

Welcome to Kirby documentation!

Contents

	Kirby

	Components

	Features

	User Guide

Development

	Contribution guidelines

Miscellaneous

	Comparison with other platforms

Indices and tables

	Index

	Module Index

	Search Page

Kirby

Kafka-based Stream Processing Framework

[image: Build Status]
 [https://travis-ci.org/adimian/kirby][image: Coverage Status]
 [https://coveralls.io/github/adimian/kirby?branch=master][image: Documentation Status]
 [https://kirby.readthedocs.io/en/latest/?badge=latest]Please see the official documentation here: http://kirby.readthedocs.io

Components

Services

[image: _images/kirby-components.png]

Processes

[image: _images/kirby-processes.png]

Features

For Infrastructure/Ops

De-centralized worker deployment

	Scripts are deployed from the web UI

	Versioned, can co-exist in many versions at once

	If you can publish to PyPi, it can be deployed

Real-time monitoring

	Jobs send their status (success / fail) and logs in real time

	Notifications can be configured per job to be triggered in case of failure or missed mark (should be running but is not)

Centralized secrets management

	Scripts pull their configuration from the “vault”

	Secrets are stored in a central place

	Secrets are never persisted on disk

	ACL apply to secret access

Multiple authentication backends (local, ldap, …)

	Authentication

	LDAP

	Okta

	Local accounts

	Authorization

	Groups

	Roles

For Developers

Workers as simple python scripts

	Scripts are simple Python scripts

	You can use whatever library you want, as long as it can be pip-installed

	No hard requirement on using Kirby at all

	Configuration is passed through env variables

File-based local unit-testing

	Kirby is meant to be testable

	All input / output in Kirby is a message

	Messages are simulated using folders and files

	Comes with integrated testing helpers

Simple integration to web frameworks

	Designed to allow swap-in replacement of Celery

	ex: produce data in an ETL script, use it straight in your app, or the other way around

	Chord / group logic is replaced by stream piping

	Higher throughput and parallelism

	Simpler status management and failure recovery

	Not limited to running jobs, integrations can also serve as a view on all Kirby-managed data

	Can be used in templates, views, etc.

For Data Engineers

Scheduled tasks with exceptions

	Schedule can be configured with cron-like syntax

	Add exceptions to pause or slow down a job from running (when source is broken for instance)

	Automatically back to normal schedule at the end of the exception, no need to undo them

Rewind/replay of tasks

	Rewind a data source and all downstream processing will flow naturally (but will flag the data as the result of a re-run in case it matters)

	Replay production data in preprod or even on a developer laptop → testing with prod data = easier development / debugging

Data traceability with data dependency graph documentation

	Each process adds itself in the message headers, to allow end-to-end data traceability

	Visualize data flows in the web UI to understand

	where your data comes from

	when it was processed

	what transformations were applied

Computed tables

	Kirby State objects allows you to keep a persistent object that can be updated by scripts

	By default, a state only shows its latest version, but each mutation is versioned and can be recovered (only limited by disk space)

	Useful for “hot” data with expensive computation costs

User Guide

In order to use Kirby, you will need several services running.
The web interface is the only component that needs access to the database.

Kirby managed services

	the kirby web UI, to configure your Kirby cluster

	at least one kirby supervisor to trigger jobs and execute them

Note

We recommend using your operating system process supervisor
such as systemd to run kirby.

Todo

provide systemd templates

Supporting services

	a Kafka cluster (required by all kirby services)

	a database server (required for the kirby web UI)

Note

Running both services on the same machine is fine for development

Installing Kirby

$ pip install -U kirby

Running the web interface

$ kirby web [--host 127.0.0.1] [--port 8080]

Important

We recommend you not to expose the web service directly on the Internet, but to use a reverse proxy such as Nginx [http://nginx.org/] or HAProxy [http://www.haproxy.org]

Adding a superuser

If you want to add a local user (so not using external user provisioning like
LDAP or Okta), you can use the following command on the web UI server

$ kirby demo
demo data inserted in the database

Demonstration database

If you just want a quick preview of Kirby’s features, you can summon the demo
database as follows:

Warning

Please only use on an empty database, it will mess with your
existing data and there is no rollback mechanism.

$ kirby adduser alice
Password: ******
Give admin rights? [y/N]: y
User alice added with admin rights

Running the supervisor

Important

	There must be at least one supervisor instance running at all times.

	Each supervisor must have a unique name

If you want to call your instance “server-1” then start kirby as follows:

$ kirby supervisor server-1 [--window 5] [--wakeup 30]

	window is the frequency at which the supervisor tries to elect itself as the
cluster leader. Use longer interval if your network is too noisy
and you do not have scheduled jobs.

	wakeup is the shortest interval between two scheduled jobs. Use longer interval
if your network is limited and you do not have scheduled jobs or
if the intervals are very long.

Note

Defaults are fine in most cases.

Contribution guidelines

Developer Workstation Setup

	install Kafka https://kafka.apache.org/quickstart

	install Redis https://redis.io/topics/quickstart

	clone the kirby repository git clone git@github.com:adimian/kirby.git

Useful Links

	Source: http://github.com/adimian/kirby

	Issues: http://github.com/adimian/kirby/issues

	Documentation: http://kirby.readthedocs.io

Writing Documentation

Todo

write this

Comparison with other platforms

Kirby is still in active development, and aims to become a platform
for data processing. It draws its inspirations from many existing products.
Some of them are listed here to help you evaluate whether Kirby is the right
choice for you.

Important

Kirby developers are not specialists in the following products,
our opinion is expressed here in good faith but
could be inaccurate. Corrections and additions are welcome,
to come up with the most helpful vision for potential users.

Airflow

https://airflow.apache.org

Airflow is a Python framework for building workflows.
It is a very mature and robust platform, has lot of plugins for various tasks,
and before considering using Kirby, you should first evaluate Airflow.

Similarities

	Airflow allows you to define jobs and schedules

	You can define tasks dependencies / successors

	It shows job status (pending / success / failed)

	It allows replay / rewind (called “backfill”)

Differences

	Airflow is an execution framework, not a data-driven framework

	Scripts need to be manually copied on the server

	Metadata goes into a single database that can grow big fast

	Scripts only run in AirFlow, data storage has to happen outside of it

	DAGs are monoliths: you cannot tap into an existing flow, you either need to

	coordinate and create your own DAG

	modify the original DAG to add your own step

Faust

https://github.com/robinhood/faust

Faust is used to build data-driven pipelines using asyncio,
porting the notion of Kafka Streams to Python

Similarities

	It has the concept of Table which is the inspiration for Kirby’s State

	Supports deploying redundant workers and keeping them alive

Differences

	Built upon asyncio, which does not fit well with CPU-bound tasks

	No support for scheduled tasks, monitoring, …

Streamparse

https://github.com/Parsely/streamparse

Similarities

	Deploys packaged versions of your code on a cluster

	Supports data-driven tasks and scheduled tasks

Differences

	Requires an Apache Storm cluster

	Data storage is handled outside of Storm

Others

Todo

add more similar products

Index

 _static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Kirby documentation!

 		
 Kirby

 		
 Components

 		
 Services

 		
 Processes

 		
 Features

 		
 For Infrastructure/Ops

 		
 De-centralized worker deployment

 		
 Real-time monitoring

 		
 Centralized secrets management

 		
 Multiple authentication backends (local, ldap, …)

 		
 For Developers

 		
 Workers as simple python scripts

 		
 File-based local unit-testing

 		
 Simple integration to web frameworks

 		
 For Data Engineers

 		
 Scheduled tasks with exceptions

 		
 Rewind/replay of tasks

 		
 Data traceability with data dependency graph documentation

 		
 Computed tables

 		
 User Guide

 		
 Kirby managed services

 		
 Supporting services

 		
 Installing Kirby

 		
 Running the web interface

 		
 Adding a superuser

 		
 Demonstration database

 		
 Running the supervisor

 		
 Contribution guidelines

 		
 Developer Workstation Setup

 		
 Useful Links

 		
 Writing Documentation

 		
 Comparison with other platforms

 		
 Airflow

 		
 Similarities

 		
 Differences

 		
 Faust

 		
 Similarities

 		
 Differences

 		
 Streamparse

 		
 Similarities

 		
 Differences

 		
 Others

_images/kirby-processes.png
Sopervisol Sopervisol Sopervisol
& < C

Spawn and

Sopervite_

leader

Doka- driven prowsges

_images/kirby-components.png
@Ra&\s =
\jea&r @
lection
lonai NBﬂfe

So ée(vigo(

SR Quinned”

A

o 0%5 -Lr o\l ronness
J

Kalbka &et
Hke |PC Redse

_static/file.png

_static/kirby-components.png
@Ra&\s =
\jea&r @
lection
lonai NBﬂfe

So ée(vigo(

SR Quinned”

A

o 0%5 -Lr o\l ronness
J

Kalbka &et
Hke |PC Redse

_static/kirby-processes.png
Sopervisol Sopervisol Sopervisol
& < C

Spawn and

Sopervite_

leader

Doka- driven prowsges

_static/minus.png

