	Insert the USB drive in your computer.

	Choose option for Local Drives.

	Kolibri will automatically detect the drive(s) with available content files.

	Select the drive where the channel content is stored.

	Click Import button.

	Wait for the content to be imported and click Close for the new channel to appear under the My Channels heading.

[image: import channel from detected local drive]

Note

If the local drive is not detected, try re-inserting the storage device (USB stick or external hard disk) and pressing the button Refresh.

Tip

Workaround for import from local drive on older devices.

If Kolibri is installed on an older or a low-resource device, you can try the following procedure for importing content channels for faster results.

	Stop Kolibri.

	Browse the local drive with the file explorer of your operating system.

	Copy the content folder located inside the KOLIBRI_DATA folder on the local drive.

	Paste the copied content folder inside the .kolibri folder on your hard disk. The location of the .kolibri folder will depend on your operating system (see the table below).

	Confirm the merge of the two folders.

	Restart Kolibri, and the new channels should now be available.

	Operating system

	Location

	Windows

	C:/Users/<your_username>/.kolibri/

	OSX

	HD/Users/<your_username>/.kolibri/

	Linux

	/home/<your_username>/.kolibri/

Export from Kolibri to Local Drive

If you want to make available the content you have imported on your Kolibri server, to another computer where Kolibri is installed, follow these steps to export your content channels.

Note

You must have an external drive (USB stick or hard disk) attached to your device.

	Click Export button in My Channels pane.

	Select the local drive where you wish to export Kolibri content.

	Click Export button.

	Once the export is finished, safely disconnect the drive according to the recommended procedure for your operating system, and proceed to import channels on other devices.

[image: export channel to detected local drive]

This procedure makes a copy of the content folder located inside the .kolibri folder on your hard disk, and places it the KOLIBRI_DATA folder on the selected local drive. This structure is recognized by the Import from local drive command.

[image: structure of the local drive folders with exported content channels]

Manage Facility

You can edit facility configuration settings in Kolibri from the Configuration tab in your Facility dashboard.

	Activate the options you want to make available for the users of your facility.

	Click Save changes to apply and finish.

[image: manage facility configuration settings]

Note

To manage Kolibri users you must sign-in as Super user or Admin.

Manage Users

You can search for, filter, add, and edit user accounts in Kolibri from the Users tab in your Facility dashboard.

[image: manage users]

Note

To manage Kolibri users you must sign-in as Super user or Admin.

Create a New User Account

To create a new user account, follow these steps.

	Click Add New button.

	Fill in the required information (name, username, password).

	Select user profile (Admin, Coach or Learner).

	Click Create Account to add the new user.

[image: add new account form]

Select Users by Type

	Click All Users selector to display user types.

	Toggle between options to filter the user roster according to type, or leave it as All Users to display all.

[image: select users]

Edit User’s Account

To edit username or the full name account, follow these steps.

	Click on the Edit button (pencil icon) next to the user’s name.

	Edit Full name or Username in the Edit account info window.

	Click Confirm to update the edited information, or Cancel to exit without saving.

[image: edit account info form]

Reset User’s Password

	Click Reset password in the Edit account info window.

	Enter the new password in both fields.

	Click Save to confirm, or Back to exit without changing the password.

[image: edit password form]

Delete User’s Account

	Click Delete user in the Edit account info window.

	Click Yes to confirm, or No to exit without deleting the account.

[image: confirm delete account]

Manage Classes

You can view, create and delete classes, as well as search, filter and enroll Kolibri users in them, using the Classes tab in your Facility dashboard. Default view displays the list of all classes in your facility, with the number of enrolled users for each class.

[image: manage classes]

Note

To manage Kolibri users you must sign-in as Super user or Admin.

Add New Class

To add a new class, follow these steps.

	Click Add new class button.

	Fill in the class name.

	Click Create to add the new class, or Cancel to exit.

[image: add new class]

Delete Class

To delete class, follow these steps.

	Click Delete class button for the chosen class from the list.

	Click Delete class in the confirmation window to proceed, or Cancel to exit without deleting the class.

[image: delete class]

Note

Users enrolled in the class you are deleting will not be removed from the database.

Edit Class and Enroll Users

To edit a class select it from the default view in the Classes tab. In the following Class view you can change class name, remove currently enrolled users from the class and enroll new ones.

Change Class Name

To edit class name, follow these steps.

	Click on the Edit button (pencil icon) next to the class’ name.

	Write the new name in the Class name field.

	Click Update to confirm the edited information, or Cancel to exit without saving.

[image: change class name]

Enroll users to class

	Click Enroll users button.

[image: add users to class]

	List in this view contains all the users currently NOT enrolled for the selected class.

	You can search for a specific user by name.

	Use checkboxes to select all the user in the list, or specific users you want to enroll to class. You can also use the New user account button to create a new user AND enroll them at the same time.

	Click Review & save button.

	Click Yes, enroll users to confirm, or No, go back to exit without enrolling the selected users.

[image: confirm enrollment of users to class]

Remove users from class

	Click Remove button for the chosen user.

	Click Remove from class to confirm, or Cancel to exit without removing the user.

[image: remove user from class]

Note

Users removed from the class will not be deleted from the database, and you can still access their accounts from the Users tab in the Facility dashboard.

Manage Data

Note

To manage Kolibri users you must sign-in as Super user or Admin.

You can download Kolibri Detail and Summary logs usage data and export in the CSV format from the Data tab in your Facility dashboard.

[image: options for exporting usage data]

Get support

If you want to contact the Learning Equality Support team to report an issue, or share your experience about using Kolibri, please register at our Community Forums [https://community.learningequality.org/].

Once you register on our forums, please read the the first two pinned topics (Welcome to LE’s Support Community and How do I post to this forum?)

You can add a new topic with the + New Topic button on the right. Make sure to select the Kolibri category in the Create a New Topic window so it’s easier to classify and respond to.

[image: add new topic on community forums]

Coach

You can track progress of the Learner users, create and assign Exams to classes or learner groups from the Coach dashboard. The default view of the Coach dashboard presents the list of Classes with number of learners enrolled to each class.

Select a class from the list to access the progress-tracking features and create exams.

[image: default coach view with list of classes]

Recent Activity View

This is the default view when you select a class from the Coach dashboard. It displays the list of channels and items (exercises and resources - videos, reading material, etc.) accessed during the last 7 days by learners of the selected class.

[image: coach recent activity]

If the class learners have access to more then one channel, you will first see the list of channels which you can navigate by topics and subtopics until you arrive to a specific item. In this view you can see the progress of each class learner for that specific item.

Topic Activity View

Use this view to access the full report of activity progress for the selected class. You can navigate channels by topics and subtopics until you see the progress of each class learner for one specific item.

[image: activity by topic view]

Manage Groups

In case you need to further divide learners inside classes, for example to address the different progress needs or levels, you can use the Groups feature. Create and delete groups, as well as assign learners to them from the Groups tab in your Coach dashboard. Default view displays the list of all groups for the selected class, with the list of assigned learners for each group.

[image: manage learner groups]

Note

To manage Kolibri users you must sign-in as Super user, Admin or Coach.

Create a New Group

To create a new learner group, follow these steps.

	Click + New group button.

	Give group a desired name.

	Click Save to confirm, or Cancel to exit without creating a group.

Assign Learners to Group

Below existing groups there is a list with all learners currently NOT assigned to any groups.

	Use checkboxes to select all the learners in the list, or specific ones you want to assign to the group.

	Click Move learners button on the right side of the list.

	Select the group to which you want to assign the selected learners in the confirmation window.

	Click Move to proceed, or Cancel to exit without assigning.

[image: move ungrouped learners]

Move learners between groups

	Use checkboxes to select all the user in one group, or specific users you want to assign to another group.

	Click Move learners button on the right side of the origin group.

	Select the group to which you want to move the selected learners, or the Ungrouped option if you want to remove them from the origin group without assigning to a new one.

	Click Move to proceed, or Cancel to exit without moving.

[image: move learners from one group to another]

Rename Group

To rename group, follow these steps.

	Click the down arrow icon on the right edge of the desired group from the list.

	Select the Rename group from the drop-down menu.

	Input the new name for the group in the confirmation window.

	Click Save changes button to proceed, or Cancel to exit without renaming the group.

Delete Group

To delete a group, follow these steps.

	Click the down arrow icon on the right edge of the desired group from the list.

	Select the Delete group from the drop-down menu.

	Click Delete group button in the confirmation window to proceed, or Cancel to exit without deleting the group.

Note

Learners currently assigned to group will become ungrouped.

Manage Exams

You can view, create and delete exams, as well as assign them to learners, using the Exams tab in your Coach dashboard. Default view displays the list of all exams in a selected class, with a series of options to set the visibility, (de)activate when required, and view report of students who took them.

[image: manage exams home page]

Note

To manage Exams in Kolibri classes and groups you must be logged-in as Coach or Admin.

Create New Exam

To create a new exam, follow these steps.

	Click New exam button.

	Select the content channel from which you wish to select questions for the exam.

	Click Create exam to confirm, or Cancel to exit the confirmation window.

	Fill in the field for exam title.

	Fill in the field for number of questions you want exam to contain.

	Navigate through the topic tree and select checkboxes of those exercises you want to include in the exam.

[image: add content to your exam]
As you keep adding the exercises you will see confirmation messages at the bottom.

	Click Preview button to view the result in overlay window.

[image: preview the content of your exam]

	Click Randomize questions button to present them in the different order from those in the topic origin.

	Click the Close (X) button in the upper right corner to return to the exam home page.

	Click Finish button to save the result.

Change Exam Visibility

Newly created exam will be visible to entire class. To change exam visibility, meaning to assign it only to one group of learners instead of the whole class, follow these steps.

	Click Change button under the Visible to column in the list of exams.

	Select the group(s) of learners to whom you wish to assign the exam.

	Click Update to confirm, or Cancel to exit the confirmation window.

[image: assign exam to groups]

Activate/Deactivate Exam

Once you set the visibility of exam to the chosen group(s) of learners, you need to Activate it in order for it to appear in the Learn view of the learners to whom you assigned it.

	Click Activate button under the Action column in the list of exams.

	When the exam period concludes, click the Deactivate button.

View Exam Report

To view the report on learners who have taken the exam, follow these steps.

	Click down arrow near the Activate button for the desired exam from the list.

	Select View report in the drop-down menu.

[image: open the exam report from the drop-down selector]

	Click the name of the learner to view the detailed report with preview of results for each question.

[image: view the exam report for the whole group or class]

	Click each of the questions to preview it and understand better which question learners answered correctly in the exam and those they struggled with.

[image: view the detailed exam report for the selected learner]

Delete Exam

To delete exam, follow these steps.

	Click down arrow near the Activate button for the desired exam from the list.

	Select Delete in the drop-down menu.

	Click Delete button in the confirmation window to proceed, or Cancel to exit without deleting the exam.

Warning

All data from the exam you are deleting will be lost.

Rename Exam

To rename exam, follow these steps.

	Click down arrow near the Activate button for the desired exam from the list.

	Select Rename in the drop-down menu.

	Change the exam title in the confirmation window.

	Click Rename button to proceed, or Cancel to exit without renaming the exam.

Learner

Access Kolibri

Note

	If you are using Kolibri in your school, education center or facility, your coach or administrator will provide the instructions how to open the sign-in page, and username and password if necessary.

	If you are using Kolibri on your own, outside an education center or facility, follow the instructions how to Access Kolibri according to your operating system.

To sign in to Kolibri and start learning follow these steps:

	Type your username and password (may be optional).

	Click the SIGN IN button.

[image: Main sign-in page.]
Main sign-in page.

Warning

If you start browsing Kolibri as a guest, you need either to select Sign in option from the Guest menu in the upper right corner, or from the sidebar menu (left or bottom) to open the sign-in page.

[image: Location of "Sign in" to Kolibri links.]
Location of “Sign in” to Kolibri links.

Once you have logged in into Kolibri, you can see and edit your user data from the Profile option in the main menu (below Learn).

[image: View and edit your user profile.]
View and edit your user profile.

	To sign out from Kolibri you can either:

	
	Click the user icon in the upper right corner and select Sign out option.

OR

	Select Sign out option in the main menu.

Learn

Each time you login into Kolibri, the first thing you will see is the Learn page. Here you will find learning topics and materials related to what you were doing the last time you used Kolibri, or those recommended by your teachers and coaches (not visible if you are browsing as a guest).

Recommended

In the Recommended tab you can see various sections:

	Most popular section which displays the most frequently used materials in your school or facility.

	Next steps section which displays suggestions according to your previously visited activities.

	Resume section displays activities that you started but haven’t finished yet.

	Featured in… section.

You can browse through learning materials in all sections by using the arrow icons at the beginning and the end of the section rows.

[image: Learn page gives you access to all Kolibri learning content and activities.]
Learn page gives you access to all Kolibri learning content and activities.

Topics

Topics tab offers you the option to navigate through the complete set of learning topics and materials available in Kolibri. Use it as you wish, or according to indications from your teachers and coaches.

In Kolibri Topic tab content from different sources is grouped in Channels. Depending on how your school and teachers or coaches decided to organize the content, you may have one or more Channels available here. Follow the indications by your teachers or coaches on how to use the content from each available Channel.

[image: Content in Kolibri is grouped in Channels.]
Content in Kolibri is grouped in Channels.

Navigate Kolibri topics with breadcrumb links

When you are browsing a topic in Kolibri, the Breadcrumb links indicate previously visited, more general topics. Current topic is at the last position, and you can click any of the previous links in the breadcrumb to go back to a specific broader topic.

[image: Use breadcrumbs links to navigate back through Kolibri topics.]
Use breadcrumbs links to navigate back through Kolibri topics.

Search

If you are looking for a specific subject, topic, or term, use the Search feature:

	Click the magnifying glass icon in the upper right corner.

	Type the word or combination of words you are looking for in the search field.

	Press Enter to display search results below the field.

[image: search page]
Search page gives you option to search for a specific term in Kolibri.

Content types

Exercises

Kolibri Exercises can require you to do different things: fill in a missing number, write a formula, choose one of the available options, etc. Each correct answer gets you a checkmark, and majority of exercises require 5 correct answers in a row to be completed. Some exercises can offer one or more hints, to help you solve the problem.

Independent of the required action (writing an answer yourself or choosing one of the options), these are the steps to follow.

	Read the question carefully.

	Write the answer or choose one of the provided options.

	When you are ready to submit, click the Check answer button.

	If the answer is correct and a checkmark appears, click the Next question button to proceed.

	If the answer is incorrect, click the Get a hint button, read the suggestions, and try to answer again.

	Once you have achieved the required number of correct answers in a row, click the Next item button, to continue learning with the rest of the material in that topic.

	If you are unable to solve some questions, try reviewing the videos in the Recommended section below the exercise, or seek help from your peers or teacher/coach.

[image: exercise page]
Exercise page in Kolibri.

Video and Audio Player options

To play videos and listen to audio files in Kolibri you have several available control buttons at the bottom of the player screen. Move the cursor or tap on the player screen to make appear the control buttons while playing.

[image: video player]

Kolibri video and audio player.

(controls at the bottom of the player)

	Play/Pause buttons

	Rewind/Fast forward buttons by +/- 10 seconds

	Time tracker indicator with progress bar

	Video duration indicator

	Volume scrollbar

	Playback speed selector

	Fullscreen button

Use the Download content button below the player to download the video, audio and thumbnail files to your computer. Some videos will provide multiple resolution options.

PDF Viewer options

Note

Options for viewing PDF files will depend on the browser and operating system you are using to view Kolibri.

	Use the Toggle Fullscreen button to open the PDF file in fullscreen view.

	Use the Esc button to close the fullscreen view and return.

[image: pdf page]

Use the Download content button below the PDF viewer to download the PDF file to your computer.

Exams

If your teacher/coach scheduled an exam for you or your class, it will be available through the Exams tab.

[image: exams tab]

	Press the button Start when you are ready to start taking exam.

	You can go on answering the questions in the order you prefer: move through questions with Previous and Next question buttons, or click on the question number in the column on the left side.

[image: exams tab]

	Each time you fill in the answer field, or select one of the available options, the question will be marked by a colored dot in the column on the left side.

	You can review and correct your answers to all questions as many times you need before submitting.

	Press the Back to exam list if you want to pause the exam and come back later.

	Press the button Continue to resume when you are ready.

[image: exams tab]

	Press the button Submit exam when you are positive that you answered all the questions, and you want to finish the exam.

	You will see instant feedback with the result of your exam.

[image: exams tab]

Frequently Asked Questions

Network Terminology

About IP addresses

	0.0.0.0 = A special IP address on the server (your device running Kolibri and “serving” its content to others in the local network), which actually means “all available IP addresses”. It’s a kind of alias. But accessing 0.0.0.0 from another computer doesn’t make sense and doesn’t work. By default, Kolibri will serve on 0.0.0.0, which essentially means all IP addresses that are available on the device will render Kolibri accessible.

	127.0.0.1 = A device’s local IP address, meaning “myself”. Some people joke and say “There’s no place like 127.0.0.1”, meaning “there’s no place like home” :) This can be used on the serving device itself to test that Kolibri is running, in case you need a failsafe way of checking that Kolibri is in fact running and responsive.

	192.x.y.z = Addresses starting with 192 are local network IP addresses. The same thing can be said about 10.x.y.z. The address that you wanna use to enter on the clients/tablets in order to contact the server will in most cases start with 192 or 10.

	Port number: Kolibri runs on port 8080. When you access something on an IP address, you need a port. Ports can be open or closed on the server, but they can also be regulated by firewall rules on the way. http:// <- this is the protocol that the browser reads out from the “URL”, which is just some text that describes Kolibri.

	http://192.168.1.1:8080 means: “Connect to IP address 192.168.1.1 on port 8080 with the HTTP protocol”. The browser will the continue to try to reach this address, but may fail for instance if Kolibri isn’t running, or if a step along the way blocks access.

Troubleshoot Network Problems

	Can you access Kolibri via http://127.0.0.1:8080?

	Can you access anything from the external IP of the device running Kolibri FROM the device itself?

	Can you ping the external IP address from another device on the network?

Working with Kolibri from the Command Line

Warning

In Windows you need to open cmd.exe Command prompt in the folder where Kolibri executable is located: c:/Python27/Scripts.

If you see errors in the prompt/terminal output while running the commands below, ask for help at our Community Forums [https://community.learningequality.org/], or file an issue on GitHub [https://github.com/learningequality/kolibri/issues/new].

Start/Stop Kolibri

In case you need to troubleshoot potential problems while running Kolibri, you may try to start it manually from the command line.

kolibri start --debug --foreground

kolibri stop

Import Content Channels from Internet

To import content channels from Internet, run these two commands in sequence. The first downloads the channel database, and the second downloads the resources (videos, documents, etc.). Make sure not to include the angle brackets “< >” in the command.

kolibri manage importchannel -- network <Channel ID>
kolibri manage importcontent -- network <Channel ID>

Import Content Channels from a Local Drive

To import content channels from the local drive, run these two commands in sequence. Local drive should have a folder KOLIBRI_DATA at the root, with Kolibri content inside.

kolibri manage importchannel -- local <Channel ID> /path/to/local/drive
kolibri manage importcontent -- local <Channel ID> /path/to/local/drive

Export Content Channels

To export Kolibri content channels on a local drive in order to share it with another device, run these two commands in sequence. The first exports the channel database, and the second exports the resources (videos, documents, etc.).

kolibri manage exportchannel -- <Channel ID> /path/to/local/drive/KOLIBRI_DATA
kolibri manage exportcontent -- <Channel ID> /mount/mydrive/KOLIBRI_DATA

The path should be to a folder named KOLIBRI_DATA at the root of the local drive, so it will get picked up later for importing via the Web UI.

Create a New Super User

In case you need to create another Super user, either to address additional need of managing facility, or if you lost the password for the old one, run the following command:

kolibri manage createsuperuser

You will be prompted to input the Username and Password and the new Super user user account will be created.

Change Language

kolibri language setdefault <langcode>

	Available languages in Kolibri

	English

	en

	Spanish (Spain)

	es-es

	Spanish (Mexico)

	es-mx

	French

	fr

	Portuguese (Portugal)

	pt-pt

	Portuguese (Brazil)

	pt-br

	Swahili (Tanzania)

	sw-tz

	
	

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 kolibri	

 	
 	
 kolibri.plugins.hooks	

 	
 	
 kolibri.utils.cli	

 	
 	
 kolibri.utils.version	

Index

 K

K

 	
 	kolibri.plugins.hooks (module)

 	
 	kolibri.utils.cli (module)

 	kolibri.utils.version (module)

Page not found

It seems you are searching for a topic that has been moved elsewhere in our documentation. Please try the following to find what you were looking for:

	Browse the table of content in the sidebar

	Use the search box

Use the upper menu button to open the table of contents if you are on the mobile device.

Tip

Make sure you are browsing the user guide for the latest release of Kolibri [https://kolibri.readthedocs.io/en/latest/].

We apologize for the inconvenience!

Credits

Development Lead and Copyright Holder

	Learning Equality – info@learningequality.org

Community

Please feel free to add your name on this list if you do a PR!

	Benjamin Bach (benjaoming)

	Michael Gallaspy (MCGallaspy)

	Richard Tibbles (rtibbles)

	Jamie Alexandre (jamalex)

	David Cañas (dxcanas)

	Eli Dai (66eli77)

	Devon Rueckner (indirectlylit)

	Rafael Aguayo (ralphiee22)

	Christian Memije (christianmemije)

	Radina Matic (radinamatic)

Release Notes

Changes are ordered reverse-chronologically.

0.4.9

	User experience improvements for session timeout

0.4.8

	Prevent session timeout if user is still active

	Fix exam completion timestamp bug

	Prevent exercise attempt logging crosstalk bug

	Update Hindi translations

0.4.7

	Fix bug that made updating existing Django models from the frontend impossible

0.4.6

	Fix various exam and progress tracking issues

	Add automatic sign-out when browser is closed

	Fix search issue

	Learner UI updates

	Updated Hindi translations

0.4.5

	Frontend and backend changes to increase performance of the Kolibri application under heavy load

	Fix bug in frontend simplified login code

0.4.4

	Fix for Python 3 compatibility in Whl, Windows and Pex builds #1797

	Adds Mexican Spanish as an interface language

	Upgrades django-q for bug fixes

0.4.3

	Speed improvements for content recommendation #1798

0.4.2

	Fixes for morango database migrations

0.4.1

	Makes usernames for login case insensitive #1733

	Fixes various issues with exercise rendering #1757

	Removes wrong CLI usage instructions #1742

0.4.0

	Class and group management

	Learner reports #1464

	Performance optimizations #1499

	Anonymous exercises fixed #1466

	Integrated Morango, to prep for data syncing (will require fresh database)

	Adds Simplified Login support as a configurable facility flag

0.3.3

	Turns video captions on by default

0.3.2

	Updated translations for Portuguese and Kiswahili in exercises.

	Updated Spanish translations

0.3.2

	Portuguese and Kaswihili updates

	Windows fixes (mimetypes and modified time)

	VF sidebar translations

0.3.0

	Add support for nested URL structures in API Resource layer

	Add Spanish and Swahili translations

	Improve pipeline for translating plugins

	Add search back in

	Content Renderers use explicit new API rather than event-based loading

0.2.0

	Add authentication for tasks API

	Temporarily remove ‘search’ functionality

	Rename ‘Learn/Explore’ to ‘Recommended/Topics’

	Add JS-based ‘responsive mixin’ as alternative to media queries

	Replace jeet grids with pure.css grids

	Begin using some keen-ui components

	Update primary layout and navigation

	New log-in page

	User sign-up and profile-editing functionality

	Versioning based on git tags

	Client heartbeat for usage tracking

	Allow plugins to override core components

	Wrap all user-facing strings for I18N

	Log filtering based on users and collections

	Improved docs

	Pin dependencies with Yarn

	ES2015 transpilation now Bublé instead of Babel

	Webpack build process compatible with plugins outside the kolibri directory

	Vue2 refactor

	HTML5 app renderer

0.1.1

	SVG inlining

	Exercise completion visualization

	Perseus exercise renderer

	Coach reports

0.1.0 - MVP

	Improved documentation

	Conditional (cancelable) JS promises

	Asset bundling performance improvements

	Endpoint indexing into zip files

	Case-insensitive usernames

	Make plugins more self-contained

	Client-side router bug fixes

	Resource layer smart cache busting

	Loading ‘spinner’

	Make modals accessible

	Fuzzy searching

	Usage data export

	Drive enumeration

	Content interaction logging

	I18N string extraction

	Channel switching bug fixes

	Modal popups

	A11Y updates

	Tab focus highlights

	Learn app styling changes

	User management UI

	Task management

	Content import/export

	Session state and login widget

	Channel switching

	Setup wizard plugin

	Documentation updates

	Content downloading

0.0.1 - MMVP

	Page titles

	Javascript logging module

	Responsiveness updates

	A11Y updates

	Cherrypy server

	Vuex integration

	Stylus/Jeet-based grids

	Support for multiple content DBs

	API resource retrieval and caching

	Content recommendation endpoints

	Client-side routing

	Content search

	Video, Document, and MP3 content renderers

	Initial VueIntl integration

	User management API

	Vue.js integration

	Learn app and content browsing

	Content endpoints

	Automatic inclusion of requirements in a static build

	Django JS Reverse with urls representation in kolibriGlobal object

	Python plugin API with hooks

	Webpack build pipeline, including linting

	Authentication, authorization, permissions

	Users, Collections, and Roles

Reporting Guidelines

If you believe someone is violating the code of conduct we ask that you
report it to the Learning Equality by emailing
codeofconduct@learningequality.org. All reports will be kept confidential. In
some cases we may determine that a public statement will need to be
made. If that’s the case, the identities of all victims and reporters
will remain confidential unless those individuals instruct us otherwise.

If you believe anyone is in physical danger, please notify appropriate
law enforcement first. If you are unsure what law enforcement agency is
appropriate, please include this in your report and we will attempt to
notify them.

If you are unsure whether the incident is a violation, or whether the
space where it happened is covered by this Code of Conduct, we encourage
you to still report it. We would much rather have a few extra reports
where we decide to take no action, rather than miss a report of an
actual violation. We do not look negatively on you if we find the
incident is not a violation. And knowing about incidents that are not
violations, or happen outside our spaces, can also help us to improve
the Code of Conduct or the processes surrounding it.

In your report please include:

	Your contact info (so we can get in touch with you if we need to
follow up)

	Names (real, nicknames, or pseudonyms) of any individuals involved.
If there were other witnesses besides you, please try to include them as
well.

	When and where the incident occurred. Please be as specific as possible.

	Your account of what occurred. If there is a publicly available
record (e.g. a mailing list archive or a public Slack logger) please
include a link.

	Any extra context you believe existed for the incident.

	If you believe this incident is ongoing.

	Any other information you believe we should have.

What happens after you file a report?

You will receive an email from the Code of Conduct committee
acknowledging receipt within 48 hours (we aim to be quicker than that).

The committee will immediately meet to review the incident and
determine:

	What happened.

	Whether this event constitutes a code of conduct violation.

	Who the bad actor was.

	Whether this is an ongoing situation, or if there is a threat to
anyone’s physical safety.

If this is determined to be an ongoing incident or a threat to physical
safety, the committee’s immediate priority will be to protect
everyone involved. This means we may delay an “official” response until
we believe that the situation has ended and that everyone is physically
safe.

Once the committee has a complete account of the events they will
make a decision as to how to response. Responses may include:

	Nothing (if we determine no violation occurred).

	A private reprimand from the committee to the individual(s)
involved.

	A public reprimand.

	An imposed vacation (i.e. asking someone to “take a week off” from a
mailing list or Slack).

	A permanent or temporary ban from some or all communication spaces (mailing
lists, Slack, etc.)

	A request for a public or private apology.

We’ll respond within one week to the person who filed the report with
either a resolution or an explanation of why the situation is not yet
resolved.

Once we’ve determined our final action, we’ll contact the original
reporter to let them know what action (if any) we’ll be taking. We’ll
take into account feedback from the reporter on the appropriateness of
our response, but we don’t guarantee we’ll act on it.

Attribution

This Code of Conduct is distributed under a Creative Commons
Attribution-ShareAlike
license [http://creativecommons.org/licenses/by-sa/3.0/].

Text derived from the
Django Code of Conduct [https://www.djangoproject.com/conduct/reporting/]

Enforcement Manual

This is the enforcement manual followed by Learning Equality’s Code of Conduct
Committee. It’s used when we respond to an issue to make sure we’re
consistent and fair. It should be considered an internal document, but
we’re publishing it publicly in the interests of transparency.

The Code of Conduct Committee

All responses to reports of conduct violations will be managed by a Code
of Conduct Committee (“the committee”).

Learning Equality’s (LE’s) core team (“the core”) will
establish this committee, comprised of at least three members.

How the committee will respond to reports

When a report is sent to the committee, a member will reply with a receipt
to confirm that a process of reading your report has started.

See the reporting guidelines for details of what reports should contain.
If a report doesn’t contain enough information, the committee will
obtain all relevant data before acting. The committee is empowered to
act on the LE’s behalf in contacting any individuals involved to get a
more complete account of events.

The committee will then review the incident and determine, to the best
of their ability:

	what happened

	whether this event constitutes a code of conduct violation

	who, if anyone, was the bad actor

	whether this is an ongoing situation, and there is a threat to
anyone’s physical safety

This information will be collected in writing, and whenever possible the
committee’s deliberations will be recorded and retained (i.e. Slack
transcripts, email discussions, recorded voice conversations, etc).

The committee should aim to have a resolution agreed upon within one
week. In the event that a resolution can’t be determined in that time,
the committee will respond to the reporter(s) with an update and projected
timeline for resolution.

Acting Unilaterally

If the act is ongoing or involves a threat to anyone’s safety (e.g. threats of
violence), any committee member may act immediately (before reaching
consensus) to end the situation. In ongoing situations, any member may
at their discretion employ any of the tools available to the committee,
including bans and blocks.

If the incident involves physical danger, any member of the committee may
– and should – act unilaterally to protect safety. This can
include contacting law enforcement (or other local personnel) and
speaking on behalf of Learning Equality.

In situations where an individual committee member acts unilaterally, they
must report their actions to the committee for review within 24 hours.

Resolutions

The committee must agree on a resolution by consensus. If the committee
cannot reach consensus and deadlocks for over a week, the committee will
turn the matter over to the board for resolution.

Possible responses may include:

	Taking no further action (if we determine no violation occurred).

	A private reprimand from the committee to the individual(s)
involved. In this case, the committee will deliver that reprimand to
the individual(s) over email, cc’ing the committee.

	A public reprimand. In this case, the committee will deliver that
reprimand in the same venue that the violation occurred (i.e. in Slack for
an Slack violation; email for an email violation, etc.). The committee may
choose to publish this message elsewhere for posterity.

	An imposed vacation (i.e. asking someone to “take a week off” from a
mailing list or Slack). The committee will communicate this “vacation”
to the individual(s). They’ll be asked to take this vacation
voluntarily, but if they don’t agree then a temporary ban may be imposed
to enforce this vacation.

	A permanent or temporary ban from some or all Learning Equality spaces (mailing
lists, Slack, etc.). The committee will maintain records of all such bans so
that they may be reviewed in the future, extended to new Learning Equality
fora, or otherwise maintained.

	A request for a public or private apology. The committee may, if it chooses,
attach “strings” to this
request: for example, the committee may ask a violator to apologize in order
to retain his or her membership on a mailing list.

Once a resolution is agreed upon, but before it is enacted, the
committee will contact the original reporter and any other affected parties
and explain the proposed resolution. The committee will ask if this
resolution is acceptable, and must note feedback for the record.
However, the committee is not required to act on this feedback.

Finally, the committee will make a report for the core team.

The committee will never publicly discuss the issue; all public
statements will be made by the core team.

Conflicts of Interest

In the event of any conflict of interest a committee member must
immediately notify the other members, and recuse themselves if necessary.

Attribution

Reporting Guidelines and Enforcement Manual are both distributed under a
Creative Commons Attribution-ShareAlike license [http://creativecommons.org/licenses/by-sa/3.0/].

Reporting Guidelines and Enforcement Manual are both derived from the
Django’ Reporting Guidelines [https://www.djangoproject.com/conduct/reporting/]
and
Django’ Enforcement Manual [https://www.djangoproject.com/conduct/enforcement-manual/]

Changes made to the original doc: Instead of involving a board as DSF has,
the core team at Learning Equality is considered. Instead of IRC, we refer to
Slack. The Code of Conduct Committee does not have a single chair but acts as
a group to make conflicts of interest easier, and to avoid problems in case of
absence of the chair person. Instead of interchanging “working group” and
“committee” notation, we replaced all occurrences of “working group” and “group”
with “committee”.

Contributing

Code of conduct

	Reporting Guidelines

	Enforcement Manual

	Attribution

Front-end Asset Loading

Asset pipelining is done using Webpack - this allows the use of require to import modules - as such all written code should be highly modular, individual files should be responsible for exporting a single function or object.

There are two distinct entities that control this behaviour - a Kolibri Hook on the Python side, which manages the registration of the frontend code within Django (and also facilitates building of that code into compiled assets with Webpack) and a Kolibri Module (a subclass of KolibriModule) on the JavaScript side (see frontend).

Kolibri has a system for synchronously and asynchronously loading these bundled JavaScript modules which is mediated by a small core JavaScript app, kolibriGlobal. Kolibri Modules define to which events they subscribe, and asynchronously registered Kolibri Modules are loaded by kolibriGlobal only when those events are triggered. For example if the Video Viewer’s Kolibri Module subscribes to the content_loaded:video event, then when that event is triggered on kolibriGlobal it will asynchronously load the Video Viewer module and re-trigger the content_loaded:video event on the object the module returns.

Synchronous and asynchronous loading is defined by the template tag used to import the JavaScript for the Kolibri Module into the Django template. Synchronous loading merely inserts the JavaScript and CSS for the Kolibri Module directly into the Django template, meaning it is executed at page load.

This can be achieved in two ways using tags defined in kolibri/core/webpack/templatetags/webpack_tags.py.

The first way is simply by using the webpack_asset template tag.

The second way is if a Kolibri Module needs to load in the template defined by another plugin or a core part of Kolibri, a template tag and hook can be defined to register that Kolibri Module’s assets to be loaded on that page. An example of this is found in the base.html template using the webpack_base_assets tag.

This relies on the following function to collect all registered Kolibri Modules and load them synchronously: kolibri.core.webpack.utils.webpack_asset_render

Asynchronous loading can also, analogously, be done in two ways. Asynchronous loading registers a Kolibri Module against kolibriGlobal on the frontend at page load, but does not load, or execute any of the code until the events that the Kolibri Module specifies are triggered. When these are triggered, the kolibriGlobal will load the Kolibri Module and pass on any callbacks once it has initialized. Asynchronous loading can be done either explicitly with a template tag that directly imports a single Kolibri Module using webpack_base_async_assets.

Server-Client Communication

Server API

The Kolibri server represents data as Django Models. These models are defined in models.py files, which can be found in the folders of the different Django apps/plugins.

In Django, Model data are usually exposed to users through webpages that are generated by the Django server. To make the data available to the Kolibri client, which is a single-page app, the Models are exposed as JSON data through a REST API provided by the Django REST Framework (DRF).

In the api.py files, Django REST framework ViewSets are defined which describe how the data is made available through the REST API. Each ViewSet also requires a defined Serializer, which describes the way in which the data from the Django model is serialized into JSON and returned through the REST API. Additionally, optional filters can be applied to the ViewSet which will allow queries to filter by particular features of the data (for example by a field) or by more complex constraints, such as which group the user associated with the data belongs to. Permissions can be applied to a ViewSet, allowing the API to implicitly restrict the data that is returned, based on the currently logged in user.

Finally, in the api_urls.py file, the ViewSets are given a name (through the base_name keyword argument), which sets a particular URL namespace, which is then registered and exposed when the Django server runs. Sometimes, a more complex URL scheme is used, as in the content core app, where every query is required to be prefixed by a channel id (hence the <channel_id> placeholder in that route’s regex pattern)

api_urls.py

router = routers.SimpleRouter()
router.register('content', ChannelMetadataCacheViewSet, base_name="channel")

content_router = routers.SimpleRouter()
content_router.register(r'contentnode', ContentNodeViewset, base_name='contentnode')
content_router.register(r'file', FileViewset, base_name='file')

urlpatterns = [
 url(r'^', include(router.urls)),
 url(r'^content/(?P<channel_id>[^/.]+)/', include(content_router.urls)),
]

Client Resource Layer

To access this REST API in the frontend Javascript code, an abstraction layer has been written to reduce the complexity of inferring URLs, caching resources, and saving data back to the server.

Resources

In order to access a particular REST API endpoint, a Javascript Resource has to be defined, an example is shown here

channel.js

const Resource = require('kolibri.lib.apiResource').Resource;

class ChannelResource extends Resource {
 static resourceName() {
 return 'channel';
 }
}

module.exports = ChannelResource;

Here, the resourceName static method must return 'channel' in order to match the base_name assigned to the /content endpoint in api_urls.py.

However, in the case of a more complex endpoint, where arguments are required to form the URL itself (such as in the contentnode endpoints above) - we can add additional required arguments with the resourceIdentifiers static method return value

contentNode.js

const Resource = require('kolibri.lib.apiResource').Resource;

class ContentNodeResource extends Resource {
 static resourceName() {
 return 'contentnode';
 }
 static idKey() {
 return 'pk';
 }
 static resourceIdentifiers() {
 // because ContentNode resources are accessed via
 // /api/content/<channel_id>/contentnode/<pk>
 return [
 'channel_id',
];
 }
}

module.exports = ContentNodeResource;

If this resource is part of the core app, it can be added to a global registry of resources inside kolibri/core/assets/src/api-resources/index.js. Otherwise, it can be instantiated as needed, such as in the coach reports module

const ContentSummaryResourceConstructor = require('./apiResources/contentSummary');
const ContentSummaryResource = new ContentSummaryResourceConstructor(coreApp);

First the constructor is imported from the require file, and then an instance is created - with a reference to the Kolibri core app module passed as the only argument.

Models

The instantiated Resource can then be queried for client side representations of particular information. For a representation of a single server side Django model, we can request a Model from the Resource, using getModel

// corresponds to resource address /api/content/<channelId>/contentnode/<id>
const contentModel = ContentNodeResource.getModel(id, { channel_id: channelId });

The first argument is the database id (primary key) for the model, while the second argument defines any additional required resourceIdentifiers that we need to build up the URL.

We now have a reference for a representation of the data on the server. To ensure that it has data from the server, we can call .fetch on it which will resolve to an object representing the data

contentModel.fetch().then((data) => {
 logging.info('This is the model data: ', data);
});

The fetch method returns a Promise which resolves when the data has been successfully retrieved. This may have been due to a round trip call to the REST API, or, if the data has already been previously returned, then it will skip the call to the REST API and return a cached copy of the data.

If you want to pass additional GET parameters to the REST API (to only return a limited set of fields, for example), then you can pass GET parameters in the first argument

contentModel.fetch({ title: true }).then((data) => {
 logging.info('This is the model data: ', data);
});

If it is important to get data that has not been cached, you can call the fetch method with a force parameter

contentModel.fetch({}, true).then((data) => {
 logging.info('This is definitely the most up to date model data: ', data);
});

Collections

For particular views on a data table (which could range from ‘show me everything’ to ‘show me all content nodes with titles starting with “p”’) - Collections are used.
Collections are a cached view onto the data table, which are populated by Models - so if a Model that has previously been fetched from the server by a Collection is requested from getModel, it is already cachced.

The first argument defines any additional required resourceIdentifiers that we need to build up the URL, while the second argument defines the GET parameters that are used to define the filters to be applied to the data and hence the subset of the data that the Collection represents.

We now have a reference for a representation of this data on the server. To ensure that it has data from the server, we can call fetch on it, this will resolve to an array of the returned data objects

contentCollection.fetch().then((dataArray) => {
 logging.info('This is the model data: ', dataArray);
});

The fetch method returns a Promise which resolves when the data has been successfully retrieved. This may have been due to a round trip call to the REST API, or, if the data has already been previously returned, then it will skip the call to the REST API and return a cached copy of the data.

If you want to pass additional GET parameters to the REST API (to only return a limited set of fields, for example), then you can pass GET parameters in the first argument

// GET /api/content/<channelId>/contentnode/?popular=1&title=true
contentCollection.fetch({ title: true }).then((dataArray) => {
 logging.info('This is the model data: ', dataArray);
});

If it is important to get data that has not been cached, you can call the fetch method with a force parameter

contentCollection.fetch({}, true).then((dataArray) => {
 logging.info('This is the model data: ', dataArray);
});

Data Flow Diagram

[image: ../_images/full_stack_data_flow.svg]

Files and Directories

	.cache/…

	Testing-related, and ignored by git. TODO - what does it contain?

	.eggs/…

	Packaging-related, and ignored by git. TODO - what does it contain?

	.github/…

	These are files used by GitHub [https://help.github.com/articles/helping-people-contribute-to-your-project/] to generate templates for things like new pull requests and issues.

	.tox/…

	Tox [https://tox.readthedocs.io/en/latest/] is a tool for testing software in a range of environments - for example using different versions of Python and Node.

This directory is ignored by git.

TODO - what does it contain?

	dist-packages-cache

	Packaging-related, and ignored by git. TODO - what does it contain?

	dist-packages-temp

	Packaging-related, and ignored by git. TODO - what does it contain?

	docs/…

	reStructuredText-based documentation, along with Sphinx-based build code [http://www.sphinx-doc.org/en/stable/]

	frontend_build/…

	Code for integrating Kolibri’s plugin system with webpack [https://webpack.github.io/] instrumentation for bundling client-side dependencies.

	karma_config/…

	Configuration for Karma [https://karma-runner.github.io/0.13/index.html], our client-side unit test framework

	kolibri/…

	main code-base, a Django application

	requirements/…

	Python dependency files [https://pip.pypa.io/en/stable/user_guide/#requirements-files] for PIP

	test/…

	helper files for running tests in Travic CI [https://travis-ci.org/] TODO - is this correct?

	.editorconfig

	general editor configuration file [http://editorconfig.org/]

	.eslintrc.js

	configuration file for ESLint [http://eslint.org/], our client-side javascript linter

	.gitignore

	standard .gitignore file [https://git-scm.com/docs/gitignore]

	.htmlhintrc

	configuration for our HTML linter, HTMLHint [http://htmlhint.com/]

	.pre-commit-config.yaml

	configuration for our pre-commit [http://pre-commit.com/] hooks

	.stylintrc

	configuration for our Stylus [http://stylus-lang.com/] linter, Stylint [https://rosspatton.github.io/stylint/]

	.travis.yml

	configuration for Travis [https://docs.travis-ci.com/user/customizing-the-build/]

	AUTHORS.rst, CHANGELOG.rst, CONTRIBUTING.rst

	reStructuredText-formatted files. Also imported by the generated /docs

	LICENSE

	plain-text license files

	Makefile

	wrapper for some scripts, including building packages and docs

	MANIFEST.in

	list of non-python files to include in the Python package

	package.json

	javascript dependencies, helper scripts, and configuration

	pytest.ini

	configuration file for pytest [http://pytest.org/latest/]

	pytest_runner-2.7.1-py2.7.egg

	?

	README.rst

	reStructuredText-formatted file readme

	requirements.txt

	Python PIP dependency requirements, simply redirects to requirements/base.txt

	setup.cfg

	?

	setup.py

	configuration for Python package related to setuptools [https://pythonhosted.org/an_example_pypi_project/setuptools.html]

	tox.ini

	configuration for our Tox test environments [https://tox.readthedocs.io/en/latest/]

Getting started

First of all, thank you for your interest in contributing to Kolibri! The project was founded by volunteers dedicated to helping make educational materials more accessible to those in need, and every contribution makes a difference. The instructions below should get you up and running the code in no time!

Setting up Kolibri for development

Most of the steps below require entering commands into your Terminal (Linux, Mac) or command prompt (cmd.exe on Windows) that you will learn how to use and become more comfortable with.

Tip

In case you run into any problems during these steps, searching online is usually the fastest way out: whatever error you are seeing, chances are good that somebody already had it in the past and posted a solution somewhere… ;)

Git & GitHub

	Install and set-up Git [https://help.github.com/articles/set-up-git/] on your computer. Try this tutorial [http://learngitbranching.js.org/] if you need more practice with Git!

	Sign up and configure your GitHub account [https://github.com/join] if you don’t have one already.

	Fork the main Kolibri repository [https://github.com/learningequality/kolibri]. This will make it easier to submit pull requests [https://help.github.com/articles/using-pull-requests/]. Read more details about forking [https://help.github.com/articles/fork-a-repo/] from GitHub.

Install Environment Dependencies

	Install Python [https://www.python.org/downloads/windows/] if you are on Windows, on Linux and OSX Python is preinstalled (recommended versions 2.7+ or 3.4+).

	Install pip [https://pypi.python.org/pypi/pip] package installer.

	Install Node [https://nodejs.org/en/] (version 6 is required).

	Install Yarn according the instructions specific for your OS [https://yarnpkg.com/en/docs/install/].

Note

	On Ubuntu install Node.js via nvm [https://github.com/creationix/nvm] to avoid build issues.

	On a Mac, you may want to consider using the Homebrew [http://brew.sh/] package manager.

Ready for the fun part in the Terminal? Here we go!

Checking out the code

	Make sure you registered your SSH keys on GitHub [https://help.github.com/articles/generating-ssh-keys].

	Clone your Kolibri fork to your local computer. In the following commands replace $USERNAME with your own GitHub username:

using SSH
git clone git@github.com:$USERNAME/kolibri.git
using HTTPS
git clone https://github.com/$USERNAME/kolibri.git

	Enable syncing your local repository with upstream, which refers to the Kolibri source from where you cloned your fork. That way you can keep it updated with the changes from the rest of Kolibri team contributors:

cd kolibri # Change into the newly cloned directory
git remote add upstream git@github.com:learningequality/kolibri.git # Add the upstream
git fetch upstream # Check if there are changes upstream
git checkout develop

Warning

develop is the active development branch - do not target the master branch.

Virtual environment

It is best practice to use Python virtual environment [https://virtualenv.pypa.io/en/latest/] to isolate the dependencies of your Python projects from each other. This also allows you to avoid using sudo with pip, which is not recommended.

You can learn more about using virtualenv [https://virtualenv.pypa.io/en/stable/userguide/], or follow these basic instructions:

Initial setup, performed once:

$ sudo pip install virtualenv # install virtualenv globally
$ mkdir ~/.venvs # create a common directory for multiple virtual environments
$ virtualenv ~/.venvs/kolibri # create a new virtualenv for Kolibri dependencies

Note

We create the virtualenv outside of the Kolibri project folder. You can choose another location than ~/.venvs/kolibri if desired.

To activate the virtualenv in a standard Bash shell:

$ source ~/.venvs/kolibri/bin/activate # activate the venv

Now, any commands run with pip will target your virtualenv rather than the global Python installation.

To deactivate the virtualenv, run the command below. Note, you’ll want to leave it activated for the remainder of project setup!

$ deactivate

Tip

	Users of Windows and other shells such as Fish should read the guide [https://virtualenv.pypa.io/en/stable/userguide/] for instructions on activating.

	If you set the PIP_REQUIRE_VIRTUALENV environment variable to true, pip will only install packages when a virtualenv is active. This can help prevent mistakes.

	Bash users might also consider using virtualenvwrapper [http://virtualenvwrapper.readthedocs.io/en/latest/index.html], which simplifies the process somewhat.

Install Project Dependencies

Note

Make sure your virtualenv is active!

To install Kolibri project-specific dependencies make sure you’re in the kolibri directory and run:

Python requirements
(kolibri)$ pip install -r requirements.txt
(kolibri)$ pip install -r requirements/dev.txt

Kolibri Python package in 'editable' mode, so your installation points to your git checkout:
(kolibri)$ pip install -e .

Javascript dependencies
(kolibri)$ yarn install

Tip

	We’ve adopted this concatenated version with added cleanup: make clean && pip install -r requirements.txt --upgrade && pip install -e . && yarn install.

	In case you get webpack compilation error with Node modules build failures, add the flag --force at the end, to ensure binaries get installed.

Running Kolibri server

Development server

To start up the development server and build the client-side dependencies, use the following command:

(kolibri)$ kolibri --debug manage devserver --webpack

Wait for the build process to complete. This takes a while the first time, will complete faster as you make edits and the assets are automatically re-built.

Now you should be able to access the server at http://127.0.0.1:8000/.

Tip

If you need to make the development server available through the LAN, you must leave out the --webpack flag, and use the following command:

(kolibri)$ yarn run build
(kolibri)$ kolibri --debug manage devserver -- 0.0.0.0:8000

Now you can simply use your server’s IP from another device in the local network through the port 8000, for example http://192.168.1.38:8000/.

Tip

If get an error similar to Node Sass could not find a binding for your current environment try running:

(kolibri)$ npm rebuild node-sass

More advanced examples of the devserver command:

runs the dev server and rebuild client assets when files change
kolibri --debug manage devserver --webpack

runs the dev server and re-run client-side tests when files changes
kolibri --debug manage devserver --karma

runs all of the above
kolibri --debug manage devserver --webpack --karma

Running the Production Server

In production, content is served through CherryPy. Static assets must be pre-built:

yarn run build
kolibri start

Now you should be able to access the server at http://127.0.0.1:8080/.

Contributing code to Kolibri

	Once you’ve toyed around with things, read through the rest of the Developer Guide, especially topics in Architecture and Themes to understand more about the Kolibri structure.

	When you’re up to speed with that, you’re probably itching to make some contributions! Head over to the issues page on GitHub [https://github.com/learningequality/kolibri/issues] and take a look at the current project priorities. Try filtering by milestone. If you find a bug in your testing, please submit your own issue [https://github.com/learningequality/kolibri/issues/new]

	Once you’ve identified an issue and you’re ready to start hacking on a solution, get ready to Submit Pull Requests!

Branching and Release Process

The develop branch is reserved for active development. When we get close to releasing a new stable version/release of Kolibri, we generally fork the develop branch into a new branch (like release-0.1.x). If you’re working on an issue tagged for example with the release-0.1.x milestone, then you should target changes to that branch. Changes to those branches will later be pulled into develop again. If you’re not sure which branch to target, ask the dev team!

Note

At a high level, we follow the ‘Gitflow’ model. Some helpful references:

	http://nvie.com/posts/a-successful-git-branching-model/

	https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow/

Submit Pull Requests

The most common situation is working off of develop branch so we’ll take it as an example:

$ git checkout upstream/develop
$ git checkout -b name-of-your-bugfix-or-feature

After making changes to the code, commit and push them to a branch on your fork:

$ git add -A # Add all changed and new files to the commit
$ git commit -m "Write here the commit message"
$ git push origin name-of-your-bugfix-or-feature

Go to Kolibri GitHub page [https://github.com/learningequality/kolibri], and if you are logged-in you will see the link to compare your branch and and create the new pull request. Please fill in all the aplicable sections in the PR template and DELETE unecessary headings. Another member of the team will review your code, and either ask for updates on your part or merge your PR to Kolibri codebase. Until the PR is merged you can push new commits to your branch and add updates to it.

Additional Recommended Setup

If you’re planning on contributing code to the project, there are a few additional steps you should consider taking.

Editor Config

We have a project-level .editorconfig file to help you configure your text editor or IDE to use our internal conventions.

Check your editor [http://editorconfig.org/#download] to see if it supports EditorConfig out-of-the-box, or if a plugin is available.

Front-end Dev Tools

If you’re working with front-end Vue.js and use Google Chrome Dev Tools, you may find the Vue.js devtools [https://chrome.google.com/webstore/detail/vuejs-devtools/nhdogjmejiglipccpnnnanhbledajbpd?hl=en] helpful

DB Setup

You can initialize the server using:

kolibri manage migrate

Pre-Commit Install

We use pre-commit [http://pre-commit.com/] to help ensure consistent, clean code. The pip package should already be installed from a prior setup step, but you need to install the git hooks using this command.

pre-commit install

Development

Linting

To improve build times, and facilitate rapid development, Javascript linting is turned off by default when you run the dev server. However, all frontend assets that are bundled will be linted by our Travis CI builds. It is a good idea, therefore, to test your linting before submitting code for PR. To run the devserver in this mode you can run the following command.

kolibri --debug manage devserver --webpack --lint

Code Testing

Kolibri comes with a Python test suite based on py.test. To run tests in your current environment:

pytest # alternatively, "make test" does the same

You can also use tox to setup a clean and disposable environment:

tox -e py3.4 # Runs tests with Python 3.4

To run Python tests for all environments, lint and documentation tests, use simply tox. This simulates what our CI also does.

To run Python linting tests (pep8 and static code analysis), use tox -e lint or
make lint.

Note that tox, by default, reuses its environment when it is run again. If you add anything to the requirements, you will want to either delete the .tox directory, or run tox with the -r argument to recreate the environment.

We strive for 100% code coverage in Kolibri. When you open a Pull Request, code coverage (and your impact on coverage) will be reported. To test code coverage locally, so that you can work to improve it, you can run the following:

tox -e py3.4
coverage html

Then, open the generated ./htmlcov/index.html file in your browser.

Kolibri comes with a Javascript test suite based on mocha. To run all tests:

yarn test

This includes tests of the bundling functions that are used in creating front end assets. To do continuous unit testing for code, and jshint running:

yarn run test-karma:watch

Alternatively, this can be run as a subprocess in the development server with the following flag:

kolibri --debug manage devserver --karma

You can also run tests through Django’s test management command, accessed through the kolibri command:

kolibri manage test

To run specific tests only, you can add --, followed by a label (consisting of the import path to the test(s) you want to run, possibly ending in some subset of a filename, classname, and method name). For example, the following will run only one test, named test_admin_can_delete_membership in the MembershipPermissionsTestCase class in kolibri/auth/test/test_permissions.py:

kolibri manage test -- kolibri.auth.test.test_permissions.MembershipPermissionsTestCase.test_admin_can_delete_membership

Updating Documentation

First, install some additional dependencies related to building documentation output:

pip install -r requirements/docs.txt
pip install -r requirements/build.txt

To make changes to documentation, edit the rst files in the kolibri/docs directory and then run:

make docs

You can also run the auto-build for faster editing from the docs directory:

cd docs
sphinx-autobuild --port 8888 . _build

Manual Testing

All changes should be thoroughly tested and vetted before being merged in. Our primary considerations are:

	Performance

	Accessibility

	Compatibility

	Localization

	Consistency

For more information, see the next section on Manual Testing & QA.

Glossary

Words with special meanings in the Kolibri ecosystem.

	App

	A Kolibri ‘app’ is a special sort of plugin which provides a top-level URL and a self-contained single-page javascript application. Each app attaches a single root view component to the HTML returned by a skeleton Django template.

Examples of apps are the Learn, Admin, and Coach Reports apps.

	Bundle

	‘Bundle’ is a webpack term, referring to a collection of client-side assets. See Front-end Asset Loading for more info.

	Component

	A ‘view component’ is a composable UI element on the client-side, defined using Vue.js components.

Components are defined using using HTML, other components, styling, internationalized text, internal logic, and – if necessary – internal state. Every component has an interface defined by its input parameters, events, and slots that can take arbitrary HTML to render in itself.

See frontend for more info.

	Hook

	A ‘hook’ is the server-side mechanism by which plugins interact with each other and with the core app. Hooks allow behaviors and interactions to be defined abstractly by Kolibri core and then implemented concretely by plugins.

See plugins for more info.

	Plugin

	Kolibri ‘plugins’ define both functionality client- and server-side functionality. They can be enabled and disabled on a per-installation basis. Plugins are decoupled from each other, but are dependent on the core Kolibri application.

In theory, any plugin can be disabled and the application should still function without error, albeit limited functionality.

Examples of plugins include the Learn application, and a content renderer for vector video.

See plugins for more info.

Developer Guide

	Getting started

	Manual Testing & QA

Architecture

	Distribution and installers

	Project Conventions

	Front-end Architecture

	Git workflow

	i18n

	Plugins

	Release Process

	Tech Stack

	Tests

	Version numbers

Themes

	Content

	Server-Client Communication

	Users, Authentication, and Permissions

	User Management

	Front-end Asset Loading

	User Logs

References

	Upgrading

	Files and Directories

	Glossary

Manual Testing & QA

Accessibility (A11y) Testing

Inclusive design benefits all users, and we strive to make Kolibri accessible for all. Testing for accessibility can be challenging, but there are a few features you should check for before submitting your PR:

	Working keyboard navigation - everything that user can do with mouse or by touch must also work with the keyboard alone [http://webaim.org/techniques/keyboard/].

	Sufficient color contrast [http://a11yproject.com/posts/what-is-color-contrast/] between foreground text/elements and the background.

	Meaningful text alternative for all non-decorative images, or an empty ALT attribute in case of decorative ones.

	Meaningful labels on ALL form or button elements [http://accessibility.psu.edu/forms/].

	Page has one main heading (H1) and consecutive lower heading levels [http://accessiblehtmlheadings.com/].

Here are a few tools that we use in testing for accessibility:

	WAVE Evaluation Tool - Firefox Add-on [https://addons.mozilla.org/en-US/firefox/addon/wave-accessibility-tool/] and Chrome extension [https://chrome.google.com/webstore/detail/wave-evaluation-tool/jbbplnpkjmmeebjpijfedlgcdilocofh].

	tota11y [http://khan.github.io/tota11y/] accessibility visualization toolkit - bookmarklet for Firefox and Chrome.

	Accessibility Developer Tools [https://chrome.google.com/webstore/detail/accessibility-developer-t/fpkknkljclfencbdbgkenhalefipecmb] - Chrome extension.

	aXe Accessibility Engine - Firefox Add-on [https://addons.mozilla.org/en-us/firefox/addon/axe-devtools/] and Chrome extension [https://chrome.google.com/webstore/detail/axe/lhdoppojpmngadmnindnejefpokejbdd].

There is a much longer list on our Kolibri Accessibility Tools Wiki page [https://github.com/learningequality/kolibri/wiki/Accessibility-Resources-(Tools)] if you want to go deeper, but these four should be enough to help you avoid the most important accessibility pitfalls.

Cross-browser and OS Testing

It’s vital to ensure that our app works across a wide range of browsers and operating systems, particularly older versions of Windows and Android that are common on old and cheap devices.

In particular, we want to ensure that Kolibri runs on major browsers that match any of the following criteria [http://browserl.ist/?q=%3E+1%25%2C+last+2+versions%2C+ie+%3E%3D+9%2C+Firefox+ESR]:

	within the last two versions

	IE 9+ on Windows XP and up

	has at least 1% of global usage stats

Here are some useful options, in order of simplicity:

BrowserStack

BrowserStack [https://www.browserstack.com/] is an incredibly useful tool for cross-browser and OS testing. In particular, it’s easy to install plugin which forwards localhost to a VM running on their servers, which in turn is displayed in your browser.

Amazon Workspaces

In some situations, simply having a browser is not enough. For example, a developer may need to test Windows-specific backend or installer code from another OS. In many situations, a virtual machine is appropriate - however these can be slow to download and run.

Amazon’s AWS Workspaces [https://aws.amazon.com/workspaces/] provides a faster alternative. They run Windows VMs in their cloud, and developers can RDP in.

Local Virtual Machines

Workspaces is very useful, but it has limitations: only a small range of OSes are available, and connectivity and provisioning are required.

An alternative is to run the guest operating system inside a virtual machine using e.g. VirtualBox [https://www.virtualbox.org/wiki/Downloads]. This also gives more developer flexibility, including e.g. shared directories between the guest and host systems. This tutorial [https://docs.google.com/document/d/10LgeCJmqsweui0yTTCDf4DjY5aoNNpXG8hF_DGKUHAI/edit] was written for KA Lite, but much of it still applies to Kolibri.

Hardware

There are some situations where actual hardware is necessary to test the application. This is particularly true when virtualization might prohibit or impede testing features, such as lower-level driver interactions.

Responsiveness to Varying Screen Sizes

We want to ensure that the app looks and behaves reasonably across a wide range of typical screen sizes, from small tablets to large, HD monitors. It is highly recommended to constantly be testing functionality at a range of sizes.

Chrome and Firefox’s Developer Tools both have some excellent functionality to simulate arbitrary screen resolutions.

Slow Network Connection Speeds

It’s important to simulate end-users network conditions. This will help identify real-world performance issues that may not be apparent on local development machines.

Chrome’s Developer Tools have functionality to simulate a variety of network connections, including Edge, 3G, and even offline. An app can be loaded into multiple tabs, each with its own custom network connectivity profile. This will not affect traffic to other tabs.

Within the Chrome Dev Tools, navigate to the Network panel. Select a connection from the drop-down to apply network throttling and latency manipulation. When a Throttle is enabled the panel indicator will show a warning icon. This is to remind you that throttling is enabled when you are in other panels.

For Kolibri, our target audience’s network condition can be mimicked by setting connectivity to Regular 3G (100ms, 750kb/s, 250 kb/s).

Performance Testing with Django Debug Panel

We have built in support for Django Debug Panel (a Chrome extension that allows tracking of AJAX requests to Django).

To use this, ensure that you have development dependencies installed, and install the Django Debug Panel Chrome Extension [https://chrome.google.com/webstore/detail/django-debug-panel/nbiajhhibgfgkjegbnflpdccejocmbbn]. You can then run the development or production servers with the following environment variable set:

DJANGO_SETTINGS_MODULE=kolibri.deployment.default.settings.debug_panel

This will activate the debug panel, and will display in the Dev tools panel of Chrome. This panel will track all page loads and API requests. However, all data bootstrapping into the template will be disabled, as our data bootstrapping prevents the page load request from being profiled, and also does not profile the bootstrapped API requests.

Generating User Data

For manual testing, it is sometimes helpful to have generated user data, particularly for Coach and Admin facing functionality.

In order to do this, a management command is available:

kolibri manage generateuserdata

This will generate user data for the each currently existing channel on the system. Use the –help flag for options.

Upgrading

Warning

These instructions are under development

Upgrade paths

Kolibri can be automatically upgraded forwards. For instance, you can upgrade
from 0.1->0.2 and 0.1->0.7. We test all upgrade paths, but we also
caution that the more versions that you skip, the higher the risks will be
that something isn’t working as expected.

That’s why we also support Downgrading.

Every time Kolibri is upgraded, it will automatically migrate your database
and create a backup before doing so.

Note

Always upgrade as often as possible. If you are responsible for
deployments at different sites, you should consider a strategy for keeping
software and contents updated.

Downgrading

To downgrade you need to do two steps:

	If you have been using the latest version and want to store data, make sure
to create a backup before continuing: kalite manage dbbackup

	Install the older version on top of the new version using the same
installation type.

	Restore the latest Database backup.

When you upgrade Kolibri, the database is changed to match the latest version
of Kolibri, however these changes cannot be unmade. That’s why you need to
restore the database from a backup.

Database backup

While upgrading, Kolibri will automatically generate a backup of the
database before making any changes. This guarantees that in case the upgrade
causes problems, you can downgrade and restore the backup.

Backups

Kolibri stores database backups in ~/.kolibri/backups. The dump files
created contain SQL statements to be run by SQLite3. You can re-instate a
dump by using the special dbrestore command.

Restoring from backup

Warning

Restoring from backup will overwrite the current database, so
store a backup in case you have data you want to preserve!

To restore from the latest available backup, run the following from command
line:

$ kolibri manage dbrestore --latest

To restore from a specific backup file:

$ kolibri manage dbrestore /path/to/db-backup.dump

User Management

For now, this is a high-level spec that identifies the major components of a work-in-progress part of Kolibri.
It is a mixture of a descriptive specification for an app, as well as how it interacts with the kolibri.auth
back-end layer below it.
Eventually, it could serve as a user manual.

The User Management allows a user with sufficient permissions to do a number of things related to managing accounts
and roles. It’s divided into two distinct sections

Learner Management

Learner Management provides an interface for:

	Viewing Classrooms and Learner Groups and a list of the learners they contain.

	Creating new Classrooms.

	Creating new Learner Groups.

	Creating new user accounts and assigning them to Classrooms and Learner Groups.

	Assigning existing accounts individually or in batches to Classrooms and Learner Groups.

	Editing a learner’s details, including resetting their password.

The main interface of the Learner Management app is currently described in the mailing list thread “Learner Management
app in Kolibri”. We assume the session user (the user who is visiting Learner Management) has write permissions for any
object represented in the Learner Management interface. For example, only classrooms and learner groups for which the
user has write permissions will be displayed in the Classroom and Group Selectors. In practice this could mean that
when the page loads a list of classrooms for which the session user is either a coach or admin will be fetched.
At the time of this writing, the only source to determine which users enjoy which permissions is the kolibri.auth
test suite.

Note

Roadmap:
Moving forward, we are making digital prototypes for Learner Management. The aim is to get quality feedback from
likely users to inform the design. IMO it is premature to consider a design as stable prior to such feedback.
Role Management should be given a similar treatment – quickly create digital prototypes and get quality feedback.

Learner Management has several conceptual parts. These may not reflect how they’re divided as Vue components, so I try
to reference the current implementation below. The application corresponds to management/assets/app-root.vue and has
several subcomponents.

Learner Roster

Displays a list of learners determined by the current selectors and filters. Will update automatically based on user
interaction with the selectors and filters. Each item in this list corresponds to a learner and has:

	A checkbox for bulk-selecting learners. Selecting multiple learners enables some actions described below.

	A last name, first name clickable link. Doing so summons a detail view modal for the learner.

	A manage button which summons a class and group management modal for that student.

Note

The roster described here corresponds to user-page.vue.

The detail view modal displays learner account data and provides a mechanism to reset a learner’s password.

The class and group management modal displays a list classrooms to which the student belongs. Each classroom has a
dropdown menu for assinging that learner to a specific group within that classroom. Additionally each classroom has a
checkbox for bulk-selection. Bulk-selecting permits the session user to remove the learner from the selected clasrooms.
Clicking “add” reveals classrooms to which the user doesn’t already belong. The learner may be added to those
classrooms by selecting them with the corresponding checkboxes, and simultaneously select a group through the
associated group dropdown.

Note

UI simplification:
There are a number of simplifying assumptions made here. For one, kolibri.auth permits a learner to belong to
multiple groups within a classroom. Here we only allow a learner to belong to one group per classroom in order to
simplify the UI.

Note

UI simplification:
Secondly, kolibri.auth has no notion of being “ungrouped”. The kolibri.auth module defines a Membership model that
associates users to Learner Group and Classroom models. For the purposes of this app, when a learner is assigned to
a group, then a Membership object to the underlying Learner Group object is created. Membership in a Learner Group
implies the user is a member of the containing Classroom as well. When a learner is assigned to the “Ungrouped”
group of a Classroom, it correponds to creating a Membership object associated with the Classroom. In all cases
re-assigning a user to a different group should both destroy the existing Membership object and create a new one.

Warning

Roadmap:
I consider the detail view and class and group management modals to be somewhat unsettled prior to getting quality
user feedback.

Selectors and filters

The UI allows the list of learner in the roster to be filtered. This includes:

	A classroom selector. This is populated by a list of classrooms for which the session user has write permissions,
and the special option “All classrooms”. The list of learners is filtered to only show learners who are members of
the selected classroom, or all learners if “All classrooms” is selected.

	A group selector. This is disabled if “All classrooms” is selected. Otherwise it is populated with the list of
Learner Groups in the classroom with the special option “All groups”. This filters the list of learner analogously
to the classroom selector.

	Potentially other filters, for example listing learners in alphabetical or reverse-alphabetical order.

Miscellaneous widgets

Next to the classroom and group selectors are “add” and “remove” buttons. Clicking “add” summons a modal form for
creating a new classroom and a new learner group within the currently selected classroom, respectively. The “add”
button for groups is disabled if “All classrooms” is selected. Clicking “remove” deletes the currently selected
classroom or learner group, respectively. The corresponding “delete” button is disabled if “All classrooms” or
“All groups” is selected.

Space is reserved next to the roster for an information panel to display elaborating information based on the current
selection. Right now it includes only the total # of students which match the criteria determined by the selectors
and filters.

Facility Management

Facility Management (previously referred to as Role Management) will provide an interface for managing user Roles in
a Facility. Users may multiply possess Coach and Admin roles for a Facility or Classrooms within a Facility.

Kolibri user data is fundamentally divided into Facilities – a user who belongs to one Facility can never see or
interact with user account data from another Facility. However Kolibri provides another user type, called a Device
Owner. Device Owners differ from Facility Users in the following ways:

	Device Owners are not syncable from device to device – this account type belongs to one physical machine only.
In contrast, Facility Users account and their associated data are syncable.

	Device Owners enjoy every permission. They can be considered Admins for every Facility on the device.

	Device Owners may see and edit all Facilities on their Device, including choosing which Facility data sets are
present on a physical device.

The purview of the Facility Management app is to allow users to give and revoke the Coach and Admin roles for the
Facility they belong to and the various Classrooms in that Facility. Moreover the functionality of the app is slightly
differnt if the session user is a device owner:

	If the session user is a Device Owner, the user may select which Facility to manage. Facility Users may only manage
their own Facility.

	A Device Owner may edit or delete a Facility. Editing a Facility can change it’s details like name, description,
etc. Deleting a Facility does not destroy it – it is just removed from that device, so that Facility Users tied to
that Facility may no longer log in.

Note

Roadmap:
Jessica has begun designing this. See
the invision prototype. [https://projects.invisionapp.com/share/YJ75P75QH]

Distribution and installers

The Kolibri Package build pipeline looks like this:

 Git master branch
 |
 |
 / \
 / \
Python dist, online dependencies \
 `python setup.py bdist_wheel` \
 / \
 / Python dist, bundled dependencies
 Upload to PyPi `python setup.py bdist_wheel --static`
 Installable with \
 `pip install kolibri` \
 Upload to PyPi
 Installable with
 `pip install kolibri-static`
 / | \
 / | \
 Windows OSX Debian
 installer installer installer

Make targets

To build both the slim Kolibri and the one with bundled dependencies, simply
run make dist. The .whl files will now be available in dist/*whl
and you can install them with pip install dist/filename.whl.

Automated CI tests

If you add [setup] to your commit message, our CI will automatically test
that builds work.

Otherwise, changes to certain files like requirements/* and setup.py
will automatically prompt test builds to fire.

Project Conventions

TODO

Documentation

reStructuredText, docstrings, requirements for PRs to master…

Git Workflow

stable master, develop, feature branches, tags, releases, hot fixes, internal vs external repos…

Python Code

PEP8, additional conventions and best practices…

Vue.js Components

Note that the top-level tags of Vue.js components [https://vuejs.org/guide/components.html] are <template>, <script>, and <style>.

	Whitespace

	an indent is 2 spaces

	two blank lines between top-level tags

	one blank line of padding within a top-level tag

	one level of indent for the contents of all top-level tags

	Keep most child-components stateless. In practice, this means using props but not data.

	Avoid using Vue.js’ camelCase-to-kebab-case mapping. Instead, use square brackets and strings to reference names.

	Use scoped styles where ever possible

	Name custom tags using kebab-case

	Components are placed in the vue directory. The root component file is called vue/index.vue, and is mounted on a tag called <rootvue>.

	Components are defined either as a file with a .vue extension (my-component.vue) or as a directory with an index.vue file (my-component/index.vue). Both forms can be used with require('my-component').

	Put child components inside the directory of a parent component if they are only used by the parent. Otherwise, put shared child components in the vue director.

	Any user visisble interface text should be rendered translatable, see i18n for details.

JavaScript Code

	We use the AirBnB Javascript Style guide [https://github.com/airbnb/javascript] for client-side ES6 code in Vue components.

	use strict is automatically inserted.

	Use ES6 import/export statements, not CommonJS-style require and module.exports statements.

	For logging statements we use a thin wrapper around the log-level JS library, that prefixes the log statements with information about the logging level and current file. To access the logger, simply include the following code snippet:

import logger from 'kolibri.lib.logging';

const logging = logger.getLogger(__filename);

Stylus and CSS

	clear out unused styles

	avoid using classes as JS identifiers, and prefix with js- if necessary

HTML

attribute lists, semantic structure, accessibility…

Front-end Architecture

Components

We leverage Vue.js components [https://vuejs.org/guide/components.html] as the primary building blocks for our UI. For general UI development work, this is the most common tool a developer will use. It would be prudent to read through the Vue.js guide [https://vuejs.org/guide/] thoroughly.

Each component contains HTML with dynamic Vue.js directives, styling which is scoped to that component (written using Stylus [http://stylus-lang.com/]), and logic which is also scoped to that component (all code, including that in Vue components should be written using Bublé compatible ES2015 JavaScript [https://buble.surge.sh/guide/#supported-features]). Non-scoped styles can also be added, but these should be carefully namespaced.

Components allow us to define new custom tags that encapsulate a piece of self-contained, re-usable UI functionality. When composed together, they form a tree structure of parents and children. Each component has a well-defined interface used by its parent component, made up of input properties [https://vuejs.org/guide/components.html#Props], events [https://vuejs.org/guide/components.html#Custom-Events] and content slots [https://vuejs.org/guide/components.html#Content-Distribution-with-Slots]. Components should never reference their parent.

Read through Project Conventions for some important consistency tips on writing new components.

Layout of Frontend Code

Front-end code and assets are generally contained in one of two places: either in one of the plugin subdirectories (under kolibri/plugins) or in kolibri/core, which contains code shared across all plugins as described below.

Within these directories, there should be an assets directory with src and test under it. Most assets will go in src, and tests for the components will go in test.

For example:

kolibri/
 core/ # core (shared) items
 assets/
 src/
 core-base.vue # global base template, used by apps
 core-modal.vue # example of another shared component
 core-global.styl # globally defined styles, indluded in head
 core-theme.styl # style variable values
 font-NotoSans.css # embedded font
 test/
 ... # tests for core assets
 plugins/
 learn # learn plugin
 assets/
 src/
 vue/
 index.vue # root view
 some-page.vue # top-level client-side page
 another-page/ # top-level client-side page
 index.vue
 child.vue # child component used only by parent
 shared.vue # shared across this plugin
 app.js # instantiate learn app on client-side
 router.js
 store.js
 test/
 app.js
 management/
 assets/
 src/
 vue/user-page.vue # nested-view
 vue/index.vue # root view
 app.js # instantiate mgmt app on client-side
 test/
 app.js

In the example above, the vue/another-page/index.vue file in learn can use other assets in the same directory (such as child.vue), components in vue (such as shared.vue), and assets in core (such as variables in core-theme.styl). However it cannot use files in other plugin directories (such as management).

Note

For many development scenarios, only files in these directories need to be touched.

There is also a lot of logic and configuration relevant to front-end code loading, parsing, testing, and linting. This includes webpack, NPM, and integration with the plugin system. This is somewhat scattered, and includes logic in frontend_build/…, package.json, kolibri/core/webpack/…, and other locations. Much of this functionality is described in other sections of the docs (such as asset_loading), but it can take some time to understand how it all hangs together.

SVG Icons

SVGs can be inlined into Vue components using a special syntax:

<svg src="icon.svg"></svg>

Then, if there is a file called icon.svg in the same directory, that file will be inserted directly into the outputted HTML. This allows aspects of the icon (e.g. fill) to be styled using CSS.

Attributes (such as vue directives like v-if and SVG attributes like viewbox) can also be added to the svg tag.

Single-page Apps

The Kolibri front-end is made of a few high-level “app” plugins, which are single-page JS applications (conventionally app.js) with their own base URL and a single root Vue.js component. Examples of apps are ‘Learn’ and ‘User Management’, as shown in the example above. Apps are independent of each other, and can only reference components and styles from within themselves and from core.

Each app is implemented as a Kolibri plugin and is defined in a subdirectory of kolibri/plugins.

On the Server-side, the kolibri_plugin.py file describes most of the configuration for the single-page app. In particular, this includes the base Django HTML template to return (with an empty <body>), the URL at which the app is exposed, and the javascript entry file which is run on load.

On the client-side, the app creates a single KolibriModule object in the entry file (conventionally app.js) and registers this with the core app, a global variable called kolibriGlobal. The Kolibri Module then mounts single root component to the HTML returned by the server, which recursively contains all additional components, html and logic.

Defining a New Kolibri Module

Note

This section is mostly relevant if you are creating a new app or plugin. If you are just creating new components, you don’t need to do this.

A Kolibri Module is initially defined in Python by sub-classing the WebpackBundleHook class (in kolibri.core.webpack.hooks). The hook defines the JS entry point (conventionally called app.js) where the KolibriModule subclass is instantiated, and where events and callbacks on the module are registered. These are defined in the events and once properties. Each defines key-value pairs of the name of an event, and the name of the method on the KolibriModule object. When these events are triggered on the Kolibri core JavaScript app, these callbacks will be called. (If the KolibriModule is registered for asynchronous loading, the Kolibri Module will first be loaded, and then the callbacks called when it is ready. See asset_loading for more information.)

All apps should extend the KolibriModule class found in kolibri/core/assets/src/kolibri_module.js.

The ready method will be automatically executed once the Module is loaded and registered with the Kolibri Core App. By convention, JavaScript is injected into the served HTML after the <rootvue> tag, meaning that this tag should be available when the ready method is called, and the root component (conventionally in vue/index.vue) can be mounted here.

Content Renderers

A special kind of Kolibri Module is dedicated to rendering particular content types. All content renderers should extend the ContentRendererModule class found in kolibri/core/assets/src/content_renderer_module.js. In addition, rather than subclassing the WebpackBundleHook class, content renderers should be defined in the Python code using the ContentRendererHook class defined in kolibri.content.hooks. In addition to the standard options for the WebpackBundleHook, the ContentRendererHook also accepts a json file defining the content types that it renders:

.. automodule:: kolibri.content.hooks

	members

	

	noindex

	

The ContentRendererModule class has one required property getRendererComponent which should return a Vue component that wraps the content rendering code. This component will be passed defaultFile, files, supplementaryFiles, and thumbnailFiles props, defining the files associated with the piece of content.

{
 props: [
 'defaultFile',
 'files',
]
};

In order to log data about users viewing content, the component should emit startTracking, updateProgress, and stopTracking events, using the Vue $emit method. startTracking and stopTracking are emitted without any arguments, whereas updateProgress should be emitted with a single value between 0 and 1 representing the current proportion of progress on the content.

this.$emit('startTracking');
this.$emit('stopTracking');
this.$emit('updateProgress', 0.25);

For content that has assessment functionality two additional props will be passed: itemId and answerState. itemId is a unique identifier for that content for a particular question in the assessment, answerState is passed to prefill an answer (one that has been previously given on an exam, or for a coach to preview a learner’s given answers). The answer renderer should also define a checkAnswer method in its component methods, this method should return an object with the following keys: correct, answerState, and simpleAnswer - describing the correctness, an object describing the answer that can be used to reconstruct it within the renderer, and a simple, human readable answer. If no valid answer is given, null should be returned. In addition to the base content renderer events, assessment items can also emit a hintTaken event to indicate that the user has taken a hint in the assessment, an itemError event to indicate that there has been an error in rendering the requested question corresponding to the itemId, and an interaction event that indicates a user has interacted with the assessment.

{
 props: [
 'defaultFile',
 'files',
 'itemId',
 'answerState',
],
 methods: {
 checkAnswer() {
 return {
 correct: true,
 answerState: {
 answer: 81,
 working: '3^2 = 3 * 3',
 },
 simpleAnswer: '81',
 };
 },
 },
};

Shared Core Functionality

Kolibri provides a set of shared “core” functionality – including components, styles, and helper logic, and libraries – which can be re-used across apps and plugins.

JS Libraries

The following libraries are available globally, in all module code:

	vue - the Vue.js object

	vuex - the Vuex object

	logging - our wrapper around the loglevel logging module [https://github.com/pimterry/loglevel]

	core-base - a shared base Vue.js component (core-base.vue)

And many others. The complete specification for commonly shared modules can be found in kolibri/core/assets/src/core-app/apiSpec.js - this object defines which modules are imported into the core object. If the module in question has the ‘requireName’ attribute set on the core specification, then it can be used in code with a standard CommonJS-style require statement - e.g.:

const vue = require('kolibri.lib.vue');
const coreBase = require('kolibri.coreVue.components.coreBase');

Adding additional globally-available objects is relatively straightforward due to the plugin and webpack build system.

To expose something on the core app, add a key to the object in apiSpec.js which maps to an object with the following keys:

modulePath: {
 module: require('module-name'),
 }

This module would now be available for import anywhere with the following statement:

const MODULE = require('kolibri.modulePath');

For better organisation of the Core API specification, modules can also be attached at arbitrarily nested paths:

modulePath: {
 nestedPath: {
 module: require('module-name'),
 }
 }

This module would now be available for import anywhere with the following statement:

const MODULE = require('kolibri.modulePath.nestedPath');

For convenience (and to prevent accidental imports), 3rd party (NPM) modules installed in node_modules can be required by their usual name also:

const vue = require('vue');

Bootstrapped Data

The kolibriGlobal object is also used to bootstrap data into the JS app, rather than making unnecessary API requests.

For example, we currently embellish the kolibriGlobal object with a urls object. This is defined by Django JS Reverse [https://github.com/ierror/django-js-reverse] and exposes Django URLs on the client side. This will primarily be used for accessing API Urls for synchronizing with the REST API. See the Django JS Reverse documentation for details on invoking the Url.

Styling

For shared styles, two mechanisms are provided:

	The core-theme.styl file provides values for some globally-relevant Stylus variables. These variables can be used in any component’s <style> block by adding the line @require '~core-theme.styl'.

	The core-global.styl file is always inserted into the <head> after normalize.css and provides some basic styling to global elements

Additional Functionality

These methods are also publicly exposed methods of the core app:

kolibriGlobal.register_kolibri_module_async // Register a Kolibri module for asynchronous loading.
kolibriGlobal.register_kolibri_module_sync // Register a Kolibri module once it has loaded.
kolibriGlobal.stopListening // Unbind an event/callback pair from triggering.
kolibriGlobal.emit // Emit an event, with optional args.

Unit Testing

Unit testing is carried out using Mocha [https://mochajs.org/]. All JavaScript code should have unit tests for all object methods and functions.

Tests are written in JavaScript, and placed in the ‘assets/test’ folder. An example test is shown below:

var assert = require('assert');

var SearchModel = require('../src/search/search_model.js');

describe('SearchModel', function() {
 describe('default result', function() {
 it('should be empty an empty array', function () {
 var test_model = new SearchModel();
 assert.deepEqual(test_model.get("result"), []);
 });
 });
});

Vue.js components can also be tested. The management plugin contains an example (kolibri/plugins/management/assets/test/management.js) where the component is bound to a temporary DOM node, changes are made to the state, and assertions are made about the new component structure.

Adding Dependencies

Dependencies are tracked using yarn - see the docs here [https://yarnpkg.com/en/docs/].

We distinguish development dependencies from runtime dependencies, and these should be installed as such using yarn add --dev [dep] or yarn add [dep], respectively. Your new dependency should now be recorded in package.json, and all of its dependencies should be recorded in yarn.lock.

Individual plugins can also have their own package.json and yarn.lock for their own dependencies. Running yarn install will also install all the dependencies for each activated plugin (inside a node_modules folder inside the plugin itself). These dependencies will only be available to that plugin at build time. Dependencies for individual plugins should be added from within the root directory of that particular plugin.

To assist in tracking the source of bloat in our codebase, the command yarn run bundle-stats is available to give a full readout of the size that uglified packages take up in the final Javascript code.

In addition, a plugin can have its own webpack.config.js for plugin specific webpack configuration (loaders, plugins, etc.). These options will be merged with the base options using webpack-merge.

Git workflow

Note

This is a work in progress, reflecting some practices already adapted
but yet to be discussed in the community.

We do not enforce a specific Git workflow at present. You can use tools like
git-flow [https://github.com/nvie/gitflow] and
git-extras [https://github.com/tj/git-extras/blob/master/Commands.md] to
automate many tasks.

Branch strategy

	master: always has the latest, stable and released code.

	develop: is our current development branch which all new features should
target.

	releases/M.N.x tracks stable release series. All minor releases have a
release tracker, so for instance 1.0.x and 1.1.x both have separate
branches.

	features/new-thing tracks collaborative works on new features.

Having separate release branches requires a lot of back-porting, so ALWAYS
target the oldest release branch that you want a bug fix introduced in, and
then merging or cherry-picking must happen for all subsequent branches
following the review and merging of the oldest release branch.

i18n

As a platform intended for use around the world, Kolibri has a strong mandate for translation and internationalization. As such, it has been designed with technologies to enable this built in.

Backend Translation

For any strings in Django, we are using the standard Django i18n machinery (gettext and associated functions) to provide translations. See the Django i18n documentation [https://docs.djangoproject.com/en/1.10/topics/i18n/] for more information.

Frontend Translation

For any strings in the frontend, we are using Vue-Intl [https://www.npmjs.com/package/vue-intl] an in house port of React-intl [https://www.npmjs.com/package/react-intl].

Within Kolibri, messages are defined on the body of the Vue component:

- ``$trs``, an object of the form::

 {
 msgId: 'Message text',
 }

- ``name``, we use the Vue component name to namespace the messages.

The name and all ``msgId``s should be in camelCase.

User visible strings should be rendered directly in the template with {{ $tr('msgId') }}. These strings are collected during the build process, and bundled into exported JSON files. These files are then uploaded to Crowdin for translation.

An example Vue component would then look like this:

<template>

 <div>
 <p>{{ $tr('exampleMessage') }}</p>
 </div>

</template>

<script>

 module.exports = {

 name: 'example',
 $trs: {
 exampleMessage: 'This message is just an example',
 },
 };

</script>

<style lang="stylus" scoped></style>

In order to translate strings outside of the scope of Vue components, i.e. in Javascript source files, the name space and messages object still need to be defined, as shown in this example:

import { createTranslator } from 'kolibri.utils.i18n';

const name = 'exampleTitles';

const messages = {
 msgIdForThisMessage: 'This is a message',
};

const translator = createTranslator(name, messages);

console.log(translator.$tr('msgIdForThisMessage'));

In this way, messages are namespaced, and then available off the $tr method of the translator object returned from the createTranslator function.

These messages will then be discovered for any registered plugins and loaded into the page if that language is set as the Django language. All language setting for the Frontend is based off the current Django language for the request.

Plugins

The behavior of Kolibri can be extended using plugins. The following is a guide
to developing plugins.

Enabling and disabling plugins

Non-core plugins can be enabled or disabled using the kolibri plugin command. See ../user/cli.

Kolibri Hooks API

What are hooks

Hooks are classes that define something that happens at one or more places
where the hook is looked for and applied. It means that you can
“hook into a component” in Kolibri and have it do a predefined and
parameterized thing. For instance, Kolibri could ask all its plugins who
wants to add something to the user settings panel, and its then up to the
plugins to inherit from that specific hook and feed back the parameters that
the hook definition expects.

The consequences of a hook being applied can happen anywhere in Kolibri. Each
hook is defined through a class inheriting from KolibriHook. But how the
inheritor of that class deals with plugins using it, is entirely up to each
specific implementation and can be applied in templates, views, middleware -
basically everywhere!

That’s why you should consult the class definition and documentation of the
hook you are adding plugin functionality with.

We have two different types of hooks:

	Abstract hooks

	Are definitions of hooks that are implemented by implementing hooks.

	Registered hooks

	Are concrete hooks that inherit from abstract hooks, thus embodying the
definitions of the abstract hook into a specific case.

	So what’s “a hook”?

	Simply referring to “a hook” is okay, it can be ambiguous on purpose. For
instance, in the example, we talk about “a navigation hook”. So we both
mean the abstract definition of the navigation hook and everything that
is registered for the navigation.

Where can I find hooks?

All Kolibri core applications and plugins alike should by convention define
their abstract hooks inside <myapp>/hooks.py. Thus, to see which hooks
a Kolibri component exposes, you can refer to its hooks module.

Note

Defining abstract hooks in <myapp>/hooks.py isn’t mandatory, but
loading a concrete hook in <myapp>/kolibri_plugin.py is.

Warning

Do not define abstract and registered hooks in the same module. Or to put it
in other words: Never put registered hooks in <myapp>/hooks.py. The
non-abstract hooks should not be loaded unintentionally in case your
application is not loaded but only used to import an abstract definition
by an external component!

In which order are hooks used/applied?

This is entirely up to the registering class. By default, hooks are applied in
the same order that the registered hook gets registered! This most likely means
the order in which kolibri_plugin is loaded => the order in which the
app is listed in INSTALLED_APPS

An example of a plugin using a hook

Note

The example shows a NavigationHook which is simplified for the sake of
readability. The actual implementation in Kolibri will defer.

Example implementation

Here is an example of how to use a hook in myplugin.kolibri_plugin.py:

from django.db.models

This is where the actual abstract hook is defined
from kolibri.core.hooks import NavigationHook

By inheriting NavigationHook, we tell that we are going to want our
plugin to be part of the hook's activities with the specified attributes.
We only define one navigation item, but defining another one is as simple
as adding another class definition.
class MyPluginNavigationItem(NavigationHook):

 label = _("My Plugin")
 url = reverse_lazy("kolibri:my_plugin:index")

And here is the definition of that hook in kolibri.core.hooks:

from kolibri.plugins.hooks import KolibriHook

class NavigationHook(KolibriHook):
 """
 Extend this hook to define a new navigation item
 """

 #: A string label for the menu item
 label = "Untitled"

 #: A string or lazy proxy for the url
 url = "/"

 @classmethod
 def get_menu(cls):
 menu = {}
 for hook in self.registered_hooks:
 menu[hook.label] = url
 return menu

 class Meta:

 abstract = True

Usage of the hook

Inside our templates, we load a template tag from navigation_tags, and this
template tag definition looks like this:

from kolibri.core.hooks import NavigationHook

@register.assignment_tag()
def kolibri_main_navigation():

 for item in NavigationHook().get_menu():
 yield item

{% load kolibri_tags %}

{% for menu_item in kolibri_main_navigation %}
 {{ menu_item.label }}
{% endfor %}

Warning

Do not load registered hook classes outside of a plugin’s
kolibri_plugin. Either define them there directly or import the modules
that define them. Hook classes should all be seen at load time, and
placing that logic in kolibri_plugin guarantees that things are
registered correctly.

Other stuff you can do with plugins

Plugins can implement Javascript code as a Kolibri module that can be used in the frontend as a plugin to the core
Kolibri Javascript code. Each of these Javascript plugins are defined in the kolibri_plugin.py file by subclassing the
KolibriFrontEndPluginBase class to define each frontend Kolibri module. This defines the base Javascript file that
defines the Kolibri module. In addition, this Plugin object within the app will automatically add these Kolibri modules
to an internal frontend asset registry for loading in the front end. For more information on developing frontend code
for Kolibri please see Front-end Architecture.

Plugins can be standalone Django apps in their own right, meaning they can define templates, models, new urls, and
views just like any other app. However the API for all of this hasn’t yet been determined… Coming soon!

Core plugin example

View the source to learn more!

Release Process

Update the Change log (release notes)

Update the and changelog as necessary. Ideally, this has already been
done from individual commits and pull requests, but it’s good to check.

Create a release branch

Select a release series number and initial version number:

$ SERIES=0.1.x
$ VER=0.1.0a

A quick repetition:

 0.1.x
 / | \
 / | \
 / | \
major minor patch

The release branch $SERIES should already exist in the remote upstream,
otherwise you should create and push this branch firstly (major and
minor releases have their own release branches):

$ git checkout -b $SERIES upstream/master
$ git push upstream $SERIES

Set the version in the release branch:

$ # edit VERSION in kolibri/__init__.py
$ git add kolibri/__init__.py
$ git commit -m "Bump version to $VER"

Set the version number in the develop branch if necessary.

Push your changes to Github:

$ git push origin releases/$SERIES

Check list before releasing

Before a stable release, make sure that:

	Migrations are squashed

	Dependencies are up to date

Tag the release

We always add git tags to a commit that makes it to a final or pre release. A
tag is prefixed v and follows the Semver convention,
for instance v1.2.3-alpha.1.

Warning

Always add tags in release branches. Otherwise, the tag
chronology will break. Do not add tags in feature branches or in the master
branch. You can add tags for pre-releases in develop, provided that it
is tacking a series that doesn’t yet have a release branch.

Tag naming conventions

Tags are named like this:

	releases/stable/x.y.z

	releases/alpha/x.y.z-alpha.n

	releases/beta/x.y.z-beta.n

	releases/rc/x.y.z-rc.n

How to tag

Select a series to release from and version number:

$ SERIES=A.B.x
$ VER=releases/stable/A.B.C
$ NEXTVER=releases/alpha/A.B.C-alpha.0

Bump version immediately prior to release and tag the commit, signing your
tag:

$ git checkout releases/$SERIES
$ # edit VERSION in kolibri/__init__.py
$ git add kolibri/__init__.py
$ git commit -m "Bump version to $VER"
$ git tag -s $VER

If it’s a stable release, remember to bump version number on release branch
for subsequent releases to be the correct development version. For instance,
if you released 1.2.3, you should change the version tuple to be
(1, 2, 3, 'alpha', 0). You should also add a new section to the change
log:

$ # edit VERSION in kolibri/__init__.py
$ # edit CHANGELOG.rst
$ git add CHANGELOG.rst kolibri/__init__.py
$ git commit -m "Switch to track development versions $NEXTVER"
$ git tag -s $NEXTVER # If 'alpha.0' not in $NEXTVER

Merge to master if this is a stable release in the latest release series:

$ git checkout master
$ git merge v$VER

Push your changes to Github (don’t forget to push the new tag):

$ git push
$ git push upstream --tags

Release to PyPI

Select the version number and checkout the exact git tag:

$ VER=0.1.0
$ git checkout v$VER

Release with PyPI using the make command:

$ make release

Declare victory.

Tech Stack

Kolibri is a web application built primarily using Python [https://www.python.org/] on the server-side and JavaScript [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference] on the client-side.

We use many run-time, development, and build-related technologies and tools, as outlined below.

Server

The server is a Django 1.9 [https://docs.djangoproject.com/en/1.9/] application, and contains only pure-Python (2.7+) libraries dependencies at run-time.

The server is responsible for:

	Interfacing with the database (PostgreSQL [https://www.postgresql.org/]) containing user, content, and language pack data

	Authentication and permission middleware

	Routing and handling of API calls, using the Django REST Framework [http://www.django-rest-framework.org/]

	Basic top-level URL routing between high-level sections of the application

	Serving basic HTML wrappers for the UI with data bootstrapped into the page

	Serving additional client assets such as fonts and images

TODO - how does Morango fit into this picture? Logging?

Client

The front-end user interface is built using HTML, the Stylus [http://stylus-lang.com/] CSS-preprocessing language, and the ES2015 preset features of ES6 [https://babeljs.io/docs/plugins/preset-es2015/] JavaScript.

The frontend targets IE9 and up, with an emphasis on tablet-size screens. We strive to use accessible, semantic HTML with support for screen readers, keyboard interaction, and right-to-left language support.

The client is responsible for:

	Compositing and rendering the UI using Vue.js [https://vuejs.org/] components to build nested views

	Managing client-side state using Vuex [http://vuex.vuejs.org/en/index.html]

	Interacting with the server through HTTP requests

Additionally, loglevel [http://pimterry.github.io/loglevel/] is used for logging and normalize.css [https://necolas.github.io/normalize.css/] is included for browser style normalization.

Internationalization

We leverage the ICU Message [http://userguide.icu-project.org/formatparse/messages] syntax for formatting all user-facing text.

On the client-side, these strings are rendered using Format.js [http://formatjs.io/] and integrated with Vue.js using vue-intl [https://github.com/learningequality/vue-intl].

TODO: server-side, message extraction, translation

Developer Docs

Documentation for Kolibri developers are formatted using reStructuredText [http://docutils.sourceforge.net/rst.html] and the output is generated using Sphinx [http://www.sphinx-doc.org/en/stable/rest.html]. Most of the content is in the /docs directory, but some content is also extracted from Python source code and from files in the root directory. We use Read the Docs [http://kolibri.readthedocs.io/en/latest/] to host a public version of our documentation.

Additionally, information about the design and implementation of Kolibri might be found on Google Drive, Trello, Slack, InVision, mailing lists, office whiteboards, and lurking in the fragmented collective consciousness of our contributors.

Build Infrastructure

Client-side Resources

We use a combination of both Node.js [https://nodejs.org/en/] and Python scripts to transform our source code as-written to the code that is run in a browser. This process involves webpack [https://webpack.github.io/], plus a number of both custom and third-party extensions.

Preparation of client-side resources involves:

	ES6 to ES5

	Transforming Vue.js component files (*.vue) into JS and CSS

	Stylus to CSS

	Auto-prefixing CSS

	Bundling multiple JS dependencies into single files

	Minifying and compressing code

	Bundle resources such as fonts and images

	Generating source maps

	Providing mechanisms for decoupled “Kolibri plugins” to interact with each other and asynchronously load dependencies

	Linting to enforce code styles

Server Setup

The standard Django manage.py commands [https://docs.djangoproject.com/en/1.9/ref/django-admin/] are used under-the-hood for database migration and user set-up.

TODO: is this accurate?

Installers and Packages

TODO: introduce stack (sdist, PyPi, Debian, Windows, etc)

Continuous Integration

TODO: introduce stack (GitHub, CodeCov, Travis, commit hooks)

Tests and Linting

We use a number of mechanisms to help encourage code quality and consistency. These checks enforce a subset of our Project Conventions.

	pre-commit [http://pre-commit.com/] is run locally on git commit and enforces some Python conventions

	We use EditorConfig [http://editorconfig.org/] to help developers set their editor preferences

	flake8 [https://flake8.readthedocs.io/en/latest/] is also used to enforce Python conventions

	tox [https://tox.readthedocs.io/en/latest/] is used to run our test suites under a range of Python and Node environment versions

	sphinx-build -b linkcheck checks the validity of documentation links

	pytest [http://pytest.org/latest/] runs our Python unit tests. We also leverage the Django test framework [https://docs.djangoproject.com/en/1.9/topics/testing/].

	In addition to building client assets, webpack [https://webpack.github.io/] runs linters on client-side code: ESLint [http://eslint.org/] for ES6 JavaScript, Stylint [https://rosspatton.github.io/stylint/] for Stylus, and HTMLHint [http://htmlhint.com/] for HTML and Vue.js components.

	Client-side code is tested using a stack of tools including Karma [https://karma-runner.github.io/0.13/index.html], Mocha [https://mochajs.org/], PhantomJS [http://phantomjs.org/], Sinon [http://sinonjs.org/], and rewire [https://github.com/jhnns/rewire]. TODO: Explain what each of these do

	codecov [https://codecov.io/] reports on the test coverage for Python and Node.js code. TODO - also client-side?

Helper Scripts

TODO: introduce stack (kolibri command, setup.py, makefiles, yarn commands, sphinx auto-build, etc)

Tests

Running the test suite

A prerequisite for testing is to have the test environment installed. As a
developer, simply fetch the “dev” requirements:

$ pip install -r requirements/dev.txt

Running all the tests in your local environment:

$ py.test

Running tests with a specific Python version:

$ tox -e py2.7 # or…
$ tox -e py3.4 # or…
$ tox -e py3.5

To run a subset of tests:

$ py.test test/test_kolibri.py
$ # ...or with a tox environment
$ tox -e 3.5 test/test_kolibri.py

JS unit tests

Note

TODO! This will be written by one of the JS devs :)

Testing philosophy

Warning

This section an unfinished draft. We should carefully import stuff
from our Dev Bible.

We want to achieve a >90% test coverage! To do that, it’s best to do TDD,
meaning to write tests that express what you want to achieve or fix and then
implement that feature or fix the bug.

At all costs? No, definitely not. We don’t want too many slow integration tests
that depend on virtual browsers (Selenium) and the like.

Unreliable tests? Are not welcome at all.

Writing tests

Kolibri has a test discoverer (py.test) which automatically detects Python
modules with test cases.

Inside the module that your tests target, place a package test and files
called test_my_module.py:

mymodule/
 __init__.py
 test/
 __init__.py
 test_feature.py

Version numbers

We follow semantic versioning 2.0.0 according to
semver.org [http://semver.org/] but for Python distributions and in the
internal string representation in Python, you will find a
PEP-440 [https://www.python.org/dev/peps/pep-0440/] flavor.

	1.1.0 (Semver) = 1.1.0 (PEP-440).

	1.0.0-alpha.1 (Semver) = 1.0.0a1 (PEP-440).

Here’s how version numbers are generated:

	kolibri.__version__ is automatically set, runtime environments use it
to decide the version of Kolibri as a string. This is especially something
that PyPi and setuptools use.

	kolibri.VERSION is a tuple containing version information, it’s set in
kolibri/__init__.py is automatically suffixed in pre-releases by a
number of rules defined below. For a final release (not a pre-release),
it will be used exactly as it appears.

	kolibri/VERSION is a file containing the exact version of Kolibri for a
distributed environment (pre-releases only!)

	git describe --tags is a command run to fetch tag information from a git
checkout with the Kolibri code. The information is used to validate the
major components of kolibri.VERSION and to suffix the final version of
prereleases. This information is stored permanently in kolibri/VERSION
before shipping a pre-release by calling make writeversion during
make dist etc.

Confused? Here’s a table:

	Release type

	kolibri.VERSION

	kolibri/VERSION

	Git data

	Examples

	Final

	Canonical, only
information used

	N/A

	N/A

	0.1.0, 0.2.2,
0.2.post1

	dev release
(alpha0)

	(1, 2, 3, ‘alpha’,
0), 0th alpha = a
dev release! Never
used as a canonical

	Fallback

	timestamp of latest
commit + hash

	0.4.0.dev020170605181124-f1234567

	alpha1+

	(1, 2, 3, ‘alpha’,
1)

	Fallback

	git describe --tags

	Clean head:
1.2.3a1,
Changes
since tag:
1.2.3a1.dev123-f1234567

	beta1+

	(1, 2, 3, ‘alpha’,
1)

	Fallback

	git describe --tags

	Clean head:
1.2.3b1,
Changes
since tag:
1.2.3b1.dev123-f1234567

	rc1+
(release
candidate)

	(1, 2, 3, ‘alpha’,
1)

	Fallback

	git describe --tags

	Clean head:
1.2.3rc1,
Changes
since tag:
1.2.3rc1.dev123-f1234567

	beta0, rc0,
post0, x.y.0

	Not recommended,
but if you use it,
your release
transforms into a
X.Y.0b0.dev{suffix}
release, which in
most cases should
be assigned to the
preceding release
type.

	Fallback

	timestamp of latest
commit + hash

	0.4.0b0.dev020170605181124-f1234567

Fallback: kolibri/VERSION is auto-generated with make writeversion
during the build process. The file is read as a fallback when there’s no git
data available in a pre-release (which is the case in an installed
environment).

Release order example 1.2.3 release:

	VERSION = (1, 2, 3, 'alpha', 0) throughout the development phase, this
results in a lot of 1.2.3.dev0YYYYMMDDHHMMSS-1234abcd with no need for
git tags.

	VERSION = (1, 2, 3, 'alpha', 1) for the first alpha release. When it’s
tagged and released,

Warning

Do not import anything from the rest of Kolibri in this module, it’s
crucial that it can be loaded without the settings/configuration/django
stack.

Do not import this file in other package’s __init__, because installation with
setup.py should not depend on other packages. In case you were to have a
package foo that depended on kolibri, and kolibri is installed as a dependency
while foo is installing, then foo won’t be able to access kolibri before after
setuptools has completed installation of everything.

How to tag releases

Note

Current practice is to tag releases after bumping
kolibri.VERSION. You are allowed to have a newer version in
kolibri.VERSION, but you are not allowed to add the tag before actually
bumping kolibri.VERSION.

Always use -s to sign your tags. Remember to push tags to remote upstream
with git push <upstream> --tags

1.2.3.dev{auto-suffix} - This is normally NOT tagged, but you may:

tag -s v1.2.3-alpha0

1.2.3a1{auto-suffix}:

tag -s v1.2.3-alpha1

1.2.3b1{auto-suffix}:

tag -s v1.2.3-beta1

1.2.3rc1 - a release candidate:

tag -s v1.2.3-final

1.2.3 - a final release:

tag -s v1.2.3

1.2.3 - a final release fix (in case something went wrong with an attempt to
release a final version v1.2.3, should not contain code changes apart from
bumping kolibri.VERSION):

tag -s v1.2.3-post1

API endpoints

request specific content:

>>> localhost:8000/api/content/<channel_id>/contentnode/<content_id>

search content:

>>> localhost:8000/api/content/<channel_id>/contentnode/?search=<search words>

request specific content with specified fields:

>>> localhost:8000/api/content/<channel_id>/contentnode/<content_id>/?fields=pk,title,kind

request paginated contents

>>> localhost:8000/api/content/<channel_id>/contentnode/?page=6&page_size=10

request combines different usages

>>> localhost:8000/api/content/<channel_id>/contentnode/?fields=pk,title,kind,instance_id,description,files&page=6&page_size=10&search=wh

API Methods

Concepts and Definitions

ContentNode

High level abstraction for prepresenting different content kinds, such as Topic, Video, Audio, Exercise, Document, and can be easily extended to support new content kinds. With multiple ContentNode objects, it supports grouping, arranging them in tree structure, and symmetric and asymmetric relationship between two ContentNode objects.

File

A Django model that is used to store details about the source file, such as what language it supports, how big is the size, which format the file is and where to find the source file.

ContentDB Diagram

[image: ../../_images/content_distributed_db.png]
**PK = Primary Key
**FK = Foreign Key
**M2M = ManyToManyField

ContentTag

This model is used to establish a filtering system for all ContentNode objects.

ChannelMetadata

A Django model in each content database that stores the database readable names, description and author for each channel.

ChannelMetadataCache

This class stores the channel metadata cached/denormed into the default database.

Implementation Details and Workflows

To achieve using separate databases for each channel and being able to switch channels dynamically, the following data structure and utility functions have been implemented.

ContentDBRoutingMiddleware

This middleware will be applied to every request, and will dynamically select a database based on the channel_id.
If a channel ID was included in the URL, it will ensure the appropriate content DB is used for the duration of the request. (Note: set_active_content_database is thread-local, so this shouldn’t interfere with other parallel requests.)

For example, this is how the client side dynamically requests data from a specific channel:

>>> localhost:8000/api/content/<channel_1_id>/contentnode

this will respond with all the contentnode data stored in database <channel_1_id>.sqlite3

>>> localhost:8000/api/content/<channel_2_id>/contentnode

this will respond with all the contentnode data stored in database <channel_2_id>.sqlite3

get_active_content_database

A utility function to retrieve the temporary thread-local variable that using_content_database sets

set_active_content_database

A utility function to set the temporary thread-local variable

using_content_database

A decorator and context manager to do queries on a specific content DB.

Usage as a context manager:

from models import ContentNode

with using_content_database("nalanda"):
 objects = ContentNode.objects.all()
 return objects.count()

Usage as a decorator:

from models import ContentNode

@using_content_database('nalanda')
def delete_all_the_nalanda_content():
 ContentNode.objects.all().delete()

ContentDBRouter

A router that decides what content database to read from based on a thread-local variable.

ContentNode

ContentNode is implemented as a Django model that inherits from two abstract classes, MPTTModel and ContentDatabaseModel.
django-mptt’s MPTTModel [http://django-mptt.github.io/django-mptt/], which
allows for efficient traversal and querying of the ContentNode tree.
ContentDatabaseModel is used as a marker so that the content_db_router knows to query against the content database only if the model inherits from ContentDatabaseModel.

The tree structure is established by the parent field that is a foreign key pointing to another ContentNode object. You can also create a symmetric relationship using the related field, or an asymmetric field using the is_prerequisite field.

File

The File model also inherits from ContentDatabaseModel.

To find where the source file is located, the class method get_url uses the checksum field and settings.CONTENT_STORAGE_DIR to calculate the file path. Every source file is named based on its MD5 hash value (this value is also stored in the checksum field) and stored in a namespaced folder under the directory specified in settings.CONTENT_STORAGE_DIR. Because it’s likely to have thousands of content files, and some filesystems cannot handle a flat folder with a large number of files very well, we create namespaced subfolders to improve the performance. So the eventual file path would look something like:

/home/user/.kolibri/content/storage/9/8/9808fa7c560b9801acccf0f6cf74c3ea.mp4

As you can see, it is fine to store your content files outside of the kolibri project folder as long as you set the settings.CONTENT_STORAGE_DIR accordingly.

The front-end will then use the extension field to decide which content player should be used. When the supplementary field’s value is True, that means this File object isn’t necessary and can display the content without it. For example, we will mark caption (subtitle) file as supplementary.

Content Constants

A Python module that stores constants for the kind field in ContentNode model and the preset field and extension field in File model.

Workflows

There are two workflows we currently designed to handle content UI rendering and content playback rendering

	Content UI Rendering

	Start with a ContentNode object.

	Get the associated File object that has the thumbnail field being True.

	Get the thumbnail image by calling this File’s get_url method.

	Determine the template using the kind field of this ContentNode object.

	Renders the template with the thumbnail image.

	Content Playback Rendering

	Start with a ContentNode object.

	Retrieve a queryset of associated File objects that are filtered by the preset.

	Use the thumbnail field as a filter on this queryset to get the File object and call this File object’s get_url method to get the source file (the thumbnail image)

	Use the supplementary field as a filter on this queryset to get the “supplementary” File objects, such as caption (subtitle), and call these File objects’ get_url method to get the source files.

	Use the supplementary field as a filter on this queryset to get the essential File object. Call its get_url method to get the source file and use its extension field to choose the content player.

	Play the content.

Content

This is a core module found in kolibri/Content.

	Concepts and Definitions

	Implementation Details and Workflows

	API Methods

	API endpoints

Models

Concepts and Definitions

Content Interaction Log

This Model provides a record of an interaction with a content item. As such, it
should encode the channel that the content was in, and the id of the content.
Further, it may be required to encode arbitrary data in a JSON blob that is
specific to the particular content type.

As a typical use case, a ContentInteractionLog object might be used to record
an interaction with one instance of an exercise (i.e. one question, but possibly
multiple attempts within the same session), or a single session of viewing a video.

Finally, these Logs will use MorangoDB to synchronize their data across devices.

Content Summary Log

This Model provides a summary of all interactions of a user with a content item.
As such, it should encode the channel that the content was in, and the id of
the content. Further, it may be required to encode arbitrary data in a JSON blob
that is specific to the particular content type.

As a typical use case, a ContentSummaryLog object might be used to provide
summary data about the state of completion of a particular exercise, video, or
other content.

When a new InteractionLog is saved, the associated SummaryLog is updated at the
same time. This means that the SummaryLog acts as an aggregation layer for the
current state of progress for a particular piece of content.

To implement this, a content viewer app would define the aggregation function
that summarizes interaction logs into the summary log. While this could happen
in the frontend, it would probably be more efficient for this to happen on the
server side.

Finally, these Logs will use MorangoDB to synchronize their data across
devices - in the case where two summary logs from different devices conflict,
then the aggregation logic would be applied across all interaction logs to
create a consolidated summary log.

Content Rating Log

This Model provides a record of user feedback on content.

As a typical use case, a ContentRatingLog object might be used to record user
feedback data about any content.

Finally, these Logs will use MorangoDB to synchronize their data across devices.

User Session Log

This Model provides a record of an user session in Kolibri. As such, it should
encode the channels interacted with, the length of time engaged, and the pages
visited.

As a typical use case, a UserSessionLog object might be used to record which
pages a user visits, and how long the user is logged on for.

Finally, these Logs will use MorangoDB to synchronize their data across devices.

Implementation Details

Permissions

See Encoding Permission Rules.

User Logs

This is a core module found in kolibri/logger.

	Concepts and Definitions

	Implementation Details

Models

Concepts and Definitions

Facility

All user data (accounts, logs, ratings, etc) in Kolibri are associated with a
particular “Facility”. A Facility is a grouping of users who are physically
co-located, and who generally access Kolibri from the same server on a local
network, for example in a school, library, or community center. Collectively,
all the data associated with a particular Facility are referred to as a
“Facility Dataset”.

Users

There are two kinds of users: FacilityUser and DeviceOwner. A
FacilityUser is associated with a particular Facility, and the user’s
account and data may be synchronized across multiple devices. A
DeviceOwner account is not associated with a particular Facility, but
is specific to one device, and is never synchronized across multiple devices.
A DeviceOwner is like a superuser, and has permissions to modify any data
on her own device, whereas a FacilityUser only has permissions for some
subset of data from their own Facility Dataset (as determined in part by the
roles they possess; see below).

Collections

Collections are hierarchical groups of users, used for grouping users and
making decisions about permissions. Users can have roles for one or more
Collections, by way of obtaining Roles associated with those Collections.
Collections can belong to other Collections, and user membership in a
collection is conferred through Membership. Collections are subdivided into
several pre-defined levels: Facility, Classroom, and LearnerGroup, as
illustrated here:

[image: ../../_images/uap_collection_hierarchy.svg]In this illustration, Facility X contains two Classrooms, Class A and Class B.
Class A contains two LearnerGroups, Group Q and Group R.

Membership

A FacilityUser (but not a DeviceOwner) can be marked as a member of a
Collection through a Membership object. Being a member of a Collection
also means being a member of all the Collections above that Collection in the
hierarchy. Thus, in the illustration below, Alice is directly associated with
Group Q through a Membership object, which makes her a member of Group Q.
As Group Q is contained within Class A, which is contained within Facility X,
she is also implicitly a member of both those collections.

[image: ../../_images/uap_membership_diagram.svg]Note also that a FacilityUser is always implicitly a member of the
Facility with which it is associated, even if it does not have any
Membership objects.

Roles

Another way in which a FacilityUser can be associated with a particular
Collection is through a Role object, which grants the user a role with
respect to the Collection and all the collections below it. A Role
object also stores the “kind” of the role (currently, one of “admin” or
“coach”), which affects what permissions the user gains through the Role.

To illustrate, consider the example in the following figure:

[image: ../../_images/uap_role_membership_diagram.svg]The figure shows a Role object linking Bob with Class A, and the Role is
marked with kind “coach”, which we can informally read as “Bob is a coach for
Class A”. We consider user roles to be “downward-transitive” (meaning if you
have a role for a collection, you also have that role for descendents of that
collection). Thus, in our example, we can say that “Bob is also a coach for
Group Q”. Furthermore, as Alice is a member of Group Q, we can say that “Bob
is a coach for Alice”.

Role-Based Permissions

As a lot of Facility Data in Kolibri is associated with a particular
FacilityUser, for many objects we can concisely define a requesting user’s
permissions in terms of his or her roles for the object’s associated User. For
example, if a ContentLog represents a particular FacilityUser’s
interaction with a piece of content, we might decide that another
FacilityUser can view the ContentLog if she is a coach (has the coach
role) for the user. In our scenario above, this would mean that Bob would have
read permissions for a ContentLog for which “user=Alice”, by virtue of
having the coach role for Alice.

Some data may not be related to a particular user, but rather with a
Collection (e.g. the Collection object itself, settings for a
Collection, or content assignments for a Collection). Permissions for
these objects can be defined in terms of the role the requesting User has with
respect to the object’s associated Collection. So, for example, we might allow
Bob to assign content to Class A on the basis of him having the “coach” role
for Class A.

Permission Levels

As we are constructing a RESTful API for accessing data within Kolibri, the
core actions for which we need to define permissions are the CRUD operations
(Create, Read, Update, Delete). As Create, Update, and Delete permissions
often go hand in hand, we can collectively refer to them as “Write
Permissions”.

[image: ../../_images/uap_crud_permissions.svg]

Implementation Details

Collections

A Collection is implemented as a Django model that inherits from
django-mptt’s MPTTModel [http://django-mptt.github.io/django-mptt/], which
allows for efficient traversal and querying of the collection hierarchy. For
convenience, the specific types of collections – Facility, Classroom,
and LearnerGroup – are implemented as _proxy models of the main
Collection model. There is a kind field on Collection that allows
us to distinguish between these types, and the ModelManager for the proxy
models returns only instances of the matching kind.

From a Collection instance, you can traverse upwards in the tree with the
parent field, and downwards via the children field (which is a reverse
RelatedManager for the parent field):

>>> my_classroom.parent
<Collection: "Facility X" (facility)>

>>> my_facility.children.all()
[<Collection: "Class A" (classroom)>, <Collection: "Class B" (classroom)>]

Note that the above methods (which are provided by MPTTModel) return
generic Collection instances, rather than specific proxy model instances.
To retrieve parents and children as appropriate proxy models, use the helper
methods provided on the proxy models, e.g.:

>>> my_classroom.get_facility()
<Facility: Facility X>

>>> my_facility.get_classrooms()
[<Classroom: Class A>, <Classroom: Class B>]

Facility and FacilityDataset

The Facility model (a proxy model for Collection, as described above)
is special in that it has no parent; it is the root of a tree. A
Facility model instance, and all other Facility Data associated with the
Facility and its FacilityUsers, inherits from
AbstractFacilityDataModel, which has a dataset field that foreign keys
onto a common FacilityDataset instance. This makes it easy to check, for
purposes of permissions or filtering data for synchronization, which instances
are part of a particular Facility Dataset. The dataset field is
automatically set during the save method, by calling the infer_dataset
method, which must be overridden in every subclass of
AbstractFacilityDataModel to return the dataset to associate with that
instance.

Efficient Hierarchy Calculations

In order to make decisions about whether a user has a certain permission for
an object, we need an efficient way to retrieve the set of roles the user has
in relation to that object. This involves traversing the Role table,
Collection hierarchy, and possibly the Membership table, but we can delegate
most of the work to the database engine (and leverage efficient hierarchy
lookups afforded by MPTT). The following algorithms and explanations will
refer to the naming in the following diagram:

[image: ../../_images/uap_role_membership_queries.svg]In pseudocode, the query for “What Roles does Source User have in relation to
Target User?” would be implemented in the following way:

Fetch all Roles with:
 User: Source User
 Collection: Ancestor Collection
For which there is a Membership with:
 User: Target User
 Collection: Descendant Collection
And where:
 Ancestor Collection is an ancestor of (or equal to) Descendant Collection

At the database level, this can be written in the following way, as a single
multi-table SQL query:

SELECT DISTINCT
 source_role.kind
FROM
 collection_table AS ancestor_coll,
 collection_table AS descendant_coll,
 role_table,
 membership_table
WHERE
 role_table.user_id = {source_user_id} AND
 role_table.collection_id = ancestor_coll.id AND
 membership_table.user_id = {target_user_id}
 membership_table.collection_id = descendant_coll.id AND
 descendant_coll.lft BETWEEN ancestor_coll.lft AND ancestor_coll.rght AND
 descendant_coll.tree_id = ancestor_coll.tree_id;

Similarly, performing a queryset filter like “give me all ContentLogs
associated with FacilityUsers for which Source User has an admin role” can
be written as:

SELECT
 contentlog_table.*
FROM
 contentlog_table
WHERE EXISTS
 (SELECT
 *
 FROM
 collection_table AS ancestor_coll,
 collection_table AS descendant_coll,
 role_table,
 membership_table
 WHERE
 role_table.user_id = {source_user_id} AND
 role_table.collection_id = ancestor_coll.id AND
 membership_table.user_id = contentlog_table.user_id
 membership_table.collection_id = descendant_coll.id AND
 descendant_coll.lft BETWEEN ancestor_coll.lft AND ancestor_coll.rght AND
 descendant_coll.tree_id = ancestor_coll.tree_id
)

Note the membership_table.user_id = contentlog_table.user_id condition,
which links the role-membership-collection hierarchy subquery into the main
query. We refer to this condition as the “anchor”.

To facilitate making queries that leverage the role-membership-collection
hierarchy, without needing to write custom SQL each time, we have implemented
a HierarchyRelationsFilter helper class. The class is instantiated by
passing in a queryset, and then exposes a filter_by_hierarchy method that
allows various parts of the role-membership-collection hierarchy to be
constrained, and anchored back into the queryset’s main table. It then returns
a filtered queryset (with appropriate conditions applied) upon which further
filters or other queryset operations can be applied.

The signature for filter_by_hierarchy is:

def filter_by_hierarchy(self,
 source_user=None,
 role_kind=None,
 ancestor_collection=None,
 descendant_collection=None,
 target_user=None):

With the exception of role_kind (which is either a string or list of
strings, of role kinds), these parameters accept either:

	A model instance (either a FacilityUser or a Collection subclass,
as appropriate) or its ID

	An F expression [https://docs.djangoproject.com/en/1.9/ref/models/expressions/#f-expressions] that anchors some part of the hierarchy back into the
base queryset model (the simplest usage is just to put the name of a field
from the base model in the F function, but you can also indirectly reference
fields of related models, e.g. F("collection__parent"))

For example, the ContentLog query described above (“give me all
ContentLogs associated with FacilityUsers for which Source User has an
admin role”) can be implemented as:

contentlogs = HierarchyRelationsFilter(ContentLog.objects.all()).filter_by_hierarchy(
 source_user=my_source_user, # specify the specific user to be the source user
 role_kind=role_kinds.ADMIN, # make sure the Role is an admin role
 target_user=F("user"), # anchor the target user to the "user" field of the ContentLog model
)

Managing Roles and Memberships

User and Collection models have various helper methods for retrieving and
modifying roles and memberships:

	To get all the members of a collection (including those of its descendant
collections), use Collection.get_members().

	To add or remove roles/memberships, use the add_role, remove_role,
add_member, and remove_member methods of Collection (or the
additional convenience methods, such as add_admin, that exist on the
proxy models).

	To check whether a user is a member of a Collection, use
KolibriAbstractBaseUser.is_member_of (for DeviceOwner, this always
returns False)

	To check whether a user has a particular kind of role for a collection or
another user, use the has_role_for_collection and has_role_for_user
methods of KolibriAbstractBaseUser.

	To list all role kinds a user has for a collection or another user, use the
get_roles_for_collection and get_roles_for_user methods of
KolibriAbstractBaseUser.

Encoding Permission Rules

We need to associate a particular set of rules with each model, to specify the
permissions that users should have in relation to instances of that model.
While not all models have the same rules, there are some broad categories of
models that do share the same rules (e.g. ContentInteractionLog,
ContentSummaryLog, and UserSessionLog – collectively, “User Log Data”).
Hence, it is useful to encapsulate a permissions “class” that can be reused
across models, and extended (through inheritance) if slightly different
behavior is needed. These classes of permissions are defined as Python classes
that inherit from kolibri.auth.permissions.base.BasePermissions, which defines
the following overridable methods:

	The following four Boolean (True/False) permission checks, corresponding to
the “CRUD” operations:
- user_can_create_object
- user_can_read_object
- user_can_update_object
- user_can_delete_object

	The queryset-filtering readable_by_user_filter method, which takes in a
queryset and returns a queryset filtered down to just objects that should be
readable by the user.

Associating Permissions with Models

A model is associated with a particular permissions class through a
“permissions” attribute defined on the top level of the model class,
referencing an instance of a Permissions class (a class that subclasses
BasePermissions). For example, to specify that a model
ContentSummaryLog should draw its permissions rules from the
UserLogPermissions class, modify the model definition as follows:

class ContentSummaryLog(models.Model):

 permissions = UserLogPermissions()

 <remainder of model definition>

Specifying Role-Based Permissions

Defining a custom Permissions class and overriding its methods allows for
arbitrary logic to be used in defining the rules governing the permissions,
but many cases can be covered by more constrained rule specifications. In
particular, the rules for many models can be specified in terms of the role-
based permissions system described above. A built-in subclass of
BasePermissions, called RoleBasedPermissions, makes this easy.
Creating an instance of RoleBasedPermissions involves passing in the
following parameters:

	Tuples of role kinds that should be granted each of the CRUD permissions,
encoded in the following parameters: can_be_created_by, can_be_read_by,
can_be_updated_by, can_be_deleted_by.

	The target_field parameter that determines the “target” object for the
role-checking; this should be the name of a field on the model that foreign
keys either onto a FacilityUser or a Collection. If the model we’re
checking permissions for is itself the target, then target_field may be
".".

An example, showing that read permissions should be granted to a coach or
admin for the user referred to by the model’s “user” field. Similarly, write
permissions should only be available to an admin for the user:

class UserLog(models.Model):

 permissions = RoleBasedPermissions(
 target_field="user",
 can_be_created_by=(role_kinds.ADMIN,),
 can_be_read_by=(role_kinds.COACH, role_kinds.ADMIN),
 can_be_updated_by=(role_kinds.ADMIN,),
 can_be_deleted_by=(role_kinds.ADMIN,),
)

 <remainder of model definition>

Built-in Permissions Classes

Some common rules are encapsulated by the permissions classes in
kolibri.auth.permissions.general. These include:

	IsOwn: only allows access to the object if the object belongs to the
requesting user (in other words, if the object has a specific field,
field_name, that foreign keys onto the user)

	IsFromSameFacility: only allows access to object if user is associated
with the same facility as the object

	IsSelf: only allows access to the object if the object is the user

A general pattern with these provided classes is to allow an argument called
read_only, which means that rather than allowing both write (create,
update, delete) and read permissions, they will only grant read permission.
So, for example, IsFromSameFacility(read_only=True) will allow any user
from the same facility to read the model, but not to write to it, whereas
IsFromSameFacility(read_only=False) or IsFromSameFacility() would
allow both.

Combining Permissions Classes

In many cases, it may be necessary to combine multiple permission classes
together to define the ruleset that you want. This can be done using the
Boolean operators | (OR) and & (AND). So, for example,
IsOwn(field_name="user") | IsSelf() would allow access to the model if
either the model has a foreign key named “user” that points to the user, or
the model is itself the user model. Combining two permission classes with
&, on the other hand, means both classes must return True for a
permission to be granted. Note that permissions classes combined in this way
still support the readable_by_user_filter method, returning a queryset
that is either the union (for |) or intersection (&) of the querysets
that were returned by each of the permissions classes.

Checking Permissions

Checking whether a user has permission to perform a CRUD operation on an
object involves calling the appropriate methods on the
KolibriAbstractBaseUser (FacilityUser or DeviceOwner) instance.
For instance, to check whether request.user has delete permission for
ContentSummaryLog instance log_obj, you could do:

if request.user.can_delete(log_obj):
 log_obj.delete()

Checking whether a user can create an object is slightly different, as you may
not yet have an instance of the model. Instead, pass in the model class and a
dict of the data that you want to create it with:

data = {"user": request.user, "content_id": "qq123"}
if request.user.can_create(ContentSummaryLog, data):
 ContentSummaryLog.objects.create(**data)

To efficiently filter a queryset so that it only includes records that the
user should have permission to read (to make sure you’re not sending them data
they shouldn’t be able to access), use the filter_readable method:

all_results = ContentSummaryLog.objects.filter(content_id="qq123")
permitted_results = request.user.filter_readable(all_results)

Note that for the DeviceOwner model, these methods will simply return
True (or unfiltered querysets), as device owners are considered
superusers. For the FacilityUser model, they defer to the permissions
encoded in the permission object on the model class.

Using Kolibri Permissions with Django REST Framework

There are two classes that make it simple to leverage the permissions system
described above within a Django REST Framework ViewSet, to restrict
permissions appropriately on API endpoints, based on the currently logged-in
user.

KolibriAuthPermissions is a subclass of
rest_framework.permissions.BasePermission that defers to our
KolibriAbstractBaseUser permissions interface methods for determining
which object-level permissions to grant to the current user:

	Permissions for ‘POST’ are based on request.user.can_create

	Permissions for ‘GET’, ‘OPTIONS’ and ‘HEAD’ are based on request.user.can_read
(Note that adding KolibriAuthPermissions only checks object-level permissions,
and does not filter queries made against a list view; see
KolibriAuthPermissionsFilter below)

	Permissions for ‘PUT’ and ‘PATCH’ are based on request.user.can_update

	Permissions for ‘DELETE’ are based on request.user.can_delete

KolibriAuthPermissions is a subclass of
rest_framework.filters.BaseFilterBackend that filters list views to include
only records for which the current user has read permissions. This only applies to
‘GET’ requests.

For example, to use the Kolibri permissions system to restrict permissions for an
API endpoint providing access to a ContentLog model, you would do the following:

from kolibri.auth.api import KolibriAuthPermissions, KolibriAuthPermissionsFilter

class FacilityViewSet(viewsets.ModelViewSet):
 permission_classes = (KolibriAuthPermissions,)
 filter_backends = (KolibriAuthPermissionsFilter,)
 queryset = ContentLog.objects.all()
 serializer_class = ContentLogSerializer

Users, Authentication, and Permissions

This is a core module found in kolibri/auth.

	Concepts and Definitions

	Implementation Details

Models

The kolibri command

Kolibri Command Line Interface (CLI)

Auto-generated usage instructions from kolibri -h:

Kolibri

Supported by Foundation for Learning Equality
www.learningequality.org

Usage:
 kolibri start [--foreground] [--port=<port>] [options]
 kolibri stop [options]
 kolibri restart [options]
 kolibri status [options]
 kolibri shell [options]
 kolibri manage COMMAND [DJANGO_OPTIONS ...]
 kolibri manage COMMAND [options] [-- DJANGO_OPTIONS ...]
 kolibri diagnose [options]
 kolibri plugin [options] PLUGIN (enable | disable)
 kolibri language setdefault <langcode>
 kolibri plugin --list
 kolibri -h | --help
 kolibri --version

Options:
 -h --help Show this screen.
 --version Show version.
 --debug Output debug messages (for development)
 COMMAND The name of any available django manage command. For
 help, type `kolibri manage help`
 DJANGO_OPTIONS Command options are passed on to the django manage
 command. Notice that all django options must appear
 last and should not be mixed with other options.

Examples:
 kolibri start Start Kolibri
 kolibri stop Stop Kolibri
 kolibri status How is Kolibri doing?
 kolibri url Tell me the address of Kolibri
 kolibri shell Display a Django shell
 kolibri manage help Show the Django management usage dialogue
 kolibri manage runserver Runs Django's development server
 kolibri diagnose Show system information for debugging

Environment:

 DJANGO_SETTINGS_MODULE
 - The Django settings module to load. Useful if you are deploying Kolibri
 in a specific setup such as your own web server.
 - Default: "kolibri.deployment.default.settings.base"

 KOLIBRI_HOME
 - Where Kolibri will store its data and configuration files. If you are using
 an external drive

 KOLIBRI_LISTEN_PORT
 - Default: 8080

Admin

Manage Facility

You can edit facility configuration settings in Kolibri from the Configuration tab in your Facility dashboard.

	Activate the options you want to make available for the users of your facility.

	Click Save changes to apply and finish.

[image: manage facility configuration settings]

Note

To manage Kolibri users you must sign-in as Super user or Admin.

Manage Users

You can search for, filter, add, and edit user accounts in Kolibri from the Users tab in your Facility dashboard.

[image: manage users]

Note

To manage Kolibri users you must sign-in as Super user or Admin.

Create a New User Account

To create a new user account, follow these steps.

	Click Add New button.

	Fill in the required information (name, username, password).

	Select user profile (Admin, Coach or Learner).

	Click Create Account to add the new user.

[image: add new account form]

Select Users by Type

	Click All Users selector to display user types.

	Toggle between options to filter the user roster according to type, or leave it as All Users to display all.

[image: select users]

Edit User’s Account

To edit username or the full name account, follow these steps.

	Click on the Edit button (pencil icon) next to the user’s name.

	Edit Full name or Username in the Edit account info window.

	Click Confirm to update the edited information, or Cancel to exit without saving.

[image: edit account info form]

Reset User’s Password

	Click Reset password in the Edit account info window.

	Enter the new password in both fields.

	Click Save to confirm, or Back to exit without changing the password.

[image: edit password form]

Delete User’s Account

	Click Delete user in the Edit account info window.

	Click Yes to confirm, or No to exit without deleting the account.

[image: confirm delete account]

Manage Classes

You can view, create and delete classes, as well as search, filter and enroll Kolibri users in them, using the Classes tab in your Facility dashboard. Default view displays the list of all classes in your facility, with the number of enrolled users for each class.

[image: manage classes]

Note

To manage Kolibri users you must sign-in as Super user or Admin.

Add New Class

To add a new class, follow these steps.

	Click Add new class button.

	Fill in the class name.

	Click Create to add the new class, or Cancel to exit.

[image: add new class]

Delete Class

To delete class, follow these steps.

	Click Delete class button for the chosen class from the list.

	Click Delete class in the confirmation window to proceed, or Cancel to exit without deleting the class.

[image: delete class]

Note

Users enrolled in the class you are deleting will not be removed from the database.

Edit Class and Enroll Users

To edit a class select it from the default view in the Classes tab. In the following Class view you can change class name, remove currently enrolled users from the class and enroll new ones.

Change Class Name

To edit class name, follow these steps.

	Click on the Edit button (pencil icon) next to the class’ name.

	Write the new name in the Class name field.

	Click Update to confirm the edited information, or Cancel to exit without saving.

[image: change class name]

Enroll users to class

	Click Enroll users button.

[image: add users to class]

	List in this view contains all the users currently NOT enrolled for the selected class.

	You can search for a specific user by name.

	Use checkboxes to select all the user in the list, or specific users you want to enroll to class. You can also use the New user account button to create a new user AND enroll them at the same time.

	Click Review & save button.

	Click Yes, enroll users to confirm, or No, go back to exit without enrolling the selected users.

[image: confirm enrollment of users to class]

Remove users from class

	Click Remove button for the chosen user.

	Click Remove from class to confirm, or Cancel to exit without removing the user.

[image: remove user from class]

Note

Users removed from the class will not be deleted from the database, and you can still access their accounts from the Users tab in the Facility dashboard.

Manage Data

Note

To manage Kolibri users you must sign-in as Super user or Admin.

You can download Kolibri Detail and Summary logs usage data and export in the CSV format from the Data tab in your Facility dashboard.

[image: options for exporting usage data]

Get support

If you want to contact the Learning Equality Support team to report an issue, or share your experience about using Kolibri, please register at our Community Forums [https://community.learningequality.org/].

Once you register on our forums, please read the the first two pinned topics (Welcome to LE’s Support Community and How do I post to this forum?)

You can add a new topic with the + New Topic button on the right. Make sure to select the Kolibri category in the Create a New Topic window so it’s easier to classify and respond to.

[image: add new topic on community forums]

Coach View

As an Admin you have access to the same Kolibri Coach view as the Coach in your facility.

[image: coach view as facility admin]

Learn View

As an Admin you have access to the same Kolibri Learn view as the Learner in your facility.

[image: learner view as facility admin]

Get support

If you want to contact the Learning Equality Support team to report an issue, or share your experience about using Kolibri, please register at our Community Forums [https://community.learningequality.org/].

Once you register on our forums, please read the the first two pinned topics (Welcome to LE’s Support Community and How do I post to this forum?)

You can add a new topic with the + New Topic button on the right. Make sure to select the Kolibri category in the Create a New Topic window so it’s easier to classify and respond to.

[image: add new topic on community forums]

Manage Classes

You can view, create and delete classes, as well as search, filter and enroll Kolibri users in them, using the Classes tab in your Facility dashboard. Default view displays the list of all classes in your facility, with the number of enrolled users for each class.

[image: manage classes]

Note

To manage Kolibri users you must sign-in as Super user or Admin.

Add New Class

To add a new class, follow these steps.

	Click Add new class button.

	Fill in the class name.

	Click Create to add the new class, or Cancel to exit.

[image: add new class]

Delete Class

To delete class, follow these steps.

	Click Delete class button for the chosen class from the list.

	Click Delete class in the confirmation window to proceed, or Cancel to exit without deleting the class.

[image: delete class]

Note

Users enrolled in the class you are deleting will not be removed from the database.

Edit Class and Enroll Users

To edit a class select it from the default view in the Classes tab. In the following Class view you can change class name, remove currently enrolled users from the class and enroll new ones.

Change Class Name

To edit class name, follow these steps.

	Click on the Edit button (pencil icon) next to the class’ name.

	Write the new name in the Class name field.

	Click Update to confirm the edited information, or Cancel to exit without saving.

[image: change class name]

Enroll users to class

	Click Enroll users button.

[image: add users to class]

	List in this view contains all the users currently NOT enrolled for the selected class.

	You can search for a specific user by name.

	Use checkboxes to select all the user in the list, or specific users you want to enroll to class. You can also use the New user account button to create a new user AND enroll them at the same time.

	Click Review & save button.

	Click Yes, enroll users to confirm, or No, go back to exit without enrolling the selected users.

[image: confirm enrollment of users to class]

Remove users from class

	Click Remove button for the chosen user.

	Click Remove from class to confirm, or Cancel to exit without removing the user.

[image: remove user from class]

Note

Users removed from the class will not be deleted from the database, and you can still access their accounts from the Users tab in the Facility dashboard.

Manage Content

Note

To manage Kolibri content channels you must have the appropriate permissions.

Kolibri Content Channel is a collection of educational resources (video, audio or document files) prepared and organized by the content curator for their use in Kolibri. Each Kolibri Content Channel has its own Content Channel ID in Kolibri Studio [https://studio.learningequality.org/accounts/login/]. In order to import channels in Kolibri, you need the channel ID from the content curator who assembled it.

You can import and export Content Channels for Kolibri in the Content tab of the Device dashboard.

[image: manage content page with list of available channels]

Import Content Channel to Kolibri

To import Content Channel to Kolibri, follow these steps.

	Click Import button in My Channels pane.

	Choose the source option (Internet or Local Drives).

[image: choose source for importing content]

Import Content Channel from the Internet

If the computer where Kolibri is running has an Internet connection with the sufficient bandwidth, follow these steps to import content channels.

	Choose option for Internet.

	Enter Content ID for the desired channel from Kolibri Studio.

	Click Import button, and confirm the import.

	Wait for the content to be downloaded and click Close for the new channel to appear under the My Channels heading.

[image: enter content id to import channel from Internet]

[image: wait for import channel to finish]

Import Content Channel from a Local Drive

If the computer where Kolibri server is running does not have access to Internet or has insufficient bandwidth, you have the option to receive content channels stored on an external drive (USB stick or hard disk). Follow these steps to import content channels.

	Insert the USB drive in your computer.

	Choose option for Local Drives.

	Kolibri will automatically detect the drive(s) with available content files.

	Select the drive where the channel content is stored.

	Click Import button.

	Wait for the content to be imported and click Close for the new channel to appear under the My Channels heading.

[image: import channel from detected local drive]

Note

If the local drive is not detected, try re-inserting the storage device (USB stick or external hard disk) and pressing the button Refresh.

Tip

Workaround for import from local drive on older devices.

If Kolibri is installed on an older or a low-resource device, you can try the following procedure for importing content channels for faster results.

	Stop Kolibri.

	Browse the local drive with the file explorer of your operating system.

	Copy the content folder located inside the KOLIBRI_DATA folder on the local drive.

	Paste the copied content folder inside the .kolibri folder on your hard disk. The location of the .kolibri folder will depend on your operating system (see the table below).

	Confirm the merge of the two folders.

	Restart Kolibri, and the new channels should now be available.

	Operating system

	Location

	Windows

	C:/Users/<your_username>/.kolibri/

	OSX

	HD/Users/<your_username>/.kolibri/

	Linux

	/home/<your_username>/.kolibri/

Export from Kolibri to Local Drive

If you want to make available the content you have imported on your Kolibri server, to another computer where Kolibri is installed, follow these steps to export your content channels.

Note

You must have an external drive (USB stick or hard disk) attached to your device.

	Click Export button in My Channels pane.

	Select the local drive where you wish to export Kolibri content.

	Click Export button.

	Once the export is finished, safely disconnect the drive according to the recommended procedure for your operating system, and proceed to import channels on other devices.

[image: export channel to detected local drive]

This procedure makes a copy of the content folder located inside the .kolibri folder on your hard disk, and places it the KOLIBRI_DATA folder on the selected local drive. This structure is recognized by the Import from local drive command.

[image: structure of the local drive folders with exported content channels]

Manage Data

Note

To manage Kolibri users you must sign-in as Super user or Admin.

You can download Kolibri Detail and Summary logs usage data and export in the CSV format from the Data tab in your Facility dashboard.

[image: options for exporting usage data]

Manage Device

You can manage content and permissions for the device where Kolibri is running from the Device dashboard.

Note

To manage device settings you must have the appropriate permissions.

Assign Permissions

You can assign additional permissions to Kolibri users which will provide them access to more features compared to their user roles. To manage permissions for Kolibri users, use the Permission tab in the Device dashboard.

[image: manage permissions]

Permission to Manage Content

To grant permission to manage content channels in Kolibri to another user, follow these steps.

	Click Edit permissions for the chosen user.

	Under Device Permissions activate the option Can import and export content channels.

	Click Save changes to apply and finish.

[image: grant permissions to manage content]

The users who have been granted the permissions to manage content channels will have a black key indicator in front of their name, and will be able to see the Device dashboard with the Content tab.

Super User Permissions

To grant Super user permissions to another user, follow these steps.

	Click Edit permissions for the chosen user.

	Activate the option Make superuser.

	Click Save changes to apply and finish.

[image: grant superuser permissions]

The users who have been granted the Super user permissions will have a yellow key indicator in front of their name, and will be able to see the Device dashboard with both the Content and Permissions tabs.

[image: permissions indicators]

Manage Exams

You can view, create and delete exams, as well as assign them to learners, using the Exams tab in your Coach dashboard. Default view displays the list of all exams in a selected class, with a series of options to set the visibility, (de)activate when required, and view report of students who took them.

[image: manage exams home page]

Note

To manage Exams in Kolibri classes and groups you must be logged-in as Coach or Admin.

Create New Exam

To create a new exam, follow these steps.

	Click New exam button.

	Select the content channel from which you wish to select questions for the exam.

	Click Create exam to confirm, or Cancel to exit the confirmation window.

	Fill in the field for exam title.

	Fill in the field for number of questions you want exam to contain.

	Navigate through the topic tree and select checkboxes of those exercises you want to include in the exam.

[image: add content to your exam]
As you keep adding the exercises you will see confirmation messages at the bottom.

	Click Preview button to view the result in overlay window.

[image: preview the content of your exam]

	Click Randomize questions button to present them in the different order from those in the topic origin.

	Click the Close (X) button in the upper right corner to return to the exam home page.

	Click Finish button to save the result.

Change Exam Visibility

Newly created exam will be visible to entire class. To change exam visibility, meaning to assign it only to one group of learners instead of the whole class, follow these steps.

	Click Change button under the Visible to column in the list of exams.

	Select the group(s) of learners to whom you wish to assign the exam.

	Click Update to confirm, or Cancel to exit the confirmation window.

[image: assign exam to groups]

Activate/Deactivate Exam

Once you set the visibility of exam to the chosen group(s) of learners, you need to Activate it in order for it to appear in the Learn view of the learners to whom you assigned it.

	Click Activate button under the Action column in the list of exams.

	When the exam period concludes, click the Deactivate button.

View Exam Report

To view the report on learners who have taken the exam, follow these steps.

	Click down arrow near the Activate button for the desired exam from the list.

	Select View report in the drop-down menu.

[image: open the exam report from the drop-down selector]

	Click the name of the learner to view the detailed report with preview of results for each question.

[image: view the exam report for the whole group or class]

	Click each of the questions to preview it and understand better which question learners answered correctly in the exam and those they struggled with.

[image: view the detailed exam report for the selected learner]

Delete Exam

To delete exam, follow these steps.

	Click down arrow near the Activate button for the desired exam from the list.

	Select Delete in the drop-down menu.

	Click Delete button in the confirmation window to proceed, or Cancel to exit without deleting the exam.

Warning

All data from the exam you are deleting will be lost.

Rename Exam

To rename exam, follow these steps.

	Click down arrow near the Activate button for the desired exam from the list.

	Select Rename in the drop-down menu.

	Change the exam title in the confirmation window.

	Click Rename button to proceed, or Cancel to exit without renaming the exam.

Manage Facility

You can edit facility configuration settings in Kolibri from the Configuration tab in your Facility dashboard.

	Activate the options you want to make available for the users of your facility.

	Click Save changes to apply and finish.

[image: manage facility configuration settings]

Note

To manage Kolibri users you must sign-in as Super user or Admin.

Manage Groups

In case you need to further divide learners inside classes, for example to address the different progress needs or levels, you can use the Groups feature. Create and delete groups, as well as assign learners to them from the Groups tab in your Coach dashboard. Default view displays the list of all groups for the selected class, with the list of assigned learners for each group.

[image: manage learner groups]

Note

To manage Kolibri users you must sign-in as Super user, Admin or Coach.

Create a New Group

To create a new learner group, follow these steps.

	Click + New group button.

	Give group a desired name.

	Click Save to confirm, or Cancel to exit without creating a group.

Assign Learners to Group

Below existing groups there is a list with all learners currently NOT assigned to any groups.

	Use checkboxes to select all the learners in the list, or specific ones you want to assign to the group.

	Click Move learners button on the right side of the list.

	Select the group to which you want to assign the selected learners in the confirmation window.

	Click Move to proceed, or Cancel to exit without assigning.

[image: move ungrouped learners]

Move learners between groups

	Use checkboxes to select all the user in one group, or specific users you want to assign to another group.

	Click Move learners button on the right side of the origin group.

	Select the group to which you want to move the selected learners, or the Ungrouped option if you want to remove them from the origin group without assigning to a new one.

	Click Move to proceed, or Cancel to exit without moving.

[image: move learners from one group to another]

Rename Group

To rename group, follow these steps.

	Click the down arrow icon on the right edge of the desired group from the list.

	Select the Rename group from the drop-down menu.

	Input the new name for the group in the confirmation window.

	Click Save changes button to proceed, or Cancel to exit without renaming the group.

Delete Group

To delete a group, follow these steps.

	Click the down arrow icon on the right edge of the desired group from the list.

	Select the Delete group from the drop-down menu.

	Click Delete group button in the confirmation window to proceed, or Cancel to exit without deleting the group.

Note

Learners currently assigned to group will become ungrouped.

Manage Users

You can search for, filter, add, and edit user accounts in Kolibri from the Users tab in your Facility dashboard.

[image: manage users]

Note

To manage Kolibri users you must sign-in as Super user or Admin.

Create a New User Account

To create a new user account, follow these steps.

	Click Add New button.

	Fill in the required information (name, username, password).

	Select user profile (Admin, Coach or Learner).

	Click Create Account to add the new user.

[image: add new account form]

Select Users by Type

	Click All Users selector to display user types.

	Toggle between options to filter the user roster according to type, or leave it as All Users to display all.

[image: select users]

Edit User’s Account

To edit username or the full name account, follow these steps.

	Click on the Edit button (pencil icon) next to the user’s name.

	Edit Full name or Username in the Edit account info window.

	Click Confirm to update the edited information, or Cancel to exit without saving.

[image: edit account info form]

Reset User’s Password

	Click Reset password in the Edit account info window.

	Enter the new password in both fields.

	Click Save to confirm, or Back to exit without changing the password.

[image: edit password form]

Delete User’s Account

	Click Delete user in the Edit account info window.

	Click Yes to confirm, or No to exit without deleting the account.

[image: confirm delete account]

Default User Roles

Kolibri users by default can be divided in 3 different roles with respective access to features.

	Default user roles

	
	Learners can:

	
	View content and have their progress tracked

	
	Coaches can:

	
	View content and have their progress tracked

	View Coach dashboard and track progress of other users and usage stats for individual exercises

	Create/Edit/Delete Groups in Classes and add users to them

	Create/Edit/Delete Exams and assign them to users

	
	Admins can:

	
	View content and have their progress tracked

	View Coach dashboard and track progress of other users and usage stats for individual exercises

	Create/Edit/Delete other Admins, Coaches, and Learners

	Create/Edit/Delete Groups in Classes and add users to them

	Create/Edit/Delete Classes and enroll users in them

	View/Edit Facility configuration settings

	Export Detail and Summary logs usage data

Kolibri Super Users

Kolibri Super users have all device permissions and are able to assign them to other users. Therefore Super users can:

	
	View content and have their progress tracked

	View Coach dashboard and track progress of other users and usage stats for individual exercises

	Create/Edit/Delete other Admins, Coaches, and Learners

	Create/Edit/Delete Groups in Classes and add users to them

	Create/Edit/Delete Classes and enroll users in them

	View/Edit Facility configuration settings

	Export Detail and Summary logs usage data

	Import/Export Content channels

	View/Edit Permissions of other users

Assign Additional Permissions

By default, only Super users can view the Device dashboard, import/export Content channels in Kolibri, and modify Permissions for other users. However, depending on the needs of the institution, Super users can also grant these permissions to other users.

Advanced installation options

Warning

Advanced installation options are not yet available!

Generic installation (pip install)

Once Kolibri is released, you may install it as a standard package from PyPi using this command:

$ pip install kolibri --pre

Debian/Ubuntu: Subscribe to updates through a PPA

TODO - REVIEW this whole section once PPA is ready

We maintain a PPA on Launchpad [https://launchpad.net/~learningequality/+archive/ubuntu/kolibri] and if you are connected to the internet, this will also give you automatic updates.

On Ubuntu, do this:

sudo apt-get install software-properties-common python-software-properties
sudo su -c 'echo "deb http://ppa.launchpad.net/learningequality/kolibri" >
...
sudo apt-get update
sudo apt-get install kolibri

Raspberry Pi

TODO - once RPi deb is ready

Android

Warning

Final Android installer is not yet available!

Install

	Allow the installation of Kolibri on your Android device.

Warning

This beta version of Kolibri Android installer is not yet available on Play Store, and in order to install it, you need to change a security setting (these steps may be slightly different depending on the device model and Android version):

	Open your device’s Settings app.

	Under Personal, tap Security.

	Under Device administration, tap Unknown sources.

	Download the Kolibri :url-android-installer:`Android installer <>` (*.apk file).

	Tap the downloaded .apk file.

	Wait until the installation finishes.

	Once you have Kolibri installed, tap Open and proceed with the Initial Setup of your facility.

TODO - Update links for the installer.

Uninstall

TODO - Review

	Open your device’s Settings app.

	Under Apps, tap Kolibri.

	Tap Uninstall button.

Upgrade

TODO - Review

To upgrade Kolibri, follow these steps.

	Uninstall the previous version.

	Download the new version of Kolibri.

	Tap the downloaded .apk file.

	Wait until the installation finishes.

	Tap Open and go explore the new and improved Kolibri features!

Initial Setup

To do the initial setup of after the installation, follow these steps.

Note

You need to do the initial setup only once, the first time you start Kolibri after the installation.

	Select the default language for Kolibri.

[image: Select the default Kolibri language.]
Select the default Kolibri language.

Tip

You can change the user interface language later, from the user menu in the upper right corner.

	Name your facility. A Facility is the location where you installed Kolibri, such as a school or a training center.

[image: Select the name for the facility where Kolibri is running.]
Select the name for the facility where Kolibri is running.

	Create the Admin account. This Admin user will be a Super User able to manage all the device content, and all the rest of the facility users and their permisions.

[image: Select the username and password for the facility Super User.]
Select the username and password for the facility Super User.

	Choose a Facility setup. Click the Setup details for more information about user permissions for each setup type.

	Facility type

	Users

	
Admin managed

For schools and other formal learning contexts.

	
	Admins must create all user accounts.

	Users can sign in without password.

	Users cannot edit their account information.

	
Self-managed

For parent-child learning, homeschooling

or suplementary individual learning.

	
	Guests can create their own accounts.

	Users can edit their account information.

	
Informal and personal use

For libraries, orphanages, correctional

facilities, youth centers, computer labs,

and other non-formal learning contexts.

	
	Guests can create their own accounts.

	Users can edit their account information.

[image: Choose a Facility setup.]
Choose a Facility setup.

[image: View the Facility setup details.]
View the Facility setup details.

	Once you finish the initial setup, proceed to import some content, and create users (if you chose the Admin-managed facility setup). Make sure to check how to configure other computers in the network to access Kolibri.

Linux

Warning

Linux installer is not yet available!

Install

	Download Kolibri.

	Run the command:

sudo dpkg -i kolibri-installer-filename.deb

	Follow the instructions in the installation wizard window.

	Once you have Kolibri installed on your system, proceed with the Initial Setup of your facility.

TODO - Update links for the installer, and review the system service options.

Uninstall

	Open up Software on Ubuntu and locate the Kolibri. Press Remove.

OR

	Use apt-get remove <name of package>. You need to know the name of the package you installed, most probably kolibri.

Upgrade

TODO - Review

To upgrade Kolibri, follow these steps.

	Download the new version of Kolibri.

	Start the installer.

	Follow the instructions in the installation wizard window.

	Once the installation of the upgrade is finished, Kolibri will auto-start and open in the default browser on your computer.

	Go explore the new and improved Kolibri features!

OSX

Warning

OSX installer is not yet available!

Install

	Download Kolibri.

	Double-click the downloaded .pkg file.

	Follow the instructions in the installation wizard window.

	Once you have Kolibri installed on your system, proceed with the Initial Setup of your facility.

Uninstall

TODO

Upgrade

TODO - Review

To upgrade Kolibri, follow these steps.

	Download the new version of Kolibri.

	Start the installer.

	Follow the instructions in the installation wizard window.

	Once the installation of the upgrade is finished, Kolibri will auto-start and open in the default browser on your computer.

	Go explore the new and improved Kolibri features!

System requirements

Operating systems

	Windows Vista, 7, 8.1, 10

	(planned) Linux: Any system with Python 3.4

	(planned) Mac OSX 10.9, 10.10 and 10.11

	(planned) Debian/Raspberry Pi packages: Wheezy or later

	(planned) Ubuntu packages: 14.04, 15.10, 16.04 - anything that’s not end-of-life.

Limited support

TODO

Supported Browsers

	IE10+, Microsoft Edge

	Firefox

	Chrome

	(planned) Safari

	(planned) Epiphany on Raspberry Pi

	(planned) others on Android and iOS.

Known issues:

TODO

Video playback

Videos are MP4 encoded. On Ubuntu/Debian systems, install the Ubuntu restricted extras package [https://apps.ubuntu.com/cat/applications/ubuntu-restricted-extras/].

Hardware requirements

TODO - REVIEW this whole section

Clients

Very old desktops and very low-power computers can be used as client devices to access Kolibri. For instance, some deployments are known to use first-gen Raspberry Pi as desktop computers.

It is always a good idea to do a practical test, but when you want to deploy Kolibri, usually it’s not necessary to scale your hardware. The main concern is that your system needs a video card and driver that can play the videos.

Servers

Kolibri hardware requirements as a server are next to nothing.

	256 MB

	500 MHz CPU

	Hard drive space depends on the size of the content channels you intend to import into Kolibri

If you have a center with less than 30 computers, a device as simple as a Raspberry Pi is known to work fine as a server.

TODO - REVIEW with RPi package reqs if necessary

Note

In case you are deploying on Linux and want an efficient setup, use the kolibri-raspberry-pi package, it doesn’t require a specific architecture, but it’s required to use if you deploy on a system with specs equivalent to or smaller than Raspberry Pi.

Windows

To install or uninstall Kolibri on Windows, follow these steps.

Install

	Download Kolibri.

	Double-click the downloaded .exe file.

	Select the language for the installation.

	Follow the instructions in the installation wizard window.

	Once the installation finishes, Kolibri will auto-start and open in the default browser on your computer.

	Proceed with the Initial Setup of your facility.

Warning

Windows firewall will prompt you to allow the Python process needed to run Kolibri. Click Allow access to accept and proceed.

[image: Allow the Python process needed to run Kolibri.]
Allow the Python process needed to run Kolibri.

TODO - Update links for the installer.

Uninstall

	Open the Windows Control Panel.

	Select Programs and Features option.

	Select Kolibri from the list of programs.

	Click the button Uninstall/Change and follow the instructions.

Upgrade

To upgrade Kolibri, follow these steps.

	Download the new version of Kolibri.

	Double-click the downloaded .exe file.

	Follow the instructions in the installation wizard window.

	Once the installation of the upgrade is finished, Kolibri will auto-start and open in the default browser on your computer.

	Go explore the new and improved Kolibri features!

 _images/channels.png
* Lo

= = o # 3,500
© e RECOMMENDED ToPICs ExaMS
D signout Channels
-4 cK-12

K1z Khan Academy K12 Testing
Testing

_images/classes.png
Al Classes

Class Name Members Actions.

Advanced Math 12 Delete Class
Calculus AB 7 Delete Class
Geometry 3 Delete Class

History 20 Delete Class

_images/breadcrumbs.png
- - a
RECOMMENDED TOPICS EXAMS.

‘Topics > Math > Early Math > Counting > Counting small numbers > Counting small numbers
Counting small numbers

Learn to count from 0 t0 20.

L AEA A AR
LA A A A A

@ Counting with smail Countith small @ Countingin order
numbers numbers

_images/change-class-name.png
X

Change Class Name

Class Name
Classt

CANCEL UPDATE

_images/coach-superuser.png
< NeelaR.

Neela R.

neelar

Ve

Make superuser

©+ Asuperuser has all device permissions and is able to manage permissions of other users

Device Permissions

save ciances [ERSNGES

_images/community-forums.png
R v B AR
s a=@

“To make launching your new site easier, you are in bootstrap mode. All new users will be raned tust level 1 and have daily email igest
‘updates enabled. This wil be automatically tumed off when tota user count exceeds 50 users.

ancatogories » [IEIE New Unead Top Categores | NewTope

Topic category users Reples Views Activity

X Welcome to Learning Equality’s Support Community 0 Q

Need support? Youve come tothe rght place. This forum s for the|

Leaming Equality community o ask and answer quesitions on topic{ 47942925 ¢ b ound e

relating 10 KA Lite general support, such as nstallation and set-uj W implementaions x1

.. read more A fomation et o deplying KA Lie o Kl nyou community.
Pedagagcal modes, Ao SOUces, best racces .

s forum? B Ste Feedback =0

 How do{ post o this forum? Discussion abouthis s, oganczaon, how ks, and how e can

1 you have a story to share, we cannot wait 10 hear i The more def imprave .

Create anew Topic

OBI %W s A-os

Use Markdon, B8Code, or HT?

o fomat Drag o

choose optional tags fr this topic «hide preview

| + creae ropc [T

_images/coach-home.png
profie

Sign aut

All classes
View learner progress and performance

Class name

overers Two

Explorers One

Members

_images/coach-recent.png
-

L]
2
o

°

@

§) KousRr

Learn

Coach

Fadilty

Device

profile

Sign out

All classes > Explorers One -

m O 8 = ®

TOPICS | RECENT EXAMS LEARNERS GROUPS

Recent Activity
Only showing sty in st 7 days

Channels Lostactive~

13 seconds ago

2minutes ago

_images/confirm-add-users-to-class.png
X

Confirm Enroliment of Selected Users

Are you sure you want to enroll the following users Into Class1?

john
sarah

NO, GO BACK

_images/content_distributed_db.png
ContentNode License
PK | id (UUIDField) PR (i
FK | parent ContentNode) lcense_name
FK | license (License)
50— o4 ContentTag

M2M | has_prerequisite (ContentNode asymmetrical) [S —
M2m | related (ContentNode symmetrical) g name
M2m | tags (ContentTag asymmetrical)

e

content id (UUIDField)

description

sort_order

ticense_owner

autor

Kindiuse cnoices)

avalleble

File Lang

PK id (UUIDField) BO—OH ek id
FK | contentnode (ContentNode) lang_code
P | lang Lang) lang.Suboode

checksum

le_size

avalleble

extension(use choices)
preset(use choices)
supplementary (BooleanField)
thumbnail (BooleanField)

priorty

_images/create-superuser.png
Create your Admin account
‘This account allows you to manage your Facility and content on this.
device.

Full name.

DidiN.

720
Username

admin

5/30
Password

Enter password again

coNTINUE

nav.xhtml

 Table of Contents

 		
 Getting Started

 		
 User Guide

 		
 Install Kolibri

 		
 System requirements

 		
 Windows

 		
 Linux

 		
 OSX

 		
 Android

 		
 Advanced installation options

 		
 Initial Setup

 		
 Access Kolibri

 		
 Starting Kolibri on Windows

 		
 Starting Kolibri on Linux and OSX

 		
 Starting Kolibri on Android

 		
 Accessing Kolibri from Other Devices in the Network

 		
 Change Language

 		
 Manage Kolibri

 		
 Default User Roles

 		
 Manage Device

 		
 Manage Content

 		
 Manage Facility

 		
 Manage Users

 		
 Manage Classes

 		
 Manage Data

 		
 Get support

 		
 Coach

 		
 Recent Activity View

 		
 Topic Activity View

 		
 Manage Groups

 		
 Manage Exams

 		
 Learner

 		
 Access Kolibri

 		
 Learn

 		
 Frequently Asked Questions

 		
 Network Terminology

 		
 Troubleshoot Network Problems

 		
 Working with Kolibri from the Command Line

_images/edit-account-info.png
X

Edit account info

Full name
Alice Ally

Username
alice

Learner

Reset password
Delete user

CANCEL CONFIR

_images/edit-password.png
< X

Reset account password

Username: alice

Enter new password

Confirm new password

_images/delete-account-confirm.png
Delete account

Are you sure you want to delete alice?

o I

_images/delete-class.png
Delete Class

Are you sure you want to delete Class1 ?

Users will only be removed from the class and are still
accessible from the "Users" tab.

CANCEL DELETE

_images/exam-menu.png
Coach

Profie

Sign out

All classes>Class A -

-) a (-] a

TOPICS RECENT LEARNERS GROUPS EXAMS

Class A Exams

show
@Al Oadive O inactive

Title

B Biology Review 16roup |
3, Final Math Second Grade 1Group |
B, First Quarter 1 Group |
B First Quarter2 Entire class |
B second Quarter Entire class |
B, support Test 1 Entire class |

Visible to
cHANGE

cHanGE
cHANGE
cHanGe
cranGe

cHANGE

ACTVATE ~

oeacTivATE
oeacTvaTe (v
Preview exam
View report
Rename

Delete

_images/exam-report-detail.png
Back to Summative Exam Report

& Aaron Andrews - Exam Performance

Overall Score: 72%
Questions Correct: 39 of 50 correct

@Comple(ed
on 18 Nov 2016

from Exercise 1 Preview exam
Q aueston
Question 3 :
Which of the shapes completes the whole?

° Question 1
° Question 4
o Question 7
6 Question 10
° Question 11

° Question 4

0 Question 6

from Exercise 2
- A
C '

_images/exam-continue.png
Exams

‘You have 2 exams assigned

inal Math Second Grade 4 questions left

B support Test 1 =

_images/exam-detail.png
< Back to exam list

@ Final Math Second Grade 60f10 questions answered
@ Question1
What do e get when we break apart 35+ 16 using place vlue?

® auesion2
e @ = i
® auesions Sones + L omes 45 tens + G tens

Questons Stena +1tem 45t + Stemm
® Questons
® Queston

< PREVIOUS QUESTION NEXTQUESTION >
Questions

_images/exam-report.png
Unit Exam #4 Report

000000

Exam taken by: 40 Learners

Average Score:

¥ Name

Aaron A.

Learner Name

Learner Name

Learner Name

Learner Name

80%

Status

Completed

Completed

Completed

Incomplete

Completed

Score

92%

91%

88%

82%

Report

Group

Group A

Group A

Group A

Group A

Group A

_images/exam-result.png
® Learn

- = B # 3,500
© profic RECOMMENDED TOPICS | EXAMS,
a n ou
siamout Exams
You have 2 exams assigned

10 Fin Math second Grade

B support Test 1 [s |

_images/exam-visibility.png
Exam visibility

_images/export-local-drive.png
Export to where?

You are aboutto e
es found
O IVolumes/DATA (22 G& avalable)

O KINGSTON (500 M8 available)

REFRESH

_images/export-usage-data.png
KOLIBRI Facility

® Lean
B -]
@ Cooen CLASSES ~ USERS ~ CONFIGURATION DATA
P Facility
O Device
Export usage data
o Profiie
3 signout Download CSV (comma-separated value) files containing

information about users and their interactions with the
content on this device

session logs summary logs
Individual visits to each Total time/progress for
piece of content. each piece of content
DOWNLOAD DOWNLOAD
Note: When a user views Note: A user may visit the
content, we record howlong same piece of content
theyspend and the progress muliple times, This fle
they make. Each row I this records the total time and
fil records a single visita progress each user has
user made toaspecificpiece achieved for each piece of
of content. This ncludes content, summarized across
‘anonymous usage, when no possibly more than one vt
user & signed n: Anonyrmous usage is not

included.

_images/exams.png
® Learn

- [# 3,500
© Profile RECOMMENDED ~ TOPICS ~ EXAMS.
) signout Exams

You have 2 exams assigned

B Biology Review 3 START

B math Review 1 START

_images/exercise.png
RECOMMENDED ~ TOPICS

<
* Count with small numbers @

Put6

Try to get 5 check marks to show up

GET A HINT

Practice counting up to 10 objects.

_images/groups.png
*
L]

]

)

El

Learn

coach

Facilty

Device

Profiie

Sign out

All classes » Discoverers Two -

L] o a ®

TOPICS RECENT EXAMS LEARNERS = GROUPS

Class groups m

Review June 1 Leorer
oseacs 2]

O Neme Username.

O Neelar. neelar

Review May 2Learners

O Neme Username.
O carolH. carolh
O Johnc. johne

Ungrouped otearners

No Learners in this group.

_images/facility-setup-details.png
Facility setup details

Admin-managed

Admins must create all user accounts
Users can sign in without their passwords
Users cannot edit their account
information

Informal and personal use
Guests can create their own accounts
Users can edit their account information

self-managed
Guests can create their own accounts
Users can edit their account information

_images/facility-setup.png
Choose a Facility setup
How will you be using Kolibri? You can customize these settings later.
Setup details

@ Admin-managed

For schools and ther formal esrming contexts

O seit-managed
For parant i i, emeschoding. o spplementary nchical ssming

O informat and personal use

_images/import-choose-source.png
X

Please choose a source...

INTERNET LOCAL DRIVES

canceL

_images/import-internet.png
<« x

mport from the internet

_images/import-CC.png
§) KoLsRI 2 admin ~

® Learn
m]
i CONTENT PERMISSIONS
2 Facity
0 peviee Finishea! Clck “Close” button to see
€ changes. 100.0% cLose
® Frofie
B Sign cut My channels
Channel Resources Size Last updated
Khan Academy Testin
e e 51 42MB 2 hours ago

_images/learn-page-signin.png
§) vousar Learn 2 Guest ~
Sanin
* Learn - - Change lanay

RECOMMENDED TOPICS —

_images/learn.png
Sign out

Learn

- = o # 500

RECOMMENDED TOPICS EXAMS

Most popular View more

Kuhesabu picha Kulinganishaidadiya Kujumlisha 1 dhi
vituz kujumlisha 10

Next steps
l I l.n.u...nn
e
Make 10 Subtracting 14 -6 Namba ndogo

Resume

_images/import-local-drive.png
< X
Import from a Local Drive
Drives found

O Tostiea
® ancsTon

REFRESH

ance

_images/kolibri-data-osx.png
= KINGSTON

£ mac

< A - B DS °»
S = EETE
B All My Files v [KOLIBRLDATA 14:29 Folder
v [content 14:29 Folder
=t » B databases 0410117 Folder
[Desktop » [storage 02/10/17 Folder

_images/manage-content.png
Coach

Facilty

Device

Profile

Sign out

CONTENT PERMISSIONS

My channels oRT
Chonnet Resources Sze | Lostupaated
KranAcsdemyTesing s g howsago o
Gi2Tesing 2w zheusage oae
Sk 10643 6GB Thourago DELETE

Version 48

_images/login-modal.jpg
QP

Kol

Username
marcg

Password

SIGNIN

Don't have an account?.

CREATE ACCOUNT ACCESS AS GUEST

_images/manage-content-permissions.png
Device Permissions

Can import and export content channels

save ciances [EETINGES

_images/manage-permissions.png
-

[}

o

Coach

Facily

Device.

profie

Sign out

CONTENT | PERMISSIONS

Device Permissions

Make changes to what users can manage on your device

Q search for a user.

Full Name uUsername

O+ DidiN. (You) admin
Carol H. carolh
Johnc. johnc
Marc G, marcg

Neela R. neelar

EDIT PERMISSIONS

EDIT PERMISSIONS

EDIT PERMISSIONS.

EDIT PERMISSIONS

_images/manage-users.png
[SEECI-

°

Leam

coacn

Facility

Device.

profie

Sign out

B L] |
anss s conncumaron owa
All Users (s)
Mt
Q search for a user..

admin @«
carolh
johne
marcg

neelar L coacn]

Carol H.

JohnC.

MarcG.

NeelaR.

MANAGE

MANAGE

MANAGE

MANAGE

MANAGE

_images/manage-exams.png
conch

Profile

Signout

All classes>Class A -

m O ® o

TOPICS RECENT LEARNERS GROUPS EXAMS

Class A Exams
Show
@Al Oacive O Inactive

Tide Visible to
B Biology Review 1Group | chance
£, Final Math Second Grade 1Group | crase
B, First Quarter 1Group | crance
B Second Quarter Entire class | cHaNGE

B, Support Test 1 Entire class | crance

+ ne

AcTvaTe
DeACTIVATE
oeacTIvATE

AcvaTE

oEAcTIvATE

_images/manage-facility.png
»

°

@

Learn

Coach

Faciity

Device.

profile

Sign out

B L] B

CLASSES USERS CONFIGURATION DATA

Facility Configuration
Configure and change different Facility settings here.

Your current Fa
Myschool

Facility settings
Allow users to edit their username
Allow users to edit their full name
Allow users to sign-up on this device

O3 Allow learners to sign in with no password

RESET T DEFAULT SETTINGS (I]

_images/name-facility.png
Name your Facility
A Facility is the location where you are installing Kolibri, such as a

coNTINUE

_images/pdf.png
Origins of algebra

1 .

b9157b2274b618408424ckO7M5cT0e.. 1 /174

Where did the word "Algebra” and its underlying ideas come from?

_images/move-learners.png
X

Move Learners

Move the 4 Learners to:
O Adventurers
O Discoverers

Otxplorers

e, [

_images/move-learners2.png
x

Move Learners

Move the 2 Learners to:

Obiscoverers

© Explorers

O Ungrouped

_images/permissions-keys.png
* Leam

m a
@ coacn CONTENT _ PERMISSIONS
@ Faciity
O oevice N .
Device Permissions
© profie Make changes to what users can manage on your device
2 sgnow

Q search for auser.

T —
o - S—
—— —
John C. johnc EDIT PERMISSIONS

o — asions

_images/preview-exam.png
Preview exam

10 questions

Completing the Whole - Add Together

i ‘Which of the shapes completes the whole?

QUESTION 1

QuesTion 2
QuesTion 3
QuesTion +
QuesTIon 5

Fraction of a Whole Practice

QuesTion s
QuesTion 7

A

QuesTion s
QuesTion s
QuesTioN 10

N

A

N
v
>

_images/add-new-account.png
X

Add New Account

Full name

Username

Password

Confirm Password

Learner
Co:

_images/add-new-class.png
X

Add New Class

Class Name

_images/add-content-exam.png
Learn

Coach

profle

Sign out

All classes>Class A ~

- [c) ® a

TOPICS RECENT LEARNERS GROUPS EXAMS
Create a new exam from Khan Academy Testing
Exmitle Number of questions

First Quarter 2 20

Select exercises to pull questions from

Khan Academy Testing / Math / Early Math

= selectall
© mCounting 10 of 10 exercises selected
% MAddition and subtraction intro 20f 2 exercises selected

) MPlace value (tens and hundreds)

12 Exercises selected

© PREVIEW

_images/add-users-to-class.png
& BACKTO CLASS DETAILS NEW USER ACCOUNT

Select users to enroll in Class1

‘Showing all users currently not enrolled In this class

Q search for a user

o Show selected

users (2)
[] username Role Full name
john learner John Smith
] sally admin sally salan
sarah learner sarah Serao
] tom coach Tom Tomer

_images/select-users.png
All Users(7)

All Users.

All Users.
Admins

Learners.

qeorge

sally

fom ’

_images/taskbar-options.png

_images/search.png
Search
count

Showing results for "count”
Sresults

Topics

® counting
B8 Counting small numbers
B Counting small numbers

B counting objects

Content

COUNTING WHALES,

SHEEP, & FLOWERS

oo

() Counting objects 1 () Counting with small
numbers

& Countuith small umbers

_images/select-language.png
fa

Please select the default language for Kolibri

A PORTUGUES KISWAHILI FRANGAIS

EsPANOL (MEXICO) EsPAROL

coNTINUE

_images/topic-activity.png
Signout

All classes » Explorers One -
= 0 @ = e

TOPICS RECENT EXAMS LEARNERS GROUPS

Channels » Khan Academy Testing » Math > Early Math > Addition and subtraction intro

m Addition and subtraction intro

« 2Exercises
* aResources
Names. g exercseprogress_ Avg.resourceprogress Lt activy
 Additon ond subtraction within gy B ox thoursgo
- o -
- - e

_images/remove-user-from-class.png
Remove User from Class

Are you sure you want to remove alice from Class1?

You can still access this account from Users

_static/ajax-loader.gif

_images/video.png
Adding by Counting (Sums to 10) 500

Adding by counting on (up to sum 10)

How many apples are there altogether?

@ 99000
EEEER

1 2 3 4 5
.

¢ 0w/ o

Low Resolution (1.47 P

_images/windows-firewall.png
Windows Firewall has blocked some features of python.exe on al publc and private networks.
Name:
Publher: Unknown

Path: Cilpython27python.exe

‘Allow python.exe to communicate on these networks:
Private networks, such as my home or work network.

[F]Publc networks, such a5 those in sirorts and coffee shops (notrecommended
because these networks often have lite o no seaity)

What are the riss of alowing 2 proqram throuch a frewall

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_images/update-profile.png
Your points

% 500

Username
sally

(you are a Learner)

Full name
sally Salan

_static/plus.png

_static/logo.png
“

_static/minus.png

_static/up.png

_static/up-pressed.png

_static/file.png

_static/down.png

