
KATCP Documentation
Release 0.0+unknown.201908260720

Simon Cross

Aug 26, 2019

Contents

1 Contents 3
1.1 Release Notes . 3
1.2 Core API . 8
1.3 Kattypes . 86
1.4 Low level client API (client) . 99
1.5 Concrete Intermediate-level KATCP Client API (inspecting_client) 113
1.6 Abstract High-level KATCP Client API (resource) . 119
1.7 Concrete High-level KATCP Client API (resource_client) . 130
1.8 Sampling . 144
1.9 KATCP Server API (server) . 152
1.10 Tutorial . 177
1.11 How to Contribute . 186

2 Indices and tables 189

Python Module Index 191

Index 193

i

ii

KATCP Documentation, Release 0.0+unknown.201908260720

KATCP is a simple ASCII communication protocol layered on top of TCP/IP.

It is developed as a part of the Karoo Array Telescope (KAT) project and used at KAT for the monitoring and control
of hardware devices.

The protocol specification NRF-KAT7-6.0-IFCE-002-Rev5.pdf is maintained as an internal memo. The latest
version is Rev5.

Contents 1

http://ska.ac.za/

KATCP Documentation, Release 0.0+unknown.201908260720

2 Contents

CHAPTER 1

Contents

1.1 Release Notes

1.1.1 0.6.4

• Fix some client memory leaks, and add until_stopped methods.

• Increase server MAX_QUEUE_SIZE to handle more clients.

• Use correct ioloop for client AsyncEvent objects.

See also CHANGELOG for more details on changes.

Important API changes

Stopping KATCP clients

When stopping KATCP client classes that use a managed ioloop (i.e., create their own in a new thread), the traditional
semantics are to call stop() followed by join() from another thread. This is unchanged. In the case of an
unmanaged ioloop (i.e., an existing ioloop instance is provided to the client), we typically stop from the same thread,
and calling join() does nothing. For the case of unmanaged ioloops, a new method, until_stopped(), has
been added. It returns a future that resolves when the client has stopped. The caller can yield on this future to be
sure that the client has completed all its coroutines. Using this new method is not required. If the ioloop will keep
running, the stopped client’s coroutines will eventually exit. However, it is useful in some cases, e.g., to verify correct
clean up in unit tests.

The new method is available on katcp.DeviceClient and derived classes, on katcp.
inspecting_client.InspectingClientAsync, and on the high-level clients katcp.
KATCPClientResource and katcp.KATCPClientResourceContainer.

An additional change is that the inspecting client now sends a state update (indicating that it is disconnected and not
synced) when stopping. This means high-level clients that were waiting on until_not_synced when the client
was stopped will now be notified. Previously, this was not the case.

3

KATCP Documentation, Release 0.0+unknown.201908260720

1.1.2 0.6.3

• Put docs on readthedocs.

• Better error handling for messages with non-ASCII characters (invalid).

• Increase container sync time to better support large containers.

• Limit tornado version to <5.

• Allow sampling strategy to be removed from cache.

• Improve error messages for DeviceMetaClass assertions.

• Increase server’s message queue length handle more simultaneous client connections.

• Improve Jenkins pipeline configuration.

• Add information on how to contribute to the project.

See also CHANGELOG for more details on changes.

1.1.3 0.6.2

• Various bug fixes

• Docstring and code style improvements

• Bumped the tornado dependency to at least 4.3

• Added the ability to let ClientGroup wait for a quorum of clients

• Added default request-timeout-hint implementation to server.py

• Moved IOLoopThreadWrapper to ioloop_manager.py, a more sensible location

• Added a random-exponential retry backoff process

See also CHANGELOG for more details on changes.

1.1.4 0.6.1

• Various bug fixes

• Improvements to testing utilities

• Improvements to various docstrings

• Use katversion to determine version string on install

• Better dependency management using setup.py with setuptools

• Fixed a memory leak when using KATCPResourceContainer

See also CHANGELOG for more details on changes.

1.1.5 0.6.0

• Major change: Use the tornado event loop and async socket routines.

See also CHANGELOG for more details on changes.

4 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Important API changes

Tornado based event loop(s)

While the networking stack and event loops have been re-implemented using Tornado, this change should be largely
invisible to existing users of the library. All client and server classes now expose an ioloop attribute that is the
tornado.ioloop.IOLoop instance being used. Unless new server or client classes are used or default settings
are changed, the thread-safety and concurrency semantics of 0.5.x versions should be retained. User code that made
use of non-public interfaces may run into trouble.

High level auto-inspecting KATCP client APIs added

The high level client API inspects a KATCP device server and present requests as method calls and sensors as objects.
See Using the high-level client API.

Sensor observer API

The katcp.Sensor sensor observer API has been changed to pass the sensor reading in the observer.update()
callback, preventing potential lost updates due to race conditions. This is a backwards incompatible change. Whereas
before observers were called as observer.update(sensor), they are now called as observer.update(sensor, reading),
where reading is an instance of katcp.core.Reading.

Sample Strategy callback API

Sensor strategies now call back with the sensor object and raw Python datatype values rather than the sensor name and
KATCP formatted values. The sensor classes have also grown a katcp.Sensor.format_reading() method
that can be used to do KATCP-version specific formatting of the sensor reading.

1.1.6 0.5.5

• Various cleanups (logging, docstrings, base request set, minor refactoring)

• Improvements to testing utilities

• Convenience utility functions in katcp.version, katcp.client, katcp.testutils.

1.1.7 0.5.4

• Change event-rate strategy to always send an update if the sensor has changed and shortest-period has passed.

• Add differential-rate strategy.

1.1.8 0.5.3

Add convert_seconds() method to katcp client classes that converts seconds into the device timestamp format.

1.1.9 0.5.2

Fix memory leak in sample reactor, other minor fixes.

1.1. Release Notes 5

KATCP Documentation, Release 0.0+unknown.201908260720

1.1.10 0.5.1

Minor bugfixes and stability improvements

1.1.11 0.5.0

First stable release supporting (a subset of) KATCP v5. No updates apart from documentation since 0.5.0a0; please
refer to the 0.5.0a release notes below.

1.1.12 0.5.0a0

First alpha release supporting (a subset of) KATCP v5. The KATCP v5 spec brings a number of backward incompatible
changes, and hence requires care. This library implements support for both KATCP v5 and for the older dialect. Some
API changes have also been made, mainly in aid of fool-proof support of the Message ID feature of KATCP v5. The
changes do, however, also eliminate a category of potential bugs for older versions of the spec.

Important API changes

CallbackClient.request()

Renamed request() to callback_request() to be more consistent with superclass API.

Sending replies and informs in server request handlers

The function signature used for request handler methods in previous versions of this library were re-
quest_requestname(self, sock, msg), where sock is a raw python socket object and msg is a katcp Message object.
The sock object was never used directly by the request handler, but was passed to methods on the server to send inform
or reply messages.

Before:

class MyServer(DeviceServer):
def request_echo(self, sock, msg):

self.inform(sock, Message.inform('echo', len(msg.arguments)))
return Message.reply('echo', 'ok', *msg.arguments)

The old method requires the name of the request to be repeated several times, inviting error and cluttering code.
The user is also required to instantiate katcp Message object each time a reply is made. The new method passes a
request-bound connection object that knows to what request it is replying, and that automatically constructs Message
objects.

Now:

class MyServer(DeviceServer):
def request_echo(self, req, msg):

req.inform(len(msg.arguments)))
return req.make_reply('ok', *msg.arguments)

A req.reply() method with the same signature as req.make_reply() is also available for asyncronous reply
handlers, and req.reply_with_message() which takes a Message instance rather than message arguments.
These methods replace the use of DeviceServer.reply().

6 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

The request object also contains the katcp request Message object (req.msg), and the equivalent of a socket object
(req.client_connection). See the next section for a description of client_connection.

Using the server methods with a req object in place of sock will still work as before, but will log deprecation warnings.

Connection abstraction

Previously, the server classes internally used each connection’s low-level sock object as an identifier for the
connection. In the interest of abstracting out the transport backend, the sock object has been replaced by a
ClientConnectionTCP object. This object is passed to all server handler functions (apart from request han-
dlers) instead of the sock object. The connection object be used in the same places where sock was previously used. It
also defines inform(), reply_inform() and reply() methods for sending Message objects to a client.

Backwards incompatible KATCP V5 changes

Timestamps

Excerpted from NRF-KAT7-6.0-IFCE-002-Rev5.pdf:

All core messages involving time (i.e. timestamp or period specifications) have changed from using mil-
liseconds to seconds. This provides consistency with SI units. Note also that from version five timestamps
should always be specified in UTC time.

Message Identifiers (mid)

Excerpted from NRF-KAT7-6.0-IFCE-002-Rev5.pdf:

Message identifiers were introduced in version 5 of the protocol to allow replies to be uniquely associated
with a particular request. If a client sends a request with a message identifier the server must include the
same identifier in the reply. Message identifiers are limited to integers in the range 1 to 231 1 inclusive.
It is the client’s job to construct suitable identifiers – a server should not assume that these are unique.
Clients that need to determine whether a server supports message identifiers should examine the #version-
connect message returned by the server when the client connects (see Section 4). If no #version-connect
message is received the client may assume message identifiers are not supported.

also:

If the request contained a message id each inform that forms part of the response should be marked with
the original message id.

Support for message IDs is optional. A properly implemented server should never use mids in replies unless the
client request has an mid. Similarly, a client should be able to detect whether a server supports MIDs by checking
the #version-connect informs sent by the server, or by doing a !version-list request. Furthermore, a KATCP v5 server
should never send #build-state or #version informs.

Server KATCP Version Auto-detection

The DeviceClient client uses the presence of #build-state or #version informs as a heuristic to detect pre-v5
servers, and the presence of #version-connect informs to detect v5+ servers. If mixed messages are received the client
gives up auto-detection and disconnects. In this case preset_protocol_flags() can be used to configure the
client before calling start().

1.1. Release Notes 7

KATCP Documentation, Release 0.0+unknown.201908260720

Level of KATCP support in this release

This release implements the majority of the KATCP v5 spec; excluded parts are:

• Support for optional warning/error range meta-information on sensors.

• Differential-rate sensor strategy.

1.2 Core API

1.2.1 Client

Two different clients are provided: the BlockingClient for synchronous communication with a server and the
CallbackClient for asynchronous communication. Both clients raise KatcpClientError when exceptions
occur.

The DeviceClient base class is provided as a foundation for those wishing to implement their own clients.

BlockingClient

class katcp.BlockingClient(host, port, tb_limit=20, timeout=5.0, logger=<logging.Logger ob-
ject>, auto_reconnect=True)

Methods

BlockingClient.
blocking_request(msg[, . . .])

Send a request messsage and wait for its reply.

BlockingClient.
callback_request(msg[, . . .])

Send a request messsage.

BlockingClient.
convert_seconds(time_seconds)

Convert a time in seconds to the device timestamp
units.

BlockingClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

BlockingClient.
enable_thread_safety()

Enable thread-safety features.

BlockingClient.future_request(msg[,
. . .])

Send a request messsage, with future replies.

BlockingClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

BlockingClient.handle_message(msg) Handle a message from the server.
BlockingClient.handle_reply(msg) Handle a reply message related to the current re-

quest.
BlockingClient.handle_request(msg) Dispatch a request message to the appropriate

method.
BlockingClient.
inform_build_state(msg)

Handle katcp v4 and below build-state inform.

BlockingClient.inform_version(msg) Handle katcp v4 and below version inform.
BlockingClient.
inform_version_connect(msg)

Process a #version-connect message.

BlockingClient.is_connected() Check if the socket is currently connected.
Continued on next page

8 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 1 – continued from previous page
BlockingClient.join([timeout]) Rejoin the client thread.
BlockingClient.
notify_connected(connected)

Event handler that is called whenever the connection
status changes.

BlockingClient.
preset_protocol_flags(. . .)

Preset server protocol flags.

BlockingClient.request(msg[, use_mid]) Send a request message, with automatic message ID
assignment.

BlockingClient.running() Whether the client is running.
BlockingClient.send_message(msg) Send any kind of message.
BlockingClient.send_request(msg) Send a request messsage.
BlockingClient.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
BlockingClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
BlockingClient.start([timeout]) Start the client in a new thread.
BlockingClient.stop(*args, **kwargs) Stop a running client.
BlockingClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
BlockingClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
BlockingClient.
unhandled_request(msg)

Fallback method for requests without a registered
handler.

BlockingClient.
until_connected(**kwargs)

Return future that resolves when the client is con-
nected.

BlockingClient.
until_protocol(**kwargs)

Return future that resolves after receipt of katcp pro-
tocol info.

BlockingClient.
until_running([timeout])

Return future that resolves when the client is run-
ning.

BlockingClient.
until_stopped([timeout])

Return future that resolves when the client has
stopped.

BlockingClient.
wait_connected([timeout])

Wait until the client is connected.

BlockingClient.
wait_disconnected([timeout])

Wait until the client is disconnected.

BlockingClient.
wait_protocol([timeout])

Wait until katcp protocol information has been re-
ceived from server.

BlockingClient.wait_running([timeout]) Wait until the client is running.

bind_address
(host, port) where the client is connecting

blocking_request(msg, timeout=None, use_mid=None)
Send a request messsage and wait for its reply.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

1.2. Core API 9

KATCP Documentation, Release 0.0+unknown.201908260720

Returns reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

callback_request(msg, reply_cb=None, inform_cb=None, user_data=None, timeout=None,
use_mid=None)

Send a request messsage.

Parameters msg : Message object

The request message to send.

reply_cb : function

The reply callback with signature reply_cb(msg) or reply_cb(msg, *user_data)

inform_cb : function

The inform callback with signature inform_cb(msg) or inform_cb(msg, *user_data)

user_data : tuple

Optional user data to send to the reply and inform callbacks.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

convert_seconds(time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect()
Force client connection to close, reconnect if auto-connect set.

enable_thread_safety()
Enable thread-safety features.

Must be called before start().

future_request(msg, timeout=None, use_mid=None)
Send a request messsage, with future replies.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

10 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Returns A tornado.concurrent.Future that resolves with: :

reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

handle_inform(msg)
Handle inform messages related to any current requests.

Inform messages not related to the current request go up to the base class method.

Parameters msg : Message object

The inform message to dispatch.

handle_message(msg)
Handle a message from the server.

Parameters msg : Message object

The Message to dispatch to the handler methods.

handle_reply(msg)
Handle a reply message related to the current request.

Reply messages not related to the current request go up to the base class method.

Parameters msg : Message object

The reply message to dispatch.

handle_request(msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object

The request message to dispatch.

inform_build_state(msg)
Handle katcp v4 and below build-state inform.

inform_version(msg)
Handle katcp v4 and below version inform.

inform_version_connect(msg)
Process a #version-connect message.

is_connected()
Check if the socket is currently connected.

Returns connected : bool

Whether the client is connected.

join(timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds

Seconds to wait for thread to finish.

1.2. Core API 11

KATCP Documentation, Release 0.0+unknown.201908260720

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

notify_connected(connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

Parameters connected : bool

Whether the client has just connected (True) or just disconnected (False).

preset_protocol_flags(protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.

Parameters protocol_flags : katcp.core.ProtocolFlags instance

request(msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message

use_mid : bool or None, default=None

Returns mid : string or None

The message id, or None if no msg id is used

If use_mid is None and the server supports msg ids, or if use_mid is :

True a message ID will automatically be assigned msg.mid is None. :

if msg.mid has a value, and the server supports msg ids, that value :

will be used. If the server does not support msg ids, KatcpVersionError :

will be raised. :

running()
Whether the client is running.

Returns running : bool

Whether the client is running.

send_message(msg)
Send any kind of message.

Parameters msg : Message object

The message to send.

send_request(msg)
Send a request messsage.

Parameters msg : Message object

The request Message to send.

12 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_ioloop(ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start(timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop(*args, **kwargs)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds

Seconds to wait for both client thread to have started, and for stopping.

unhandled_inform(msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object

The inform message that wasn’t processed by any handlers.

unhandled_reply(msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object

The reply message that wasn’t processed by any handlers.

unhandled_request(msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object

The request message that wasn’t processed by any handlers.

until_connected(**kwargs)
Return future that resolves when the client is connected.

1.2. Core API 13

KATCP Documentation, Release 0.0+unknown.201908260720

until_protocol(**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

until_running(timeout=None)
Return future that resolves when the client is running.

Notes

Must be called from the same ioloop as the client.

until_stopped(timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected(timeout=None)
Wait until the client is connected.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected(timeout=None)
Wait until the client is disconnected.

Parameters timeout : float in seconds

Seconds to wait for the client to disconnect.

Returns disconnected : bool

Whether the client is disconnected.

14 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol(timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns received : bool

Whether protocol information was received

If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running(timeout=None)
Wait until the client is running.

Parameters timeout : float in seconds

Seconds to wait for the client to start running.

Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

CallbackClient

class katcp.CallbackClient(host, port, tb_limit=20, timeout=5.0, logger=<logging.Logger ob-
ject>, auto_reconnect=True)

Methods

CallbackClient.
blocking_request(msg[, . . .])

Send a request messsage and wait for its reply.

CallbackClient.
callback_request(msg[, . . .])

Send a request messsage.

CallbackClient.
convert_seconds(time_seconds)

Convert a time in seconds to the device timestamp
units.

CallbackClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

CallbackClient.
enable_thread_safety()

Enable thread-safety features.

Continued on next page

1.2. Core API 15

KATCP Documentation, Release 0.0+unknown.201908260720

Table 2 – continued from previous page
CallbackClient.future_request(msg[,
. . .])

Send a request messsage, with future replies.

CallbackClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

CallbackClient.handle_message(msg) Handle a message from the server.
CallbackClient.handle_reply(msg) Handle a reply message related to the current re-

quest.
CallbackClient.handle_request(msg) Dispatch a request message to the appropriate

method.
CallbackClient.
inform_build_state(msg)

Handle katcp v4 and below build-state inform.

CallbackClient.inform_version(msg) Handle katcp v4 and below version inform.
CallbackClient.
inform_version_connect(msg)

Process a #version-connect message.

CallbackClient.is_connected() Check if the socket is currently connected.
CallbackClient.join([timeout]) Rejoin the client thread.
CallbackClient.
notify_connected(connected)

Event handler that is called whenever the connection
status changes.

CallbackClient.
preset_protocol_flags(. . .)

Preset server protocol flags.

CallbackClient.request(msg[, use_mid]) Send a request message, with automatic message ID
assignment.

CallbackClient.running() Whether the client is running.
CallbackClient.send_message(msg) Send any kind of message.
CallbackClient.send_request(msg) Send a request messsage.
CallbackClient.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
CallbackClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
CallbackClient.start([timeout]) Start the client in a new thread.
CallbackClient.stop(*args, **kwargs) Stop a running client.
CallbackClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
CallbackClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
CallbackClient.
unhandled_request(msg)

Fallback method for requests without a registered
handler.

CallbackClient.
until_connected(**kwargs)

Return future that resolves when the client is con-
nected.

CallbackClient.
until_protocol(**kwargs)

Return future that resolves after receipt of katcp pro-
tocol info.

CallbackClient.
until_running([timeout])

Return future that resolves when the client is run-
ning.

CallbackClient.
until_stopped([timeout])

Return future that resolves when the client has
stopped.

CallbackClient.
wait_connected([timeout])

Wait until the client is connected.

CallbackClient.
wait_disconnected([timeout])

Wait until the client is disconnected.

CallbackClient.
wait_protocol([timeout])

Wait until katcp protocol information has been re-
ceived from server.

CallbackClient.wait_running([timeout]) Wait until the client is running.

16 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

bind_address
(host, port) where the client is connecting

blocking_request(msg, timeout=None, use_mid=None)
Send a request messsage and wait for its reply.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

callback_request(msg, reply_cb=None, inform_cb=None, user_data=None, timeout=None,
use_mid=None)

Send a request messsage.

Parameters msg : Message object

The request message to send.

reply_cb : function

The reply callback with signature reply_cb(msg) or reply_cb(msg, *user_data)

inform_cb : function

The inform callback with signature inform_cb(msg) or inform_cb(msg, *user_data)

user_data : tuple

Optional user data to send to the reply and inform callbacks.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

convert_seconds(time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect()
Force client connection to close, reconnect if auto-connect set.

1.2. Core API 17

KATCP Documentation, Release 0.0+unknown.201908260720

enable_thread_safety()
Enable thread-safety features.

Must be called before start().

future_request(msg, timeout=None, use_mid=None)
Send a request messsage, with future replies.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns A tornado.concurrent.Future that resolves with: :

reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

handle_inform(msg)
Handle inform messages related to any current requests.

Inform messages not related to the current request go up to the base class method.

Parameters msg : Message object

The inform message to dispatch.

handle_message(msg)
Handle a message from the server.

Parameters msg : Message object

The Message to dispatch to the handler methods.

handle_reply(msg)
Handle a reply message related to the current request.

Reply messages not related to the current request go up to the base class method.

Parameters msg : Message object

The reply message to dispatch.

handle_request(msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object

The request message to dispatch.

inform_build_state(msg)
Handle katcp v4 and below build-state inform.

inform_version(msg)
Handle katcp v4 and below version inform.

18 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

inform_version_connect(msg)
Process a #version-connect message.

is_connected()
Check if the socket is currently connected.

Returns connected : bool

Whether the client is connected.

join(timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds

Seconds to wait for thread to finish.

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

notify_connected(connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

Parameters connected : bool

Whether the client has just connected (True) or just disconnected (False).

preset_protocol_flags(protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.

Parameters protocol_flags : katcp.core.ProtocolFlags instance

request(msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message

use_mid : bool or None, default=None

Returns mid : string or None

The message id, or None if no msg id is used

If use_mid is None and the server supports msg ids, or if use_mid is :

True a message ID will automatically be assigned msg.mid is None. :

if msg.mid has a value, and the server supports msg ids, that value :

will be used. If the server does not support msg ids, KatcpVersionError :

will be raised. :

running()
Whether the client is running.

1.2. Core API 19

KATCP Documentation, Release 0.0+unknown.201908260720

Returns running : bool

Whether the client is running.

send_message(msg)
Send any kind of message.

Parameters msg : Message object

The message to send.

send_request(msg)
Send a request messsage.

Parameters msg : Message object

The request Message to send.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_ioloop(ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start(timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop(*args, **kwargs)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds

Seconds to wait for both client thread to have started, and for stopping.

unhandled_inform(msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object

The inform message that wasn’t processed by any handlers.

unhandled_reply(msg)
Fallback method for reply messages without a registered handler.

20 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Parameters msg : Message object

The reply message that wasn’t processed by any handlers.

unhandled_request(msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object

The request message that wasn’t processed by any handlers.

until_connected(**kwargs)
Return future that resolves when the client is connected.

until_protocol(**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

until_running(timeout=None)
Return future that resolves when the client is running.

Notes

Must be called from the same ioloop as the client.

until_stopped(timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected(timeout=None)
Wait until the client is connected.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected(timeout=None)
Wait until the client is disconnected.

1.2. Core API 21

KATCP Documentation, Release 0.0+unknown.201908260720

Parameters timeout : float in seconds

Seconds to wait for the client to disconnect.

Returns disconnected : bool

Whether the client is disconnected.

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol(timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns received : bool

Whether protocol information was received

If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running(timeout=None)
Wait until the client is running.

Parameters timeout : float in seconds

Seconds to wait for the client to start running.

Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

AsyncClient

class katcp.AsyncClient(host, port, tb_limit=20, timeout=5.0, logger=<logging.Logger object>,
auto_reconnect=True)

Implement async and callback-based requests on top of DeviceClient.

This client will use message IDs if the server supports them.

Parameters host : string

Host to connect to.

port : int

Port to connect to.

22 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

tb_limit : int, optional

Maximum number of stack frames to send in error traceback.

logger : object, optional

Python Logger object to log to. Default is a logger named ‘katcp’.

auto_reconnect : bool, optional

Whether to automatically reconnect if the connection dies.

timeout : float in seconds, optional

Default number of seconds to wait before a callback callback_request times out. Can
be overridden in individual calls to callback_request.

Examples

>>> def reply_cb(msg):
... print "Reply:", msg
...
>>> def inform_cb(msg):
... print "Inform:", msg
...
>>> c = AsyncClient('localhost', 10000)
>>> c.start()
>>> c.ioloop.add_callback(
... c.callback_request,
... katcp.Message.request('myreq'),
... reply_cb=reply_cb,
... inform_cb=inform_cb,
...)
...
>>> # expect reply to be printed here
>>> # stop the client once we're finished with it
>>> c.stop()
>>> c.join()

Methods

AsyncClient.blocking_request(msg[,
timeout, . . .])

Send a request messsage and wait for its reply.

AsyncClient.callback_request(msg[,
. . .])

Send a request messsage.

AsyncClient.convert_seconds(time_seconds)Convert a time in seconds to the device timestamp
units.

AsyncClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

AsyncClient.enable_thread_safety() Enable thread-safety features.
AsyncClient.future_request(msg[, time-
out, . . .])

Send a request messsage, with future replies.

AsyncClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

AsyncClient.handle_message(msg) Handle a message from the server.
Continued on next page

1.2. Core API 23

KATCP Documentation, Release 0.0+unknown.201908260720

Table 3 – continued from previous page
AsyncClient.handle_reply(msg) Handle a reply message related to the current re-

quest.
AsyncClient.handle_request(msg) Dispatch a request message to the appropriate

method.
AsyncClient.inform_build_state(msg) Handle katcp v4 and below build-state inform.
AsyncClient.inform_version(msg) Handle katcp v4 and below version inform.
AsyncClient.inform_version_connect(msg)Process a #version-connect message.
AsyncClient.is_connected() Check if the socket is currently connected.
AsyncClient.join([timeout]) Rejoin the client thread.
AsyncClient.notify_connected(connected) Event handler that is called whenever the connection

status changes.
AsyncClient.preset_protocol_flags(protocol_flags)Preset server protocol flags.
AsyncClient.request(msg[, use_mid]) Send a request message, with automatic message ID

assignment.
AsyncClient.running() Whether the client is running.
AsyncClient.send_message(msg) Send any kind of message.
AsyncClient.send_request(msg) Send a request messsage.
AsyncClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
AsyncClient.start([timeout]) Start the client in a new thread.
AsyncClient.stop(*args, **kwargs) Stop a running client.
AsyncClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
AsyncClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
AsyncClient.unhandled_request(msg) Fallback method for requests without a registered

handler.
AsyncClient.until_connected(**kwargs) Return future that resolves when the client is con-

nected.
AsyncClient.until_protocol(**kwargs) Return future that resolves after receipt of katcp pro-

tocol info.
AsyncClient.until_running([timeout]) Return future that resolves when the client is run-

ning.
AsyncClient.until_stopped([timeout]) Return future that resolves when the client has

stopped.
AsyncClient.wait_connected([timeout]) Wait until the client is connected.
AsyncClient.wait_disconnected([timeout]) Wait until the client is disconnected.
AsyncClient.wait_protocol([timeout]) Wait until katcp protocol information has been re-

ceived from server.
AsyncClient.wait_running([timeout]) Wait until the client is running.

bind_address
(host, port) where the client is connecting

blocking_request(msg, timeout=None, use_mid=None)
Send a request messsage and wait for its reply.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

24 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

callback_request(msg, reply_cb=None, inform_cb=None, user_data=None, timeout=None,
use_mid=None)

Send a request messsage.

Parameters msg : Message object

The request message to send.

reply_cb : function

The reply callback with signature reply_cb(msg) or reply_cb(msg, *user_data)

inform_cb : function

The inform callback with signature inform_cb(msg) or inform_cb(msg, *user_data)

user_data : tuple

Optional user data to send to the reply and inform callbacks.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

convert_seconds(time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect()
Force client connection to close, reconnect if auto-connect set.

enable_thread_safety()
Enable thread-safety features.

Must be called before start().

future_request(msg, timeout=None, use_mid=None)
Send a request messsage, with future replies.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

1.2. Core API 25

KATCP Documentation, Release 0.0+unknown.201908260720

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns A tornado.concurrent.Future that resolves with: :

reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

handle_inform(msg)
Handle inform messages related to any current requests.

Inform messages not related to the current request go up to the base class method.

Parameters msg : Message object

The inform message to dispatch.

handle_message(msg)
Handle a message from the server.

Parameters msg : Message object

The Message to dispatch to the handler methods.

handle_reply(msg)
Handle a reply message related to the current request.

Reply messages not related to the current request go up to the base class method.

Parameters msg : Message object

The reply message to dispatch.

handle_request(msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object

The request message to dispatch.

inform_build_state(msg)
Handle katcp v4 and below build-state inform.

inform_version(msg)
Handle katcp v4 and below version inform.

inform_version_connect(msg)
Process a #version-connect message.

is_connected()
Check if the socket is currently connected.

Returns connected : bool

Whether the client is connected.

join(timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds

Seconds to wait for thread to finish.

26 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

notify_connected(connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

Parameters connected : bool

Whether the client has just connected (True) or just disconnected (False).

preset_protocol_flags(protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.

Parameters protocol_flags : katcp.core.ProtocolFlags instance

request(msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message

use_mid : bool or None, default=None

Returns mid : string or None

The message id, or None if no msg id is used

If use_mid is None and the server supports msg ids, or if use_mid is :

True a message ID will automatically be assigned msg.mid is None. :

if msg.mid has a value, and the server supports msg ids, that value :

will be used. If the server does not support msg ids, KatcpVersionError :

will be raised. :

running()
Whether the client is running.

Returns running : bool

Whether the client is running.

send_message(msg)
Send any kind of message.

Parameters msg : Message object

The message to send.

send_request(msg)
Send a request messsage.

Parameters msg : Message object

The request Message to send.

1.2. Core API 27

KATCP Documentation, Release 0.0+unknown.201908260720

set_ioloop(ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start(timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop(*args, **kwargs)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds

Seconds to wait for both client thread to have started, and for stopping.

unhandled_inform(msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object

The inform message that wasn’t processed by any handlers.

unhandled_reply(msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object

The reply message that wasn’t processed by any handlers.

unhandled_request(msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object

The request message that wasn’t processed by any handlers.

until_connected(**kwargs)
Return future that resolves when the client is connected.

until_protocol(**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

until_running(timeout=None)
Return future that resolves when the client is running.

28 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Notes

Must be called from the same ioloop as the client.

until_stopped(timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected(timeout=None)
Wait until the client is connected.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected(timeout=None)
Wait until the client is disconnected.

Parameters timeout : float in seconds

Seconds to wait for the client to disconnect.

Returns disconnected : bool

Whether the client is disconnected.

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol(timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns received : bool

Whether protocol information was received

1.2. Core API 29

KATCP Documentation, Release 0.0+unknown.201908260720

If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running(timeout=None)
Wait until the client is running.

Parameters timeout : float in seconds

Seconds to wait for the client to start running.

Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

Base Classes

class katcp.DeviceClient(host, port, tb_limit=20, logger=<logging.Logger object>,
auto_reconnect=True)

Device client proxy.

Subclasses should implement .reply_*, .inform_* and send_request_* methods to take actions when messages
arrive, and implement unhandled_inform, unhandled_reply and unhandled_request to provide fallbacks for mes-
sages for which there is no handler.

Request messages can be sent by calling .send_request().

Parameters host : string

Host to connect to.

port : int

Port to connect to.

tb_limit : int

Maximum number of stack frames to send in error traceback.

logger : object

Python Logger object to log to.

auto_reconnect : bool

Whether to automatically reconnect if the connection dies.

Notes

The client may block its ioloop if the default blocking tornado DNS resolver is used. When an ioloop is shared,
it would make sens to configure one of the non-blocking resolver classes, see http://tornado.readthedocs.org/en/
latest/netutil.html

30 Chapter 1. Contents

http://tornado.readthedocs.org/en/latest/netutil.html
http://tornado.readthedocs.org/en/latest/netutil.html

KATCP Documentation, Release 0.0+unknown.201908260720

Examples

>>> MyClient(DeviceClient):
... def reply_myreq(self, msg):
... print str(msg)
...
>>> c = MyClient('localhost', 10000){
>>> c.start()
>>> c.send_request(katcp.Message.request('myreq'))
>>> # expect reply to be printed here
>>> # stop the client once we're finished with it
>>> c.stop()
>>> c.join()

Methods

DeviceClient.convert_seconds(time_seconds)Convert a time in seconds to the device timestamp
units.

DeviceClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

DeviceClient.enable_thread_safety() Enable thread-safety features.
DeviceClient.handle_inform(msg) Dispatch an inform message to the appropriate

method.
DeviceClient.handle_message(msg) Handle a message from the server.
DeviceClient.handle_reply(msg) Dispatch a reply message to the appropriate method.
DeviceClient.handle_request(msg) Dispatch a request message to the appropriate

method.
DeviceClient.inform_build_state(msg) Handle katcp v4 and below build-state inform.
DeviceClient.inform_version(msg) Handle katcp v4 and below version inform.
DeviceClient.inform_version_connect(msg)Process a #version-connect message.
DeviceClient.is_connected() Check if the socket is currently connected.
DeviceClient.join([timeout]) Rejoin the client thread.
DeviceClient.notify_connected(connected)Event handler that is called whenever the connection

status changes.
DeviceClient.preset_protocol_flags(. . .)Preset server protocol flags.
DeviceClient.request(msg[, use_mid]) Send a request message, with automatic message ID

assignment.
DeviceClient.running() Whether the client is running.
DeviceClient.send_message(msg) Send any kind of message.
DeviceClient.send_request(msg) Send a request messsage.
DeviceClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
DeviceClient.start([timeout]) Start the client in a new thread.
DeviceClient.stop([timeout]) Stop a running client.
DeviceClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
DeviceClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
DeviceClient.unhandled_request(msg) Fallback method for requests without a registered

handler.
DeviceClient.until_connected(**kwargs) Return future that resolves when the client is con-

nected.
Continued on next page

1.2. Core API 31

KATCP Documentation, Release 0.0+unknown.201908260720

Table 4 – continued from previous page
DeviceClient.until_protocol(**kwargs) Return future that resolves after receipt of katcp pro-

tocol info.
DeviceClient.until_running([timeout]) Return future that resolves when the client is run-

ning.
DeviceClient.until_stopped([timeout]) Return future that resolves when the client has

stopped.
DeviceClient.wait_connected([timeout]) Wait until the client is connected.
DeviceClient.wait_disconnected([timeout])Wait until the client is disconnected.
DeviceClient.wait_protocol([timeout]) Wait until katcp protocol information has been re-

ceived from server.
DeviceClient.wait_running([timeout]) Wait until the client is running.

MAX_LOOP_LATENCY = 0.03
Do not spend more than this many seconds reading pipelined socket data

IOStream inline-reading can result in ioloop starvation (see https://groups.google.com/forum/#!topic/
python-tornado/yJrDAwDR_kA).

MAX_MSG_SIZE = 2097152
Maximum message size that can be received in bytes.

If more than MAX_MSG_SIZE bytes are read from the socket without encountering a message terminator
(i.e. newline), the connection is closed.

MAX_WRITE_BUFFER_SIZE = 4194304
Maximum outstanding bytes to be buffered by the server process.

If more than MAX_WRITE_BUFFER_SIZE bytes are outstanding, the connection is closed. Note that the
OS also buffers socket writes, so more than MAX_WRITE_BUFFER_SIZE bytes may be untransmitted
in total.

bind_address
(host, port) where the client is connecting

convert_seconds(time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to
the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect()
Force client connection to close, reconnect if auto-connect set.

enable_thread_safety()
Enable thread-safety features.

Must be called before start().

handle_inform(msg)
Dispatch an inform message to the appropriate method.

Parameters msg : Message object

The inform message to dispatch.

handle_message(msg)
Handle a message from the server.

Parameters msg : Message object

32 Chapter 1. Contents

https://groups.google.com/forum/#!topic/python-tornado/yJrDAwDR_kA
https://groups.google.com/forum/#!topic/python-tornado/yJrDAwDR_kA

KATCP Documentation, Release 0.0+unknown.201908260720

The Message to dispatch to the handler methods.

handle_reply(msg)
Dispatch a reply message to the appropriate method.

Parameters msg : Message object

The reply message to dispatch.

handle_request(msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object

The request message to dispatch.

inform_build_state(msg)
Handle katcp v4 and below build-state inform.

inform_version(msg)
Handle katcp v4 and below version inform.

inform_version_connect(msg)
Process a #version-connect message.

is_connected()
Check if the socket is currently connected.

Returns connected : bool

Whether the client is connected.

join(timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds

Seconds to wait for thread to finish.

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

notify_connected(connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

Parameters connected : bool

Whether the client has just connected (True) or just disconnected (False).

preset_protocol_flags(protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.

Parameters protocol_flags : katcp.core.ProtocolFlags instance

1.2. Core API 33

KATCP Documentation, Release 0.0+unknown.201908260720

request(msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message

use_mid : bool or None, default=None

Returns mid : string or None

The message id, or None if no msg id is used

If use_mid is None and the server supports msg ids, or if use_mid is :

True a message ID will automatically be assigned msg.mid is None. :

if msg.mid has a value, and the server supports msg ids, that value :

will be used. If the server does not support msg ids, KatcpVersionError :

will be raised. :

running()
Whether the client is running.

Returns running : bool

Whether the client is running.

send_message(msg)
Send any kind of message.

Parameters msg : Message object

The message to send.

send_request(msg)
Send a request messsage.

Parameters msg : Message object

The request Message to send.

set_ioloop(ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start(timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop(timeout=None)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

34 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds

Seconds to wait for both client thread to have started, and for stopping.

unhandled_inform(msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object

The inform message that wasn’t processed by any handlers.

unhandled_reply(msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object

The reply message that wasn’t processed by any handlers.

unhandled_request(msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object

The request message that wasn’t processed by any handlers.

until_connected(**kwargs)
Return future that resolves when the client is connected.

until_protocol(**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

until_running(timeout=None)
Return future that resolves when the client is running.

Notes

Must be called from the same ioloop as the client.

until_stopped(timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected(timeout=None)
Wait until the client is connected.

1.2. Core API 35

KATCP Documentation, Release 0.0+unknown.201908260720

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected(timeout=None)
Wait until the client is disconnected.

Parameters timeout : float in seconds

Seconds to wait for the client to disconnect.

Returns disconnected : bool

Whether the client is disconnected.

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol(timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns received : bool

Whether protocol information was received

If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running(timeout=None)
Wait until the client is running.

Parameters timeout : float in seconds

Seconds to wait for the client to start running.

Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

36 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Exceptions

class katcp.KatcpClientError
Raised by KATCP clients when an error occurs.

1.2.2 Server

AsyncDeviceServer

class katcp.AsyncDeviceServer(*args, **kwargs)
DeviceServer that is automatically configured for async use.

Same as instantiating a DeviceServer instance and calling meth-
ods set_concurrency_options(thread_safe=False, handler_thread=False) and
set_ioloop(tornado.ioloop.IOLoop.current()) before starting.

Methods

AsyncDeviceServer.add_sensor(sensor) Add a sensor to the device.
AsyncDeviceServer.build_state() Return build state string of the form name-

major.minor[(a|b|rc)n].
AsyncDeviceServer.
clear_strategies(client_conn)

Clear the sensor strategies of a client connection.

AsyncDeviceServer.
create_exception_reply_and_log(. . .)
AsyncDeviceServer.
create_log_inform(. . . [, . . .])

Create a katcp logging inform message.

AsyncDeviceServer.
get_sensor(sensor_name)

Fetch the sensor with the given name.

AsyncDeviceServer.get_sensors() Fetch a list of all sensors.
AsyncDeviceServer.
handle_inform(connection, msg)

Dispatch an inform message to the appropriate
method.

AsyncDeviceServer.
handle_message(. . .)

Handle messages of all types from clients.

AsyncDeviceServer.
handle_reply(connection, msg)

Dispatch a reply message to the appropriate method.

AsyncDeviceServer.
handle_request(connection, msg)

Dispatch a request message to the appropriate
method.

AsyncDeviceServer.
has_sensor(sensor_name)

Whether the sensor with specified name is known.

AsyncDeviceServer.inform(connection,
msg)

Send an inform message to a particular client.

AsyncDeviceServer.join([timeout]) Rejoin the server thread.
AsyncDeviceServer.mass_inform(msg) Send an inform message to all clients.
AsyncDeviceServer.
on_client_connect(**kwargs)

Inform client of build state and version on connect.

AsyncDeviceServer.
on_client_disconnect(. . .)

Inform client it is about to be disconnected.

AsyncDeviceServer.
on_message(client_conn, msg)

Dummy implementation of on_message required by
KATCPServer.

Continued on next page

1.2. Core API 37

KATCP Documentation, Release 0.0+unknown.201908260720

Table 5 – continued from previous page
AsyncDeviceServer.
remove_sensor(sensor)

Remove a sensor from the device.

AsyncDeviceServer.reply(connection, re-
ply, . . .)

Send an asynchronous reply to an earlier request.

AsyncDeviceServer.
reply_inform(connection, . . .)

Send an inform as part of the reply to an earlier re-
quest.

AsyncDeviceServer.
request_client_list(req, msg)

Request the list of connected clients.

AsyncDeviceServer.request_halt(req,
msg)

Halt the device server.

AsyncDeviceServer.request_help(req,
msg)

Return help on the available requests.

AsyncDeviceServer.
request_log_level(req, msg)

Query or set the current logging level.

AsyncDeviceServer.
request_request_timeout_hint(. . .)

Return timeout hints for requests

AsyncDeviceServer.
request_restart(req, msg)

Restart the device server.

AsyncDeviceServer.
request_sensor_list(req, msg)

Request the list of sensors.

AsyncDeviceServer.
request_sensor_sampling(. . .)

Configure or query the way a sensor is sampled.

AsyncDeviceServer.
request_sensor_sampling_clear(. . .)

Set all sampling strategies for this client to none.

AsyncDeviceServer.
request_sensor_value(req, msg)

Request the value of a sensor or sensors.

AsyncDeviceServer.
request_version_list(req, msg)

Request the list of versions of roles and subcompo-
nents.

AsyncDeviceServer.
request_watchdog(req, msg)

Check that the server is still alive.

AsyncDeviceServer.running() Whether the server is running.
AsyncDeviceServer.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
AsyncDeviceServer.
set_concurrency_options([. . .])

Set concurrency options for this device server.

AsyncDeviceServer.set_ioloop([ioloop]) Set the tornado IOLoop to use.
AsyncDeviceServer.
set_restart_queue(. . .)

Set the restart queue.

AsyncDeviceServer.setup_sensors() Populate the dictionary of sensors.
AsyncDeviceServer.start([timeout]) Start the server in a new thread.
AsyncDeviceServer.stop([timeout]) Stop a running server (from another thread).
AsyncDeviceServer.
sync_with_ioloop([timeout])

Block for ioloop to complete a loop if called from
another thread.

AsyncDeviceServer.version() Return a version string of the form type-major.minor.
AsyncDeviceServer.
wait_running([timeout])

Wait until the server is running

add_sensor(sensor)
Add a sensor to the device.

Usually called inside .setup_sensors() but may be called from elsewhere.

Parameters sensor : Sensor object

38 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

The sensor object to register with the device server.

build_state()
Return build state string of the form name-major.minor[(a|b|rc)n].

clear_strategies(client_conn, remove_client=False)
Clear the sensor strategies of a client connection.

Parameters client_connection : ClientConnection instance

The connection that should have its sampling strategies cleared

remove_client : bool, optional

Remove the client connection from the strategies datastructure. Useful for clients that
disconnect.

create_log_inform(level_name, msg, name, timestamp=None)
Create a katcp logging inform message.

Usually this will be called from inside a DeviceLogger object, but it is also used by the methods in this
class when errors need to be reported to the client.

get_sensor(sensor_name)
Fetch the sensor with the given name.

Parameters sensor_name : str

Name of the sensor to retrieve.

Returns sensor : Sensor object

The sensor with the given name.

get_sensors()
Fetch a list of all sensors.

Returns sensors : list of Sensor objects

The list of sensors registered with the device server.

handle_inform(connection, msg)
Dispatch an inform message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The inform message to process.

handle_message(client_conn, msg)
Handle messages of all types from clients.

Parameters client_conn : ClientConnection object

The client connection the message was from.

msg : Message object

The message to process.

handle_reply(connection, msg)
Dispatch a reply message to the appropriate method.

Parameters connection : ClientConnection object

1.2. Core API 39

KATCP Documentation, Release 0.0+unknown.201908260720

The client connection the message was from.

msg : Message object

The reply message to process.

handle_request(connection, msg)
Dispatch a request message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The request message to process.

Returns done_future : Future or None

Returns Future for async request handlers that will resolve when done, or None for sync
request handlers once they have completed.

has_sensor(sensor_name)
Whether the sensor with specified name is known.

inform(connection, msg)
Send an inform message to a particular client.

Should only be used for asynchronous informs. Informs that are part of the response to a request should
use reply_inform() so that the message identifier from the original request can be attached to the
inform.

Parameters connection : ClientConnection object

The client to send the message to.

msg : Message object

The inform message to send.

join(timeout=None)
Rejoin the server thread.

Parameters timeout : float or None, optional

Time in seconds to wait for the thread to finish.

mass_inform(msg)
Send an inform message to all clients.

Parameters msg : Message object

The inform message to send.

on_client_connect(**kwargs)
Inform client of build state and version on connect.

Parameters client_conn : ClientConnection object

The client connection that has been successfully established.

Returns Future that resolves when the device is ready to accept messages. :

on_client_disconnect(client_conn, msg, connection_valid)
Inform client it is about to be disconnected.

Parameters client_conn : ClientConnection object

40 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

The client connection being disconnected.

msg : str

Reason client is being disconnected.

connection_valid : bool

True if connection is still open for sending, False otherwise.

Returns Future that resolves when the client connection can be closed. :

on_message(client_conn, msg)
Dummy implementation of on_message required by KATCPServer.

Will be replaced by a handler with the appropriate concurrency semantics when set_concurrency_options
is called (defaults are set in __init__()).

remove_sensor(sensor)
Remove a sensor from the device.

Also deregisters all clients observing the sensor.

Parameters sensor : Sensor object or name string

The sensor to remove from the device server.

reply(connection, reply, orig_req)
Send an asynchronous reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the reply to.

reply : Message object

The reply message to send.

orig_req : Message object

The request message being replied to. The reply message’s id is overridden with the id
from orig_req before the reply is sent.

reply_inform(connection, inform, orig_req)
Send an inform as part of the reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the inform to.

inform : Message object

The inform message to send.

orig_req : Message object

The request message being replied to. The inform message’s id is overridden with the
id from orig_req before the inform is sent.

request_client_list(req, msg)
Request the list of connected clients.

The list of clients is sent as a sequence of #client-list informs.

Informs addr : str

1.2. Core API 41

KATCP Documentation, Release 0.0+unknown.201908260720

The address of the client as host:port with host in dotted quad notation. If the address
of the client could not be determined (because, for example, the client disconnected
suddenly) then a unique string representing the client is sent instead.

Returns success : {‘ok’, ‘fail’}

Whether sending the client list succeeded.

informs : int

Number of #client-list inform messages sent.

Examples

?client-list
#client-list 127.0.0.1:53600
!client-list ok 1

request_halt(req, msg)
Halt the device server.

Returns success : {‘ok’, ‘fail’}

Whether scheduling the halt succeeded.

Examples

?halt
!halt ok

request_help(req, msg)
Return help on the available requests.

Return a description of the available requests using a sequence of #help informs.

Parameters request : str, optional

The name of the request to return help for (the default is to return help for all requests).

Informs request : str

The name of a request.

description : str

Documentation for the named request.

Returns success : {‘ok’, ‘fail’}

Whether sending the help succeeded.

informs : int

Number of #help inform messages sent.

Examples

42 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

?help
#help halt ...description...
#help help ...description...
...
!help ok 5

?help halt
#help halt ...description...
!help ok 1

request_log_level(req, msg)
Query or set the current logging level.

Parameters level : {‘all’, ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’, ‘fatal’, ‘off’}, optional

Name of the logging level to set the device server to (the default is to leave the log level
unchanged).

Returns success : {‘ok’, ‘fail’}

Whether the request succeeded.

level : {‘all’, ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’, ‘fatal’, ‘off’}

The log level after processing the request.

Examples

?log-level
!log-level ok warn

?log-level info
!log-level ok info

request_request_timeout_hint(req, msg)
Return timeout hints for requests

KATCP requests should generally take less than 5s to complete, but some requests are unavoidably slow.
This results in spurious client timeout errors. This request provides timeout hints that clients can use to
select suitable request timeouts.

Parameters request : str, optional

The name of the request to return a timeout hint for (the default is to return hints for all
requests that have timeout hints). Returns one inform per request. Must be an existing
request if specified.

Informs request : str

The name of the request.

suggested_timeout : float

Suggested request timeout in seconds for the request. If suggested_timeout is zero (0),
no timeout hint is available.

Returns success : {‘ok’, ‘fail’}

Whether sending the help succeeded.

informs : int

1.2. Core API 43

KATCP Documentation, Release 0.0+unknown.201908260720

Number of #request-timeout-hint inform messages sent.

Notes

?request-timeout-hint without a parameter will only return informs for requests that have specific timeout
hints, so it will most probably be a subset of all the requests, or even no informs at all.

Examples

?request-timeout-hint
#request-timeout-hint halt 5
#request-timeout-hint very-slow-request 500
...
!request-timeout-hint ok 5

?request-timeout-hint moderately-slow-request
#request-timeout-hint moderately-slow-request 20
!request-timeout-hint ok 1

request_restart(req, msg)
Restart the device server.

Returns success : {‘ok’, ‘fail’}

Whether scheduling the restart succeeded.

Examples

?restart
!restart ok

request_sensor_list(req, msg)
Request the list of sensors.

The list of sensors is sent as a sequence of #sensor-list informs.

Parameters name : str, optional

Name of the sensor to list (the default is to list all sensors). If name starts and ends with
‘/’ it is treated as a regular expression and all sensors whose names contain the regular
expression are returned.

Informs name : str

The name of the sensor being described.

description : str

Description of the named sensor.

units : str

Units for the value of the named sensor.

type : str

Type of the named sensor.

params : list of str, optional

44 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Additional sensor parameters (type dependent). For integer and float sensors the addi-
tional parameters are the minimum and maximum sensor value. For discrete sensors the
additional parameters are the allowed values. For all other types no additional parame-
ters are sent.

Returns success : {‘ok’, ‘fail’}

Whether sending the sensor list succeeded.

informs : int

Number of #sensor-list inform messages sent.

Examples

?sensor-list
#sensor-list psu.voltage PSU_voltage. V float 0.0 5.0
#sensor-list cpu.status CPU_status. \@ discrete on off error
...
!sensor-list ok 5

?sensor-list cpu.power.on
#sensor-list cpu.power.on Whether_CPU_hase_power. \@ boolean
!sensor-list ok 1

?sensor-list /voltage/
#sensor-list psu.voltage PSU_voltage. V float 0.0 5.0
#sensor-list cpu.voltage CPU_voltage. V float 0.0 3.0
!sensor-list ok 2

request_sensor_sampling(req, msg)
Configure or query the way a sensor is sampled.

Sampled values are reported asynchronously using the #sensor-status message.

Parameters name : str

Name of the sensor whose sampling strategy to query or configure.

strategy : {‘none’, ‘auto’, ‘event’, ‘differential’, ‘period’, ‘event-rate’}, optional

Type of strategy to use to report the sensor value. The differential strategy type may
only be used with integer or float sensors. If this parameter is supplied, it sets the new
strategy.

params : list of str, optional

Additional strategy parameters (dependent on the strategy type). For the differential
strategy, the parameter is an integer or float giving the amount by which the sensor value
may change before an updated value is sent. For the period strategy, the parameter is the
sampling period in float seconds. The event strategy has no parameters. Note that this
has changed from KATCPv4. For the event-rate strategy, a minimum period between
updates and a maximum period between updates (both in float seconds) must be given.
If the event occurs more than once within the minimum period, only one update will
occur. Whether or not the event occurs, the sensor value will be updated at least once
per maximum period. The differential-rate strategy is not supported in this release.

Returns success : {‘ok’, ‘fail’}

Whether the sensor-sampling request succeeded.

1.2. Core API 45

KATCP Documentation, Release 0.0+unknown.201908260720

name : str

Name of the sensor queried or configured.

strategy : {‘none’, ‘auto’, ‘event’, ‘differential’, ‘period’}

Name of the new or current sampling strategy for the sensor.

params : list of str

Additional strategy parameters (see description under Parameters).

Examples

?sensor-sampling cpu.power.on
!sensor-sampling ok cpu.power.on none

?sensor-sampling cpu.power.on period 500
!sensor-sampling ok cpu.power.on period 500

request_sensor_sampling_clear(req, msg)
Set all sampling strategies for this client to none.

Returns success : {‘ok’, ‘fail’}

Whether sending the list of devices succeeded.

Examples

?sensor-sampling-clear !sensor-sampling-clear ok

request_sensor_value(req, msg)
Request the value of a sensor or sensors.

A list of sensor values as a sequence of #sensor-value informs.

Parameters name : str, optional

Name of the sensor to poll (the default is to send values for all sensors). If name starts
and ends with ‘/’ it is treated as a regular expression and all sensors whose names contain
the regular expression are returned.

Informs timestamp : float

Timestamp of the sensor reading in seconds since the Unix epoch, or milliseconds for
katcp versions <= 4.

count : {1}

Number of sensors described in this #sensor-value inform. Will always be one. It exists
to keep this inform compatible with #sensor-status.

name : str

Name of the sensor whose value is being reported.

value : object

Value of the named sensor. Type depends on the type of the sensor.

Returns success : {‘ok’, ‘fail’}

Whether sending the list of values succeeded.

46 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

informs : int

Number of #sensor-value inform messages sent.

Examples

?sensor-value
#sensor-value 1244631611.415231 1 psu.voltage 4.5
#sensor-value 1244631611.415200 1 cpu.status off
...
!sensor-value ok 5

?sensor-value cpu.power.on
#sensor-value 1244631611.415231 1 cpu.power.on 0
!sensor-value ok 1

request_version_list(req, msg)
Request the list of versions of roles and subcomponents.

Informs name : str

Name of the role or component.

version : str

A string identifying the version of the component. Individual components may define
the structure of this argument as they choose. In the absence of other information clients
should treat it as an opaque string.

build_state_or_serial_number : str

A unique identifier for a particular instance of a component. This should change when-
ever the component is replaced or updated.

Returns success : {‘ok’, ‘fail’}

Whether sending the version list succeeded.

informs : int

Number of #version-list inform messages sent.

Examples

?version-list
#version-list katcp-protocol 5.0-MI
#version-list katcp-library katcp-python-0.4 katcp-python-0.4.1-py2
#version-list katcp-device foodevice-1.0 foodevice-1.0.0rc1
!version-list ok 3

request_watchdog(req, msg)
Check that the server is still alive.

Returns success : {‘ok’}

1.2. Core API 47

KATCP Documentation, Release 0.0+unknown.201908260720

Examples

?watchdog
!watchdog ok

running()
Whether the server is running.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_concurrency_options(thread_safe=True, handler_thread=True)
Set concurrency options for this device server. Must be called before start().

Parameters thread_safe : bool

If True, make the server public methods thread safe. Incurs performance overhead.

handler_thread : bool

Can only be set if thread_safe is True. Handle all requests (even from different clients)
in a separate, single, request-handling thread. Blocking request handlers will prevent
the server from handling new requests from any client, but sensor strategies should still
function. This more or less mimics the behaviour of a server in library versions before
0.6.0.

set_ioloop(ioloop=None)
Set the tornado IOLoop to use.

Sets the tornado.ioloop.IOLoop instance to use, defaulting to IOLoop.current(). If set_ioloop() is never
called the IOLoop is started in a new thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called.

set_restart_queue(restart_queue)
Set the restart queue.

When the device server should be restarted, it will be added to the queue.

Parameters restart_queue : Queue.Queue object

The queue to add the device server to when it should be restarted.

setup_sensors()
Populate the dictionary of sensors.

Unimplemented by default – subclasses should add their sensors here or pass if there are no sensors.

Examples

>>> class MyDevice(DeviceServer):
... def setup_sensors(self):
... self.add_sensor(Sensor(...))
... self.add_sensor(Sensor(...))
...

48 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

start(timeout=None)
Start the server in a new thread.

Parameters timeout : float or None, optional

Time in seconds to wait for server thread to start.

stop(timeout=1.0)
Stop a running server (from another thread).

Parameters timeout : float, optional

Seconds to wait for server to have started.

Returns stopped : thread-safe Future

Resolves when the server is stopped

sync_with_ioloop(timeout=None)
Block for ioloop to complete a loop if called from another thread.

Returns a future if called from inside the ioloop.

Raises concurrent.futures.TimeoutError if timed out while blocking.

version()
Return a version string of the form type-major.minor.

wait_running(timeout=None)
Wait until the server is running

DeviceServer

class katcp.DeviceServer(*args, **kwargs)
Implements some standard messages on top of DeviceServerBase.

Inform messages handled are:

• version (sent on connect)

• build-state (sent on connect)

• log (via self.log.warn(. . .), etc)

• disconnect

• client-connected

Requests handled are:

• halt

• help

• log-level

• restart1

• client-list

• sensor-list

• sensor-sampling

1 Restart relies on .set_restart_queue() being used to register a restart queue with the device. When the device needs to be restarted, it will be
added to the restart queue. The queue should be a Python Queue.Queue object without a maximum size.

1.2. Core API 49

KATCP Documentation, Release 0.0+unknown.201908260720

• sensor-value

• watchdog

• version-list (only standard in KATCP v5 or later)

• request-timeout-hint (pre-standard only if protocol flags indicates timeout hints, supported for
KATCP v5.1 or later)

• sensor-sampling-clear (non-standard)

Unhandled standard requests are:

• configure

• mode

Subclasses can define the tuple VERSION_INFO to set the interface name, major and minor version numbers.
The BUILD_INFO tuple can be defined to give a string describing a particular interface instance and may have
a fourth element containing additional version information (e.g. rc1).

Subclasses may manipulate the versions returned by the ?version-list command by editing .extra_versions
which is a dictionary mapping role or component names to (version, build_state_or_serial_no) tuples. The
build_state_or_serial_no may be None.

Subclasses must override the .setup_sensors() method. If they have no sensors to register, the method should
just be a pass.

Methods

DeviceServer.add_sensor(sensor) Add a sensor to the device.
DeviceServer.build_state() Return build state string of the form name-

major.minor[(a|b|rc)n].
DeviceServer.clear_strategies(client_conn[,
. . .])

Clear the sensor strategies of a client connection.

DeviceServer.create_exception_reply_and_log(. . .)
DeviceServer.create_log_inform(level_name,
. . .)

Create a katcp logging inform message.

DeviceServer.get_sensor(sensor_name) Fetch the sensor with the given name.
DeviceServer.get_sensors() Fetch a list of all sensors.
DeviceServer.handle_inform(connection,
msg)

Dispatch an inform message to the appropriate
method.

DeviceServer.handle_message(client_conn,
msg)

Handle messages of all types from clients.

DeviceServer.handle_reply(connection,
msg)

Dispatch a reply message to the appropriate method.

DeviceServer.handle_request(connection,
msg)

Dispatch a request message to the appropriate
method.

DeviceServer.has_sensor(sensor_name) Whether the sensor with specified name is known.
DeviceServer.inform(connection, msg) Send an inform message to a particular client.
DeviceServer.join([timeout]) Rejoin the server thread.
DeviceServer.mass_inform(msg) Send an inform message to all clients.
DeviceServer.on_client_connect(**kwargs)Inform client of build state and version on connect.
DeviceServer.on_client_disconnect(. . .) Inform client it is about to be disconnected.
DeviceServer.on_message(client_conn,
msg)

Dummy implementation of on_message required by
KATCPServer.

Continued on next page

50 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 6 – continued from previous page
DeviceServer.remove_sensor(sensor) Remove a sensor from the device.
DeviceServer.reply(connection, reply,
orig_req)

Send an asynchronous reply to an earlier request.

DeviceServer.reply_inform(connection,
. . .)

Send an inform as part of the reply to an earlier re-
quest.

DeviceServer.request_client_list(req,
msg)

Request the list of connected clients.

DeviceServer.request_halt(req, msg) Halt the device server.
DeviceServer.request_help(req, msg) Return help on the available requests.
DeviceServer.request_log_level(req,
msg)

Query or set the current logging level.

DeviceServer.request_request_timeout_hint(. . .)Return timeout hints for requests
DeviceServer.request_restart(req, msg) Restart the device server.
DeviceServer.request_sensor_list(req,
msg)

Request the list of sensors.

DeviceServer.request_sensor_sampling(req,
msg)

Configure or query the way a sensor is sampled.

DeviceServer.request_sensor_sampling_clear(. . .)Set all sampling strategies for this client to none.
DeviceServer.request_sensor_value(req,
msg)

Request the value of a sensor or sensors.

DeviceServer.request_version_list(req,
msg)

Request the list of versions of roles and subcompo-
nents.

DeviceServer.request_watchdog(req,
msg)

Check that the server is still alive.

DeviceServer.running() Whether the server is running.
DeviceServer.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
DeviceServer.set_concurrency_options([. . .])Set concurrency options for this device server.
DeviceServer.set_ioloop([ioloop]) Set the tornado IOLoop to use.
DeviceServer.set_restart_queue(restart_queue)Set the restart queue.
DeviceServer.setup_sensors() Populate the dictionary of sensors.
DeviceServer.start([timeout]) Start the server in a new thread.
DeviceServer.stop([timeout]) Stop a running server (from another thread).
DeviceServer.sync_with_ioloop([timeout]) Block for ioloop to complete a loop if called from

another thread.
DeviceServer.version() Return a version string of the form type-major.minor.
DeviceServer.wait_running([timeout]) Wait until the server is running

add_sensor(sensor)
Add a sensor to the device.

Usually called inside .setup_sensors() but may be called from elsewhere.

Parameters sensor : Sensor object

The sensor object to register with the device server.

build_state()
Return build state string of the form name-major.minor[(a|b|rc)n].

clear_strategies(client_conn, remove_client=False)
Clear the sensor strategies of a client connection.

Parameters client_connection : ClientConnection instance

1.2. Core API 51

KATCP Documentation, Release 0.0+unknown.201908260720

The connection that should have its sampling strategies cleared

remove_client : bool, optional

Remove the client connection from the strategies datastructure. Useful for clients that
disconnect.

create_log_inform(level_name, msg, name, timestamp=None)
Create a katcp logging inform message.

Usually this will be called from inside a DeviceLogger object, but it is also used by the methods in this
class when errors need to be reported to the client.

get_sensor(sensor_name)
Fetch the sensor with the given name.

Parameters sensor_name : str

Name of the sensor to retrieve.

Returns sensor : Sensor object

The sensor with the given name.

get_sensors()
Fetch a list of all sensors.

Returns sensors : list of Sensor objects

The list of sensors registered with the device server.

handle_inform(connection, msg)
Dispatch an inform message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The inform message to process.

handle_message(client_conn, msg)
Handle messages of all types from clients.

Parameters client_conn : ClientConnection object

The client connection the message was from.

msg : Message object

The message to process.

handle_reply(connection, msg)
Dispatch a reply message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The reply message to process.

handle_request(connection, msg)
Dispatch a request message to the appropriate method.

Parameters connection : ClientConnection object

52 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

The client connection the message was from.

msg : Message object

The request message to process.

Returns done_future : Future or None

Returns Future for async request handlers that will resolve when done, or None for sync
request handlers once they have completed.

has_sensor(sensor_name)
Whether the sensor with specified name is known.

inform(connection, msg)
Send an inform message to a particular client.

Should only be used for asynchronous informs. Informs that are part of the response to a request should
use reply_inform() so that the message identifier from the original request can be attached to the
inform.

Parameters connection : ClientConnection object

The client to send the message to.

msg : Message object

The inform message to send.

join(timeout=None)
Rejoin the server thread.

Parameters timeout : float or None, optional

Time in seconds to wait for the thread to finish.

mass_inform(msg)
Send an inform message to all clients.

Parameters msg : Message object

The inform message to send.

on_client_connect(**kwargs)
Inform client of build state and version on connect.

Parameters client_conn : ClientConnection object

The client connection that has been successfully established.

Returns Future that resolves when the device is ready to accept messages. :

on_client_disconnect(client_conn, msg, connection_valid)
Inform client it is about to be disconnected.

Parameters client_conn : ClientConnection object

The client connection being disconnected.

msg : str

Reason client is being disconnected.

connection_valid : bool

True if connection is still open for sending, False otherwise.

Returns Future that resolves when the client connection can be closed. :

1.2. Core API 53

KATCP Documentation, Release 0.0+unknown.201908260720

on_message(client_conn, msg)
Dummy implementation of on_message required by KATCPServer.

Will be replaced by a handler with the appropriate concurrency semantics when set_concurrency_options
is called (defaults are set in __init__()).

remove_sensor(sensor)
Remove a sensor from the device.

Also deregisters all clients observing the sensor.

Parameters sensor : Sensor object or name string

The sensor to remove from the device server.

reply(connection, reply, orig_req)
Send an asynchronous reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the reply to.

reply : Message object

The reply message to send.

orig_req : Message object

The request message being replied to. The reply message’s id is overridden with the id
from orig_req before the reply is sent.

reply_inform(connection, inform, orig_req)
Send an inform as part of the reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the inform to.

inform : Message object

The inform message to send.

orig_req : Message object

The request message being replied to. The inform message’s id is overridden with the
id from orig_req before the inform is sent.

request_client_list(req, msg)
Request the list of connected clients.

The list of clients is sent as a sequence of #client-list informs.

Informs addr : str

The address of the client as host:port with host in dotted quad notation. If the address
of the client could not be determined (because, for example, the client disconnected
suddenly) then a unique string representing the client is sent instead.

Returns success : {‘ok’, ‘fail’}

Whether sending the client list succeeded.

informs : int

Number of #client-list inform messages sent.

54 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Examples

?client-list
#client-list 127.0.0.1:53600
!client-list ok 1

request_halt(req, msg)
Halt the device server.

Returns success : {‘ok’, ‘fail’}

Whether scheduling the halt succeeded.

Examples

?halt
!halt ok

request_help(req, msg)
Return help on the available requests.

Return a description of the available requests using a sequence of #help informs.

Parameters request : str, optional

The name of the request to return help for (the default is to return help for all requests).

Informs request : str

The name of a request.

description : str

Documentation for the named request.

Returns success : {‘ok’, ‘fail’}

Whether sending the help succeeded.

informs : int

Number of #help inform messages sent.

Examples

?help
#help halt ...description...
#help help ...description...
...
!help ok 5

?help halt
#help halt ...description...
!help ok 1

request_log_level(req, msg)
Query or set the current logging level.

Parameters level : {‘all’, ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’, ‘fatal’, ‘off’}, optional

1.2. Core API 55

KATCP Documentation, Release 0.0+unknown.201908260720

Name of the logging level to set the device server to (the default is to leave the log level
unchanged).

Returns success : {‘ok’, ‘fail’}

Whether the request succeeded.

level : {‘all’, ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’, ‘fatal’, ‘off’}

The log level after processing the request.

Examples

?log-level
!log-level ok warn

?log-level info
!log-level ok info

request_request_timeout_hint(req, msg)
Return timeout hints for requests

KATCP requests should generally take less than 5s to complete, but some requests are unavoidably slow.
This results in spurious client timeout errors. This request provides timeout hints that clients can use to
select suitable request timeouts.

Parameters request : str, optional

The name of the request to return a timeout hint for (the default is to return hints for all
requests that have timeout hints). Returns one inform per request. Must be an existing
request if specified.

Informs request : str

The name of the request.

suggested_timeout : float

Suggested request timeout in seconds for the request. If suggested_timeout is zero (0),
no timeout hint is available.

Returns success : {‘ok’, ‘fail’}

Whether sending the help succeeded.

informs : int

Number of #request-timeout-hint inform messages sent.

Notes

?request-timeout-hint without a parameter will only return informs for requests that have specific timeout
hints, so it will most probably be a subset of all the requests, or even no informs at all.

Examples

56 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

?request-timeout-hint
#request-timeout-hint halt 5
#request-timeout-hint very-slow-request 500
...
!request-timeout-hint ok 5

?request-timeout-hint moderately-slow-request
#request-timeout-hint moderately-slow-request 20
!request-timeout-hint ok 1

request_restart(req, msg)
Restart the device server.

Returns success : {‘ok’, ‘fail’}

Whether scheduling the restart succeeded.

Examples

?restart
!restart ok

request_sensor_list(req, msg)
Request the list of sensors.

The list of sensors is sent as a sequence of #sensor-list informs.

Parameters name : str, optional

Name of the sensor to list (the default is to list all sensors). If name starts and ends with
‘/’ it is treated as a regular expression and all sensors whose names contain the regular
expression are returned.

Informs name : str

The name of the sensor being described.

description : str

Description of the named sensor.

units : str

Units for the value of the named sensor.

type : str

Type of the named sensor.

params : list of str, optional

Additional sensor parameters (type dependent). For integer and float sensors the addi-
tional parameters are the minimum and maximum sensor value. For discrete sensors the
additional parameters are the allowed values. For all other types no additional parame-
ters are sent.

Returns success : {‘ok’, ‘fail’}

Whether sending the sensor list succeeded.

informs : int

Number of #sensor-list inform messages sent.

1.2. Core API 57

KATCP Documentation, Release 0.0+unknown.201908260720

Examples

?sensor-list
#sensor-list psu.voltage PSU_voltage. V float 0.0 5.0
#sensor-list cpu.status CPU_status. \@ discrete on off error
...
!sensor-list ok 5

?sensor-list cpu.power.on
#sensor-list cpu.power.on Whether_CPU_hase_power. \@ boolean
!sensor-list ok 1

?sensor-list /voltage/
#sensor-list psu.voltage PSU_voltage. V float 0.0 5.0
#sensor-list cpu.voltage CPU_voltage. V float 0.0 3.0
!sensor-list ok 2

request_sensor_sampling(req, msg)
Configure or query the way a sensor is sampled.

Sampled values are reported asynchronously using the #sensor-status message.

Parameters name : str

Name of the sensor whose sampling strategy to query or configure.

strategy : {‘none’, ‘auto’, ‘event’, ‘differential’, ‘period’, ‘event-rate’}, optional

Type of strategy to use to report the sensor value. The differential strategy type may
only be used with integer or float sensors. If this parameter is supplied, it sets the new
strategy.

params : list of str, optional

Additional strategy parameters (dependent on the strategy type). For the differential
strategy, the parameter is an integer or float giving the amount by which the sensor value
may change before an updated value is sent. For the period strategy, the parameter is the
sampling period in float seconds. The event strategy has no parameters. Note that this
has changed from KATCPv4. For the event-rate strategy, a minimum period between
updates and a maximum period between updates (both in float seconds) must be given.
If the event occurs more than once within the minimum period, only one update will
occur. Whether or not the event occurs, the sensor value will be updated at least once
per maximum period. The differential-rate strategy is not supported in this release.

Returns success : {‘ok’, ‘fail’}

Whether the sensor-sampling request succeeded.

name : str

Name of the sensor queried or configured.

strategy : {‘none’, ‘auto’, ‘event’, ‘differential’, ‘period’}

Name of the new or current sampling strategy for the sensor.

params : list of str

Additional strategy parameters (see description under Parameters).

58 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Examples

?sensor-sampling cpu.power.on
!sensor-sampling ok cpu.power.on none

?sensor-sampling cpu.power.on period 500
!sensor-sampling ok cpu.power.on period 500

request_sensor_sampling_clear(req, msg)
Set all sampling strategies for this client to none.

Returns success : {‘ok’, ‘fail’}

Whether sending the list of devices succeeded.

Examples

?sensor-sampling-clear !sensor-sampling-clear ok

request_sensor_value(req, msg)
Request the value of a sensor or sensors.

A list of sensor values as a sequence of #sensor-value informs.

Parameters name : str, optional

Name of the sensor to poll (the default is to send values for all sensors). If name starts
and ends with ‘/’ it is treated as a regular expression and all sensors whose names contain
the regular expression are returned.

Informs timestamp : float

Timestamp of the sensor reading in seconds since the Unix epoch, or milliseconds for
katcp versions <= 4.

count : {1}

Number of sensors described in this #sensor-value inform. Will always be one. It exists
to keep this inform compatible with #sensor-status.

name : str

Name of the sensor whose value is being reported.

value : object

Value of the named sensor. Type depends on the type of the sensor.

Returns success : {‘ok’, ‘fail’}

Whether sending the list of values succeeded.

informs : int

Number of #sensor-value inform messages sent.

Examples

1.2. Core API 59

KATCP Documentation, Release 0.0+unknown.201908260720

?sensor-value
#sensor-value 1244631611.415231 1 psu.voltage 4.5
#sensor-value 1244631611.415200 1 cpu.status off
...
!sensor-value ok 5

?sensor-value cpu.power.on
#sensor-value 1244631611.415231 1 cpu.power.on 0
!sensor-value ok 1

request_version_list(req, msg)
Request the list of versions of roles and subcomponents.

Informs name : str

Name of the role or component.

version : str

A string identifying the version of the component. Individual components may define
the structure of this argument as they choose. In the absence of other information clients
should treat it as an opaque string.

build_state_or_serial_number : str

A unique identifier for a particular instance of a component. This should change when-
ever the component is replaced or updated.

Returns success : {‘ok’, ‘fail’}

Whether sending the version list succeeded.

informs : int

Number of #version-list inform messages sent.

Examples

?version-list
#version-list katcp-protocol 5.0-MI
#version-list katcp-library katcp-python-0.4 katcp-python-0.4.1-py2
#version-list katcp-device foodevice-1.0 foodevice-1.0.0rc1
!version-list ok 3

request_watchdog(req, msg)
Check that the server is still alive.

Returns success : {‘ok’}

Examples

?watchdog
!watchdog ok

running()
Whether the server is running.

60 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_concurrency_options(thread_safe=True, handler_thread=True)
Set concurrency options for this device server. Must be called before start().

Parameters thread_safe : bool

If True, make the server public methods thread safe. Incurs performance overhead.

handler_thread : bool

Can only be set if thread_safe is True. Handle all requests (even from different clients)
in a separate, single, request-handling thread. Blocking request handlers will prevent
the server from handling new requests from any client, but sensor strategies should still
function. This more or less mimics the behaviour of a server in library versions before
0.6.0.

set_ioloop(ioloop=None)
Set the tornado IOLoop to use.

Sets the tornado.ioloop.IOLoop instance to use, defaulting to IOLoop.current(). If set_ioloop() is never
called the IOLoop is started in a new thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called.

set_restart_queue(restart_queue)
Set the restart queue.

When the device server should be restarted, it will be added to the queue.

Parameters restart_queue : Queue.Queue object

The queue to add the device server to when it should be restarted.

setup_sensors()
Populate the dictionary of sensors.

Unimplemented by default – subclasses should add their sensors here or pass if there are no sensors.

Examples

>>> class MyDevice(DeviceServer):
... def setup_sensors(self):
... self.add_sensor(Sensor(...))
... self.add_sensor(Sensor(...))
...

start(timeout=None)
Start the server in a new thread.

Parameters timeout : float or None, optional

Time in seconds to wait for server thread to start.

1.2. Core API 61

KATCP Documentation, Release 0.0+unknown.201908260720

stop(timeout=1.0)
Stop a running server (from another thread).

Parameters timeout : float, optional

Seconds to wait for server to have started.

Returns stopped : thread-safe Future

Resolves when the server is stopped

sync_with_ioloop(timeout=None)
Block for ioloop to complete a loop if called from another thread.

Returns a future if called from inside the ioloop.

Raises concurrent.futures.TimeoutError if timed out while blocking.

version()
Return a version string of the form type-major.minor.

wait_running(timeout=None)
Wait until the server is running

DeviceServerBase

class katcp.DeviceServerBase(host, port, tb_limit=20, logger=<logging.Logger object>)
Base class for device servers.

Subclasses should add .request_* methods for dealing with request messages. These methods each take the client
request connection and msg objects as arguments and should return the reply message or raise an exception as a
result.

Subclasses can also add .inform_* and reply_* methods to handle those types of messages.

Should a subclass need to generate inform messages it should do so using either the .inform() or .mass_inform()
methods.

Finally, this class should probably not be subclassed directly but rather via subclassing DeviceServer itself which
implements common .request_* methods.

Parameters host : str

Host to listen on.

port : int

Port to listen on.

tb_limit : int, optional

Maximum number of stack frames to send in error tracebacks.

logger : logging.Logger object, optional

Logger to log messages to.

Methods

DeviceServerBase.
create_exception_reply_and_log(. . .)

Continued on next page

62 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 7 – continued from previous page
DeviceServerBase.
create_log_inform(. . . [, . . .])

Create a katcp logging inform message.

DeviceServerBase.
handle_inform(connection, msg)

Dispatch an inform message to the appropriate
method.

DeviceServerBase.
handle_message(client_conn, msg)

Handle messages of all types from clients.

DeviceServerBase.
handle_reply(connection, msg)

Dispatch a reply message to the appropriate method.

DeviceServerBase.
handle_request(connection, msg)

Dispatch a request message to the appropriate
method.

DeviceServerBase.inform(connection,
msg)

Send an inform message to a particular client.

DeviceServerBase.join([timeout]) Rejoin the server thread.
DeviceServerBase.mass_inform(msg) Send an inform message to all clients.
DeviceServerBase.
on_client_connect(**kwargs)

Called after client connection is established.

DeviceServerBase.
on_client_disconnect(**kwargs)

Called before a client connection is closed.

DeviceServerBase.
on_message(client_conn, msg)

Dummy implementation of on_message required by
KATCPServer.

DeviceServerBase.reply(connection, reply,
. . .)

Send an asynchronous reply to an earlier request.

DeviceServerBase.
reply_inform(connection, . . .)

Send an inform as part of the reply to an earlier re-
quest.

DeviceServerBase.running() Whether the server is running.
DeviceServerBase.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
DeviceServerBase.
set_concurrency_options([. . .])

Set concurrency options for this device server.

DeviceServerBase.set_ioloop([ioloop]) Set the tornado IOLoop to use.
DeviceServerBase.start([timeout]) Start the server in a new thread.
DeviceServerBase.stop([timeout]) Stop a running server (from another thread).
DeviceServerBase.
sync_with_ioloop([timeout])

Block for ioloop to complete a loop if called from
another thread.

DeviceServerBase.
wait_running([timeout])

Wait until the server is running

create_log_inform(level_name, msg, name, timestamp=None)
Create a katcp logging inform message.

Usually this will be called from inside a DeviceLogger object, but it is also used by the methods in this
class when errors need to be reported to the client.

handle_inform(connection, msg)
Dispatch an inform message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The inform message to process.

handle_message(client_conn, msg)
Handle messages of all types from clients.

1.2. Core API 63

KATCP Documentation, Release 0.0+unknown.201908260720

Parameters client_conn : ClientConnection object

The client connection the message was from.

msg : Message object

The message to process.

handle_reply(connection, msg)
Dispatch a reply message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The reply message to process.

handle_request(connection, msg)
Dispatch a request message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The request message to process.

Returns done_future : Future or None

Returns Future for async request handlers that will resolve when done, or None for sync
request handlers once they have completed.

inform(connection, msg)
Send an inform message to a particular client.

Should only be used for asynchronous informs. Informs that are part of the response to a request should
use reply_inform() so that the message identifier from the original request can be attached to the
inform.

Parameters connection : ClientConnection object

The client to send the message to.

msg : Message object

The inform message to send.

join(timeout=None)
Rejoin the server thread.

Parameters timeout : float or None, optional

Time in seconds to wait for the thread to finish.

mass_inform(msg)
Send an inform message to all clients.

Parameters msg : Message object

The inform message to send.

on_client_connect(**kwargs)
Called after client connection is established.

Subclasses should override if they wish to send clients message or perform house-keeping at this point.

64 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Parameters conn : ClientConnection object

The client connection that has been successfully established.

Returns Future that resolves when the device is ready to accept messages. :

on_client_disconnect(**kwargs)
Called before a client connection is closed.

Subclasses should override if they wish to send clients message or perform house-keeping at this point.
The server cannot guarantee this will be called (for example, the client might drop the connection). The
message parameter contains the reason for the disconnection.

Parameters conn : ClientConnection object

Client connection being disconnected.

msg : str

Reason client is being disconnected.

connection_valid : boolean

True if connection is still open for sending, False otherwise.

Returns Future that resolves when the client connection can be closed. :

on_message(client_conn, msg)
Dummy implementation of on_message required by KATCPServer.

Will be replaced by a handler with the appropriate concurrency semantics when set_concurrency_options
is called (defaults are set in __init__()).

reply(connection, reply, orig_req)
Send an asynchronous reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the reply to.

reply : Message object

The reply message to send.

orig_req : Message object

The request message being replied to. The reply message’s id is overridden with the id
from orig_req before the reply is sent.

reply_inform(connection, inform, orig_req)
Send an inform as part of the reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the inform to.

inform : Message object

The inform message to send.

orig_req : Message object

The request message being replied to. The inform message’s id is overridden with the
id from orig_req before the inform is sent.

running()
Whether the server is running.

1.2. Core API 65

KATCP Documentation, Release 0.0+unknown.201908260720

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_concurrency_options(thread_safe=True, handler_thread=True)
Set concurrency options for this device server. Must be called before start().

Parameters thread_safe : bool

If True, make the server public methods thread safe. Incurs performance overhead.

handler_thread : bool

Can only be set if thread_safe is True. Handle all requests (even from different clients)
in a separate, single, request-handling thread. Blocking request handlers will prevent
the server from handling new requests from any client, but sensor strategies should still
function. This more or less mimics the behaviour of a server in library versions before
0.6.0.

set_ioloop(ioloop=None)
Set the tornado IOLoop to use.

Sets the tornado.ioloop.IOLoop instance to use, defaulting to IOLoop.current(). If set_ioloop() is never
called the IOLoop is started in a new thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called.

start(timeout=None)
Start the server in a new thread.

Parameters timeout : float or None, optional

Time in seconds to wait for server thread to start.

stop(timeout=1.0)
Stop a running server (from another thread).

Parameters timeout : float, optional

Seconds to wait for server to have started.

Returns stopped : thread-safe Future

Resolves when the server is stopped

sync_with_ioloop(timeout=None)
Block for ioloop to complete a loop if called from another thread.

Returns a future if called from inside the ioloop.

Raises concurrent.futures.TimeoutError if timed out while blocking.

wait_running(timeout=None)
Wait until the server is running

66 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

DeviceLogger

class katcp.DeviceLogger(device_server, root_logger=’root’, python_logger=None)
Object for logging messages from a DeviceServer.

Log messages are logged at a particular level and under a particular name. Names use dotted notation to form a
virtual hierarchy of loggers with the device.

Parameters device_server : DeviceServerBase object

The device server this logger should use for sending out logs.

root_logger : str

The name of the root logger.

Methods

DeviceLogger.debug(msg, *args, **kwargs) Log a debug message.
DeviceLogger.error(msg, *args, **kwargs) Log an error message.
DeviceLogger.fatal(msg, *args, **kwargs) Log a fatal error message.
DeviceLogger.info(msg, *args, **kwargs) Log an info message.
DeviceLogger.level_from_name(level_name) Return the level constant for a given name.
DeviceLogger.level_name([level]) Return the name of the given level value.
DeviceLogger.log(level, msg, *args,
**kwargs)

Log a message and inform all clients.

DeviceLogger.log_to_python(logger, msg) Log a KATCP logging message to a Python logger.
DeviceLogger.set_log_level(level) Set the logging level.
DeviceLogger.set_log_level_by_name(level_name)Set the logging level using a level name.
DeviceLogger.trace(msg, *args, **kwargs) Log a trace message.
DeviceLogger.warn(msg, *args, **kwargs) Log an warning message.

debug(msg, *args, **kwargs)
Log a debug message.

error(msg, *args, **kwargs)
Log an error message.

fatal(msg, *args, **kwargs)
Log a fatal error message.

info(msg, *args, **kwargs)
Log an info message.

level_from_name(level_name)
Return the level constant for a given name.

If the level_name is not known, raise a ValueError.

Parameters level_name : str

The logging level name whose logging level constant to retrieve.

Returns level : logging level constant

The logging level constant associated with the name.

level_name(level=None)
Return the name of the given level value.

1.2. Core API 67

KATCP Documentation, Release 0.0+unknown.201908260720

If level is None, return the name of the current level.

Parameters level : logging level constant

The logging level constant whose name to retrieve.

Returns level_name : str

The name of the logging level.

log(level, msg, *args, **kwargs)
Log a message and inform all clients.

Parameters level : logging level constant

The level to log the message at.

msg : str

The text format for the log message.

args : list of objects

Arguments to pass to log format string. Final message text is created using: msg %
args.

kwargs : additional keyword parameters

Allowed keywords are ‘name’ and ‘timestamp’. The name is the name of the logger to
log the message to. If not given the name defaults to the root logger. The timestamp is
a float in seconds. If not given the timestamp defaults to the current time.

classmethod log_to_python(logger, msg)
Log a KATCP logging message to a Python logger.

Parameters logger : logging.Logger object

The Python logger to log the given message to.

msg : Message object

The #log message to create a log entry from.

set_log_level(level)
Set the logging level.

Parameters level : logging level constant

The value to set the logging level to.

set_log_level_by_name(level_name)
Set the logging level using a level name.

Parameters level_name : str

The name of the logging level.

trace(msg, *args, **kwargs)
Log a trace message.

warn(msg, *args, **kwargs)
Log an warning message.

68 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Sensor

class katcp.Sensor(sensor_type, name, description=None, units=”, params=None, default=None, ini-
tial_status=None)

Instantiate a new sensor object.

Subclasses will usually pass in a fixed sensor_type which should be one of the sensor type constants. The list
params if set will have its values formatter by the type formatter for the given sensor type.

Note: The LRU sensor type was deprecated in katcp 0.4.

Note: The ADDRESS sensor type was added in katcp 0.4.

Parameters sensor_type : Sensor type constant

The type of sensor.

name : str

The name of the sensor.

description : str

A short description of the sensor.

units : str

The units of the sensor value. May be the empty string if there are no applicable units.

params : list

Additional parameters, dependent on the type of sensor:

• For INTEGER and FLOAT the list should give the minimum and maximum that de-
fine the range of the sensor value.

• For DISCRETE the list should contain all possible values the sensor may take.

• For all other types, params should be omitted.

default : object

An initial value for the sensor. By default this is determined by the sensor type.

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

Methods

Sensor.address(name[, description, unit, . . .]) Instantiate a new IP address sensor object.
Sensor.attach(observer) Attach an observer to this sensor.
Sensor.boolean(name[, description, unit, . . .]) Instantiate a new boolean sensor object.
Sensor.detach(observer) Detach an observer from this sensor.
Sensor.discrete(name[, description, unit,
. . .])

Instantiate a new discrete sensor object.

Continued on next page

1.2. Core API 69

KATCP Documentation, Release 0.0+unknown.201908260720

Table 9 – continued from previous page
Sensor.float(name[, description, unit, . . .]) Instantiate a new float sensor object.
Sensor.format_reading(reading[, major]) Format sensor reading as (timestamp, status, value)

tuple of strings.
Sensor.integer(name[, description, unit, . . .]) Instantiate a new integer sensor object.
Sensor.lru(name[, description, unit, . . .]) Instantiate a new lru sensor object.
Sensor.notify(reading) Notify all observers of changes to this sensor.
Sensor.parse_params(sensor_type, . . . [, ma-
jor])

Parse KATCP formatted parameters into Python val-
ues.

Sensor.parse_type(type_string) Parse KATCP formatted type code into Sensor type
constant.

Sensor.parse_value(s_value[, katcp_major]) Parse a value from a string.
Sensor.read() Read the sensor and return a (timestamp, status,

value) tuple.
Sensor.read_formatted([major]) Read the sensor and return a (timestamp, status,

value) tuple.
Sensor.set(timestamp, status, value) Set the current value of the sensor.
Sensor.set_formatted(raw_timestamp, . . . [,
major])

Set the current value of the sensor.

Sensor.set_value(value[, status, timestamp,
. . .])

Check and then set the value of the sensor.

Sensor.status() Read the current sensor status.
Sensor.string(name[, description, unit, . . .]) Instantiate a new string sensor object.
Sensor.timestamp(name[, description, unit,
. . .])

Instantiate a new timestamp sensor object.

Sensor.value() Read the current sensor value.

classmethod address(name, description=None, unit=”, default=None, initial_status=None)
Instantiate a new IP address sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

units : str

The units of the sensor value. May be the empty string if there are no applicable units.

default : (string, int)

An initial value for the sensor. Tuple contaning (host, port). default is (“0.0.0.0”, None)

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

attach(observer)
Attach an observer to this sensor.

The observer must support a call to observer.update(sensor, reading), where sensor is the sensor object
and reading is a (timestamp, status, value) tuple for this update (matching the return value of the read()
method).

Parameters observer : object

70 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Object with an .update(sensor, reading) method that will be called when the sensor value
is set

classmethod boolean(name, description=None, unit=”, default=None, initial_status=None)
Instantiate a new boolean sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

units : str

The units of the sensor value. May be the empty string if there are no applicable units.

default : bool

An initial value for the sensor. Defaults to False.

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

detach(observer)
Detach an observer from this sensor.

Parameters observer : object

The observer to remove from the set of observers notified when the sensor value is set.

classmethod discrete(name, description=None, unit=”, params=None, default=None, ini-
tial_status=None)

Instantiate a new discrete sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

units : str

The units of the sensor value. May be the empty string if there are no applicable units.

params : [str]

Sequence of all allowable discrete sensor states

default : str

An initial value for the sensor. Defaults to the first item of params

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

classmethod float(name, description=None, unit=”, params=None, default=None, ini-
tial_status=None)

Instantiate a new float sensor object.

Parameters name : str

1.2. Core API 71

KATCP Documentation, Release 0.0+unknown.201908260720

The name of the sensor.

description : str

A short description of the sensor.

units : str

The units of the sensor value. May be the empty string if there are no applicable units.

params : list

[min, max] – miniumum and maximum values of the sensor

default : float

An initial value for the sensor. Defaults to 0.0.

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

format_reading(reading, major=5)
Format sensor reading as (timestamp, status, value) tuple of strings.

All values are strings formatted as specified in the Sensor Type Formats in the katcp specification.

Parameters reading : Reading object

Sensor reading as returned by read()

major : int

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Returns timestamp : str

KATCP formatted timestamp string

status : str

KATCP formatted sensor status string

value : str

KATCP formatted sensor value

classmethod integer(name, description=None, unit=”, params=None, default=None, ini-
tial_status=None)

Instantiate a new integer sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

units : str

The units of the sensor value. May be the empty string if there are no applicable units.

params : list

[min, max] – miniumum and maximum values of the sensor

default : int

72 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

An initial value for the sensor. Defaults to 0.

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

classmethod lru(name, description=None, unit=”, default=None, initial_status=None)
Instantiate a new lru sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

units : str

The units of the sensor value. May be the empty string if there are no applicable units.

default : enum, Sensor.LRU_*

An initial value for the sensor. Defaults to self.LRU_NOMINAL

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

notify(reading)
Notify all observers of changes to this sensor.

classmethod parse_params(sensor_type, formatted_params, major=5)
Parse KATCP formatted parameters into Python values.

Parameters sensor_type : Sensor type constant

The type of sensor the parameters are for.

formatted_params : list of strings

The formatted parameters that should be parsed.

major : int

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Returns params : list of objects

The parsed parameters.

classmethod parse_type(type_string)
Parse KATCP formatted type code into Sensor type constant.

Parameters type_string : str

KATCP formatted type code.

Returns sensor_type : Sensor type constant

The corresponding Sensor type constant.

parse_value(s_value, katcp_major=5)
Parse a value from a string.

Parameters s_value : str

1.2. Core API 73

KATCP Documentation, Release 0.0+unknown.201908260720

A string value to attempt to convert to a value for the sensor.

Returns value : object

A value of a type appropriate to the sensor.

read()
Read the sensor and return a (timestamp, status, value) tuple.

Returns reading : Reading object

Sensor reading as a (timestamp, status, value) tuple.

read_formatted(major=5)
Read the sensor and return a (timestamp, status, value) tuple.

All values are strings formatted as specified in the Sensor Type Formats in the katcp specification.

Parameters major : int

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Returns timestamp : str

KATCP formatted timestamp string

status : str

KATCP formatted sensor status string

value : str

KATCP formatted sensor value

set(timestamp, status, value)
Set the current value of the sensor.

Parameters timestamp : float in seconds

The time at which the sensor value was determined.

status : Sensor status constant

Whether the value represents an error condition or not.

value : object

The value of the sensor (the type should be appropriate to the sensor’s type).

set_formatted(raw_timestamp, raw_status, raw_value, major=5)
Set the current value of the sensor.

Parameters timestamp : str

KATCP formatted timestamp string

status : str

KATCP formatted sensor status string

value : str

KATCP formatted sensor value

major : int, default = 5

KATCP major version to use for interpreting the raw values

74 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

set_value(value, status=1, timestamp=None, major=5)
Check and then set the value of the sensor.

Parameters value : object

Value of the appropriate type for the sensor.

status : Sensor status constant

Whether the value represents an error condition or not.

timestamp : float in seconds or None

The time at which the sensor value was determined. Uses current time if None.

major : int

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

status()
Read the current sensor status.

Returns status : enum (int)

The status of the sensor, one of the keys in Sensor.STATUSES

classmethod string(name, description=None, unit=”, default=None, initial_status=None)
Instantiate a new string sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

units : str

The units of the sensor value. May be the empty string if there are no applicable units.

default : string

An initial value for the sensor. Defaults to the empty string.

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

classmethod timestamp(name, description=None, unit=”, default=None, initial_status=None)
Instantiate a new timestamp sensor object.

Parameters name : str

The name of the sensor.

description : str

A short description of the sensor.

units : str

The units of the sensor value. For timestamp sensor may only be the empty string.

default : string

An initial value for the sensor in seconds since the Unix Epoch. Defaults to 0.

1.2. Core API 75

KATCP Documentation, Release 0.0+unknown.201908260720

initial_status : int enum or None

An initial status for the sensor. If None, defaults to Sensor.UNKNOWN. initial_status
must be one of the keys in Sensor.STATUSES

value()
Read the current sensor value.

Returns value : object

The value of the sensor (the type will be appropriate to the sensor’s type).

Exceptions

class katcp.FailReply
Raised by request handlers to indicate a failure.

A custom exception which, when thrown in a request handler, causes DeviceServerBase to send a fail reply with
the specified fail message, bypassing the generic exception handling, which would send a fail reply with a full
traceback.

Examples

>>> class MyDevice(DeviceServer):
... def request_myreq(self, req, msg):
... raise FailReply("This request always fails.")
...

class katcp.AsyncReply
Raised by a request handlers to indicate it will reply later.

A custom exception which, when thrown in a request handler, indicates to DeviceServerBase that no reply has
been returned by the handler but that the handler has arranged for a reply message to be sent at a later time.

Examples

>>> class MyDevice(DeviceServer):
... def request_myreq(self, req, msg):
... self.callback_client.request(
... Message.request("otherreq"),
... reply_cb=self._send_reply,
...)
... raise AsyncReply()
...

class katcp.KatcpDeviceError
Raised by KATCP servers when errors occur.

Changed in version 0.1: Deprecated in 0.1. Servers should not raise errors if communication with a client fails
– errors are simply logged instead.

1.2.3 High Level Clients

76 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

KATCPClientResource

class katcp.KATCPClientResource(resource_spec, parent=None, logger=<logging.Logger ob-
ject>)

Class managing a client connection to a single KATCP resource

Inspects the KATCP interface of the resources, exposing sensors and requests as per the katcp.resource.
KATCPResource API. Can also operate without exposin

Methods

KATCPClientResource.
drop_sampling_strategy(. . .)

Drop the sampling strategy for the named sensor
from the cache

KATCPClientResource.
inspecting_client_factory(. . .)

Return an instance of
ReplyWrappedInspectingClientAsync or
similar

KATCPClientResource.is_active()
KATCPClientResource.is_connected() Indication of the connection state
KATCPClientResource.
list_sensors([filter, . . .])

List sensors available on this resource matching cer-
tain criteria.

KATCPClientResource.
set_active(active)
KATCPClientResource.
set_ioloop([ioloop])

Set the tornado ioloop to use

KATCPClientResource.
set_sampling_strategies(. . .)

Set a strategy for all sensors matching the filter, in-
cluding unseen sensors The strategy should persist
across sensor disconnect/reconnect.

KATCPClientResource.
set_sampling_strategy(. . .)

Set a strategy for a sensor even if it is not yet known.

KATCPClientResource.
set_sensor_listener(**kwargs)

Set a sensor listener for a sensor even if it is not yet
known The listener registration should persist across
sensor disconnect/reconnect.

KATCPClientResource.start() Start the client and connect
KATCPClientResource.stop()
KATCPClientResource.
until_not_synced([timeout])

Convenience method to wait (with Future) until
client is not synced

KATCPClientResource.
until_state(state[, timeout])

Future that resolves when a certain client state is at-
tained

KATCPClientResource.
until_stopped([timeout])

Return future that resolves when the inspecting client
has stopped

KATCPClientResource.
until_synced([timeout])

Convenience method to wait (with Future) until
client is synced

KATCPClientResource.wait(**kwargs) Wait for a sensor in this resource to satisfy a condi-
tion.

KATCPClientResource.
wait_connected([timeout])

Future that resolves when the state is not ‘discon-
nected’.

MAX_LOOP_LATENCY = 0.03
When doing potentially tight loops in coroutines yield tornado.gen.moment after this much time. This is a
suggestion for methods to use.

drop_sampling_strategy(sensor_name)
Drop the sampling strategy for the named sensor from the cache

1.2. Core API 77

KATCP Documentation, Release 0.0+unknown.201908260720

Calling set_sampling_strategy() requires the requested strategy to be memorised so that it can
automatically be reapplied. This method causes the strategy to be forgotten. There is no change to the
current strategy. No error is raised if there is no strategy to drop.

Parameters sensor_name : str

Name of the sensor

inspecting_client_factory(host, port, ioloop_set_to)
Return an instance of ReplyWrappedInspectingClientAsync or similar

Provided to ease testing. Dynamically overriding this method after instantiation but be-
fore start() is called allows for deep brain surgery. See katcp.fake_clients.
fake_inspecting_client_factory

is_connected()
Indication of the connection state

Returns True if state is not “disconnected”, i.e “syncing” or “synced”

list_sensors(filter=”, strategy=False, status=”, use_python_identifiers=True, tuple=False, re-
fresh=False)

List sensors available on this resource matching certain criteria.

Parameters filter : string, optional

Filter each returned sensor’s name against this regexp if specified. To ease the
dichotomy between Python identifier names and actual sensor names, the default
is to search on Python identifier names rather than KATCP sensor names, unless
use_python_identifiers below is set to False. Note that the sensors of subordinate
KATCPResource instances may have inconsistent names and Python identifiers, better
to always search on Python identifiers in this case.

strategy : {False, True}, optional

Only list sensors with a set strategy if True

status : string, optional

Filter each returned sensor’s status against this regexp if given

use_python_identifiers : {True, False}, optional

Match on python identfiers even the the KATCP name is available.

tuple : {True, False}, optional, Default: False

Return backwards compatible tuple instead of SensorResultTuples

refresh : {True, False}, optional, Default: False

If set the sensor values will be refreshed with get_value before returning the results.

Returns sensors : list of SensorResultTuples, or list of tuples

List of matching sensors presented as named tuples. The object field is the
KATCPSensor object associated with the sensor. Note that the name of the object
may not match name if it originates from a subordinate device.

set_ioloop(ioloop=None)
Set the tornado ioloop to use

Defaults to tornado.ioloop.IOLoop.current() if set_ioloop() is not called or if ioloop=None. Must be called
before start()

78 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

set_sampling_strategies(**kwargs)
Set a strategy for all sensors matching the filter, including unseen sensors The strategy should persist across
sensor disconnect/reconnect.

filter [str] Filter for sensor names

strategy_and_params [seq of str or str] As tuple contains (<strat_name>, [<strat_parm1>, . . .]) where
the strategy names and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

Returns done : tornado Future

Resolves when done

set_sampling_strategy(**kwargs)
Set a strategy for a sensor even if it is not yet known. The strategy should persist across sensor discon-
nect/reconnect.

sensor_name [str] Name of the sensor

strategy_and_params [seq of str or str] As tuple contains (<strat_name>, [<strat_parm1>, . . .]) where
the strategy names and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

Returns done : tornado Future

Resolves when done

set_sensor_listener(**kwargs)
Set a sensor listener for a sensor even if it is not yet known The listener registration should persist across
sensor disconnect/reconnect.

sensor_name [str] Name of the sensor

listener [callable] Listening callable that will be registered on the named sensor when it becomes avail-
able. Callable as for KATCPSensor.register_listener()

start()
Start the client and connect

until_not_synced(timeout=None)
Convenience method to wait (with Future) until client is not synced

until_state(state, timeout=None)
Future that resolves when a certain client state is attained

Parameters state : str

Desired state, one of (“disconnected”, “syncing”, “synced”)

timeout: float :

Timeout for operation in seconds.

until_stopped(timeout=None)
Return future that resolves when the inspecting client has stopped

See the DeviceClient.until_stopped docstring for parameter definitions and more info.

until_synced(timeout=None)
Convenience method to wait (with Future) until client is synced

1.2. Core API 79

KATCP Documentation, Release 0.0+unknown.201908260720

wait(**kwargs)
Wait for a sensor in this resource to satisfy a condition.

Parameters sensor_name : string

The name of the sensor to check

condition_or_value : obj or callable, or seq of objs or callables

If obj, sensor.value is compared with obj. If callable, condition_or_value(reading) is
called, and must return True if its condition is satisfied. Since the reading is passed
in, the value, status, timestamp or received_timestamp attributes can all be used in the
check.

timeout : float or None

The timeout in seconds (None means wait forever)

Returns This command returns a tornado Future that resolves with True when the :

sensor value satisfies the condition, or False if the condition is :

still not satisfied after a given timeout period. :

Raises :class:‘KATCPSensorError‘ :

If the sensor does not have a strategy set, or if the named sensor is not present

wait_connected(timeout=None)
Future that resolves when the state is not ‘disconnected’.

KATCPClientResourceContainer

class katcp.KATCPClientResourceContainer(resources_spec, logger=<logging.Logger ob-
ject>)

Class for containing multiple KATCPClientResource instances

Provides aggregate sensor and req attributes containing the union of all the sensors in requests in the contained
resources. Names are prefixed with <resname>_, where <resname> is the name of the resource to which the
sensor / request belongs except for aggregate sensors that starts with ‘agg_’.

Methods

KATCPClientResourceContainer.
add_child_resource_client(. . .)

Add a resource client to the container and start the
resource connection

KATCPClientResourceContainer.
add_group(. . .)

Add a new ClientGroup to container groups
member.

KATCPClientResourceContainer.
client_resource_factory(. . .)

Return an instance of KATCPClientResource or
similar

KATCPClientResourceContainer.
is_active()
KATCPClientResourceContainer.
is_connected()

Indication of the connection state of all children

KATCPClientResourceContainer.
list_sensors([. . .])

List sensors available on this resource matching cer-
tain criteria.

KATCPClientResourceContainer.
set_active(active)

Continued on next page

80 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 11 – continued from previous page
KATCPClientResourceContainer.
set_ioloop([ioloop])

Set the tornado ioloop to use

KATCPClientResourceContainer.
set_sampling_strategies(. . .)

Set sampling strategies for filtered sensors - these
sensors have to exsist

KATCPClientResourceContainer.
set_sampling_strategy(. . .)

Set sampling strategies for the specific sensor - this
sensor has to exist

KATCPClientResourceContainer.
set_sensor_listener(. . .)

Set listener for the specific sensor - this sensor has to
exsist

KATCPClientResourceContainer.
start()

Start and connect all the subordinate clients

KATCPClientResourceContainer.stop() Stop all child resources
KATCPClientResourceContainer.
until_all_children_in_state(. . .)

Return a tornado Future; resolves when all clients are
in specified state

KATCPClientResourceContainer.
until_any_child_in_state(state)

Return a tornado Future; resolves when any client is
in specified state

KATCPClientResourceContainer.
until_not_synced(. . .)

Return a tornado Future; resolves when any subordi-
nate client is not synced

KATCPClientResourceContainer.
until_stopped([. . .])

Return dict of futures that resolve when each child
resource has stopped

KATCPClientResourceContainer.
until_synced(. . .)

Return a tornado Future; resolves when all subordi-
nate clients are synced

KATCPClientResourceContainer.
wait(. . . [, timeout])

Wait for a sensor in this resource to satisfy a condi-
tion.

add_child_resource_client(res_name, res_spec)
Add a resource client to the container and start the resource connection

add_group(group_name, group_client_names)
Add a new ClientGroup to container groups member.

Add the group named group_name with sequence of client names to the container groups member. From
there it will be wrapped appropriately in the higher-level thread-safe container.

client_resource_factory(res_spec, parent, logger)
Return an instance of KATCPClientResource or similar

Provided to ease testing. Overriding this method allows deep brain surgery. See katcp.
fake_clients.fake_KATCP_client_resource_factory()

is_connected()
Indication of the connection state of all children

list_sensors(filter=”, strategy=False, status=”, use_python_identifiers=True, tuple=False, re-
fresh=False)

List sensors available on this resource matching certain criteria.

Parameters filter : string, optional

Filter each returned sensor’s name against this regexp if specified. To ease the
dichotomy between Python identifier names and actual sensor names, the default
is to search on Python identifier names rather than KATCP sensor names, unless
use_python_identifiers below is set to False. Note that the sensors of subordinate
KATCPResource instances may have inconsistent names and Python identifiers, better
to always search on Python identifiers in this case.

strategy : {False, True}, optional

Only list sensors with a set strategy if True

1.2. Core API 81

KATCP Documentation, Release 0.0+unknown.201908260720

status : string, optional

Filter each returned sensor’s status against this regexp if given

use_python_identifiers : {True, False}, optional

Match on python identfiers even the the KATCP name is available.

tuple : {True, False}, optional, Default: False

Return backwards compatible tuple instead of SensorResultTuples

refresh : {True, False}, optional, Default: False

If set the sensor values will be refreshed with get_value before returning the results.

Returns sensors : list of SensorResultTuples, or list of tuples

List of matching sensors presented as named tuples. The object field is the
KATCPSensor object associated with the sensor. Note that the name of the object
may not match name if it originates from a subordinate device.

set_ioloop(ioloop=None)
Set the tornado ioloop to use

Defaults to tornado.ioloop.IOLoop.current() if set_ioloop() is not called or if ioloop=None. Must be called
before start()

set_sampling_strategies(**kwargs)
Set sampling strategies for filtered sensors - these sensors have to exsist

set_sampling_strategy(**kwargs)
Set sampling strategies for the specific sensor - this sensor has to exist

set_sensor_listener(**kwargs)
Set listener for the specific sensor - this sensor has to exsist

start()
Start and connect all the subordinate clients

stop()
Stop all child resources

until_all_children_in_state(**kwargs)
Return a tornado Future; resolves when all clients are in specified state

until_any_child_in_state(state, timeout=None)
Return a tornado Future; resolves when any client is in specified state

until_not_synced(**kwargs)
Return a tornado Future; resolves when any subordinate client is not synced

until_stopped(timeout=None)
Return dict of futures that resolve when each child resource has stopped

See the DeviceClient.until_stopped docstring for parameter definitions and more info.

until_synced(**kwargs)
Return a tornado Future; resolves when all subordinate clients are synced

wait(sensor_name, condition_or_value, timeout=5)
Wait for a sensor in this resource to satisfy a condition.

Parameters sensor_name : string

The name of the sensor to check

82 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

condition_or_value : obj or callable, or seq of objs or callables

If obj, sensor.value is compared with obj. If callable, condition_or_value(reading) is
called, and must return True if its condition is satisfied. Since the reading is passed
in, the value, status, timestamp or received_timestamp attributes can all be used in the
check.

timeout : float or None

The timeout in seconds (None means wait forever)

Returns This command returns a tornado Future that resolves with True when the :

sensor value satisfies the condition, or False if the condition is :

still not satisfied after a given timeout period. :

Raises :class:‘KATCPSensorError‘ :

If the sensor does not have a strategy set, or if the named sensor is not present

1.2.4 Message Parsing

Message

class katcp.Message(mtype, name, arguments=None, mid=None)
Represents a KAT device control language message.

Parameters mtype : Message type constant

The message type (request, reply or inform).

name : str

The message name.

arguments : list of strings

The message arguments.

mid : str, digits only

The message identifier. Replies and informs that are part of the reply to a request should
have the same id as the request did.

Methods

Message.copy() Return a shallow copy of the message object and its
arguments.

Message.format_argument(arg) Format a Message argument to a string
Message.inform(name, *args, **kwargs) Helper method for creating inform messages.
Message.reply(name, *args, **kwargs) Helper method for creating reply messages.
Message.reply_inform(req_msg, *args) Helper method for creating inform messages in reply

to a request.
Message.reply_ok() Return True if this is a reply and its first argument is

‘ok’.
Message.reply_to_request(req_msg,
*args)

Helper method for creating reply messages to a spe-
cific request.

Continued on next page

1.2. Core API 83

KATCP Documentation, Release 0.0+unknown.201908260720

Table 12 – continued from previous page
Message.request(name, *args, **kwargs) Helper method for creating request messages.

copy()
Return a shallow copy of the message object and its arguments.

Returns msg : Message

A copy of the message object.

format_argument(arg)
Format a Message argument to a string

classmethod inform(name, *args, **kwargs)
Helper method for creating inform messages.

Parameters name : str

The name of the message.

args : list of strings

The message arguments.

classmethod reply(name, *args, **kwargs)
Helper method for creating reply messages.

Parameters name : str

The name of the message.

args : list of strings

The message arguments.

Keyword Arguments mid : str or None

Message ID to use or None (default) for no Message ID

classmethod reply_inform(req_msg, *args)
Helper method for creating inform messages in reply to a request.

Copies the message name and message identifier from request message.

Parameters req_msg : katcp.core.Message instance

The request message that this inform if in reply to

args : list of strings

The message arguments except name

reply_ok()
Return True if this is a reply and its first argument is ‘ok’.

classmethod reply_to_request(req_msg, *args)
Helper method for creating reply messages to a specific request.

Copies the message name and message identifier from request message.

Parameters req_msg : katcp.core.Message instance

The request message that this inform if in reply to

args : list of strings

The message arguments.

84 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

classmethod request(name, *args, **kwargs)
Helper method for creating request messages.

Parameters name : str

The name of the message.

args : list of strings

The message arguments.

Keyword Arguments mid : str or None

Message ID to use or None (default) for no Message ID

MessageParser

class katcp.MessageParser
Parses lines into Message objects.

Methods

MessageParser.parse(line) Parse a line, return a Message.

parse(line)
Parse a line, return a Message.

Parameters line : str

The line to parse (should not contain the terminating newline or carriage return).

Returns msg : Message object

The resulting Message.

Exceptions

class katcp.KatcpSyntaxError
Raised by parsers when encountering a syntax error.

1.2.5 Other

DeviceMetaclass

class katcp.DeviceMetaclass(name, bases, dct)
Metaclass for DeviceServer and DeviceClient classes.

Collects up methods named request_* and adds them to a dictionary of supported methods on the class. All
request_* methods must have a doc string so that help can be generated. The same is done for inform_* and
reply_* methods.

Methods

1.2. Core API 85

KATCP Documentation, Release 0.0+unknown.201908260720

DeviceMetaclass.
check_protocol(handler)

Return False if handler should be filtered

DeviceMetaclass.mro() return a type’s method resolution order

check_protocol(handler)
Return False if handler should be filtered

1.2.6 Version Information

katcp.VERSION

Five-element tuple containing the version number.

katcp.VERSION_STR

String representing the version number.

1.3 Kattypes

Utilities for dealing with KATCP types.

class katcp.kattypes.Address(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.KatcpType

The KATCP address type.

Note: The address type was added in katcp 0.4.

Methods

Address.check(value, major) Check whether the value is valid.
Address.decode(value, major)
Address.encode(value, major)
Address.get_default() Return the default value.
Address.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Address.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

class katcp.kattypes.Bool(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.KatcpType

The KATCP boolean type.

Methods

Bool.check(value, major) Check whether the value is valid.
Bool.decode(value, major)
Bool.encode(value, major)

Continued on next page

86 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 16 – continued from previous page
Bool.get_default() Return the default value.
Bool.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Bool.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

class katcp.kattypes.Discrete(values, case_insensitive=False, **kwargs)
Bases: katcp.kattypes.Str

The KATCP discrete type.

Parameters values : list of str

List of the values the discrete type may accept.

case_insensitive : bool

Whether case-insensitive value matching should be used.

Methods

Discrete.check(value, major) Check whether the value in the set of allowed values.
Discrete.decode(value, major)
Discrete.encode(value, major)
Discrete.get_default() Return the default value.
Discrete.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Discrete.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

check(value, major)
Check whether the value in the set of allowed values.

Raise a ValueError if it is not.

class katcp.kattypes.DiscreteMulti(values, all_keyword=’all’, separator=’, ’, **kwargs)
Bases: katcp.kattypes.Discrete

Discrete type which can accept multiple values.

Its value is always a list.

Parameters values : list of str

Set of allowed values.

all_keyword : str, optional

The string which represents the list of all allowed values.

separator : str, optional

The separator used in the packed value string.

Methods

DiscreteMulti.check(value, major) Check that each item in the value list is in the allowed
set.

DiscreteMulti.decode(value, major)
DiscreteMulti.encode(value, major)

Continued on next page

1.3. Kattypes 87

KATCP Documentation, Release 0.0+unknown.201908260720

Table 18 – continued from previous page
DiscreteMulti.get_default() Return the default value.
DiscreteMulti.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
DiscreteMulti.unpack(packed_value[, ma-
jor])

Parse a KATCP parameter into an object.

check(value, major)
Check that each item in the value list is in the allowed set.

class katcp.kattypes.Float(min=None, max=None, **kwargs)
Bases: katcp.kattypes.KatcpType

The KATCP float type.

Parameters min : float

The minimum allowed value. Ignored if not given.

max : float

The maximum allowed value. Ignored if not given.

Methods

Float.check(value, major) Check whether the value is between the minimum
and maximum.

Float.decode(value, major)
Float.encode(value, major)
Float.get_default() Return the default value.
Float.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Float.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

check(value, major)
Check whether the value is between the minimum and maximum.

Raise a ValueError if it is not.

class katcp.kattypes.Int(min=None, max=None, **kwargs)
Bases: katcp.kattypes.KatcpType

The KATCP integer type.

Parameters min : int

The minimum allowed value. Ignored if not given.

max : int

The maximum allowed value. Ignored if not given.

Methods

Int.check(value, major) Check whether the value is between the minimum
and maximum.

Int.decode(value, major)
Int.encode(value, major)

Continued on next page

88 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 20 – continued from previous page
Int.get_default() Return the default value.
Int.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Int.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

check(value, major)
Check whether the value is between the minimum and maximum.

Raise a ValueError if it is not.

class katcp.kattypes.KatcpType(default=None, optional=False, multiple=False)
Bases: object

Class representing a KATCP type.

Sub-classes should:

• Set the name attribute.

• Implement the encode() method.

• Implement the decode() method.

Parameters default : object, optional

The default value for this type.

optional : boolean, optional

Whether the value is allowed to be None.

multiple : boolean, optional

Whether multiple values of this type are expected. Must be the last type parameter if
this is True.

Methods

KatcpType.check(value, major) Check whether the value is valid.
KatcpType.get_default() Return the default value.
KatcpType.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
KatcpType.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

check(value, major)
Check whether the value is valid.

Do nothing if the value is valid. Raise an exception if the value is not valid. Parameter major describes the
KATCP major version to use when interpreting the validity of a value.

get_default()
Return the default value.

Raise a ValueError if the value is not optional and there is no default.

Returns default : object

The default value.

pack(value, nocheck=False, major=5)
Return the value formatted as a KATCP parameter.

1.3. Kattypes 89

KATCP Documentation, Release 0.0+unknown.201908260720

Parameters value : object

The value to pack.

nocheck : bool, optional

Whether to check that the value is valid before packing it.

major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Returns packed_value : str

The unescaped KATCP string representing the value.

unpack(packed_value, major=5)
Parse a KATCP parameter into an object.

Parameters packed_value : str

The unescaped KATCP string to parse into a value.

major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Returns value : object

The value the KATCP string represented.

class katcp.kattypes.Lru(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.KatcpType

The KATCP lru type

Methods

Lru.check(value, major) Check whether the value is valid.
Lru.decode(value, major)
Lru.encode(value, major)
Lru.get_default() Return the default value.
Lru.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Lru.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

class katcp.kattypes.Parameter(position, name, kattype, major)
Bases: object

Wrapper for kattypes which holds parameter-specific information.

Parameters position : int

The parameter’s position (starts at 1)

name : str

The parameter’s name (introspected)

kattype : KatcpType object

The parameter’s kattype

90 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

major : integer

Major version of KATCP to use when interpreting types

Methods

Parameter.pack(value) Pack the parameter using its kattype.
Parameter.unpack(value) Unpack the parameter using its kattype.

pack(value)
Pack the parameter using its kattype.

Parameters value : object

The value to pack

Returns packed_value : str

The unescaped KATCP string representing the value.

unpack(value)
Unpack the parameter using its kattype.

Parameters packed_value : str

The unescaped KATCP string to unpack.

Returns value : object

The unpacked value.

class katcp.kattypes.Regex(regex, **kwargs)
Bases: katcp.kattypes.Str

String type that checks values using a regular expression.

Parameters regex : str or regular expression object

Regular expression that values should match.

Methods

Regex.check(value, major) Check whether the value is valid.
Regex.decode(value, major)
Regex.encode(value, major)
Regex.get_default() Return the default value.
Regex.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Regex.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

check(value, major)
Check whether the value is valid.

Do nothing if the value is valid. Raise an exception if the value is not valid. Parameter major describes the
KATCP major version to use when interpreting the validity of a value.

class katcp.kattypes.Str(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.KatcpType

The KATCP string type.

1.3. Kattypes 91

KATCP Documentation, Release 0.0+unknown.201908260720

Methods

Str.check(value, major) Check whether the value is valid.
Str.decode(value, major)
Str.encode(value, major)
Str.get_default() Return the default value.
Str.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Str.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

class katcp.kattypes.StrictTimestamp(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.KatcpType

A timestamp that enforces the XXXX.YYY format for timestamps.

Methods

StrictTimestamp.check(value, major) Check whether the value is positive.
StrictTimestamp.decode(value, major)
StrictTimestamp.encode(value, major)
StrictTimestamp.get_default() Return the default value.
StrictTimestamp.pack(value[, nocheck, ma-
jor])

Return the value formatted as a KATCP parameter.

StrictTimestamp.unpack(packed_value[,
major])

Parse a KATCP parameter into an object.

check(value, major)
Check whether the value is positive.

Raise a ValueError if it is not.

class katcp.kattypes.Struct(fmt, **kwargs)
Bases: katcp.kattypes.KatcpType

KatcpType for parsing and packing values using the struct module.

Parameters fmt : str

Format to use for packing and unpacking values. It is passed directly into struct.
pack() and struct.unpack().

Methods

Struct.check(value, major) Check whether the value is valid.
Struct.decode(value, major)
Struct.encode(value, major)
Struct.get_default() Return the default value.
Struct.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Struct.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

class katcp.kattypes.Timestamp(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.KatcpType

92 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

The KATCP timestamp type.

Methods

Timestamp.check(value, major) Check whether the value is valid.
Timestamp.decode(value, major)
Timestamp.encode(value, major)
Timestamp.get_default() Return the default value.
Timestamp.pack(value[, nocheck, major]) Return the value formatted as a KATCP parameter.
Timestamp.unpack(packed_value[, major]) Parse a KATCP parameter into an object.

class katcp.kattypes.TimestampOrNow(default=None, optional=False, multiple=False)
Bases: katcp.kattypes.Timestamp

KatcpType representing either a Timestamp or the special value for now.

Floats are encoded as for katcp.kattypes.Timestamp. The special value for now, katcp.kattypes.
TimestampOrNow.NOW, is encoded as the string “now”.

Methods

TimestampOrNow.check(value, major) Check whether the value is valid.
TimestampOrNow.decode(value, major)
TimestampOrNow.encode(value, major)
TimestampOrNow.get_default() Return the default value.
TimestampOrNow.pack(value[, nocheck, ma-
jor])

Return the value formatted as a KATCP parameter.

TimestampOrNow.unpack(packed_value[, ma-
jor])

Parse a KATCP parameter into an object.

katcp.kattypes.async_make_reply(*args, **kwargs)
Wrap future that will resolve with arguments needed by make_reply().

katcp.kattypes.concurrent_reply(handler)
Decorator for concurrent async request handlers

By default async request handlers that return a Future are serialised per-connection, i.e. until the most recent
handler resolves its future, the next message will not be read from the client stream. A handler decorated with
this decorator allows the next message to be read before it has resolved its future, allowing multiple requests
from a single client to be handled concurrently. This is similar to raising AsyncReply.

Examples

>>> class MyDevice(DeviceServer):
... @return_reply(Int())
... @concurrent_reply
... @tornado.gen.coroutine
... def request_myreq(self, req):
... '''A slow request'''
... result = yield self.slow_operation()

(continues on next page)

1.3. Kattypes 93

KATCP Documentation, Release 0.0+unknown.201908260720

(continued from previous page)

... raise tornado.gen.Return((req, result))

...

katcp.kattypes.has_katcp_protocol_flags(protocol_flags)
Decorator; only include handler if server has these protocol flags

Useful for including default handler implementations for KATCP features that are only present when certain
server protocol flags are set.

Examples

>>> class MyDevice(DeviceServer):
... '''This device server will expose ?myreq'''
... PROTOCOL_INFO = katcp.core.ProtocolFlags(5, 0, [

katcp.core.ProtocolFlags.MULTI_CLIENT])
...
... @has_katcp_protocol_flags([katcp.core.ProtocolFlags.MULTI_CLIENT])
... def request_myreq(self, req, msg):
... '''A request that requires multi-client support'''
... # Request handler implementation here.
...
>>> class MySingleClientDevice(MyDevice):
... '''This device server will not expose ?myreq'''
...
... PROTOCOL_INFO = katcp.core.ProtocolFlags(5, 0, [])
...

katcp.kattypes.inform()
Decorator for inform handler methods.

The method being decorated should take arguments matching the list of types. The decorator will unpack the
request message into the arguments.

Parameters types : list of kattypes

The types of the request message parameters (in order). A type with multiple=True has
to be the last type.

Keyword Arguments include_msg : bool, optional

Pass the request message as the third parameter to the decorated request handler function
(default is False).

major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Examples

>>> class MyDeviceClient(katcp.client.AsyncClient):
... @inform(Int(), Float())
... def inform_myinf(self, my_int, my_float):
... '''Handle #myinf <my_int> <my_float> inform received from server'''
... # Call some code here that reacts to my_inf and my_float

94 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

katcp.kattypes.make_reply(msgname, types, arguments, major)
Helper method for constructing a reply message from a list or tuple.

Parameters msgname : str

Name of the reply message.

types : list of kattypes

The types of the reply message parameters (in order).

arguments : list of objects

The (unpacked) reply message parameters.

major : integer

Major version of KATCP to use when packing types

katcp.kattypes.minimum_katcp_version(major, minor=0)
Decorator; exclude handler if server’s protocol version is too low

Useful for including default handler implementations for KATCP features that are only present in certain KATCP
protocol versions

Examples

>>> class MyDevice(DeviceServer):
... '''This device server will expose ?myreq'''
... PROTOCOL_INFO = katcp.core.ProtocolFlags(5, 1)
...
... @minimum_katcp_version(5, 1)
... def request_myreq(self, req, msg):
... '''A request that should only be present for KATCP >v5.1'''
... # Request handler implementation here.
...
>>> class MyOldDevice(MyDevice):
... '''This device server will not expose ?myreq'''
...
... PROTOCOL_INFO = katcp.core.ProtocolFlags(5, 0)
...

katcp.kattypes.pack_types(types, args, major)
Pack arguments according the the types list.

Parameters types : list of kattypes

The types of the arguments (in order).

args : list of objects

The arguments to format.

major : integer

Major version of KATCP to use when packing types

katcp.kattypes.request(*types, **options)
Decorator for request handler methods.

The method being decorated should take a req argument followed by arguments matching the list of types. The
decorator will unpack the request message into the arguments.

Parameters types : list of kattypes

1.3. Kattypes 95

KATCP Documentation, Release 0.0+unknown.201908260720

The types of the request message parameters (in order). A type with multiple=True has
to be the last type.

Keyword Arguments include_msg : bool, optional

Pass the request message as the third parameter to the decorated request handler function
(default is False).

major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Examples

>>> class MyDevice(DeviceServer):
... @request(Int(), Float(), Bool())
... @return_reply(Int(), Float())
... def request_myreq(self, req, my_int, my_float, my_bool):
... '''?myreq my_int my_float my_bool'''
... return ("ok", my_int + 1, my_float / 2.0)
...
... @request(Int(), include_msg=True)
... @return_reply(Bool())
... def request_is_odd(self, req, msg, my_int):

'''?is-odd <my_int>, reply '1' if <my_int> is odd, else 0'''
... req.inform('Checking oddity of %d' % my_int)
... return ("ok", my_int % 2)
...

katcp.kattypes.request_timeout_hint(timeout_hint)
Decorator; add recommended client timeout hint to a request for request

Useful for requests that take longer than average to reply. Hint is provided to clients via ?request-timeout-hint.
Note this is only exposed if the device server sets the protocol version to KATCP v5.1 or higher and enables the
REQUEST_TIMEOUT_HINTS flag in its PROTOCOL_INFO class attribute

Parameters timeout_hint : float (seconds) or None

How long the decorated request should reasonably take to reply. No timeout hint if
None, similar to never using the decorator, provided for consistency.

Examples

>>> class MyDevice(DeviceServer):
... @return_reply(Int())
... @request_timeout_hint(15) # Set request timeout hint to 15 seconds
... @tornado.gen.coroutine
... def request_myreq(self, req):
... '''A slow request'''
... result = yield self.slow_operation()
... raise tornado.gen.Return((req, result))
...

katcp.kattypes.return_reply(*types, **options)
Decorator for returning replies from request handler methods.

96 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

The method being decorated should return an iterable of result values. If the first value is ‘ok’, the decorator
will check the remaining values against the specified list of types (if any). If the first value is ‘fail’ or ‘error’,
there must be only one remaining parameter, and it must be a string describing the failure or error In both cases,
the decorator will pack the values into a reply message.

Parameters types : list of kattypes

The types of the reply message parameters (in order).

Keyword Arguments major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Examples

>>> class MyDevice(DeviceServer):
... @request(Int())
... @return_reply(Int(), Float())
... def request_myreq(self, req, my_int):
... return ("ok", my_int + 1, my_int * 2.0)
...

katcp.kattypes.send_reply(*types, **options)
Decorator for sending replies from request callback methods.

This decorator constructs a reply from a list or tuple returned from a callback method, but unlike the return_reply
decorator it also sends the reply rather than returning it.

The list/tuple returned from the callback method must have req (a ClientRequestConnection instance) as its first
parameter and the original message as the second. The original message is needed to determine the message
name and ID.

The device with the callback method must have a reply method.

Parameters types : list of kattypes

The types of the reply message parameters (in order).

Keyword Arguments major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Examples

>>> class MyDevice(DeviceServer):
... @send_reply(Int(), Float())
... def my_callback(self, req):
... return (req, "ok", 5, 2.0)
...

katcp.kattypes.unpack_message()
Decorator that unpacks katcp.Messages to function arguments.

The method being decorated should take arguments matching the list of types. The decorator will unpack the
request message into the arguments.

Parameters types : list of kattypes

1.3. Kattypes 97

KATCP Documentation, Release 0.0+unknown.201908260720

The types of the request message parameters (in order). A type with multiple=True has
to be the last type.

Keyword Arguments include_msg : bool, optional

Pass the request message as the third parameter to the decorated request handler function
(default is False).

major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

Examples

>>> class MyClient(DeviceClient):
... @unpack_message(Str(), Int(), Float(), Bool())
... def reply_myreq(self, status, my_int, my_float, my_bool):
... print 'myreq replied with ', (status, my_int, my_float, my_bool)
...
... @unpack_message(Str(), Int(), include_msg=True)
... def inform_fruit_picked(self, msg, fruit, no_picked):
... print no_picked, 'of fruit ', fruit, ' picked.'
... print 'Raw inform message: ', str(msg)

katcp.kattypes.unpack_types(types, args, argnames, major)
Parse arguments according to types list.

Parameters types : list of kattypes

The types of the arguments (in order).

args : list of strings

The arguments to parse.

argnames : list of strings

The names of the arguments.

major : integer

Major version of KATCP to use when packing types

katcp.kattypes.unpack_message()
Decorator that unpacks katcp.Messages to function arguments.

The method being decorated should take arguments matching the list of types. The decorator will unpack the
request message into the arguments.

Parameters types : list of kattypes

The types of the request message parameters (in order). A type with multiple=True has
to be the last type.

Keyword Arguments include_msg : bool, optional

Pass the request message as the third parameter to the decorated request handler function
(default is False).

major : int, optional

Major version of KATCP to use when interpreting types. Defaults to latest implemented
KATCP version.

98 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Examples

>>> class MyClient(DeviceClient):
... @unpack_message(Str(), Int(), Float(), Bool())
... def reply_myreq(self, status, my_int, my_float, my_bool):
... print 'myreq replied with ', (status, my_int, my_float, my_bool)
...
... @unpack_message(Str(), Int(), include_msg=True)
... def inform_fruit_picked(self, msg, fruit, no_picked):
... print no_picked, 'of fruit ', fruit, ' picked.'
... print 'Raw inform message: ', str(msg)

1.4 Low level client API (client)

Clients for the KAT device control language.

class katcp.client.AsyncClient(host, port, tb_limit=20, timeout=5.0, logger=<logging.Logger
object>, auto_reconnect=True)

Bases: katcp.client.DeviceClient

Implement async and callback-based requests on top of DeviceClient.

This client will use message IDs if the server supports them.

Parameters host : string

Host to connect to.

port : int

Port to connect to.

tb_limit : int, optional

Maximum number of stack frames to send in error traceback.

logger : object, optional

Python Logger object to log to. Default is a logger named ‘katcp’.

auto_reconnect : bool, optional

Whether to automatically reconnect if the connection dies.

timeout : float in seconds, optional

Default number of seconds to wait before a callback callback_request times out. Can
be overridden in individual calls to callback_request.

Examples

>>> def reply_cb(msg):
... print "Reply:", msg
...
>>> def inform_cb(msg):
... print "Inform:", msg
...
>>> c = AsyncClient('localhost', 10000)
>>> c.start()

(continues on next page)

1.4. Low level client API (client) 99

KATCP Documentation, Release 0.0+unknown.201908260720

(continued from previous page)

>>> c.ioloop.add_callback(
... c.callback_request,
... katcp.Message.request('myreq'),
... reply_cb=reply_cb,
... inform_cb=inform_cb,
...)
...
>>> # expect reply to be printed here
>>> # stop the client once we're finished with it
>>> c.stop()
>>> c.join()

Methods

AsyncClient.blocking_request(msg[,
timeout, . . .])

Send a request messsage and wait for its reply.

AsyncClient.callback_request(msg[,
. . .])

Send a request messsage.

AsyncClient.convert_seconds(time_seconds)Convert a time in seconds to the device timestamp
units.

AsyncClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

AsyncClient.enable_thread_safety() Enable thread-safety features.
AsyncClient.future_request(msg[, time-
out, . . .])

Send a request messsage, with future replies.

AsyncClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

AsyncClient.handle_message(msg) Handle a message from the server.
AsyncClient.handle_reply(msg) Handle a reply message related to the current re-

quest.
AsyncClient.handle_request(msg) Dispatch a request message to the appropriate

method.
AsyncClient.inform_build_state(msg) Handle katcp v4 and below build-state inform.
AsyncClient.inform_version(msg) Handle katcp v4 and below version inform.
AsyncClient.inform_version_connect(msg)Process a #version-connect message.
AsyncClient.is_connected() Check if the socket is currently connected.
AsyncClient.join([timeout]) Rejoin the client thread.
AsyncClient.notify_connected(connected) Event handler that is called whenever the connection

status changes.
AsyncClient.preset_protocol_flags(protocol_flags)Preset server protocol flags.
AsyncClient.request(msg[, use_mid]) Send a request message, with automatic message ID

assignment.
AsyncClient.running() Whether the client is running.
AsyncClient.send_message(msg) Send any kind of message.
AsyncClient.send_request(msg) Send a request messsage.
AsyncClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
AsyncClient.start([timeout]) Start the client in a new thread.
AsyncClient.stop(*args, **kwargs) Stop a running client.
AsyncClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
Continued on next page

100 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 30 – continued from previous page
AsyncClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
AsyncClient.unhandled_request(msg) Fallback method for requests without a registered

handler.
AsyncClient.until_connected(**kwargs) Return future that resolves when the client is con-

nected.
AsyncClient.until_protocol(**kwargs) Return future that resolves after receipt of katcp pro-

tocol info.
AsyncClient.until_running([timeout]) Return future that resolves when the client is run-

ning.
AsyncClient.until_stopped([timeout]) Return future that resolves when the client has

stopped.
AsyncClient.wait_connected([timeout]) Wait until the client is connected.
AsyncClient.wait_disconnected([timeout]) Wait until the client is disconnected.
AsyncClient.wait_protocol([timeout]) Wait until katcp protocol information has been re-

ceived from server.
AsyncClient.wait_running([timeout]) Wait until the client is running.

blocking_request(msg, timeout=None, use_mid=None)
Send a request messsage and wait for its reply.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

callback_request(msg, reply_cb=None, inform_cb=None, user_data=None, timeout=None,
use_mid=None)

Send a request messsage.

Parameters msg : Message object

The request message to send.

reply_cb : function

The reply callback with signature reply_cb(msg) or reply_cb(msg, *user_data)

inform_cb : function

The inform callback with signature inform_cb(msg) or inform_cb(msg, *user_data)

user_data : tuple

Optional user data to send to the reply and inform callbacks.

timeout : float in seconds

1.4. Low level client API (client) 101

KATCP Documentation, Release 0.0+unknown.201908260720

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

future_request(msg, timeout=None, use_mid=None)
Send a request messsage, with future replies.

Parameters msg : Message object

The request Message to send.

timeout : float in seconds

How long to wait for a reply. The default is the the timeout set when creating the
AsyncClient.

use_mid : boolean, optional

Whether to use message IDs. Default is to use message IDs if the server supports them.

Returns A tornado.concurrent.Future that resolves with: :

reply : Message object

The reply message received.

informs : list of Message objects

A list of the inform messages received.

handle_inform(msg)
Handle inform messages related to any current requests.

Inform messages not related to the current request go up to the base class method.

Parameters msg : Message object

The inform message to dispatch.

handle_reply(msg)
Handle a reply message related to the current request.

Reply messages not related to the current request go up to the base class method.

Parameters msg : Message object

The reply message to dispatch.

stop(*args, **kwargs)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds

Seconds to wait for both client thread to have started, and for stopping.

class katcp.client.BlockingClient(host, port, tb_limit=20, timeout=5.0, log-
ger=<logging.Logger object>, auto_reconnect=True)

Bases: katcp.client.CallbackClient

102 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Methods

BlockingClient.
blocking_request(msg[, . . .])

Send a request messsage and wait for its reply.

BlockingClient.
callback_request(msg[, . . .])

Send a request messsage.

BlockingClient.
convert_seconds(time_seconds)

Convert a time in seconds to the device timestamp
units.

BlockingClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

BlockingClient.
enable_thread_safety()

Enable thread-safety features.

BlockingClient.future_request(msg[,
. . .])

Send a request messsage, with future replies.

BlockingClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

BlockingClient.handle_message(msg) Handle a message from the server.
BlockingClient.handle_reply(msg) Handle a reply message related to the current re-

quest.
BlockingClient.handle_request(msg) Dispatch a request message to the appropriate

method.
BlockingClient.
inform_build_state(msg)

Handle katcp v4 and below build-state inform.

BlockingClient.inform_version(msg) Handle katcp v4 and below version inform.
BlockingClient.
inform_version_connect(msg)

Process a #version-connect message.

BlockingClient.is_connected() Check if the socket is currently connected.
BlockingClient.join([timeout]) Rejoin the client thread.
BlockingClient.
notify_connected(connected)

Event handler that is called whenever the connection
status changes.

BlockingClient.
preset_protocol_flags(. . .)

Preset server protocol flags.

BlockingClient.request(msg[, use_mid]) Send a request message, with automatic message ID
assignment.

BlockingClient.running() Whether the client is running.
BlockingClient.send_message(msg) Send any kind of message.
BlockingClient.send_request(msg) Send a request messsage.
BlockingClient.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
BlockingClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
BlockingClient.start([timeout]) Start the client in a new thread.
BlockingClient.stop(*args, **kwargs) Stop a running client.
BlockingClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
BlockingClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
BlockingClient.
unhandled_request(msg)

Fallback method for requests without a registered
handler.

BlockingClient.
until_connected(**kwargs)

Return future that resolves when the client is con-
nected.

Continued on next page

1.4. Low level client API (client) 103

KATCP Documentation, Release 0.0+unknown.201908260720

Table 31 – continued from previous page
BlockingClient.
until_protocol(**kwargs)

Return future that resolves after receipt of katcp pro-
tocol info.

BlockingClient.
until_running([timeout])

Return future that resolves when the client is run-
ning.

BlockingClient.
until_stopped([timeout])

Return future that resolves when the client has
stopped.

BlockingClient.
wait_connected([timeout])

Wait until the client is connected.

BlockingClient.
wait_disconnected([timeout])

Wait until the client is disconnected.

BlockingClient.
wait_protocol([timeout])

Wait until katcp protocol information has been re-
ceived from server.

BlockingClient.wait_running([timeout]) Wait until the client is running.

class katcp.client.CallbackClient(host, port, tb_limit=20, timeout=5.0, log-
ger=<logging.Logger object>, auto_reconnect=True)

Bases: katcp.client.AsyncClient

Methods

CallbackClient.
blocking_request(msg[, . . .])

Send a request messsage and wait for its reply.

CallbackClient.
callback_request(msg[, . . .])

Send a request messsage.

CallbackClient.
convert_seconds(time_seconds)

Convert a time in seconds to the device timestamp
units.

CallbackClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

CallbackClient.
enable_thread_safety()

Enable thread-safety features.

CallbackClient.future_request(msg[,
. . .])

Send a request messsage, with future replies.

CallbackClient.handle_inform(msg) Handle inform messages related to any current re-
quests.

CallbackClient.handle_message(msg) Handle a message from the server.
CallbackClient.handle_reply(msg) Handle a reply message related to the current re-

quest.
CallbackClient.handle_request(msg) Dispatch a request message to the appropriate

method.
CallbackClient.
inform_build_state(msg)

Handle katcp v4 and below build-state inform.

CallbackClient.inform_version(msg) Handle katcp v4 and below version inform.
CallbackClient.
inform_version_connect(msg)

Process a #version-connect message.

CallbackClient.is_connected() Check if the socket is currently connected.
CallbackClient.join([timeout]) Rejoin the client thread.
CallbackClient.
notify_connected(connected)

Event handler that is called whenever the connection
status changes.

CallbackClient.
preset_protocol_flags(. . .)

Preset server protocol flags.

Continued on next page

104 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 32 – continued from previous page
CallbackClient.request(msg[, use_mid]) Send a request message, with automatic message ID

assignment.
CallbackClient.running() Whether the client is running.
CallbackClient.send_message(msg) Send any kind of message.
CallbackClient.send_request(msg) Send a request messsage.
CallbackClient.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
CallbackClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
CallbackClient.start([timeout]) Start the client in a new thread.
CallbackClient.stop(*args, **kwargs) Stop a running client.
CallbackClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
CallbackClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
CallbackClient.
unhandled_request(msg)

Fallback method for requests without a registered
handler.

CallbackClient.
until_connected(**kwargs)

Return future that resolves when the client is con-
nected.

CallbackClient.
until_protocol(**kwargs)

Return future that resolves after receipt of katcp pro-
tocol info.

CallbackClient.
until_running([timeout])

Return future that resolves when the client is run-
ning.

CallbackClient.
until_stopped([timeout])

Return future that resolves when the client has
stopped.

CallbackClient.
wait_connected([timeout])

Wait until the client is connected.

CallbackClient.
wait_disconnected([timeout])

Wait until the client is disconnected.

CallbackClient.
wait_protocol([timeout])

Wait until katcp protocol information has been re-
ceived from server.

CallbackClient.wait_running([timeout]) Wait until the client is running.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

class katcp.client.DeviceClient(host, port, tb_limit=20, logger=<logging.Logger object>,
auto_reconnect=True)

Bases: object

Device client proxy.

Subclasses should implement .reply_*, .inform_* and send_request_* methods to take actions when messages
arrive, and implement unhandled_inform, unhandled_reply and unhandled_request to provide fallbacks for mes-
sages for which there is no handler.

Request messages can be sent by calling .send_request().

Parameters host : string

Host to connect to.

port : int

Port to connect to.

1.4. Low level client API (client) 105

KATCP Documentation, Release 0.0+unknown.201908260720

tb_limit : int

Maximum number of stack frames to send in error traceback.

logger : object

Python Logger object to log to.

auto_reconnect : bool

Whether to automatically reconnect if the connection dies.

Notes

The client may block its ioloop if the default blocking tornado DNS resolver is used. When an ioloop is shared,
it would make sens to configure one of the non-blocking resolver classes, see http://tornado.readthedocs.org/en/
latest/netutil.html

Examples

>>> MyClient(DeviceClient):
... def reply_myreq(self, msg):
... print str(msg)
...
>>> c = MyClient('localhost', 10000){
>>> c.start()
>>> c.send_request(katcp.Message.request('myreq'))
>>> # expect reply to be printed here
>>> # stop the client once we're finished with it
>>> c.stop()
>>> c.join()

Methods

DeviceClient.convert_seconds(time_seconds)Convert a time in seconds to the device timestamp
units.

DeviceClient.disconnect() Force client connection to close, reconnect if auto-
connect set.

DeviceClient.enable_thread_safety() Enable thread-safety features.
DeviceClient.handle_inform(msg) Dispatch an inform message to the appropriate

method.
DeviceClient.handle_message(msg) Handle a message from the server.
DeviceClient.handle_reply(msg) Dispatch a reply message to the appropriate method.
DeviceClient.handle_request(msg) Dispatch a request message to the appropriate

method.
DeviceClient.inform_build_state(msg) Handle katcp v4 and below build-state inform.
DeviceClient.inform_version(msg) Handle katcp v4 and below version inform.
DeviceClient.inform_version_connect(msg)Process a #version-connect message.
DeviceClient.is_connected() Check if the socket is currently connected.
DeviceClient.join([timeout]) Rejoin the client thread.
DeviceClient.notify_connected(connected)Event handler that is called whenever the connection

status changes.
Continued on next page

106 Chapter 1. Contents

http://tornado.readthedocs.org/en/latest/netutil.html
http://tornado.readthedocs.org/en/latest/netutil.html

KATCP Documentation, Release 0.0+unknown.201908260720

Table 33 – continued from previous page
DeviceClient.preset_protocol_flags(. . .)Preset server protocol flags.
DeviceClient.request(msg[, use_mid]) Send a request message, with automatic message ID

assignment.
DeviceClient.running() Whether the client is running.
DeviceClient.send_message(msg) Send any kind of message.
DeviceClient.send_request(msg) Send a request messsage.
DeviceClient.set_ioloop([ioloop]) Set the tornado.ioloop.IOLoop instance to use.
DeviceClient.start([timeout]) Start the client in a new thread.
DeviceClient.stop([timeout]) Stop a running client.
DeviceClient.unhandled_inform(msg) Fallback method for inform messages without a reg-

istered handler.
DeviceClient.unhandled_reply(msg) Fallback method for reply messages without a regis-

tered handler.
DeviceClient.unhandled_request(msg) Fallback method for requests without a registered

handler.
DeviceClient.until_connected(**kwargs) Return future that resolves when the client is con-

nected.
DeviceClient.until_protocol(**kwargs) Return future that resolves after receipt of katcp pro-

tocol info.
DeviceClient.until_running([timeout]) Return future that resolves when the client is run-

ning.
DeviceClient.until_stopped([timeout]) Return future that resolves when the client has

stopped.
DeviceClient.wait_connected([timeout]) Wait until the client is connected.
DeviceClient.wait_disconnected([timeout])Wait until the client is disconnected.
DeviceClient.wait_protocol([timeout]) Wait until katcp protocol information has been re-

ceived from server.
DeviceClient.wait_running([timeout]) Wait until the client is running.

MAX_LOOP_LATENCY = 0.03
Do not spend more than this many seconds reading pipelined socket data

IOStream inline-reading can result in ioloop starvation (see https://groups.google.com/forum/#!topic/
python-tornado/yJrDAwDR_kA).

MAX_MSG_SIZE = 2097152
Maximum message size that can be received in bytes.

If more than MAX_MSG_SIZE bytes are read from the socket without encountering a message terminator
(i.e. newline), the connection is closed.

MAX_WRITE_BUFFER_SIZE = 4194304
Maximum outstanding bytes to be buffered by the server process.

If more than MAX_WRITE_BUFFER_SIZE bytes are outstanding, the connection is closed. Note that the
OS also buffers socket writes, so more than MAX_WRITE_BUFFER_SIZE bytes may be untransmitted
in total.

bind_address
(host, port) where the client is connecting

convert_seconds(time_seconds)
Convert a time in seconds to the device timestamp units.

KATCP v4 and earlier, specified all timestamps in milliseconds. Since KATCP v5, all timestamps are
in seconds. If the device KATCP version has been detected, this method converts a value in seconds to

1.4. Low level client API (client) 107

https://groups.google.com/forum/#!topic/python-tornado/yJrDAwDR_kA
https://groups.google.com/forum/#!topic/python-tornado/yJrDAwDR_kA

KATCP Documentation, Release 0.0+unknown.201908260720

the appropriate (seconds or milliseconds) quantity. For version smaller than V4, the time value will be
truncated to the nearest millisecond.

disconnect()
Force client connection to close, reconnect if auto-connect set.

enable_thread_safety()
Enable thread-safety features.

Must be called before start().

handle_inform(msg)
Dispatch an inform message to the appropriate method.

Parameters msg : Message object

The inform message to dispatch.

handle_message(msg)
Handle a message from the server.

Parameters msg : Message object

The Message to dispatch to the handler methods.

handle_reply(msg)
Dispatch a reply message to the appropriate method.

Parameters msg : Message object

The reply message to dispatch.

handle_request(msg)
Dispatch a request message to the appropriate method.

Parameters msg : Message object

The request message to dispatch.

inform_build_state(msg)
Handle katcp v4 and below build-state inform.

inform_version(msg)
Handle katcp v4 and below version inform.

inform_version_connect(msg)
Process a #version-connect message.

is_connected()
Check if the socket is currently connected.

Returns connected : bool

Whether the client is connected.

join(timeout=None)
Rejoin the client thread.

Parameters timeout : float in seconds

Seconds to wait for thread to finish.

108 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Notes

Does nothing if the ioloop is not managed. Use until_stopped() instead.

notify_connected(connected)
Event handler that is called whenever the connection status changes.

Override in derived class for desired behaviour.

Note: This function should never block. Doing so will cause the client to cease processing data from the
server until notify_connected completes.

Parameters connected : bool

Whether the client has just connected (True) or just disconnected (False).

preset_protocol_flags(protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.

Parameters protocol_flags : katcp.core.ProtocolFlags instance

request(msg, use_mid=None)
Send a request message, with automatic message ID assignment.

Parameters msg : katcp.Message request message

use_mid : bool or None, default=None

Returns mid : string or None

The message id, or None if no msg id is used

If use_mid is None and the server supports msg ids, or if use_mid is :

True a message ID will automatically be assigned msg.mid is None. :

if msg.mid has a value, and the server supports msg ids, that value :

will be used. If the server does not support msg ids, KatcpVersionError :

will be raised. :

running()
Whether the client is running.

Returns running : bool

Whether the client is running.

send_message(msg)
Send any kind of message.

Parameters msg : Message object

The message to send.

send_request(msg)
Send a request messsage.

Parameters msg : Message object

The request Message to send.

1.4. Low level client API (client) 109

KATCP Documentation, Release 0.0+unknown.201908260720

set_ioloop(ioloop=None)
Set the tornado.ioloop.IOLoop instance to use.

This defaults to IOLoop.current(). If set_ioloop() is never called the IOLoop is managed: started in a new
thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called

start(timeout=None)
Start the client in a new thread.

Parameters timeout : float in seconds

Seconds to wait for client thread to start. Do not specify a timeout if start() is being
called from the same ioloop that this client will be installed on, since it will block the
ioloop without progressing.

stop(timeout=None)
Stop a running client.

If using a managed ioloop, this must be called from a different thread to the ioloop’s. This method only
returns once the client’s main coroutine, _install(), has completed.

If using an unmanaged ioloop, this can be called from the same thread as the ioloop. The until_stopped()
method can be used to wait on completion of the main coroutine, _install().

Parameters timeout : float in seconds

Seconds to wait for both client thread to have started, and for stopping.

unhandled_inform(msg)
Fallback method for inform messages without a registered handler.

Parameters msg : Message object

The inform message that wasn’t processed by any handlers.

unhandled_reply(msg)
Fallback method for reply messages without a registered handler.

Parameters msg : Message object

The reply message that wasn’t processed by any handlers.

unhandled_request(msg)
Fallback method for requests without a registered handler.

Parameters msg : Message object

The request message that wasn’t processed by any handlers.

until_connected(**kwargs)
Return future that resolves when the client is connected.

until_protocol(**kwargs)
Return future that resolves after receipt of katcp protocol info.

If the returned future resolves, the server’s protocol information is available in the ProtocolFlags instance
self.protocol_flags.

until_running(timeout=None)
Return future that resolves when the client is running.

110 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Notes

Must be called from the same ioloop as the client.

until_stopped(timeout=None)
Return future that resolves when the client has stopped.

Parameters timeout : float in seconds

Seconds to wait for the client to stop.

Notes

If already running, stop() must be called before this.

Must be called from the same ioloop as the client. If using a different thread, or a managed ioloop, this
method should not be used. Use join() instead.

Also note that stopped != not running. Stopped means the main coroutine has ended, or was never started.
When stopping, the running flag is cleared some time before stopped is set.

wait_connected(timeout=None)
Wait until the client is connected.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns connected : bool

Whether the client is connected.

Notes

Do not call this from the ioloop, use until_connected().

wait_disconnected(timeout=None)
Wait until the client is disconnected.

Parameters timeout : float in seconds

Seconds to wait for the client to disconnect.

Returns disconnected : bool

Whether the client is disconnected.

Notes

Do not call this from the ioloop, use until_disconnected().

wait_protocol(timeout=None)
Wait until katcp protocol information has been received from server.

Parameters timeout : float in seconds

Seconds to wait for the client to connect.

Returns received : bool

Whether protocol information was received

1.4. Low level client API (client) 111

KATCP Documentation, Release 0.0+unknown.201908260720

If this method returns True, the server’s protocol information is :

available in the ProtocolFlags instance self.protocol_flags. :

Notes

Do not call this from the ioloop, use until_protocol().

wait_running(timeout=None)
Wait until the client is running.

Parameters timeout : float in seconds

Seconds to wait for the client to start running.

Returns running : bool

Whether the client is running

Notes

Do not call this from the ioloop, use until_running().

katcp.client.make_threadsafe(meth)
Decorator for a DeviceClient method that should always run in ioloop.

Used with DeviceClient.enable_thread_safety(). If not called the method will be unprotected and it is the user’s
responsibility to ensure that these methods are only called from the ioloop, otherwise the decorated methods are
wrapped. Should only be used for functions that have no return value.

katcp.client.make_threadsafe_blocking(meth)
Decorator for a DeviceClient method that will block.

Used with DeviceClient.enable_thread_safety(). Used to provide blocking calls that can be made from other
threads. If called in ioloop context, calls the original method directly to prevent deadlocks. Will route return
value to caller. Add timeout keyword argument to limit blocking time. If meth returns a future, its result will be
returned, otherwise its result will be passed back directly.

katcp.client.request_check(client, exception, *msg_parms, **kwargs)
Make blocking request to client and raise exception if reply is not ok.

Parameters client : DeviceClient instance

exception: Exception class to raise :

*msg_parms : Message parameters sent to the Message.request() call

**kwargs : Keyword arguments

Forwards kwargs[‘timeout’] to client.blocking_request(). Forwards kwargs[‘mid’] to
Message.request().

Returns reply, informs : as returned by client.blocking_request

Raises *exception* passed as parameter is raised if reply.reply_ok() is False :

Notes

A typical use-case for this function is to use functools.partial() to bind a particular client and exception. The
resulting function can then be used instead of direct client.blocking_request() calls to automate error handling.

112 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

1.5 Concrete Intermediate-level KATCP Client API (inspecting_client)

class katcp.inspecting_client.InspectingClientAsync(host, port, ioloop=None,
initial_inspection=None,
auto_reconnect=True, log-
ger=<logging.Logger object>)

Bases: object

Higher-level client that inspects a KATCP interface.

Note: This class is not threadsafe at present, it should only be called from the ioloop.

Note: always call stop() after start() and you are done with the container to make sure the container cleans up
correctly.

Methods

InspectingClientAsync.close()
InspectingClientAsync.
connect(**kwargs)

Connect to KATCP interface, starting what is needed

InspectingClientAsync.
future_check_request(. . .)

Check if the request exists.

InspectingClientAsync.
future_check_sensor(. . .)

Check if the sensor exists.

InspectingClientAsync.
future_get_request(. . .)

Get the request object.

InspectingClientAsync.
future_get_sensor(**kwargs)

Get the sensor object.

InspectingClientAsync.
handle_sensor_value()

Handle #sensor-value informs just like #sensor-
status informs

InspectingClientAsync.
inform_hook_client_factory(. . .)

Return an instance of
_InformHookDeviceClient or similar

InspectingClientAsync.
inspect(**kwargs)

Inspect device requests and sensors, update model

InspectingClientAsync.
inspect_requests(**kwargs)

Inspect all or one requests on the device.

InspectingClientAsync.
inspect_sensors(**kwargs)

Inspect all or one sensor on the device.

InspectingClientAsync.
is_connected()

Connection status.

InspectingClientAsync.join([timeout])
InspectingClientAsync.
preset_protocol_flags(. . .)

Preset server protocol flags.

InspectingClientAsync.
request_factory

Factory that produces KATCP Request objects

InspectingClientAsync.
sensor_factory

alias of katcp.core.Sensor

InspectingClientAsync.
set_ioloop(ioloop)
InspectingClientAsync.
set_state_callback(cb)

Set user callback for state changes

Continued on next page

1.5. Concrete Intermediate-level KATCP Client API (inspecting_client) 113

KATCP Documentation, Release 0.0+unknown.201908260720

Table 34 – continued from previous page
InspectingClientAsync.
simple_request(. . .)

Create and send a request to the server.

InspectingClientAsync.start([timeout]) Note: always call stop() and wait until_stopped()
when you are done with the container to make sure
the container cleans up correctly.

InspectingClientAsync.stop([timeout])
InspectingClientAsync.
until_connected([timeout])
InspectingClientAsync.
until_data_synced([. . .])
InspectingClientAsync.
until_not_synced([timeout])
InspectingClientAsync.
until_state(desired_state)

Wait until state is desired_state, Inspecting-
ClientStateType instance

InspectingClientAsync.
until_stopped([timeout])

Return future that resolves when the client has
stopped

InspectingClientAsync.
until_synced([timeout])
InspectingClientAsync.
update_sensor(**kwargs)

connect(**kwargs)
Connect to KATCP interface, starting what is needed

Parameters timeout : float, None

Time to wait until connected. No waiting if None.

Raises :class:‘tornado.gen.TimeoutError‘ if the connect timeout expires :

connected
Connection status.

future_check_request(**kwargs)
Check if the request exists.

Used internally by future_get_request. This method is aware of synchronisation in progress and if inspec-
tion of the server is allowed.

Parameters name : str

Name of the request to verify.

update : bool or None, optional

If a katcp request to the server should be made to check if the sensor is on the server.
True = Allow, False do not Allow, None use the class default.

Notes

Ensure that self.state.data_synced == True if yielding to future_check_request from a state-change call-
back, or a deadlock will occur.

future_check_sensor(**kwargs)
Check if the sensor exists.

Used internally by future_get_sensor. This method is aware of synchronisation in progress and if inspec-
tion of the server is allowed.

114 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Parameters name : str

Name of the sensor to verify.

update : bool or None, optional

If a katcp request to the server should be made to check if the sensor is on the server
now.

Notes

Ensure that self.state.data_synced == True if yielding to future_check_sensor from a state-change callback,
or a deadlock will occur.

future_get_request(**kwargs)
Get the request object.

Check if we have information for this request, if not connect to server and update (if allowed).

Parameters name : string

Name of the request.

update : bool or None, optional

True allow inspect client to inspect katcp server if the request is not known.

Returns Request created by :meth:‘request_factory‘ or None if request not found. :

Notes

Ensure that self.state.data_synced == True if yielding to future_get_request from a state-change callback,
or a deadlock will occur.

future_get_sensor(**kwargs)
Get the sensor object.

Check if we have information for this sensor, if not connect to server and update (if allowed) to get infor-
mation.

Parameters name : string

Name of the sensor.

update : bool or None, optional

True allow inspect client to inspect katcp server if the sensor is not known.

Returns Sensor created by :meth:‘sensor_factory‘ or None if sensor not found. :

Notes

Ensure that self.state.data_synced == True if yielding to future_get_sensor from a state-change callback,
or a deadlock will occur.

handle_sensor_value()
Handle #sensor-value informs just like #sensor-status informs

1.5. Concrete Intermediate-level KATCP Client API (inspecting_client) 115

KATCP Documentation, Release 0.0+unknown.201908260720

inform_hook_client_factory(host, port, *args, **kwargs)
Return an instance of _InformHookDeviceClient or similar

Provided to ease testing. Dynamically overriding this method after instantiation but before start() is called
allows for deep brain surgery. See katcp.fake_clients.TBD

inspect(**kwargs)
Inspect device requests and sensors, update model

Returns Tornado future that resolves with: :

model_changes : Nested AttrDict or None

Contains sets of added/removed request/sensor names

Example structure:

{‘requests’: {

‘added’: set([‘req1’, ‘req2’]), ‘removed’: set([‘req10’, ‘req20’])}

‘sensors’: { ‘added’: set([‘sens1’, ‘sens2’]), ‘removed’: set([‘sens10’, ‘sens20’])}

}

If there are no changes keys may be omitted. If an item is in both the ‘added’ and
‘removed’ sets that means that it changed.

If neither request not sensor changes are present, None is returned instead of a nested
structure.

inspect_requests(**kwargs)
Inspect all or one requests on the device. Update requests index.

Parameters name : str or None, optional

Name of the request or None to get all requests.

timeout : float or None, optional

Timeout for request inspection, None for no timeout

Returns Tornado future that resolves with: :

changes : AttrDict

AttrDict with keys added and removed (of type set), listing the requests that
have been added or removed respectively. Modified requests are listed in both. If
there are no changes, returns None instead.

Example structure:

{‘added’: set([‘req1’, ‘req2’]), ‘removed’: set([‘req10’, ‘req20’])}

inspect_sensors(**kwargs)
Inspect all or one sensor on the device. Update sensors index.

Parameters name : str or None, optional

Name of the sensor or None to get all sensors.

timeout : float or None, optional

Timeout for sensors inspection, None for no timeout

116 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Returns Tornado future that resolves with: :

changes : AttrDict

AttrDict with keys added and removed (of type set), listing the sensors that
have been added or removed respectively. Modified sensors are listed in both. If
there are no changes, returns None instead.

Example structure: :

{‘added’: set([‘sens1’, ‘sens2’]), ‘removed’: set([‘sens10’, ‘sens20’])}

is_connected()
Connection status.

preset_protocol_flags(protocol_flags)
Preset server protocol flags.

Sets the assumed server protocol flags and disables automatic server version detection.

Parameters protocol_flags : katcp.core.ProtocolFlags instance

request_factory
Factory that produces KATCP Request objects

signature: request_factory(name, description, timeout_hint), all parameters passed as kwargs

Should be set before calling connect()/start().

Methods

Request.count
Request.index

alias of Request

requests
A list of possible requests.

resync_delay = None
Set to an ExponentialRandomBackoff instance in _state_loop

sensor_factory
alias of katcp.core.Sensor

sensors
A list of known sensors.

set_state_callback(cb)
Set user callback for state changes

Called as cb(state, model_changes)

where state is an InspectingClientStateType instance, and model_changes is an AttrDict.
The latter may contain keys requests and sensors to describe changes to requests or sensors re-
spectively. These in turn have attributes added and removed which are sets of request/sensor names.
Requests/sensors that have been modified will appear in both sets.

Warning: It is possible for model_changes to be None, or for either requests or sensors to be
absent from model_changes.

1.5. Concrete Intermediate-level KATCP Client API (inspecting_client) 117

KATCP Documentation, Release 0.0+unknown.201908260720

simple_request(request, *args, **kwargs)
Create and send a request to the server.

This method implements a very small subset of the options possible to send an request. It is provided as
a shortcut to sending a simple request.

Parameters request : str

The request to call.

*args : list of objects

Arguments to pass on to the request.

Keyword Arguments timeout : float or None, optional

Timeout after this amount of seconds (keyword argument).

mid : None or int, optional

Message identifier to use for the request message. If None, use either auto-
incrementing value or no mid depending on the KATCP protocol version (mid’s
were only introduced with KATCP v5) and the value of the use_mid argument.
Defaults to None

use_mid : bool

Use a mid for the request if True. Defaults to True if the server supports them.

Returns future object. :

start(timeout=None)
Note: always call stop() and wait until_stopped() when you are done with the container to make sure the
container cleans up correctly.

state
Current client state.

synced
Boolean indicating if the device has been synchronised.

until_state(desired_state, timeout=None)
Wait until state is desired_state, InspectingClientStateType instance

Returns a future

until_stopped(timeout=None)
Return future that resolves when the client has stopped

See the DeviceClient.until_stopped docstring for parameter definitions and more info.

class katcp.inspecting_client.InspectingClientStateType
Bases: katcp.inspecting_client.InspectingClientStateType

States tuple for the inspecting client. Fields, all bool:

connected : TCP connection has been established with the server synced : The inspecting client and the user
that interfaces through the state change

callback are all synchronised with the current device state. Also implies connected = True and
data_synced = True

model_changed [The device has changed in some way, resulting in the device model] being out of date.

data_synced [The inspecting client’s internal representation of the device is up to] date, although state change
user is not yet up to date.

118 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Methods

InspectingClientStateType.
count(value)
InspectingClientStateType.
index(value, . . .)

Raises ValueError if the value is not present.

katcp.inspecting_client.RequestType
alias of katcp.inspecting_client.Request

exception katcp.inspecting_client.SyncError
Bases: exceptions.Exception

Raised if an error occurs during syncing with a device

1.6 Abstract High-level KATCP Client API (resource)

A high-level abstract interface to KATCP clients, sensors and requests.

class katcp.resource.KATCPDummyRequest(request_description, is_active=<function
<lambda>>)

Bases: katcp.resource.KATCPRequest

Dummy counterpart to KATCPRequest that always returns a successful reply

Methods

KATCPDummyRequest.is_active() True if resource for this request is active
KATCPDummyRequest.
issue_request(*args, **kwargs)

Signature as for __call__

issue_request(*args, **kwargs)
Signature as for __call__

Do the request immediately without checking active state.

class katcp.resource.KATCPReply
Bases: katcp.resource._KATCPReplyTuple

Container for return messages of KATCP request (reply and informs).

This is based on a named tuple with ‘reply’ and ‘informs’ fields so that the KATCPReply object can still be
unpacked into a normal tuple.

Parameters reply : katcp.Message object

Reply message returned by katcp request

informs : list of katcp.Message objects

List of inform messages returned by KATCP request

Attributes

1.6. Abstract High-level KATCP Client API (resource) 119

KATCP Documentation, Release 0.0+unknown.201908260720

KATCPReply.messages List of all messages returned by KATCP request, re-
ply first.

KATCPReply.reply Alias for field number 0
KATCPReply.informs Alias for field number 1

The instance evaluates to nonzero (i.e. truthy) if the request succeeded.

Methods

KATCPReply.count(value)
KATCPReply.index(value, [start, [stop]]) Raises ValueError if the value is not present.

messages
List of all messages returned by KATCP request, reply first.

succeeded
True if request succeeded (i.e. first reply argument is ‘ok’).

class katcp.resource.KATCPRequest(request_description, is_active=<function <lambda>>)
Bases: object

Abstract Base class to serve as the definition of the KATCPRequest API.

Wrapper around a specific KATCP request to a given KATCP device. Each available KATCP request for a
particular device has an associated KATCPRequest object in the object hierarchy. This wrapper is mainly for
interactive convenience. It provides the KATCP request help string as a docstring and pretty-prints the result of
the request.

Methods

KATCPRequest.is_active() True if resource for this request is active
KATCPRequest.issue_request(*args,
**kwargs)

Signature as for __call__

description
Description of KATCP request as obtained from the ?help request.

is_active()
True if resource for this request is active

issue_request(*args, **kwargs)
Signature as for __call__

Do the request immediately without checking active state.

name
Name of the KATCP request.

timeout_hint
Request timeout suggested by device or None if not provided

class katcp.resource.KATCPResource
Bases: object

120 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Base class to serve as the definition of the KATCPResource API.

A class C implementing the KATCPResource API should register itself using KATCPResource.register(C) or
subclass KATCPResource directly. A complication involved with subclassing is that all the abstract properties
must be implemented as properties; normal instance attributes cannot be used.

Attributes

Apart from the abstract properties described below
TODO Describe how hierarchies are implemented. Also all other descriptions
here so that the sphinx doc can be autogenerated from here.

Methods

KATCPResource.is_active()
KATCPResource.list_sensors([filter, . . .]) List sensors available on this resource matching cer-

tain criteria.
KATCPResource.set_active(active)
KATCPResource.
set_sampling_strategies(**kwargs)

Set a sampling strategy for all sensors that match the
specified filter.

KATCPResource.
set_sampling_strategy(**kwargs)

Set a sampling strategy for a specific sensor.

KATCPResource.wait(**kwargs) Wait for a sensor in this resource to satisfy a condi-
tion.

address
Address of the underlying client/device.

Type: tuple(host, port) or None, with host a string and port an integer.

If this KATCPResource is not associated with a specific KATCP device (e.g. it is only a top-level container
for a hierarchy of KATCP resources), the address should be None.

children
AttrDict of subordinate KATCPResource objects keyed by their names.

description
Description of this KATCP resource.

is_connected
Indicate whether the underlying client/device is connected or not.

list_sensors(filter=”, strategy=False, status=”, use_python_identifiers=True, tuple=False, re-
fresh=False)

List sensors available on this resource matching certain criteria.

Parameters filter : string, optional

Filter each returned sensor’s name against this regexp if specified. To ease the
dichotomy between Python identifier names and actual sensor names, the default
is to search on Python identifier names rather than KATCP sensor names, unless
use_python_identifiers below is set to False. Note that the sensors of subordinate
KATCPResource instances may have inconsistent names and Python identifiers,
better to always search on Python identifiers in this case.

1.6. Abstract High-level KATCP Client API (resource) 121

KATCP Documentation, Release 0.0+unknown.201908260720

strategy : {False, True}, optional

Only list sensors with a set strategy if True

status : string, optional

Filter each returned sensor’s status against this regexp if given

use_python_identifiers : {True, False}, optional

Match on python identfiers even the the KATCP name is available.

tuple : {True, False}, optional, Default: False

Return backwards compatible tuple instead of SensorResultTuples

refresh : {True, False}, optional, Default: False

If set the sensor values will be refreshed with get_value before returning the re-
sults.

Returns sensors : list of SensorResultTuples, or list of tuples

List of matching sensors presented as named tuples. The object field is the
KATCPSensor object associated with the sensor. Note that the name of the
object may not match name if it originates from a subordinate device.

name
Name of this KATCP resource.

parent
Parent KATCPResource object of this subordinate resource, or None.

req
Attribute root/container for all KATCP request wrappers.

Each KATCP request that is exposed on a KATCP device should have a corresponding KATCPRequest
object so that calling

resource.req.request_name(arg1, arg2, . . .)

sends a ‘?request-name arg1 arg2 . . . ’ message to the KATCP device and waits for the associated inform-
reply and reply messages.

For a KATCPResource object that exposes a hierarchical device it can choose to include lower-level
request handlers here such that resource.req.dev_request() maps to resource.dev.req.request().

sensor
Attribute root/container for all KATCP sensor wrappers.

Each KATCP sensor that is exposed on a KATCP device should have a corresponding KATCPSensor
object so that

resource.sensor.sensor_name

corresponds to a sensor named e.g. ‘sensor-name’, where the object or attribute name is an es-
caped/Pythonised version of the original sensor name (see escape_name() for the escape mechanism).
Hopefully the device is not crazy enough to have multiple sensors that map to the same Python identifier.

A KATCPResource object that exposes a hierarchical device can choose to include lower-level sensors
here such that resource.sensor.dev_sensorname maps to resource.dev.sensor.sensorname.

set_sampling_strategies(**kwargs)
Set a sampling strategy for all sensors that match the specified filter.

Parameters filter : string

122 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

The regular expression filter to use to select the sensors to which to apply the spec-
ified strategy. Use “” to match all sensors. Is matched using list_sensors().

strategy_and_params : seq of str or str

As tuple contains (<strat_name>, [<strat_parm1>, . . .]) where the strategy names
and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

**list_sensor_args : keyword arguments

Passed to the list_sensors() call as kwargs

Returns sensors_strategies : tornado Future

resolves with a dict with the Python identifier names of the sensors as keys and
the value a tuple:

(success, info) with

sucess [bool] True if setting succeeded for this sensor, else False

info [tuple] normalised sensor strategy and parameters as tuple if success ==
True else, sys.exc_info() tuple for the error that occured.

set_sampling_strategy(**kwargs)
Set a sampling strategy for a specific sensor.

Parameters sensor_name : string

The specific sensor.

strategy_and_params : seq of str or str

As tuple contains (<strat_name>, [<strat_parm1>, . . .]) where the strategy names
and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

Returns sensors_strategies : tornado Future

resolves with a dict with the Python identifier names of the sensors as keys and
the value a tuple:

(success, info) with

sucess [bool] True if setting succeeded for this sensor, else False

info [tuple] normalised sensor strategy and parameters as tuple if success ==
True else, sys.exc_info() tuple for the error that occured.

wait(**kwargs)
Wait for a sensor in this resource to satisfy a condition.

Parameters sensor_name : string

The name of the sensor to check

condition_or_value : obj or callable, or seq of objs or callables

If obj, sensor.value is compared with obj. If callable, condition_or_value(reading)
is called, and must return True if its condition is satisfied. Since the reading is
passed in, the value, status, timestamp or received_timestamp attributes can all be
used in the check.

timeout : float or None

The timeout in seconds (None means wait forever)

1.6. Abstract High-level KATCP Client API (resource) 123

KATCP Documentation, Release 0.0+unknown.201908260720

Returns This command returns a tornado Future that resolves with True when the :

sensor value satisfies the condition, or False if the condition is :

still not satisfied after a given timeout period. :

Raises :class:‘KATCPSensorError‘ :

If the sensor does not have a strategy set, or if the named sensor is not present

exception katcp.resource.KATCPResourceError
Bases: exceptions.Exception

Error raised for resource-related errors

exception katcp.resource.KATCPResourceInactive
Bases: katcp.resource.KATCPResourceError

Raised when a request is made to an inactive resource

class katcp.resource.KATCPSensor(sensor_description, sensor_manager)
Bases: object

Wrapper around a specific KATCP sensor on a given KATCP device.

Each available KATCP sensor for a particular device has an associated KATCPSensor object in the object
hierarchy. This wrapper is mainly for interactive convenience. It provides the KATCP request help string as a
docstring and registers listeners. Subclasses need to call the base class version of __init__().

Methods

KATCPSensor.call_listeners(reading)
KATCPSensor.clear_listeners() Clear any registered listeners to updates from this

sensor.
KATCPSensor.drop_sampling_strategy() Drop memorised sampling strategy for sensor, if any
KATCPSensor.get_reading(**kwargs) Get a fresh sensor reading from the KATCP resource
KATCPSensor.get_status(**kwargs) Get a fresh sensor status from the KATCP resource
KATCPSensor.get_value(**kwargs) Get a fresh sensor value from the KATCP resource
KATCPSensor.is_listener(listener)
KATCPSensor.parse_value(s_value) Parse a value from a string.
KATCPSensor.register_listener(listener[,
. . .])

Add a callback function that is called when sensor
value is updated.

KATCPSensor.set(timestamp, status, value) Set sensor with a given received value, matches
katcp.Sensor.set()

KATCPSensor.set_formatted(raw_timestamp,
. . .)

Set sensor using KATCP string formatted inputs

KATCPSensor.set_sampling_strategy(strategy)Set current sampling strategy for sensor
KATCPSensor.set_strategy(strategy[,
params])

Set current sampling strategy for sensor.

KATCPSensor.set_value(value[, status,
timestamp])

Set sensor value with optinal specification of status
and timestamp

KATCPSensor.unregister_listener(listener)Remove a listener callback added with regis-
ter_listener().

KATCPSensor.wait(condition_or_value[, time-
out])

Wait for the sensor to satisfy a condition.

124 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

clear_listeners()
Clear any registered listeners to updates from this sensor.

drop_sampling_strategy()
Drop memorised sampling strategy for sensor, if any

Calling this method ensures that the sensor manager does not attempt to reapply a sampling strategy. It
will not raise an error if no strategy has been set. Use set_sampling_strategy() to memorise a
strategy again.

get_reading(**kwargs)
Get a fresh sensor reading from the KATCP resource

Returns reply : tornado Future resolving with KATCPSensorReading object

get_status(**kwargs)
Get a fresh sensor status from the KATCP resource

Returns reply : tornado Future resolving with KATCPSensorReading object

get_value(**kwargs)
Get a fresh sensor value from the KATCP resource

Returns reply : tornado Future resolving with KATCPSensorReading object

name
Name of this KATCPSensor

normalised_name
Normalised name of this KATCPSensor that can be used as a python identifier

parent_name
Name of the parent of this KATCPSensor

parse_value(s_value)
Parse a value from a string.

Parameters s_value : str

A string value to attempt to convert to a value for the sensor.

Returns value : object

A value of a type appropriate to the sensor.

reading
Most recently received sensor reading as KATCPSensorReading instance

register_listener(listener, reading=False)
Add a callback function that is called when sensor value is updated. The callback footprint is re-
ceived_timestamp, timestamp, status, value.

Parameters listener : function

Callback signature: if reading listener(katcp_sensor, reading) where

katcp_sensor is this KATCPSensor instance reading is an instance of
KATCPSensorReading

Callback signature: default, if not reading listener(received_timestamp,
timestamp, status, value)

sampling_strategy
Current sampling strategy

1.6. Abstract High-level KATCP Client API (resource) 125

KATCP Documentation, Release 0.0+unknown.201908260720

set(timestamp, status, value)
Set sensor with a given received value, matches katcp.Sensor.set()

set_formatted(raw_timestamp, raw_status, raw_value, major)
Set sensor using KATCP string formatted inputs

Mirrors katcp.Sensor.set_formatted().

This implementation is empty. Will, during instantiation, be overridden by the set_formatted() method of
a katcp.Sensor object.

set_sampling_strategy(strategy)
Set current sampling strategy for sensor

Parameters strategy : seq of str or str

As tuple contains (<strat_name>, [<strat_parm1>, . . .]) where the strategy names
and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

Returns done : tornado Future that resolves when done or raises KATCPSensorError

set_strategy(strategy, params=None)
Set current sampling strategy for sensor. Add this footprint for backwards compatibility.

Parameters strategy : seq of str or str

As tuple contains (<strat_name>, [<strat_parm1>, . . .]) where the strategy names
and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

params : seq of str or str

(<strat_name>, [<strat_parm1>, . . .])

Returns done : tornado Future that resolves when done or raises KATCPSensorError

set_value(value, status=1, timestamp=None)
Set sensor value with optinal specification of status and timestamp

unregister_listener(listener)
Remove a listener callback added with register_listener().

Parameters listener : function

Reference to the callback function that should be removed

wait(condition_or_value, timeout=None)
Wait for the sensor to satisfy a condition.

Parameters condition_or_value : obj or callable, or seq of objs or callables

If obj, sensor.value is compared with obj. If callable, condition_or_value(reading)
is called, and must return True if its condition is satisfied. Since the reading is
passed in, the value, status, timestamp or received_timestamp attributes can all be
used in the check. TODO: Sequences of conditions (use SensorTransitionWaiter
thingum?)

timeout : float or None

The timeout in seconds (None means wait forever)

Returns This command returns a tornado Future that resolves with True when the :

sensor value satisfies the condition. It will never resolve with False; :

126 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

if a timeout is given a TimeoutError happens instead. :

Raises :class:‘KATCPSensorError‘ :

If the sensor does not have a strategy set

:class:‘tornado.gen.TimeoutError‘ :

If the sensor condition still fails after a stated timeout period

exception katcp.resource.KATCPSensorError
Bases: katcp.resource.KATCPResourceError

Raised if a problem occured dealing with as KATCPSensor operation

class katcp.resource.KATCPSensorReading
Bases: katcp.resource.KATCPSensorReading

Sensor reading as a (received_timestamp, timestamp, istatus, value) tuple.

Attributes

KATCPSensorReading.
received_timestamp

Alias for field number 0

KATCPSensorReading.timestamp Alias for field number 1
KATCPSensorReading.istatus Alias for field number 2
KATCPSensorReading.value Alias for field number 3

Methods

KATCPSensorReading.count(value)
KATCPSensorReading.index(value, [start,
[stop]])

Raises ValueError if the value is not present.

status
Returns the string representation of sensor status, eg ‘nominal’

class katcp.resource.KATCPSensorsManager
Bases: object

Sensor management class used by KATCPSensor. Abstracts communications details.

This class should arrange:

1. A mechanism for setting sensor strategies

2. A mechanism for polling a sensor value

3. Keeping track of- and reapplying sensor strategies after reconnect, etc.

4. Providing local time. This is doing to avoid direct calls to time.time, allowing accelerated time testing /
simulation / dry-running

Methods

1.6. Abstract High-level KATCP Client API (resource) 127

KATCP Documentation, Release 0.0+unknown.201908260720

KATCPSensorsManager.
drop_sampling_strategy(. . .)

Drop the sampling strategy for the named sensor
from the cache

KATCPSensorsManager.
get_sampling_strategy(. . .)

Get the current sampling strategy for the named sen-
sor

KATCPSensorsManager.
poll_sensor(sensor_name)

Poll sensor and arrange for sensor object to be up-
dated

KATCPSensorsManager.
reapply_sampling_strategies()

Reapply all sensor strategies using cached values

KATCPSensorsManager.
set_sampling_strategy(. . .)

Set the sampling strategy for the named sensor

KATCPSensorsManager.time() Returns the current time (in seconds since UTC
epoch)

drop_sampling_strategy(sensor_name)
Drop the sampling strategy for the named sensor from the cache

Calling set_sampling_strategy() requires the sensor manager to memorise the requested strat-
egy so that it can automatically be reapplied. If the client is no longer interested in the sensor, or knows the
sensor may be removed from the server, then it can use this method to ensure the manager forgets about
the strategy. This method will not change the current strategy. No error is raised if there is no strategy to
drop.

Parameters sensor_name : str

Name of the sensor (normal or escaped form)

get_sampling_strategy(sensor_name)
Get the current sampling strategy for the named sensor

Parameters sensor_name : str

Name of the sensor (normal or escaped form)

Returns strategy : tornado Future that resolves with tuple of str

contains (<strat_name>, [<strat_parm1>, . . .]) where the strategy names and pa-
rameters are as defined by the KATCP spec

poll_sensor(sensor_name)
Poll sensor and arrange for sensor object to be updated

reapply_sampling_strategies()
Reapply all sensor strategies using cached values

Would typically be called when a connection is re-established. Should not raise errors when resetting
stratgies for sensors that no longer exist on the KATCP resource.

set_sampling_strategy(sensor_name, strategy_and_parms)
Set the sampling strategy for the named sensor

Parameters sensor_name : str

Name of the sensor

strategy : seq of str or str

As tuple contains (<strat_name>, [<strat_parm1>, . . .]) where the strategy names
and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

Returns done : tornado Future that resolves when done or raises KATCPSensorError

128 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Notes

It is recommended that implementations use normalize_strategy_parameters() to process
the strategy_and_parms parameter, since it will deal with both string and list versions and makes sure that
numbers are represented as strings in a consistent format.

This method should arrange for the strategy to be set on the underlying network device or whatever other
implementation is used. This strategy should also be automatically re-set if the device is reconnected, etc.
If a strategy is set for a non-existing sensor, it should still cache the strategy and ensure that is applied
whenever said sensor comes into existance. This allows an applications to pre-set strategies for sensors
before synced / connected to a device.

time()
Returns the current time (in seconds since UTC epoch)

class katcp.resource.SensorResultTuple
Bases: katcp.resource.SensorResultTuple

Per-sensor result of list_sensors() method

Attributes

SensorResultTuple.object Alias for field number 0
SensorResultTuple.name Alias for field number 1
SensorResultTuple.
python_identifier

Alias for field number 2

SensorResultTuple.description Alias for field number 3
SensorResultTuple.type Alias for field number 4
SensorResultTuple.units Alias for field number 5
SensorResultTuple.reading Alias for field number 6

Methods

SensorResultTuple.count(value)
SensorResultTuple.index(value, [start,
[stop]])

Raises ValueError if the value is not present.

katcp.resource.escape_name(name)
Escape sensor and request names to be valid Python identifiers.

katcp.resource.normalize_strategy_parameters(params)
Normalize strategy parameters to be a list of strings.

Parameters params : (space-delimited) string or sequence of strings/numbers Parameters

expected by SampleStrategy object, in various forms, where the first parameter
is the name of the strategy.

Returns params : tuple of strings

Strategy parameters as a list of strings

1.6. Abstract High-level KATCP Client API (resource) 129

KATCP Documentation, Release 0.0+unknown.201908260720

1.7 Concrete High-level KATCP Client API (resource_client)

class katcp.resource_client.AttrMappingProxy(mapping, wrapper)
Bases: katcp.resource_client.MappingProxy

Methods

AttrMappingProxy.get(k[,d])
AttrMappingProxy.items()
AttrMappingProxy.iteritems()
AttrMappingProxy.iterkeys()
AttrMappingProxy.itervalues()
AttrMappingProxy.keys()
AttrMappingProxy.values()

class katcp.resource_client.ClientGroup(name, clients)
Bases: future.types.newobject.newobject

Create a group of similar clients.

Parameters name : str

Name of the group of clients.

clients : list of KATCPResource objects

Clients to put into the group.

Methods

ClientGroup.client_updated(client) Called to notify this group that a client has been up-
dated.

ClientGroup.is_connected() Indication of the connection state of all clients in the
group

ClientGroup.next()
ClientGroup.set_sampling_strategies(**kwargs)Set sampling strategy for the sensors of all the

group’s clients.
ClientGroup.set_sampling_strategy(**kwargs)Set sampling strategy for the sensors of all the

group’s clients.
ClientGroup.wait(**kwargs) Wait for sensor present on all group clients to satisfy

a condition.

client_updated(client)
Called to notify this group that a client has been updated.

is_connected()
Indication of the connection state of all clients in the group

set_sampling_strategies(**kwargs)
Set sampling strategy for the sensors of all the group’s clients.

Only sensors that match the specified filter are considered. See the KATCPRe-
source.set_sampling_strategies docstring for parameter definitions and more info.

130 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Returns sensors_strategies : tornado Future

Resolves with a dict with client names as keys and with the value as another
dict. The value dict is similar to the return value described in the KATCPRe-
source.set_sampling_strategies docstring.

set_sampling_strategy(**kwargs)
Set sampling strategy for the sensors of all the group’s clients.

Only sensors that match the specified filter are considered. See the KATCPRe-
source.set_sampling_strategies docstring for parameter definitions and more info.

Returns sensors_strategies : tornado Future

Resolves with a dict with client names as keys and with the value as another
dict. The value dict is similar to the return value described in the KATCPRe-
source.set_sampling_strategies docstring.

wait(**kwargs)
Wait for sensor present on all group clients to satisfy a condition.

Parameters sensor_name : string

The name of the sensor to check

condition_or_value : obj or callable, or seq of objs or callables

If obj, sensor.value is compared with obj. If callable, condition_or_value(reading)
is called, and must return True if its condition is satisfied. Since the reading is
passed in, the value, status, timestamp or received_timestamp attributes can all be
used in the check.

timeout : float or None

The total timeout in seconds (None means wait forever)

quorum : None or int or float

The number of clients that are required to satisfy the condition, as either an ex-
plicit integer or a float between 0 and 1 indicating a fraction of the total number of
clients, rounded up. If None, this means that all clients are required (the default).
Be warned that a value of 1.0 (float) indicates all clients while a value of 1 (int)
indicates a single client. . .

max_grace_period : float or None

After a quorum or initial timeout is reached, wait up to this long in an attempt to
get the rest of the clients to satisfy condition as well (achieving effectively a full
quorum if all clients behave)

Returns This command returns a tornado Future that resolves with True when a :

quorum of clients satisfy the sensor condition, or False if a quorum :

is not reached after a given timeout period (including a grace period). :

Raises :class:‘KATCPSensorError‘ :

If any of the sensors do not have a strategy set, or if the named sensor is not
present

class katcp.resource_client.GroupRequest(group, name, description)
Bases: future.types.newobject.newobject

Couroutine wrapper around a specific KATCP request for a group of clients.

1.7. Concrete High-level KATCP Client API (resource_client) 131

KATCP Documentation, Release 0.0+unknown.201908260720

Each available KATCP request supported by group has an associated GroupRequest object in the hierarchy.
This wrapper is mainly for interactive convenience. It provides the KATCP request help string as a docstring
accessible via IPython’s question mark operator.

Methods

GroupRequest.next()

class katcp.resource_client.GroupResults
Bases: dict

The result of a group request.

This has a dictionary interface, with the client names as keys and the corresponding replies from each client as
values. The replies are stored as KATCPReply objects, or are None for clients that did not support the request.

The result will evalue to a truthy value if all the requests succeeded, i.e.

if result:
handle_success()

else:
handle_failure()

should work as expected.

Methods

GroupResults.clear()
GroupResults.copy()
GroupResults.fromkeys(S[,v]) v defaults to None.
GroupResults.get(k[,d])
GroupResults.has_key(k)
GroupResults.items()
GroupResults.iteritems()
GroupResults.iterkeys()
GroupResults.itervalues()
GroupResults.keys()
GroupResults.pop(k[,d]) If key is not found, d is returned if given, otherwise

KeyError is raised
GroupResults.popitem() 2-tuple; but raise KeyError if D is empty.
GroupResults.setdefault(k[,d])
GroupResults.update([E,]**F) If E present and has a .keys() method, does: for k in

E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is
followed by: for k in F: D[k] = F[k]

GroupResults.values()
GroupResults.viewitems()
GroupResults.viewkeys()
GroupResults.viewvalues()

succeeded
True if katcp request succeeded on all clients.

132 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

class katcp.resource_client.KATCPClientResource(resource_spec, parent=None, log-
ger=<logging.Logger object>)

Bases: katcp.resource.KATCPResource

Class managing a client connection to a single KATCP resource

Inspects the KATCP interface of the resources, exposing sensors and requests as per the katcp.resource.
KATCPResource API. Can also operate without exposin

Methods

KATCPClientResource.
drop_sampling_strategy(. . .)

Drop the sampling strategy for the named sensor
from the cache

KATCPClientResource.
inspecting_client_factory(. . .)

Return an instance of
ReplyWrappedInspectingClientAsync or
similar

KATCPClientResource.is_active()
KATCPClientResource.is_connected() Indication of the connection state
KATCPClientResource.
list_sensors([filter, . . .])

List sensors available on this resource matching cer-
tain criteria.

KATCPClientResource.
set_active(active)
KATCPClientResource.
set_ioloop([ioloop])

Set the tornado ioloop to use

KATCPClientResource.
set_sampling_strategies(. . .)

Set a strategy for all sensors matching the filter, in-
cluding unseen sensors The strategy should persist
across sensor disconnect/reconnect.

KATCPClientResource.
set_sampling_strategy(. . .)

Set a strategy for a sensor even if it is not yet known.

KATCPClientResource.
set_sensor_listener(**kwargs)

Set a sensor listener for a sensor even if it is not yet
known The listener registration should persist across
sensor disconnect/reconnect.

KATCPClientResource.start() Start the client and connect
KATCPClientResource.stop()
KATCPClientResource.
until_not_synced([timeout])

Convenience method to wait (with Future) until
client is not synced

KATCPClientResource.
until_state(state[, timeout])

Future that resolves when a certain client state is at-
tained

KATCPClientResource.
until_stopped([timeout])

Return future that resolves when the inspecting client
has stopped

KATCPClientResource.
until_synced([timeout])

Convenience method to wait (with Future) until
client is synced

KATCPClientResource.wait(**kwargs) Wait for a sensor in this resource to satisfy a condi-
tion.

KATCPClientResource.
wait_connected([timeout])

Future that resolves when the state is not ‘discon-
nected’.

MAX_LOOP_LATENCY = 0.03
When doing potentially tight loops in coroutines yield tornado.gen.moment after this much time. This is
a suggestion for methods to use.

drop_sampling_strategy(sensor_name)
Drop the sampling strategy for the named sensor from the cache

1.7. Concrete High-level KATCP Client API (resource_client) 133

KATCP Documentation, Release 0.0+unknown.201908260720

Calling set_sampling_strategy() requires the requested strategy to be memorised so that it can
automatically be reapplied. This method causes the strategy to be forgotten. There is no change to the
current strategy. No error is raised if there is no strategy to drop.

Parameters sensor_name : str

Name of the sensor

inspecting_client_factory(host, port, ioloop_set_to)
Return an instance of ReplyWrappedInspectingClientAsync or similar

Provided to ease testing. Dynamically overriding this method after instantiation but be-
fore start() is called allows for deep brain surgery. See katcp.fake_clients.
fake_inspecting_client_factory

is_connected()
Indication of the connection state

Returns True if state is not “disconnected”, i.e “syncing” or “synced”

list_sensors(filter=”, strategy=False, status=”, use_python_identifiers=True, tuple=False, re-
fresh=False)

List sensors available on this resource matching certain criteria.

Parameters filter : string, optional

Filter each returned sensor’s name against this regexp if specified. To ease the
dichotomy between Python identifier names and actual sensor names, the default
is to search on Python identifier names rather than KATCP sensor names, unless
use_python_identifiers below is set to False. Note that the sensors of subordinate
KATCPResource instances may have inconsistent names and Python identifiers,
better to always search on Python identifiers in this case.

strategy : {False, True}, optional

Only list sensors with a set strategy if True

status : string, optional

Filter each returned sensor’s status against this regexp if given

use_python_identifiers : {True, False}, optional

Match on python identfiers even the the KATCP name is available.

tuple : {True, False}, optional, Default: False

Return backwards compatible tuple instead of SensorResultTuples

refresh : {True, False}, optional, Default: False

If set the sensor values will be refreshed with get_value before returning the re-
sults.

Returns sensors : list of SensorResultTuples, or list of tuples

List of matching sensors presented as named tuples. The object field is the
KATCPSensor object associated with the sensor. Note that the name of the
object may not match name if it originates from a subordinate device.

set_ioloop(ioloop=None)
Set the tornado ioloop to use

Defaults to tornado.ioloop.IOLoop.current() if set_ioloop() is not called or if ioloop=None. Must be called
before start()

134 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

set_sampling_strategies(**kwargs)
Set a strategy for all sensors matching the filter, including unseen sensors The strategy should persist
across sensor disconnect/reconnect.

filter [str] Filter for sensor names

strategy_and_params [seq of str or str] As tuple contains (<strat_name>, [<strat_parm1>, . . .]) where
the strategy names and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

Returns done : tornado Future

Resolves when done

set_sampling_strategy(**kwargs)
Set a strategy for a sensor even if it is not yet known. The strategy should persist across sensor discon-
nect/reconnect.

sensor_name [str] Name of the sensor

strategy_and_params [seq of str or str] As tuple contains (<strat_name>, [<strat_parm1>, . . .]) where
the strategy names and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

Returns done : tornado Future

Resolves when done

set_sensor_listener(**kwargs)
Set a sensor listener for a sensor even if it is not yet known The listener registration should persist across
sensor disconnect/reconnect.

sensor_name [str] Name of the sensor

listener [callable] Listening callable that will be registered on the named sensor when it becomes avail-
able. Callable as for KATCPSensor.register_listener()

start()
Start the client and connect

until_not_synced(timeout=None)
Convenience method to wait (with Future) until client is not synced

until_state(state, timeout=None)
Future that resolves when a certain client state is attained

Parameters state : str

Desired state, one of (“disconnected”, “syncing”, “synced”)

timeout: float :

Timeout for operation in seconds.

until_stopped(timeout=None)
Return future that resolves when the inspecting client has stopped

See the DeviceClient.until_stopped docstring for parameter definitions and more info.

until_synced(timeout=None)
Convenience method to wait (with Future) until client is synced

1.7. Concrete High-level KATCP Client API (resource_client) 135

KATCP Documentation, Release 0.0+unknown.201908260720

wait_connected(timeout=None)
Future that resolves when the state is not ‘disconnected’.

class katcp.resource_client.KATCPClientResourceContainer(resources_spec, log-
ger=<logging.Logger
object>)

Bases: katcp.resource.KATCPResource

Class for containing multiple KATCPClientResource instances

Provides aggregate sensor and req attributes containing the union of all the sensors in requests in the contained
resources. Names are prefixed with <resname>_, where <resname> is the name of the resource to which the
sensor / request belongs except for aggregate sensors that starts with ‘agg_’.

Methods

KATCPClientResourceContainer.
add_child_resource_client(. . .)

Add a resource client to the container and start the
resource connection

KATCPClientResourceContainer.
add_group(. . .)

Add a new ClientGroup to container groups
member.

KATCPClientResourceContainer.
client_resource_factory(. . .)

Return an instance of KATCPClientResource or
similar

KATCPClientResourceContainer.
is_active()
KATCPClientResourceContainer.
is_connected()

Indication of the connection state of all children

KATCPClientResourceContainer.
list_sensors([. . .])

List sensors available on this resource matching cer-
tain criteria.

KATCPClientResourceContainer.
set_active(active)
KATCPClientResourceContainer.
set_ioloop([ioloop])

Set the tornado ioloop to use

KATCPClientResourceContainer.
set_sampling_strategies(. . .)

Set sampling strategies for filtered sensors - these
sensors have to exsist

KATCPClientResourceContainer.
set_sampling_strategy(. . .)

Set sampling strategies for the specific sensor - this
sensor has to exist

KATCPClientResourceContainer.
set_sensor_listener(. . .)

Set listener for the specific sensor - this sensor has to
exsist

KATCPClientResourceContainer.
start()

Start and connect all the subordinate clients

KATCPClientResourceContainer.stop() Stop all child resources
KATCPClientResourceContainer.
until_all_children_in_state(. . .)

Return a tornado Future; resolves when all clients are
in specified state

KATCPClientResourceContainer.
until_any_child_in_state(state)

Return a tornado Future; resolves when any client is
in specified state

KATCPClientResourceContainer.
until_not_synced(. . .)

Return a tornado Future; resolves when any subordi-
nate client is not synced

KATCPClientResourceContainer.
until_stopped([. . .])

Return dict of futures that resolve when each child
resource has stopped

KATCPClientResourceContainer.
until_synced(. . .)

Return a tornado Future; resolves when all subordi-
nate clients are synced

KATCPClientResourceContainer.
wait(. . . [, timeout])

Wait for a sensor in this resource to satisfy a condi-
tion.

136 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

add_child_resource_client(res_name, res_spec)
Add a resource client to the container and start the resource connection

add_group(group_name, group_client_names)
Add a new ClientGroup to container groups member.

Add the group named group_name with sequence of client names to the container groups member. From
there it will be wrapped appropriately in the higher-level thread-safe container.

client_resource_factory(res_spec, parent, logger)
Return an instance of KATCPClientResource or similar

Provided to ease testing. Overriding this method allows deep brain surgery. See katcp.
fake_clients.fake_KATCP_client_resource_factory()

is_connected()
Indication of the connection state of all children

list_sensors(filter=”, strategy=False, status=”, use_python_identifiers=True, tuple=False, re-
fresh=False)

List sensors available on this resource matching certain criteria.

Parameters filter : string, optional

Filter each returned sensor’s name against this regexp if specified. To ease the
dichotomy between Python identifier names and actual sensor names, the default
is to search on Python identifier names rather than KATCP sensor names, unless
use_python_identifiers below is set to False. Note that the sensors of subordinate
KATCPResource instances may have inconsistent names and Python identifiers,
better to always search on Python identifiers in this case.

strategy : {False, True}, optional

Only list sensors with a set strategy if True

status : string, optional

Filter each returned sensor’s status against this regexp if given

use_python_identifiers : {True, False}, optional

Match on python identfiers even the the KATCP name is available.

tuple : {True, False}, optional, Default: False

Return backwards compatible tuple instead of SensorResultTuples

refresh : {True, False}, optional, Default: False

If set the sensor values will be refreshed with get_value before returning the re-
sults.

Returns sensors : list of SensorResultTuples, or list of tuples

List of matching sensors presented as named tuples. The object field is the
KATCPSensor object associated with the sensor. Note that the name of the
object may not match name if it originates from a subordinate device.

set_ioloop(ioloop=None)
Set the tornado ioloop to use

Defaults to tornado.ioloop.IOLoop.current() if set_ioloop() is not called or if ioloop=None. Must be called
before start()

set_sampling_strategies(**kwargs)
Set sampling strategies for filtered sensors - these sensors have to exsist

1.7. Concrete High-level KATCP Client API (resource_client) 137

KATCP Documentation, Release 0.0+unknown.201908260720

set_sampling_strategy(**kwargs)
Set sampling strategies for the specific sensor - this sensor has to exist

set_sensor_listener(**kwargs)
Set listener for the specific sensor - this sensor has to exsist

start()
Start and connect all the subordinate clients

stop()
Stop all child resources

until_all_children_in_state(**kwargs)
Return a tornado Future; resolves when all clients are in specified state

until_any_child_in_state(state, timeout=None)
Return a tornado Future; resolves when any client is in specified state

until_not_synced(**kwargs)
Return a tornado Future; resolves when any subordinate client is not synced

until_stopped(timeout=None)
Return dict of futures that resolve when each child resource has stopped

See the DeviceClient.until_stopped docstring for parameter definitions and more info.

until_synced(**kwargs)
Return a tornado Future; resolves when all subordinate clients are synced

wait(sensor_name, condition_or_value, timeout=5)
Wait for a sensor in this resource to satisfy a condition.

Parameters sensor_name : string

The name of the sensor to check

condition_or_value : obj or callable, or seq of objs or callables

If obj, sensor.value is compared with obj. If callable, condition_or_value(reading)
is called, and must return True if its condition is satisfied. Since the reading is
passed in, the value, status, timestamp or received_timestamp attributes can all be
used in the check.

timeout : float or None

The timeout in seconds (None means wait forever)

Returns This command returns a tornado Future that resolves with True when the :

sensor value satisfies the condition, or False if the condition is :

still not satisfied after a given timeout period. :

Raises :class:‘KATCPSensorError‘ :

If the sensor does not have a strategy set, or if the named sensor is not present

class katcp.resource_client.KATCPClientResourceRequest(request_description, client,
is_active=<function
<lambda>>)

Bases: katcp.resource.KATCPRequest

Callable wrapper around a KATCP request

138 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Methods

KATCPClientResourceRequest.
is_active()

True if resource for this request is active

KATCPClientResourceRequest.
issue_request(. . .)

Issue the wrapped request to the server.

issue_request(*args, **kwargs)
Issue the wrapped request to the server.

Parameters *args : list of objects

Arguments to pass on to the request.

Keyword Arguments timeout : float or None, optional

Timeout after this amount of seconds (keyword argument).

mid : None or int, optional

Message identifier to use for the request message. If None, use either auto-
incrementing value or no mid depending on the KATCP protocol version (mid’s
were only introduced with KATCP v5) and the value of the use_mid argument.
Defaults to None.

use_mid : bool

Use a mid for the request if True.

Returns future object that resolves with an :class:‘katcp.resource.KATCPReply‘ :

instance :

class katcp.resource_client.KATCPClientResourceSensorsManager(inspecting_client,
resource_name,
log-
ger=<logging.Logger
object>)

Bases: future.types.newobject.newobject

Implementation of KATSensorsManager ABC for a directly-connected client

Assumes that all methods are called from the same ioloop context

Methods

KATCPClientResourceSensorsManager.
drop_sampling_strategy(. . .)

Drop the sampling strategy for the named sensor
from the cache

KATCPClientResourceSensorsManager.
get_sampling_strategy(. . .)

Get the current sampling strategy for the named sen-
sor

KATCPClientResourceSensorsManager.
next()
KATCPClientResourceSensorsManager.
poll_sensor(. . .)

Poll sensor and arrange for sensor object to be up-
dated

KATCPClientResourceSensorsManager.
reapply_sampling_strategies(. . .)

Reapply all sensor strategies using cached values

Continued on next page

1.7. Concrete High-level KATCP Client API (resource_client) 139

KATCP Documentation, Release 0.0+unknown.201908260720

Table 55 – continued from previous page
KATCPClientResourceSensorsManager.
sensor_factory(. . .)
KATCPClientResourceSensorsManager.
set_sampling_strategy(. . .)

Set the sampling strategy for the named sensor

drop_sampling_strategy(sensor_name)
Drop the sampling strategy for the named sensor from the cache

Calling set_sampling_strategy() requires the sensor manager to memorise the requested strat-
egy so that it can automatically be reapplied. If the client is no longer interested in the sensor, or knows the
sensor may be removed from the server, then it can use this method to ensure the manager forgets about
the strategy. This method will not change the current strategy. No error is raised if there is no strategy to
drop.

Parameters sensor_name : str

Name of the sensor (normal or escaped form)

get_sampling_strategy(sensor_name)
Get the current sampling strategy for the named sensor

Parameters sensor_name : str

Name of the sensor (normal or escaped form)

Returns strategy : tuple of str

contains (<strat_name>, [<strat_parm1>, . . .]) where the strategy names and pa-
rameters are as defined by the KATCP spec

poll_sensor(**kwargs)
Poll sensor and arrange for sensor object to be updated

reapply_sampling_strategies(**kwargs)
Reapply all sensor strategies using cached values

set_sampling_strategy(**kwargs)
Set the sampling strategy for the named sensor

Parameters sensor_name : str

Name of the sensor

strategy_and_params : seq of str or str

As tuple contains (<strat_name>, [<strat_parm1>, . . .]) where the strategy names
and parameters are as defined by the KATCP spec. As str contains the same
elements in space-separated form.

Returns sensor_strategy : tuple

(success, info) with

success [bool] True if setting succeeded for this sensor, else False

info [tuple] Normalibed sensor strategy and parameters as tuple if success ==
True else, sys.exc_info() tuple for the error that occured.

class katcp.resource_client.MappingProxy(mapping, wrapper)
Bases: _abcoll.Mapping

140 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Methods

MappingProxy.get(k[,d])
MappingProxy.items()
MappingProxy.iteritems()
MappingProxy.iterkeys()
MappingProxy.itervalues()
MappingProxy.keys()
MappingProxy.values()

class katcp.resource_client.ReplyWrappedInspectingClientAsync(host, port,
ioloop=None, ini-
tial_inspection=None,
auto_reconnect=True,
log-
ger=<logging.Logger
object>)

Bases: katcp.inspecting_client.InspectingClientAsync

Adds wrapped_request() method that wraps reply in a KATCPReply

Methods

ReplyWrappedInspectingClientAsync.
close()
ReplyWrappedInspectingClientAsync.
connect(. . .)

Connect to KATCP interface, starting what is needed

ReplyWrappedInspectingClientAsync.
future_check_request(. . .)

Check if the request exists.

ReplyWrappedInspectingClientAsync.
future_check_sensor(. . .)

Check if the sensor exists.

ReplyWrappedInspectingClientAsync.
future_get_request(. . .)

Get the request object.

ReplyWrappedInspectingClientAsync.
future_get_sensor(. . .)

Get the sensor object.

ReplyWrappedInspectingClientAsync.
handle_sensor_value()

Handle #sensor-value informs just like #sensor-
status informs

ReplyWrappedInspectingClientAsync.
inform_hook_client_factory(. . .)

Return an instance of
_InformHookDeviceClient or similar

ReplyWrappedInspectingClientAsync.
inspect(. . .)

Inspect device requests and sensors, update model

ReplyWrappedInspectingClientAsync.
inspect_requests(. . .)

Inspect all or one requests on the device.

ReplyWrappedInspectingClientAsync.
inspect_sensors(. . .)

Inspect all or one sensor on the device.

ReplyWrappedInspectingClientAsync.
is_connected()

Connection status.

ReplyWrappedInspectingClientAsync.
join([timeout])
ReplyWrappedInspectingClientAsync.
preset_protocol_flags(. . .)

Preset server protocol flags.

Continued on next page

1.7. Concrete High-level KATCP Client API (resource_client) 141

KATCP Documentation, Release 0.0+unknown.201908260720

Table 57 – continued from previous page
ReplyWrappedInspectingClientAsync.
reply_wrapper(x)
ReplyWrappedInspectingClientAsync.
request_factory

alias of katcp.inspecting_client.
Request

ReplyWrappedInspectingClientAsync.
sensor_factory

alias of katcp.core.Sensor

ReplyWrappedInspectingClientAsync.
set_ioloop(ioloop)
ReplyWrappedInspectingClientAsync.
set_state_callback(cb)

Set user callback for state changes

ReplyWrappedInspectingClientAsync.
simple_request(. . .)

Create and send a request to the server.

ReplyWrappedInspectingClientAsync.
start([. . .])

Note: always call stop() and wait until_stopped()
when you are done with the container to make sure
the container cleans up correctly.

ReplyWrappedInspectingClientAsync.
stop([timeout])
ReplyWrappedInspectingClientAsync.
until_connected([. . .])
ReplyWrappedInspectingClientAsync.
until_data_synced([. . .])
ReplyWrappedInspectingClientAsync.
until_not_synced([. . .])
ReplyWrappedInspectingClientAsync.
until_state(. . .)

Wait until state is desired_state, Inspecting-
ClientStateType instance

ReplyWrappedInspectingClientAsync.
until_stopped([. . .])

Return future that resolves when the client has
stopped

ReplyWrappedInspectingClientAsync.
until_synced([. . .])
ReplyWrappedInspectingClientAsync.
update_sensor(. . .)
ReplyWrappedInspectingClientAsync.
wrapped_request(. . .)

Create and send a request to the server.

wrapped_request(request, *args, **kwargs)
Create and send a request to the server.

This method implements a very small subset of the options possible to send an request. It is provided as
a shortcut to sending a simple wrapped request.

Parameters request : str

The request to call.

*args : list of objects

Arguments to pass on to the request.

Keyword Arguments timeout : float or None, optional

Timeout after this amount of seconds (keyword argument).

mid : None or int, optional

Message identifier to use for the request message. If None, use either auto-
incrementing value or no mid depending on the KATCP protocol version (mid’s

142 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

were only introduced with KATCP v5) and the value of the use_mid argument.
Defaults to None.

use_mid : bool

Use a mid for the request if True.

Returns future object that resolves with the :

:meth:‘katcp.client.DeviceClient.future_request‘ response wrapped in :

self.reply_wrapper :

class katcp.resource_client.ThreadSafeKATCPClientGroupWrapper(subject,
ioloop_wrapper)

Bases: katcp.ioloop_manager.ThreadSafeMethodAttrWrapper

Thread safe wrapper for ClientGroup

Methods

ThreadSafeKATCPClientGroupWrapper.
next()

class katcp.resource_client.ThreadSafeKATCPClientResourceRequestWrapper(subject,
ioloop_wrapper)

Bases: katcp.ioloop_manager.ThreadSafeMethodAttrWrapper

Methods

ThreadSafeKATCPClientResourceRequestWrapper.
next()

class katcp.resource_client.ThreadSafeKATCPClientResourceWrapper(subject,
ioloop_wrapper)

Bases: katcp.ioloop_manager.ThreadSafeMethodAttrWrapper

Should work with both KATCPClientResource or KATCPClientResourceContainer

Methods

ThreadSafeKATCPClientResourceWrapper.
next()

class katcp.resource_client.ThreadSafeKATCPSensorWrapper(subject,
ioloop_wrapper)

Bases: katcp.ioloop_manager.ThreadSafeMethodAttrWrapper

Methods

ThreadSafeKATCPSensorWrapper.next()

1.7. Concrete High-level KATCP Client API (resource_client) 143

KATCP Documentation, Release 0.0+unknown.201908260720

katcp.resource_client.list_sensors(*args, **kwargs)
Helper for implementing katcp.resource.KATCPResource.list_sensors()

Parameters sensor_items : tuple of sensor-item tuples

As would be returned the items() method of a dict containing KATCPSensor objects
keyed by Python-identifiers.

parent_class: KATCPClientResource or KATCPClientResourceContainer :

Is used for prefix calculation

Rest of parameters as for :meth:‘katcp.resource.KATCPResource.list_sensors‘ :

katcp.resource_client.monitor_resource_sync_state(*args, **kwargs)
Coroutine that monitors a KATCPResource’s sync state.

Calls callback(True/False) whenever the resource becomes synced or unsynced. Will always do an initial call-
back(False) call. Exits without calling callback() if exit_event is set.

Warning: set the monitor’s exit_event before stopping the resources being monitored, otherwise it could result
in a memory leak. The until_synced() or until_not_synced() methods could keep a reference to the resource
alive.

katcp.resource_client.transform_future(transformation, future)
Returns a new future that will resolve with a transformed value

Takes the resolution value of future and applies transformation(*future.result()) to it before setting the result of
the new future with the transformed value. If future() resolves with an exception, it is passed through to the new
future.

Assumes future is a tornado Future.

1.8 Sampling

Strategies for sampling sensor values.

class katcp.sampling.SampleAuto(inform_callback, sensor, *params, **kwargs)
Bases: katcp.sampling.SampleStrategy

Strategy which sends updates whenever the sensor itself is updated.

Methods

SampleAuto.attach() Attach strategy to its sensor and send initial update.
SampleAuto.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleAuto.cancel_timeouts() Override this method to cancel any outstanding

ioloop timeouts.
SampleAuto.detach() Detach strategy from its sensor.
SampleAuto.get_sampling() The Strategy constant for this sampling strategy.
SampleAuto.get_sampling_formatted() The current sampling strategy and parameters.
SampleAuto.get_strategy(strategyName,
. . .)

Factory method to create a strategy object.

SampleAuto.inform(reading) Inform strategy creator of the sensor status.
SampleAuto.start() Start operating the strategy.

Continued on next page

144 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 62 – continued from previous page
SampleAuto.update(sensor, reading) Callback used by the sensor’s notify() method.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

The strategy type constant for this strategy.

update(sensor, reading)
Callback used by the sensor’s notify() method.

This update method is called whenever the sensor value is set so sensor will contain the right info. Note
that the strategy does not really need to be passed a sensor because it already has a handle to it, but receives
it due to the generic observer mechanism.

Sub-classes should override this method or start() to provide the necessary sampling strategy. Sub-
classes should also ensure that update() is thread-safe; an easy way to do this is by using the @up-
date_in_ioloop decorator.

Parameters sensor : Sensor object

The sensor which was just updated.

reading : (timestamp, status, value) tuple

Sensor reading as would be returned by sensor.read()

class katcp.sampling.SampleDifferential(inform_callback, sensor, *params, **kwargs)
Bases: katcp.sampling.SampleStrategy

Differential sampling strategy for integer and float sensors.

Sends updates only when the value has changed by more than some specified threshold, or the status changes.

Methods

SampleDifferential.attach() Attach strategy to its sensor and send initial update.
SampleDifferential.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleDifferential.
cancel_timeouts()

Override this method to cancel any outstanding
ioloop timeouts.

SampleDifferential.detach() Detach strategy from its sensor.
SampleDifferential.get_sampling() The Strategy constant for this sampling strategy.
SampleDifferential.
get_sampling_formatted()

The current sampling strategy and parameters.

SampleDifferential.get_strategy(. . .) Factory method to create a strategy object.
SampleDifferential.inform(reading) Inform strategy creator of the sensor status.
SampleDifferential.start() Start operating the strategy.
SampleDifferential.update(sensor, read-
ing)

Callback used by the sensor’s notify() method.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

1.8. Sampling 145

KATCP Documentation, Release 0.0+unknown.201908260720

Returns strategy : Strategy constant

The strategy type constant for this strategy.

update(sensor, reading)
Callback used by the sensor’s notify() method.

This update method is called whenever the sensor value is set so sensor will contain the right info. Note
that the strategy does not really need to be passed a sensor because it already has a handle to it, but receives
it due to the generic observer mechanism.

Sub-classes should override this method or start() to provide the necessary sampling strategy. Sub-
classes should also ensure that update() is thread-safe; an easy way to do this is by using the @up-
date_in_ioloop decorator.

Parameters sensor : Sensor object

The sensor which was just updated.

reading : (timestamp, status, value) tuple

Sensor reading as would be returned by sensor.read()

class katcp.sampling.SampleDifferentialRate(inform_callback, sensor, *params,
**kwargs)

Bases: katcp.sampling.SampleEventRate

Differential rate sampling strategy.

Report the value whenever it changes by more than difference from the last reported value or if more than
longest_period seconds have passed since the last reported update. However, do not report the value until
shortest_period seconds have passed since the last reported update. The behaviour if shortest_period is greater
than longest_period is undefined. May only be implemented for float and integer sensors.

Methods

SampleDifferentialRate.attach() Attach strategy to its sensor and send initial update.
SampleDifferentialRate.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleDifferentialRate.
cancel_timeouts()

Override this method to cancel any outstanding
ioloop timeouts.

SampleDifferentialRate.detach() Detach strategy from its sensor.
SampleDifferentialRate.
get_sampling()

The Strategy constant for this sampling strategy.

SampleDifferentialRate.
get_sampling_formatted()

The current sampling strategy and parameters.

SampleDifferentialRate.
get_strategy(. . .)

Factory method to create a strategy object.

SampleDifferentialRate.
inform(reading)

Inform strategy creator of the sensor status.

SampleDifferentialRate.start() Start operating the strategy.
SampleDifferentialRate.update(sensor,
reading)

Callback used by the sensor’s notify() method.

class katcp.sampling.SampleEvent(inform_callback, sensor, *params, **kwargs)
Bases: katcp.sampling.SampleEventRate

Strategy which sends updates when the sensor value or status changes.

146 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Since SampleEvent is just a special case of SampleEventRate, we use SampleEventRate with the appropriate
default values to implement SampleEvent.

Methods

SampleEvent.attach() Attach strategy to its sensor and send initial update.
SampleEvent.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleEvent.cancel_timeouts() Override this method to cancel any outstanding

ioloop timeouts.
SampleEvent.detach() Detach strategy from its sensor.
SampleEvent.get_sampling() The Strategy constant for this sampling strategy.
SampleEvent.get_sampling_formatted() The current sampling strategy and parameters.
SampleEvent.get_strategy(strategyName,
. . .)

Factory method to create a strategy object.

SampleEvent.inform(reading) Inform strategy creator of the sensor status.
SampleEvent.start() Start operating the strategy.
SampleEvent.update(sensor, reading) Callback used by the sensor’s notify() method.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

The strategy type constant for this strategy.

class katcp.sampling.SampleEventRate(inform_callback, sensor, *params, **kwargs)
Bases: katcp.sampling.SampleStrategy

Event rate sampling strategy.

Report the sensor value whenever it changes or if more than longest_period seconds have passed since the last
reported update. However, do not report the value if less than shortest_period seconds have passed since the last
reported update.

Methods

SampleEventRate.attach() Attach strategy to its sensor and send initial update.
SampleEventRate.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleEventRate.cancel_timeouts() Override this method to cancel any outstanding

ioloop timeouts.
SampleEventRate.detach() Detach strategy from its sensor.
SampleEventRate.get_sampling() The Strategy constant for this sampling strategy.
SampleEventRate.
get_sampling_formatted()

The current sampling strategy and parameters.

SampleEventRate.
get_strategy(strategyName, . . .)

Factory method to create a strategy object.

SampleEventRate.inform(reading) Inform strategy creator of the sensor status.
SampleEventRate.start() Start operating the strategy.

Continued on next page

1.8. Sampling 147

KATCP Documentation, Release 0.0+unknown.201908260720

Table 66 – continued from previous page
SampleEventRate.update(sensor, reading) Callback used by the sensor’s notify() method.

cancel_timeouts()
Override this method to cancel any outstanding ioloop timeouts.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

The strategy type constant for this strategy.

inform(reading)
Inform strategy creator of the sensor status.

start()
Start operating the strategy.

Subclasses that override start() should call the super method before it does anything that uses the
ioloop. This will attach to the sensor as an observer if OBSERVE_UPDATES is True, and sets
_ioloop_thread_id using thread.get_ident().

update(sensor, reading)
Callback used by the sensor’s notify() method.

This update method is called whenever the sensor value is set so sensor will contain the right info. Note
that the strategy does not really need to be passed a sensor because it already has a handle to it, but receives
it due to the generic observer mechanism.

Sub-classes should override this method or start() to provide the necessary sampling strategy. Sub-
classes should also ensure that update() is thread-safe; an easy way to do this is by using the @up-
date_in_ioloop decorator.

Parameters sensor : Sensor object

The sensor which was just updated.

reading : (timestamp, status, value) tuple

Sensor reading as would be returned by sensor.read()

class katcp.sampling.SampleNone(inform_callback, sensor, *params, **kwargs)
Bases: katcp.sampling.SampleStrategy

Sampling strategy which never sends any updates.

Methods

SampleNone.attach() Attach strategy to its sensor and send initial update.
SampleNone.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleNone.cancel_timeouts() Override this method to cancel any outstanding

ioloop timeouts.
SampleNone.detach() Detach strategy from its sensor.
SampleNone.get_sampling() The Strategy constant for this sampling strategy.
SampleNone.get_sampling_formatted() The current sampling strategy and parameters.

Continued on next page

148 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 67 – continued from previous page
SampleNone.get_strategy(strategyName,
. . .)

Factory method to create a strategy object.

SampleNone.inform(reading) Inform strategy creator of the sensor status.
SampleNone.start() Start operating the strategy.
SampleNone.update(sensor, reading) Callback used by the sensor’s notify() method.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

The strategy type constant for this strategy.

start()
Start operating the strategy.

Subclasses that override start() should call the super method before it does anything that uses the
ioloop. This will attach to the sensor as an observer if OBSERVE_UPDATES is True, and sets
_ioloop_thread_id using thread.get_ident().

class katcp.sampling.SamplePeriod(inform_callback, sensor, *params, **kwargs)
Bases: katcp.sampling.SampleStrategy

Periodic sampling strategy.

Methods

SamplePeriod.attach() Attach strategy to its sensor and send initial update.
SamplePeriod.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SamplePeriod.cancel_timeouts() Override this method to cancel any outstanding

ioloop timeouts.
SamplePeriod.detach() Detach strategy from its sensor.
SamplePeriod.get_sampling() The Strategy constant for this sampling strategy.
SamplePeriod.get_sampling_formatted() The current sampling strategy and parameters.
SamplePeriod.get_strategy(strategyName,
. . .)

Factory method to create a strategy object.

SamplePeriod.inform(reading) Inform strategy creator of the sensor status.
SamplePeriod.start() Start operating the strategy.
SamplePeriod.update(sensor, reading) Callback used by the sensor’s notify() method.

cancel_timeouts()
Override this method to cancel any outstanding ioloop timeouts.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

Returns strategy : Strategy constant

The strategy type constant for this strategy.

start()

1.8. Sampling 149

KATCP Documentation, Release 0.0+unknown.201908260720

Start operating the strategy.

Subclasses that override start() should call the super method before it does anything that uses the
ioloop. This will attach to the sensor as an observer if OBSERVE_UPDATES is True, and sets
_ioloop_thread_id using thread.get_ident().

class katcp.sampling.SampleStrategy(inform_callback, sensor, *params, **kwargs)
Bases: object

Base class for strategies for sampling sensors.

Parameters inform_callback : callable, signature inform_callback(sensor_obj, reading)

Callback to receive inform messages.

sensor : Sensor object

Sensor to sample.

params : list of objects

Custom sampling parameters.

Methods

SampleStrategy.attach() Attach strategy to its sensor and send initial update.
SampleStrategy.cancel() Detach strategy from its sensor and cancel ioloop

callbacks.
SampleStrategy.cancel_timeouts() Override this method to cancel any outstanding

ioloop timeouts.
SampleStrategy.detach() Detach strategy from its sensor.
SampleStrategy.get_sampling() The Strategy constant for this sampling strategy.
SampleStrategy.
get_sampling_formatted()

The current sampling strategy and parameters.

SampleStrategy.
get_strategy(strategyName, . . .)

Factory method to create a strategy object.

SampleStrategy.inform(reading) Inform strategy creator of the sensor status.
SampleStrategy.start() Start operating the strategy.
SampleStrategy.update(sensor, reading) Callback used by the sensor’s notify() method.

OBSERVE_UPDATES = False
True if a strategy must be attached to its sensor as an observer

attach()
Attach strategy to its sensor and send initial update.

cancel()
Detach strategy from its sensor and cancel ioloop callbacks.

cancel_timeouts()
Override this method to cancel any outstanding ioloop timeouts.

detach()
Detach strategy from its sensor.

get_sampling()
The Strategy constant for this sampling strategy.

Sub-classes should implement this method and return the appropriate constant.

150 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Returns strategy : Strategy constant

The strategy type constant for this strategy.

get_sampling_formatted()
The current sampling strategy and parameters.

The strategy is returned as a string and the values in the parameter list are formatted as strings using the
formatter for this sensor type.

Returns strategy_name : string

KATCP name for the strategy.

params : list of strings

KATCP formatted parameters for the strategy.

classmethod get_strategy(strategyName, inform_callback, sensor, *params, **kwargs)
Factory method to create a strategy object.

Parameters strategyName : str

Name of strategy.

inform_callback : callable, signature inform_callback(sensor, reading)

Callback to receive inform messages.

sensor : Sensor object

Sensor to sample.

params : list of objects

Custom sampling parameters for specified strategy.

Keyword Arguments ioloop : tornado.ioloop.IOLoop instance, optional

Tornado ioloop to use, otherwise tornado.ioloop.IOLoop.current()

Returns strategy : SampleStrategy object

The created sampling strategy.

inform(reading)
Inform strategy creator of the sensor status.

start()
Start operating the strategy.

Subclasses that override start() should call the super method before it does anything that uses the
ioloop. This will attach to the sensor as an observer if OBSERVE_UPDATES is True, and sets
_ioloop_thread_id using thread.get_ident().

update(sensor, reading)
Callback used by the sensor’s notify() method.

This update method is called whenever the sensor value is set so sensor will contain the right info. Note
that the strategy does not really need to be passed a sensor because it already has a handle to it, but receives
it due to the generic observer mechanism.

Sub-classes should override this method or start() to provide the necessary sampling strategy. Sub-
classes should also ensure that update() is thread-safe; an easy way to do this is by using the @up-
date_in_ioloop decorator.

Parameters sensor : Sensor object

1.8. Sampling 151

KATCP Documentation, Release 0.0+unknown.201908260720

The sensor which was just updated.

reading : (timestamp, status, value) tuple

Sensor reading as would be returned by sensor.read()

katcp.sampling.update_in_ioloop(update)
Decorator that ensures an update() method is run in the tornado ioloop.

Does this by checking the thread identity. Requires that the object to which the method is bound has the attributes
_ioloop_thread_id (the result of thread.get_ident() in the ioloop thread) and ioloop (the ioloop instance
in use). Also assumes the signature update(self, sensor, reading) for the method.

1.9 KATCP Server API (server)

Servers for the KAT device control language.

class katcp.server.AsyncDeviceServer(*args, **kwargs)
Bases: katcp.server.DeviceServer

DeviceServer that is automatically configured for async use.

Same as instantiating a DeviceServer instance and calling meth-
ods set_concurrency_options(thread_safe=False, handler_thread=False) and
set_ioloop(tornado.ioloop.IOLoop.current()) before starting.

Methods

AsyncDeviceServer.add_sensor(sensor) Add a sensor to the device.
AsyncDeviceServer.build_state() Return build state string of the form name-

major.minor[(a|b|rc)n].
AsyncDeviceServer.
clear_strategies(client_conn)

Clear the sensor strategies of a client connection.

AsyncDeviceServer.
create_exception_reply_and_log(. . .)
AsyncDeviceServer.
create_log_inform(. . . [, . . .])

Create a katcp logging inform message.

AsyncDeviceServer.
get_sensor(sensor_name)

Fetch the sensor with the given name.

AsyncDeviceServer.get_sensors() Fetch a list of all sensors.
AsyncDeviceServer.
handle_inform(connection, msg)

Dispatch an inform message to the appropriate
method.

AsyncDeviceServer.
handle_message(. . .)

Handle messages of all types from clients.

AsyncDeviceServer.
handle_reply(connection, msg)

Dispatch a reply message to the appropriate method.

AsyncDeviceServer.
handle_request(connection, msg)

Dispatch a request message to the appropriate
method.

AsyncDeviceServer.
has_sensor(sensor_name)

Whether the sensor with specified name is known.

AsyncDeviceServer.inform(connection,
msg)

Send an inform message to a particular client.

AsyncDeviceServer.join([timeout]) Rejoin the server thread.
Continued on next page

152 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 70 – continued from previous page
AsyncDeviceServer.mass_inform(msg) Send an inform message to all clients.
AsyncDeviceServer.
on_client_connect(**kwargs)

Inform client of build state and version on connect.

AsyncDeviceServer.
on_client_disconnect(. . .)

Inform client it is about to be disconnected.

AsyncDeviceServer.
on_message(client_conn, msg)

Dummy implementation of on_message required by
KATCPServer.

AsyncDeviceServer.
remove_sensor(sensor)

Remove a sensor from the device.

AsyncDeviceServer.reply(connection,
reply, . . .)

Send an asynchronous reply to an earlier request.

AsyncDeviceServer.
reply_inform(connection, . . .)

Send an inform as part of the reply to an earlier re-
quest.

AsyncDeviceServer.
request_client_list(req, msg)

Request the list of connected clients.

AsyncDeviceServer.request_halt(req,
msg)

Halt the device server.

AsyncDeviceServer.request_help(req,
msg)

Return help on the available requests.

AsyncDeviceServer.
request_log_level(req, msg)

Query or set the current logging level.

AsyncDeviceServer.
request_request_timeout_hint(. . .)

Return timeout hints for requests

AsyncDeviceServer.
request_restart(req, msg)

Restart the device server.

AsyncDeviceServer.
request_sensor_list(req, msg)

Request the list of sensors.

AsyncDeviceServer.
request_sensor_sampling(. . .)

Configure or query the way a sensor is sampled.

AsyncDeviceServer.
request_sensor_sampling_clear(. . .)

Set all sampling strategies for this client to none.

AsyncDeviceServer.
request_sensor_value(req, msg)

Request the value of a sensor or sensors.

AsyncDeviceServer.
request_version_list(req, msg)

Request the list of versions of roles and subcompo-
nents.

AsyncDeviceServer.
request_watchdog(req, msg)

Check that the server is still alive.

AsyncDeviceServer.running() Whether the server is running.
AsyncDeviceServer.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
AsyncDeviceServer.
set_concurrency_options([. . .])

Set concurrency options for this device server.

AsyncDeviceServer.set_ioloop([ioloop]) Set the tornado IOLoop to use.
AsyncDeviceServer.
set_restart_queue(. . .)

Set the restart queue.

AsyncDeviceServer.setup_sensors() Populate the dictionary of sensors.
AsyncDeviceServer.start([timeout]) Start the server in a new thread.
AsyncDeviceServer.stop([timeout]) Stop a running server (from another thread).
AsyncDeviceServer.
sync_with_ioloop([timeout])

Block for ioloop to complete a loop if called from
another thread.

AsyncDeviceServer.version() Return a version string of the form type-major.minor.
Continued on next page

1.9. KATCP Server API (server) 153

KATCP Documentation, Release 0.0+unknown.201908260720

Table 70 – continued from previous page
AsyncDeviceServer.
wait_running([timeout])

Wait until the server is running

katcp.server.BASE_REQUESTS = frozenset(['sensor-sampling', 'help', 'new-command', 'raise-fail', 'client-list', 'log-level', 'raise-exception', 'version-list', 'sensor-value', 'sensor-sampling-clear', 'watchdog', 'sensor-list', 'restart', 'halt'])
List of basic KATCP requests that a minimal device server should implement

class katcp.server.ClientConnection(server, conn_id)
Bases: object

Encapsulates the connection between a single client and the server.

Methods

ClientConnection.disconnect(reason) Disconnect this client connection for specified rea-
son

ClientConnection.inform(msg) Send an inform message to a particular client.
ClientConnection.mass_inform(msg) Send an inform message to all clients.
ClientConnection.
on_client_disconnect_was_called()

Prevent multiple calls to on_client_disconnect han-
dler.

ClientConnection.reply(reply, orig_req) Send an asynchronous reply to an earlier request.
ClientConnection.reply_inform(inform,
orig_req)

Send an inform as part of the reply to an earlier re-
quest.

disconnect(reason)
Disconnect this client connection for specified reason

inform(msg)
Send an inform message to a particular client.

Should only be used for asynchronous informs. Informs that are part of the response to a request should
use reply_inform() so that the message identifier from the original request can be attached to the
inform.

Parameters msg : Message object

The inform message to send.

mass_inform(msg)
Send an inform message to all clients.

Parameters msg : Message object

The inform message to send.

on_client_disconnect_was_called()
Prevent multiple calls to on_client_disconnect handler.

Call this when an on_client_disconnect handler has been called.

reply(reply, orig_req)
Send an asynchronous reply to an earlier request.

Parameters reply : Message object

The reply message to send.

orig_req : Message object

154 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

The request message being replied to. The reply message’s id is overridden with
the id from orig_req before the reply is sent.

reply_inform(inform, orig_req)
Send an inform as part of the reply to an earlier request.

Parameters inform : Message object

The inform message to send.

orig_req : Message object

The request message being replied to. The inform message’s id is overridden with
the id from orig_req before the inform is sent.

class katcp.server.ClientRequestConnection(client_connection, req_msg)
Bases: object

Encapsulates specific KATCP request and associated client connection.

Methods

ClientRequestConnection.inform(*args)
ClientRequestConnection.
inform_after_reply(*args)
ClientRequestConnection.
make_reply(*args)
ClientRequestConnection.reply(*args)
ClientRequestConnection.
reply_again(*args)
ClientRequestConnection.
reply_with_message(rep_msg)

Send a pre-created reply message to the client con-
nection.

reply_with_message(rep_msg)
Send a pre-created reply message to the client connection.

Will check that rep_msg.name matches the bound request.

class katcp.server.DeviceLogger(device_server, root_logger=’root’, python_logger=None)
Bases: object

Object for logging messages from a DeviceServer.

Log messages are logged at a particular level and under a particular name. Names use dotted notation to form a
virtual hierarchy of loggers with the device.

Parameters device_server : DeviceServerBase object

The device server this logger should use for sending out logs.

root_logger : str

The name of the root logger.

Methods

DeviceLogger.debug(msg, *args, **kwargs) Log a debug message.
Continued on next page

1.9. KATCP Server API (server) 155

KATCP Documentation, Release 0.0+unknown.201908260720

Table 73 – continued from previous page
DeviceLogger.error(msg, *args, **kwargs) Log an error message.
DeviceLogger.fatal(msg, *args, **kwargs) Log a fatal error message.
DeviceLogger.info(msg, *args, **kwargs) Log an info message.
DeviceLogger.level_from_name(level_name) Return the level constant for a given name.
DeviceLogger.level_name([level]) Return the name of the given level value.
DeviceLogger.log(level, msg, *args,
**kwargs)

Log a message and inform all clients.

DeviceLogger.log_to_python(logger, msg) Log a KATCP logging message to a Python logger.
DeviceLogger.set_log_level(level) Set the logging level.
DeviceLogger.set_log_level_by_name(level_name)Set the logging level using a level name.
DeviceLogger.trace(msg, *args, **kwargs) Log a trace message.
DeviceLogger.warn(msg, *args, **kwargs) Log an warning message.

debug(msg, *args, **kwargs)
Log a debug message.

error(msg, *args, **kwargs)
Log an error message.

fatal(msg, *args, **kwargs)
Log a fatal error message.

info(msg, *args, **kwargs)
Log an info message.

level_from_name(level_name)
Return the level constant for a given name.

If the level_name is not known, raise a ValueError.

Parameters level_name : str

The logging level name whose logging level constant to retrieve.

Returns level : logging level constant

The logging level constant associated with the name.

level_name(level=None)
Return the name of the given level value.

If level is None, return the name of the current level.

Parameters level : logging level constant

The logging level constant whose name to retrieve.

Returns level_name : str

The name of the logging level.

log(level, msg, *args, **kwargs)
Log a message and inform all clients.

Parameters level : logging level constant

The level to log the message at.

msg : str

The text format for the log message.

args : list of objects

156 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Arguments to pass to log format string. Final message text is created using: msg
% args.

kwargs : additional keyword parameters

Allowed keywords are ‘name’ and ‘timestamp’. The name is the name of the
logger to log the message to. If not given the name defaults to the root logger.
The timestamp is a float in seconds. If not given the timestamp defaults to the
current time.

classmethod log_to_python(logger, msg)
Log a KATCP logging message to a Python logger.

Parameters logger : logging.Logger object

The Python logger to log the given message to.

msg : Message object

The #log message to create a log entry from.

set_log_level(level)
Set the logging level.

Parameters level : logging level constant

The value to set the logging level to.

set_log_level_by_name(level_name)
Set the logging level using a level name.

Parameters level_name : str

The name of the logging level.

trace(msg, *args, **kwargs)
Log a trace message.

warn(msg, *args, **kwargs)
Log an warning message.

class katcp.server.DeviceServer(*args, **kwargs)
Bases: katcp.server.DeviceServerBase

Implements some standard messages on top of DeviceServerBase.

Inform messages handled are:

• version (sent on connect)

• build-state (sent on connect)

• log (via self.log.warn(. . .), etc)

• disconnect

• client-connected

Requests handled are:

• halt

• help

• log-level

1.9. KATCP Server API (server) 157

KATCP Documentation, Release 0.0+unknown.201908260720

• restart1

• client-list

• sensor-list

• sensor-sampling

• sensor-value

• watchdog

• version-list (only standard in KATCP v5 or later)

• request-timeout-hint (pre-standard only if protocol flags indicates timeout hints, supported for
KATCP v5.1 or later)

• sensor-sampling-clear (non-standard)

Unhandled standard requests are:

• configure

• mode

Subclasses can define the tuple VERSION_INFO to set the interface name, major and minor version numbers.
The BUILD_INFO tuple can be defined to give a string describing a particular interface instance and may have
a fourth element containing additional version information (e.g. rc1).

Subclasses may manipulate the versions returned by the ?version-list command by editing .extra_versions
which is a dictionary mapping role or component names to (version, build_state_or_serial_no) tuples. The
build_state_or_serial_no may be None.

Subclasses must override the .setup_sensors() method. If they have no sensors to register, the method should
just be a pass.

Methods

DeviceServer.add_sensor(sensor) Add a sensor to the device.
DeviceServer.build_state() Return build state string of the form name-

major.minor[(a|b|rc)n].
DeviceServer.clear_strategies(client_conn[,
. . .])

Clear the sensor strategies of a client connection.

DeviceServer.create_exception_reply_and_log(. . .)
DeviceServer.create_log_inform(level_name,
. . .)

Create a katcp logging inform message.

DeviceServer.get_sensor(sensor_name) Fetch the sensor with the given name.
DeviceServer.get_sensors() Fetch a list of all sensors.
DeviceServer.handle_inform(connection,
msg)

Dispatch an inform message to the appropriate
method.

DeviceServer.handle_message(client_conn,
msg)

Handle messages of all types from clients.

DeviceServer.handle_reply(connection,
msg)

Dispatch a reply message to the appropriate method.

DeviceServer.handle_request(connection,
msg)

Dispatch a request message to the appropriate
method.

Continued on next page

1 Restart relies on .set_restart_queue() being used to register a restart queue with the device. When the device needs to be restarted, it will be
added to the restart queue. The queue should be a Python Queue.Queue object without a maximum size.

158 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 74 – continued from previous page
DeviceServer.has_sensor(sensor_name) Whether the sensor with specified name is known.
DeviceServer.inform(connection, msg) Send an inform message to a particular client.
DeviceServer.join([timeout]) Rejoin the server thread.
DeviceServer.mass_inform(msg) Send an inform message to all clients.
DeviceServer.on_client_connect(**kwargs)Inform client of build state and version on connect.
DeviceServer.on_client_disconnect(. . .) Inform client it is about to be disconnected.
DeviceServer.on_message(client_conn,
msg)

Dummy implementation of on_message required by
KATCPServer.

DeviceServer.remove_sensor(sensor) Remove a sensor from the device.
DeviceServer.reply(connection, reply,
orig_req)

Send an asynchronous reply to an earlier request.

DeviceServer.reply_inform(connection,
. . .)

Send an inform as part of the reply to an earlier re-
quest.

DeviceServer.request_client_list(req,
msg)

Request the list of connected clients.

DeviceServer.request_halt(req, msg) Halt the device server.
DeviceServer.request_help(req, msg) Return help on the available requests.
DeviceServer.request_log_level(req,
msg)

Query or set the current logging level.

DeviceServer.request_request_timeout_hint(. . .)Return timeout hints for requests
DeviceServer.request_restart(req, msg) Restart the device server.
DeviceServer.request_sensor_list(req,
msg)

Request the list of sensors.

DeviceServer.request_sensor_sampling(req,
msg)

Configure or query the way a sensor is sampled.

DeviceServer.request_sensor_sampling_clear(. . .)Set all sampling strategies for this client to none.
DeviceServer.request_sensor_value(req,
msg)

Request the value of a sensor or sensors.

DeviceServer.request_version_list(req,
msg)

Request the list of versions of roles and subcompo-
nents.

DeviceServer.request_watchdog(req,
msg)

Check that the server is still alive.

DeviceServer.running() Whether the server is running.
DeviceServer.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
DeviceServer.set_concurrency_options([. . .])Set concurrency options for this device server.
DeviceServer.set_ioloop([ioloop]) Set the tornado IOLoop to use.
DeviceServer.set_restart_queue(restart_queue)Set the restart queue.
DeviceServer.setup_sensors() Populate the dictionary of sensors.
DeviceServer.start([timeout]) Start the server in a new thread.
DeviceServer.stop([timeout]) Stop a running server (from another thread).
DeviceServer.sync_with_ioloop([timeout]) Block for ioloop to complete a loop if called from

another thread.
DeviceServer.version() Return a version string of the form type-major.minor.
DeviceServer.wait_running([timeout]) Wait until the server is running

add_sensor(sensor)
Add a sensor to the device.

Usually called inside .setup_sensors() but may be called from elsewhere.

Parameters sensor : Sensor object

1.9. KATCP Server API (server) 159

KATCP Documentation, Release 0.0+unknown.201908260720

The sensor object to register with the device server.

build_state()
Return build state string of the form name-major.minor[(a|b|rc)n].

clear_strategies(client_conn, remove_client=False)
Clear the sensor strategies of a client connection.

Parameters client_connection : ClientConnection instance

The connection that should have its sampling strategies cleared

remove_client : bool, optional

Remove the client connection from the strategies datastructure. Useful for clients
that disconnect.

get_sensor(sensor_name)
Fetch the sensor with the given name.

Parameters sensor_name : str

Name of the sensor to retrieve.

Returns sensor : Sensor object

The sensor with the given name.

get_sensors()
Fetch a list of all sensors.

Returns sensors : list of Sensor objects

The list of sensors registered with the device server.

has_sensor(sensor_name)
Whether the sensor with specified name is known.

on_client_connect(**kwargs)
Inform client of build state and version on connect.

Parameters client_conn : ClientConnection object

The client connection that has been successfully established.

Returns Future that resolves when the device is ready to accept messages. :

on_client_disconnect(client_conn, msg, connection_valid)
Inform client it is about to be disconnected.

Parameters client_conn : ClientConnection object

The client connection being disconnected.

msg : str

Reason client is being disconnected.

connection_valid : bool

True if connection is still open for sending, False otherwise.

Returns Future that resolves when the client connection can be closed. :

remove_sensor(sensor)
Remove a sensor from the device.

Also deregisters all clients observing the sensor.

160 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Parameters sensor : Sensor object or name string

The sensor to remove from the device server.

request_client_list(req, msg)
Request the list of connected clients.

The list of clients is sent as a sequence of #client-list informs.

Informs addr : str

The address of the client as host:port with host in dotted quad notation. If the
address of the client could not be determined (because, for example, the client
disconnected suddenly) then a unique string representing the client is sent instead.

Returns success : {‘ok’, ‘fail’}

Whether sending the client list succeeded.

informs : int

Number of #client-list inform messages sent.

Examples

?client-list
#client-list 127.0.0.1:53600
!client-list ok 1

request_halt(req, msg)
Halt the device server.

Returns success : {‘ok’, ‘fail’}

Whether scheduling the halt succeeded.

Examples

?halt
!halt ok

request_help(req, msg)
Return help on the available requests.

Return a description of the available requests using a sequence of #help informs.

Parameters request : str, optional

The name of the request to return help for (the default is to return help for all
requests).

Informs request : str

The name of a request.

description : str

Documentation for the named request.

Returns success : {‘ok’, ‘fail’}

Whether sending the help succeeded.

1.9. KATCP Server API (server) 161

KATCP Documentation, Release 0.0+unknown.201908260720

informs : int

Number of #help inform messages sent.

Examples

?help
#help halt ...description...
#help help ...description...
...
!help ok 5

?help halt
#help halt ...description...
!help ok 1

request_log_level(req, msg)
Query or set the current logging level.

Parameters level : {‘all’, ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’, ‘fatal’, ‘off’}, optional

Name of the logging level to set the device server to (the default is to leave the
log level unchanged).

Returns success : {‘ok’, ‘fail’}

Whether the request succeeded.

level : {‘all’, ‘trace’, ‘debug’, ‘info’, ‘warn’, ‘error’, ‘fatal’, ‘off’}

The log level after processing the request.

Examples

?log-level
!log-level ok warn

?log-level info
!log-level ok info

request_request_timeout_hint(req, msg)
Return timeout hints for requests

KATCP requests should generally take less than 5s to complete, but some requests are unavoidably slow.
This results in spurious client timeout errors. This request provides timeout hints that clients can use to
select suitable request timeouts.

Parameters request : str, optional

The name of the request to return a timeout hint for (the default is to return hints
for all requests that have timeout hints). Returns one inform per request. Must be
an existing request if specified.

Informs request : str

The name of the request.

suggested_timeout : float

162 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Suggested request timeout in seconds for the request. If suggested_timeout is
zero (0), no timeout hint is available.

Returns success : {‘ok’, ‘fail’}

Whether sending the help succeeded.

informs : int

Number of #request-timeout-hint inform messages sent.

Notes

?request-timeout-hint without a parameter will only return informs for requests that have specific timeout
hints, so it will most probably be a subset of all the requests, or even no informs at all.

Examples

?request-timeout-hint
#request-timeout-hint halt 5
#request-timeout-hint very-slow-request 500
...
!request-timeout-hint ok 5

?request-timeout-hint moderately-slow-request
#request-timeout-hint moderately-slow-request 20
!request-timeout-hint ok 1

request_restart(req, msg)
Restart the device server.

Returns success : {‘ok’, ‘fail’}

Whether scheduling the restart succeeded.

Examples

?restart
!restart ok

request_sensor_list(req, msg)
Request the list of sensors.

The list of sensors is sent as a sequence of #sensor-list informs.

Parameters name : str, optional

Name of the sensor to list (the default is to list all sensors). If name starts and
ends with ‘/’ it is treated as a regular expression and all sensors whose names
contain the regular expression are returned.

Informs name : str

The name of the sensor being described.

description : str

Description of the named sensor.

1.9. KATCP Server API (server) 163

KATCP Documentation, Release 0.0+unknown.201908260720

units : str

Units for the value of the named sensor.

type : str

Type of the named sensor.

params : list of str, optional

Additional sensor parameters (type dependent). For integer and float sensors the
additional parameters are the minimum and maximum sensor value. For discrete
sensors the additional parameters are the allowed values. For all other types no
additional parameters are sent.

Returns success : {‘ok’, ‘fail’}

Whether sending the sensor list succeeded.

informs : int

Number of #sensor-list inform messages sent.

Examples

?sensor-list
#sensor-list psu.voltage PSU_voltage. V float 0.0 5.0
#sensor-list cpu.status CPU_status. \@ discrete on off error
...
!sensor-list ok 5

?sensor-list cpu.power.on
#sensor-list cpu.power.on Whether_CPU_hase_power. \@ boolean
!sensor-list ok 1

?sensor-list /voltage/
#sensor-list psu.voltage PSU_voltage. V float 0.0 5.0
#sensor-list cpu.voltage CPU_voltage. V float 0.0 3.0
!sensor-list ok 2

request_sensor_sampling(req, msg)
Configure or query the way a sensor is sampled.

Sampled values are reported asynchronously using the #sensor-status message.

Parameters name : str

Name of the sensor whose sampling strategy to query or configure.

strategy : {‘none’, ‘auto’, ‘event’, ‘differential’, ‘period’, ‘event-rate’}, optional

Type of strategy to use to report the sensor value. The differential strategy type
may only be used with integer or float sensors. If this parameter is supplied, it
sets the new strategy.

params : list of str, optional

Additional strategy parameters (dependent on the strategy type). For the differen-
tial strategy, the parameter is an integer or float giving the amount by which the
sensor value may change before an updated value is sent. For the period strategy,
the parameter is the sampling period in float seconds. The event strategy has no

164 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

parameters. Note that this has changed from KATCPv4. For the event-rate strat-
egy, a minimum period between updates and a maximum period between updates
(both in float seconds) must be given. If the event occurs more than once within
the minimum period, only one update will occur. Whether or not the event oc-
curs, the sensor value will be updated at least once per maximum period. The
differential-rate strategy is not supported in this release.

Returns success : {‘ok’, ‘fail’}

Whether the sensor-sampling request succeeded.

name : str

Name of the sensor queried or configured.

strategy : {‘none’, ‘auto’, ‘event’, ‘differential’, ‘period’}

Name of the new or current sampling strategy for the sensor.

params : list of str

Additional strategy parameters (see description under Parameters).

Examples

?sensor-sampling cpu.power.on
!sensor-sampling ok cpu.power.on none

?sensor-sampling cpu.power.on period 500
!sensor-sampling ok cpu.power.on period 500

request_sensor_sampling_clear(req, msg)
Set all sampling strategies for this client to none.

Returns success : {‘ok’, ‘fail’}

Whether sending the list of devices succeeded.

Examples

?sensor-sampling-clear !sensor-sampling-clear ok

request_sensor_value(req, msg)
Request the value of a sensor or sensors.

A list of sensor values as a sequence of #sensor-value informs.

Parameters name : str, optional

Name of the sensor to poll (the default is to send values for all sensors). If name
starts and ends with ‘/’ it is treated as a regular expression and all sensors whose
names contain the regular expression are returned.

Informs timestamp : float

Timestamp of the sensor reading in seconds since the Unix epoch, or milliseconds
for katcp versions <= 4.

count : {1}

Number of sensors described in this #sensor-value inform. Will always be one. It
exists to keep this inform compatible with #sensor-status.

1.9. KATCP Server API (server) 165

KATCP Documentation, Release 0.0+unknown.201908260720

name : str

Name of the sensor whose value is being reported.

value : object

Value of the named sensor. Type depends on the type of the sensor.

Returns success : {‘ok’, ‘fail’}

Whether sending the list of values succeeded.

informs : int

Number of #sensor-value inform messages sent.

Examples

?sensor-value
#sensor-value 1244631611.415231 1 psu.voltage 4.5
#sensor-value 1244631611.415200 1 cpu.status off
...
!sensor-value ok 5

?sensor-value cpu.power.on
#sensor-value 1244631611.415231 1 cpu.power.on 0
!sensor-value ok 1

request_version_list(req, msg)
Request the list of versions of roles and subcomponents.

Informs name : str

Name of the role or component.

version : str

A string identifying the version of the component. Individual components may
define the structure of this argument as they choose. In the absence of other
information clients should treat it as an opaque string.

build_state_or_serial_number : str

A unique identifier for a particular instance of a component. This should change
whenever the component is replaced or updated.

Returns success : {‘ok’, ‘fail’}

Whether sending the version list succeeded.

informs : int

Number of #version-list inform messages sent.

Examples

?version-list
#version-list katcp-protocol 5.0-MI
#version-list katcp-library katcp-python-0.4 katcp-python-0.4.1-py2
#version-list katcp-device foodevice-1.0 foodevice-1.0.0rc1
!version-list ok 3

166 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

request_watchdog(req, msg)
Check that the server is still alive.

Returns success : {‘ok’}

Examples

?watchdog
!watchdog ok

set_restart_queue(restart_queue)
Set the restart queue.

When the device server should be restarted, it will be added to the queue.

Parameters restart_queue : Queue.Queue object

The queue to add the device server to when it should be restarted.

setup_sensors()
Populate the dictionary of sensors.

Unimplemented by default – subclasses should add their sensors here or pass if there are no sensors.

Examples

>>> class MyDevice(DeviceServer):
... def setup_sensors(self):
... self.add_sensor(Sensor(...))
... self.add_sensor(Sensor(...))
...

version()
Return a version string of the form type-major.minor.

class katcp.server.DeviceServerBase(host, port, tb_limit=20, logger=<logging.Logger ob-
ject>)

Bases: object

Base class for device servers.

Subclasses should add .request_* methods for dealing with request messages. These methods each take the client
request connection and msg objects as arguments and should return the reply message or raise an exception as a
result.

Subclasses can also add .inform_* and reply_* methods to handle those types of messages.

Should a subclass need to generate inform messages it should do so using either the .inform() or .mass_inform()
methods.

Finally, this class should probably not be subclassed directly but rather via subclassing DeviceServer itself which
implements common .request_* methods.

Parameters host : str

Host to listen on.

port : int

Port to listen on.

1.9. KATCP Server API (server) 167

KATCP Documentation, Release 0.0+unknown.201908260720

tb_limit : int, optional

Maximum number of stack frames to send in error tracebacks.

logger : logging.Logger object, optional

Logger to log messages to.

Methods

DeviceServerBase.
create_exception_reply_and_log(. . .)
DeviceServerBase.
create_log_inform(. . . [, . . .])

Create a katcp logging inform message.

DeviceServerBase.
handle_inform(connection, msg)

Dispatch an inform message to the appropriate
method.

DeviceServerBase.
handle_message(client_conn, msg)

Handle messages of all types from clients.

DeviceServerBase.
handle_reply(connection, msg)

Dispatch a reply message to the appropriate method.

DeviceServerBase.
handle_request(connection, msg)

Dispatch a request message to the appropriate
method.

DeviceServerBase.inform(connection,
msg)

Send an inform message to a particular client.

DeviceServerBase.join([timeout]) Rejoin the server thread.
DeviceServerBase.mass_inform(msg) Send an inform message to all clients.
DeviceServerBase.
on_client_connect(**kwargs)

Called after client connection is established.

DeviceServerBase.
on_client_disconnect(**kwargs)

Called before a client connection is closed.

DeviceServerBase.
on_message(client_conn, msg)

Dummy implementation of on_message required by
KATCPServer.

DeviceServerBase.reply(connection, reply,
. . .)

Send an asynchronous reply to an earlier request.

DeviceServerBase.
reply_inform(connection, . . .)

Send an inform as part of the reply to an earlier re-
quest.

DeviceServerBase.running() Whether the server is running.
DeviceServerBase.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to

True / False
DeviceServerBase.
set_concurrency_options([. . .])

Set concurrency options for this device server.

DeviceServerBase.set_ioloop([ioloop]) Set the tornado IOLoop to use.
DeviceServerBase.start([timeout]) Start the server in a new thread.
DeviceServerBase.stop([timeout]) Stop a running server (from another thread).
DeviceServerBase.
sync_with_ioloop([timeout])

Block for ioloop to complete a loop if called from
another thread.

DeviceServerBase.
wait_running([timeout])

Wait until the server is running

create_log_inform(level_name, msg, name, timestamp=None)
Create a katcp logging inform message.

Usually this will be called from inside a DeviceLogger object, but it is also used by the methods in this

168 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

class when errors need to be reported to the client.

handle_inform(connection, msg)
Dispatch an inform message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The inform message to process.

handle_message(client_conn, msg)
Handle messages of all types from clients.

Parameters client_conn : ClientConnection object

The client connection the message was from.

msg : Message object

The message to process.

handle_reply(connection, msg)
Dispatch a reply message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The reply message to process.

handle_request(connection, msg)
Dispatch a request message to the appropriate method.

Parameters connection : ClientConnection object

The client connection the message was from.

msg : Message object

The request message to process.

Returns done_future : Future or None

Returns Future for async request handlers that will resolve when done, or None
for sync request handlers once they have completed.

inform(connection, msg)
Send an inform message to a particular client.

Should only be used for asynchronous informs. Informs that are part of the response to a request should
use reply_inform() so that the message identifier from the original request can be attached to the
inform.

Parameters connection : ClientConnection object

The client to send the message to.

msg : Message object

The inform message to send.

join(timeout=None)
Rejoin the server thread.

1.9. KATCP Server API (server) 169

KATCP Documentation, Release 0.0+unknown.201908260720

Parameters timeout : float or None, optional

Time in seconds to wait for the thread to finish.

mass_inform(msg)
Send an inform message to all clients.

Parameters msg : Message object

The inform message to send.

on_client_connect(**kwargs)
Called after client connection is established.

Subclasses should override if they wish to send clients message or perform house-keeping at this point.

Parameters conn : ClientConnection object

The client connection that has been successfully established.

Returns Future that resolves when the device is ready to accept messages. :

on_client_disconnect(**kwargs)
Called before a client connection is closed.

Subclasses should override if they wish to send clients message or perform house-keeping at this point.
The server cannot guarantee this will be called (for example, the client might drop the connection). The
message parameter contains the reason for the disconnection.

Parameters conn : ClientConnection object

Client connection being disconnected.

msg : str

Reason client is being disconnected.

connection_valid : boolean

True if connection is still open for sending, False otherwise.

Returns Future that resolves when the client connection can be closed. :

on_message(client_conn, msg)
Dummy implementation of on_message required by KATCPServer.

Will be replaced by a handler with the appropriate concurrency semantics when set_concurrency_options
is called (defaults are set in __init__()).

reply(connection, reply, orig_req)
Send an asynchronous reply to an earlier request.

Parameters connection : ClientConnection object

The client to send the reply to.

reply : Message object

The reply message to send.

orig_req : Message object

The request message being replied to. The reply message’s id is overridden with
the id from orig_req before the reply is sent.

reply_inform(connection, inform, orig_req)
Send an inform as part of the reply to an earlier request.

170 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Parameters connection : ClientConnection object

The client to send the inform to.

inform : Message object

The inform message to send.

orig_req : Message object

The request message being replied to. The inform message’s id is overridden with
the id from orig_req before the inform is sent.

running()
Whether the server is running.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_concurrency_options(thread_safe=True, handler_thread=True)
Set concurrency options for this device server. Must be called before start().

Parameters thread_safe : bool

If True, make the server public methods thread safe. Incurs performance over-
head.

handler_thread : bool

Can only be set if thread_safe is True. Handle all requests (even from different
clients) in a separate, single, request-handling thread. Blocking request handlers
will prevent the server from handling new requests from any client, but sensor
strategies should still function. This more or less mimics the behaviour of a server
in library versions before 0.6.0.

set_ioloop(ioloop=None)
Set the tornado IOLoop to use.

Sets the tornado.ioloop.IOLoop instance to use, defaulting to IOLoop.current(). If set_ioloop() is never
called the IOLoop is started in a new thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called.

start(timeout=None)
Start the server in a new thread.

Parameters timeout : float or None, optional

Time in seconds to wait for server thread to start.

stop(timeout=1.0)
Stop a running server (from another thread).

Parameters timeout : float, optional

Seconds to wait for server to have started.

Returns stopped : thread-safe Future

Resolves when the server is stopped

1.9. KATCP Server API (server) 171

KATCP Documentation, Release 0.0+unknown.201908260720

sync_with_ioloop(timeout=None)
Block for ioloop to complete a loop if called from another thread.

Returns a future if called from inside the ioloop.

Raises concurrent.futures.TimeoutError if timed out while blocking.

wait_running(timeout=None)
Wait until the server is running

class katcp.server.KATCPServer(device, host, port, tb_limit=20, logger=<logging.Logger ob-
ject>)

Bases: object

Tornado IO backend for a KATCP Device.

Listens for connections on a server socket, reads KATCP messages off the wire and passes them on to a
DeviceServer-like class.

All class CONSTANT attributes can be changed until start() is called.

Methods

KATCPServer.call_from_thread(fn) Allow thread-safe calls to ioloop functions.
KATCPServer.client_connection_factoryFactory that produces a ClientConnection compati-

ble instance.
KATCPServer.flush_on_close(stream) Flush tornado iostream write buffer and prevent fur-

ther writes.
KATCPServer.get_address(stream) Text representation of the network address of a con-

nection stream.
KATCPServer.in_ioloop_thread() Return True if called in the IOLoop thread of this

server.
KATCPServer.join([timeout]) Rejoin the server thread.
KATCPServer.mass_send_message(msg) Send a message to all connected clients.
KATCPServer.mass_send_message_from_thread(msg)Thread-safe version of send_message() returning a

Future instance.
KATCPServer.running() Whether the handler thread is running.
KATCPServer.send_message(stream, msg) Send an arbitrary message to a particular client.
KATCPServer.send_message_from_thread(stream,
msg)

Thread-safe version of send_message() returning a
Future instance.

KATCPServer.setDaemon(daemonic) Set daemonic state of the managed ioloop thread to
True / False

KATCPServer.set_ioloop([ioloop]) Set the tornado IOLoop to use.
KATCPServer.start([timeout]) Install the server on its IOLoop, optionally starting

the IOLoop.
KATCPServer.stop([timeout]) Stop a running server (from another thread).
KATCPServer.wait_running([timeout]) Wait until the handler thread is running.

DISCONNECT_TIMEOUT = 1
How long to wait for the device on_client_disconnect() to complete.

Note that this will only work if the device on_client_disconnect() method is non-blocking (i.e. returns a
future immediately). Otherwise the ioloop will be blocked and unable to apply the timeout.

MAX_MSG_SIZE = 2097152
Maximum message size that can be received in bytes.

172 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

If more than MAX_MSG_SIZE bytes are read from the client without encountering a message terminator
(i.e. newline), the connection is closed.

MAX_WRITE_BUFFER_SIZE = 4194304
Maximum outstanding bytes to be buffered by the server process.

If more than MAX_WRITE_BUFFER_SIZE bytes are outstanding, the client connection is closed. Note
that the OS also buffers socket writes, so more than MAX_WRITE_BUFFER_SIZE bytes may be un-
transmitted in total.

bind_address
The (host, port) where the server is listening for connections.

call_from_thread(fn)
Allow thread-safe calls to ioloop functions.

Uses add_callback if not in the IOLoop thread, otherwise calls directly. Returns an already resolved
tornado.concurrent.Future if in ioloop, otherwise a concurrent.Future. Logs unhandled exceptions. Re-
solves with an exception if one occurred.

client_connection_factory
Factory that produces a ClientConnection compatible instance.

signature: client_connection_factory(server, conn_id)

Should be set before calling start().

Methods

ClientConnection.disconnect(reason) Disconnect this client connection for specified
reason

ClientConnection.inform(msg) Send an inform message to a particular client.
ClientConnection.mass_inform(msg) Send an inform message to all clients.
ClientConnection.
on_client_disconnect_was_called()

Prevent multiple calls to on_client_disconnect
handler.

ClientConnection.reply(reply,
orig_req)

Send an asynchronous reply to an earlier request.

ClientConnection.
reply_inform(inform, orig_req)

Send an inform as part of the reply to an earlier
request.

alias of ClientConnection

flush_on_close(stream)
Flush tornado iostream write buffer and prevent further writes.

Returns a future that resolves when the stream is flushed.

get_address(stream)
Text representation of the network address of a connection stream.

Notes

This method is thread-safe

in_ioloop_thread()
Return True if called in the IOLoop thread of this server.

1.9. KATCP Server API (server) 173

KATCP Documentation, Release 0.0+unknown.201908260720

ioloop = None
The Tornado IOloop to use, set by self.set_ioloop()

join(timeout=None)
Rejoin the server thread.

Parameters timeout : float or None, optional

Time in seconds to wait for the thread to finish.

Notes

If the ioloop is not managed, this function will block until the server port is closed, meaning a new server
can be started on the same port.

mass_send_message(msg)
Send a message to all connected clients.

Notes

This method can only be called in the IOLoop thread.

mass_send_message_from_thread(msg)
Thread-safe version of send_message() returning a Future instance.

See return value and notes for send_message_from_thread().

running()
Whether the handler thread is running.

send_message(stream, msg)
Send an arbitrary message to a particular client.

Parameters stream : tornado.iostream.IOStream object

The stream to send the message to.

msg : Message object

The message to send.

Notes

This method can only be called in the IOLoop thread.

Failed sends disconnect the client connection and calls the device on_client_disconnect() method. They do
not raise exceptions, but they are logged. Sends also fail if more than self.MAX_WRITE_BUFFER_SIZE
bytes are queued for sending, implying that client is falling behind.

send_message_from_thread(stream, msg)
Thread-safe version of send_message() returning a Future instance.

Returns A Future that will resolve without raising an exception as soon as :

the call to send_message() completes. This does not guarantee that the :

message has been delivered yet. If the call to send_message() failed, :

the exception will be logged, and the future will resolve with the :

exception raised. Since a failed call to send_message() will result :

174 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

in the connection being closed, no real error handling apart from :

logging will be possible. :

Notes

This method is thread-safe. If called from within the ioloop, send_message is called directly and a resolved
tornado.concurrent.Future is returned, otherwise a callback is submitted to the ioloop that will resolve a
thread-safe concurrent.futures.Future instance.

setDaemon(daemonic)
Set daemonic state of the managed ioloop thread to True / False

Calling this method for a non-managed ioloop has no effect. Must be called before start(), or it will also
have no effect

set_ioloop(ioloop=None)
Set the tornado IOLoop to use.

Sets the tornado.ioloop.IOLoop instance to use, defaulting to IOLoop.current(). If set_ioloop() is never
called the IOLoop is started in a new thread, and will be stopped if self.stop() is called.

Notes

Must be called before start() is called.

start(timeout=None)
Install the server on its IOLoop, optionally starting the IOLoop.

Parameters timeout : float or None, optional

Time in seconds to wait for server thread to start.

stop(timeout=1.0)
Stop a running server (from another thread).

Parameters timeout : float or None, optional

Seconds to wait for server to have started.

Returns stopped : thread-safe Future

Resolves when the server is stopped

wait_running(timeout=None)
Wait until the handler thread is running.

class katcp.server.MessageHandlerThread(handler, log_inform_formatter, log-
ger=<logging.Logger object>)

Bases: object

Provides backwards compatibility for server expecting its own thread.

Methods

MessageHandlerThread.isAlive()
MessageHandlerThread.join([timeout]) Rejoin the handler thread.

Continued on next page

1.9. KATCP Server API (server) 175

KATCP Documentation, Release 0.0+unknown.201908260720

Table 78 – continued from previous page
MessageHandlerThread.
on_message(client_conn, msg)

Handle message.

MessageHandlerThread.run()
MessageHandlerThread.running() Whether the handler thread is running.
MessageHandlerThread.
set_ioloop(ioloop)
MessageHandlerThread.start([timeout])
MessageHandlerThread.stop([timeout]) Stop the handler thread (from another thread).
MessageHandlerThread.
wait_running([timeout])

Wait until the handler thread is running.

join(timeout=None)
Rejoin the handler thread.

Parameters timeout : float or None, optional

Time in seconds to wait for the thread to finish.

on_message(client_conn, msg)
Handle message.

Returns ready : Future

A future that will resolve once we’re ready, else None.

Notes

on_message should not be called again until ready has resolved.

running()
Whether the handler thread is running.

stop(timeout=1.0)
Stop the handler thread (from another thread).

Parameters timeout : float, optional

Seconds to wait for server to have started.

wait_running(timeout=None)
Wait until the handler thread is running.

class katcp.server.ThreadsafeClientConnection(server, conn_id)
Bases: katcp.server.ClientConnection

Make ClientConnection compatible with messages sent from other threads.

Methods

ThreadsafeClientConnection.
disconnect(reason)

Disconnect this client connection for specified rea-
son

ThreadsafeClientConnection.
inform(msg)

Send an inform message to a particular client.

ThreadsafeClientConnection.
mass_inform(msg)

Send an inform message to all clients.

Continued on next page

176 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

Table 79 – continued from previous page
ThreadsafeClientConnection.
on_client_disconnect_was_called()

Prevent multiple calls to on_client_disconnect han-
dler.

ThreadsafeClientConnection.
reply(reply, orig_req)

Send an asynchronous reply to an earlier request.

ThreadsafeClientConnection.
reply_inform(. . .)

Send an inform as part of the reply to an earlier re-
quest.

katcp.server.construct_name_filter(pattern)
Return a function for filtering sensor names based on a pattern.

Parameters pattern : None or str

If None, the returned function matches all names. If pattern starts and ends with
‘/’ the text between the slashes is used as a regular expression to search the names.
Otherwise the pattern must match the name of the sensor exactly.

Returns exact : bool

Return True if pattern is expected to match exactly. Used to determine whether
having no matching sensors constitutes an error.

filter_func : f(str) -> bool

Function for determining whether a name matches the pattern.

katcp.server.return_future(fn)
Decorator that turns a synchronous function into one returning a future.

This should only be applied to non-blocking functions. Will do set_result() with the return value, or
set_exc_info() if an exception is raised.

1.10 Tutorial

1.10.1 Installing the Python Katcp Library

You can install the latest version of the KATCP library by running pip install katcp if pip is installed. Alter-
natively, easy_install katcp; requires the setuptools Python package to be installed.

1.10.2 Using the Blocking Client

The blocking client is the most straight-forward way of querying a KATCP device. It is used as follows:

from katcp import BlockingClient, Message

device_host = "www.example.com"
device_port = 5000

client = BlockingClient(device_host, device_port)
client.start()
client.wait_protocol() # Optional

reply, informs = client.blocking_request(

(continues on next page)

1.10. Tutorial 177

KATCP Documentation, Release 0.0+unknown.201908260720

(continued from previous page)

Message.request("help"))

print reply
for msg in informs:

print msg

client.stop()
client.join()

After creating the BlockingClient instance, the start() method is called to launch the client thread. The
wait_protocol() method waits until katcp version information has been received from the server, allowing the
KATCP version spoken by the server to be known; server protocol iformation is stores in client.protocol_flags. Once
you have finished with the client, stop() can be called to request that the thread shutdown. Finally, join() is used
to wait for the client thread to finish.

While the client is active the blocking_request() method can be used to send messages to the KATCP server
and wait for replies. If a reply is not received within the allowed time, a RuntimeError is raised.

If a reply is received blocking_request() returns two values. The first is the Message containing the reply.
The second is a list of messages containing any KATCP informs associated with the reply.

1.10.3 Using the Callback Client

For situations where one wants to communicate with a server but doesn’t want to wait for a reply, the
CallbackClient is provided:

from katcp import CallbackClient, Message

device_host = "www.example.com"
device_port = 5000

def reply_cb(msg):
print "Reply:", msg

def inform_cb(msg):
print "Inform:", msg

client = CallbackClient(device_host, device_port)
client.start()

reply, informs = client.callback_request(
Message.request("help"),
reply_cb=reply_cb,
inform_cb=inform_cb,

)

client.stop()
client.join()

Note that the reply_cb() and inform_cb() callback functions are both called inside the client’s event-loop
thread so should not perform any operations that block. If needed, pass the data out from the callback function to
another thread using a Queue.Queue or similar structure.

178 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

1.10.4 Writing your own Client

If neither the BlockingClient nor the CallbackClient provide the functionality you need then you can sub-
class DeviceClient which is the base class from which both are derived.

DeviceClient has two methods for sending messages:

• request() for sending request Messages

• send_message for sending arbitrary Messages

Internally request calls send_message to pass messages to the server.

Note: The send_message() method does not return an error code or raise an exception if sending the mes-
sage fails. Since the underlying protocol is entirely asynchronous, the only means to check that a request was
successful is receive a reply message. One can check that the client is connected before sending a message using
is_connected().

When the DeviceClient thread receives a completed message, handle_message() is called. The
default handle_message() implementation calls one of handle_reply(), handle_inform() or
handle_request() depending on the type of message received.

Note: Sending requests to clients is discouraged. The handle_request() is provided mostly for completeness
and to deal with unforseen circumstances.

Each of handle_reply(), handle_inform() and handle_request() dispatches messages to methods
based on the message name. For example, a reply message named foo will be dispatched to reply_foo(). Sim-
ilarly an inform message named bar will be dispatched to inform_bar(). If no corresponding method is found
then one of unhandled_reply(), unhandled_inform() or unhandled_request() is called.

Your own client may hook into this dispatch tree at any point by implementing or overriding the appropriate methods.

An example of a simple client that only handles replies to help messages is presented below:

from katcp import DeviceClient, Message
import time

device_host = "www.example.com"
device_port = 5000

class MyClient(DeviceClient):

def reply_help(self, msg):
"""Print out help replies."""
print msg.name, msg.arguments

def inform_help(self, msg):
"""Print out help inform messages."""
meth, desc = msg.arguments[:2]
print "---------", meth, "---------"
print
print desc
print "----------------------------"

def unhandled_reply(self, msg):
"""Print out unhandled replies."""

(continues on next page)

1.10. Tutorial 179

KATCP Documentation, Release 0.0+unknown.201908260720

(continued from previous page)

print "Unhandled reply", msg.name

def unhandled_inform(self, msg):
"Print out unhandled informs."""
print "Unhandled inform", msg.name

client = MyClient(device_host, device_port)
client.start()

client.request(Message.request("help"))
client.request(Message.request("watchdog"))

time.sleep(0.5)

client.stop()
client.join()

Client handler functions can use the unpack_message() decorator from kattypes module to unpack messages into
function arguments in the same way the request() decorator is used in the server example below, except that the
req parameter is omitted.

1.10.5 Using the high-level client API

The high level client API inspects a KATCP device server and presents requests as method calls and sensors as objects.

A high level client for the example server presented in the following section:

import tornado

from tornado.ioloop import IOLoop
from katcp import resource_client

ioloop = IOLoop.current()

client = resource_client.KATCPClientResource(dict(
name='demo-client',
address=('localhost', 5000),
controlled=True))

@tornado.gen.coroutine
def demo():

Wait until the client has finished inspecting the device
yield client.until_synced()
help_response = yield client.req.help()
print "device help:\n ", help_response
add_response = yield client.req.add(3, 6)
print "3 + 6 response:\n", add_response
By not yielding we are not waiting for the response
pick_response_future = client.req.pick_fruit()
Instead we wait for the fruit.result sensor status to change to
nominal. Before we can wait on a sensor, a strategy must be set:
client.sensor.fruit_result.set_strategy('event')
If the condition does not occur within the timeout (default 5s), we will
get a TimeoutException

(continues on next page)

180 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

(continued from previous page)

yield client.sensor.fruit_result.wait(
lambda reading: reading.status == 'nominal')

fruit = yield client.sensor.fruit_result.get_value()
print 'Fruit picked: ', fruit
And see how the ?pick-fruit request responded by yielding on its future
pick_response = yield pick_response_future
print 'pick response: \n', pick_response
Finally stop the ioloop so that the program exits
ioloop.stop()

Note, katcp.resource_client.ThreadSafeKATCPClientResourceWrapper can be used to
turn the client into a 'blocking' client for use in e.g. ipython. It will turn
all functions that return tornado futures into blocking calls, and will bounce
all method calls through the ioloop. In this case the ioloop must be started
in a separate thread. katcp.ioloop_manager.IOLoopManager can be used to manage
the ioloop thread.

ioloop.add_callback(client.start)
ioloop.add_callback(demo)
ioloop.start()

1.10.6 Writing your own Server

Creating a server requires sub-classing DeviceServer. This class already provides all the requests and inform
messages required by the KATCP protocol. However, its implementation requires a little assistance from the subclass
in order to function.

A very simple server example looks like:

import threading
import time
import random

from katcp import DeviceServer, Sensor, ProtocolFlags, AsyncReply
from katcp.kattypes import (Str, Float, Timestamp, Discrete,

request, return_reply)

server_host = ""
server_port = 5000

class MyServer(DeviceServer):

VERSION_INFO = ("example-api", 1, 0)
BUILD_INFO = ("example-implementation", 0, 1, "")

Optionally set the KATCP protocol version and features. Defaults to
the latest implemented version of KATCP, with all supported optional
features
PROTOCOL_INFO = ProtocolFlags(5, 0, set([

ProtocolFlags.MULTI_CLIENT,
ProtocolFlags.MESSAGE_IDS,

]))

FRUIT = [
"apple", "banana", "pear", "kiwi",

(continues on next page)

1.10. Tutorial 181

KATCP Documentation, Release 0.0+unknown.201908260720

(continued from previous page)

]

def setup_sensors(self):
"""Setup some server sensors."""
self._add_result = Sensor.float("add.result",

"Last ?add result.", "", [-10000, 10000])

self._time_result = Sensor.timestamp("time.result",
"Last ?time result.", "")

self._eval_result = Sensor.string("eval.result",
"Last ?eval result.", "")

self._fruit_result = Sensor.discrete("fruit.result",
"Last ?pick-fruit result.", "", self.FRUIT)

self.add_sensor(self._add_result)
self.add_sensor(self._time_result)
self.add_sensor(self._eval_result)
self.add_sensor(self._fruit_result)

@request(Float(), Float())
@return_reply(Float())
def request_add(self, req, x, y):

"""Add two numbers"""
r = x + y
self._add_result.set_value(r)
return ("ok", r)

@request()
@return_reply(Timestamp())
def request_time(self, req):

"""Return the current time in seconds since the Unix Epoch."""
r = time.time()
self._time_result.set_value(r)
return ("ok", r)

@request(Str())
@return_reply(Str())
def request_eval(self, req, expression):

"""Evaluate a Python expression."""
r = str(eval(expression))
self._eval_result.set_value(r)
return ("ok", r)

@request()
@return_reply(Discrete(FRUIT))
def request_pick_fruit(self, req):

"""Pick a random fruit."""
r = random.choice(self.FRUIT + [None])
if r is None:

return ("fail", "No fruit.")
delay = random.randrange(1,5)
req.inform("Picking will take %d seconds" % delay)

def pick_handler():
self._fruit_result.set_value(r)

(continues on next page)

182 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

(continued from previous page)

req.reply("ok", r)

self.ioloop.add_callback(
self.ioloop.call_later, delay, pick_handler)

raise AsyncReply

def request_raw_reverse(self, req, msg):
"""
A raw request handler to demonstrate the calling convention if
@request decoraters are not used. Reverses the message arguments.
"""
msg is a katcp.Message.request object
reversed_args = msg.arguments[::-1]
req.make_reply() makes a katcp.Message.reply using the correct request
name and message ID
return req.make_reply('ok', *reversed_args)

if __name__ == "__main__":

server = MyServer(server_host, server_port)
server.start()
server.join()

Notice that MyServer has three special class attributes VERSION_INFO, BUILD_INFO and PROTOCOL_INFO.
VERSION_INFO gives the version of the server API. Many implementations might use the same VERSION_INFO.
BUILD_INFO gives the version of the software that provides the device. Each device implementation should have
a unique BUILD_INFO. PROTOCOL_INFO is an instance of ProtocolFlags that describes the KATCP dialect
spoken by the server. If not specified, it defaults to the latest implemented version of KATCP, with all supported
optional features. Using a version different from the default may change server behaviour; furthermore version info
may need to be passed to the @request and @return_reply decorators.

The setup_sensors() method registers Sensor objects with the device server. The base class uses this informa-
tion to implement the ?sensor-list, ?sensor-value and ?sensor-sampling requests. add_sensor()
should be called once for each sensor the device should contain. You may create the sensor objects inside
setup_sensors() (as done in the example) or elsewhere if you wish.

Request handlers are added to the server by creating methods whose names start with “request_”. These methods take
two arguments – the client-request object (abstracts the client socket and the request context) that the request came
from, and the request message. Notice that the message argument is missing from the methods in the example. This is
a result of the request() decorator that has been applied to the methods.

The request() decorator takes a list of KatcpType objects describing the request arguments. Once the arguments
have been checked they are passed in to the underlying request method as additional parameters instead of the request
message.

The return_reply decorator performs a similar operation for replies. Once the request method returns a tuple (or
list) of reply arguments, the decorator checks the values of the arguments and constructs a suitable reply message.

Use of the request() and return_reply() decorators is encouraged but entirely optional.

Message dispatch is handled in much the same way as described in the client example, with the exception that there
are no unhandled_request(), unhandled_reply() or unhandled_request() methods. Instead, the
server will log an exception.

1.10. Tutorial 183

KATCP Documentation, Release 0.0+unknown.201908260720

1.10.7 Writing your own Async Server

To write a server in the typical tornado async style, modify the example above by adding the following imports

import signal
import tornado

from katcp import AsyncDeviceServer

Also replace class MyServer(DeviceServer) with class MyServer(AsyncDeviceServer) and replace the if __name__ ==
“__main__”: block with

@tornado.gen.coroutine
def on_shutdown(ioloop, server):

print('Shutting down')
yield server.stop()
ioloop.stop()

if __name__ == "__main__":
ioloop = tornado.ioloop.IOLoop.current()
server = MyServer(server_host, server_port)
Hook up to SIGINT so that ctrl-C results in a clean shutdown
signal.signal(signal.SIGINT, lambda sig, frame: ioloop.add_callback_from_signal(

on_shutdown, ioloop, server))
ioloop.add_callback(server.start)
ioloop.start()

If multiple servers are started in a single ioloop, on_shutdown() should be modified to call stop() on each server.
This is needed to allow a clean shutdown that adheres to the KATCP spec requirement that a #disconnect inform is
sent when a server shuts down.

1.10.8 Event Loops and Thread Safety

As of version 0.6.0, katcp-python was completely reworked to use Tornado as an event- and network library. A typical
Tornado application would only use a single tornado.ioloop.IOLoop event-loop instance. Logically independent parts
of the application would all share the same ioloop using e.g. coroutines to allow concurrent tasks.

However, to maintain backwards compatiblity with the thread-semantics of older versions of this library, it sup-
ports starting a tornado.ioloop.IOLoop instance in a new thread for each client or server. Instantiating the
BlockingClient or CallbackClient client classes or the DeviceServer server class will implement the
backward compatible behaviour by default, while using AsyncClient or AsyncDeviceServer will by default
use tornado.ioloop.IOLoop.current() as the ioloop (can be overidden using their set_ioloop methods), and won’t enable
thread safety by default (can be overridden using AsyncDeviceServer.set_concurrency_options() and
AsyncClient.enable_thread_safety())

Note that any message (request, reply, iform) handling methods should not block. A blocking handler will block the
ioloop, causing all timed operations (e.g. sensor strategies), network io, etc. to block. This is particularly important
when multiple servers/clients share a single ioloop. A good solution for handlers that need to wait on other tasks is to
implement them as Tornado couroutines. A DeviceServer will not accept another request message from a client
connection until the request handler has completed / resolved its future. Multiple outstanding requests can be handled
concurrently by raising the AsyncReply exception in a request handler. It is then the responsibility of the user to
ensure that a reply is eventually sent using the req object.

If DeviceServer.set_concurrency_options() has handler_thread=True (the default for
DeviceServer, AsyncDeviceServer defaults to False), all the requests to a server is serialised and
handled in a separate request handing thread. This allows request handlers to block without preventing sensor strategy
updates, providing backwards-compatible concurrency semantics.

184 Chapter 1. Contents

KATCP Documentation, Release 0.0+unknown.201908260720

In the case of a purely network-event driven server or client, all user code would execute in the thread context of
the server or client event loop. Therefore all handler functions must be non-blocking to prevent unresponsiveness.
Unhandled exceptions raised by handlers running in the network event-thread are caught and logged; in the case of
servers, an error reply including the traceback is sent over the network interface. Slow operations (such as picking
fruit) may be delegated to another thread (if a threadsafe server is used), a callback (as shown in the request_pick_fruit
handler in the server example) or tornado coroutine.

If a device is linked to processing that occurs independently of network events, one approach would be a model
thread running in the background. The KATCP handler code would then defer requests to the model. The model
must provide a thread-safe interface to the KATCP code. If using an async server (e.g. AsyncDeviceServer
or DeviceServer.set_concurrency_options() called with thread_safe=False), all interaction with the
device server needs to be through the tornado.ioloop.Ioloop.add_callback() method of the server’s
ioloop. The server’s ioloop instance can be accessed through its ioloop attribute. If a threadsafe server (e.g.
DeviceServer with default concurrency options) or client (e.g. CallbackClient) is used, all the public meth-
ods provided by this katcp library for sending !replies or #informs are thread safe.

Updates to Sensor objects using the public setter methods are always thread-safe, provided that the same is true for
all the observers attached to the sensor. The server observers used to implement sampling strategies are threadsafe,
even if an asyc server is used.

1.10.9 Backwards Compatibility

Server Protocol Backwards Compatibility

A minor modification of the first several lines of the example in Writing your own Server suffices to create a KATCP
v4 server:

from katcp import DeviceServer, Sensor, ProtocolFlags, AsyncReply
from katcp.kattypes import (Str, Float, Timestamp, Discrete,

request, return_reply)

from functools import partial
import threading
import time
import random

server_host = ""
server_port = 5000

Bind the KATCP major version of the request and return_reply decorators
to version 4
request = partial(request, major=4)
return_reply = partial(return_reply, major=4)

class MyServer(DeviceServer):

VERSION_INFO = ("example-api", 1, 0)
BUILD_INFO = ("example-implementation", 0, 1, "")

Optionally set the KATCP protocol version as 4.
PROTOCOL_INFO = ProtocolFlags(4, 0, set([

ProtocolFlags.MULTI_CLIENT,
]))

The rest of the example follows as before.

1.10. Tutorial 185

KATCP Documentation, Release 0.0+unknown.201908260720

Client Protocol Backwards Compatibility

The DeviceClient client automatically detects the version of the server if it can, see Server KATCP Version Auto-
detection. For a simple client this means that no changes are required to support different KATCP versions. However,
the semantics of the messages might be different for different protocl versions. Using the unpack_message deco-
rator with major=4 for reply or inform handlers might help here, although it could use some improvement.

In the case of version auto-dection failing for a given server, preset_protocol_flags can be used to set the
KATCP version before calling the client’s start() method.

1.11 How to Contribute

Everyone is welcome to contribute to the katcp-python project. If you don’t feel comfortable with writing core katcp
we are looking for contributors to documentation or/and tests.

Another option is to report bugs, problems and new ideas as issues. Please be very detailed.

1.11.1 Workflow

A Git workflow with branches for each issue/feature is used.

• There is no special policy regarding commit messages. The first line should be short (50 chars or less) and
contain summary of all changes. Additional detail can be included after a blank line.

• Pull requests are normally made to master branch. An exception is when hotfixing a release - in this case the
merge target would be to the release branch.

1.11.2 reStructuredText and Sphinx

Documentation is written in reStructuredText and built with Sphinx - it’s easy to contribute. It also uses autodoc
importing docstrings from the katcp package.

1.11.3 Source code standard

All code should be PEP8 compatible, with more details and exception described in our guidelines.

Note: The accepted policy is that your code cannot introduce more issues than it solves!

You can also use other tools for checking PEP8 compliance for your personal use. One good example of such a tool
is Flake8 which combines PEP8 and PyFlakes. There are plugins for various IDEs so that you can use your favourite
tool easily.

1.11.4 Releasing a new version

From time to time a new version is released. Anyone who wishes to see some features of the master branch released
is free to request a new release. One of the maintainers can make the release. The basic steps required are as follows:

Pick a version number

• Semantic version numbering is used: <major>.<minor>.<patch>

186 Chapter 1. Contents

https://github.com/ska-sa/katcp-python/issues/1
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/stable
https://pypi.python.org/pypi/autodoc
https://www.python.org/dev/peps/pep-0008
https://docs.google.com/document/d/1aZoIyR9tz5rCWr2qJKuMTmKp2IzHlFjrCFrpDDHFypM
https://www.python.org/dev/peps/pep-0008
https://gitlab.com/pycqa/flake8
https://www.python.org/dev/peps/pep-0008
https://github.com/PyCQA/pyflakes
https://gitlab.com/pycqa/flake8/issues/286

KATCP Documentation, Release 0.0+unknown.201908260720

• Small changes are done as patch releases. For these the version number should correspond the current
development number since each release process finishes with a version bump.

• Patch release example:

– 0.6.3.devN (current master branch)

– changes to 0.6.3 (the actual release)

– changes to 0.6.4.dev0 (bump the patch version at the end of the release process)

Create an issue in Github

• This is to inform the community that a release is planned.

• Use a checklist similar to the one below:

Task list:
- [] Read steps in the How to Contribute docs for making a release
- [] Edit the changelog and release notes files
- [] Make sure Jenkins tests are still passing on master branch
- [] Make sure the documentation is updated for master (readthedocs)
- [] Create a release tag on GitHub, from master branch
- [] Make sure the documentation is updated for release (readthedocs)
- [] Upload the new version to PyPI
- [] Fill the release description on GitHub
- [] Close this issue

• A check list is this form on github can be ticked off as the work progresses.

Make a branch from master to prepare the release

• Example branch name: user/ajoubert/prepare-v0.6.3.

• Edit the CHANGELOG and release notes (in docs/releasenotes.rst). Include all pull requests
since the previous release.

• Create a pull request to get these changes reviewed before proceeding.

Make sure Jenkins is OK on master branch

• All tests on Jenkins must be passing. If not, bad luck - you’ll have to fix it first, and go back a few steps. . .

Make sure the documentation is ok on master

• Log in to https://readthedocs.org.

• Get account permissions for https://readthedocs.org/projects/katcp-python from another maintainer, if
necessary.

• Readthedocs should automatically build the docs for each:

– push to master (latest docs)

– new tags (e.g v0.6.3)

• If it doesn’t work automatically, then:

– Trigger manually here: https://readthedocs.org/projects/katcp-python/builds/

Create a release tag on GitHub

1.11. How to Contribute 187

http://ci.camlab.kat.ac.za/view/Multibranch%20Master/job/katcp-multibranch/job/master/
https://readthedocs.org
https://readthedocs.org/projects/katcp-python
https://readthedocs.org/projects/katcp-python/builds/

KATCP Documentation, Release 0.0+unknown.201908260720

• On the Releases page, use “Draft a new release”.

• Tag must match the format of previous tags, e.g. v0.6.3.

• Target must be the master branch.

Make sure the documentation is updated for the newly tagged release

• If the automated build doesn’t work automatically, then:

– Trigger manually here: https://readthedocs.org/projects/katcp-python/builds/

• Set the new version to “active” here: https://readthedocs.org/dashboard/katcp-python/versions/

Upload the new version to PyPI

• Log in to https://pypi.org.

• Get account permissions for katcp from another contributor, if necessary.

• If necessary, pip install twine: https://pypi.org/project/twine/

• Build update from the tagged commit:

– $ git clean -xfd # Warning - remove all non-versioned files and
directories

– $ git fetch

– $ git checkout v0.6.3

– $ python setup.py sdist bdist_wheel

• Upload to testpypi, and make sure all is well:

– $ twine upload -r testpypi dist/katcp-0.6.3.tar.gz

• Test installation (in a virtualenv):

– $ pip install -i https://test.pypi.org/simple/ katcp

• Upload the source tarball and wheel to the real PyPI:

– $ twine upload dist/katcp-0.6.3.tar.gz

– $ twine upload dist/katcp-0.6.3-py2-none-any.whl

Fill in the release description on GitHub

• Content must be the same as the details in the changelog.

Close off release issue in Github

• All the items on the check list should be ticked off by now.

• Close the issue.

188 Chapter 1. Contents

https://readthedocs.org/projects/katcp-python/builds/
https://readthedocs.org/dashboard/katcp-python/versions/
https://pypi.org
https://pypi.org/project/twine/
https://test.pypi.org

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

189

KATCP Documentation, Release 0.0+unknown.201908260720

190 Chapter 2. Indices and tables

Python Module Index

k
katcp, 177
katcp.client, 99
katcp.inspecting_client, 113
katcp.kattypes, 86
katcp.resource, 119
katcp.resource_client, 130
katcp.sampling, 144
katcp.server, 152

191

KATCP Documentation, Release 0.0+unknown.201908260720

192 Python Module Index

Index

A
add_child_resource_client()

(katcp.KATCPClientResourceContainer
method), 81

add_child_resource_client()
(katcp.resource_client.KATCPClientResourceContainer
method), 137

add_group() (katcp.KATCPClientResourceContainer
method), 81

add_group() (katcp.resource_client.KATCPClientResourceContainer
method), 137

add_sensor() (katcp.AsyncDeviceServer method), 38
add_sensor() (katcp.DeviceServer method), 51
add_sensor() (katcp.server.DeviceServer method),

159
Address (class in katcp.kattypes), 86
address (katcp.resource.KATCPResource attribute),

121
address() (katcp.Sensor class method), 70
async_make_reply() (in module katcp.kattypes), 93
AsyncClient (class in katcp), 22
AsyncClient (class in katcp.client), 99
AsyncDeviceServer (class in katcp), 37
AsyncDeviceServer (class in katcp.server), 152
AsyncReply (class in katcp), 76
attach() (katcp.sampling.SampleStrategy method),

150
attach() (katcp.Sensor method), 70
AttrMappingProxy (class in katcp.resource_client),

130

B
BASE_REQUESTS (in module katcp.server), 154
bind_address (katcp.AsyncClient attribute), 24
bind_address (katcp.BlockingClient attribute), 9
bind_address (katcp.CallbackClient attribute), 17
bind_address (katcp.client.DeviceClient attribute),

107
bind_address (katcp.DeviceClient attribute), 32

bind_address (katcp.server.KATCPServer attribute),
173

blocking_request() (katcp.AsyncClient method),
24

blocking_request() (katcp.BlockingClient
method), 9

blocking_request() (katcp.CallbackClient
method), 17

blocking_request() (katcp.client.AsyncClient
method), 101

BlockingClient (class in katcp), 8
BlockingClient (class in katcp.client), 102
Bool (class in katcp.kattypes), 86
boolean() (katcp.Sensor class method), 71
build_state() (katcp.AsyncDeviceServer method),

39
build_state() (katcp.DeviceServer method), 51
build_state() (katcp.server.DeviceServer method),

160

C
call_from_thread() (katcp.server.KATCPServer

method), 173
callback_request() (katcp.AsyncClient method),

25
callback_request() (katcp.BlockingClient

method), 10
callback_request() (katcp.CallbackClient

method), 17
callback_request() (katcp.client.AsyncClient

method), 101
CallbackClient (class in katcp), 15
CallbackClient (class in katcp.client), 104
cancel() (katcp.sampling.SampleStrategy method),

150
cancel_timeouts()

(katcp.sampling.SampleEventRate method),
148

cancel_timeouts() (katcp.sampling.SamplePeriod
method), 149

193

KATCP Documentation, Release 0.0+unknown.201908260720

cancel_timeouts()
(katcp.sampling.SampleStrategy method),
150

check() (katcp.kattypes.Discrete method), 87
check() (katcp.kattypes.DiscreteMulti method), 88
check() (katcp.kattypes.Float method), 88
check() (katcp.kattypes.Int method), 89
check() (katcp.kattypes.KatcpType method), 89
check() (katcp.kattypes.Regex method), 91
check() (katcp.kattypes.StrictTimestamp method), 92
check_protocol() (katcp.DeviceMetaclass

method), 86
children (katcp.resource.KATCPResource attribute),

121
clear_listeners() (katcp.resource.KATCPSensor

method), 125
clear_strategies() (katcp.AsyncDeviceServer

method), 39
clear_strategies() (katcp.DeviceServer method),

51
clear_strategies() (katcp.server.DeviceServer

method), 160
client_connection_factory

(katcp.server.KATCPServer attribute), 173
client_resource_factory()

(katcp.KATCPClientResourceContainer
method), 81

client_resource_factory()
(katcp.resource_client.KATCPClientResourceContainer
method), 137

client_updated() (katcp.resource_client.ClientGroup
method), 130

ClientConnection (class in katcp.server), 154
ClientGroup (class in katcp.resource_client), 130
ClientRequestConnection (class in

katcp.server), 155
concurrent_reply() (in module katcp.kattypes), 93
connect() (katcp.inspecting_client.InspectingClientAsync

method), 114
connected (katcp.inspecting_client.InspectingClientAsync

attribute), 114
construct_name_filter() (in module

katcp.server), 177
convert_seconds() (katcp.AsyncClient method), 25
convert_seconds() (katcp.BlockingClient method),

10
convert_seconds() (katcp.CallbackClient method),

17
convert_seconds() (katcp.client.DeviceClient

method), 107
convert_seconds() (katcp.DeviceClient method),

32
copy() (katcp.Message method), 84
create_log_inform() (katcp.AsyncDeviceServer

method), 39
create_log_inform() (katcp.DeviceServer

method), 52
create_log_inform() (katcp.DeviceServerBase

method), 63
create_log_inform()

(katcp.server.DeviceServerBase method),
168

D
debug() (katcp.DeviceLogger method), 67
debug() (katcp.server.DeviceLogger method), 156
description (katcp.resource.KATCPRequest at-

tribute), 120
description (katcp.resource.KATCPResource at-

tribute), 121
detach() (katcp.sampling.SampleStrategy method),

150
detach() (katcp.Sensor method), 71
DeviceClient (class in katcp), 30
DeviceClient (class in katcp.client), 105
DeviceLogger (class in katcp), 67
DeviceLogger (class in katcp.server), 155
DeviceMetaclass (class in katcp), 85
DeviceServer (class in katcp), 49
DeviceServer (class in katcp.server), 157
DeviceServerBase (class in katcp), 62
DeviceServerBase (class in katcp.server), 167
disconnect() (katcp.AsyncClient method), 25
disconnect() (katcp.BlockingClient method), 10
disconnect() (katcp.CallbackClient method), 17
disconnect() (katcp.client.DeviceClient method),

108
disconnect() (katcp.DeviceClient method), 32
disconnect() (katcp.server.ClientConnection

method), 154
DISCONNECT_TIMEOUT (katcp.server.KATCPServer

attribute), 172
Discrete (class in katcp.kattypes), 87
discrete() (katcp.Sensor class method), 71
DiscreteMulti (class in katcp.kattypes), 87
drop_sampling_strategy()

(katcp.KATCPClientResource method), 77
drop_sampling_strategy()

(katcp.resource.KATCPSensor method),
125

drop_sampling_strategy()
(katcp.resource.KATCPSensorsManager
method), 128

drop_sampling_strategy()
(katcp.resource_client.KATCPClientResource
method), 133

drop_sampling_strategy()
(katcp.resource_client.KATCPClientResourceSensorsManager

194 Index

KATCP Documentation, Release 0.0+unknown.201908260720

method), 140

E
enable_thread_safety() (katcp.AsyncClient

method), 25
enable_thread_safety() (katcp.BlockingClient

method), 10
enable_thread_safety() (katcp.CallbackClient

method), 17
enable_thread_safety()

(katcp.client.DeviceClient method), 108
enable_thread_safety() (katcp.DeviceClient

method), 32
error() (katcp.DeviceLogger method), 67
error() (katcp.server.DeviceLogger method), 156
escape_name() (in module katcp.resource), 129

F
FailReply (class in katcp), 76
fatal() (katcp.DeviceLogger method), 67
fatal() (katcp.server.DeviceLogger method), 156
Float (class in katcp.kattypes), 88
float() (katcp.Sensor class method), 71
flush_on_close() (katcp.server.KATCPServer

method), 173
format_argument() (katcp.Message method), 84
format_reading() (katcp.Sensor method), 72
future_check_request()

(katcp.inspecting_client.InspectingClientAsync
method), 114

future_check_sensor()
(katcp.inspecting_client.InspectingClientAsync
method), 114

future_get_request()
(katcp.inspecting_client.InspectingClientAsync
method), 115

future_get_sensor()
(katcp.inspecting_client.InspectingClientAsync
method), 115

future_request() (katcp.AsyncClient method), 25
future_request() (katcp.BlockingClient method),

10
future_request() (katcp.CallbackClient method),

18
future_request() (katcp.client.AsyncClient

method), 102

G
get_address() (katcp.server.KATCPServer method),

173
get_default() (katcp.kattypes.KatcpType method),

89
get_reading() (katcp.resource.KATCPSensor

method), 125

get_sampling() (katcp.sampling.SampleAuto
method), 145

get_sampling() (katcp.sampling.SampleDifferential
method), 145

get_sampling() (katcp.sampling.SampleEvent
method), 147

get_sampling() (katcp.sampling.SampleEventRate
method), 148

get_sampling() (katcp.sampling.SampleNone
method), 149

get_sampling() (katcp.sampling.SamplePeriod
method), 149

get_sampling() (katcp.sampling.SampleStrategy
method), 150

get_sampling_formatted()
(katcp.sampling.SampleStrategy method),
151

get_sampling_strategy()
(katcp.resource.KATCPSensorsManager
method), 128

get_sampling_strategy()
(katcp.resource_client.KATCPClientResourceSensorsManager
method), 140

get_sensor() (katcp.AsyncDeviceServer method), 39
get_sensor() (katcp.DeviceServer method), 52
get_sensor() (katcp.server.DeviceServer method),

160
get_sensors() (katcp.AsyncDeviceServer method),

39
get_sensors() (katcp.DeviceServer method), 52
get_sensors() (katcp.server.DeviceServer method),

160
get_status() (katcp.resource.KATCPSensor

method), 125
get_strategy() (katcp.sampling.SampleStrategy

class method), 151
get_value() (katcp.resource.KATCPSensor method),

125
GroupRequest (class in katcp.resource_client), 131
GroupResults (class in katcp.resource_client), 132

H
handle_inform() (katcp.AsyncClient method), 26
handle_inform() (katcp.AsyncDeviceServer

method), 39
handle_inform() (katcp.BlockingClient method), 11
handle_inform() (katcp.CallbackClient method), 18
handle_inform() (katcp.client.AsyncClient

method), 102
handle_inform() (katcp.client.DeviceClient

method), 108
handle_inform() (katcp.DeviceClient method), 32
handle_inform() (katcp.DeviceServer method), 52

Index 195

KATCP Documentation, Release 0.0+unknown.201908260720

handle_inform() (katcp.DeviceServerBase
method), 63

handle_inform() (katcp.server.DeviceServerBase
method), 169

handle_message() (katcp.AsyncClient method), 26
handle_message() (katcp.AsyncDeviceServer

method), 39
handle_message() (katcp.BlockingClient method),

11
handle_message() (katcp.CallbackClient method),

18
handle_message() (katcp.client.DeviceClient

method), 108
handle_message() (katcp.DeviceClient method), 32
handle_message() (katcp.DeviceServer method), 52
handle_message() (katcp.DeviceServerBase

method), 63
handle_message() (katcp.server.DeviceServerBase

method), 169
handle_reply() (katcp.AsyncClient method), 26
handle_reply() (katcp.AsyncDeviceServer method),

39
handle_reply() (katcp.BlockingClient method), 11
handle_reply() (katcp.CallbackClient method), 18
handle_reply() (katcp.client.AsyncClient method),

102
handle_reply() (katcp.client.DeviceClient method),

108
handle_reply() (katcp.DeviceClient method), 33
handle_reply() (katcp.DeviceServer method), 52
handle_reply() (katcp.DeviceServerBase method),

64
handle_reply() (katcp.server.DeviceServerBase

method), 169
handle_request() (katcp.AsyncClient method), 26
handle_request() (katcp.AsyncDeviceServer

method), 40
handle_request() (katcp.BlockingClient method),

11
handle_request() (katcp.CallbackClient method),

18
handle_request() (katcp.client.DeviceClient

method), 108
handle_request() (katcp.DeviceClient method), 33
handle_request() (katcp.DeviceServer method), 52
handle_request() (katcp.DeviceServerBase

method), 64
handle_request() (katcp.server.DeviceServerBase

method), 169
handle_sensor_value()

(katcp.inspecting_client.InspectingClientAsync
method), 115

has_katcp_protocol_flags() (in module
katcp.kattypes), 94

has_sensor() (katcp.AsyncDeviceServer method), 40
has_sensor() (katcp.DeviceServer method), 53
has_sensor() (katcp.server.DeviceServer method),

160

I
in_ioloop_thread() (katcp.server.KATCPServer

method), 173
info() (katcp.DeviceLogger method), 67
info() (katcp.server.DeviceLogger method), 156
inform() (in module katcp.kattypes), 94
inform() (katcp.AsyncDeviceServer method), 40
inform() (katcp.DeviceServer method), 53
inform() (katcp.DeviceServerBase method), 64
inform() (katcp.Message class method), 84
inform() (katcp.sampling.SampleEventRate method),

148
inform() (katcp.sampling.SampleStrategy method),

151
inform() (katcp.server.ClientConnection method), 154
inform() (katcp.server.DeviceServerBase method),

169
inform_build_state() (katcp.AsyncClient

method), 26
inform_build_state() (katcp.BlockingClient

method), 11
inform_build_state() (katcp.CallbackClient

method), 18
inform_build_state() (katcp.client.DeviceClient

method), 108
inform_build_state() (katcp.DeviceClient

method), 33
inform_hook_client_factory()

(katcp.inspecting_client.InspectingClientAsync
method), 115

inform_version() (katcp.AsyncClient method), 26
inform_version() (katcp.BlockingClient method),

11
inform_version() (katcp.CallbackClient method),

18
inform_version() (katcp.client.DeviceClient

method), 108
inform_version() (katcp.DeviceClient method), 33
inform_version_connect() (katcp.AsyncClient

method), 26
inform_version_connect()

(katcp.BlockingClient method), 11
inform_version_connect()

(katcp.CallbackClient method), 18
inform_version_connect()

(katcp.client.DeviceClient method), 108
inform_version_connect() (katcp.DeviceClient

method), 33

196 Index

KATCP Documentation, Release 0.0+unknown.201908260720

inspect() (katcp.inspecting_client.InspectingClientAsync
method), 116

inspect_requests()
(katcp.inspecting_client.InspectingClientAsync
method), 116

inspect_sensors()
(katcp.inspecting_client.InspectingClientAsync
method), 116

inspecting_client_factory()
(katcp.KATCPClientResource method), 78

inspecting_client_factory()
(katcp.resource_client.KATCPClientResource
method), 134

InspectingClientAsync (class in
katcp.inspecting_client), 113

InspectingClientStateType (class in
katcp.inspecting_client), 118

Int (class in katcp.kattypes), 88
integer() (katcp.Sensor class method), 72
ioloop (katcp.server.KATCPServer attribute), 173
is_active() (katcp.resource.KATCPRequest

method), 120
is_connected (katcp.resource.KATCPResource at-

tribute), 121
is_connected() (katcp.AsyncClient method), 26
is_connected() (katcp.BlockingClient method), 11
is_connected() (katcp.CallbackClient method), 19
is_connected() (katcp.client.DeviceClient method),

108
is_connected() (katcp.DeviceClient method), 33
is_connected() (katcp.inspecting_client.InspectingClientAsync

method), 117
is_connected() (katcp.KATCPClientResource

method), 78
is_connected() (katcp.KATCPClientResourceContainer

method), 81
is_connected() (katcp.resource_client.ClientGroup

method), 130
is_connected() (katcp.resource_client.KATCPClientResource

method), 134
is_connected() (katcp.resource_client.KATCPClientResourceContainer

method), 137
issue_request() (katcp.resource.KATCPDummyRequest

method), 119
issue_request() (katcp.resource.KATCPRequest

method), 120
issue_request() (katcp.resource_client.KATCPClientResourceRequest

method), 139

J
join() (katcp.AsyncClient method), 26
join() (katcp.AsyncDeviceServer method), 40
join() (katcp.BlockingClient method), 11
join() (katcp.CallbackClient method), 19

join() (katcp.client.DeviceClient method), 108
join() (katcp.DeviceClient method), 33
join() (katcp.DeviceServer method), 53
join() (katcp.DeviceServerBase method), 64
join() (katcp.server.DeviceServerBase method), 169
join() (katcp.server.KATCPServer method), 174
join() (katcp.server.MessageHandlerThread method),

176

K
katcp (module), 8, 177
katcp.client (module), 99
katcp.inspecting_client (module), 113
katcp.kattypes (module), 86
katcp.resource (module), 119
katcp.resource_client (module), 130
katcp.sampling (module), 144
katcp.server (module), 152
KatcpClientError (class in katcp), 37
KATCPClientResource (class in katcp), 77
KATCPClientResource (class in

katcp.resource_client), 132
KATCPClientResourceContainer (class in

katcp), 80
KATCPClientResourceContainer (class in

katcp.resource_client), 136
KATCPClientResourceRequest (class in

katcp.resource_client), 138
KATCPClientResourceSensorsManager (class

in katcp.resource_client), 139
KatcpDeviceError (class in katcp), 76
KATCPDummyRequest (class in katcp.resource), 119
KATCPReply (class in katcp.resource), 119
KATCPRequest (class in katcp.resource), 120
KATCPResource (class in katcp.resource), 120
KATCPResourceError, 124
KATCPResourceInactive, 124
KATCPSensor (class in katcp.resource), 124
KATCPSensorError, 127
KATCPSensorReading (class in katcp.resource), 127
KATCPSensorsManager (class in katcp.resource),

127
KATCPServer (class in katcp.server), 172
KatcpSyntaxError (class in katcp), 85
KatcpType (class in katcp.kattypes), 89

L
level_from_name() (katcp.DeviceLogger method),

67
level_from_name() (katcp.server.DeviceLogger

method), 156
level_name() (katcp.DeviceLogger method), 67
level_name() (katcp.server.DeviceLogger method),

156

Index 197

KATCP Documentation, Release 0.0+unknown.201908260720

list_sensors() (in module katcp.resource_client),
144

list_sensors() (katcp.KATCPClientResource
method), 78

list_sensors() (katcp.KATCPClientResourceContainer
method), 81

list_sensors() (katcp.resource.KATCPResource
method), 121

list_sensors() (katcp.resource_client.KATCPClientResource
method), 134

list_sensors() (katcp.resource_client.KATCPClientResourceContainer
method), 137

log() (katcp.DeviceLogger method), 68
log() (katcp.server.DeviceLogger method), 156
log_to_python() (katcp.DeviceLogger class

method), 68
log_to_python() (katcp.server.DeviceLogger class

method), 157
Lru (class in katcp.kattypes), 90
lru() (katcp.Sensor class method), 73

M
make_reply() (in module katcp.kattypes), 94
make_threadsafe() (in module katcp.client), 112
make_threadsafe_blocking() (in module

katcp.client), 112
MappingProxy (class in katcp.resource_client), 140
mass_inform() (katcp.AsyncDeviceServer method),

40
mass_inform() (katcp.DeviceServer method), 53
mass_inform() (katcp.DeviceServerBase method),

64
mass_inform() (katcp.server.ClientConnection

method), 154
mass_inform() (katcp.server.DeviceServerBase

method), 170
mass_send_message() (katcp.server.KATCPServer

method), 174
mass_send_message_from_thread()

(katcp.server.KATCPServer method), 174
MAX_LOOP_LATENCY (katcp.client.DeviceClient

attribute), 107
MAX_LOOP_LATENCY (katcp.DeviceClient attribute),

32
MAX_LOOP_LATENCY (katcp.KATCPClientResource

attribute), 77
MAX_LOOP_LATENCY (katcp.resource_client.KATCPClientResource

attribute), 133
MAX_MSG_SIZE (katcp.client.DeviceClient attribute),

107
MAX_MSG_SIZE (katcp.DeviceClient attribute), 32
MAX_MSG_SIZE (katcp.server.KATCPServer attribute),

172

MAX_WRITE_BUFFER_SIZE
(katcp.client.DeviceClient attribute), 107

MAX_WRITE_BUFFER_SIZE (katcp.DeviceClient at-
tribute), 32

MAX_WRITE_BUFFER_SIZE
(katcp.server.KATCPServer attribute), 173

Message (class in katcp), 83
MessageHandlerThread (class in katcp.server), 175
MessageParser (class in katcp), 85
messages (katcp.resource.KATCPReply attribute), 120
minimum_katcp_version() (in module

katcp.kattypes), 95
monitor_resource_sync_state() (in module

katcp.resource_client), 144

N
name (katcp.resource.KATCPRequest attribute), 120
name (katcp.resource.KATCPResource attribute), 122
name (katcp.resource.KATCPSensor attribute), 125
normalised_name (katcp.resource.KATCPSensor at-

tribute), 125
normalize_strategy_parameters() (in mod-

ule katcp.resource), 129
notify() (katcp.Sensor method), 73
notify_connected() (katcp.AsyncClient method),

27
notify_connected() (katcp.BlockingClient

method), 12
notify_connected() (katcp.CallbackClient

method), 19
notify_connected() (katcp.client.DeviceClient

method), 109
notify_connected() (katcp.DeviceClient method),

33

O
OBSERVE_UPDATES (katcp.sampling.SampleStrategy

attribute), 150
on_client_connect() (katcp.AsyncDeviceServer

method), 40
on_client_connect() (katcp.DeviceServer

method), 53
on_client_connect() (katcp.DeviceServerBase

method), 64
on_client_connect() (katcp.server.DeviceServer

method), 160
on_client_connect()

(katcp.server.DeviceServerBase method),
170

on_client_disconnect()
(katcp.AsyncDeviceServer method), 40

on_client_disconnect() (katcp.DeviceServer
method), 53

198 Index

KATCP Documentation, Release 0.0+unknown.201908260720

on_client_disconnect()
(katcp.DeviceServerBase method), 65

on_client_disconnect()
(katcp.server.DeviceServer method), 160

on_client_disconnect()
(katcp.server.DeviceServerBase method),
170

on_client_disconnect_was_called()
(katcp.server.ClientConnection method),
154

on_message() (katcp.AsyncDeviceServer method), 41
on_message() (katcp.DeviceServer method), 53
on_message() (katcp.DeviceServerBase method), 65
on_message() (katcp.server.DeviceServerBase

method), 170
on_message() (katcp.server.MessageHandlerThread

method), 176

P
pack() (katcp.kattypes.KatcpType method), 89
pack() (katcp.kattypes.Parameter method), 91
pack_types() (in module katcp.kattypes), 95
Parameter (class in katcp.kattypes), 90
parent (katcp.resource.KATCPResource attribute), 122
parent_name (katcp.resource.KATCPSensor at-

tribute), 125
parse() (katcp.MessageParser method), 85
parse_params() (katcp.Sensor class method), 73
parse_type() (katcp.Sensor class method), 73
parse_value() (katcp.resource.KATCPSensor

method), 125
parse_value() (katcp.Sensor method), 73
poll_sensor() (katcp.resource.KATCPSensorsManager

method), 128
poll_sensor() (katcp.resource_client.KATCPClientResourceSensorsManager

method), 140
preset_protocol_flags() (katcp.AsyncClient

method), 27
preset_protocol_flags() (katcp.BlockingClient

method), 12
preset_protocol_flags() (katcp.CallbackClient

method), 19
preset_protocol_flags()

(katcp.client.DeviceClient method), 109
preset_protocol_flags() (katcp.DeviceClient

method), 33
preset_protocol_flags()

(katcp.inspecting_client.InspectingClientAsync
method), 117

R
read() (katcp.Sensor method), 74
read_formatted() (katcp.Sensor method), 74
reading (katcp.resource.KATCPSensor attribute), 125

reapply_sampling_strategies()
(katcp.resource.KATCPSensorsManager
method), 128

reapply_sampling_strategies()
(katcp.resource_client.KATCPClientResourceSensorsManager
method), 140

Regex (class in katcp.kattypes), 91
register_listener()

(katcp.resource.KATCPSensor method),
125

remove_sensor() (katcp.AsyncDeviceServer
method), 41

remove_sensor() (katcp.DeviceServer method), 54
remove_sensor() (katcp.server.DeviceServer

method), 160
reply() (katcp.AsyncDeviceServer method), 41
reply() (katcp.DeviceServer method), 54
reply() (katcp.DeviceServerBase method), 65
reply() (katcp.Message class method), 84
reply() (katcp.server.ClientConnection method), 154
reply() (katcp.server.DeviceServerBase method), 170
reply_inform() (katcp.AsyncDeviceServer method),

41
reply_inform() (katcp.DeviceServer method), 54
reply_inform() (katcp.DeviceServerBase method),

65
reply_inform() (katcp.Message class method), 84
reply_inform() (katcp.server.ClientConnection

method), 155
reply_inform() (katcp.server.DeviceServerBase

method), 170
reply_ok() (katcp.Message method), 84
reply_to_request() (katcp.Message class

method), 84
reply_with_message()

(katcp.server.ClientRequestConnection
method), 155

ReplyWrappedInspectingClientAsync (class
in katcp.resource_client), 141

req (katcp.resource.KATCPResource attribute), 122
request() (in module katcp.kattypes), 95
request() (katcp.AsyncClient method), 27
request() (katcp.BlockingClient method), 12
request() (katcp.CallbackClient method), 19
request() (katcp.client.DeviceClient method), 109
request() (katcp.DeviceClient method), 33
request() (katcp.Message class method), 84
request_check() (in module katcp.client), 112
request_client_list()

(katcp.AsyncDeviceServer method), 41
request_client_list() (katcp.DeviceServer

method), 54
request_client_list()

(katcp.server.DeviceServer method), 161

Index 199

KATCP Documentation, Release 0.0+unknown.201908260720

request_factory (katcp.inspecting_client.InspectingClientAsync
attribute), 117

request_halt() (katcp.AsyncDeviceServer method),
42

request_halt() (katcp.DeviceServer method), 55
request_halt() (katcp.server.DeviceServer

method), 161
request_help() (katcp.AsyncDeviceServer method),

42
request_help() (katcp.DeviceServer method), 55
request_help() (katcp.server.DeviceServer

method), 161
request_log_level() (katcp.AsyncDeviceServer

method), 43
request_log_level() (katcp.DeviceServer

method), 55
request_log_level() (katcp.server.DeviceServer

method), 162
request_request_timeout_hint()

(katcp.AsyncDeviceServer method), 43
request_request_timeout_hint()

(katcp.DeviceServer method), 56
request_request_timeout_hint()

(katcp.server.DeviceServer method), 162
request_restart() (katcp.AsyncDeviceServer

method), 44
request_restart() (katcp.DeviceServer method),

57
request_restart() (katcp.server.DeviceServer

method), 163
request_sensor_list()

(katcp.AsyncDeviceServer method), 44
request_sensor_list() (katcp.DeviceServer

method), 57
request_sensor_list()

(katcp.server.DeviceServer method), 163
request_sensor_sampling()

(katcp.AsyncDeviceServer method), 45
request_sensor_sampling()

(katcp.DeviceServer method), 58
request_sensor_sampling()

(katcp.server.DeviceServer method), 164
request_sensor_sampling_clear()

(katcp.AsyncDeviceServer method), 46
request_sensor_sampling_clear()

(katcp.DeviceServer method), 59
request_sensor_sampling_clear()

(katcp.server.DeviceServer method), 165
request_sensor_value()

(katcp.AsyncDeviceServer method), 46
request_sensor_value() (katcp.DeviceServer

method), 59
request_sensor_value()

(katcp.server.DeviceServer method), 165

request_timeout_hint() (in module
katcp.kattypes), 96

request_version_list()
(katcp.AsyncDeviceServer method), 47

request_version_list() (katcp.DeviceServer
method), 60

request_version_list()
(katcp.server.DeviceServer method), 166

request_watchdog() (katcp.AsyncDeviceServer
method), 47

request_watchdog() (katcp.DeviceServer method),
60

request_watchdog() (katcp.server.DeviceServer
method), 166

requests (katcp.inspecting_client.InspectingClientAsync
attribute), 117

RequestType (in module katcp.inspecting_client), 119
resync_delay (katcp.inspecting_client.InspectingClientAsync

attribute), 117
return_future() (in module katcp.server), 177
return_reply() (in module katcp.kattypes), 96
running() (katcp.AsyncClient method), 27
running() (katcp.AsyncDeviceServer method), 48
running() (katcp.BlockingClient method), 12
running() (katcp.CallbackClient method), 19
running() (katcp.client.DeviceClient method), 109
running() (katcp.DeviceClient method), 34
running() (katcp.DeviceServer method), 60
running() (katcp.DeviceServerBase method), 65
running() (katcp.server.DeviceServerBase method),

171
running() (katcp.server.KATCPServer method), 174
running() (katcp.server.MessageHandlerThread

method), 176

S
SampleAuto (class in katcp.sampling), 144
SampleDifferential (class in katcp.sampling), 145
SampleDifferentialRate (class in

katcp.sampling), 146
SampleEvent (class in katcp.sampling), 146
SampleEventRate (class in katcp.sampling), 147
SampleNone (class in katcp.sampling), 148
SamplePeriod (class in katcp.sampling), 149
SampleStrategy (class in katcp.sampling), 150
sampling_strategy (katcp.resource.KATCPSensor

attribute), 125
send_message() (katcp.AsyncClient method), 27
send_message() (katcp.BlockingClient method), 12
send_message() (katcp.CallbackClient method), 20
send_message() (katcp.client.DeviceClient method),

109
send_message() (katcp.DeviceClient method), 34

200 Index

KATCP Documentation, Release 0.0+unknown.201908260720

send_message() (katcp.server.KATCPServer
method), 174

send_message_from_thread()
(katcp.server.KATCPServer method), 174

send_reply() (in module katcp.kattypes), 97
send_request() (katcp.AsyncClient method), 27
send_request() (katcp.BlockingClient method), 12
send_request() (katcp.CallbackClient method), 20
send_request() (katcp.client.DeviceClient method),

109
send_request() (katcp.DeviceClient method), 34
Sensor (class in katcp), 69
sensor (katcp.resource.KATCPResource attribute), 122
sensor_factory (katcp.inspecting_client.InspectingClientAsync

attribute), 117
SensorResultTuple (class in katcp.resource), 129
sensors (katcp.inspecting_client.InspectingClientAsync

attribute), 117
set() (katcp.resource.KATCPSensor method), 125
set() (katcp.Sensor method), 74
set_concurrency_options()

(katcp.AsyncDeviceServer method), 48
set_concurrency_options()

(katcp.DeviceServer method), 61
set_concurrency_options()

(katcp.DeviceServerBase method), 66
set_concurrency_options()

(katcp.server.DeviceServerBase method),
171

set_formatted() (katcp.resource.KATCPSensor
method), 126

set_formatted() (katcp.Sensor method), 74
set_ioloop() (katcp.AsyncClient method), 27
set_ioloop() (katcp.AsyncDeviceServer method), 48
set_ioloop() (katcp.BlockingClient method), 13
set_ioloop() (katcp.CallbackClient method), 20
set_ioloop() (katcp.client.DeviceClient method),

109
set_ioloop() (katcp.DeviceClient method), 34
set_ioloop() (katcp.DeviceServer method), 61
set_ioloop() (katcp.DeviceServerBase method), 66
set_ioloop() (katcp.KATCPClientResource

method), 78
set_ioloop() (katcp.KATCPClientResourceContainer

method), 82
set_ioloop() (katcp.resource_client.KATCPClientResource

method), 134
set_ioloop() (katcp.resource_client.KATCPClientResourceContainer

method), 137
set_ioloop() (katcp.server.DeviceServerBase

method), 171
set_ioloop() (katcp.server.KATCPServer method),

175
set_log_level() (katcp.DeviceLogger method), 68

set_log_level() (katcp.server.DeviceLogger
method), 157

set_log_level_by_name() (katcp.DeviceLogger
method), 68

set_log_level_by_name()
(katcp.server.DeviceLogger method), 157

set_restart_queue() (katcp.AsyncDeviceServer
method), 48

set_restart_queue() (katcp.DeviceServer
method), 61

set_restart_queue() (katcp.server.DeviceServer
method), 167

set_sampling_strategies()
(katcp.KATCPClientResource method), 78

set_sampling_strategies()
(katcp.KATCPClientResourceContainer
method), 82

set_sampling_strategies()
(katcp.resource.KATCPResource method),
122

set_sampling_strategies()
(katcp.resource_client.ClientGroup method),
130

set_sampling_strategies()
(katcp.resource_client.KATCPClientResource
method), 134

set_sampling_strategies()
(katcp.resource_client.KATCPClientResourceContainer
method), 137

set_sampling_strategy()
(katcp.KATCPClientResource method), 79

set_sampling_strategy()
(katcp.KATCPClientResourceContainer
method), 82

set_sampling_strategy()
(katcp.resource.KATCPResource method),
123

set_sampling_strategy()
(katcp.resource.KATCPSensor method),
126

set_sampling_strategy()
(katcp.resource.KATCPSensorsManager
method), 128

set_sampling_strategy()
(katcp.resource_client.ClientGroup method),
131

set_sampling_strategy()
(katcp.resource_client.KATCPClientResource
method), 135

set_sampling_strategy()
(katcp.resource_client.KATCPClientResourceContainer
method), 138

set_sampling_strategy()
(katcp.resource_client.KATCPClientResourceSensorsManager

Index 201

KATCP Documentation, Release 0.0+unknown.201908260720

method), 140
set_sensor_listener()

(katcp.KATCPClientResource method), 79
set_sensor_listener()

(katcp.KATCPClientResourceContainer
method), 82

set_sensor_listener()
(katcp.resource_client.KATCPClientResource
method), 135

set_sensor_listener()
(katcp.resource_client.KATCPClientResourceContainer
method), 138

set_state_callback()
(katcp.inspecting_client.InspectingClientAsync
method), 117

set_strategy() (katcp.resource.KATCPSensor
method), 126

set_value() (katcp.resource.KATCPSensor method),
126

set_value() (katcp.Sensor method), 74
setDaemon() (katcp.AsyncDeviceServer method), 48
setDaemon() (katcp.BlockingClient method), 12
setDaemon() (katcp.CallbackClient method), 20
setDaemon() (katcp.client.CallbackClient method),

105
setDaemon() (katcp.DeviceServer method), 60
setDaemon() (katcp.DeviceServerBase method), 65
setDaemon() (katcp.server.DeviceServerBase

method), 171
setDaemon() (katcp.server.KATCPServer method),

175
setup_sensors() (katcp.AsyncDeviceServer

method), 48
setup_sensors() (katcp.DeviceServer method), 61
setup_sensors() (katcp.server.DeviceServer

method), 167
simple_request() (katcp.inspecting_client.InspectingClientAsync

method), 118
start() (katcp.AsyncClient method), 28
start() (katcp.AsyncDeviceServer method), 48
start() (katcp.BlockingClient method), 13
start() (katcp.CallbackClient method), 20
start() (katcp.client.DeviceClient method), 110
start() (katcp.DeviceClient method), 34
start() (katcp.DeviceServer method), 61
start() (katcp.DeviceServerBase method), 66
start() (katcp.inspecting_client.InspectingClientAsync

method), 118
start() (katcp.KATCPClientResource method), 79
start() (katcp.KATCPClientResourceContainer

method), 82
start() (katcp.resource_client.KATCPClientResource

method), 135
start() (katcp.resource_client.KATCPClientResourceContainer

method), 138
start() (katcp.sampling.SampleEventRate method),

148
start() (katcp.sampling.SampleNone method), 149
start() (katcp.sampling.SamplePeriod method), 149
start() (katcp.sampling.SampleStrategy method), 151
start() (katcp.server.DeviceServerBase method), 171
start() (katcp.server.KATCPServer method), 175
state (katcp.inspecting_client.InspectingClientAsync

attribute), 118
status (katcp.resource.KATCPSensorReading at-

tribute), 127
status() (katcp.Sensor method), 75
stop() (katcp.AsyncClient method), 28
stop() (katcp.AsyncDeviceServer method), 49
stop() (katcp.BlockingClient method), 13
stop() (katcp.CallbackClient method), 20
stop() (katcp.client.AsyncClient method), 102
stop() (katcp.client.DeviceClient method), 110
stop() (katcp.DeviceClient method), 34
stop() (katcp.DeviceServer method), 61
stop() (katcp.DeviceServerBase method), 66
stop() (katcp.KATCPClientResourceContainer

method), 82
stop() (katcp.resource_client.KATCPClientResourceContainer

method), 138
stop() (katcp.server.DeviceServerBase method), 171
stop() (katcp.server.KATCPServer method), 175
stop() (katcp.server.MessageHandlerThread method),

176
Str (class in katcp.kattypes), 91
StrictTimestamp (class in katcp.kattypes), 92
string() (katcp.Sensor class method), 75
Struct (class in katcp.kattypes), 92
succeeded (katcp.resource.KATCPReply attribute),

120
succeeded (katcp.resource_client.GroupResults

attribute), 132
sync_with_ioloop() (katcp.AsyncDeviceServer

method), 49
sync_with_ioloop() (katcp.DeviceServer method),

62
sync_with_ioloop() (katcp.DeviceServerBase

method), 66
sync_with_ioloop()

(katcp.server.DeviceServerBase method),
172

synced (katcp.inspecting_client.InspectingClientAsync
attribute), 118

SyncError, 119

T
ThreadsafeClientConnection (class in

katcp.server), 176

202 Index

KATCP Documentation, Release 0.0+unknown.201908260720

ThreadSafeKATCPClientGroupWrapper (class
in katcp.resource_client), 143

ThreadSafeKATCPClientResourceRequestWrapper
(class in katcp.resource_client), 143

ThreadSafeKATCPClientResourceWrapper
(class in katcp.resource_client), 143

ThreadSafeKATCPSensorWrapper (class in
katcp.resource_client), 143

time() (katcp.resource.KATCPSensorsManager
method), 129

timeout_hint (katcp.resource.KATCPRequest
attribute), 120

Timestamp (class in katcp.kattypes), 92
timestamp() (katcp.Sensor class method), 75
TimestampOrNow (class in katcp.kattypes), 93
trace() (katcp.DeviceLogger method), 68
trace() (katcp.server.DeviceLogger method), 157
transform_future() (in module

katcp.resource_client), 144

U
unhandled_inform() (katcp.AsyncClient method),

28
unhandled_inform() (katcp.BlockingClient

method), 13
unhandled_inform() (katcp.CallbackClient

method), 20
unhandled_inform() (katcp.client.DeviceClient

method), 110
unhandled_inform() (katcp.DeviceClient method),

35
unhandled_reply() (katcp.AsyncClient method), 28
unhandled_reply() (katcp.BlockingClient method),

13
unhandled_reply() (katcp.CallbackClient method),

20
unhandled_reply() (katcp.client.DeviceClient

method), 110
unhandled_reply() (katcp.DeviceClient method),

35
unhandled_request() (katcp.AsyncClient method),

28
unhandled_request() (katcp.BlockingClient

method), 13
unhandled_request() (katcp.CallbackClient

method), 21
unhandled_request() (katcp.client.DeviceClient

method), 110
unhandled_request() (katcp.DeviceClient

method), 35
unpack() (katcp.kattypes.KatcpType method), 90
unpack() (katcp.kattypes.Parameter method), 91
unpack_message() (in module katcp.kattypes), 97,

98

unpack_types() (in module katcp.kattypes), 98
unregister_listener()

(katcp.resource.KATCPSensor method),
126

until_all_children_in_state()
(katcp.KATCPClientResourceContainer
method), 82

until_all_children_in_state()
(katcp.resource_client.KATCPClientResourceContainer
method), 138

until_any_child_in_state()
(katcp.KATCPClientResourceContainer
method), 82

until_any_child_in_state()
(katcp.resource_client.KATCPClientResourceContainer
method), 138

until_connected() (katcp.AsyncClient method), 28
until_connected() (katcp.BlockingClient method),

13
until_connected() (katcp.CallbackClient method),

21
until_connected() (katcp.client.DeviceClient

method), 110
until_connected() (katcp.DeviceClient method),

35
until_not_synced() (katcp.KATCPClientResource

method), 79
until_not_synced()

(katcp.KATCPClientResourceContainer
method), 82

until_not_synced()
(katcp.resource_client.KATCPClientResource
method), 135

until_not_synced()
(katcp.resource_client.KATCPClientResourceContainer
method), 138

until_protocol() (katcp.AsyncClient method), 28
until_protocol() (katcp.BlockingClient method),

13
until_protocol() (katcp.CallbackClient method),

21
until_protocol() (katcp.client.DeviceClient

method), 110
until_protocol() (katcp.DeviceClient method), 35
until_running() (katcp.AsyncClient method), 28
until_running() (katcp.BlockingClient method), 14
until_running() (katcp.CallbackClient method), 21
until_running() (katcp.client.DeviceClient

method), 110
until_running() (katcp.DeviceClient method), 35
until_state() (katcp.inspecting_client.InspectingClientAsync

method), 118
until_state() (katcp.KATCPClientResource

method), 79

Index 203

KATCP Documentation, Release 0.0+unknown.201908260720

until_state() (katcp.resource_client.KATCPClientResource
method), 135

until_stopped() (katcp.AsyncClient method), 29
until_stopped() (katcp.BlockingClient method), 14
until_stopped() (katcp.CallbackClient method), 21
until_stopped() (katcp.client.DeviceClient

method), 111
until_stopped() (katcp.DeviceClient method), 35
until_stopped() (katcp.inspecting_client.InspectingClientAsync

method), 118
until_stopped() (katcp.KATCPClientResource

method), 79
until_stopped() (katcp.KATCPClientResourceContainer

method), 82
until_stopped() (katcp.resource_client.KATCPClientResource

method), 135
until_stopped() (katcp.resource_client.KATCPClientResourceContainer

method), 138
until_synced() (katcp.KATCPClientResource

method), 79
until_synced() (katcp.KATCPClientResourceContainer

method), 82
until_synced() (katcp.resource_client.KATCPClientResource

method), 135
until_synced() (katcp.resource_client.KATCPClientResourceContainer

method), 138
update() (katcp.sampling.SampleAuto method), 145
update() (katcp.sampling.SampleDifferential method),

146
update() (katcp.sampling.SampleEventRate method),

148
update() (katcp.sampling.SampleStrategy method),

151
update_in_ioloop() (in module katcp.sampling),

152

V
value() (katcp.Sensor method), 76
VERSION (in module katcp), 86
version() (katcp.AsyncDeviceServer method), 49
version() (katcp.DeviceServer method), 62
version() (katcp.server.DeviceServer method), 167
VERSION_STR (in module katcp), 86

W
wait() (katcp.KATCPClientResource method), 79
wait() (katcp.KATCPClientResourceContainer

method), 82
wait() (katcp.resource.KATCPResource method), 123
wait() (katcp.resource.KATCPSensor method), 126
wait() (katcp.resource_client.ClientGroup method),

131
wait() (katcp.resource_client.KATCPClientResourceContainer

method), 138

wait_connected() (katcp.AsyncClient method), 29
wait_connected() (katcp.BlockingClient method),

14
wait_connected() (katcp.CallbackClient method),

21
wait_connected() (katcp.client.DeviceClient

method), 111
wait_connected() (katcp.DeviceClient method), 35
wait_connected() (katcp.KATCPClientResource

method), 80
wait_connected() (katcp.resource_client.KATCPClientResource

method), 135
wait_disconnected() (katcp.AsyncClient method),

29
wait_disconnected() (katcp.BlockingClient

method), 14
wait_disconnected() (katcp.CallbackClient

method), 21
wait_disconnected() (katcp.client.DeviceClient

method), 111
wait_disconnected() (katcp.DeviceClient

method), 36
wait_protocol() (katcp.AsyncClient method), 29
wait_protocol() (katcp.BlockingClient method), 15
wait_protocol() (katcp.CallbackClient method), 22
wait_protocol() (katcp.client.DeviceClient

method), 111
wait_protocol() (katcp.DeviceClient method), 36
wait_running() (katcp.AsyncClient method), 30
wait_running() (katcp.AsyncDeviceServer method),

49
wait_running() (katcp.BlockingClient method), 15
wait_running() (katcp.CallbackClient method), 22
wait_running() (katcp.client.DeviceClient method),

112
wait_running() (katcp.DeviceClient method), 36
wait_running() (katcp.DeviceServer method), 62
wait_running() (katcp.DeviceServerBase method),

66
wait_running() (katcp.server.DeviceServerBase

method), 172
wait_running() (katcp.server.KATCPServer

method), 175
wait_running() (katcp.server.MessageHandlerThread

method), 176
warn() (katcp.DeviceLogger method), 68
warn() (katcp.server.DeviceLogger method), 157
wrapped_request()

(katcp.resource_client.ReplyWrappedInspectingClientAsync
method), 142

204 Index

	Contents
	Release Notes
	Core API
	Kattypes
	Low level client API (client)
	Concrete Intermediate-level KATCP Client API (inspecting_client)
	Abstract High-level KATCP Client API (resource)
	Concrete High-level KATCP Client API (resource_client)
	Sampling
	KATCP Server API (server)
	Tutorial
	How to Contribute

	Indices and tables
	Python Module Index
	Index

