
Keepalived User Guide
Release 1.2.15

Alexandre Cassen and Contributors

November 10, 2017

Contents

1 Introduction 1

2 Software Design 3

3 Load Balancing Techniques 11

4 Installing Keepalived 13

5 Keepalived configuration synopsis 15

6 Keepalived programs synopsis 19

7 IPVS Scheduling Algorithms 23

8 IPVS Protocol Support 25

9 Configuring SNMP Support 27

10 Case Study: Healthcheck 31

11 Case Study: Failover using VRRP 37

12 Case Study: Mixing Healthcheck & Failover 41

13 Terminology 45

14 License 47

15 About These Documents 49

16 TODO List 51

i

ii

CHAPTER 1

Introduction

Load balancing is a method of distributing IP traffic across a cluster of real servers, providing one or more highly
available virtual services. When designing load balanced topologies, it is important to account for the availability of
the load balancer itself as well as the real servers behind it.

Keepalived provides frameworks for both load balancing and high availability. The load balancing framework relies on
the well-known and widely used Linux Virtual Server (IPVS) kernel module, which provides Layer 4 load balancing.
Keepalived implements a set of health checkers to dynamically and adaptively maintain and manage load balanced
server pools according to their health. High availability is achieved by the Virtual Redundancy Routing Protocol
(VRRP). VRRP is a fundamental brick for router failover. In addition, keepalived implements a set of hooks to the
VRRP finite state machine providing low-level and high-speed protocol interactions. Each Keepalived framework can
be used independently or together to provide resilient infrastructures.

In this context, load balancer may also be referred to as a director or an LVS router.

In short, Keepalived provides two main functions:

• Health checking for LVS systems

• Implementation of the VRRPv2 stack to handle load balancer failover

1

Keepalived User Guide, Release 1.2.15

2 Chapter 1. Introduction

CHAPTER 2

Software Design

Keepalived is written is pure ANSI/ISO C. The software is articulated around a central I/O multiplexer that provides
realtime networking design. The main design focus is to provide a homogenous modularity between all elements. This
why a core library was created to remove code duplication. The goal is to produce a safe and secure code, ensuring
production robustness and stability.

To ensure robustness and stability, daemon is split into 3 distinct processes:

• A minimalistic parent process in charge with forked children process monitoring.

• Two children processes, one responsible for VRRP framework and the other for healthchecking.

Each children process has its own scheduling I/O multiplexer, that way VRRP scheduling jitter is optimized since
VRRP scheduling is more sensible/critical than healthcheckers. This split design minimalize for healthchecking the
usage of foreign libraries and minimalize its own action down to and idle mainloop in order to avoid malfunctions
caused by itself.

The parent process monitoring framework is called watchdog, the design is each children process open an accept unix
domain socket, then while daemon bootstrap, parent process connect to those unix domain socket and send periodic
(5s) hello packets to children. If parent cannot send hello packet to remote connected unix domain socket it simply
restart children process.

This watchdog design offers 2 benefits, first of all hello packets sent from parent process to remote connected children
is done throught I/O multiplexer scheduler that way it can detect deadloop in the children scheduling framework. The
second benefit is brought by the uses of sysV signal to detect dead children. When running you will see in process list:

PID 111 Keepalived <-- Parent process monitoring children
112 _ Keepalived <-- VRRP child
113 _ Keepalived <-- Healthchecking child

2.1 Kernel Components

Keepalived uses four Linux kernel components:

1. LVS Framework: Uses the getsockopt and setsockopt calls to get and set options on sockets.

3

Keepalived User Guide, Release 1.2.15

2. Netfilter Framework: IPVS code that supports NAT and Masquerading.

3. Netlink Interface: Sets and removes VRRP virtual IPs on network interfaces.

4. Multicast: VRRP advertisements are sent to the reserved VRRP MULTICAST group (224.0.0.18).

2.2 Atomic Elements

2.2.1 Control Plane

Keepalived configuration is done throught the file keepalived.conf. A compiler design is used for parsing. Parser
work with a keyword tree hierarchy for mapping each configuration keyword with specifics handler. A central multi-
level recursive function read the configuration file and traverse the keyword tree. During parsing, configuration file is
translated into an internal memory representation.

2.2.2 Scheduler - I/O Multiplexer

All the event are scheduled into the same process. Keepalived is a single process. Keepalived is a network routing
software, it is so closed to I/O. The design used here is a central select(...) that is in charge of scheduling all internal
task. POSIX thread libs are NOT used. This framework provide its own thread abstraction optimized for networking
purpose.

4 Chapter 2. Software Design

Keepalived User Guide, Release 1.2.15

2.2.3 Memory Management

This framework provides acces to some generic memory managements functions like allocation, reallocation, re-
lease,... This framework can be used in two mode : normal_mode & debug_mode. When using debug_mode it provide
a strong way to eradicate and track memory leaks. This low level env provide buffer under-run protection by tracking
allocation memory and released. All the buffer used are length fixed to prevent against eventual buffer-overflow.

2.2.4 Core Components

This framework define some common and global libraries that are used in all the code. Those libraries are : html
parsing, link-list, timer, vector, string formating, buffer dump, networking utils, daemon management, pid handling,
low level TCP layer4. The goal here is to factorize code to the max to limite as possible code duplication to increase
modularity.

2.2.5 WatchDog

This framework provide children processes monitoring (VRRP & Healthchecking). Each child accept connection to
its own watchdog unix domain socket. Parent process send “hello” messages to this child unix domain socket. Hello
messages are sent using I/O multiplexer on the parent side and accepted/processed using I/O multiplexer on children
side. If parent detect broken pipe it test using sysV signal if child is still alive and restart it.

2.2.6 Checkers

This is one of the main Keepalived functionality. Checkers are in charge of realserver healthchecking. A checker
test if realserver is alive, this test end on a binary decision : remove or add realserver from/into the LVS topology.
The internal checker design is realtime networking software, it use a fully multi-threaded FSM design (Finite State
Machine). This checker stack provide LVS topology manipulation accoring to layer4 to layer5/7 test results. Its run in
an independent process monitored by parent process.

2.2.7 VRRP Stack

The other most important Keepalived functionality. VRRP (Virtual Router Redundancy Protocol : RFC2338) is
focused on director takeover, it provide low-level design for router backup. It implements full IETF RFC2338 standard
with some provisions and extensions for LVS and Firewall design. It implements the vrrp_sync_group extension
that guarantee persistence routing path after protocol takeover. It implements IPSEC-AH using MD5-96bit crypto
provision for securing protocol adverts exchange. For more informations on VRRP please read the RFC. Important
things : VRRP code can be used without the LVS support, it has been designed for independant use.Its run in an
independent process monitored by parent process.

2.2.8 System Call

This framework offer the ability to launch extra system script. It is mainly used in the MISC checker. In VRRP
framework it provides the ability to launch extra script during protocol state transition. The system call is done into a
forked process to not pertube the global scheduling timer.

2.2.9 Netlink Reflector

Same as IPVS wrapper. Keepalived work with its own network interface representation. IP address and interface
flags are set and monitored through kernel Netlink channel. The Netlink messaging sub-system is used for setting

2.2. Atomic Elements 5

Keepalived User Guide, Release 1.2.15

VRRP VIPs. On the other hand, the Netlink kernel messaging broadcast capability is used to reflect into our userspace
Keepalived internal data representation any events related to interfaces. So any other userspace (others program)
netlink manipulation is reflected to our Keepalived data representation via Netlink Kernel broadcast (RTMGRP_LINK
& RTMGRP_IPV4_IFADDR).

2.2.10 SMTP

The SMTP protocol is used for administration notification. It implements the IETF RFC821 using a multi-threaded
FSM design. Administration notifications are sent for healthcheckers activities and VRRP protocol state transition.
SMTP is commonly used and can be interfaced with any other notification sub-system such as GSM-SMS, pagers, etc.

2.2.11 IPVS Wrapper

This framework is used for sending rules to the Kernel IPVS code. It provides translation between Keepalived internal
data representation and IPVS rule_user representation. It uses the IPVS libipvs to keep generic integration with IPVS
code.

2.2.12 IPVS

The Linux Kernel code provided by Wensong from LinuxVirtualServer.org OpenSource Project. IPVS (IP Virtual
Server) implements transport-layer load balancing inside the Linux kernel, also referred to as Layer-4 switching.

2.2.13 NETLINK

The Linux Kernel code provided by Alexey Kuznetov with its very nice advanced routing framework and sub-system
capabilities. Netlink is used to transfer information between kernel and user-space processes. It consists of a standard
sockets-based interface for user space processes and an internal kernel API for kernel modules.

2.2.14 Syslog

All keepalived daemon notification messages are logged using the syslog service.

2.3 Healthcheck Framework

Each health check is registered to the global scheduling framework. These health check worker threads implement the
following types of health checks:

TCP_CHECK Working at layer4. To ensure this check, we use a TCP Vanilla check using nonblocking/timed-out
TCP connections. If the remote server does not reply to this request (timed-out), then the test is wrong and the
server is removed from the server pool.

HTTP_GET Working at layer5. Performs a HTTP GET to a specified URL. The HTTP GET result is then summed
using the MD5 algorithm. If this sum does not match with the expected value, the test is wrong and the server
is removed from the server pool. This module implements a multi-URL get check on the same service. This
functionality is useful if you are using a server hosting more than one application server. This functionality gives
you the ability to check if an application server is working properly. The MD5 digests are generated using the
genhash utility (included in the keepalived package).

SSL_GET Same as HTTP_GET but uses a SSL connection to the remote webservers.

6 Chapter 2. Software Design

Keepalived User Guide, Release 1.2.15

MISC_CHECK This check allows a user defined script to be run as the health checker. The result must be 0 or 1.
The script is run on the director box and this is an ideal way to test in- house applications. Scripts that can be run
without arguments can be called using the full path (i.e. /path_to_script/script.sh). Those requiring arguments
need to be enclosed in double quotes (i.e. “/path_to_script/script.sh arg 1 ... arg n ”)

The goal for Keepalived is to define a generic framework easily extensible for adding new checkers modules. If you
are interested the development of existing or new checkers, have a look at the keepalived/check directory in the source:

https://github.com/acassen/keepalived/tree/master/keepalived/check

2.4 Failover (VRRP) Framework

Keepalived implements the VRRP protocol for director failover. Within the implemented VRRP stack, the VRRP
Packet dispatcher is responsible for demultiplexing specific I/O for each VRRP instance.

From RFC2338, VRRP is defined as:

“VRRP specifies an election protocol that dynamically assigns
responsibility for a virtual router to one of the VRRP routers on a LAN.
The VRRP router controlling the IP address(es) associated with a virtual
router is called the Master, and forwards packets sent to these IP
addresses. The election process provides dynamic fail over in the
forwarding responsibility should the Master become unavailable. This allows
any of the virtual router IP addresses on the LAN to be used as the default
first hop router by end-hosts. The advantage gained from using VRRP is a
higher availability default path without requiring configuration of dynamic
routing or router discovery protocols on every end-host.” [rfc2338]

Note: This framework is LVS independent, so you can use it for LVS director failover, even for other Linux routers
needing a Hot-Standby protocol. This framework has been completely integrated in the Keepalived daemon for design
& robustness reasons.

The main functionalities provided by this framework are:

• Failover: The native VRRP protocol purpose, based on a roaming set of VRRP VIPs.

• VRRP Instance synchronization: We can specify a state monitoring between 2 VRRP Instances, also known as
a VRRP sync group. It guarantees that 2 VRRP Instances remain in the same state. The synchronized instances
monitor each other.

• Nice Fallback

• Advert Packet integrity: Using IPSEC-AH ICV.

• System call: During a VRRP state transition, an external script/program may be called.

2.4.1 Note on Using VRRP with Virtual MAC Address

To reduce takeover impact, some networking environment would require using VRRP with VMAC address. To reach
that goal Keepalived VRRP framework implements VMAC support by the invocation of ‘use_vmac’ keyword in
configuration file.

Internally, Keepalived code will bring up virtual interfaces, each interface dedicated to a specific virtual_router.
Keepalived uses Linux kernel macvlan driver to defines thoses interfaces. It is then mandatory to use kernel com-
piled with macvlan support.

2.4. Failover (VRRP) Framework 7

https://github.com/acassen/keepalived/tree/master/keepalived/check

Keepalived User Guide, Release 1.2.15

In addition we can mention that VRRP VMAC will work only with kernel including the following patch:

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=commitdiff;h=729e72a10930ef765c11a5a35031ba47f18221c4

By default MACVLAN interface are in VEPA mode which filters out received packets whose MAC source address
matches that of the MACVLAN interface. Setting MACVLAN interface in private mode will not filter based on source
MAC address.

Alternatively, you can specify ‘vmac_xmit_base’ which will cause the VRRP messages to be transmitted and received
on the underlying interface whilst ARP will happen from the the VMAC interface.

You may also need to tweak your physical interfaces to play around with well known ARP issues. If you have issues,
try the following configurations:

1. Global configuration:

net.ipv4.conf.all.arp_ignore = 1
net.ipv4.conf.all.arp_announce = 1
net.ipv4.conf.all.arp_filter = 0

2. Physical interface configuration

For the physical ethernet interface running VRRP instance use:

net.ipv4.conf.eth0.arp_filter = 1

3. VMAC interface

consider the following VRRP configuration:

vrrp_instance instance1 {
state BACKUP
interface eth0
virtual_router_id 250
use_vmac

vmac_xmit_base # Transmit VRRP adverts over physical interface
priority 150
advert_int 1
virtual_ipaddress {

10.0.0.254
}

}

The use_vmac keyword will drive keepalived code to create a macvlan interface named vrrp.250 (default internal
paradigm is vrrp.{virtual_router_id}, you can override this naming by giving an argument to ‘use_vmac’ keyword, eg:
use_vmac vrrp250).

You then need to configure interface with:

net.ipv4.conf.vrrp.250.arp_filter = 0
net.ipv4.conf.vrrp.250.accept_local = 1 (this is needed for the address owner case)
net.ipv4.conf.vrrp.250.rp_filter = 0

You can create notify_master script to automate this configuration step for you:

vrrp_instance instance1 {
state BACKUP
interface eth0
virtual_router_id 250
use_vmac
priority 150

8 Chapter 2. Software Design

http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=commitdiff;h=729e72a10930ef765c11a5a35031ba47f18221c4

Keepalived User Guide, Release 1.2.15

advert_int 1
virtual_ipaddress {

10.0.0.254
}
notify_master "/usr/local/bin/vmac_tweak.sh vrrp.250"

}

2.4. Failover (VRRP) Framework 9

Keepalived User Guide, Release 1.2.15

10 Chapter 2. Software Design

CHAPTER 3

Load Balancing Techniques

3.1 Virtual Server via NAT

NAT Routing is used when the Load-Balancer (or LVS Router) has two Network Interface Cards (NICs), one assigned
an outside-facing IP address and the other, a private, inside-facing IP address. In this method, the Load-Balancer
receives requests from users on the public network and uses network address translation (NAT) to forward those
requests to the real servers located on the private network. The replies are also translated in the reverse direction, when
the real servers reply to the users’ requests.

As a result, an advantage is that the real servers are protected from the public network as they are hidden behind the
Load-Balancer. Another advantage is IP address preservation, as the private network can use private address ranges.

The main disadvantage is that the Load-Balancer becomes a bottleneck. It has to service not only requests but also
replies to and from the public users, while also forwarding to and from the private real servers.

3.2 Virtual Server via Tunneling

3.3 Virtual Server via Direct Routing

In Direct Routing, users issue requests to the VIP on the Load-Balancer. The Load-Balancer uses its predefined
scheduling (distribution) algorithm and forwards the requests to the appropriate real server. Unlike using NAT Routing,
the real servers respond directly to the public users, bypassing the need to route through the Load-Balancer.

The main advantage with this routing method is scalability, as the Load-Balancer does not have the additional respon-
sibility of routing outgoing packets from the real servers to the public users.

The disadvantage to this routing method lies in its ARP limitation. In order for the real servers to directly respond to
the public users’ requests, each real server must use the VIP as its source address when sending replies. As a result, the
VIP and MAC address combination are shared amongst the Load-Balancer itself as well as each of the real servers that
can lead to situations where the real servers receive the requests directly, bypassing the Load-Balancer on incoming
requests. There are methods available to solve this problem at the expense of added configuration complexity and
manageability.

11

Keepalived User Guide, Release 1.2.15

12 Chapter 3. Load Balancing Techniques

CHAPTER 4

Installing Keepalived

Install keepalived from the distribution’s repositories or, alternatively, compile from source. Although installing from
the repositories is generally the fastest way to get keepalived running on a system, the version of keepalived available
in the repositories are typically a few releases behind the latest available stable version.

4.1 Installing from the Repositories

4.1.1 Installing on Red Hat Enterprise Linux

As of Red Hat 6.4, Red Hat and the clones have included the keepalived package in the base repository. Therefore,
run the following to install the keepalived package and all the required dependencies using YUM:

yum install keepalived

4.1.2 Installing on Debian

Run the following to install the keepalived package and all the required dependencies using Debian’s APT package
handling utility:

apt-get install keepalived

4.2 Compiling and Building from Source

In order to run the latest stable version, compile keepalived from source. Compiling keepalived requires a compiler,
OpenSSL and the Netlink Library. You may optionally install Net-SNMP, which is required for SNMP support.

13

Keepalived User Guide, Release 1.2.15

4.2.1 Install Prerequisites on RHEL/CentOS

On RHEL, install the following prerequisites:

yum install curl gcc openssl-devel libnl3-devel net-snmp-devel

4.2.2 Install Prerequisites on Debian

On Debian, install the following prerequisites:

apt-get install curl gcc libssl-dev libnl-3-dev libnl-genl-3-dev libsnmp-dev

4.2.3 Build and Install

Use curl or any other transfer tool such as wget to download keepalived. The software is available at http://www.
keepalived.org/download.html or https://github.com/acassen/keepalived. Then, compile the package:

curl --progress http://keepalived.org/software/keepalived-1.2.15.tar.gz | tar xz
cd keepalived-1.2.15
./configure
make
sudo make install

It is a general recommendation when compiling from source to specify a PREFIX. For example:

./configure --prefix=/usr/local/keepalived-1.2.15

This makes it easy to uninstall a compiled version of keepalived simply by deleting the parent directory. Additionally,
this method of installation allows for multiple versions of Keepalived installed without overwriting each other. Use a
symlink to point to the desired version. For example, your directory layout could look like this:

[root@lvs1 ~]# cd /usr/local
[root@lvs1 local]# ls -l
total 12
lrwxrwxrwx. 1 root root 17 Feb 24 20:23 keepalived -> keepalived-1.2.15
drwxr-xr-x. 2 root root 4096 Feb 24 20:22 keepalived-1.2.13
drwxr-xr-x. 2 root root 4096 Feb 24 20:22 keepalived-1.2.14
drwxr-xr-x. 2 root root 4096 Feb 24 20:22 keepalived-1.2.15

4.2.4 Setup Init Scripts

After compiling, create an init script in order to control the keepalived daemon.

On RHEL,

14 Chapter 4. Installing Keepalived

http://www.keepalived.org/download.html
http://www.keepalived.org/download.html
https://github.com/acassen/keepalived

CHAPTER 5

Keepalived configuration synopsis

The Keepalived configuration file uses the following synopsis (configuration keywords are Bold/Italic):

5.1 Global Definitions Synopsis

global_defs {
notification_email {

email
email

}
notification_email_from email
smtp_server host
smtp_connect_timeout num
lvs_id string

}

Keyword Definition Type
global_defs identify the global def configuration block
notification_email email accounts that will receive the notification mail List
notification_email_from email to use when processing “MAIL FROM:” SMTP command List
smtp_server remote SMTP server to use for sending mail notifications alphanum
smtp_connection_timeout specify a timeout for SMTP stream processing numerical
lvs_id specify the name of the LVS director alphanum

Email type: Is a string using charset as specified into the SMTP RFC eg: “user@domain.com”

5.2 Virtual Server Definitions Synopsis

virtual_server (@IP PORT)|(fwmark num) {
delay_loop num
lb_algo rr|wrr|lc|wlc|sh|dh|lblc

15

mailto:user@domain.com

Keepalived User Guide, Release 1.2.15

lb_kind NAT|DR|TUN
(nat_mask @IP)
persistence_timeout num
persistence_granularity @IP
virtualhost string
protocol TCP|UDP

sorry_server @IP PORT
real_server @IP PORT {

weight num
TCP_CHECK {

connect_port num
connect_timeout num

}
}
real_server @IP PORT {

weight num
MISC_CHECK {

misc_path /path_to_script/script.sh
(or misc_path “ /path_to_script/script.sh <arg_list>”)

}
}

}
real_server @IP PORT {

weight num
HTTP_GET|SSL_GET {

url { # You can add multiple url block
path alphanum
digest alphanum

}
connect_port num
connect_timeout num
retry num
delay_before_retry num

}
}

16 Chapter 5. Keepalived configuration synopsis

Keepalived User Guide, Release 1.2.15

Keyword Definition Type
virtual_server identify a virtual server definition block
fwmark specify that virtual server is a FWMARK
delay_loop specify in seconds the interval between checks numerical
lb_algo select a specific scheduler (rr|wrr|lc|wlc...) string
lb_kind select a specific forwarding method (NAT|DR|TUN) string
persistence_timeout specify a timeout value for persistent connections numerical
persistence_granularity specify a granularity mask for persistent connections
virtualhost specify a HTTP virtualhost to use for HTTP|SSL_GET alphanum
protocol specify the protocol kind (TCP|UDP) numerical
sorry_server server to be added to the pool if all real servers are down
real_server specify a real server member
weight specify the real server weight for load balancing decisions numerical
TCP_CHECK check real server availability using TCP connect
MISC_CHECK check real server availability using user defined script
misc_path identify the script to run with full path path
HTTP_GET check real server availability using HTTP GET request
SSL_GET check real server availability using SSL GET request
url identify a url definition block
path specify the url path alphanum
digest specify the digest for a specific url path alphanum
connect_port connect remote server on specified TCP port numerical
connect_timeout connect remote server using timeout numerical
retry maximum number of retries numerical
delay_before_retry delay between two successive retries numerical

Note: The “nat_mask” keyword is obsolete if you are not using LVS with Linux kernel 2.2 series. This flag give you
the ability to define the reverse NAT granularity.

Note: Currently, Healthcheck framework, only implements TCP protocol for service monitoring.

Note: Type “path” refers to the full path of the script being called. Note that for scripts requiring arguments the path
and arguments must be enclosed in double quotes (”).

5.3 VRRP Instance Definitions Synopsis

vrrp_sync_group string {
group {

string
string

}
notify_master /path_to_script/script_master.sh

(or notify_master “ /path_to_script/script_master.sh <arg_list>”)
notify_backup /path_to_script/script_backup.sh

(or notify_backup “/path_to_script/script_backup.sh <arg_list>”)
notify_fault /path_to_script/script_fault.sh

(or notify_fault “ /path_to_script/script_fault.sh <arg_list>”)
}

5.3. VRRP Instance Definitions Synopsis 17

Keepalived User Guide, Release 1.2.15

vrrp_instance string {
state MASTER|BACKUP
interface string
mcast_src_ip @IP
lvs_sync_daemon_interface string
virtual_router_id num
priority num
advert_int num
smtp_alert
authentication {

auth_type PASS|AH
auth_pass string

}
virtual_ipaddress { # Block limited to 20 IP addresses

@IP
@IP
@IP

}
virtual_ipaddress_excluded { # Unlimited IP addresses

@IP
@IP
@IP

}
notify_master /path_to_script/script_master.sh

(or notify_master “ /path_to_script/script_master.sh <arg_list>”)
notify_backup /path_to_script/script_backup.sh

(or notify_backup “ /path_to_script/script_backup.sh <arg_list>”)
notify_fault /path_to_script/script_fault.sh

(or notify_fault “ /path_to_script/script_fault.sh <arg_list>”)
}

Keyword Definition Type
vrrp_instance identify a VRRP instance definition block
state specify the instance state in standard use
Interface specify the network interface for the instance to run on string
mcast_src_ip specify the src IP address value for VRRP adverts IP header
lvs_sync_daemon_inteface specify the network interface for the LVS sync_daemon to run on string
virtual_router_id specify to which VRRP router id the instance belongs numerical
priority specify the instance priority in the VRRP router numerical
advert_int specify the advertisement interval in seconds (set to 1) numerical
smtp_alert Activate the SMTP notification for MASTER state transition
authentication identify a VRRP authentication definition block
auth_type specify which kind of authentication to use (PASS|AH)
auth_pass specify the password string to use string
virtual_ipaddress identify a VRRP VIP definition block
virtual_ipaddress_excluded identify a VRRP VIP excluded definition block (not protocol VIPs)
notify_master specify a shell script to be executed during transition to master state path
notify_backup specify a shell script to be executed during transition to backup state path
notify_fault specify a shell script to be executed during transition to fault state path
vrrp_sync_group Identify the VRRP synchronization instances group string

Path type: A system path to a script eg: “/usr/local/bin/transit.sh <arg_list>”

18 Chapter 5. Keepalived configuration synopsis

CHAPTER 6

Keepalived programs synopsis

Keepalived package comes with 2 programs.

6.1 keepalived daemon

The keepalived command line arguments are:

-f, –use-file=FILE Use the specified configuration file. The default configuration file is
“/etc/keepalived/keepalived.conf”.

-P, –vrrp Only run the VRRP subsystem. This is useful for configurations that do not use IPVS load balancer.

-C, –check Only run the healthcheck subsystem. This is useful for configurations that use the IPVS load balancer
with a single director with no failover.

-l, –log-console Log messages to the local console. The default behavior is to log messages to syslog.

-D, –log-detail Detailed log messages.

-S, –log-facility=[0-7] Set syslog facility to LOG_LOCAL[0-7]. The default syslog facility is LOG_DAEMON.

-V, –dont-release-vrrp Don’t remove VRRP VIPs and VROUTEs on daemon stop. The default behavior is to remove
all VIPs and VROUTEs when keepalived exits

-I, –dont-release-ipvs Don’t remove IPVS topology on daemon stop. The default behavior it to remove all entries
from the IPVS virtual server table on when keepalived exits.

-R, –dont-respawn Don’t respawn child processes. The default behavior is to restart the VRRP and checker pro-
cesses if either process exits.

-n, –dont-fork Don’t fork the daemon process. This option will cause keepalived to run in the foreground.

-d, –dump-conf Dump the configuration data.

-p, –pid=FILE Use specified pidfile for parent keepalived process. The default pidfile for keepalived is
“/var/run/keepalived.pid”.

19

Keepalived User Guide, Release 1.2.15

-r, –vrrp_pid=FILE Use specified pidfile for VRRP child process. The default pidfile for the VRRP child process is
“/var/run/keepalived_vrrp.pid”.

-c, –checkers_pid=FILE Use specified pidfile for checkers child process. The default pidfile for the checker child
process is “/var/run/keepalived_checkers.pid”.

-x, –snmp Enable SNMP subsystem.

-v, –version Display the version and exit.

-h, –help Display this help message and exit.

6.2 genhash utility

The genhash binary is used to generate digest strings. The genhash command line arguments are:

–use-ssl, -S Use SSL to connect to the server.

–server <host>, -s Specify the ip address to connect to.

–port <port>, -p Specify the port to connect to.

–url <url>, -u Specify the path to the file you want to generate the hash of.

–use-virtualhost <host>, -V Specify the virtual host to send along with the HTTP headers.

–hash <alg>, -H Specify the hash algorithm to make a digest of the target page. Consult the help screen for list of
available ones with a mark of the default one.

–verbose, -v Be verbose with the output.

–help, -h Display the program help screen and exit.

–release, -r Display the release number (version) and exit.

6.3 Running Keepalived daemon

To run Keepalived simply type:

[root@lvs tmp]# /etc/rc.d/init.d/keepalived.init start
Starting Keepalived for LVS: [OK]

All daemon messages are logged through the Linux syslog. If you start Keepalived with the “dump configuration
data” option, you should see in your /var/log/messages (on Debian this may be /var/log/daemon.log depending on
your syslog configuration) something like this:

Jun 7 18:17:03 lvs1 Keepalived: Starting Keepalived v0.6.1 (06/13, 2002)
Jun 7 18:17:03 lvs1 Keepalived: Configuration is using : 92013 Bytes
Jun 7 18:17:03 lvs1 Keepalived: ------< Global definitions >------
Jun 7 18:17:03 lvs1 Keepalived: LVS ID = LVS_PROD
Jun 7 18:17:03 lvs1 Keepalived: Smtp server = 192.168.200.1
Jun 7 18:17:03 lvs1 Keepalived: Smtp server connection timeout = 30
Jun 7 18:17:03 lvs1 Keepalived: Email notification from = keepalived@domain.com
Jun 7 18:17:03 lvs1 Keepalived: Email notification = alert@domain.com
Jun 7 18:17:03 lvs1 Keepalived: Email notification = 0633556699@domain.com
Jun 7 18:17:03 lvs1 Keepalived: ------< SSL definitions >------
Jun 7 18:17:03 lvs1 Keepalived: Using autogen SSL context
Jun 7 18:17:03 lvs1 Keepalived: ------< LVS Topology >------

20 Chapter 6. Keepalived programs synopsis

Keepalived User Guide, Release 1.2.15

Jun 7 18:17:03 lvs1 Keepalived: System is compiled with LVS v0.9.8
Jun 7 18:17:03 lvs1 Keepalived: VIP = 10.10.10.2, VPORT = 80
Jun 7 18:17:03 lvs1 Keepalived: VirtualHost = www.domain1.com
Jun 7 18:17:03 lvs1 Keepalived: delay_loop = 6, lb_algo = rr
Jun 7 18:17:03 lvs1 Keepalived: persistence timeout = 50
Jun 7 18:17:04 lvs1 Keepalived: persistence granularity = 255.255.240.0
Jun 7 18:17:04 lvs1 Keepalived: protocol = TCP
Jun 7 18:17:04 lvs1 Keepalived: lb_kind = NAT
Jun 7 18:17:04 lvs1 Keepalived: sorry server = 192.168.200.200:80
Jun 7 18:17:04 lvs1 Keepalived: RIP = 192.168.200.2, RPORT = 80, WEIGHT = 1
Jun 7 18:17:04 lvs1 Keepalived: RIP = 192.168.200.3, RPORT = 80, WEIGHT = 2
Jun 7 18:17:04 lvs1 Keepalived: VIP = 10.10.10.3, VPORT = 443
Jun 7 18:17:04 lvs1 Keepalived: VirtualHost = www.domain2.com
Jun 7 18:17:04 lvs1 Keepalived: delay_loop = 3, lb_algo = rr
Jun 7 18:17:04 lvs1 Keepalived: persistence timeout = 50
Jun 7 18:17:04 lvs1 Keepalived: protocol = TCP
Jun 7 18:17:04 lvs1 Keepalived: lb_kind = NAT
Jun 7 18:17:04 lvs1 Keepalived: RIP = 192.168.200.4, RPORT = 443, WEIGHT = 1
Jun 7 18:17:04 lvs1 Keepalived: RIP = 192.168.200.5, RPORT = 1358, WEIGHT = 1
Jun 7 18:17:05 lvs1 Keepalived: ------< Health checkers >------
Jun 7 18:17:05 lvs1 Keepalived: 192.168.200.2:80
Jun 7 18:17:05 lvs1 Keepalived: Keepalive method = HTTP_GET
Jun 7 18:17:05 lvs1 Keepalived: Connection timeout = 3
Jun 7 18:17:05 lvs1 Keepalived: Nb get retry = 3
Jun 7 18:17:05 lvs1 Keepalived: Delay before retry = 3
Jun 7 18:17:05 lvs1 Keepalived: Checked url = /testurl/test.jsp,
Jun 7 18:17:05 lvs1 Keepalived: digest = 640205b7b0fc66c1ea91c463fac6334d
Jun 7 18:17:05 lvs1 Keepalived: 192.168.200.3:80
Jun 7 18:17:05 lvs1 Keepalived: Keepalive method = HTTP_GET
Jun 7 18:17:05 lvs1 Keepalived: Connection timeout = 3
Jun 7 18:17:05 lvs1 Keepalived: Nb get retry = 3
Jun 7 18:17:05 lvs1 Keepalived: Delay before retry = 3
Jun 7 18:17:05 lvs1 Keepalived: Checked url = /testurl/test.jsp,
Jun 7 18:17:05 lvs1 Keepalived: digest = 640205b7b0fc66c1ea91c463fac6334c
Jun 7 18:17:05 lvs1 Keepalived: Checked url = /testurl2/test.jsp,
Jun 7 18:17:05 lvs1 Keepalived: digest = 640205b7b0fc66c1ea91c463fac6334c
Jun 7 18:17:06 lvs1 Keepalived: 192.168.200.4:443
Jun 7 18:17:06 lvs1 Keepalived: Keepalive method = SSL_GET
Jun 7 18:17:06 lvs1 Keepalived: Connection timeout = 3
Jun 7 18:17:06 lvs1 Keepalived: Nb get retry = 3
Jun 7 18:17:06 lvs1 Keepalived: Delay before retry = 3
Jun 7 18:17:06 lvs1 Keepalived: Checked url = /testurl/test.jsp,
Jun 7 18:17:05 lvs1 Keepalived: digest = 640205b7b0fc66c1ea91c463fac6334d
Jun 7 18:17:06 lvs1 Keepalived: Checked url = /testurl2/test.jsp,
Jun 7 18:17:05 lvs1 Keepalived: digest = 640205b7b0fc66c1ea91c463fac6334d
Jun 7 18:17:06 lvs1 Keepalived: 192.168.200.5:1358
Jun 7 18:17:06 lvs1 Keepalived: Keepalive method = TCP_CHECK
Jun 7 18:17:06 lvs1 Keepalived: Connection timeout = 3
Jun 7 18:17:06 lvs1 Keepalived: Registering Kernel netlink reflector

6.3. Running Keepalived daemon 21

Keepalived User Guide, Release 1.2.15

22 Chapter 6. Keepalived programs synopsis

CHAPTER 7

IPVS Scheduling Algorithms

The following scheduling algorithms are supported by the IPVS kernel code.

7.1 Round Robin

7.2 Weighted Round Robin

7.3 Least Connection

7.4 Weighted Least Connection

7.5 Locality-Based Least Connection

7.6 Locality-Based Least Connection with Replication

7.7 Destination Hashing

7.8 Source Hashing

7.9 Shortest Expected Delay

7.10 Never Queue

23

Keepalived User Guide, Release 1.2.15

24 Chapter 7. IPVS Scheduling Algorithms

CHAPTER 8

IPVS Protocol Support

8.1 IPVS Transport Protocol Load Balancing Support

IPVS supports load balancing the following transport protocols:

• TCP

• UDP

• ESP (Encapsulation Security Payload)

• AH (Authentication Header)

8.2 IPVS Application Helpers

8.2.1 FTP Protocol Helper

8.2.2 Netfilter Connection Tracking

8.2.3 SIP Persistence Engine

Depends on UDP and SIP netfilter connection tracking.

Todo

Mention Netfilter Connection Tracking

Todo

Mention ipip kernel module

25

Keepalived User Guide, Release 1.2.15

26 Chapter 8. IPVS Protocol Support

CHAPTER 9

Configuring SNMP Support

Keepalived provides an SNMP subsystem that can gather various metrics about the VRRP stack and the health
checker system. The keepalived MIB is in the doc directory of the project. The base SNMP OID for the MIB is
.1.3.6.1.4.1.9586.100.5, which is hosted under the Debian OID space assigned by IANA.

Prerequisites *********

Install the SNMP protocol tools and libraries onto your system. This requires the installation of a few packages:

yum install net-snmp net-snmp-utils net-snmp-libs

Once SNMP has been installed on your system, configure keepalived with SNMP support. When compiling
keepalived, add the --enable-snmp configure option. For example:

./configure --enable-snmp

During the configure step of the compiling process, you will get a configuration summary before building with make.
For example, you may see similar output on a CentOS 6 machine:

./configure --prefix=/usr/local/keepalived-1.2.15 --enable-snmp
Keepalived configuration

Keepalived version : 1.2.15
Compiler : gcc
Compiler flags : -g -O2 -I/usr/include/libnl3
Extra Lib : -Wl,-z,relro -Wl,-z,now -L/usr/lib64
-lnetsnmpagent -lnetsnmphelpers -lnetsnmpmibs -lnetsnmp -Wl,-E
-Wl,-rpath,/usr/lib64/perl5/CORE -lssl -lcrypto -lcrypt -lnl-genl-3 -lnl-3
Use IPVS Framework : Yes
IPVS sync daemon support : Yes
IPVS use libnl : Yes
fwmark socket support : Yes
Use VRRP Framework : Yes
Use VRRP VMAC : Yes
SNMP support : Yes

27

https://dsa.debian.org/iana/

Keepalived User Guide, Release 1.2.15

SHA1 support : No
Use Debug flags : No

Notice the Extra Lib section of the configuration summary. It lists various library flags that gcc will use to build
keepalived, several of which have to do with SNMP.

9.1 Configuring Support

Enable SNMP AgentX support by including the following line in the SNMP daemon configuration file, typically
/etc/snmp/snmpd.conf if you installed via RPMs on a CentOS machine:

master agentx

Note: Be sure to reload or restart the SNMP service for the configuration change to take effect.

9.2 Adding the MIB

You can query keepalived SNMP managed objects by using the OID. For example:

snmpwalk -v2c -c public localhost .1.3.6.1.4.1.9586.100.5.1.1.0
SNMPv2-SMI::enterprises.9586.100.5.1.1.0 = STRING: "Keepalived v1.2.15 (01/10,2015)"

Alternatively, with the keepalived MIB, you can query using the MIB available from the project. First, copy the MIB
to the system’s global MIB directory or to the user’s local MIB directory:

cp /usr/local/src/keepalived-1.2.15/doc/KEEPALIVED-MIB /usr/share/snmp/mibs

or:

cp /usr/local/src/keepalived-1.2.15/doc/KEEPALIVED-MIB ~/.snmp/mibs

The SNMP daemon will check both directories for the existence of the MIB. Once the MIB is in place, the SNMP
query can look as follows:

snmpwalk -v2c -c public localhost KEEPALIVED-MIB::version
KEEPALIVED-MIB::version.0 = STRING: Keepalived v1.2.15 (01/10,2015)

9.3 MIB Overview

There are four main sections to the keepalived MIB:

• global

• vrrp

• check

• conformance

28 Chapter 9. Configuring SNMP Support

Keepalived User Guide, Release 1.2.15

9.3.1 Global

The global section includes objects that contain information about the keepalived instance such as version, router ID
and administrative email addresses.

9.3.2 VRRP

The VRRP section includes objects that contain information about each configured VRRP instance. Within each
instance, there are objects that include instance name, current state, and virtual IP addresses.

9.3.3 Check

The Check section includes objects that contain information about each configured virtual server. It includes server
tables for virtual and real servers and also configured load balancing algorithms, load balancing method, protocol,
status, real and virtual server network connection statistics.

9.3.4 Conformance

Todo

do conformance

Note: Use a MIB browser, such as mbrowse, to see what managed objects are available to query for monitoring the
health of your LVS servers.

9.3. MIB Overview 29

Keepalived User Guide, Release 1.2.15

30 Chapter 9. Configuring SNMP Support

CHAPTER 10

Case Study: Healthcheck

As an example we can introduce the following LVS topology:

First of all you need a well-configured LVS topology. In the rest of this document, we will assume that all system
configurations have been done. This kind of topology is generally implemented in a DMZ architecture. For more
information on LVS NAT topology and system configuration please read the nice Joseph Mack LVS HOWTO.

10.1 Main architecture components

• LVS Router: Owning the load balanced IP Class routed (192.168.100.0/24).

• Network Router : The default router for the entire internal network. All the LAN workstations are handled
through this IP address.

• Network DNS Server: Referencing the internal network IP topology.

• SMTP Server: SMTP server receiving the mail alerts.

• SERVER POOL: Set of servers hosting load balanced services.

10.2 Server pool specifications

In this sample configuration we have 2 server pools:

• Server pool 1: Hosting the HTTP & SSL services. Each server owns two application servers (IBM WEB-
SPHERE & BEA WEBLOGIC)

• Server pool 2: Hosting the SMTP service.

31

Keepalived User Guide, Release 1.2.15

10.3 Keepalived configuration

You are now ready to configure the Keepalived daemon according to your LVS topology. The whole configuration is
done in the /etc/keepalived/keepalived.conf file. In our case study this file looks like:

Configuration File for keepalived
global_defs {

notification_email {
admin@domain.com
0633225522@domain.com

}
notification_email_from keepalived@domain.com
smtp_server 192.168.200.20
smtp_connect_timeout 30
lvs_id LVS_MAIN

}
virtual_server 192.168.200.15 80 {

delay_loop 30
lb_algo wrr
lb_kind NAT
persistence_timeout 50
protocol TCP

sorry_server 192.168.100.100 80

real_server 192.168.100.2 80 {
weight 2
HTTP_GET {

url {
path /testurl/test.jsp
digest ec90a42b99ea9a2f5ecbe213ac9eba03

}
url {

path /testurl2/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334c

}
connect_timeout 3
retry 3
delay_before_retry 2

}
}
real_server 192.168.100.3 80 {

weight 1
HTTP_GET {

url {
path /testurl/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334c

}
connect_timeout 3
retry 3
delay_before_retry 2

}
}

}
virtual_server 192.168.200.15 443 {

delay_loop 20
lb_algo rr
lb_kind NAT

32 Chapter 10. Case Study: Healthcheck

Keepalived User Guide, Release 1.2.15

persistence_timeout 360
protocol TCP
real_server 192.168.100.2 443 {

weight 1
TCP_CHECK {

connect_timeout 3
}

}
real_server 192.168.100.3 443 {

weight 1
TCP_CHECK {

connect_timeout 3
}

}
}
virtual_server 192.168.200.15 25 {

delay_loop 15
lb_algo wlc
lb_kind NAT
persistence_timeout 50
protocol TCP
real_server 192.168.100.4 25 {

weight 1
TCP_CHECK {

connect_timeout 3
}

}
real_server 192.168.100.5 25 {

weight 2
TCP_CHECK {

connect_timeout 3
}

}
}

According to this configuration example, the Keepalived daemon will drive the kernel using following information:

• The LVS server will own the name: LVS_MAIN

• Notification:

– SMTP server will be: 192.168.200.20

– SMTP connection timeout is set to: 30 seconded

– Notification emails will be: admin@domain.com & 0633225522@domain.com

• Load balanced services:

– HTTP: VIP 192.168.200.15 port 80

* Load balancing: Using Weighted Round Robin scheduler with NAT forwarding. Connection persis-
tence is set to 50 seconds on each TCP service. If you are using Linux kernel 2.2 you need to specify
the NAT netmask to define the IPFW masquerade granularity (nat_mask keyword). The delay loop is
set to 30 seconds

* Sorry Server: If all real servers are removed from the VS’s server pools, we add the sorry_server
192.168.100.100 port 80 to serve clients requests.

* Real server 192.168.100.2 port 80 will be weighted to 2. Failure detection will be based on
HTTP_GET over 2 URLS. The service connection timeout will be set to 3 seconds. The real server

10.3. Keepalived configuration 33

mailto:admin@domain.com
mailto:0633225522@domain.com

Keepalived User Guide, Release 1.2.15

will be considered down after 3 retries. The daemon will wait for 2 seconds before retrying.

* Real server 192.168.100.3 port 80 will be weighted to 1. Failure detection will be based on
HTTP_GET over 1 URL. The service connection timeout will be set to 3 seconds. The real server
will be considered down after 3 retries. The daemon will wait for 2 seconds before retrying.

– SSL: VIP 192.168.200.15 port 443

* Load balancing: Using Round Robin scheduler with NAT forwarding. Connection persistence is set
to 360 seconds on each TCP service. The delay loop is set to 20 seconds

* Real server 192.168.100.2 port 443 will be weighted to 2. Failure detection will be based on
TCP_CHECK. The real server will be considered down after a 3 second connection timeout.

* Real server 192.168.100.3 port 443 will be weighted to 2. Failure detection will be based on
TCP_CHECK. The real server will be considered down after a 3 second connection timeout.

– SMTP: VIP 192.168.200.15 port 25

* Load balancing: Using Weighted Least Connection scheduling algorithm in a NAT topology with
connection persistence set to 50 seconds. The delay loop is set to 15 seconds

* Real server 192.168.100.4 port 25 will be weighted to 1. Failure detection will be based on
TCP_CHECK. The real server will be considered down after a 3 second connection timeout.

* Real server 192.168.100.5 port 25 will be weighted to 2. Failure detection will be based on
TCP_CHECK. The real server will be considered down after a 3 second connection timeout.

For SSL server health check, we can use SSL_GET checkers. The configuration block for a corresponding real server
will look like:

virtual_server 192.168.200.15 443 {
delay_loop 20
lb_algo rr
lb_kind NAT
persistence_timeout 360
protocol TCP
real_server 192.168.100.2 443 {

weight 1
SSL_GET
{

url {
path /testurl/test.jsp
digest ec90a42b99ea9a2f5ecbe213ac9eba03

}
url {

path /testurl2/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334c

}
connect_timeout 3
retry 3
delay_before_retry 2

}
}
real_server 192.168.100.3 443 {

weight 1
SSL_GET
{

url {
path /testurl/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334c

34 Chapter 10. Case Study: Healthcheck

Keepalived User Guide, Release 1.2.15

}
connect_timeout 3
retry 3
delay_before_retry 2

}
}

}

To generate a sum over an URL simply proceed as follows:

[root@lvs /root]# genhash -s 192.168.100.2 -p 80 -u /testurl/test.jsp
--------------------------[HTTP Header Buffer]--------------------------
0000 48 54 54 50 2f 31 2e 31 - 20 34 30 31 20 55 6e 61 HTTP/1.1 401 Una
0010 75 74 68 6f 72 69 7a 65 - 64 0d 0a 44 61 74 65 3a uthorized..Date:
0020 20 4d 6f 6e 2c 20 32 33 - 20 41 70 72 20 32 30 30 Mon, 23 Apr 200
0030 31 20 31 35 3a 34 31 3a - 35 34 20 47 4d 54 0d 0a 1 15:41:54 GMT..
0040 41 6c 6c 6f 77 3a 20 47 - 45 54 2c 20 48 45 41 44 Allow: GET, HEAD
0050 0d 0a 53 65 72 76 65 72 - 3a 20 4f 72 61 63 6c 65 ..Server: Oracle
0060 5f 57 65 62 5f 4c 69 73 - 74 65 6e 65 72 2f 34 2e _Web_Listener/4.
0070 30 2e 38 2e 31 2e 30 45 - 6e 74 65 72 70 72 69 73 0.8.1.0Enterpris
0080 65 45 64 69 74 69 6f 6e - 0d 0a 43 6f 6e 74 65 6e eEdition..Conten
0090 74 2d 54 79 70 65 3a 20 - 74 65 78 74 2f 68 74 6d t-Type: text/htm
00a0 6c 0d 0a 43 6f 6e 74 65 - 6e 74 2d 4c 65 6e 67 74 l..Content-Lengt
00b0 68 3a 20 31 36 34 0d 0a - 57 57 57 2d 41 75 74 68 h: 164..WWW-Auth
00c0 65 6e 74 69 63 61 74 65 - 3a 20 42 61 73 69 63 20 enticate: Basic
00d0 72 65 61 6c 6d 3d 22 41 - 43 43 45 53 20 20 20 20 realm="ACCES
00e0 22 0d 0a 43 61 63 68 65 - 2d 43 6f 6e 74 72 6f 6c "..Cache-Control
00f0 3a 20 70 75 62 6c 69 63 - 0d 0a 0d 0a : public....
------------------------------[HTML Buffer]-----------------------------
0000 3c 48 54 4d 4c 3e 3c 48 - 45 41 44 3e 3c 54 49 54 <HTML><HEAD><TIT
0010 4c 45 3e 55 6e 61 75 74 - 68 6f 72 69 7a 65 64 3c LE>Unauthorized<
0020 2f 54 49 54 4c 45 3e 3c - 2f 48 45 41 44 3e 0d 0a /TITLE></HEAD>..
0030 3c 42 4f 44 59 3e 54 68 - 69 73 20 64 6f 63 75 6d <BODY>This docum
0040 65 6e 74 20 69 73 20 70 - 72 6f 74 65 63 74 65 64 ent is protected
0050 2e 20 20 59 6f 75 20 6d - 75 73 74 20 73 65 6e 64 . You must send
0060 0d 0a 74 68 65 20 70 72 - 6f 70 65 72 20 61 75 74 ..the proper aut
0070 68 6f 72 69 7a 61 74 69 - 6f 6e 20 69 6e 66 6f 72 horization infor
0080 6d 61 74 69 6f 6e 20 74 - 6f 20 61 63 63 65 73 73 mation to access
0090 20 69 74 2e 3c 2f 42 4f - 44 59 3e 3c 2f 48 54 4d it.</BODY></HTM
00a0 4c 3e 0d 0a - L>..
-----------------------[HTML MD5 final resulting]-----------------------
MD5 Digest : ec90a42b99ea9a2f5ecbe213ac9eba03

The only thing to do is to copy the generated MD5 Digest value generated and paste it into your Keepalived configu-
ration file as a digest value keyword.

10.3. Keepalived configuration 35

Keepalived User Guide, Release 1.2.15

36 Chapter 10. Case Study: Healthcheck

CHAPTER 11

Case Study: Failover using VRRP

As an example we can introduce the following LVS topology:

11.1 Architecture Specification

To create a virtual LVS director using the VRRPv2 protocol, we define the following architecture:

• 2 LVS directors in active-active configuration.

• 4 VRRP Instances per LVS director: 2 VRRP Instance in the MASTER state and 2 in BACKUP state. We use a
symmetric state on each LVS directors.

• 2 VRRP Instances in the same state are to be synchronized to define a persistent virtual routing path.

• Strong authentication: IPSEC-AH is used to protect our VRRP advertisements from spoofed and reply attacks.

The VRRP Instances are compounded with the following IP addresses:

• VRRP Instance VI_1: owning VRRIP VIPs VIP1 & VIP2. This instance defaults to the MASTER state on LVS
director 1. It stays synchronized with VI_2.

• VRRP Instance VI_2: owning DIP1. This instance is by default in MASTER state on LVS director 1. It stays
synchronized with VI_1.

• VRRP Instance VI_3: owning VRRIP VIPs VIP3 & VIP4. This instance is in default MASTER state on LVS
director 2. It stays synchronized with VI_4.

• VRRP Instance VI_4: owning DIP2. This instance is in default MASTER state on LVS director 2. It stays
synchronized with VI_3.

11.2 Keepalived Configuration

The whole configuration is done in the /etc/keepalived/keepalived.conf file. In our case study this file on LVS director
1 looks like:

37

Keepalived User Guide, Release 1.2.15

vrrp_sync_group VG1 {
VI_1
VI_2

}
vrrp_sync_group VG2 {

VI_3
VI_4

}
vrrp_instance VI_1 {

state MASTER
interface eth0
virtual_router_id 51
priority 150
advert_int 1
authentication {

auth_type AH
auth_pass k@l!ve1

}
virtual_ipaddress {

192.168.200.10
192.168.200.11

}
}
vrrp_instance VI_2 {

state MASTER
interface eth1
virtual_router_id 52
priority 150
advert_int 1
authentication {

auth_type AH
auth_pass k@l!ve2

}
virtual_ipaddress {

192.168.100.10
}

}

vrrp_instance VI_3 {
state BACKUP
interface eth0
virtual_router_id 53
priority 100
advert_int 1
authentication {

auth_type AH
auth_pass k@l!ve3

}
virtual_ipaddress {

192.168.200.12
192.168.200.13

}
}
vrrp_instance VI_4 {

state BACKUP
interface eth1
virtual_router_id 54
priority 100

38 Chapter 11. Case Study: Failover using VRRP

Keepalived User Guide, Release 1.2.15

advert_int 1
authentication {

auth_type AH
auth_pass k@l!ve4

}
virtual_ipaddress {

192.168.100.11
}

}

Then we define the symmetric configuration file on LVS director 2. This means that VI_3 & VI_4 on LVS director
2 are in MASTER state with a higher priority 150 to start with a stable state. Symmetrically VI_1 & VI_2 on LVS
director 2 are in default BACKUP state with lower priority of 100. | This configuration file specifies 2 VRRP Instances
per physical NIC. When you run Keepalived on LVS director 1 without running it on LVS director 2, LVS director 1
will own all the VRRP VIP. So if you use the ip utility you may see something like: (On Debian the ip utility is part
of iproute):

[root@lvs1 tmp]# ip address list
1: lo: <LOOPBACK,UP> mtu 3924 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 brd 127.255.255.255 scope host lo

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100
link/ether 00:00:5e:00:01:10 brd ff:ff:ff:ff:ff:ff
inet 192.168.200.5/24 brd 192.168.200.255 scope global eth0
inet 192.168.200.10/32 scope global eth0
inet 192.168.200.11/32 scope global eth0
inet 192.168.200.12/32 scope global eth0
inet 192.168.200.13/32 scope global eth0

3: eth1: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100
link/ether 00:00:5e:00:01:32 brd ff:ff:ff:ff:ff:ff
inet 192.168.100.5/24 brd 192.168.201.255 scope global eth1
inet 192.168.100.10/32 scope global eth1
inet 192.168.100.11/32 scope global eth1

Then simply start Keepalived on the LVS director 2 and you will see:

[root@lvs1 tmp]# ip address list
1: lo: <LOOPBACK,UP> mtu 3924 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 brd 127.255.255.255 scope host lo

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100
link/ether 00:00:5e:00:01:10 brd ff:ff:ff:ff:ff:ff
inet 192.168.200.5/24 brd 192.168.200.255 scope global eth0
inet 192.168.200.10/32 scope global eth0
inet 192.168.200.11/32 scope global eth0

3: eth1: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100
link/ether 00:00:5e:00:01:32 brd ff:ff:ff:ff:ff:ff
inet 192.168.100.5/24 brd 192.168.201.255 scope global eth1
inet 192.168.100.10/32 scope global eth1

Symmetrically on LVS director 2 you will see:

[root@lvs2 tmp]# ip address list
1: lo: <LOOPBACK,UP> mtu 3924 qdisc noqueue

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 brd 127.255.255.255 scope host lo

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

11.2. Keepalived Configuration 39

Keepalived User Guide, Release 1.2.15

link/ether 00:00:5e:00:01:10 brd ff:ff:ff:ff:ff:ff
inet 192.168.200.5/24 brd 192.168.200.255 scope global eth0
inet 192.168.200.12/32 scope global eth0
inet 192.168.200.13/32 scope global eth0

3: eth1: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100
link/ether 00:00:5e:00:01:32 brd ff:ff:ff:ff:ff:ff
inet 192.168.100.5/24 brd 192.168.201.255 scope global eth1
inet 192.168.100.11/32 scope global eth1

The VRRP VIPs are:

• VIP1 = 192.168.200.10

• VIP2 = 192.168.200.11

• VIP3 = 192.168.200.12

• VIP4 = 192.168.200.13

• DIP1 = 192.168.100.10

• DIP2 = 192.168.100.11

The use of VRRP keyword “sync_instance” imply that we have defined a pair of MASTER VRRP Instance per
LVS directors ó (VI_1,VI_2) & (VI_3,VI_4). This means that if eth0 on LVS director 1 fails then VI_1 enters the
MASTER state on LVS director 2 so the MASTER Instance distribution on both directors will be: (VI_2) on director
1 & (VI_1,VI_3,VI_4) on director 2. We use “sync_instance” so VI_2 is forced to BACKUP the state on LVS director
1. The final VRRP MASTER instance distribution will be: (none) on LVS director 1 & (VI_1,VI_2,VI_3,VI_4) on
LVS director 2. If eth0 on LVS director 1 became available the distribution will transition back to the initial state.

For more details on this state transition please refer to the “Linux Virtual Server High Availability using VRRPv2”
paper (available at http://www.linux-vs.org/~acassen/), which explains the implementation of this functionality.

Using this configuration both LVS directors are active at a time, thus sharing LVS directors for a global director. That
way we introduce a virtual LVS director.

Note: This VRRP configuration sample is an illustration for a high availability router (not LVS specific). It can be
used for many more common/simple needs.

40 Chapter 11. Case Study: Failover using VRRP

http://www.linux-vs.org/~acassen/

CHAPTER 12

Case Study: Mixing Healthcheck & Failover

For this example, we use the same topology used in the Failover part. The idea here is to use VRRP VIPs as LVS
VIPs. That way we will introduce a High Available LVS director performing LVS real server pool monitoring.

12.1 Keepalived Configuration

The whole configuration is done in the /etc/keepalived/keepalived.conf file. In our case study this file on LVS director
1 looks like:

Configuration File for keepalived
global_defs {

notification_email {
admin@domain.com
0633225522@domain.com

}
notification_email_from keepalived@domain.com
smtp_server 192.168.200.20
smtp_connect_timeout 30
lvs_id LVS_MAIN

}
VRRP Instances definitions
vrrp_sync_group VG1 {

group {
VI_1
VI_2

}
}
vrrp_sync_group VG2 {

group {
VI_3
VI_4

}
}
vrrp_instance VI_1 {

41

Keepalived User Guide, Release 1.2.15

state MASTER
interface eth0
virtual_router_id 51
priority 150
advert_int 1
authentication {

auth_type PASS
auth_pass k@l!ve1

}
virtual_ipaddress {

192.168.200.10
192.168.200.11

}
}
vrrp_instance VI_2 {

state MASTER
interface eth1
virtual_router_id 52
priority 150
advert_int 1
authentication {

auth_type PASS
auth_pass k@l!ve2

}
virtual_ipaddress {

192.168.100.10
}

}
vrrp_instance VI_3 {

state BACKUP
interface eth0
virtual_router_id 53
priority 100
advert_int 1
authentication {

auth_type PASS
auth_pass k@l!ve3

}
virtual_ipaddress {

192.168.200.12
192.168.200.13

}
}
vrrp_instance VI_4 {

state BACKUP
interface eth1
virtual_router_id 54
priority 100
advert_int 1
authentication {

auth_type PASS
auth_pass k@l!ve4

}
virtual_ipaddress {

192.168.100.11
}

}
Virtual Servers definitions

42 Chapter 12. Case Study: Mixing Healthcheck & Failover

Keepalived User Guide, Release 1.2.15

virtual_server 192.168.200.10 80 {
delay_loop 30
lb_algo wrr
lb_kind NAT
persistence_timeout 50
protocol TCP
sorry_server 192.168.100.100 80
real_server 192.168.100.2 80 {

weight 2
HTTP_GET {

url {
path /testurl/test.jsp
digest ec90a42b99ea9a2f5ecbe213ac9eba03

}
url {

path /testurl2/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334c

}
connect_timeout 3
retry 3
delay_before_retry 2

}
}
real_server 192.168.100.3 80 {

weight 1
HTTP_GET {

url {
path /testurl/test.jsp
digest 640205b7b0fc66c1ea91c463fac6334c

}
connect_timeout 3
retry 3
delay_before_retry 2

}
}

}
virtual_server 192.168.200.12 443 {

delay_loop 20
lb_algo rr
lb_kind NAT
persistence_timeout 360
protocol TCP
real_server 192.168.100.2 443 {

weight 1
TCP_CHECK {

connect_timeout 3
}

}
real_server 192.168.100.3 443 {

weight 1
TCP_CHECK {

connect_timeout 3
}

}
}

We define the symmetric VRRP configuration file on LVS director 2. That way both directors are active at a time,
director 1 handling HTTP stream and director 2 SSL stream.

12.1. Keepalived Configuration 43

Keepalived User Guide, Release 1.2.15

44 Chapter 12. Case Study: Mixing Healthcheck & Failover

CHAPTER 13

Terminology

Todo

put image here

LVS stands for “Linux Virtual Server“. LVS is a patched Linux kernel that adds a load balancing facility. For more
information on LVS, please refer to the project homepage: http://www.linux-vs.org. LVS acts as a network bridge
(using NAT) to load balance TCP/UDP stream. The LVS router components are:

• WAN Interface: Ethernet Network Interface Controller that will be accessed by all the clients.

• LAN Interface: Ethernet Network Interface Controller to manage all the load balanced servers.

• Linux kernel: The kernel is patched with the latest LVS and is used as a router OS.

In this document, we will use the following keywords:

13.1 LVS Component

VIP The Virtual IP is the IP address that will be accessed by all the clients. The clients only access this IP address.

Real server A real server hosts the application accessed by client requests. WEB SERVER 1 & WEB SERVER 2 in
our synopsis.

Server pool A farm of real servers.

Virtual server The access point to a Server pool.

Virtual Service A TCP/UDP service associated with the VIP.

13.2 VRRP Component

VRRP The protocol implemented for the directors’ failover/virtualization.

45

http://www.linux-vs.org

Keepalived User Guide, Release 1.2.15

IP Address owner The VRRP Instance that has the IP address(es) as real interface address(es). This is the VRRP
Instance that, when up, will respond to packets addressed to one of these IP address(es) for ICMP, TCP connec-
tions, ...

MASTER state VRRP Instance state when it is assuming the responsibility of forwarding packets sent to the IP
address(es) associated with the VRRP Instance. This state is illustrated on “Case study: Failover” by a red line.

BACKUP state VRRP Instance state when it is capable of forwarding packets in the event that the current VRRP
Instance MASTER fails.

Real Load Balancer An LVS director running one or many VRRP Instances.

Virtual Load balancer A set of Real Load balancers.

Synchronized Instance VRRP Instance with which we want to be synchronized. This provides VRRP Instance
monitoring.

Advertisement The name of a simple VRRPv2 packet sent to a set of VRRP Instances while in the MASTER state.

Todo

Define RIP, DIP, Director, IPVS

46 Chapter 13. Terminology

CHAPTER 14

License

Copyright (c) 2001-2015 Alexandre Cassen.

This document is released under the terms of the GNU General Public Licence. You can redistribute it and/or modify
it under the terms of the GNU General Public Licence as published by the Free Software Foundation; either version 2
of the Licence, or (at your option) any later version.

47

Keepalived User Guide, Release 1.2.15

48 Chapter 14. License

CHAPTER 15

About These Documents

These documents are generated from reStructuredText sources by Sphinx, a document processor specifically written
for the Python documentation.

15.1 Building The Documentation

To build the keepalived documentation, you will need to have a recent version of Sphinx installed on your system.
Alternatively, you could use a python virtualenv.

From the root of the repository clone, run the following command to build the documentation in HTML format:

cd keepalived-docs
make html

For PDF, you will also need docutils and various texlive-* packages for converting reStructuredText to LaTex
and finally to PDF:

pip install docutils
cd keepalived-docs
make latexpdf

Alternatively, you can use the sphinx-build command that comes with the Sphinx package:

cd keepalived-docs
sphinx-build -b html . build/html

Todo

make latexpdf needs pdflatex provided by texlive-latex on RHEL6 and texlive-latex-bin-bin on Fedora21

Todo

49

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/

Keepalived User Guide, Release 1.2.15

make linkcheck to check for broken links

50 Chapter 15. About These Documents

CHAPTER 16

TODO List

Todo

make latexpdf needs pdflatex provided by texlive-latex on RHEL6 and texlive-latex-bin-bin on Fedora21

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/keepalived/checkouts/stable/doc/source/about.rst,
line 38.)

Todo

make linkcheck to check for broken links

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/keepalived/checkouts/stable/doc/source/about.rst,
line 42.)

Todo

Mention Netfilter Connection Tracking

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/keepalived/checkouts/stable/doc/source/protocol_support.rst,
line 31.)

Todo

Mention ipip kernel module

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/keepalived/checkouts/stable/doc/source/protocol_support.rst,
line 34.)

Todo

51

Keepalived User Guide, Release 1.2.15

do conformance

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/keepalived/checkouts/stable/doc/source/snmp_support.rst,
line 127.)

Todo

put image here

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/keepalived/checkouts/stable/doc/source/terminology.rst,
line 5.)

Todo

Define RIP, DIP, Director, IPVS

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/keepalived/checkouts/stable/doc/source/terminology.rst,
line 74.)

52 Chapter 16. TODO List

Index

Symbols
–hash <alg>, -H, 20
–help, -h, 20
–port <port>, -p, 20
–release, -r, 20
–server <host>, -s, 20
–url <url>, -u, 20
–use-ssl, -S, 20
–use-virtualhost <host>, -V, 20
–verbose, -v, 20
-C, –check, 19
-D, –log-detail, 19
-I, –dont-release-ipvs, 19
-P, –vrrp, 19
-R, –dont-respawn, 19
-S, –log-facility=[0-7], 19
-V, –dont-release-vrrp, 19
-c, –checkers_pid=FILE, 20
-d, –dump-conf, 19
-f, –use-file=FILE, 19
-h, –help, 20
-l, –log-console, 19
-n, –dont-fork, 19
-p, –pid=FILE, 19
-r, –vrrp_pid=FILE, 20
-v, –version, 20
-x, –snmp, 20

A
Advertisement, 46

B
BACKUP state, 46

H
HTTP_GET, 6

I
IP Address owner, 46

M
MASTER state, 46
MISC_CHECK, 7

R
Real Load Balancer, 46
Real server, 45

S
Server pool, 45
SSL_GET, 6
Synchronized Instance, 46

T
TCP_CHECK, 6

V
VIP, 45
Virtual Load balancer, 46
Virtual server, 45
Virtual Service, 45
VRRP, 45

53

	Introduction
	Software Design
	Load Balancing Techniques
	Installing Keepalived
	Keepalived configuration synopsis
	Keepalived programs synopsis
	IPVS Scheduling Algorithms
	IPVS Protocol Support
	Configuring SNMP Support
	Case Study: Healthcheck
	Case Study: Failover using VRRP
	Case Study: Mixing Healthcheck & Failover
	Terminology
	License
	About These Documents
	TODO List

