

Knit

Knit launches YARN applications from Python.

Knit provides Python methods to quickly launch, monitor, and destroy
distributed programs running on a YARN cluster, such as is found in traditional
Hadoop environments.

Knit was originally designed to deploy Dask [http://dask.pydata.org/en/latest/] applications on YARN, but can
deploy more general, non-Dask, applications as well.

Using conda [http://conda.pydata.org/docs/], Knit can also deploy fully-featured Python environments within
YARN containers, sending along useful libraries like NumPy, Pandas, and
Scikit-Learn to all of the containers in the YARN cluster.

Install

Use pip or conda to install:

conda install knit -c conda-forge
or
pip install knit

Launch Generic Applications

Instantiate knit with valid ResourceManager/Namenode IP/Ports and create a command string to run
in all YARN containers

from knit import Knit
k = Knit(autodetect=True) # autodetect IP/Ports for YARN/HADOOP

Create a software environment with necessary packages

env = k.create_env('my-environment',
 packages=['python=3.5', 'scikit-learn','pandas'],
 channels=['conda-forge']) # specify anaconda.org channels

Run a command within that environment on multiple containers

cmd = 'python -c "import sys; print(sys.version_info);"'
app_id = k.start(cmd, num_containers=2, env=env) # start application

The start method also takes parameters to define the resource requirements
of the application like num_containers=, memory=, virtual_cores=,
env=, and files=.

Launch Dask

Knit makes it easy to launch Dask on Yarn:

from knit.dask_yarn import DaskYARNCluster
env = k.create_env('my-environment',
 packages=['python=3.6', 'scikit-learn', 'pandas', 'dask'],
 channels=['conda-forge']) # specify anaconda.org channels

cluster = DaskYARNCluster(env=env)
cluster.start(nworkers=10, memory=4096, cpus=2)

from dask.distributed import Client
client = Client(cluster) # Connect local Dask client to cluster

If you want to connect to the remote Dask cluster from your local computer as
is done in the last line then your local and remote environments should be
similar.

Packaged Environments

Yarn clusters typically lack strong Python environments with common libraries
like NumPy, Pandas, and Scikit Learn. To resolve this, Knit creates
redeployable conda environments that can be shipped along with your Yarn job,
effectively bringing a fully-featured Python software environment to your Yarn
cluster.

To achieve this Knit uses redeployable conda [http://conda.pydata.org/docs/] environments. Every time you
create a new environment Knit will use conda locally to manage and download
dependencies, and then will wrap those packages into a self-contained zip file
that can be shipped to Yarn applications.

Scope

Knit is not a full featured YARN solution. Knit focuses on the common case in
computational workloads of starting a distributed process on many workers for a
relatively short period of time. It does not provide fine-grained access to
all Yarn functionality.

Related Work

	Apache Slider [https://slider.incubator.apache.org/]: General purpose YARN application with a focus on
long-running applications/services: HBase, Accumulo, etc.

	kitten [https://github.com/cloudera/kitten]: General purpose YARN application with Lua based configuration

See the quickstart to get started.

	Installation

	Quickstart

	Usage

	Troubleshooting

	API

	Configuration

	Examples

Installation

The runtime requirements of knit are python, lxml, requests, py4j. Python versions
2.7, 3.5 and 3.6 are currently supported. Dask is required
to launch a Dask cluster. These are all available via conda (py4j on the conda-forge channel).

Testing depends on pytest.

Easy

Use pip or conda to install:

$ conda install knit -c conda-forge
or
$ pip install knit --upgrade

For dask clusters, you also need dask itself:

$ conda install dask distributed

Source

The following steps can be used to install and run knit from source.

Update and install system dependencies (e.g., for debian systems):

$ sudo apt-get update
$ sudo apt-get install git maven openjdk-7-jdk -y

or install these via conda

$ conda install -y -c conda-forge setuptools maven openjdk

Clone git repository and build maven project:

$ git clone https://github.com/dask/knit
$ cd knit
$ python setup.py install mvn

Testing on Docker

If you would like to test this package, but don’t have a YARN cluster hanging around, you
could make a small test one in your machine. This is essentially how the Continuous Integration tests
work.

$ export CONTAINER_ID=`docker run -d mdurant/hadoop`
$ docker exec -it $CONTAINER_ID bash
conda install dask distributed -y
conda install -c conda-forge lxml py4j knit
py.test -vv knit

Quickstart

Install

Use pip or conda to install:

$ pip install knit --upgrade
$ conda install knit -c conda-forge

Commands

Start

Instantiate knit with valid ResourceManager/Namenode IP/Ports and create a command string to run
in all YARN containers

>>> from knit import Knit
>>> k = Knit(autodetect=True) # autodetect IP/Ports for YARN/HADOOP
>>> cmd = 'date'
>>> k.start(cmd)
'application_1454900586318_0004'

start also takes parameters: num_containers, memory,
virtual_cores, env, and files

Status

After starting/submitting a command you can monitor its progress. The status method
communicates with YARN’s ResourceManager [https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/ResourceManagerRest.html] and returns a python dictionary with current
monitoring data.

 >>> k.status()
{'allocatedMB': 512,
'allocatedVCores': 1,
'amContainerLogs': 'http://192.168.1.3:8042/node/containerlogs/container_1454100653858_0011_01_000001/ubuntu',
'amHostHttpAddress': '192.168.1.3:8042',
'applicationTags': '',
'applicationType': 'YARN',
'clusterId': 1454100653858,
'diagnostics': '',
'elapsedTime': 123800,
'finalStatus': 'UNDEFINED',
'finishedTime': 0,
'id': 'application_1454100653858_0011',
'memorySeconds': 63247,
'name': 'knit',
'numAMContainerPreempted': 0,
'numNonAMContainerPreempted': 0,
'preemptedResourceMB': 0,
'preemptedResourceVCores': 0,
'progress': 0.0,
'queue': 'default',
'runningContainers': 1,
'startedTime': 1454276990907,
'state': 'ACCEPTED',
'trackingUI': 'UNASSIGNED',
'user': 'ubuntu',
'vcoreSeconds': 123}

Often we track the state of an application. Possible states include: NEW,
NEW_SAVING, SUBMITTED, ACCEPTED, RUNNING, FINISHED, FAILED, KILLED

Further details on the current functioning of the cluster are available via the connected
yarn_api class which can help with trouble shooting: cluster_metrics(), nodes(),
systems_logs.

Logs

We retrieve log data directly from a RUNNING Application Master:

>>> k.logs()

Or, if log aggregation is enabled, we retrieve the resulting aggregated log data stored in HDFS. Note:
aggregated log data is only available after the application has finished or been terminated,
usually with a small lag of a few seconds while log aggregation takes place.

Kill

To stop an application from executing immediately, use the kill method:

>>> k.kill()

Python Applications

Python applications can be created by first making a conda environment for them to run within.
This can be done directly with CondaCreator (and such environments are cached and reused)
or with the knit instance itself.

A simple Python based application:

from knit import Knit
k = Knit()

env = k.create_env('test', packages=['python=3.5']])
cmd = 'python -c "import sys; print(sys.version_info); import random; print(str(random.random()))"'
app_id = k.start(cmd, num_containers=2, env=env)

A long running Python application. Here we reuse the same environment create above:

from knit import Knit
k = Knit()

cmd = 'python -m SimpleHTTPServer'
app_id = k.start(cmd, num_containers=2, env=env)

Dask Cluster

Run a distributed dask cluster on YARN with a few lines like:

To start a dask cluster on YARN

import dask_yarn

Specify conda packages and channels for execution environment
cluster = dask_yarn.DaskYARNCluster(packages=['python=3.6', 'scikit-learn', 'pandas', 'dask'],
 channels=['conda-forge'])

each worker gets 4GB and two cores
cluster.start(n_workers=10, memory=4096, cpus=2)

from dask.distributed import Client
client = Client(cluster)

This starts a set of workers on YARN, and a dask scheduler in the current process. We then
create a client to connect to it. To connect from another python process, we would need to
use the value of cluster.local_cluster.scheduler_address in the call to Client.

Usage

Knit can be used in several novel ways. Our primary concern is supporting easy deployment of
distributed Python runtimes; though, we can also consider other languages (R, Julia, etc) should
interest develop. Below are a few novels ways we can currently use Knit

Python

The example below use any Python found in the $PATH. This is usually the system Python (i.e.,
on a cluster where it has already been installed for you).

>>> import knit
>>> k = knit.Knit()
>>> cmd = "python -c 'import sys; print(sys.path); import socket; print(socket.gethostname())'"
>>> appId = k.start(cmd)

Zipped Conda Envs

Often nodes managed under YARN may not have desired Python libraries or the Python binary at all! In these cases,
we want to package up an environment to be shipped along with the command. knit allows us to declare a
zipped directory with the following structure typical of Python environments:

$ ll dev/
drwxr-xr-x+ 23 ubuntu ubuntu 782B Jan 30 17:55 bin
drwxr-xr-x+ 20 ubuntu ubuntu 680B Jan 30 17:55 include
drwxr-xr-x+ 39 ubuntu staff 1.3K Jan 30 17:55 lib
drwxr-xr-x+ 4 ubuntu staff 136B Jan 30 17:55 share
drwxr-xr-x+ 6 ubuntu ubuntu 204B Jan 30 17:55 ssl

>>> appId = k.start(cmd, env='<full-path>/dev.zip')

When we ship <full-path>/dev.zip, knit uploads dev.zip to a temporary directory within the
user’s home HDFS space e.g. /users/ubuntu/.knitDeps and the following bash ENVIRONMENT variables
will be available:

	$CONDA_PREFIX: full path to prefix location of zipped directory

	$PYTHON_BIN: full path to Python binary

With the ENVIRONMENT variables available users can build more nuanced commands like the following:

>>> cmd = '$PYTHON_BIN $CONDA_PREFIX/bin/dask-worker 8786'

knit also provides a convenience method with conda to help build zipped environments. The following
builds an environment env.zip with Python 3.5 and a variety of popular data Python libraries:

>>> env_zip = k.create_env(env_name='dev', packages=['python=3', 'distributed',
... 'dask', 'pandas', 'scikit-learn'])

Adding Files

Knit can also pass local files to each container.

>>> files = ['creds.txt', 'data.csv']
>>> k.start(cmd, files=files)

With the above, we are send files creds.txt and data.csv to each container and can reference
them as local file paths in the cmd command.

Dask Clusters

The previous methods can be combined to launch a full distributed dask cluster on YARN with code
like the following

from dask_yarn import DaskYARNCluster
cluster = DaskYARNCluster(env='my/conda/env.zip')
cluster.start(8, cpu=2, memory=2048)

The object cluster starts a dask scheduler, and can also be used to start or stop more
containers than the original 8 referenced above. The same set of config options apply as for a
Knit object, in addition to conda creation options, which will define the environment in
which the workers run.

To start a dask client in the same session, you can simply do

from dask.distributed import Client
c = Client(cluster)

and use as usual, or look at cluster.scheduler_address for clients connecting from other sessions.

Note that DaskYARNCluster can also be used as a context manager, which will ensure that it gets
closed (and the corresponding YARN application killed) when the with context finishes.

Instance Connections

The main instances that you will handle in this library have attributes which
are instances of other classes, and expose functionality. Generally, parameters are
passed down, so that the constructor parameters for DaskYarnCluster will also be used
for Knit (e.g., replication_factor), CondaCreator (e.g., channels) and YARNAPI
(e.g., rm).

DaskYarnCluster:

	.knit is an instance of Knit, and exposes methods to check the yarn application

state, logs and to increase/decrease the container count
- an instance of CondaCreator is created on-the-fly if making/zipping a conda environment
- .local_cluster is an instance of dask.distributed.LocalCluster, with no local
workers. The only parameter passed in is ip.

Knit:

	.yarn_api is an instance of YARNAPI, which provides commands to be directly

executed by the ResourceManager, including several informational calls, mostly via REST
- an instance of CondaCreator is created on-the-fly if making/zipping a conda environment

Troubleshooting

Outline

YARN is a complex system. This library contains core python classes for getting
YARN information, creating and managing an Application, and building a Dask
cluster on top of it. Typical usage involves building a .zip-file containing
a full python environment, pushing this to HDFS, getting Yarn to start an Application,
which in turn starts containers that use the environment to bootstrap python processes.

Aside from python code, there is also code in Scala for a Yarn Client
(which runs locally) and, separately, a Yarn ApplicationMaster (which runs in
a special container allocated by Yarn). Communication between python and the two
Scala/JVM processes is via sockets managed by py4j [https://www.py4j.org/] and buffered in a background thread
on the python side.

Sources of information

Should an application fail or hang, here are a number of places to look first for
thr source of the problem.

console feedback

Both the python and the Scala code are fairly verbose to inform the user of the stage
currently occurring. On the python side, you can use standard logging to set the
logging level to DEBUG and get more information. Most exceptions result in a message
giving some possible remedies for the situation.

Application/Container logs

If Yarn started any containers, they will emit logs. The first of these will be the
ApplicationMaster, where you will see debug logging while the application is setting itself
up. Logs also are created by each of the python processes being run in the worker
containers. Any exception in the python processes should be visible in the logs.

Whilst the application is running, you can display logs for containers as
with k.print_logs(), where k is the Knit instance, or cluster.knit.print_logs()
where cluster is the DaskYarnCluster instance.

Logs are available for containers sol ong as they are alive. After an application
finishes (including if it is killed), the logs will be stored to HDFS and be accessible
to you with the same commands if log aggregation is enabled on the cluster. Typically,
aggregation isn’t immediate, so there may be a lag after application end while the logs
are not available. If log aggregation is off, the logs are lost after a container ends,
although they may still be available locally on the machine that hosted the container.

Cluster Information

A YARNAPI instance (usually the .yarn_api attribute of a Knit instance) gives access
to various information about the connected Yarn cluster and pplications registered on it

Some methods of interest:

	apps

	Names of all apps known to Yarn

	apps_info, app_attempts, app_containers

	Detailed information about the current status of a given app

	cluster_info, cluster_metrics

	Global cluster information, including whether the Resource Manager is up and happy,
and the global resource (memory, cpu) constraints it has to work with

	nodes

	Information about the connected Node Managers, whether they are healthy and the
resources each has available. If unhealthy, there should be a message stating why.

RM/NM Logs

The Resource Manager and Node Managers keep logs of their activity in a local directory
on their respective machines. If, for some reason, an application is rejected at time
of submission, or an application is killed without any exception in the application
logs, the reason may well be given in here.

Because these logs are only written to local discs, direct access to the machine is
neede to read them - they may well not be available to you.

If run on the same machine as the Resource Manager and/or Node Manager
(such as the special case of a single-node pseudo-cluster, useful for testing), the YARNAPI
method system_logs will attempt to find the location of logs, which you can view
with usual system tools such as tail.

Specific issues

Here follow some specific cases that have caused problems in the past, with
guidance of what might be done.

Don’t make a .zip of the conda root

CondaCreator can zip up any directory, and makes copies of files referenced by
symbolic links. Normally you would use this with a conda environment directory,
usually in the /envs/ directory of a conda installation, or created by Knit
in a local directory especially for this purpose. If you attempt to use the root
environment (i.e., a directory containing /envs/), zip will fail with
link recursion, probably after attempting make an enormous file.

Newer java version if .zip > 2GB

It is easy to make a conda environment zip with size > 2GB, if including many
libraries. At that threshold, the Zip64 extension is invoked, although file-sizes
up to 4GB are supposed to be possible without it.

If the java version running Yarn is old enough, it will not be able to handle these
larger .zip files. java.util.zip.ZipException: invalid CEN header (bad signature)
will be printed in the ResourceManager logs.
Either reduce the size of the conda environment, or update java on the cluster.

Dask client and workers versions

Dask requires the versions of dask and other auxiliary libraries to match between the
clients and workers, so that functions and data can be deserialised. If you create an
environment using packages=, then this will pull the latest versions from the
repo, unless you specify exact versions. Also note that the channels passed should match
your system settings, as some packages are not compatible between defaults and conda-forge
or other channels.

Once a dask cluster is running, you can see the versions on the workers by starting a
client. In the same session as the DaskYarnCluster you could do:

REST routing to YARN

Although application submission and launching are handled via RPCs in scala, several
informational calls are made using the Yarn REST end-points. These must be
reachable.

If you see HTTP connection errors, then there is a possibility that the end-points are
protected by a proxy/gateway such as Knox. You will need to find the appropriate host, port
and path to supply to YARNAPI, such as:

The example would set the API end-point to 'proxy.server.org:9999/default/resourcemanager/ws/v1/',
and whether access is HTTP or HTTPS would depend on the value of 'yarn.http.policy'.

There is no way for Knit to be able to automatically determine the right URL to contact,
the information must come from systems operations.

REST auth

The REST end-points may require Kerberos authentication, which will generally depend on the
value of configuration parameter hadoop.http.authentication.type. The extra package
request-kerberos [https://github.com/requests/requests-kerberos] is required, but otherwise the connection should be seamless, so long
as a valid ticket exists.

Alternatively, in the case that the authentication is simple, but anonymous access is disallowed,
you must provide a password upon instantiation and perhaps a user-name different from the apparent
user who own the session.

IP of scheduler

Upon startup, the Dask cluster scheduler guesses its own IP as
socket.gethostbyname(socket.gethostname()) - this is the value that workers
will be passed.

On some networks, it is possible that the IP that workers need in order to be able
to contact the scheduler is different from the value that would be guessed. The
parameter ip= can be passed to set the correct value.

Console language of workers for click

The dask worker is executed as a console application, with the library click being
used to parse command-line options. click needs to interpret the character encoding
of the command line it receives, with the result that if the language is not specified,
you will see Exit 1 and an informational statement about setting the language in the
worker logs. A lang= is provided to set the effective language setting that the
worker processes see. However, there are further constraints on what languages are
permitted, set by the host system - an unwise choice may cause errors like
“LC.ALL=xxx: not a valid identifier”, and no python process at all.

System constraints

Yarn has a large number of system parameters that it matches, and constraints that must be
simultaneously met in order to launch an application. Failures due to obvious unmet
conditions (e.g., asking for more memory than the total available to the cluster) will
probably be flagged before attempting to launch a cluster, if checks=True in .start().

However, there are more subtle fail cases. For example, the minimum memory allotment to a
container is rarely less than 1GB, often more, so an application may take much more than
the request passed to Knit suggests.

An even more subtle example: Yarn Node Managers watch disc usage, and if the used fraction
goes above a predetermined threshold (default: 90%), the disc will be labelled “bad”, logging
will be prevented, and the entire node will refuse to take jobs until the situation
is rectified.

Build the .jar if running from source

If installing from the repo source, the .jar file needs to be created before/during
installation:

python setup.py install mvn

which requires maven to be available, as well as java.

Configuration

Knit does its best to find configuration files, but it is always best to check the
contents of the .conf attribute of a Knit instance (a dictionary) to make sure
that inference was successful, and provide any overrides that might be necessary.

API

	CondaCreator([conda_root, conda_envs, …])

	Create Conda Env

	CondaCreator.create_env(env_name[, …])

	Create zipped directory of a conda environment

	CondaCreator.zip_env

	

	YARNAPI(rm, rm_port[, scheme, gateway_path, …])

	REST interface to YARN

	YARNAPI.apps

	App IDs known to YARN

	YARNAPI.app_containers([app_id, info])

	Get list of container information for given app.

	YARNAPI.logs(app_id[, shell, retries, delay])

	Collect logs from RM (if running) With shell=True, collect logs from HDFS after job completion

	YARNAPI.container_status(container_id)

	Ask the YARN shell about the given container

	YARNAPI.status(app_id)

	Get status of an application

	YARNAPI.kill_all([knit_only])

	Kill a set of applications

	YARNAPI.kill(app_id)

	Method to kill a yarn application

	Knit([autodetect, upload_always, hdfs_home, …])

	Connection to HDFS/YARN.

	Knit.start(cmd[, num_containers, …])

	Method to start a yarn app with a distributed shell

	Knit.logs([shell])

	Collect logs from RM (if running) With shell=True, collect logs from HDFS after job completion

	Knit.status()

	Get status of an application

	Knit.kill()

	Method to kill a yarn application

	Knit.create_env(env_name[, packages, …])

	Create zipped directory of a conda environment

	
class knit.core.Knit(autodetect=True, upload_always=False, hdfs_home=None, knit_home='/home/docs/checkouts/readthedocs.org/user_builds/knit/checkouts/latest/knit/java_libs', hdfs=None, pars=None, **kwargs)

	Connection to HDFS/YARN. Launches a single “application” master with a
number of worker containers.

Parameter definition (nn, nn_port, rm, rm_port): those parameters given
to __init__ take priority. If autodetect=True, Knit will attempt to fill
out the others from system configuration files; fallback values are provided
if this fails.

	Parameters

	
	nn: str

	Namenode hostname/ip

	nn_port: int

	Namenode Port (default: 9000)

	rm: str

	Resource Manager hostname

	rm_port: int

	Resource Manager port (default: 8088)

	lang: str

	Environment variable language setting, required for click to
successfully read from the shell. (default: ‘C.UTF-8’)

	user: str (‘root’)

	The user name from point of view of HDFS. This is only used when
checking for the existence of knit files on HDFS, since they are stored
in the user’s home directory.

	hdfs_home: str

	Explicit location of a writable directory in HDFS to store files.
Defaults to the user ‘home’: hdfs://user/<username>/

	replication_factor: int (3)

	replication factor for files upload to HDFS (default: 3)

	autodetect: bool

	Autodetect configuration

	upload_always: bool(=False)

	If True, will upload conda environment zip always; otherwise will
attempt to check for the file’s existence in HDFS (using the hdfs3
library, if present) and not upload if that matches the existing local
file in size and is newer.

	knit_home: str

	Location of knit’s jar

	hdfs: HDFileSystem instance or None

	Used for checking files in HDFS.

	Note: for now, only one Knit instance can live in a single process because

	

	of how py4j interfaces with the JVM.

	

Examples

>>> k = Knit()
>>> app_id = k.start('sleep 100', num_containers=5, memory=1024)

	
add_containers(num_containers=1, virtual_cores=1, memory=128)

	Method to add containers to an already running yarn app

	num_containers: int

	Number of containers YARN should request (default: 1)
* A container should be requested with the number of cores it can

saturate, i.e.

	the average number of threads it expects to have runnable at a
time.

	virtual_cores: int

	Number of virtual cores per container (default: 1)
* A node’s capacity should be configured with virtual cores equal to
* its number of physical cores.

	memory: int

	Memory per container (default: 128)
* The unit for memory is megabytes.

	
check_needs_upload(path)

	Upload is needed if file does not exist in HDFS or is older

	
static create_env(env_name, packages=None, remove=False, channels=None, conda_pars=None)

	Create zipped directory of a conda environment

	Parameters

	
	env_namestr

	

	packageslist

	

	conda_root: str

	Location of conda installation. If None, will download miniconda and
produce an isolated environment.

	removebool

	remove possible conda environment before creating

	channelslist of str

	conda channels to use (defaults to your conda setup)

	conda_pars: dict

	Further pars to pass to CondaCreator

	Returns

	
	path: str

	path to zipped conda environment

Examples

>>> k = Knit()
>>> pkg_path = k.create_env(env_name='dev',
... packages=['distributed', 'dask', 'pandas'])

	
get_container_statuses()

	Get status info for each container

Returns dict where the values are the raw text output.

	
get_containers()

	Method to return active containers

	Returns

	
	container_list: List

	List of dicts with each container’s details

	
kill()

	Method to kill a yarn application

	Returns

	
	bool:

	True if successful, False otherwise.

	
list_envs()

	List knit conda environments already in HDFS

Looks in staging directory for zip-files

	Returns: list of dict

	Details for each zip-file.

	
logs(shell=False)

	Collect logs from RM (if running)
With shell=True, collect logs from HDFS after job completion

	Parameters

	
	shell: bool

	Shell out to yarn CLI (default False)

	Returns

	
	log: dictionary

	logs from each container (when possible)

	
print_logs(shell=False)

	print out a more console-friendly version of logs()

	
remove_containers(container_id)

	Method to remove containers from a running yarn app

Calls removeContainers in ApplicationMaster.scala

Be careful removing the …0001 container. This is where the
applicationMaster is running

	Parameters

	
	container_id: str

	

	Returns

	
	None

	

	
runtime_status()

	Get runtime status of an application

	Returns

	
	str:

	status of application

	
start(cmd, num_containers=1, virtual_cores=1, memory=128, files=None, envvars=None, app_name='knit', queue='default', checks=True)

	Method to start a yarn app with a distributed shell

	Parameters

	
	cmd: str

	command to run in each yarn container

	num_containers: int

	Number of containers YARN should request (default: 1)
* A container should be requested with the number of cores it can

saturate, i.e.

	the average number of threads it expects to have runnable at a
time.

	virtual_cores: int

	Number of virtual cores per container (default: 1)
* A node’s capacity should be configured with virtual cores equal to
* its number of physical cores.

	memory: int

	Memory per container (default: 128)
* The unit for memory is megabytes.

	files: list

	list of files to be include in each container. If starting with
hdfs://, assume these already exist in HDFS and don’t need
uploading. Otherwise, if hdfs3 is installed, existence of the
file on HDFS will be checked to see if upload is needed.
Files ending with .zip will be decompressed in the
container before launch as a directory with the same name as the
file: if myarc.zip contains files inside a directory stuff/, to
the container they will appear at ./myarc.zip/stuff/* .

	envvars: dict

	Environment variables to pass to AM and workers. Both keys
and values must be strings only.

	app_name: String

	Application name shown in YARN (default: “knit”)

	queue: String

	RM Queue to use while scheduling (default: “default”)

	checks: bool=True

	Whether to run pre-flight checks before submitting app to YARN

	Returns

	
	applicationId: str

	A yarn application ID string

	
status()

	Get status of an application

	Returns

	
	log: dictionary

	status of application

	
wait_for_completion(timeout=10)

	Wait for completion of the yarn application

	Returns

	
	bool:

	True if successful, False otherwise

	DaskYARNCluster

	

	DaskYARNCluster.start

	

	DaskYARNCluster.stop

	

	DaskYARNCluster.close

	

	DaskYARNCluster.add_workers

	

	DaskYARNCluster.remove_worker

	

Configuration

Several methods are available for configuring Knit.

The simplest is to load values from system .xml files.
Knit will search typical locations and reads default configuration parameters from there.
The file locations may also be specified with the environment variables HADOOP_CONF_DIR,
which is the directory containing the XLM files, HADOOP_INSTALL, in which case the
files are expected in subdirectory hadoop/conf/.

It is also possible to pass parameters when instantiating Knit or DaskYARNCluster.
You
can either provide individual common overrides (e.g., rm='myhost') or provide
a whole configuration as a dictionary (pars={}) with the same key names as typically
contained in the XML config files. These parameters will take precedence over any loaded
from files, or you can disable using the default configuration at all with autodetect=False.

Connection with hdfs3

Some operations, such as checking for uploaded conda environments, optionally make use of
hdfs3 [http://hdfs3.readthedocs.io/en/latest/]. The configuration system, above, and that for hdfs3 are very similar, so you may
well not have to make any extra steps to get this working correctly for you; normally the
files defining values for Yarn should be in the same location as those for HDFS. However,
you may
well wish to be more explicit about the configuration of the HDFileSystem instance you want
knit to use. In this case, create the instance as usual, and assign it to the Knit instance
as follows

hdfs = HDFileSystem(...)
k = Knit(..., hdfs=hdfs)

or, similarly for a Dask cluster

cluster = DaskYARNCluster(..., hdfs=hdfs)

Examples

IPython Parallel

Install IPython Parallel [https://ipython.org/ipython-doc/3/parallel/] and start IP Controller:

$ conda install ipyparallel
or
$ pip ipyparallel
$ ipcontroller --ip=*

IPController will create a file: ipcontroller-engine.json which contains metadata and security information
needed by worker nodes to connect back to the controller. In a separate shell or terminal we use knit to
ship a self-contained environment with ipyparallel (and other dependenices) and start ipengine

>>> from knit import Knit
>>> k = Knit(autodetect=True)
>>> env = k.create_env(env_name='ipyparallel', packages=['numpy', 'ipyparallel', 'python=3'])
>>> controller = '<HOMEDIR>/.ipython/profile_default/security/ipcontroller-engine.json'
>>> cmd = '$PYTHON_BIN $CONDA_PREFIX/bin/ipengine --file=ipcontroller-engine.json'
>>> app_id = k.start(cmd, env=env, files=[controller], num_containers=3)

IPython Parallel is now running in 3 containers on our YARN managed cluster:

>>> from ipyparallel import Client
>>> c = Client()
>>> c.ids
[2, 3, 4]

Index

 A
 | C
 | G
 | K
 | L
 | P
 | R
 | S
 | W

A

 	
 	add_containers() (knit.core.Knit method)

C

 	
 	check_needs_upload() (knit.core.Knit method)

 	
 	create_env() (knit.core.Knit static method)

G

 	
 	get_container_statuses() (knit.core.Knit method)

 	
 	get_containers() (knit.core.Knit method)

K

 	
 	kill() (knit.core.Knit method)

 	
 	Knit (class in knit.core)

L

 	
 	list_envs() (knit.core.Knit method)

 	
 	logs() (knit.core.Knit method)

P

 	
 	print_logs() (knit.core.Knit method)

R

 	
 	remove_containers() (knit.core.Knit method)

 	
 	runtime_status() (knit.core.Knit method)

S

 	
 	start() (knit.core.Knit method)

 	
 	status() (knit.core.Knit method)

W

 	
 	wait_for_completion() (knit.core.Knit method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Knit

 		
 Installation

 		
 Easy

 		
 Source

 		
 Testing on Docker

 		
 Quickstart

 		
 Install

 		
 Commands

 		
 Start

 		
 Status

 		
 Logs

 		
 Kill

 		
 Python Applications

 		
 Dask Cluster

 		
 Usage

 		
 Python

 		
 Zipped Conda Envs

 		
 Adding Files

 		
 Dask Clusters

 		
 Instance Connections

 		
 Troubleshooting

 		
 Outline

 		
 Sources of information

 		
 console feedback

 		
 Application/Container logs

 		
 Cluster Information

 		
 RM/NM Logs

 		
 Specific issues

 		
 Don’t make a .zip of the conda root

 		
 Newer java version if .zip > 2GB

 		
 Dask client and workers versions

 		
 REST routing to YARN

 		
 REST auth

 		
 IP of scheduler

 		
 Console language of workers for click

 		
 System constraints

 		
 Build the .jar if running from source

 		
 Configuration

 		
 API

 		
 Configuration

 		
 Connection with hdfs3

 		
 Examples

 		
 IPython Parallel

_static/up-pressed.png

_static/up.png

