

KepplerPl\url

Contents:

	Overview
	Requirements

	Installation

	License

	Reporting an issue

	Quickstart
	Parser and Builder

	Parser
	Usage and Interface

	Mailto

	Http and Https

	Ftp

	Builder
	Usage and Interface

	Mailto

	Http and Https

	Ftp

Overview

Requirements

	PHP >= 7.1.x

Installation

The recommended way to install this package is with
Composer [http://getcomposer.org]. Composer is a dependency management tool
for PHP that allows you to declare the dependencies your project needs and
installs them into your project.

Install Composer
curl -sS https://getcomposer.org/installer | php

composer require keppler/url

After installing, you need to require Composer’s autoloader:

require 'vendor/autoload.php';

You can find out more on how to install Composer, configure autoloading, and
other best-practices for defining dependencies at getcomposer.org [http://getcomposer.org].

License

Licensed using the MIT license [http://opensource.org/licenses/MIT].

Copyright (c) 2015 Michael Dowling <https://github.com/mtdowling>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Reporting an issue

Please report all issues here [https://github.com/KepplerPl/url/issues]

Quickstart

Parser and Builder

This package is split into 2 independent pieces. These pieces are also split into several other pieces.

Note

The Scheme.php will be referred to as Parser in the documentation.

Parser

The Parser is the entry point for parsing a url. It’s immutable, meaning you cannot change it once it is created.

The scheme is split into schemes such as ftp, http, https, mailto, etc.
Each scheme is used to parse a single url type, as you might have guessed.

require 'vendor/autoload.php';

$url = 'ftp://user:password@host:123/path';

$scheme = Scheme::ftp($url);

print_r($scheme->all());

...

Array
(
 [scheme] => ftp
 [user] => user
 [password] => password
 [host] => host
 [port] => 123
 [path] => Array
 (
 [0] => path
)

)

At the time of this writing the parser supports 4 schemes: FTP, HTTPS, HTTP, and MAILTO

Builder

The Builder.php class is the entry point for modifying a url or simply creating one from scratch.
If you choose to build from an existing url you must pass it a Parser instance with the appropriate scheme.

At the time of this writing the Builder supports 4 schemes: FTP, HTTPS, HTTP, and MAILTO

require 'vendor/autoload.php';

$url = 'ftp://user:password@host:123/path';

$ftpScheme = Scheme::ftp($url);
$builder = Builder::ftp($ftpScheme);

$builder->setHost('example.com')
 ->setPassword('hunter2')
 ->setPort(5);

print_r($builder->raw());
...
ftp://user:hunter2@example.com:5/path/

print_r($builder->encoded());
...
ftp://user:hunter2@example.com:5/path/to+encode/ // notice the extra +

Note

Both the Parser and the Builder can be used independently.

Each supported scheme can also be used independently without the Builder or the Parser. Examples bellow.

Independent usage

Assuming you don’t want to use the Parser/Builder classes directly you can choose not to.

Each scheme supported can be used independently of the Parser/Builder.

$ftpUrl = 'ftp://user:password@host:123/path';

$ftpImmutable = new FtpImmutable($ftpUrl);

echo $ftpImmutable->raw();

$ftpBuilder = new FtpBuilder();

$ftpBuilder->setHost('host')
 ->setPassword('hunter2')
 ->setPort(987)
 ->setUser('hunter');

$ftpBuilder->getPathBag()
 ->set(0, 'path')
 ->set(1, 'new path');

echo $ftpBuilder->raw(); // ftp://hunter:hunter2@host:987/path/new path/

echo $ftpBuilder->encoded(); // ftp://hunter:hunter2@host:987/path/new+path/

Parser

Usage and Interface

Usage

Warning

PLEASE READ!

The parser makes absolutely no promises regarding the validity of the scheme nor does it try to parse severely malformed urls.

Passing such urls to the parser will most likely result in an error.

If a query or path is given to a scheme that doesn’t support it, it will be discarded

Some url schemes MAY not have information in the path/query bag since some urls can simply not have a path or a query.
For example the mailto scheme may not have a query or a path, or both.
The ftp scheme simply doesn’t support a query so the parse will automatically discard it if one is given.

The path and/or query bags will ALWAYS exist but they may not contain any information.

Note

The classes found in the Parser can be used independently too. See the Quickstart link bellow.

Quickstart

The Scheme.php class is used as the parser. Any Parser instance is immutable, meaning you cannot change it once it has been created.

The usage is straight forward:

$url = 'ftp://user:password@host:123/path';
$ftp = Scheme::ftp($url);

$url = 'https://john.doe@www.example.com:123/forum/questions/?tag=networking&order=newest#top';
$https = Scheme::https($url);

$url = 'http://john.doe@www.example.com:123/forum/questions/?tag=networking&order=newest#top';
$http = Scheme::http($url);

$url = 'mailto:path@email.com,path2@email.com?to=email@example.com,email2@example.com&cc=email3@example.com,email4@example.com&bcc=email4@example.com,email5@example.com&subject=Hello&body=World';
$mailto = Scheme::mailto($url);

The parser also contains bags for the query or path. Given that it can exist within the given scheme.

Some schemes don’t have a path or a query. For example the FTP scheme officially does not support a query, thus
the Parser doesn’t support one either.

$url = 'ftp://user:password@host:123/path';
$ftp = Scheme::ftp($url);

// Only path
$ftp->getPathBag()->...;

Other types of urls will support both a path and a query bag.

$url = 'https://john.doe@www.example.com:123/forum/questions/?tag=networking&order=newest#top';
$https = Scheme::https($url);

$https->getPathBag()->...;
$https->getQueryBag()->...;

Parser Interface

All parsers implement the ImmutableSchemeInterface which has the following functions

// Returns all the components of the scheme including any bags in the form of an array
// Will always return an array, even if empty.

public function all(): array;

// Returns raw unaltered url

public function raw(): string

// Returns the scheme associated with the class instance

public function getScheme(): string;

Bags Interface

All immutable bags(query and path) implement the ImmutableBagInterface which has the following functions

// Returns all the components of the query or path

public function all(): array;

// Return the raw unaltered query or path

public function raw(): string;

Mailto

The mailto scheme has a path and a query bag along side the default interface options

The mailto scheme class does it’s best to keep in accordance with https://tools.ietf.org/html/rfc6068

The mailto immutable has no other functions except the default implementations and getters for the bags.

The query bag

The mailto scheme can have a query consisting of: to recipients, cc recipients, bcc recipients, body, and subject.

$url = 'mailto:path@email.com,path2@email.com?to=email@example.com,email2@example.com&cc=email3@example.com,email4@example.com&bcc=email4@example.com,email5@example.com&subject=Hello&body=World';
$mailto = Scheme::mailto($url);
echo $mailto->getQueryBag()->firstInTo(); // email@example.com
echo $mailto->getQueryBag()->lastInTo(); // email2@example.com
echo $mailto->getQueryBag()->hasInTo('email@example.com'); // true
echo $mailto->getQueryBag()->hasInTo('not_in_to@example.com'); // false

The same goes for CC and BCC functions with the only difference being the suffix of the function

Besides the to, cc, and bcc functions getters are available for subject and body

public function getSubject(): string

public function getBody(): string

public function getBcc(): array

public function getCc(): array

public function getTo(): array

The path bag

Much like the query bag, the path bag comes with its own functions

public function first()

public function last()

public function hasInPath(string $value): bool

public function getPath(): array

Due to the simplicity of the path in mailto schemes the path bag is not very feature rich.

Http and Https

The http and https schemes have a path and a query bag along side the default interface options

The http and https scheme classes do their best to keep in accordance with https://tools.ietf.org/html/rfc3986

Note

Due to major similarities between the 2 schemes there is a single section dedicated to both.

HOWEVER each scheme has its own dedicated parser.

Besides the default interface implementation the http and https immutable classes have the following functions

public function getAuthority(): string

public function getUser(): string

public function getPassword(): string

public function getHost(): string

public function getPort(): ?int

public function getFragment(): string

public function getQueryBag(): HttpImmutableQuery

public function getPathBag(): HttpImmutablePath

The query bag

Besides the default interface implementation the http/https immutable bags classes have the following functions

$url = 'http://john:password@www.example.com:123/forum/questions 10/?&tag[]=networking&tag[]=cisco&order=newest#top';

$scheme = Scheme::http($url);

var_dump($scheme->getQueryBag()->get('tag'));

...

Array
(
 [0] => networking
 [1] => cisco
)

public function get($key)

public function has($key): bool

public function first(): ?array

public function last(): ?string

The path bag

Besides the default interface implementation the http/https immutable bags classes have the following functions

$url = 'http://john:password@www.example.com:123/forum/questions 10/?&tag[]=networking&tag[]=cisco&order=newest#top';

$scheme = Scheme::http($url);

var_dump($scheme->getPathBag()->get(0));
...
string(5) "forum"

$scheme->getPathBag()->get(10);
...
Fatal error: Uncaught Keppler\Url\Exceptions\ComponentNotFoundException: Component with index "10" does not exist in Keppler\Url\Scheme\Schemes\Http\Bags\HttpImmutablePath

public function first(): ?string

public function last(): ?string

public function get(int $key)

public function has(int $key): bool

Ftp

The ftp parser has only a path bag along side the default interface options

The ftp class does its best to keep in accordance with https://tools.ietf.org/html/rfc3986

Besides the default interface implementation the ftp immutable class has the following functions

public function getPathBag(): FtpImmutablePath

public function getUser(): string

public function getPassword(): string

public function getHost(): string

public function getPort(): ?int

The path bag

Besides the default interface implementation the ftp immutable bag class has the following functions

public function first(): ?string

public function last(): ?string

public function get(int $key)

public function has(int $key): bool

Builder

Usage and Interface

Usage

Note

The classes found in the Builder can be used independently too. See the Quickstart link bellow.

Quickstart

The Builder class is mutable. It will accept an Immutable class of the corresponding scheme.

The usage is straight forward:

$ftpUrl = 'ftp://user:password@host:123/path';
$ftpImmutable = Scheme::ftp($ftpUrl);

$builder = Builder::ftp($ftpImmutable);

$builder->setUser('JohnDoe')
 ->setHost('example.com')
 ->setPassword('hunter2')
 ->setPort(987);

$builder->getPathBag()
 ->set(0, 'new path value')
 ->set(1, 'another path value');

echo $builder->raw(); // ftp://JohnDoe:hunter2@example.com:987/new path value/another path value/

echo $builder->encoded(); // ftp://JohnDoe:hunter2@example.com:987/new+path+value/another+path+value/

$url = 'https://john.doe@www.example.com:123/forum/questions/?tag=networking&order=newest#top';
$httpsImmutable = Scheme::https($url);

$builder = Builder::https($httpsImmutable);
...

$url = 'http://john.doe@www.example.com:123/forum/questions/?tag=networking&order=newest#top';
$httpImmutable = Scheme::http($url);

$builder = Builder::https($httpsImmutable);
...

$url = 'mailto:path@email.com,path2@email.com?to=email@example.com,email2@example.com&cc=email3@example.com,email4@example.com&bcc=email4@example.com,email5@example.com&subject=Hello&body=World';
$mailtoImmutable = Scheme::mailto($url);

$builder = Builder::https($mailtoImmutable);
...

The builder also contains bags for the query or path. Given that it can exist within the given scheme.

Some schemes don’t have a path or a query. For example the FTP scheme officially does not support a query, thus
the Builder doesn’t support one either.

$ftpUrl = 'ftp://user:password@host:123/path';
$ftpImmutable = Scheme::ftp($ftpUrl);

$builder = Builder::ftp($ftpImmutable);

// Only path
$builder->getPathBag()->...;

Other types of urls will support both a path and a query bag.

$url = 'https://john.doe@www.example.com:123/forum/questions/?tag=networking&order=newest#top';
$httpsImmutable = Scheme::https($url);

$builder = Builder::https($httpsImmutable);

$builder->getPathBag()->...;
$builder->getQueryBag()->...;

Builder Interface

All builders implement the ImmutableSchemeInterface which has the following functions

// Returns all the components of the scheme including any bags in the form of an array
// Will always return an array, even if empty.

public function all(): array;

// Returns raw unaltered url

public function raw(): string

// Returns the scheme associated with the class instance

public function getScheme(): string;

// Builds the url either encoded or not
public function build(bool $urlEncode = false): string;

Note

The build function is an alias for raw() and encoded() with the $urlEncode specified as either true or false

Bags Interface

All mutable bags(query and path) implement the MutableBagsInterface which has the following functions

// Returns all the components of the query or path

public function all(): array;

// Returns the encoded query or path string

public function encoded(): string;

// Return the raw unaltered query or path

public function raw(): string;

// Checks weather a given bag or path has a certain key

public function has($key): bool;

// Returns a given key

public function get($key);

// Sets a new entry in the path or query

public function set($key, $value);

// Returns all the components of the query or path

public function all(): array;

Mailto

The mailto builder has a path and a query bag along side the default interface options

The mailto builder class does it’s best to keep in accordance with https://tools.ietf.org/html/rfc6068

The mailto immutable has no other functions except the default implementations and getters for the bags.

The query bag

The mailto scheme can have a query consisting of: to recipients, cc recipients, bcc recipients, body, and subject.

Besides the getter functions specified in the previous chapter the builder has the following functions available.

public function putInTo(string $value): self

public function putInCc(string $value): self

public function putInBcc(string $value): self

public function forgetFromTo($keyOrValue): self

public function forgetFromCc($keyOrValue): self

public function forgetFromBcc($keyOrValue): self

public function forgetTo(): self

public function forgetCc(): self

public function forgetBcc(): self

public function forgetSubject(): self

public function forgetBody(): self

public function toHas(string $value): bool

public function ccHas(string $value): bool

public function bccHas(string $value): bool

public function forgetAll(): self

// Returns only the specified class properties(in this case)
public function only(string ...$args): array

Note

Functions such as get and set in this particular case will search for a class property rather than a query component

$url
 = 'mailto:path@email.com,path2@email.com?to=email@example.com,email2@example.com'.
 '&cc=email3@example.com,email4@example.com'.
 '&bcc=email4@example.com,email5@example.com'.
 '&subject=Hello'.
 '&body=World';

$mailto = Scheme::mailto($url);
$builder = Builder::mailto($mailto);

var_dump($builder->getQueryBag()->only('cc', 'bcc'));
...
Array
(
 [cc] => Array
 (
 [0] => email3@example.com
 [1] => email4@example.com
)

 [bcc] => Array
 (
 [0] => email4@example.com
 [1] => email5@example.com
)

)

$builder->getQueryBag()->forgetFromBcc('email5@example.com');
$builder->getQueryBag()->forgetFromBcc(0);

var_dump($builder->getQueryBag()->only('cc', 'bcc'));
...
Array
(
 [cc] => Array
 (
 [0] => email3@example.com
 [1] => email4@example.com
)

 [bcc] => Array
 (
)

)

The path bag

Much like the query bag, the path bag comes with its own functions

public function setPath(array $path): self

public function getPath(): array

public function append(string $value): self

public function prepend(string $value): self

public function putInBetween(string $value, string $first = null, string $last = null): self

public function putBefore(string $before, string $value) : self

public function first()

public function last()

public function putAfter(string $after, string $value): self

public function forget(string ...$args): self

public function forgetAll(): self

public function only(string ...$args): array

$url
 = 'mailto:path@email.com,path2@email.com?to=email@example.com,email2@example.com'.
 '&cc=email3@example.com,email4@example.com'.
 '&bcc=email4@example.com,email5@example.com'.
 '&subject=Hello'.
 '&body=World';

$mailto = Scheme::mailto($url);
$builder = Builder::mailto($mailto);

$builder->getPathBag()->putInBetween('new_value@test.com', 'path@email.com');

var_dump($builder->getPathBag()->all());
...
Array
(
 [0] => path@email.com
 [1] => new_value@test.com
 [2] => path2@email.com
)

$builder->getPathBag()->putAfter('new_value@test.com', 'after_new_value@test.com');

var_dump($builder->getPathBag()->all());
...
Array
(
 [0] => path@email.com
 [1] => new_value@test.com
 [2] => after_new_value@test.com
 [3] => path2@email.com
)

Http and Https

The http and https schemes have a path and a query bag along side the default interface options

The http and https scheme classes do their best to keep in accordance with https://tools.ietf.org/html/rfc3986

Note

Due to major similarities between the 2 schemes there is a single section dedicated to both.

HOWEVER each scheme has its own dedicated builder.

public function getAuthority(): string

public function getUser(): string

public function getPassword(): string

public function getHost(): string

public function getPort(): ?int

public function getFragment(): string

public function getQueryBag(): HttpImmutableQuery

public function getPathBag(): HttpImmutablePath

public function setUser(string $user): self

public function setPassword(string $password): self

public function setHost(string $host): self

public function setPort(int $port): self

public function setFragment(string $fragment): self

The query bag

Besides the default interface implementation the http/https mutable bags classes have the following functions

public function first(): ?array

public function last()

public function forget(string ...$args): self

public function forgetAll(): self

public function only(string ...$args): array

The path bag

Besides the default interface implementation the http/https bags bags classes have the following functions

public function getPath(): array

public function first(): ?string

public function last(): ?string

public function append(string $value): self

public function prepend(string $value): self

public function putInBetween(string $value, string $first = null, string $last = null): self

public function putBefore(string $before, string $value) : self

public function putAfter(string $after, string $value): self

public function forget(string ...$args): self

public function forgetAll(): self

public function only(string ...$args): array

Ftp

The ftp builder has only a path bag along side the default interface options

The ftp class does its best to keep in accordance with https://tools.ietf.org/html/rfc3986

Besides the default interface implementation the ftp mutable class has the following functions

public function getPathBag(): FtpMutablePath

public function getUser(): string

public function getPassword(): string

public function getHost(): string

public function getPort(): int

public function setUser(string $user): self

public function setPassword(string $password): self

public function setHost(string $host): self

public function setPort(int $port): self

The path bag

Besides the default interface implementation the ftp immutable bag class has the following functions

public function getPath(): array

public function first(): ?string

public function last()

public function append(string $value): self

public function prepend(string $value): self

public function putInBetween(string $value, string $first = null, string $last = null): self

public function putBefore(string $before, string $value) : self

public function putAfter(string $after, string $value): self

public function forget(string ...$args): self

public function forgetAll(): self

public function only(string ...$args): array

Index

 nav.xhtml

 Table of Contents

 		
 KepplerPl\url

 		
 Overview

 		
 Requirements

 		
 Installation

 		
 License

 		
 Reporting an issue

 		
 Quickstart

 		
 Parser and Builder

 		
 Parser

 		
 Builder

 		
 Independent usage

 		
 Parser

 		
 Usage and Interface

 		
 Usage

 		
 Parser Interface

 		
 Bags Interface

 		
 Mailto

 		
 The query bag

 		
 The path bag

 		
 Http and Https

 		
 The query bag

 		
 The path bag

 		
 Ftp

 		
 The path bag

 		
 Builder

 		
 Usage and Interface

 		
 Usage

 		
 Builder Interface

 		
 Bags Interface

 		
 Mailto

 		
 The query bag

 		
 The path bag

 		
 Http and Https

 		
 The query bag

 		
 The path bag

 		
 Ftp

 		
 The path bag

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

