

keras_ssg_lasso

	
class ssgl_classifiers.SSGL_LogisticRegression(dim_input, n_classes, groups, indices_sparse, alpha=0.5, lbda=0.01, n_iter=500, batch_size=256, optimizer='sgd', verbose=0)

	Semi-Sparse Group Lasso Logistic Regression classifier.

The loss function to minimize is:

\(L(X, y, \beta) + (1 - \alpha)\lambda\sum_{l=1}^m \sqrt{p_l}\|\beta^l\|_2 + \alpha \lambda \|\beta\|_1\)

where \(L\) is the logistic loss and \(p_l\) is the number of variables in group \(l\).

	Parameters:	
	dim_input (int) – Dimension of the input feature space.

	n_classes (int) – Number of classes for the classification problem.

	groups (list of numpy arrays) – Affiliation of input dimensions to groups. numpy array of shape (dim_input,). Each group is defined by an integer,
each input dimension is attributed to a group.

	indices_sparse (array-like) – numpy array of shape (dim_input,) in which a zero value means the corresponding input dimension should not
be included in the per-dimension sparsity penalty and a one value means the corresponding input dimension should
be included in the per-dimension sparsity penalty.

	alpha (float in the range [0, 1], default 0.5) – Relative importance of per-dimension sparsity with respect to group sparsity (parameter \(\alpha\) in the
optimization problem above).

	lbda (float, default 0.01) – Regularization parameter (parameter \(\lambda\) in the optimization problem above).

	n_iter (int, default 500) – Number of training epochs for the gradient descent.

	batch_size (int, default 256) – Size of batches to be used during both training and test.

	optimizer (Keras Optimizer, default "sgd") – Optimizer to be used at training time. See https://keras.io/optimizers/ for more details.

	verbose (int, default 0) – Verbose level to be used for keras model (0: silent, 1: verbose).

	
weights_

	numpy.ndarray of shape (dim_input, n_classes) – Logistic Regression weights.

	
biases_

	numpy.ndarray of shape (n_classes,) – Logistic Regression biases.

	
fit(X, y)

	Learn Logistic Regression weights.

	Parameters:	
	X (array-like, shape=(n_samples, dim_input)) – Training samples.

	y (array-like, shape=(n_samples, n_classes)) – Training labels (formatted as a binary matrix, as returned by a standard One Hot Encoder, see
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html for more details).

	
fit_predict(X, y)

	Fit the model using X and y and then use the fitted model to predict X.

Utility function equivalent to calling fit and then predict on the same data.

	Parameters:	
	X (array-like, shape=(n_samples, dim_input)) – Training samples.

	y (array-like, shape=(n_samples, n_classes)) – Training labels (formatted as a binary matrix, as returned by a standard One Hot Encoder, see
http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html for more details).

	Returns:	labels – Array of class indices.

	Return type:	array, shape=(n_samples,)

	
predict(X)

	Predict the class of samples in X.

	Parameters:	X (array-like, shape=(n_samples, dim_input)) – Samples to predict.

	Returns:	labels – Array of class indices.

	Return type:	array, shape=(n_samples,)

	
predict_probas(X)

	Predict the probability of each class for samples in X.

	Parameters:	X (array-like, shape=(n_samples, dim_input)) – Samples to predict.

	Returns:	probas – Array of class probabilities.

	Return type:	array, shape=(n_samples, n_classes)

	
class ssgl_classifiers.SSGL_MultiLayerPerceptron(dim_input, n_classes, hidden_layers, groups, indices_sparse, alpha=0.5, lbda=0.01, n_iter=500, batch_size=256, optimizer='sgd', activation='relu', verbose=0)

	Bases: ssgl_classifiers.SSGL_LogisticRegression

Semi-Sparse Group Lasso Multi Layer Perceptron classifier.

	Parameters:	
	dim_input (int) – Dimension of the input feature space.

	n_classes (int) – Number of classes for the classification problem.

	hidden_layers (tuple (or list) of ints) – Number of neurons in the hidden layers.

	groups (list of numpy arrays) – List of groups. Each group is defined by a numpy array of shape (dim_input,) in which a zero value means
the corresponding input dimension is not included in the group and a one value means the corresponding input
dimension is part of the group.

	indices_sparse (array-like) – numpy array of shape (dim_input,) in which a zero value means the corresponding input dimension should not
be included in the per-dimension sparsity penalty and a one value means the corresponding input dimension should
be included in the per-dimension sparsity penalty.

	alpha (float in the range [0, 1], default 0.5) – Relative importance of per-dimension sparsity with respect to group sparsity (parameter \(\alpha\) in the
optimization problem above).

	lbda (float, default 0.01) – Regularization parameter (parameter \(\lambda\) in the optimization problem above).

	n_iter (int, default 500) – Number of training epochs for the gradient descent.

	batch_size (int, default 256) – Size of batches to be used during both training and test.

	optimizer (Keras Optimizer, default "sgd") – Optimizer to be used at training time. See https://keras.io/optimizers/ for more details.

	activation (Keras Activation function, default "relu") – Activation function to be used for hidden layers. See https://keras.io/activations/ for more details.

	verbose (int, default 0) – Verbose level to be used for keras model (0: silent, 1: verbose).

	
weights_

	list of arrays – Multi Layer Perceptron weights.

	
biases_

	list of arrays – Multi Layer Perceptron biases.

	
class ssgl_classifiers.SSGL_WeightRegularizer(l1_reg=0.0, l2_reg=0.0, groups=None, indices_sparse=None)

	Bases: keras.regularizers.Regularizer

Semi-Sparse Group Lasso weight regularizer.

	Parameters:	
	l1_reg (float, default 0.) – Per-dimension sparsity penalty parameter.

	l2_reg (float, default 0.) – Group sparsity penalty parameter.

	groups (list of numpy arrays or None, default None.) – List of groups. Each group is defined by a numpy array of shape (dim_input,) in which a zero value means
the corresponding input dimension is not included in the group and a one value means the corresponding input
dimension is part of the group. None means no group sparsity penalty
groups numbering must starts at 0 with a continuous increment of 1 ([0,1,2,3...]). Features of the same group must be contiguous.

	indices_sparse (array-like or None, default None.) – numpy array of shape (dim_input,) in which a zero value means the corresponding input dimension should not
be included in the per-dimension sparsity penalty and a one value means the corresponding input dimension should
be included in the per-dimension sparsity penalty. None means no per-dimension sparsity penalty.

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 ssgl_classifiers	

Index

 B
 | F
 | P
 | S
 | W

B

 	
 	biases_ (ssgl_classifiers.SSGL_LogisticRegression attribute)

 	(ssgl_classifiers.SSGL_MultiLayerPerceptron attribute)

F

 	
 	fit() (ssgl_classifiers.SSGL_LogisticRegression method)

 	
 	fit_predict() (ssgl_classifiers.SSGL_LogisticRegression method)

P

 	
 	predict() (ssgl_classifiers.SSGL_LogisticRegression method)

 	
 	predict_probas() (ssgl_classifiers.SSGL_LogisticRegression method)

S

 	
 	ssgl_classifiers (module)

 	SSGL_LogisticRegression (class in ssgl_classifiers)

 	
 	SSGL_MultiLayerPerceptron (class in ssgl_classifiers)

 	SSGL_WeightRegularizer (class in ssgl_classifiers)

W

 	
 	weights_ (ssgl_classifiers.SSGL_LogisticRegression attribute)

 	(ssgl_classifiers.SSGL_MultiLayerPerceptron attribute)

 nav.xhtml

 Table of Contents

 		keras_ssg_lasso

_static/up.png

_static/file.png

_static/down-pressed.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

