

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/knitpy/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/knitpy/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

knitpy: Elegant, flexible and fast dynamic report generation with python

This is a port of knitr (http://yihui.name/knitr/) and rmarkdown
(http://rmarkdown.rstudio.com/) to python.

To start with, you can run the example overview document. To
convert to all defined output formats, run knitpy --to="all" -- examples\knitpy_overview.pymd.
This will produce a html, docx and pdf output (if you have pdflatex in path). You can
view a markdown rendered and a
html rendered [http://htmlpreview.github.io/?https://github.com/JanSchulz/knitpy/blob/master/examples/knitpy_overview.html]
version of this file. It’s not yet as pretty as the knitr version...

For a description of the code format see http://rmarkdown.rstudio.com/ and replace
{r <r style options>} by {python <python style options>} and of course use python
code blocks...

It uses the IPython kernel infrastructure to execute code, so all kernels for IPython
are (aem... can potentially be) supported.

What works:

	code blocks and inline code

	plots are shown inline

	knitpy filename.pymd will convert filename filename.pymd to the defaul output format html.

	output formats html, pdf and docx. Change with --to=<format>

	--to=all will convert to all export formats specified in the yaml header

	code chunk arguments eval, results (apart form “hold”), include and echo

	errors in code chunks are shown in the document

	uses the IPython display framework, so rich output for objects implementing _repr_html_() or
_repr_markdown_(). Mimetypes not understood by the final output format are automatically
converted via pandoc.

	config files: generate an empty one with knitpy --init --profile-dir=.

	using it from python (-> your app/ ipython notebook):
import knitpy; knitpy.render(filename.pymd, output="html") will convert filename.pymd
to filename.html. output=all will convert to all document types (as specified in the
YAML header of the document). The call will return a list of converted documents.

	debugging with ``–debug,–kernel-debug=True,–output-debug=True`

What does not work (=everything else :-)):

	most YAML headers are currently ignored

	some advertised command-line options are ignored

	most code chunk arguments (apart from the ones above) are ignored

	probably lots of other stuff...

Todo

	fix the above...

	refactor the parsing, so that it is line based
	errors make more sense, because it knows the line (“block starting at line....”)

	add some traits for the default pdflatex/pandoc executeable, so they don’t have to be in path

	the final output has to configure the “includeable” markup docs
	html in html

	latex in html?

	...

	more arguments for code blocks

	more output formats? -> make output format configurable

	more unit-/outputtests...
	codeblocks + inline

	yaml

	errors

	pandoc caller (via mocks?)

	Documentation
	what works? what is not supported?

	differences to rmarkdown / knitr?

	implement more kernel engines (R...) and make it possible to supply/change ones
(for installed kernels for python2/3 or coda environments)

	implement a nice default html template
	Try https://github.com/timtylin/scholdoc-templates

	implement “code tidying”
	maybe use https://github.com/google/yapf?

	use metadata in keep_md output (like rmarkdown does...
	should output #<title>\n<author>\n<date> before the rest

	remove the first yaml block, but keep everything else...

	chunk caching

The knitpy licensing terms

Knitpy is licensed under the terms of the Modified BSD License (also known as
New or Revised or 3-Clause BSD), as follows:

	Copyright (c) 2015, Jan Schulz <jasc@gmx.net>

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the knitpy project nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

comment code chunk option

the default is two comments

1+1

2

change it to only one comment

1+1

2

The following two outputs should have no comments

1+1

2

1+1

2

eval code chunk option

res = 1

This code is shown, but no output and the code is not executed!
res += 1
res

Both input code and output is shown
res += 1
res # is now 2

2

No output between here...

...and here

2

results code chunk option

results are hidden
1+1

1+1

2

print("**This text** will be bold...")

This text will be bold...

r style code chunk option evaluation

No code shown above

No code shown above

And now the code is shown...

1+1

2

1+1

2

include code chunk options

Here we have two empty lines, because the ones from markdown are preserved...

if have_run == True:
 print("'have_run==True': ran the codeblock before this one.")

'have_run==True': ran the codeblock before this one.

echo code chunk option

code not shown above and this is in one block
2

print("code shown above and in multiple blocks")

code shown above and in multiple blocks

1+1

2

A minimal inline example

We can do math: 1+1=2. Yay, we are happy!

Yes I know the value of pi is 3.141592653589793, and 2 times pi is 6.283185307179586.

Invalid Code

"text without a closing quote...

ERROR: Code invalid

"text without a closing quote...

ERROR: Code invalid

"More text without a closing quote...

ERROR: Code invalid

s = ""
after
 # after2
 print(test)

ERROR: Code invalid

for i in range(x):

ERROR: IndentationError: expected an indented block (<ipython-input>, line 2)

for i in range(x):
print(i)

ERROR: Code invalid

Loops

Problem here is that the loop + the first line is usually enough to make something valid code

s = ""
for i in range(10):
 s += " %s" %i
s

' 0 1 2 3 4 5 6 7 8 9'

s = ""
for i in range(10):
 j = i
 s += " %s" %j
s

' 0 1 2 3 4 5 6 7 8 9'

s = ""
for i in range(10):
 # test
 j = i
 # test
test
 # test
 s += " %s" %j
s

' 0 1 2 3 4 5 6 7 8 9'

s = ""
for i in range(10):
 for j in range(i):
 s += " %s" %j
s

' 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8'

s = ""
for i in range(10):
 for j in range(i):
 k = j
 s += " %s" %k
s

' 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8'

s = ""
for i in range(10):
 for j in range(i):
 k = j
 s += " %s" %k
 s += " loop"
s

' loop 0 loop 0 1 loop 0 1 2 loop 0 1 2 3 loop 0 1 2 3 4 loop 0 1 2 3 4 5 loop 0 1 2 3 4 5 6 loop 0 1 2 3 4 5 6 7 loop 0 1 2 3 4 5 6 7 8 loop'

 # test
for i in range(3):
 # test
 #test
 print(i)
text
 print("works")

0
works
1
works
2
works

A minimal code chunks example

A paragraph here. A code chunk below (remember the three backticks):

1+1

2

.4-.7+.3 # what? it is not zero!

5.551115123125783e-17

Errors in code

import NoneExistingModule

ERROR: ImportError: No module named NoneExistingModule

ImportError Traceback (most recent call last)
<ipython-input> in <module>()
----> 1 import NoneExistingModule

ImportError: No module named NoneExistingModule

raise Exception("Message should be shown...")

ERROR: Exception: Message should be shown...

Exception Traceback (most recent call last)
<ipython-input> in <module>()
----> 1 raise Exception("Message should be shown...")

Exception: Message should be shown...

And both together in one block

import NoneExistingModule

ERROR: ImportError: No module named NoneExistingModule

ImportError Traceback (most recent call last)
<ipython-input> in <module>()
----> 1 import NoneExistingModule

ImportError: No module named NoneExistingModule

raise Exception("Message should be shown...")

ERROR: Exception: Message should be shown...

Exception Traceback (most recent call last)
<ipython-input> in <module>()
----> 1 raise Exception("Message should be shown...")

Exception: Message should be shown...

title: “knitpy: dynamic report generation with python”
author: “Jan Schulz”
date: “12.03.2015”
output:
pdf_document: default
word_document: default
html_document:
keep_md: yes

This is a port of knitr (http://yihui.name/knitr/) and rmarkdown
(http://rmarkdown.rstudio.com/) to python.

For a complete description of the code format see http://rmarkdown.rstudio.com/ and replace
{r...} by {python ...} and of course use python code blocks...

Examples

Here are some examples:

print("Execute some code chunk and show the result")

Execute some code chunk and show the result

Codechunks which contain lines without output (e.g. assign the result or comments) will
be shown in the same code block:

A comment
text = "All code in the same code block until some output is produced..."
more_text = "...and some more."
print(text)

All code in the same code block until some output is produced...

print(more_text)

...and some more.

Code chunk arguments

You can use different arguments in the codechunk declaration. Using echo=False will not show
the code but only the result.

Only the output will be visible as `echo=False`

The next paragraphs explores the code chunk argument results.

If ‘hide’, knitpy will not display the code’s results in the final document. If ‘hold’, knitpy
will delay displaying all output pieces until the end of the chunk. If ‘asis’, knitpy will pass
through results without reformatting them (useful if results return raw HTML, etc.)

results='hold' is not yet implemented.

print("Only the input is displayed, not the output")

This is formatted as markdown:
This text will be bold...

This text will be bold...

Note: with python code it is recommended to use the IPython/Jupyter display system and an
appropriate wrapper (see below) to display such output and not results="asis". This makes it
possible to convert such output if the output can’t be included in the final format.

You can also not show codeblocks at all, but they will be run (not included codeblock sets
have_run = True):

if have_run == True:
 print("'have_run==True': ran the codeblock before this one.")

'have_run==True': ran the codeblock before this one.

Using eval=False, one can prevent the evaluation of the codechunk

x = 1

x += 1 # this is not executed as eval is False

x # still 1

1

To remove/hide a codechunk completely, i.e. neither execute it nor show the code, you can use both eval=False, include=False: nothing will be
shown between this text ...

x += 1 # this is not executed and not even shown

... and this text here!

The prefix in front of text output (per default ##) can be changed via the comment chunk
option to a different string or completely removed by setting it to a empty string ""or None:

print("Text output")

result: Text output

print("Text output")

Text output

Inline code

You can also include code inline: “m=2” (expected: “m=2”)

IPython / Jupyter display framework

The display framework is also supported.

Plots will be included as images and included in the document. The filename of the
plot is derived from the chunk label (“sinus” in this case). The code is not
shown in this case (echo=False).

[image:]

If a html or similar thing is displayed via the IPython display framework, it will be
included ‘as is’, meaning that apart from text/plain-only output, everything else
will be included without marking it up as output. Knitpy automagically tries to include only
formats which are understood by pandoc and the final output format (in some case converting the
format to one which the final output can handle).

from IPython.core.display import display, HTML
display(HTML("strong text"))

strong text

It even handles pandas.DataFrames (be aware that not all formatting can be converted into all
output formats):

import pandas as pd
pd.set_option("display.width", 200)
s = """This is longer text"""
df = pd.DataFrame({"a":[1,2,3,4,5],"b":[s,"b","c",s,"e"]})
df

		a	b
	0	 1	 This is longer text
	1	 2	 b
	2	 3	 c
	3	 4	 This is longer text
	4	 5	 e

pandas.DataFrame can be represented as text/plain or text/html, but will default to the html
version. To force plain text, use either print(df) or set the right pandas option:

pd.set_option("display.notebook_repr_html", False)
df

a b
0 1 This is longer text
1 2 b
2 3 c
3 4 This is longer text
4 5 e

set back the display
pd.set_option("display.notebook_repr_html", True)

You can also use package like tabulate [https://bitbucket.org/astanin/python-tabulate]
together with results="asis" or by wrapping it with the appropriate display class:

from tabulate import tabulate
from IPython.core.display import Markdown
either print and use `results="asis"`
print(tabulate(df, list(df.columns), tablefmt="simple"))

a b

0 1 This is longer text
1 2 b
2 3 c
3 4 This is longer text
4 5 e

or use the IPython display framework to publish markdown
Markdown(tabulate(df, list(df.columns), tablefmt="simple"))

a b

0 1 This is longer text
1 2 b
2 3 c
3 4 This is longer text
4 5 e

Note that the second version (wrapping it in Markdown) is preferred, as this marks the output
with the right mimetype and therefore can be converted—if that’s needed—to something which
the output format understands!

Unfortunately, html tables have to be tweaked for the final output format as e.g. too width
tables spill over the page margin in PDF.

Error handling

Errors in code are shown with a bold error text:

import sys
print(sys.not_available)

ERROR: AttributeError: ‘module’ object has no attribute ‘not_available’

AttributeError Traceback (most recent call last)
<ipython-input-37-a5971246c0f7> in <module>()
----> 1 print(sys.not_available)

AttributeError: 'module' object has no attribute 'not_available'

for x in []:
print("No indention...")

ERROR: Code invalid

 _static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_images/sinus-0.png
10

05

00

e

