

European XFEL Python data tools

karabo_data is a Python library for accessing and working with data
produced at European XFEL [https://www.xfel.eu/].

Installation

karabo_data is available on our Anaconda installation on the Maxwell cluster:

module load exfel exfel_anaconda3

You can also install it from PyPI [https://pypi.org/project/karabo-data/]
to use in other environments with Python 3.5 or later:

pip install karabo_data

If you get a permissions error, add the --user flag to that command.

Quickstart

Open a run or a file - see Opening files for more:

from karabo_data import open_run, RunDirectory, H5File

Find a run on the Maxwell cluster
run = open_run(proposal=700000, run=1)

Open a run with a directory path
run = RunDirectory("/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0001")

Open an individual file
file = H5File("RAW-R0017-DA01-S00000.h5")

After this step, you’ll use the same methods to get data whether you opened a
run or a file.

Load data into memory - see Getting data by source & key for more:

Get a labelled array
arr = run.get_array("SA3_XTD10_PES/ADC/1:network", "digitizers.channel_4_A.raw.samples")

Get a pandas dataframe of 1D fields
df = run.get_dataframe(fields=[
 ("*_XGM/*", "*.i[xy]Pos"),
 ("*_XGM/*", "*.photonFlux")
])

Iterate through data for each pulse train - see Getting data by train for more:

for train_id, data in run.select("*/DET/*", "image.data").trains():
 mod0 = data["FXE_DET_LPD1M-1/DET/0CH0:xtdf"]["image.data"]

These are not the only ways to get data: Reading data files describes
various other options.
karabo_data also has classes to work with detector geometry,
described in AGIPD, LPD & DSSC Geometry.

Documentation contents

	Reading data files
	Opening files

	Data structure

	Getting data by source & key

	Getting data by train

	Selecting & combining data

	Writing selected data

	Missing data

	Data problems

	Cached run data maps

	AGIPD, LPD & DSSC data

	Streaming data over ZeroMQ

	Checking data files

	AGIPD, LPD & DSSC Geometry
	AGIPD-1M

	LPD-1M

	DSSC-1M

	Command line tools
	lsxfel

	karabo-data-validate

	karabo-bridge-serve-files

	karabo-data-make-virtual-cxi

	Data files format
	HDF5 file structure

	Performance notes
	Load data into memory

	Select sources before getting trains

	Reduce before assembling

Examples

	Reading data with karabo_data
	Single files
	Get data by train

	Run directories
	Series data to pandas

	Labelled arrays

	General information

	Accessing LPD data

	Assembling detector data into images

	Examining detector geometry

	Detector geometry for AGIPD
	Plot the detector image

	Converting array positions to physical positions

	DSSC detector geometry

	Working with non-detector data
	Using pandas

	Using xarray

	Comparing fast XGM data from two simultaneous recordings
	SASE1

	SASE3

	Overall comparison of suppression ratio (with error)
	References

	Parallel processing with a virtual dataset
	Using multiprocessing

	Using SLURM

	Averaging detector data with Dask

Development

	Release Notes

See also

Data Analysis at European XFEL [https://in.xfel.eu/readthedocs/docs/data-analysis-user-documentation/en/latest/]

Indices and tables

	Index

	Search Page

Reading data files

Opening files

You will normally access data from a run, which is stored as a directory
containing HDF5 files. You can open a run using RunDirectory() with the
path of the directory, or using open_run() with the proposal number and
run number to look up the standard data paths on the Maxwell cluster.

	
karabo_data.RunDirectory(path, include='*')

	Open data files from a ‘run’ at European XFEL.

run = RunDirectory("/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0001")

A ‘run’ is a directory containing a number of HDF5 files with data from the
same time period.

Returns a DataCollection object.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the run directory containing HDF5 files.

	include (str [https://docs.python.org/3/library/stdtypes.html#str]) – Wildcard string to filter data files.

	
karabo_data.open_run(proposal, run, data='raw', include='*')

	Access EuXFEL data on the Maxwell cluster by proposal and run number.

run = open_run(proposal=700000, run=1)

Returns a DataCollection object.

	Parameters

	
	proposal (str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]) – A proposal number, such as 2012, ‘2012’, ‘p002012’, or a path such as
‘/gpfs/exfel/exp/SPB/201701/p002012’.

	run (str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]) – A run number such as 243, ‘243’ or ‘r0243’.

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – ‘raw’ or ‘proc’ (processed) to access data from one of those folders.
The default is ‘raw’.

	include (str [https://docs.python.org/3/library/stdtypes.html#str]) – Wildcard string to filter data files.

New in version 0.5.

You can also open a single file. The methods described below all work for either
a run or a single file.

	
karabo_data.H5File(path)

	Open a single HDF5 file generated at European XFEL.

file = H5File("RAW-R0017-DA01-S00000.h5")

Returns a DataCollection object.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the HDF5 file

Data structure

A run (or file) contains data from various sources, each of which has keys.
For instance, SA1_XTD2_XGM/XGM/DOOCS is one source, for an ‘XGM’ device
which monitors the beam, and its keys include beamPosition.ixPos and
beamPosition.iyPos.

European XFEL produces ten pulse trains per second, each of which can contain
up to 2700 X-ray pulses. Each pulse train has a unique train ID, which is used
to refer to all data associated with that 0.1 second window.

	
class karabo_data.DataCollection

	
	
train_ids

	A list of the train IDs included in this data.
The data recorded may not be the same for each train.

	
control_sources

	A set of the control source names in this data, in the format
"SA3_XTD10_VAC/TSENS/S30100K". Control data is always recorded
exactly once per train.

	
instrument_sources

	A set of the instrument source names in this data,
in the format "FXE_DET_LPD1M-1/DET/15CH0:xtdf".
Instrument data may be recorded zero to many times per train.

	
all_sources

	A set of names for both instrument and control sources.
This is the union of the two sets above.

	
keys_for_source(source)

	Get a set of key names for the given source

If you have used select() to filter keys, only selected keys
are returned.

Only one file is used to find the keys. Within a run, all files should
have the same keys for a given source, but if you use union() to
combine two runs where the source was configured differently, the
result can be unpredictable.

	
get_data_counts(source, key)

	Get a count of data points in each train for the given data field.

Returns a pandas series with an index of train IDs.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Source name, e.g. “SPB_DET_AGIPD1M-1/DET/7CH0:xtdf”

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key of parameter within that device, e.g. “image.data”.

	
info()

	Show information about the selected data.

Getting data by source & key

Where data will fit into memory, it’s usually quickest and most convenient
to load it like this.

	
class karabo_data.DataCollection

	
	
get_array(source, key, extra_dims=None, roi=by_index[...])

	Return a labelled array for a particular data field.

arr = run.get_array("SA3_XTD10_PES/ADC/1:network", "digitizers.channel_4_A.raw.samples")

This should work for any data.
The first axis of the returned data will be labelled with the train IDs.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Device name with optional output channel, e.g.
“SA1_XTD2_XGM/DOOCS/MAIN” or “SPB_DET_AGIPD1M-1/DET/7CH0:xtdf”

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key of parameter within that device, e.g. “beamPosition.iyPos.value”
or “header.linkId”.

	extra_dims (list of str) – Name extra dimensions in the array. The first dimension is
automatically called ‘train’. The default for extra dimensions
is dim_0, dim_1, …

	roi (by_index) – The region of interest. This expression selects data in all
dimensions apart from the first (trains) dimension. If the data
holds a 1D array for each entry, roi=by_index[:8] would get the
first 8 values from every train. If the data is 2D or more at
each entry, selection looks like roi=by_index[:8, 5:10] .

See also

	xarray documentation [http://xarray.pydata.org/en/stable/indexing.html]
	How to use the arrays returned by get_array()

	Working with non-detector data
	Examples using xarray & pandas with EuXFEL data

	
get_dask_array(source, key)

	Get a Dask array for the specified data field.

Dask is a system for lazy parallel computation. This method doesn’t
actually load the data, but gives you an array-like object which you
can operate on. Dask loads the data and calculates results when you ask
it to, e.g. by calling a .compute() method.
See the Dask documentation for more details.

If your computation depends on reading lots of data, consider creating
a dask.distributed.Client before calling this.
If you don’t do this, Dask uses threads by default, which is not
efficient for reading HDF5 files.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Source name, e.g. “SPB_DET_AGIPD1M-1/DET/7CH0:xtdf”

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key of parameter within that device, e.g. “image.data”.

See also

	Dask Array documentation [https://docs.dask.org/en/latest/array.html]
	How to use the objects returned by get_dask_array()

	Averaging detector data with Dask
	An example using Dask with EuXFEL data

	
get_series(source, key)

	Return a pandas Series for a particular data field.

s = run.get_series("SA1_XTD2_XGM/XGM/DOOCS", "beamPosition.ixPos")

This only works for 1-dimensional data.

	Parameters

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – Device name with optional output channel, e.g.
“SA1_XTD2_XGM/DOOCS/MAIN” or “SPB_DET_AGIPD1M-1/DET/7CH0:xtdf”

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key of parameter within that device, e.g. “beamPosition.iyPos.value”
or “header.linkId”. The data must be 1D in the file.

	
get_dataframe(fields=None, *, timestamps=False)

	Return a pandas dataframe for given data fields.

df = run.get_dataframe(fields=[
 ("*_XGM/*", "*.i[xy]Pos"),
 ("*_XGM/*", "*.photonFlux")
])

This links together multiple 1-dimensional datasets as columns in a
table.

	Parameters

	
	fields (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Select data sources and keys to include in the dataframe.
Selections are defined by lists or dicts as in select().

	timestamps (bool [https://docs.python.org/3/library/functions.html#bool]) – If false (the default), exclude the timestamps associated with each
control data field.

See also

	pandas documentation [https://pandas.pydata.org/pandas-docs/stable/]
	How to use the objects returned by get_series() and
get_dataframe()

	Working with non-detector data
	Examples using xarray & pandas with EuXFEL data

	
get_virtual_dataset(source, key, filename=None)

	Create an HDF5 virtual dataset for a given source & key

A dataset looks like a multidimensional array, but the data is loaded
on-demand when you access it. So it’s suitable as an
interface to data which is too big to load entirely into memory.

This returns an h5py.Dataset object. This exists in a real file as a
‘virtual dataset’, a collection of links pointing to the data in real
datasets. If filename is passed, the file is written at that path,
overwriting if it already exists. Otherwise, it uses a new temp file.

To access the dataset from other worker processes, give them the name
of the created file along with the path to the dataset inside it
(accessible as ds.name). They will need at least HDF5 1.10 to access
the virtual dataset, and they must be on a system with access to the
original data files, as the virtual dataset points to those.

New in version 0.5.

See also

Parallel processing with a virtual dataset

Getting data by train

Some kinds of data, e.g. from AGIPD, are too big to load a whole run into
memory at once. In these cases, it’s convenient to load one train at a time.

When accessing data like this, it’s worth selecting which sources you’re
interested in, either using select(), or the devices=
parameter. This avoids reading all the other data.

	
class karabo_data.DataCollection

	
	
trains(devices=None, train_range=None, *, require_all=False)

	Iterate over all trains in the data and gather all sources.

run = Run('/path/to/my/run/r0123')
for train_id, data in run.select("*/DET/*", "image.data").trains():
 mod0 = data["FXE_DET_LPD1M-1/DET/0CH0:xtdf"]["image.data"]

	Parameters

	
	devices (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Filter data by sources and keys.
Refer to select() for how to use this.

	train_range (by_id or by_index object, optional) – Iterate over only selected trains, by train ID or by index.
Refer to select_trains() for how to use this.

	require_all (bool [https://docs.python.org/3/library/functions.html#bool]) – False (default) returns any data available for the requested trains.
True skips trains which don’t have all the selected data;
this only makes sense if you make a selection with devices
or select().

	Yields

	
	tid (int) – The train ID of the returned train

	data (dict) – The data for this train, keyed by device name

	
train_from_id(train_id, devices=None)

	Get train data for specified train ID.

	Parameters

	
	train_id (int [https://docs.python.org/3/library/functions.html#int]) – The train ID

	devices (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Filter data by sources and keys.
Refer to select() for how to use this.

	Returns

	
	tid (int) – The train ID of the returned train

	data (dict) – The data for this train, keyed by device name

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – if train_id is not found in the run.

	
train_from_index(train_index, devices=None)

	Get train data of the nth train in this data.

	Parameters

	
	train_index (int [https://docs.python.org/3/library/functions.html#int]) – Index of the train in the file.

	devices (dict [https://docs.python.org/3/library/stdtypes.html#dict] or list [https://docs.python.org/3/library/stdtypes.html#list], optional) – Filter data by sources and keys.
Refer to select() for how to use this.

	Returns

	
	tid (int) – The train ID of the returned train

	data (dict) – The data for this train, keyed by device name

Selecting & combining data

These methods all return a new DataCollection object with the selected
data, so you use them like this:

sel = run.select("*/XGM/*")
sel includes only XGM sources
run still includes all the data

	
class karabo_data.DataCollection

	
	
select(seln_or_source_glob, key_glob='*')

	Select a subset of sources and keys from this data.

There are three possible ways to select data:

	With two glob patterns (see below) for source and key names:

Select data in the image group for any detector sources
sel = run.select('*/DET/*, 'image.*')

	With a list of (source, key) glob patterns:

Select image.data and image.mask for any detector sources
sel = run.select([('*/DET/*, 'image.data'), ('*/DET/*, 'image.mask')])

Data is included if it matches any of the pattern pairs.

	With a dict of source names mapped to sets of key names
(or empty sets to get all keys):

Select image.data from one detector source, and all data from one XGM
sel = run.select({'SPB_DET_AGIPD1M-1/DET/0CH0:xtdf': {'image.data'},
 'SA1_XTD2_XGM/XGM/DOOCS': set()})

Unlike the others, this option doesn’t allow glob patterns.
It’s a more precise but less convenient option for code that knows
exactly what sources and keys it needs.

Returns a new DataCollection object for the selected data.

Note

‘Glob’ patterns may be familiar from selecting files in a Unix shell.
* matches anything, so */DET/* selects sources with “/DET/”
anywhere in the name. There are several kinds of wildcard:

	*: anything

	?: any single character

	[xyz]: one character, “x”, “y” or “z”

	[0-9]: one digit character

	[!xyz]: one character, not x, y or z

Anything else in the pattern must match exactly. It’s case-sensitive,
so “x” does not match “X”.

	
deselect(seln_or_source_glob, key_glob='*')

	Select everything except the specified sources and keys.

This takes the same arguments as select(), but the sources and
keys you specify are dropped from the selection.

Returns a new DataCollection object for the remaining data.

	
select_trains(train_range)

	Select a subset of trains from this data.

Choose a slice of trains by train ID:

from karabo_data import by_id
sel = run.select_trains(by_id[142844490:142844495])

Or select a list of trains:

sel = run.select_trains(by_id[[142844490, 142844493, 142844494]])

Or select trains by index within this collection:

from karabo_data import by_index
sel = run.select_trains(by_index[:5])

Returns a new DataCollection object for the selected trains.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If given train IDs do not overlap with the trains in this data.

	
union(*others)

	Join the data in this collection with one or more others.

This can be used to join multiple sources for the same trains,
or to extend the same sources with data for further trains.
The order of the datasets doesn’t matter.

Returns a new DataCollection object.

Writing selected data

	
class karabo_data.DataCollection

	
	
write(filename)

	Write the selected data to a new HDF5 file

You can choose a subset of the data using methods
like select() and select_trains(),
then use this write it to a new, smaller file.

The target filename will be overwritten if it already exists.

	
write_virtual(filename)

	Write an HDF5 file with virtual datasets for the selected data.

This doesn’t copy the data, but each virtual dataset provides a view of
data spanning multiple sequence files, which can be accessed as if it
had been copied into one big file.

This is not the same as building virtual datasets to combine
multi-module detector data [https://in.xfel.eu/readthedocs/docs/data-analysis-user-documentation/en/latest/datafiles.html#combining-detector-data-from-multiple-modules].
See AGIPD, LPD & DSSC data for that.

Creating and reading virtual datasets requires HDF5 version 1.10.

The target filename will be overwritten if it already exists.

Missing data

What happens if some data was not recorded for a given train?

Control data is duplicated for each train until it changes.
If the device cannot send changes, the last values will be recorded for each
subsequent train until it sends changes again.
There is no general way to distinguish this scenario from values which
genuinely aren’t changing.

Parts of instrument data may be missing from the file. These will also be
missing from the data returned by karabo_data:

	The train-oriented methods trains(),
train_from_id(), and
train_from_index() give you dictionaries keyed by
source and key name. Sources and keys are only included if they have
data for that train.

	get_array(), and
get_series() skip over trains which are missing data.
The indexes on the returned DataArray or Series objects link the returned
data to train IDs. Further operations with xarray or pandas may drop
misaligned data or introduce fill values.

	get_dataframe() includes rows for which any column has
data. Where some but not all columns have data, the missing values are filled
with NaN by pandas’ missing data handling [http://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html].

Missing data does not necessarily mean that something has gone wrong:
some devices send data at less than 10 Hz (the train rate), so they always
have gaps between updates.

Data problems

If you encounter problems accessing data with karabo_data, there may be
problems with the data files themselves. Use the karabo-data-validate
command to check for this (see Checking data files).

Here are some problems we’ve seen, and possible solutions or workarounds:

	Indexes point to data beyond the end of datasets:
this has previously been caused by bugs in the detector calibration pipeline.
If you see this in calibrated data (in the proc/ folder),
ask for the relevant runs to be re-calibrated.

	Train IDs are not strictly increasing:
issues with the timing system when the data is recorded can create an
occasional train ID which is completely out of sequence.
Usually it seems to be possible to ignore this and use the remaining data,
but if you have any issues, please let us know.

	In one case, a train ID had the maximum possible value (264 - 1),
causing info() to fail. You can select everything except this train
using select_trains():

from karabo_data import by_id
sel = run.select_trains(by_id[:2**64-1])

If you’re having problems with karabo_data, you can also try searching
previously reported issues [https://github.com/European-XFEL/karabo_data/issues?q=is%3Aissue]
to see if anyone has encountered similar symptoms.

Cached run data maps

When you open a run in karabo_data, it needs to know what data is in each file.
Each file has metadata describing its contents, but reading this from every file
is slow, especially on GPFS. karabo_data therefore tries to cache this
information the first time a run is opened, and reuse it when opening that run
again.

This should happen automatically, without the user needing to know about it.
You only need these details if you think caching may be causing problems.

	Caching is triggered when you use RunDirectory() or open_run().

	There are two possible locations for the cached data map:

	In the run directory: (run dir)/karabo_data_map.json.

	In the proposal scratch directory:
(proposal dir)/scratch/.karabo_data_maps/raw_r0032.json.
This will normally be the one used on Maxwell, as users can’t write to the
run directory.

	The format is a JSON array, with an object for each file in the run.

	This holds the list of train IDs in the file, and the lists of control and
instrument sources.

	It also stores the file size and last modified time of each data file, to
check if the file has changed since the cache was created. If either of
these attributes doesn’t match, karabo_data ignores the cached information
and reads the metadata from the HDF5 file.

	If any file in the run wasn’t listed in the data map, or its entry was
outdated, a new data map is written automatically. It tries the same two
locations described above, but it will continue without error if it can’t
write to either.

JSON was chosen as it can be easily inspected manually, and it’s reasonably
efficient to load the entire file.

AGIPD, LPD & DSSC data

These data from AGIPD, LPD and DSSC is spread out in separate files.
karabo_data includes convenient interfaces to access this data,
pulling together the separate modules into a single array.

	
class karabo_data.components.AGIPD1M(data: karabo_data.reader.DataCollection, detector_name=None, modules=None, *, min_modules=1)

	An interface to AGIPD-1M data.

	Parameters

	
	data (DataCollection) – A data collection, e.g. from RunDirectory.

	modules (set of ints, optional) – Detector module numbers to use. By default, all available modules
are used.

	detector_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of a detector, e.g. ‘SPB_DET_AGIPD1M-1’. This is only needed
if the dataset includes more than one AGIPD detector.

	min_modules (int [https://docs.python.org/3/library/functions.html#int]) – Include trains where at least n modules have data. Default is 1.

The methods of this class are identical to those of LPD1M, below.

	
class karabo_data.components.DSSC1M(data: karabo_data.reader.DataCollection, detector_name=None, modules=None, *, min_modules=1)

	An interface to DSSC-1M data.

	Parameters

	
	data (DataCollection) – A data collection, e.g. from RunDirectory.

	modules (set of ints, optional) – Detector module numbers to use. By default, all available modules
are used.

	detector_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of a detector, e.g. ‘SCS_DET_DSSC1M-1’. This is only needed
if the dataset includes more than one DSSC detector.

	min_modules (int [https://docs.python.org/3/library/functions.html#int]) – Include trains where at least n modules have data. Default is 1.

The methods of this class are identical to those of LPD1M, below.

	
class karabo_data.components.LPD1M(data: karabo_data.reader.DataCollection, detector_name=None, modules=None, *, min_modules=1)

	An interface to LPD-1M data.

	Parameters

	
	data (DataCollection) – A data collection, e.g. from RunDirectory.

	modules (set of ints, optional) – Detector module numbers to use. By default, all available modules
are used.

	detector_name (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Name of a detector, e.g. ‘FXE_DET_LPD1M-1’. This is only needed
if the dataset includes more than one LPD detector.

	min_modules (int [https://docs.python.org/3/library/functions.html#int]) – Include trains where at least n modules have data. Default is 1.

	
get_array(key, pulses=by_index[:])

	Get a labelled array of detector data

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The data to get, e.g. ‘image.data’ for pixel values.

	pulses (by_id or by_index) – Select the pulses to include from each train. by_id selects by pulse
ID, by_index by index within the data being read. The default includes
all pulses. Only used for per-train data.

	
trains(pulses=by_index[:])

	Iterate over trains for detector data.

	Parameters

	pulses (by_index or by_id) – Select which pulses to include for each train.
The default is to include all pulses.

	Yields

	train_data (dict) – A dictionary mapping key names (e.g. image.data) to labelled
arrays.

	
write_virtual_cxi(filename)

	Write a virtual CXI file to access the detector data.

The virtual datasets in the file provide a view of the detector
data as if it was a single huge array, but without copying the data.
Creating and using virtual datasets requires HDF5 1.10.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – The file to be written. Will be overwritten if it already exists.

See also

Accessing LPD data: An example using the class above.

If you get data for a train from the main DataCollection interface,
there is also another way to combine detector modules from AGIPD or LPD:

	
karabo_data.stack_detector_data(train, data, axis=-3, modules=16, fillvalue=nan, real_array=True)

	Stack data from detector modules in a train.

	Parameters

	
	train (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Train data.

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the device parameter of the data you want to stack, e.g. ‘image.data’.

	axis (int [https://docs.python.org/3/library/functions.html#int]) – Array axis on which you wish to stack (default is -3).

	modules (int [https://docs.python.org/3/library/functions.html#int]) – Number of modules composing a detector (default is 16).

	fillvalue (number) – Value to use in place of data for missing modules. The default is nan
(not a number) for floating-point data, and 0 for integers.

	real_array (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (default), copy the data together into a real numpy array.
If False, avoid copying the data and return a limited array-like wrapper
around the existing arrays. This is sufficient for assembling images
using detector geometry, and allows better performance.

	Returns

	combined – Stacked data for requested data path.

	Return type

	numpy.array

Streaming data over ZeroMQ

Karabo Bridge provides access to live data during the experiment over a ZeroMQ
socket. The karabo_data Python package can stream data from files using the same
protocol. You can use this to test code which expects to receive data from
Karabo Bridge, or use the same code for analysing live data and stored data.

To stream the data from a file or run unmodified, use the command:

karabo-bridge-serve-files /gpfs/exfel/exp/SPB/201830/p900022/raw/r0034 4545

The number (4545) must be an unused TCP port above 1024. It will bind to
this and stream the data to any connected clients.

We provide Karabo bridge clients as Python and C++ libraries.

If you want to do some processing on the data before streaming it, you can
use this Python interface to send it out:

	
class karabo_data.export.ZMQStreamer(port, maxlen=10, protocol_version='2.2', dummy_timestamps=False)

	ZeroMQ inteface sending data over a TCP socket.

Server:
serve = ZMQStreamer(1234)
serve.start()

for tid, data in run.trains():
 result = important_processing(data)
 serve.feed(result)

Client:
from karabo_bridge import Client
client = Client('tcp://server.hostname:1234')
data = client.next()

	Parameters

	
	port (int [https://docs.python.org/3/library/functions.html#int]) – Local TCP port to bind socket to

	maxlen (int [https://docs.python.org/3/library/functions.html#int], optional) – How many trains to cache before sending (default: 10)

	protocol_version (('1.0' | '2.1')) – Which version of the bridge protocol to use. Defaults to the latest
version implemented.

	dummy_timestamps (bool [https://docs.python.org/3/library/functions.html#bool]) – Some tools (such as OnDA) expect the timestamp information to be in the
messages. We can’t give accurate timestamps where these are not in the
file, so this option generates fake timestamps from the time the data
is fed in.

	
start()

	Start a zmq.REP socket.

	
feed(data, metadata=None)

	Push data to the sending queue.

This blocks if the queue already has maxlen items waiting to be sent.

	Parameters

	
	data (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Contains train data. The dictionary has to follow the karabo_bridge
protocol structure:

	keys are source names

	values are dict, where the keys are the parameter names and
values must be python built-in types or numpy.ndarray.

	metadata (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Contains train metadata. The dictionary has to follow the
karabo_bridge protocol structure:

	keys are (str) source names

	values (dict) should contain the following items:

	’timestamp’ Unix time with subsecond resolution

	’timestamp.sec’ Unix time with second resolution

	’timestamp.frac’ fractional part with attosecond resolution

	’timestamp.tid’ is European XFEL train unique ID

{
 'source': 'sourceName' # str
 'timestamp': 1234.567890 # float
 'timestamp.sec': '1234' # str
 'timestamp.frac': '567890000000000000' # str
 'timestamp.tid': 1234567890 # int
}

If the metadata dict is not provided it will be extracted from
‘data’ or an empty dict if ‘metadata’ key is missing from a data
source.

Checking data files

karabo_data includes a tool to check the integrity of data files.
You can pass it a run:

karabo-data-validate /gpfs/exfel/exp/XMPL/201750/p700000/raw/r0803

Or a single data file:

karabo-data-validate /gpfs/exfel/exp/XMPL/201750/p700000/raw/r0803/RAW-R0803-AGIPD00-S00000.h5

The checks are informed by problems we have encountered with data files in the
past. Currently, it checks that:

	All .h5 files in a run can be opened, and the run contains at least one
usable file.

	The list of train IDs in a file has no zeros except for padding at the end.

	Each train ID in a file is greater than the one before it.

	The indexes have the same number of entries as train IDs.

	The indexes do not point to data beyond the end of a dataset.

	The indexes point to the start of the dataset, and then to successive chunks
for successive trains, without gaps or overlaps between them.

If any checks fail, the output will contain details, and the exit code will be
non-zero. An exit code of 0 means that the checks all passed. This is the
standard convention for command line tools to indicate success or failure.

AGIPD, LPD & DSSC Geometry

The AGIPD and LPD detectors are made up of several sensor modules,
from which separate streams of data are recorded.
Inspecting or processing data from these detectors therefore depends on
knowing how the modules are arranged. The module karabo_data.geometry2
handles this information.

All the coordinates used in this module are from the detector centre.
This should be roughly where the beam passes through the detector.
They follow the standard European XFEL axis orientations, with x increasing to
the left (looking along the beam), and y increasing upwards.

Note

This module includes methods to assemble data into a single array.
This is sufficient for a quick examination of detector images, but the
detector pixels may not line up with the grid imposed by a single array.
For accurate analysis, it’s best to use a tool that can process
geometry internally with sub-pixel precision.

AGIPD-1M

AGIPD-1M consists of 16 modules of 512×128 pixels each.
Each module is further subdivided into 8 tiles.
The layout of tiles within a module is fixed by the manufacturing process,
but this geometry code works with a position for each tile.

[image: _images/agipd_layout.png]
The approximate layout of AGIPD-1M, in a front view (looking along the beam).

	
class karabo_data.geometry2.AGIPD_1MGeometry(modules, filename='No file')

	Detector layout for AGIPD-1M

The coordinates used in this class are 3D (x, y, z), and represent metres.

You won’t normally instantiate this class directly:
use one of the constructor class methods to create or load a geometry.

	
classmethod from_quad_positions(quad_pos, asic_gap=2, panel_gap=29, unit=0.0002)

	Generate an AGIPD-1M geometry from quadrant positions.

This produces an idealised geometry, assuming all modules are perfectly
flat, aligned and equally spaced within their quadrant.

The quadrant positions are given in pixel units, referring to the first
pixel of the first module in each quadrant, corresponding to data
channels 0, 4, 8 and 12.

The origin of the coordinates is in the centre of the detector.
Coordinates increase upwards and to the left (looking along the beam).

To give positions in units other than pixels, pass the unit parameter
as the length of the unit in metres.
E.g. unit=1e-3 means the coordinates are in millimetres.

	
classmethod from_crystfel_geom(filename)

	Read a CrystFEL format (.geom) geometry file.

Returns a new geometry object.

	
write_crystfel_geom(filename, *, data_path='/entry_1/instrument_1/detector_1/data', mask_path=None, dims=('frame', 'modno', 'ss', 'fs'), adu_per_ev=None, clen=None, photon_energy=None)

	Write this geometry to a CrystFEL format (.geom) geometry file.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the geometry file to write.

	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the group that contains the data array in the hdf5 file.
Default: '/entry_1/instrument_1/detector_1/data'.

	mask_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the group that contains the mask array in the hdf5 file.

	dims (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Dimensions of the data. Extra dimensions, except for the defaults,
should be added by their index, e.g.
(‘frame’, ‘modno’, 0, ‘ss’, ‘fs’) for raw data.
Default: ('frame', 'modno', 'ss', 'fs').
Note: the dimensions must contain frame, ss, fs.

	adu_per_ev (float [https://docs.python.org/3/library/functions.html#float]) – ADU (analog digital units) per electron volt for the considered
detector.

	clen (float [https://docs.python.org/3/library/functions.html#float]) – Distance between sample and detector in meters

	photon_energy (float [https://docs.python.org/3/library/functions.html#float]) – Beam wave length in eV

	
get_pixel_positions(centre=True)

	Get the physical coordinates of each pixel in the detector

The output is an array with shape like the data, with an extra dimension
of length 3 to hold (x, y, z) coordinates. Coordinates are in metres.

If centre=True, the coordinates are calculated for the centre of each
pixel. If not, the coordinates are for the first corner of the pixel
(the one nearest the [0, 0] corner of the tile in data space).

	
to_distortion_array(allow_negative_xy=False)

	Return distortion matrix for AGIPD detector, suitable for pyFAI.

	Parameters

	allow_negative_xy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False (default), shift the origin so no x or y coordinates are
negative. If True, the origin is the detector centre.

	Returns

	out – Array of float 32 with shape (8192, 128, 4, 3).
The dimensions mean:

	8192 = 16 modules * 512 pixels (slow scan axis)

	128 pixels (fast scan axis)

	4 corners of each pixel

	3 numbers for z, y, x

	Return type

	ndarray

	
plot_data_fast(data, *, axis_units='px', frontview=True, ax=None, figsize=None, colorbar=True, **kwargs)

	Plot data from the detector using this geometry.

This approximates the geometry to align all pixels to a 2D grid.

Returns a matplotlib axes object.

	Parameters

	
	data (ndarray) – Should have exactly 3 dimensions, for the modules, then the
slow scan and fast scan pixel dimensions.

	axis_units (str [https://docs.python.org/3/library/stdtypes.html#str]) – Show the detector scale in pixels (‘px’) or metres (‘m’).

	frontview (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (the default), x increases to the left, as if you were looking
along the beam. False gives a ‘looking into the beam’ view.

	ax (~matplotlib.axes.Axes object, optional) – Axes that will be used to draw the image. If None is given (default)
a new axes object will be created.

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Size of the figure (width, height) in inches to be drawn
(default: (10, 10))

	colorbar (bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Draw colobar with default values (if boolean is given). Colorbar
appearance can be controlled by passing a dictionary of properties.

	kwargs – Additional keyword arguments passed to ~matplotlib.imshow

	
position_modules_fast(data, out=None)

	Assemble data from this detector according to where the pixels are.

This approximates the geometry to align all pixels to a 2D grid.

	Parameters

	
	data (ndarray) – The last three dimensions should match the modules, then the
slow scan and fast scan pixel dimensions.

	out (ndarray, optional) – An output array to assemble the image into. By default, a new
array is allocated. Use output_array_for_position_fast() to
create a suitable array.
If an array is passed in, it must match the dtype of the data and the
shape of the array that would have been allocated.
Parts of the array not covered by detector tiles are not overwritten.
In general, you can reuse an output array if you are assembling
similar pulses or pulse trains with the same geometry.

	Returns

	
	out (ndarray) – Array with one dimension fewer than the input.
The last two dimensions represent pixel y and x in the detector space.

	centre (ndarray) – (y, x) pixel location of the detector centre in this geometry.

	
output_array_for_position_fast(extra_shape=(), dtype=<class 'numpy.float32'>)

	Make an empty output array to use with position_modules_fast

You can speed up assembling images by reusing the same output array:
call this once, and then pass the array as the out= parameter to
position_modules_fast(). By default, it allocates a new array on
each call, which can be slow.

	Parameters

	
	extra_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – By default, a 2D output array is generated, to assemble a single
detector image. If you are assembling multiple pulses at once, pass
extra_shape=(nframes,) to get a 3D output array.

	dtype (optional (Default: np.float32)) –

	
position_modules_interpolate(data)

	Assemble data from this detector according to where the pixels are.

This performs interpolation, which is very slow.
Use position_modules_fast() to get a pixel-aligned approximation
of the geometry.

	Parameters

	data (ndarray) – The three dimensions should be channelno, pixel_ss, pixel_fs
(lengths 16, 512, 128). ss/fs are slow-scan and fast-scan.

	Returns

	
	out (ndarray) – Array with the one dimension fewer than the input.
The last two dimensions represent pixel y and x in the detector space.

	centre (ndarray) – (y, x) pixel location of the detector centre in this geometry.

	
inspect(axis_units='px', frontview=True)

	Plot the 2D layout of this detector geometry.

Returns a matplotlib Axes object.

	Parameters

	
	axis_units (str [https://docs.python.org/3/library/stdtypes.html#str]) – Show the detector scale in pixels (‘px’) or metres (‘m’).

	frontview (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (the default), x increases to the left, as if you were looking
along the beam. False gives a ‘looking into the beam’ view.

	
compare(other, scale=1.0)

	Show a comparison of this geometry with another in a 2D plot.

This shows the current geometry like inspect(), with the addition
of arrows showing how each panel is shifted in the other geometry.

	Parameters

	
	other (AGIPD_1MGeometry) – A second geometry object to compare with this one.

	scale (float [https://docs.python.org/3/library/functions.html#float]) – Scale the arrows showing the difference in positions.
This is useful to show small differences clearly.

	
data_coords_to_positions(module_no, slow_scan, fast_scan)

	Convert data array coordinates to physical positions

Data array coordinates are how you might refer to a pixel in an array
of detector data: module number, and indices in the slow-scan and
fast-scan directions. But coordinates in the two pixel dimensions aren’t
necessarily integers, e.g. if they refer to the centre of a peak.

module_no, fast_scan and slow_scan should all be numpy arrays of the
same shape. module_no should hold integers, starting from 0,
so 0: Q1M1, 1: Q1M2, etc.

slow_scan and fast_scan describe positions within that module.
They may hold floats for sub-pixel positions. In both, 0.5 is the centre
of the first pixel.

Returns an array of similar shape with an extra dimension of length 3,
for (x, y, z) coordinates in metres.

See also

Detector geometry for AGIPD demonstrates using this method.

LPD-1M

LPD-1M consists of 16 supermodules of 256×256 pixels each.
Each supermodule is further subdivided into 16 sensor tiles,
which this geometry code can position independently.

[image: _images/lpd_layout.png]
The approximate layout of LPD-1M, in a front view (looking along the beam).

	
class karabo_data.geometry2.LPD_1MGeometry(modules, filename='No file')

	Detector layout for LPD-1M

The coordinates used in this class are 3D (x, y, z), and represent metres.

You won’t normally instantiate this class directly:
use one of the constructor class methods to create or load a geometry.

	
classmethod from_quad_positions(quad_pos, *, unit=0.001, asic_gap=None, panel_gap=None)

	Generate an LPD-1M geometry from quadrant positions.

This produces an idealised geometry, assuming all modules are perfectly
flat, aligned and equally spaced within their quadrant.

The quadrant positions refer to the corner of each quadrant
where module 4, tile 16 is positioned.
This is the corner of the last pixel as the data is stored.
In the initial detector layout, the corner positions are for the top
left corner of the quadrant, looking along the beam.

The origin of the coordinates is in the centre of the detector.
Coordinates increase upwards and to the left (looking along the beam).

	Parameters

	
	quad_pos (list of 2-tuples) – (x, y) coordinates of the last corner (the one by module 4) of each
quadrant.

	unit (float [https://docs.python.org/3/library/functions.html#float], optional) – The conversion factor to put the coordinates into metres.
The default 1e-3 means the numbers are in millimetres.

	asic_gap (float [https://docs.python.org/3/library/functions.html#float], optional) – The gap between adjacent tiles/ASICs. The default is 4 pixels.

	panel_gap (float [https://docs.python.org/3/library/functions.html#float], optional) – The gap between adjacent modules/panels. The default is 4 pixels.

	
classmethod from_h5_file_and_quad_positions(path, positions, unit=0.001)

	Load an LPD-1M geometry from an XFEL HDF5 format geometry file

The quadrant positions are not stored in the file, and must be provided
separately. By default, both the quadrant positions and the positions
in the file are measured in millimetres; the unit parameter controls
this.

The origin of the coordinates is in the centre of the detector.
Coordinates increase upwards and to the left (looking along the beam).

This version of the code only handles x and y translation,
as this is all that is recorded in the initial LPD geometry file.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of an EuXFEL format (HDF5) geometry file for LPD.

	positions (list of 2-tuples) – (x, y) coordinates of the last corner (the one by module 4) of each
quadrant.

	unit (float [https://docs.python.org/3/library/functions.html#float], optional) – The conversion factor to put the coordinates into metres.
The default 1e-3 means the numbers are in millimetres.

	
classmethod from_crystfel_geom(filename)

	Read a CrystFEL format (.geom) geometry file.

Returns a new geometry object.

	
write_crystfel_geom(filename, *, data_path='/entry_1/instrument_1/detector_1/data', mask_path=None, dims=('frame', 'modno', 'ss', 'fs'), adu_per_ev=None, clen=None, photon_energy=None)

	Write this geometry to a CrystFEL format (.geom) geometry file.

	Parameters

	
	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – Filename of the geometry file to write.

	data_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the group that contains the data array in the hdf5 file.
Default: '/entry_1/instrument_1/detector_1/data'.

	mask_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the group that contains the mask array in the hdf5 file.

	dims (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Dimensions of the data. Extra dimensions, except for the defaults,
should be added by their index, e.g.
(‘frame’, ‘modno’, 0, ‘ss’, ‘fs’) for raw data.
Default: ('frame', 'modno', 'ss', 'fs').
Note: the dimensions must contain frame, ss, fs.

	adu_per_ev (float [https://docs.python.org/3/library/functions.html#float]) – ADU (analog digital units) per electron volt for the considered
detector.

	clen (float [https://docs.python.org/3/library/functions.html#float]) – Distance between sample and detector in meters

	photon_energy (float [https://docs.python.org/3/library/functions.html#float]) – Beam wave length in eV

	
get_pixel_positions(centre=True)

	Get the physical coordinates of each pixel in the detector

The output is an array with shape like the data, with an extra dimension
of length 3 to hold (x, y, z) coordinates. Coordinates are in metres.

If centre=True, the coordinates are calculated for the centre of each
pixel. If not, the coordinates are for the first corner of the pixel
(the one nearest the [0, 0] corner of the tile in data space).

	
to_distortion_array(allow_negative_xy=False)

	Return distortion matrix for LPD detector, suitable for pyFAI.

	Parameters

	allow_negative_xy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False (default), shift the origin so no x or y coordinates are
negative. If True, the origin is the detector centre.

	Returns

	out – Array of float 32 with shape (4096, 256, 4, 3).
The dimensions mean:

	4096 = 16 modules * 256 pixels (slow scan axis)

	256 pixels (fast scan axis)

	4 corners of each pixel

	3 numbers for z, y, x

	Return type

	ndarray

	
plot_data_fast(data, *, axis_units='px', frontview=True, ax=None, figsize=None, colorbar=True, **kwargs)

	Plot data from the detector using this geometry.

This approximates the geometry to align all pixels to a 2D grid.

Returns a matplotlib axes object.

	Parameters

	
	data (ndarray) – Should have exactly 3 dimensions, for the modules, then the
slow scan and fast scan pixel dimensions.

	axis_units (str [https://docs.python.org/3/library/stdtypes.html#str]) – Show the detector scale in pixels (‘px’) or metres (‘m’).

	frontview (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (the default), x increases to the left, as if you were looking
along the beam. False gives a ‘looking into the beam’ view.

	ax (~matplotlib.axes.Axes object, optional) – Axes that will be used to draw the image. If None is given (default)
a new axes object will be created.

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Size of the figure (width, height) in inches to be drawn
(default: (10, 10))

	colorbar (bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Draw colobar with default values (if boolean is given). Colorbar
appearance can be controlled by passing a dictionary of properties.

	kwargs – Additional keyword arguments passed to ~matplotlib.imshow

	
position_modules_fast(data, out=None)

	Assemble data from this detector according to where the pixels are.

This approximates the geometry to align all pixels to a 2D grid.

	Parameters

	
	data (ndarray) – The last three dimensions should match the modules, then the
slow scan and fast scan pixel dimensions.

	out (ndarray, optional) – An output array to assemble the image into. By default, a new
array is allocated. Use output_array_for_position_fast() to
create a suitable array.
If an array is passed in, it must match the dtype of the data and the
shape of the array that would have been allocated.
Parts of the array not covered by detector tiles are not overwritten.
In general, you can reuse an output array if you are assembling
similar pulses or pulse trains with the same geometry.

	Returns

	
	out (ndarray) – Array with one dimension fewer than the input.
The last two dimensions represent pixel y and x in the detector space.

	centre (ndarray) – (y, x) pixel location of the detector centre in this geometry.

	
output_array_for_position_fast(extra_shape=(), dtype=<class 'numpy.float32'>)

	Make an empty output array to use with position_modules_fast

You can speed up assembling images by reusing the same output array:
call this once, and then pass the array as the out= parameter to
position_modules_fast(). By default, it allocates a new array on
each call, which can be slow.

	Parameters

	
	extra_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – By default, a 2D output array is generated, to assemble a single
detector image. If you are assembling multiple pulses at once, pass
extra_shape=(nframes,) to get a 3D output array.

	dtype (optional (Default: np.float32)) –

	
inspect(axis_units='px', frontview=True)

	Plot the 2D layout of this detector geometry.

Returns a matplotlib Axes object.

	Parameters

	
	axis_units (str [https://docs.python.org/3/library/stdtypes.html#str]) – Show the detector scale in pixels (‘px’) or metres (‘m’).

	frontview (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (the default), x increases to the left, as if you were looking
along the beam. False gives a ‘looking into the beam’ view.

	
data_coords_to_positions(module_no, slow_scan, fast_scan)

	Convert data array coordinates to physical positions

Data array coordinates are how you might refer to a pixel in an array
of detector data: module number, and indices in the slow-scan and
fast-scan directions. But coordinates in the two pixel dimensions aren’t
necessarily integers, e.g. if they refer to the centre of a peak.

module_no, fast_scan and slow_scan should all be numpy arrays of the
same shape. module_no should hold integers, starting from 0,
so 0: Q1M1, 1: Q1M2, etc.

slow_scan and fast_scan describe positions within that module.
They may hold floats for sub-pixel positions. In both, 0.5 is the centre
of the first pixel.

Returns an array of similar shape with an extra dimension of length 3,
for (x, y, z) coordinates in metres.

See also

Detector geometry for AGIPD demonstrates using this method.

DSSC-1M

DSSC-1M consists of 16 modules of 128×512 pixels each.
Each module is further subdivided into 2 sensor tiles,
which this geometry code can position independently.

[image: _images/dssc_layout.png]
The approximate layout of DSSC-1M, in a front view (looking along the beam).

The pixels in each DSSC module are tesselating hexagons.
This geometry code does not yet handle this: it treats the pixels as
rectangles to simplify processing.
This is adequate for previewing detector images, but some pixels will be
approximately half a pixel width from their true position.

[image: _images/dssc_hexes.png]
Detail of hexagonal pixels in the corner of one DSSC module.

	
class karabo_data.geometry2.DSSC_1MGeometry(modules, filename='No file')

	Detector layout for DSSC-1M

The coordinates used in this class are 3D (x, y, z), and represent metres.

You won’t normally instantiate this class directly:
use one of the constructor class methods to create or load a geometry.

	
classmethod from_h5_file_and_quad_positions(path, positions, unit=0.001)

	Load a DSSC geometry from an XFEL HDF5 format geometry file

The quadrant positions are not stored in the file, and must be provided
separately. The position given should refer to the bottom right (looking
along the beam) corner of the quadrant.

By default, both the quadrant positions and the positions
in the file are measured in millimetres; the unit parameter controls
this.

The origin of the coordinates is in the centre of the detector.
Coordinates increase upwards and to the left (looking along the beam).

This version of the code only handles x and y translation,
as this is all that is recorded in the initial LPD geometry file.

	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path of an EuXFEL format (HDF5) geometry file for DSSC.

	positions (list of 2-tuples) – (x, y) coordinates of the last corner (the one by module 4) of each
quadrant.

	unit (float [https://docs.python.org/3/library/functions.html#float], optional) – The conversion factor to put the coordinates into metres.
The default 1e-3 means the numbers are in millimetres.

	
get_pixel_positions(centre=True)

	Get the physical coordinates of each pixel in the detector

The output is an array with shape like the data, with an extra dimension
of length 3 to hold (x, y, z) coordinates. Coordinates are in metres.

If centre=True, the coordinates are calculated for the centre of each
pixel. If not, the coordinates are for the first corner of the pixel
(the one nearest the [0, 0] corner of the tile in data space).

	
to_distortion_array(allow_negative_xy=False)

	Return distortion matrix for DSSC detector, suitable for pyFAI.

	Parameters

	allow_negative_xy (bool [https://docs.python.org/3/library/functions.html#bool]) – If False (default), shift the origin so no x or y coordinates are
negative. If True, the origin is the detector centre.

	Returns

	out – Array of float 32 with shape (2048, 512, 6, 3).
The dimensions mean:

	2048 = 16 modules * 128 pixels (slow scan axis)

	512 pixels (fast scan axis)

	6 corners of each pixel

	3 numbers for z, y, x

	Return type

	ndarray

	
plot_data_fast(data, *, axis_units='px', frontview=True, ax=None, figsize=None, colorbar=False, **kwargs)

	Plot data from the detector using this geometry.

This approximates the geometry to align all pixels to a 2D grid.

Returns a matplotlib axes object.

	Parameters

	
	data (ndarray) – Should have exactly 3 dimensions, for the modules, then the
slow scan and fast scan pixel dimensions.

	axis_units (str [https://docs.python.org/3/library/stdtypes.html#str]) – Show the detector scale in pixels (‘px’) or metres (‘m’).

	frontview (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (the default), x increases to the left, as if you were looking
along the beam. False gives a ‘looking into the beam’ view.

	ax (~matplotlib.axes.Axes object, optional) – Axes that will be used to draw the image. If None is given (default)
a new axes object will be created.

	figsize (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Size of the figure (width, height) in inches to be drawn
(default: (10, 10))

	colorbar (bool [https://docs.python.org/3/library/functions.html#bool], dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Draw colobar with default values (if boolean is given). Colorbar
appearance can be controlled by passing a dictionary of properties.

	kwargs – Additional keyword arguments passed to ~matplotlib.imshow

	
position_modules_fast(data, out=None)

	Assemble data from this detector according to where the pixels are.

This approximates the geometry to align all pixels to a 2D grid.

	Parameters

	
	data (ndarray) – The last three dimensions should match the modules, then the
slow scan and fast scan pixel dimensions.

	out (ndarray, optional) – An output array to assemble the image into. By default, a new
array is allocated. Use output_array_for_position_fast() to
create a suitable array.
If an array is passed in, it must match the dtype of the data and the
shape of the array that would have been allocated.
Parts of the array not covered by detector tiles are not overwritten.
In general, you can reuse an output array if you are assembling
similar pulses or pulse trains with the same geometry.

	Returns

	
	out (ndarray) – Array with one dimension fewer than the input.
The last two dimensions represent pixel y and x in the detector space.

	centre (ndarray) – (y, x) pixel location of the detector centre in this geometry.

	
output_array_for_position_fast(extra_shape=(), dtype=<class 'numpy.float32'>)

	Make an empty output array to use with position_modules_fast

You can speed up assembling images by reusing the same output array:
call this once, and then pass the array as the out= parameter to
position_modules_fast(). By default, it allocates a new array on
each call, which can be slow.

	Parameters

	
	extra_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple], optional) – By default, a 2D output array is generated, to assemble a single
detector image. If you are assembling multiple pulses at once, pass
extra_shape=(nframes,) to get a 3D output array.

	dtype (optional (Default: np.float32)) –

	
inspect(axis_units='px', frontview=True)

	Plot the 2D layout of this detector geometry.

Returns a matplotlib Axes object.

	Parameters

	
	axis_units (str [https://docs.python.org/3/library/stdtypes.html#str]) – Show the detector scale in pixels (‘px’) or metres (‘m’).

	frontview (bool [https://docs.python.org/3/library/functions.html#bool]) – If True (the default), x increases to the left, as if you were looking
along the beam. False gives a ‘looking into the beam’ view.

Command line tools

lsxfel

Examine the contents of an EuXFEL proposal directory, run directory, or HDF5
file:

Proposal directory
lsxfel /gpfs/exfel/exp/XMPL/201750/p700000

Run directory
lsxfel /gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002

Single file
lsxfel /gpfs/exfel/exp/XMPL/201750/p700000/proc/r0002/CORR-R0034-AGIPD00-S00000.h5

karabo-data-validate

Check the structure of an EuXFEL run or HDF5 file:

karabo-data-validate /gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002

If it finds problems with the data, the program will produce a list of them and
exit with status 1.

karabo-bridge-serve-files

Stream data from files in the Karabo bridge [https://in.xfel.eu/readthedocs/docs/data-analysis-user-documentation/en/latest/online.html#data-stream-to-user-tools]
format. See Streaming data over ZeroMQ for more information.

karabo-data-make-virtual-cxi

Make a virtual CXI file to access AGIPD/LPD detector data from a specified run:

karabo-data-make-virtual-cxi /gpfs/exfel/exp/XMPL/201750/p700000/proc/r0003 -o xmpl-3.cxi

	
-o <path>, --output <path>

	The filename to write. Defaults to creating a file in the proposal’s
scratch directory.

	
--min-modules <number>

	Include trains where at least N modules have data (default 9).

Data files format

The main unit of data this tool works with is a run. A run is data collected
in a specific period, and each research proposal given beantime at European XFEL
may collect hundreds of runs.

A run is stored as a directory containing HDF5 data files from different
sources. These fall into two important categories:

	Detector data, from the main X-ray detectors in the various experiments.

	Each detector module writes separate files, e.g. RAW-R0348-AGIPD00-S00000.h5.
The number in the third part of the filename identifies the module (0 in
this example).

	The detectors in use as of April 2018 are LPD and AGIPD in the file
names. Each has 16 modules numbered 0–15.

	All the other data, such as motor positions, beam measurements, etc., are
recorded through a data aggregator, and stored in a file with the letters
DA in the name, e.g. RAW-R0450-DA01-S00000.h5.

The last part of the file name (e.g. S00000) is a sequence number. The
data within a run may be broken into a number of sequences. So
RAW-R0450-DA01-S00000.h5 and RAW-R0450-DA01-S00001.h5 will contain data
from the same set of devices, with sequence 1 continuing just after the end of
sequence 0. Though all data within a run may be broken into sequences, different
data sets do not necessarily break at the same point, so the various ‘sequence 0’
data files in a run do not have corresponding data.

HDF5 file structure

METADATA

The METADATA group in an HDF5 file contains three datasets, each of which
is a 1D array of strings:

	METADATA/dataSourceId lists data groups in the file. The values are either:

	CONTROL/ followed by a Karabo device name, e.g.
CONTROL/SA1_XTD2_XGM/DOOCS/MAIN.

	INSTRUMENT/ followed by a Karabo device name, a colon, the name of the
output channel, a slash, and the name of a data group (?), e.g.
INSTRUMENT/SA1_XTD2_XGM/DOOCS/MAIN:output/data

	METADATA/deviceId lists the part of each dataSourceId after the first
slash.

	METADATA/root lists the parts before the first slash, so
concat(root, "/", deviceId) == dataSourceId.

These three data sets always have the same number of values. They may be padded
with empty strings, so empty entries are ignored.

INDEX

INDEX/trainId is a 1D array of uint64, listing the pulse trains which the
file holds data for. This is crucial, since all other data has to be matched up
according to train IDs.

For each entry in METADATA/deviceId, the INDEX group contains two
datasets, both uint64 data with the same length as the train IDs:

	INDEX/{ deviceId }/count: for each train ID, how many data samples did
this device record. This may be 0 if no data was recorded for this train.

	INDEX/{ deviceId }/first: for each train ID, the index at which the
corresponding data starts in the arrays for this device.

Thus, to find the data for a given train ID, we could do:

train_index = trainIds.index(train_id)
first = device_firsts[train_index]
count = device_counts[train_index]
train_data = data[first : first+count]

Control data is always (?) recorded once per train, so count is 1 and first
counts up from 0 to the number of trains. Instrument data is more variable.

Some older files use a different index format with first/last/status instead of
first/count. In this case, a status of 0 means that no data was recorded
for that train.

CONTROL and RUN

For each CONTROL entry in METADATA/dataSourceId, there is a group with
that name in the file. This may have further arbitrarily nested subgroups
representing different properties of that device, e.g.
/CONTROL/SA1_XTD2_XGM/DOOCS/MAIN/current/bottom/output.

The leaves of this tree are pairs of datasets called timestamp and value.
Each dataset has one entry per train, and the timestamp record when the
value was updated, which is typically less than once per train. The value
dataset may have extra dimensions, but in most cases it is 1D.

(Does timestamp update if value is re-read but doesn’t change?)

RUN holds a complete duplicate of the CONTROL hierarchy, but each pair
of timestamp and value contain only one entry, taken at the start of
the run. There is still a dimension for this, so 2D value datasets in CONTROL
have corresponding 2D datasets in RUN, but the first dimension has length 1.

(Is RUN exactly duplicated in subsequent sequence files?)

INSTRUMENT

For each INSTRUMENT entry in METADATA/dataSourceId, there is a group with
that name in the file. Each such group holds a 1D trainId dataset, and a
number of other datasets (possibly nested in subgroups). All these datasets have
the same length in the first dimension: this represents the successive readings
taken. The slices defined by the corresponding datasets in INDEX work on
this dimension.

The trainId dataset for each instrument group thus appears to be redundant
with the information in INDEX.

Performance notes

These are some notes on how to load and process data efficiently.

Load data into memory

Where the data you need can fit into memory, it’s more efficient to load it
in one go using get_array(),
get_series() or get_dataframe(),
and then work with it using xarray, numpy or pandas.
Working with non-detector data has some examples of this.
The methods to get data by trains—trains(),
train_from_id() and
train_from_index()—only load the data for one train
at once, which saves memory for big data but is slower to process.

Machines in the Maxwell cluster have hundreds of gigabytes of RAM, so it’s
practical to load many kinds of data completely into memory.
However, data for a full run from megahertz detectors such as AGIPD, LPD or DSSC
can easily be too much.

The command free -h will show the amount of memory on any Linux machine.

Select sources before getting trains

If you do need to use trains(),
train_from_id() or
train_from_index() to get data for one train at a time,
first pick the sources and keys you need with select().
Otherwise, you will load the data for every source in the run, which could
be very slow.

run = RunDirectory("/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0004")

SLOW: Don't do this!
for tid, train_data in run.trains():
 ...

Better option: select image data from all detector modules first.
for tid, train_data in run.select('*/DET/*', 'image.data').trains():
 ...

The devices= parameter for all three train methods does the same thing
as using select() like this.

Reduce before assembling

Assembling detector images (see AGIPD, LPD & DSSC Geometry) is relatively slow.
If your analysis involves a reduction step like summing or averaging over
a number of images, try to do this on the data from separate modules before
assembling them into images.

This also applies more generally: if a step in your processing makes the data
smaller, you want to do that step as near the start as possible.

Reading data with karabo_data

This command creates the sample data files used in the rest of this example. These files contain no real data, but they have the same structure as European XFEL’s HDF5 data files.

[1]:

!python3 -m karabo_data.tests.make_examples

Written examples.

Single files

[2]:

!h5ls fxe_control_example.h5

CONTROL Group
INDEX Group
INSTRUMENT Group
METADATA Group
RUN Group

[3]:

from karabo_data import H5File
f = H5File('fxe_control_example.h5')

[4]:

f.control_sources

[4]:

frozenset({'FXE_XAD_GEC/CAM/CAMERA',
 'SA1_XTD2_XGM/DOOCS/MAIN',
 'SPB_XTD9_XGM/DOOCS/MAIN'})

[5]:

f.instrument_sources

[5]:

frozenset({'FXE_XAD_GEC/CAM/CAMERA:daqOutput',
 'SA1_XTD2_XGM/DOOCS/MAIN:output',
 'SPB_XTD9_XGM/DOOCS/MAIN:output'})

Get data by train

[6]:

for tid, data in f.trains():
 print("Processing train", tid)
 print("beam iyPos:", data['SA1_XTD2_XGM/DOOCS/MAIN']['beamPosition.iyPos.value'])

 break

Processing train 10000
beam iyPos: 0.0

[7]:

tid, data = f.train_from_id(10005)
data['FXE_XAD_GEC/CAM/CAMERA:daqOutput']['data.image.dims']

[7]:

array([1024, 255], dtype=uint64)

These are just a few of the ways to access data. The attributes and methods described below for run directories also work with individual files. We expect that it will normally make sense to access a run directory as a single object, rather than working with the files separately.

Run directories

An experimental run is recorded as a collection of files in a directory.

Another dummy example:

[8]:

!ls fxe_example_run/

RAW-R0450-DA01-S00000.h5 RAW-R0450-LPD04-S00000.h5 RAW-R0450-LPD10-S00000.h5
RAW-R0450-DA01-S00001.h5 RAW-R0450-LPD05-S00000.h5 RAW-R0450-LPD11-S00000.h5
RAW-R0450-LPD00-S00000.h5 RAW-R0450-LPD06-S00000.h5 RAW-R0450-LPD12-S00000.h5
RAW-R0450-LPD01-S00000.h5 RAW-R0450-LPD07-S00000.h5 RAW-R0450-LPD13-S00000.h5
RAW-R0450-LPD02-S00000.h5 RAW-R0450-LPD08-S00000.h5 RAW-R0450-LPD14-S00000.h5
RAW-R0450-LPD03-S00000.h5 RAW-R0450-LPD09-S00000.h5 RAW-R0450-LPD15-S00000.h5

[9]:

from karabo_data import RunDirectory
run = RunDirectory('fxe_example_run/')

[10]:

run.files[:3] # The objects for the individual files (see above)

[10]:

[FileAccess(<HDF5 file "RAW-R0450-LPD04-S00000.h5" (mode r)>),
 FileAccess(<HDF5 file "RAW-R0450-LPD11-S00000.h5" (mode r)>),
 FileAccess(<HDF5 file "RAW-R0450-LPD15-S00000.h5" (mode r)>)]

What devices were recording in this run?

Control devices are slow data, recording once per train. Instrument devices includes detector data, but also some other data sources such as cameras. They can have more than one reading per train.

[11]:

run.control_sources

[11]:

frozenset({'FXE_XAD_GEC/CAM/CAMERA',
 'FXE_XAD_GEC/CAM/CAMERA_NODATA',
 'SA1_XTD2_XGM/DOOCS/MAIN',
 'SPB_XTD9_XGM/DOOCS/MAIN'})

[12]:

run.instrument_sources

[12]:

frozenset({'FXE_DET_LPD1M-1/DET/0CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/10CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/11CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/12CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/13CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/14CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/15CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/1CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/2CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/3CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/4CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/5CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/6CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/7CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/8CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/9CH0:xtdf',
 'FXE_XAD_GEC/CAM/CAMERA:daqOutput',
 'FXE_XAD_GEC/CAM/CAMERA_NODATA:daqOutput',
 'SA1_XTD2_XGM/DOOCS/MAIN:output',
 'SPB_XTD9_XGM/DOOCS/MAIN:output'})

Which trains are in this run?

[13]:

print(run.train_ids[:10])

[10000, 10001, 10002, 10003, 10004, 10005, 10006, 10007, 10008, 10009]

See the available keys for a given source:

[14]:

run.keys_for_source('SPB_XTD9_XGM/DOOCS/MAIN:output')

[14]:

{'data.intensityAUXTD',
 'data.intensitySigma.x_data',
 'data.intensitySigma.y_data',
 'data.intensityTD',
 'data.trainId',
 'data.xTD',
 'data.yTD'}

This collects data from across files, including detector data:

[15]:

for tid, data in run.trains():
 print("Processing train", tid)
 print("Detctor data module 0 shape:", data['FXE_DET_LPD1M-1/DET/0CH0:xtdf']['image.data'].shape)

 break # Stop after the first train to keep the demo short

Processing train 10000
Detctor data module 0 shape: (128, 1, 256, 256)

Train IDs are meant to be globally unique (although there were some glitches with this in the past). A train index is only within this run.

[16]:

tid, data = run.train_from_id(10005)
tid, data = run.train_from_index(5)

Series data to pandas

Data which holds a single number per train (or per pulse) can be extracted to as series (individual columns) and dataframes (tables) for pandas [http://pandas.pydata.org/pandas-docs/stable/], a widely-used tool for data manipulation.

karabo_data chains sequence files, which contain successive data from the same source. In this example, trains 10000–10399 are in one sequence file (...DA01-S00000.h5), and 10400–10479 are in another (...DA01-S00001.h5). They are concatenated into one series:

[17]:

ixPos = run.get_series('SA1_XTD2_XGM/DOOCS/MAIN', 'beamPosition.ixPos.value')
ixPos.tail(10)

[17]:

trainId
10470 0.0
10471 0.0
10472 0.0
10473 0.0
10474 0.0
10475 0.0
10476 0.0
10477 0.0
10478 0.0
10479 0.0
Name: SA1_XTD2_XGM/DOOCS/MAIN/beamPosition.ixPos, dtype: float32

To extract a dataframe, you can select interesting data fields with glob syntax, as often used for selecting files on Unix platforms.

	[abc]: one character, a/b/c

	?: any one character

	*: any sequence of characters

[18]:

run.get_dataframe(fields=[("*_XGM/*", "*.i[xy]Pos")])

[18]:

 Accessing LPD data

Accessing LPD data

The Large Pixel Detector (LPD) is made of 16 modules which record data separately. karabo_data includes convenient interfaces to access this data together.

This example stands by itself, but if you need more generic access to the data, please see Reading data with karabo_data.

First, let’s load a run containing LPD data:

[1]:

from karabo_data import RunDirectory, by_index

run = RunDirectory('fxe_example_run/')
Using only the first three trains to keep this example light:
run = run.select_trains(by_index[:3])

run.instrument_sources

[1]:

frozenset({'FXE_DET_LPD1M-1/DET/0CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/10CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/11CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/12CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/13CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/14CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/15CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/1CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/2CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/3CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/4CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/5CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/6CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/7CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/8CH0:xtdf',
 'FXE_DET_LPD1M-1/DET/9CH0:xtdf',
 'FXE_XAD_GEC/CAM/CAMERA:daqOutput',
 'FXE_XAD_GEC/CAM/CAMERA_NODATA:daqOutput',
 'SA1_XTD2_XGM/DOOCS/MAIN:output',
 'SPB_XTD9_XGM/DOOCS/MAIN:output'})

Normal access methods give us each module separately:

[2]:

data_module0 = run.get_array('FXE_DET_LPD1M-1/DET/0CH0:xtdf', 'image.data')
data_module0.shape

[2]:

(384, 1, 256, 256)

The class karabo_data.components.LPD1M can piece these together:

[3]:

from karabo_data.components import LPD1M
lpd = LPD1M(run)
lpd

[3]:

<LPD1M: Data interface for detector 'FXE_DET_LPD1M-1' with 16 modules>

[4]:

image_data = lpd.get_array('image.data')
print("Data shape:", image_data.shape)
print("Dimensions:", image_data.dims)

Data shape: (16, 3, 128, 256, 256)
Dimensions: ('module', 'train', 'pulse', 'slow_scan', 'fast_scan')

Note: This class pulls the data together, but it doesn’t know how the modules are physically arranged, so it can’t produce a detector image. Other examples show how to use detector geometry to produce images.

You can also select only certain modules of the detector. For example, modules 2 (Q1M3), 7 (Q2M4), 8 (Q3M1) and 13 (Q4M2) are the four modules around the center of the detector:

[5]:

lpd = LPD1M(run, modules=[2, 7, 8, 13])
image_data = lpd.get_array('image.data')
print("Data shape:", image_data.shape)
print("Dimensions:", image_data.dims)

print()
print("Data for one pulse:")
print(image_data.sel(train=10000, pulse=0))

Data shape: (4, 3, 128, 256, 256)
Dimensions: ('module', 'train', 'pulse', 'slow_scan', 'fast_scan')

Data for one pulse:
<xarray.DataArray (module: 4, slow_scan: 256, fast_scan: 256)>
array([[[0, 0, ..., 0, 0],
 [0, 0, ..., 0, 0],
 ...,
 [0, 0, ..., 0, 0],
 [0, 0, ..., 0, 0]],

 [[0, 0, ..., 0, 0],
 [0, 0, ..., 0, 0],
 ...,
 [0, 0, ..., 0, 0],
 [0, 0, ..., 0, 0]],

 [[0, 0, ..., 0, 0],
 [0, 0, ..., 0, 0],
 ...,
 [0, 0, ..., 0, 0],
 [0, 0, ..., 0, 0]],

 [[0, 0, ..., 0, 0],
 [0, 0, ..., 0, 0],
 ...,
 [0, 0, ..., 0, 0],
 [0, 0, ..., 0, 0]]], dtype=uint16)
Coordinates:
 pulse uint64 0
 train uint64 10000
 * module (module) int64 2 7 8 13
Dimensions without coordinates: slow_scan, fast_scan

The returned array is an xarray object with labelled axes. See Indexing and selecting data [http://xarray.pydata.org/en/stable/indexing.html] in the xarray docs for more on what you can do with it.

This interface also supports iterating train-by-train through detector data, giving labelled arrays again:

[6]:

for tid, train_data in lpd.trains(pulses=by_index[:16]):
 print("Train", tid)
 print("Keys in data:", sorted(train_data.keys()))
 print("Image data shape:", train_data['image.data'].shape)
 print()

Train 10000
Keys in data: ['detector.data', 'detector.trainId', 'header.dataId', 'header.linkId', 'header.magicNumberBegin', 'header.majorTrainFormatVersion', 'header.minorTrainFormatVersion', 'header.pulseCount', 'header.reserved', 'header.trainId', 'image.cellId', 'image.data', 'image.length', 'image.pulseId', 'image.status', 'image.trainId', 'trailer.checksum', 'trailer.magicNumberEnd', 'trailer.status', 'trailer.trainId']
Image data shape: (4, 1, 16, 256, 256)

Train 10001
Keys in data: ['detector.data', 'detector.trainId', 'header.dataId', 'header.linkId', 'header.magicNumberBegin', 'header.majorTrainFormatVersion', 'header.minorTrainFormatVersion', 'header.pulseCount', 'header.reserved', 'header.trainId', 'image.cellId', 'image.data', 'image.length', 'image.pulseId', 'image.status', 'image.trainId', 'trailer.checksum', 'trailer.magicNumberEnd', 'trailer.status', 'trailer.trainId']
Image data shape: (4, 1, 16, 256, 256)

Train 10002
Keys in data: ['detector.data', 'detector.trainId', 'header.dataId', 'header.linkId', 'header.magicNumberBegin', 'header.majorTrainFormatVersion', 'header.minorTrainFormatVersion', 'header.pulseCount', 'header.reserved', 'header.trainId', 'image.cellId', 'image.data', 'image.length', 'image.pulseId', 'image.status', 'image.trainId', 'trailer.checksum', 'trailer.magicNumberEnd', 'trailer.status', 'trailer.trainId']
Image data shape: (4, 1, 16, 256, 256)

 Assembling detector data into images

Assembling detector data into images

The X-ray detectors at XFEL are made up of a number of small pieces. To get an image from the data, or analyse it spatially, we need to know where each piece is located.

This example reassembles some commissioning data from LPD, a detector which has 4 quadrants, 16 modules, and 256 tiles. Elements (especially the quadrants) can be repositioned; talk to the detector group to ensure that you have the right geometry information for your data.

[1]:

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import h5py

from karabo_data import RunDirectory, stack_detector_data
from karabo_data.geometry2 import LPD_1MGeometry

[2]:

run = RunDirectory('/gpfs/exfel/exp/FXE/201830/p900020/proc/r0221/')
run.info()

of trains: 513
Duration: 0:00:51.200000
First train ID: 54861753
Last train ID: 54862265

14 detector modules (FXE_DET_LPD1M-1)
 e.g. module FXE_DET_LPD1M-1 0 : 256 x 256 pixels
 128 frames per train, 39040 total frames

0 instrument sources (excluding detectors):

0 control sources:

[3]:

Find a train with some data in
empty = np.asarray([])
for tid, train_data in run.trains():
 module_imgs = sum(d.get('image.data', empty).shape[0] for d in train_data.values())
 if module_imgs:
 print(tid, module_imgs)
 break

54861797 1792

[4]:

tid, train_data = run.train_from_id(54861797)
print(tid)
for dev in sorted(train_data.keys()):
 print(dev, end='\t')
 try:
 print(train_data[dev]['image.data'].shape)
 except KeyError:
 print("No image.data")

54861797
FXE_DET_LPD1M-1/DET/0CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/10CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/11CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/12CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/13CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/14CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/15CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/1CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/2CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/3CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/4CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/6CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/8CH0:xtdf (128, 256, 256)
FXE_DET_LPD1M-1/DET/9CH0:xtdf (128, 256, 256)

Extract the detector images into a single Numpy array:

[5]:

modules_data = stack_detector_data(train_data, 'image.data')
modules_data.shape

[5]:

(128, 16, 256, 256)

To show the images, we sometimes need to ‘clip’ extreme high and low values, otherwise the colour map makes everything else the same colour.

[6]:

def clip(array, min=-10000, max=10000):
 x = array.copy()
 finite = np.isfinite(x)
 # Suppress warnings comparing numbers to nan
 with np.errstate(invalid='ignore'):
 x[finite & (x < min)] = np.nan
 x[finite & (x > max)] = np.nan
 return x

[7]:

plt.figure(figsize=(10, 5))

a = modules_data[5][2]
plt.subplot(1, 2, 1).hist(a[np.isfinite(a)])

a = clip(a, min=-400, max=400)
plt.subplot(1, 2, 2).hist(a[np.isfinite(a)]);

[image: _images/apply_geometry_9_0.png]

Let’s look at the iamge from a single module. You can see where it’s divided up into tiles:

[8]:

plt.figure(figsize=(8, 8))
clipped_mod = clip(modules_data[10][2], -400, 500)
plt.imshow(clipped_mod, origin='lower')

[8]:

<matplotlib.image.AxesImage at 0x2b611fe49390>

[image: _images/apply_geometry_11_1.png]

Here’s a single tile:

[9]:

splitted = LPD_1MGeometry.split_tiles(clipped_mod)
plt.figure(figsize=(8, 8))
plt.imshow(splitted[11])

[9]:

<matplotlib.image.AxesImage at 0x2b611feb5080>

[image: _images/apply_geometry_13_1.png]

Load the geometry from a file, along with the quadrant positions used here.

In the future, geometry information will be stored in the calibration catalogue.

[10]:

From March 18; converted to XFEL standard coordinate directions
quadpos = [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)] # mm

geom = LPD_1MGeometry.from_h5_file_and_quad_positions('lpd_mar_18_axesfixed.h5', quadpos)

Reassemble and show a detector image using the geometry:

[11]:

geom.plot_data_fast(clip(modules_data[12], max=5000))

[11]:

<matplotlib.axes._subplots.AxesSubplot at 0x2b611ff3de48>

[image: _images/apply_geometry_17_1.png]

Reassemble detector data into a numpy array for further analysis. The areas without data have the special value ``nan`` to mark them as missing.

[12]:

res, centre = geom.position_modules_fast(modules_data)
print(res.shape)
plt.figure(figsize=(8, 8))
plt.imshow(clip(res[12, 250:750, 450:850], min=-400, max=5000), origin='lower')

(128, 1203, 1105)

[12]:

<matplotlib.image.AxesImage at 0x2b60ec9f4160>

[image: _images/apply_geometry_19_2.png]

 Examining detector geometry

Examining detector geometry

The Applying geometry notebook shows how to use detector geometry to assemble data into an image. We can also examine geometry information without any data, to check for problems.

[1]:

%matplotlib inline
from itertools import product
import numpy as np
import matplotlib.pyplot as plt
import h5py

from karabo_data import RunDirectory
from karabo_data.geometry2 import LPD_1MGeometry

This is some geometry for LPD. You can see that Q2M2 is ‘missing’ - in fact all its tiles are showing up in Q2M4.

Each module has tiles 1-16 running anticlockwise from the top left (looking into the beam). To make it visually clearer, only three corner tiles of each module are numbered.

Here we are loading the geometry from a file, but in the future it will be possible to get the information from the calibration database directly.

[2]:

From March 18; converted to XFEL standard coordinate directions
quadpos = [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)] # mm
geom = LPD_1MGeometry.from_h5_file_and_quad_positions('lpd_mar_18_axesfixed.h5', quadpos)

[3]:

geom.inspect()

[3]:

<matplotlib.axes._subplots.AxesSubplot at 0x2ba73fa92a58>

[image: _images/examine_geometry_4_1.png]

 Detector geometry for AGIPD

Detector geometry for AGIPD

The AGIPD detector, which is already in use at the SPB experiment, consists of 16 modules of 512×128 pixels each. Each module is further divided into 8 ASICs.

To view or analyse detector data, we need to apply geometry to find the positions of pixels.

[1]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

from karabo_data import RunDirectory, stack_detector_data
from karabo_data.geometry2 import AGIPD_1MGeometry

Fetch AGIPD detector data for one pulse to test with:

[2]:

run = RunDirectory('/gpfs/exfel/exp/SPB/201831/p900039/proc/r0273/')

[3]:

tid, train_data = run.select('*/DET/*', 'image.data').train_from_index(60)

[4]:

stacked = stack_detector_data(train_data, 'image.data')
stacked_pulse = stacked[10]
stacked_pulse.shape

[4]:

(16, 512, 128)

Generate a simple geometry given the (x, y) coordinates of the first pixel in the first module of each quadrant, in pixel units relative to the centre, where the beam passes through the detector.

There are also methods to load and save CrystFEL format geometry files.

[5]:

geom = AGIPD_1MGeometry.from_quad_positions(quad_pos=[
 (-525, 625),
 (-550, -10),
 (520, -160),
 (542.5, 475),
])

[6]:

geom.inspect()

[6]:

<matplotlib.axes._subplots.AxesSubplot at 0x2b1dae4100f0>

[image: _images/agipd_geometry_8_1.png]

The pixels are not necessarily all aligned, so precisely assembling data in a 2D array requires interpolation, which is slow:

[7]:

%%time
data, centre_yx = geom.position_modules_interpolate(stacked_pulse)
print(data.shape)

(1258, 1094)
CPU times: user 10.9 s, sys: 1.08 s, total: 11.9 s
Wall time: 6 s

But we know that the modules are closely aligned with the axes, so we can ‘snap’ the geometry to the grid and copy data more efficiently:

[8]:

%%time
data, centre_yx = geom.position_modules_fast(stacked_pulse)
print(data.shape)

(1256, 1092)
CPU times: user 23.9 ms, sys: 9.73 ms, total: 33.6 ms
Wall time: 29.6 ms

Plot the detector image

Data can be directly plotted using the plot_data_fast method.

[9]:

geom.plot_data_fast(stacked_pulse, vmin=0, vmax=1000)

[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x2b1e67f828d0>

[image: _images/agipd_geometry_14_1.png]

You can control the plot using keyword arguments for axis and colorbar. For example, to plot two images in the same figure:

[10]:

fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(12, 7.5))
ax_cbar = fig.add_axes([0.15, 0.08, 0.7, 0.02]) # Create extra axes for the colorbar

Plot a single pulse in the left axes
geom.plot_data_fast(stacked_pulse, vmin=0, vmax=1000, ax=ax0, colorbar={
 'cax': ax_cbar,
 'shrink': 0.6,
 'pad': 0.1,
 'orientation': 'horizontal'
 })
ax0.set_title('11th pulse')

Label the colorbar associated with the first image
colorbar = ax0.images[0].colorbar
colorbar.set_label('Photon Count')

Plot the average over all pulses on the right.
Disable the colorbar because it's the same scale as the left image.
geom.plot_data_fast(stacked.mean(axis=0), vmin=0, vmax=1000, ax=ax1, colorbar=False)
ax1.set_title('Average of pulses in one train')

[10]:

Text(0.5, 1.0, 'Average of pulses in one train')

[image: _images/agipd_geometry_16_1.png]

Converting array positions to physical positions

We can also convert array coordinates within the detector data into real (x, y, z) positions in metres.

[11]:

Generate some array coordinates, one in each module
module_no = np.arange(0, 16)
For AGIPD, slow-scan is the x dimension, increasing from the edges towards the centre
slow_scan = np.linspace(10, 500, num=16)
fast_scan = np.full(fill_value=40.1, shape=16) # Fixed y position in each module

[12]:

positions = geom.data_coords_to_positions(module_no, slow_scan, fast_scan)
print("positions.shape =", positions.shape) # (point, x/y/z)

Convert metres to pixel units to compare with plots above
px = positions[:, 0] / geom.pixel_size
py = positions[:, 1] / geom.pixel_size

fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(12, 6))

ax0.scatter(px, py)
ax0.set_xlabel('pixels')
ax0.set_ylabel('pixels')
ax0.hlines(0, -50, 50) # Draw a cross at the origin
ax0.vlines(0, -50, 50) #
ax0.set_xlim(600, -600) # Invert x-axis to match plots above

Display the image alongside it for comparison
geom.plot_data_fast(stacked_pulse, vmin=0, vmax=1000, ax=ax1,
 colorbar={'shrink': 0.5, 'pad': 0.03})
fig.subplots_adjust(bottom=0.3, wspace=0.3)

positions.shape = (16, 3)

[image: _images/agipd_geometry_19_1.png]

 DSSC detector geometry

DSSC detector geometry

As of version 0.5, karabo_data has geometry code for the DSSC detector. This doesn’t currently account for the hexagonal pixels of DSSC, but it’s good enough for a preview of detector images.

[1]:

%matplotlib inline
from karabo_data.geometry2 import DSSC_1MGeometry

[2]:

Made up numbers!
quad_pos = [
 (-130, 5),
 (-130, -125),
 (5, -125),
 (5, 5),
]
path = 'dssc_geo_june19.h5'

g = DSSC_1MGeometry.from_h5_file_and_quad_positions(path, quad_pos)

[3]:

g.inspect()

[3]:

<matplotlib.axes._subplots.AxesSubplot at 0x2ac10f8709b0>

[image: _images/dssc_geometry_3_1.png]

[4]:

import numpy as np
import matplotlib.pyplot as plt

[5]:

g.expected_data_shape

[5]:

(16, 128, 512)

We’ll use some empty data to demonstate assembling an image.

[6]:

a = np.zeros(g.expected_data_shape)

[7]:

g.plot_data_fast(a, axis_units='m');

[image: _images/dssc_geometry_8_0.png]

Let’s have a close up look at some pixels in Q1M1. get_pixel_positions() gives us pixel centres. to_distortion_array() gives pixel corners in a slightly different format, suitable for PyFAI [https://pyfai.readthedocs.io/en/latest/].

PyFAI requires non-negative x and y coordinates. But we want to plot them along with the centre positions, so we pass allow_negative_xy=True to get comparable coordinates.

[8]:

pixel_pos = g.get_pixel_positions()
print("Pixel positions array shape:", pixel_pos.shape,
 "= (modules, slow_scan, fast_scan, x/y/z)")
q1m1_centres = pixel_pos[0]
cx = q1m1_centres[..., 0]
cy = q1m1_centres[..., 1]

distortn = g.to_distortion_array(allow_negative_xy=True)
print("Distortion array shape:", distortn.shape,
 "= (modules * slow_scan, fast_scan, corners, z/y/x)")
q1m1_corners = distortn[:128]

Pixel positions array shape: (16, 128, 512, 3) = (modules, slow_scan, fast_scan, x/y/z)
Distortion array shape: (2048, 512, 6, 3) = (modules * slow_scan, fast_scan, corners, z/y/x)

[9]:

from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection

fig, ax = plt.subplots(figsize=(10, 10))

hexes = []
for ss_pxl in range(4):
 for fs_pxl in range(5):

 # Create hexagon
 corners = q1m1_corners[ss_pxl, fs_pxl]
 corners = corners[:, 1:][:, ::-1] # Drop z, flip x & y
 hexes.append(Polygon(corners))

 # Draw text label near the pixel centre
 ax.text(cx[ss_pxl, fs_pxl], cy[ss_pxl, fs_pxl],
 ' [{}, {}]'.format(ss_pxl, fs_pxl),
 verticalalignment='bottom', horizontalalignment='left')

Add the hexagons to the plot
pc = PatchCollection(hexes, facecolor=(0.75, 1.0, 0.75), edgecolor='k')
ax.add_collection(pc)

Plot the pixel centres
ax.scatter(cx[:5, :6], cy[:5, :6], marker='x')

matplotlib is reluctant to show such a small area, so we need to set the limits manually
ax.set_xlim(-0.007, -0.0085) # To match the convention elsewhere, draw x right-to-left
ax.set_ylim(0.0065, 0.0075)
ax.set_ylabel("metres")
ax.set_xlabel("metres")
ax.set_aspect(1)

[image: _images/dssc_geometry_11_0.png]

 Working with non-detector data

Working with non-detector data

The biggest and often most important data at European XFEL comes from X-ray pixel detectors, but there are many other data sources which may be of interest. This data is often small enough to load it completely into memory, making it much easier to work with.

[1]:

%matplotlib inline
from karabo_data import RunDirectory
import matplotlib.pyplot as plt
import numpy as np
import re
import xarray as xr

Using pandas

This example works with data from two X-Ray Gas Monitors (XGMs). These measure properties of the X-ray beam in different parts of the tunnel. This data refers to one XGM in XTD2 and one in XTD9.

We create a pandas dataframe containing the beam x and y position at each XGM, and the photon flux. We select the columns using ‘glob’ patterns: * is a wildcard matching anything.

pandas [http://pandas.pydata.org/pandas-docs/stable/] makes it very convenient to work with tabular data like this, though we’re limited to datasets that have a single value per train.

[2]:

run = RunDirectory('/gpfs/exfel/exp/SA1/201830/p900025/raw/r0150/')

[3]:

df = run.get_dataframe(fields=[("*_XGM/*", "*.i[xy]Pos"), ("*_XGM/*", "*.photonFlux")])
df.head()

[3]:

 Comparing fast XGM data from two simultaneous recordings

Comparing fast XGM data from two simultaneous recordings

Here we will look at XGM data that was recorded by the X-ray photon diagnostics group at the same short time interval, but at different locations of the EuXFEL-SASE. We will compare an XGM in SASE1 (XTD2) to another one in SASE3 (XTD10). These data were stored in two different runs, belonging to two different proposals even.

Conceptually, this section makes use of the data-object format xarray.DataArray.

[1]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr

from karabo_data import RunDirectory

SASE1

Load the SASE1 run:

[2]:

sa1_data = RunDirectory('/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0008')
sa1_data.info()

of trains: 6296
Duration: 0:10:29.500000
First train ID: 38227866
Last train ID: 38234161

0 detector modules ()

1 instrument sources (excluding detectors):
 - SA1_XTD2_XGM/XGM/DOOCS:output

0 control sources:

We are interested in fast, i.e. pulse-resolved data from the instrument source SA1_XTD2_XGM/DOOCS:output.

[3]:

sa1_data.keys_for_source('SA1_XTD2_XGM/XGM/DOOCS:output')

[3]:

{'data.intensityTD'}

We are particularly interested in data for quantity “intensityTD”. The *xarray DataArray* class is suited for work with axis-labeled data, and the karabo_data method get_array() serves the purpose of shaping a 2D array of that type from pulse-resolved data (which is originally stored “flat” in terms of pulses: there is one dimension of N(train) x N(pulse) values in HDF5, and the same number of train and pulse identifiers for reference).

The unique train identifier values are taken as coordinate values (“labels”).

[4]:

sa1_flux = sa1_data.get_array('SA1_XTD2_XGM/XGM/DOOCS:output', 'data.intensityTD')
print(sa1_flux)

<xarray.DataArray (trainId: 6295, dim_0: 1000)>
array([[2.045129e+03, 7.820441e+01, 1.964445e+03, ..., 1.000000e+00,
 1.000000e+00, 1.000000e+00],
 [2.091464e+03, 4.242367e+01, 1.915582e+03, ..., 1.000000e+00,
 1.000000e+00, 1.000000e+00],
 [1.872965e+03, 4.368253e+01, 1.984025e+03, ..., 1.000000e+00,
 1.000000e+00, 1.000000e+00],
 ...,
 [1.611342e+03, 5.569377e+01, 1.811418e+03, ..., 1.000000e+00,
 1.000000e+00, 1.000000e+00],
 [1.536590e+03, 6.418680e+01, 1.643087e+03, ..., 1.000000e+00,
 1.000000e+00, 1.000000e+00],
 [1.871557e+03, 5.983860e+01, 1.738864e+03, ..., 1.000000e+00,
 1.000000e+00, 1.000000e+00]], dtype=float32)
Coordinates:
 * trainId (trainId) uint64 38227866 38227867 38227868 ... 38234160 38234161
Dimensions without coordinates: dim_0

Next, we will plot a portion of the data in two dimensions, taking the first 1500 trains for the x-Axis and the first 30 pulses per train for the y-Axis (1500, 30). Because the Matplotlib convention takes the slow axis to be y, we have to transpose to (30, 1500):

[5]:

fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(1, 1, 1)
image = ax.imshow(sa1_flux[:1500, :30].transpose(), origin='lower', cmap='inferno')
ax.set_title('SASE1 XTD2 XGM intensity (fast)')
fig.colorbar(image, orientation='horizontal')
ax.set_xlabel('train index')
ax.set_ylabel('pulseIndex')
ax.set_aspect(15)

[image: _images/xpd_examples2_9_0.png]

The pattern tells us what was done in this experiment: the lasing scheme was set to provide an alternating X-ray pulse delivery within a train, where every “even” electron bunch caused lasing in SASE1 and every “odd” bunch caused lasing in SASE3. This scheme was applied for the first 20 pulses. Therefore, we see signal only for data at even pulses here (0,2,…18), throughout all trains, of which 1500 are depicted. The intensity varies somewhat around 2000 units, but for odd pulses it is
suppressed and neglegibly small.

A relevant measure to judge the efficiency of pulse suppression is the ratio of mean intensity between the odd and even set. The numpy mean method can work with DataArray objects and average over a specified dimension.

We make use of the numpy indexing and slicing syntax with square brackets and comma to seperate axes (dimensions). We specify [:, :20:2] to take every element of the slow axis (trains) and every second pulse up to but excluding # 20. That is, start:end:step = 0:20:2 (start index 0 is default, thus not put, and stop means first index beyond range). We specify axis=1 to explicitly average over that dimension. The result is a DataArray reduced to the “trainId” dimension.

[6]:

sa1_mean_on = np.mean(sa1_flux[:, :20:2], axis=1)
sa1_stddev_on = np.std(sa1_flux[:, :20:2], axis=1)
print(sa1_mean_on)

<xarray.DataArray (trainId: 6295)>
array([1931.4768, 1977.8414, 1873.7828, ..., 1771.5828, 1697.2053, 1857.7439],
 dtype=float32)
Coordinates:
 * trainId (trainId) uint64 38227866 38227867 38227868 ... 38234160 38234161

Accordingly for the odd “off” pulses:

[7]:

sa1_mean_off = np.mean(sa1_flux[:, 1:21:2], axis=1)
sa1_stddev_off = np.std(sa1_flux[:, 1:21:2], axis=1)
print(sa1_mean_off)

<xarray.DataArray (trainId: 6295)>
array([96.10835 , 84.489044, 59.212048, ..., 90.2944 , 84.33766 , 85.03202],
 dtype=float32)
Coordinates:
 * trainId (trainId) uint64 38227866 38227867 38227868 ... 38234160 38234161

Now we can calculate the ratio of averages for every train - data types like numpy ndarray or xarray DataArray may be just divided “as such”, a shortcut notation for dividing every corresponding element - and plot.

[8]:

sa1_suppression = sa1_mean_off / sa1_mean_on
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(1, 1, 1)
ax.plot(sa1_suppression.coords['trainId'].values, sa1_suppression)
ax.set_xlabel('train identifier')
ax.ticklabel_format(style='plain', useOffset=False)
plt.xticks(rotation=60)
ax.set_ylabel('suppression')

[8]:

Text(0, 0.5, 'suppression')

[image: _images/xpd_examples2_16_1.png]

Moreover, the relative error of this ratio can be calculated by multiplicative error propagation as the square root of the sum of squared relative errors (enumerator and denominator), and from it the absolute error. The Numpy functions “sqrt” and “square” applied to array-like structures perform these operations element-wise, so the entire calculation can be conveniently done using the arrays as arguments, and we obtain individual errors for every train in the end.

[9]:

sa1_rel_error = np.sqrt(np.square(sa1_stddev_off / sa1_mean_off) + np.square(sa1_stddev_on / sa1_mean_on))
sa1_abs_error = sa1_rel_error * sa1_suppression

We can as well plot the suppression ratio values with individual error bars according to the respective absolute error. Here, we restrict ourselves to the first 50 trains for clarity:

[10]:

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(1, 1, 1)
ax.errorbar(sa1_suppression.coords['trainId'].values[:50], sa1_suppression[:50], yerr=sa1_abs_error[:50], fmt='ro')
ax.set_xlabel('train identifier')
ax.ticklabel_format(style='plain', useOffset=False)
plt.xticks(rotation=60)
ax.set_ylabel('suppression')

[10]:

Text(0, 0.5, 'suppression')

[image: _images/xpd_examples2_20_1.png]

Finally, we draw a histogram of suppression ratio values:

[11]:

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(1, 1, 1)
_ = ax.hist(sa1_suppression, bins=50)
ax.set_xlabel('suppression')
ax.set_ylabel('frequency')

[11]:

Text(0, 0.5, 'frequency')

[image: _images/xpd_examples2_22_1.png]

We see that there is a suppression of signal from odd pulses to approximately 4% of the intensity of even pulses.

SASE3

We repeat everything for the second data set from the different run - SASE3:

[12]:

sa3_data = RunDirectory('/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0009')
sa3_data.info()

of trains: 6236
Duration: 0:10:23.500000
First train ID: 38227850
Last train ID: 38234085

0 detector modules ()

1 instrument sources (excluding detectors):
 - SA3_XTD10_XGM/XGM/DOOCS:output

0 control sources:

[13]:

sa3_flux = sa3_data.get_array('SA3_XTD10_XGM/XGM/DOOCS:output', 'data.intensityTD')
print(sa3_flux.shape)

(6235, 1000)

[14]:

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(1, 1, 1)
image = ax.imshow(sa3_flux[:1500, :30].transpose(), origin='lower', cmap='inferno')
ax.set_title('SASE3 XTD10 XGM intensity (fast)')
fig.colorbar(image, orientation='horizontal')
ax.set_xlabel('train index')
ax.set_ylabel('pulseIndex')
ax.set_aspect(15)

[image: _images/xpd_examples2_27_0.png]

The difference here is that the selection scheme (indexing and slicing) shifts by one with respect to SASE1 data: odd pulses are “on”, even pulses are “off”. Moreover, while the alternating scheme is upheld to pulse # 19, pulses beyond that exclusively went to SASE3. There is signal up to pulse # 70, which we could see with a wider plotting range (but not done due to emphasis on the alternation).

[15]:

sa3_mean_on = np.mean(sa3_flux[:, 1:21:2], axis=1)
sa3_stddev_on = np.std(sa3_flux[:, 1:21:2], axis=1)
print(sa3_mean_on)

<xarray.DataArray (trainId: 6235)>
array([963.89746, 1073.1758 , 902.22656, ..., 883.9881 , 960.5875 ,
 889.625], dtype=float32)
Coordinates:
 * trainId (trainId) uint64 38227850 38227851 38227852 ... 38234084 38234085

[16]:

sa3_mean_off = np.mean(sa3_flux[:, :20:2], axis=1)
sa3_stddev_off = np.std(sa3_flux[:, :20:2], axis=1)
print(sa3_mean_off)

<xarray.DataArray (trainId: 6235)>
array([5.435107, 6.615537, 8.361802, ..., 2.378666, 7.135999, 4.612433],
 dtype=float32)
Coordinates:
 * trainId (trainId) uint64 38227850 38227851 38227852 ... 38234084 38234085

The suppression ratio calculation and its plot:

[17]:

sa3_suppression = sa3_mean_off / sa3_mean_on
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(1, 1, 1)
ax.plot(sa3_suppression.coords['trainId'].values, sa3_suppression)
ax.set_xlabel('train identifier')
ax.ticklabel_format(style='plain', useOffset=False)
plt.xticks(rotation=60)
ax.set_ylabel('suppression')

[17]:

Text(0, 0.5, 'suppression')

[image: _images/xpd_examples2_32_1.png]

The error calculation with (selective) plot

[18]:

sa3_rel_error = np.sqrt(np.square(sa3_stddev_off / sa3_mean_off) + np.square(sa3_stddev_on / sa3_mean_on))
sa3_abs_error = sa3_rel_error * sa3_suppression
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(1, 1, 1)
ax.errorbar(sa1_suppression.coords['trainId'].values[:50], sa3_suppression[:50], yerr=sa3_abs_error[:50], fmt='ro')
ax.set_xlabel('train identifier')
ax.ticklabel_format(style='plain', useOffset=False)
plt.xticks(rotation=60)
ax.set_ylabel('suppression')

[18]:

Text(0, 0.5, 'suppression')

[image: _images/xpd_examples2_34_1.png]

The histogram:

[19]:

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(1, 1, 1)
_ = ax.hist(sa3_suppression, bins=50)
ax.set_xlabel('suppression')
ax.set_ylabel('frequency')

[19]:

Text(0, 0.5, 'frequency')

[image: _images/xpd_examples2_36_1.png]

Here, suppression of signal for even “off” pulses is to approximately 0.5% of intensity from odd “on” pulses. The “suppression factor” is almost 10 times the value of SASE1. However, the relative error of these values is larger as well, as can be seen in the error-bar plot. For the smaller quantities, it is ~ 100% (!).

Overall comparison of suppression ratio (with error)

We ultimately want a single overall compression ratio with error for both beamlines, to complement the error-bar plots. In order to keep the error calculation simple, we do not average the mean values, but create one mean and standard deviation from a flat array of original values.

Because labeled axes are not required for this purpose, we can afford to move from the xarray.DataArray regime to Numpy array.

[20]:

sa1_on_all = np.array(sa1_flux[:, :20:2]).flatten()
sa1_on_all.shape

[20]:

(62950,)

[21]:

sa1_mean_on_overall = np.mean(sa1_on_all)
sa1_stddev_on_overall = np.std(sa1_on_all)

[22]:

sa1_off_all = np.array(sa1_flux[:, 1:21:2]).flatten()
sa1_off_all.shape

[22]:

(62950,)

[23]:

sa1_mean_off_overall = np.mean(sa1_off_all)
sa1_stddev_off_overall = np.std(sa1_off_all)

[24]:

sa1_suppression_overall = sa1_mean_off_overall / sa1_mean_on_overall
sa1_rel_error_overall = np.sqrt(np.square(sa1_stddev_off_overall / sa1_mean_off_overall) + \
 np.square(sa1_stddev_on_overall / sa1_mean_on_overall))
sa1_abs_error_overall = sa1_rel_error_overall * sa1_suppression_overall
print('SA1 suppression ratio =', sa1_suppression_overall, '\u00b1', sa1_abs_error_overall)

SA1 suppression ratio = 0.04107769 ± 0.016009845

[25]:

sa3_on_all = np.array(sa3_flux[:, 1:21:2]).flatten()
sa3_on_all.shape

[25]:

(62350,)

[26]:

sa3_mean_on_overall = np.mean(sa3_on_all)
sa3_stddev_on_overall = np.std(sa3_on_all)

[27]:

sa3_off_all = np.array(sa3_flux[:, :20:2]).flatten()
sa3_off_all.shape

[27]:

(62350,)

[28]:

sa3_mean_off_overall = np.mean(sa3_off_all)
sa3_stddev_off_overall = np.std(sa3_off_all)

[29]:

sa3_suppression_overall = sa3_mean_off_overall / sa3_mean_on_overall
sa3_rel_error_overall = np.sqrt(np.square(sa3_stddev_off_overall / sa3_mean_off_overall) + \
 np.square(sa3_stddev_on_overall / sa3_mean_on_overall))
sa3_abs_error_overall = sa3_rel_error_overall * sa3_suppression_overall
print('SA3 suppression ratio =', sa3_suppression_overall, '\u00b1', sa3_abs_error_overall)

SA3 suppression ratio = 0.005213415 ± 0.0040653846

References

	
	Tiedtke et al., Gas-detector for X-ray lasers , J. Appl. Phys. 103, 094511 (2008) - DOI 10.1063/1.2913328 [https://dx.doi.org/10.1063/1.2913328]

	
	
	Sorokin et al., J. Synchrotron Rad. 26 (4), DOI 10.1107/S1600577519005174 [https://dx.doi.org/10.1107/S1600577519005174] (2019)

	Th. Maltezopoulos et al., J. Synchrotron Rad. 26 (4), DOI 10.1107/S1600577519003795 [https://dx.doi.org/10.1107/S1600577519003795] (2019)

 Parallel processing with a virtual dataset

Parallel processing with a virtual dataset

This example demonstrates splitting up some data to be processed by several worker processes, and collecting the results back together.

For this example, we’ll use data from an XGM, and find the average intensity of each pulse across all the trains in the run. This doesn’t actually need parallel processing: we can easily do it directly in the notebook. But the same techniques should work with much more data and more complex calculations.

[1]:

from karabo_data import RunDirectory
import multiprocessing
import numpy as np

The data that we want is separated over these seven sequence files:

[2]:

!ls /gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-R0034-DA01-S*.h5

/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-R0034-DA01-S00000.h5
/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-R0034-DA01-S00001.h5
/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-R0034-DA01-S00002.h5
/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-R0034-DA01-S00003.h5
/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-R0034-DA01-S00004.h5
/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-R0034-DA01-S00005.h5
/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-R0034-DA01-S00006.h5

[3]:

run = RunDirectory('/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/')

By making a virtual dataset, we can see the shape of it, as if it was one big numpy array:

[4]:

vds_filename = 'xgm_vds.h5'
xgm_vds = run.get_virtual_dataset(
 'SA1_XTD2_XGM/XGM/DOOCS:output', 'data.intensityTD',
 filename=vds_filename
)
xgm_vds

[4]:

<HDF5 dataset "intensityTD": shape (3391, 1000), type "<f4">

Let’s read this into memory and calculate the means directly, to check our parallel calculations against. We can do this for this example because the calculation is simple and the data is small; it wouldn’t be practical in real situations where parallelisation is useful.

These data are recorded in 32-bit floats, but to minimise rounding errors we’ll tell numpy to give the results as 64-bit floats. Try re-running this example with 32-bit floats to see how much the results change!

[5]:

simple_mean = xgm_vds[:, :40].mean(axis=0, dtype=np.float64)
simple_mean.round(4)

[5]:

array([834.2744, 860.0754, 869.2637, 891.4351, 899.6227, 899.3759,
 900.3555, 899.1162, 898.4991, 904.4979, 910.5669, 914.1612,
 922.5737, 925.8734, 930.093 , 935.3124, 938.9643, 941.4609,
 946.1351, 950.6574, 951.855 , 954.2491, 956.6414, 957.5584,
 961.7528, 961.1457, 958.9655, 957.6415, 953.8603, 947.9236,
 0. , 0. , 0. , 0. , 0. , 0. ,
 0. , 0. , 0. , 0.])

Now, we’re going to define chunks of the data for each of 4 worker processes.

[6]:

N_proc = 4
cuts = [int(xgm_vds.shape[0] * i / N_proc) for i in range(N_proc + 1)]
chunks = list(zip(cuts[:-1], cuts[1:]))
chunks

[6]:

[(0, 847), (847, 1695), (1695, 2543), (2543, 3391)]

Using multiprocessing

This is the function we’ll ask each worker process to run, adding up the data and returning a 1D numpy array.

We’re using default arguments as a convenient way to copy the filename and the dataset path into the worker process.

[7]:

def sum_chunk(chunk, filename=vds_filename, ds_name=xgm_vds.name):
 start, end = chunk
 # Reopen the file in the worker process:
 import h5py, numpy
 with h5py.File(filename, 'r') as f:
 ds = f[ds_name]
 data = ds[start:end] # Read my chunk

 return data.sum(axis=0, dtype=numpy.float64)

Using Python’s multiprocessing module, we start four workers, farm the chunks out to them, and collect the results back.

[8]:

with multiprocessing.Pool(N_proc) as pool:
 res = pool.map(sum_chunk, chunks)

res is now a list of 4 arrays, containing the sums from each chunk. To get the mean, we’ll add these up to get a grand total, and then divide by the number of trains we have data from.

[9]:

multiproc_mean = (np.stack(res).sum(axis=0, dtype=np.float64)[:40] / xgm_vds.shape[0])
np.testing.assert_allclose(multiproc_mean, simple_mean)

multiproc_mean.round(4)

[9]:

array([834.2744, 860.0754, 869.2637, 891.4351, 899.6227, 899.3759,
 900.3555, 899.1162, 898.4991, 904.4979, 910.5669, 914.1612,
 922.5737, 925.8734, 930.093 , 935.3124, 938.9643, 941.4609,
 946.1351, 950.6574, 951.855 , 954.2491, 956.6414, 957.5584,
 961.7528, 961.1457, 958.9655, 957.6415, 953.8603, 947.9236,
 0. , 0. , 0. , 0. , 0. , 0. ,
 0. , 0. , 0. , 0.])

Using SLURM

What if we need more power? The example above is limited to one machine, but we can use SLURM to spread the work over multiple machines on the Maxwell cluster [https://confluence.desy.de/display/IS/Maxwell].

This is massive overkill for this example calculation - we’ll only use one CPU core for a fraction of a second on each machine. But we could do something similar for a much bigger problem.

[10]:

from getpass import getuser
import h5py
import subprocess

We’ll write a Python script for each worker to run. Like the sum_chunk function above, this reads a chunk of data from the virtual dataset and sums it along the train axis. It saves the result into another HDF5 file for us to collect.

[11]:

%%writefile parallel_eg_worker.py
#!/gpfs/exfel/sw/software/xfel_anaconda3/1.1/bin/python
import h5py
import numpy as np
import sys

filename = sys.argv[1]
ds_name = sys.argv[2]
chunk_start = int(sys.argv[3])
chunk_end = int(sys.argv[4])
worker_idx = sys.argv[5]

with h5py.File(filename, 'r') as f:
 ds = f[ds_name]
 data = ds[chunk_start:chunk_end] # Read my chunk

chunk_totals = data.sum(axis=0, dtype=np.float64)

with h5py.File(f'parallel_eg_result_{worker_idx}.h5', 'w') as f:
 f['chunk_totals'] = chunk_totals

Writing parallel_eg_worker.py

The Maxwell cluster is divided into various partitions for different groups of users. If you’re running this as an external user, comment out the ‘Staff’ line below.

[12]:

partition = 'upex' # External users
partition = 'exfel' # Staff

Now we submit 4 jobs with the sbatch command:

[13]:

for i, (start, end) in enumerate(chunks):
 cmd = ['sbatch', '-p', partition, 'parallel_eg_worker.py', vds_filename, xgm_vds.name, str(start), str(end), str(i)]
 print(subprocess.check_output(cmd))

b'Submitted batch job 2631813\n'
b'Submitted batch job 2631814\n'
b'Submitted batch job 2631815\n'
b'Submitted batch job 2631816\n'

We can use squeue to monitor the jobs running. Re-run this until all the jobs have disappeared, meaning they’re finished.

[14]:

!squeue -u {getuser()}

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

Now, so long as all the workers succeeded, we can collect the results.

If any workers failed, you’ll find tracebacks in slurm-*.out files in the working directory.

[15]:

res = []

for i in range(N_proc):
 with h5py.File(f'parallel_eg_result_{i}.h5', 'r') as f:
 res.append(f['chunk_totals'][:])

Now res is once again a list of 1D numpy arrays, representing the totals from each chunk. So we can finish the calculation as in the previous section:

[16]:

slurm_mean = np.stack(res).sum(axis=0)[:40] / xgm_vds.shape[0]
np.testing.assert_allclose(slurm_mean, simple_mean)

slurm_mean.round(4)

[16]:

array([834.2744, 860.0754, 869.2637, 891.4351, 899.6227, 899.3759,
 900.3555, 899.1162, 898.4991, 904.4979, 910.5669, 914.1612,
 922.5737, 925.8734, 930.093 , 935.3124, 938.9643, 941.4609,
 946.1351, 950.6574, 951.855 , 954.2491, 956.6414, 957.5584,
 961.7528, 961.1457, 958.9655, 957.6415, 953.8603, 947.9236,
 0. , 0. , 0. , 0. , 0. , 0. ,
 0. , 0. , 0. , 0.])

 Averaging detector data with Dask

Averaging detector data with Dask

We often want to average large detector data across trains, keeping the pulses within each train separate, so we have an average image for pulse 0, another for pulse 1, etc.

This data may be too big to load into memory at once, but using Dask [https://dask.org/] we can work with it like a numpy array. Dask takes care of splitting the job up into smaller pieces and assembling the result.

[1]:

from karabo_data import open_run

import dask.array as da
from dask.distributed import Client, progress
from dask_jobqueue import SLURMCluster
import numpy as np

First, we use Dask-Jobqueue [https://jobqueue.dask.org/en/latest/] to talk to the Maxwell cluster.

[2]:

partition = 'exfel' # For EuXFEL staff
#partition = 'upex' # For users

cluster = SLURMCluster(
 queue=partition,
 # Resources per SLURM job (per node, the way SLURM is configured on Maxwell)
 # processes=16 runs 16 Dask workers in a job, so each worker has 1 core & 16 GB RAM.
 processes=16, cores=16, memory='256GB',
)

Get a notbook widget showing the cluster state
cluster

[3]:

Submit 2 SLURM jobs, for 32 Dask workers
cluster.scale(32)

If the cluster is busy, you might need to wait a while for the jobs to start. The cluster widget above will update when they’re running.

Next, we’ll set Dask up to use those workers:

[4]:

client = Client(cluster)
print("Created dask client:", client)

Created dask client: <Client: scheduler='tcp://131.169.193.102:44986' processes=32 cores=32>

Now Dask is ready, let’s open the run we’re going to operate on:

[5]:

run = open_run(proposal=2212, run=103)
run.info()

of trains: 3299
Duration: 0:05:29.800000
First train ID: 517617973
Last train ID: 517621271

16 detector modules (SCS_DET_DSSC1M-1)
 e.g. module SCS_DET_DSSC1M-1 0 : 128 x 512 pixels
 75 frames per train, 247425 total frames

3 instrument sources (excluding detectors):
 - SA3_XTD10_XGM/XGM/DOOCS:output
 - SCS_BLU_XGM/XGM/DOOCS:output
 - SCS_UTC1_ADQ/ADC/1:network

20 control sources:
 - P_GATT
 - SA3_XTD10_MONO/ENC/GRATING_AX
 - SA3_XTD10_MONO/MDL/PHOTON_ENERGY
 - SA3_XTD10_MONO/MOTOR/GRATINGS_X
 - SA3_XTD10_MONO/MOTOR/GRATING_AX
 - SA3_XTD10_MONO/MOTOR/HE_PM_X
 - SA3_XTD10_MONO/MOTOR/LE_PM_X
 - SA3_XTD10_VAC/DCTRL/AR_MODE_OK
 - SA3_XTD10_VAC/DCTRL/D12_APERT_IN_OK
 - SA3_XTD10_VAC/DCTRL/D6_APERT_IN_OK
 - SA3_XTD10_VAC/DCTRL/N2_MODE_OK
 - SA3_XTD10_VAC/GAUGE/G30470D_IN
 - SA3_XTD10_VAC/GAUGE/G30480D_IN
 - SA3_XTD10_VAC/GAUGE/G30490D_IN
 - SA3_XTD10_VAC/GAUGE/G30510C
 - SA3_XTD10_XGM/XGM/DOOCS
 - SCS_BLU_XGM/XGM/DOOCS
 - SCS_RR_UTC/MDL/BUNCH_DECODER
 - SCS_RR_UTC/TSYS/TIMESERVER
 - SCS_UTC1_ADQ/ADC/1

We’re working with data from the DSSC detector. In this run, it’s recording 75 frames for each train - this is part of the info above.

Now, we’ll define how we’re going to average over trains for each module:

[6]:

def average_module(modno, run, pulses_per_train=75):
 source = f'SCS_DET_DSSC1M-1/DET/{modno}CH0:xtdf'
 counts = run.get_data_counts(source, 'image.data')

 arr = run.get_dask_array(source, 'image.data')
 # Make a new dimension for trains
 arr_trains = arr.reshape(-1, pulses_per_train, 128, 512)
 if modno == 0:
 print("array shape:", arr.shape) # frames, dummy, 128, 512
 print("Reshaped to:", arr_trains.shape)

 return arr_trains.mean(axis=0, dtype=np.float32)

[7]:

mod_averages = [
 average_module(i, run, pulses_per_train=75)
 for i in range(16)
]

mod_averages

array shape: (247425, 1, 128, 512)
Reshaped to: (3299, 75, 128, 512)

[7]:

[dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>,
 dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75, 128, 512)>]

[8]:

Stack the averages into a single array
all_average = da.stack(mod_averages)
all_average

[8]:

	

 	 	 Array 	 Chunk

 	 Bytes 	 314.57 MB 	 19.66 MB

 	 Shape 	 (16, 75, 128, 512) 	 (1, 75, 128, 512)

 	 Count 	 2560 Tasks 	 16 Chunks

 	 Type 	 float32 	 numpy.ndarray

	

 16
 1

 512
 128
 75

Dask shows us what shape the result array will be, but so far, no real computation has happened. Now that we’ve defined what we want, let’s tell Dask to compute it.

This will take a minute or two. If you’re running it, scroll up to the Dask cluster widget and click the status link to see what it’s doing.

[9]:

%%time
all_average_arr = all_average.compute() # Get a concrete numpy array for the result

CPU times: user 20.8 s, sys: 2.6 s, total: 23.4 s
Wall time: 1min 42s

all_average_arr is a regular numpy array with our results. Here are the values from the corner of module 0, frame 0:

[10]:

print(all_average_arr[0, 0, :5, :5])

[[48.822674 50.983025 44.953014 44.08245 45.056988]
 [45.8251 49.183388 46.39982 43.371628 47.53501]
 [51.03395 46.02243 44.92058 50.966656 42.918762]
 [43.190662 49.961502 44.23007 43.252197 47.663536]
 [48.844803 51.489845 50.45438 46.305546 47.51258]]

Please shut down the cluster (or scale it down to 0 workers) if you won’t be using it for a while. This releases the resources for other people.

[11]:

client.close()
cluster.close()

 Release Notes

Release Notes

0.7

Data access

	A new get_dask_array() method to access data as a Dask array
(PR #212 [https://github.com/European-XFEL/karabo_data/pull/212/]). Dask [https://docs.dask.org/en/latest/] is a powerful tool
for working with large amounts of data and doing computation in parallel.

	open_run() and RunDirectory() now take an optional
include= glob pattern to select files to open (PR #221 [https://github.com/European-XFEL/karabo_data/pull/221/]).
This can make opening a run faster if you only need to read certain files.

	Trying to open a run directory to which you don’t have read access now
correctly raises PermissionError (PR #210 [https://github.com/European-XFEL/karabo_data/pull/210/]).

	stack_detector_data() has a new parameter real_array. Passing
real_array=False avoids copying the data into a temporary array on the way
to assembling images with detector geometry (PR #196 [https://github.com/European-XFEL/karabo_data/pull/196/]).

	When you open a run directory with open_run() or
RunDirectory(), karabo_data tries to cache the metadata describing
what data is in each file (PR #206 [https://github.com/European-XFEL/karabo_data/pull/206/]).
Once the cache is created, opening the run again should be much faster,
as it only needs to open the files containing the data you want.
See Cached run data maps for the details of how this works.

	Importing karabo_data is faster, as packages like xarray and pandas are
now only loaded if you use the relevant methods (PR #207 [https://github.com/European-XFEL/karabo_data/pull/207/]).

	lsxfel and info() are faster in some cases,
as they only look in one file for the detector data shape (PR #219 [https://github.com/European-XFEL/karabo_data/pull/219/]).

	get_array() is slightly faster, as it avoids copying
data in memory unnecessarily (PR #209 [https://github.com/European-XFEL/karabo_data/pull/209/])

	When you select sources with select() or
deselect(), the resulting DataCollection no longer
keeps references to files with no selected data. This should make it easier
to then combine data with union() in some situations
(PR #202 [https://github.com/European-XFEL/karabo_data/pull/202/]).

	Data validation now checks that indexes have one entry per
train ID.

Detector geometry

	plot_data_fast() is much more flexible, e.g.
if you want to add a colorbar or draw the image as part of a larger figure
(PR #205 [https://github.com/European-XFEL/karabo_data/pull/205/]). See its documentation for the new parameters.

0.6

Data access

	The karabo-bridge-serve-files command now takes --source and --key
options to select data to stream. They can be used with exact source names
or with glob-style patterns, e.g. --source '*/DET/*' (PR #183 [https://github.com/European-XFEL/karabo_data/pull/183/]).

	Skip checking that .h5 files in a run directory are HDF5 before trying to
open them (PR #187 [https://github.com/European-XFEL/karabo_data/pull/187/]). The error is still handled if they are not.

Detector geometry

	Assembling detector data into images can now reuse an output array - see
position_modules_fast() and
output_array_for_position_fast() (PR #186 [https://github.com/European-XFEL/karabo_data/pull/186/]).

	CrystFEL format geometry files can now be written for 2D input arrays with the
modules arranged along the slow-scan axis, as used by OnDA (PR #191 [https://github.com/European-XFEL/karabo_data/pull/191/]).
To do this, pass dims=('frame', 'ss', 'fs') to
write_crystfel_geom().

	The geometry code has been reworked to use metres internally (PR #193 [https://github.com/European-XFEL/karabo_data/pull/193/]),
along with other refactorings in PR #184 [https://github.com/European-XFEL/karabo_data/pull/184/] and PR #192 [https://github.com/European-XFEL/karabo_data/pull/192/].
These changes should not affect the public API.

0.5

Data access

	New method get_data_counts() to find how many data points were
recorded in each train for a given source and key.

	Create a virtual dataset for any single dataset with
get_virtual_dataset() (PR #162 [https://github.com/European-XFEL/karabo_data/pull/162/]).
See Parallel processing with a virtual dataset for how this can be useful.

	Write a file with virtual datasets for all selected data with
write_virtual() (PR #132 [https://github.com/European-XFEL/karabo_data/pull/132/]).

	Data from the supported multi-module detectors (AGIPD, LPD & DSSC) can be
exposed in CXI format using a virtual dataset - see
write_virtual_cxi() (PR #150 [https://github.com/European-XFEL/karabo_data/pull/150/], PR #166 [https://github.com/European-XFEL/karabo_data/pull/166/], PR #173 [https://github.com/European-XFEL/karabo_data/pull/173/]).

	New class DSSC for accessing DSSC data (PR #171 [https://github.com/European-XFEL/karabo_data/pull/171/]).

	New function open_run() to access a run by proposal and run number
rather than path (PR #147 [https://github.com/European-XFEL/karabo_data/pull/147/]).

	stack_detector_data() now allows input data where some sources don’t
have the specified key (PR #141 [https://github.com/European-XFEL/karabo_data/pull/141/]).

	Files in the new 1.0 data format can now be opened (PR #182 [https://github.com/European-XFEL/karabo_data/pull/182/]).

Detector geometry

	New class DSSC_Geometry for handling DSSC detector geometry (PR #155 [https://github.com/European-XFEL/karabo_data/pull/155/]).

	LPD_1MGeometry can now read and write CrystFEL format
geometry files, and produce PyFAI distortion arrays (PR #168 [https://github.com/European-XFEL/karabo_data/pull/168/], PR #129 [https://github.com/European-XFEL/karabo_data/pull/129/]).

	write_crystfel_geom() (for AGIPD and LPD geometry)
now accepts various optional parameters for other details to be written into
the geometry file, such as the detector distance (clen) and the photon
energy (PR #168 [https://github.com/European-XFEL/karabo_data/pull/168/]).

	New method get_pixel_positions() to get the physical
position of every pixel in a detector, for all of AGIPD, LPD and DSSC
(PR #142 [https://github.com/European-XFEL/karabo_data/pull/142/]).

	New method data_coords_to_positions() to convert data
array coordinates to physical positions, for AGIPD and LPD (PR #142 [https://github.com/European-XFEL/karabo_data/pull/142/]).

0.4

	Python 3.5 is now the minimum required version.

	Fix compatibility with numpy 1.14 (the version installed in Anaconda on the
Maxwell cluster).

	Better error message from stack_detector_data() when passed
non-detector data.

0.3

New features:

	New interfaces for working with AGIPD, LPD & DSSC Geometry.

	New interfaces for accessing AGIPD, LPD & DSSC data.

	select_trains() can now select arbitrary specified
trains, not just a slice.

	get_array() can take a region of interest (roi)
parameter to select a slice of data from each train.

	A newly public keys_for_source() method to list keys
for a given source.

Fixes:

	stack_detector_data() can handle missing detector modules.

	Source sets have been changed to frozen sets. Use
select() to choose a subset of sources.

	get_array() now only loads the data for selected
trains.

	get_array() works with data recorded more than once per
train.

0.2

	New command karabo-data-validate to check the integrity of data files.

	New methods to select a subset of data: select(),
deselect(), select_trains(),
union(),

	Selected data can be written back to a new HDF5 file with
write().

	RunDirectory() and H5File() are now functions which return a
DataCollection object, rather than separate classes. Most code using
these should still work, but checking the type with e.g. isinstance()
may break.

 Python Module Index

 Python Module Index

 k

 		 	

 		
 k	

 	[image: -]
 	
 karabo_data	

 	
 	
 karabo_data.components	

 	
 	
 karabo_data.export	

 	
 	
 karabo_data.geometry2	

 Index

Index

 Symbols
 | A
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | L
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Z

Symbols

 	
 	
 --min-modules <number>

 	karabo-data-make-virtual-cxi command line option

 	
 --output <path>

 	karabo-data-make-virtual-cxi command line option

 	
 	
 -o <path>

 	karabo-data-make-virtual-cxi command line option

A

 	
 	AGIPD1M (class in karabo_data.components)

 	
 	AGIPD_1MGeometry (class in karabo_data.geometry2)

 	all_sources (karabo_data.DataCollection attribute)

C

 	
 	compare() (karabo_data.geometry2.AGIPD_1MGeometry method)

 	
 	control_sources (karabo_data.DataCollection attribute)

D

 	
 	data_coords_to_positions() (karabo_data.geometry2.AGIPD_1MGeometry method)

 	(karabo_data.geometry2.LPD_1MGeometry method)

 	DataCollection (class in karabo_data), [1], [2], [3], [4]

 	
 	deselect() (karabo_data.DataCollection method)

 	DSSC1M (class in karabo_data.components)

 	DSSC_1MGeometry (class in karabo_data.geometry2)

F

 	
 	feed() (karabo_data.export.ZMQStreamer method)

 	from_crystfel_geom() (karabo_data.geometry2.AGIPD_1MGeometry class method)

 	(karabo_data.geometry2.LPD_1MGeometry class method)

 	
 	from_h5_file_and_quad_positions() (karabo_data.geometry2.DSSC_1MGeometry class method)

 	(karabo_data.geometry2.LPD_1MGeometry class method)

 	from_quad_positions() (karabo_data.geometry2.AGIPD_1MGeometry class method)

 	(karabo_data.geometry2.LPD_1MGeometry class method)

G

 	
 	get_array() (karabo_data.components.LPD1M method)

 	(karabo_data.DataCollection method)

 	get_dask_array() (karabo_data.DataCollection method)

 	get_data_counts() (karabo_data.DataCollection method)

 	get_dataframe() (karabo_data.DataCollection method)

 	
 	get_pixel_positions() (karabo_data.geometry2.AGIPD_1MGeometry method)

 	(karabo_data.geometry2.DSSC_1MGeometry method)

 	(karabo_data.geometry2.LPD_1MGeometry method)

 	get_series() (karabo_data.DataCollection method)

 	get_virtual_dataset() (karabo_data.DataCollection method)

H

 	
 	H5File() (in module karabo_data)

I

 	
 	info() (karabo_data.DataCollection method)

 	inspect() (karabo_data.geometry2.AGIPD_1MGeometry method)

 	(karabo_data.geometry2.DSSC_1MGeometry method)

 	(karabo_data.geometry2.LPD_1MGeometry method)

 	
 	instrument_sources (karabo_data.DataCollection attribute)

K

 	
 	
 karabo-data-make-virtual-cxi command line option

 	--min-modules <number>

 	--output <path>

 	-o <path>

 	
 	karabo_data (module)

 	karabo_data.components (module)

 	karabo_data.export (module)

 	karabo_data.geometry2 (module)

 	keys_for_source() (karabo_data.DataCollection method)

L

 	
 	LPD1M (class in karabo_data.components)

 	
 	LPD_1MGeometry (class in karabo_data.geometry2)

O

 	
 	open_run() (in module karabo_data)

 	output_array_for_position_fast() (karabo_data.geometry2.AGIPD_1MGeometry method)

 	(karabo_data.geometry2.DSSC_1MGeometry method)

 	(karabo_data.geometry2.LPD_1MGeometry method)

P

 	
 	plot_data_fast() (karabo_data.geometry2.AGIPD_1MGeometry method)

 	(karabo_data.geometry2.DSSC_1MGeometry method)

 	(karabo_data.geometry2.LPD_1MGeometry method)

 	
 	position_modules_fast() (karabo_data.geometry2.AGIPD_1MGeometry method)

 	(karabo_data.geometry2.DSSC_1MGeometry method)

 	(karabo_data.geometry2.LPD_1MGeometry method)

 	position_modules_interpolate() (karabo_data.geometry2.AGIPD_1MGeometry method)

R

 	
 	RunDirectory() (in module karabo_data)

S

 	
 	select() (karabo_data.DataCollection method)

 	select_trains() (karabo_data.DataCollection method)

 	
 	stack_detector_data() (in module karabo_data)

 	start() (karabo_data.export.ZMQStreamer method)

T

 	
 	to_distortion_array() (karabo_data.geometry2.AGIPD_1MGeometry method)

 	(karabo_data.geometry2.DSSC_1MGeometry method)

 	(karabo_data.geometry2.LPD_1MGeometry method)

 	train_from_id() (karabo_data.DataCollection method)

 	
 	train_from_index() (karabo_data.DataCollection method)

 	train_ids (karabo_data.DataCollection attribute)

 	trains() (karabo_data.components.LPD1M method)

 	(karabo_data.DataCollection method)

U

 	
 	union() (karabo_data.DataCollection method)

W

 	
 	write() (karabo_data.DataCollection method)

 	write_crystfel_geom() (karabo_data.geometry2.AGIPD_1MGeometry method)

 	(karabo_data.geometry2.LPD_1MGeometry method)

 	
 	write_virtual() (karabo_data.DataCollection method)

 	write_virtual_cxi() (karabo_data.components.LPD1M method)

Z

 	
 	ZMQStreamer (class in karabo_data.export)

_images/xpd_examples_8_0.png
.
.

o016 o1 ole

‘SAL XTD2_XGM/XGM/DOOCS/beamPosition.iyPos

X Y

ols

ola

2oE R R B8
5 5 55 538

S04AI UORISOQWE/SIO0TIMINWOX 60LX 85

_static/agipd_layout.png
uuuuuu

e
DS
R
I

e
e
T

SRR
) e
i e
S s

T
e

!—\‘H—H—\
!ﬁ‘H—H—\a

il

]

T8 y
Z (beam direction)
X

_static/dssc_layout.png
st i

™ el et i
Q4M1|(ch 12) Q1M4l(ch 3)
Q4M2|(ch 13) Q1M3|(ch 2)
Q4M3|(ch 14) Q1M2(ch 1)
Q4M4(ch 15) Q1M1 (ch 0)
6
Q3M1(ch 8) Q2M4|(ch 7)
Q3M2|(ch 9) Q2M3/(ch 6)
Q3M3|(ch 10) Q2M2,(ch 5)
Q3M4(ch 11) Q2M1 (ch 4)
i) U Y il

Z (beam direction)

_static/dssc_hexes.png
128 rows

This orientation is for Q1 & Q2.
- Modules in Q3 & Q4 are rotated 180°.

512
s
columns

y Z (beam direction)

.
Reference point for module

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 European XFEL Python data tools

 		
 Reading data files

 		
 Opening files

 		
 Data structure

 		
 Getting data by source & key

 		
 Getting data by train

 		
 Selecting & combining data

 		
 Writing selected data

 		
 Missing data

 		
 Data problems

 		
 Cached run data maps

 		
 AGIPD, LPD & DSSC data

 		
 Streaming data over ZeroMQ

 		
 Checking data files

 		
 AGIPD, LPD & DSSC Geometry

 		
 AGIPD-1M

 		
 LPD-1M

 		
 DSSC-1M

 		
 Command line tools

 		
 lsxfel

 		
 karabo-data-validate

 		
 karabo-bridge-serve-files

 		
 karabo-data-make-virtual-cxi

 		
 Data files format

 		
 HDF5 file structure

 		
 METADATA

 		
 INDEX

 		
 CONTROL and RUN

 		
 INSTRUMENT

 		
 Performance notes

 		
 Load data into memory

 		
 Select sources before getting trains

 		
 Reduce before assembling

 		
 Reading data with karabo_data

 		
 Single files

 		
 Get data by train

 		
 Run directories

 		
 Series data to pandas

 		
 Labelled arrays

 		
 General information

 		
 Accessing LPD data

 		
 Assembling detector data into images

 		
 Examining detector geometry

 		
 Detector geometry for AGIPD

 		
 Plot the detector image

 		
 Converting array positions to physical positions

 		
 DSSC detector geometry

 		
 Working with non-detector data

 		
 Using pandas

 		
 Using xarray

 		
 Comparing fast XGM data from two simultaneous recordings

 		
 SASE1

 		
 SASE3

 		
 Overall comparison of suppression ratio (with error)

 		
 References

 		
 Parallel processing with a virtual dataset

 		
 Using multiprocessing

 		
 Using SLURM

 		
 Averaging detector data with Dask

 		
 Release Notes

 		
 0.7

 		
 Data access

 		
 Detector geometry

 		
 0.6

 		
 Data access

 		
 Detector geometry

 		
 0.5

 		
 Data access

 		
 Detector geometry

 		
 0.4

 		
 0.3

 		
 0.2

_static/minus.png

_images/agipd_geometry_16_1.png
11th pulse Average of pulses in one train

_images/agipd_geometry_19_1.png
&0
00
20

s

200
—a00
600

@ 0 0 20 4o 600
pixels

&0

pixels

_images/agipd_geometry_14_1.png

_images/apply_geometry_11_1.png

_images/apply_geometry_13_1.png

_images/agipd_geometry_8_1.png
pixels

&0

00

20

200

—a00

600

AGIPD-1M detector geometry (No file)

X Firstpixel
Firstrow
™
b Qa1 QM1
™ a2
n Q2
™ M3
n Qam3. =
™ Ma
n Qama =
M1
n QM1 L 2
M2
n QM2 L 2!
M3
n QM3 L 2!
n Q:Ma L [
@0 00 o i)) a0

pixels

_images/agipd_layout.png
uuuuuu

e
DS
R
I

e
e
T

SRR
) e
i e
S s

T
e

!—\‘H—H—\
!ﬁ‘H—H—\a

il

]

T8 y
Z (beam direction)
X

_images/apply_geometry_17_1.png
—a00

_static/lpd_layout.png
Reference corners
for quadrant position

Z (beam direction)

Qs Q1 e mod
Qam4. Qam1 (ch3) (ch0) ach module:
LT ——
(ch15) (h12) =
[
=[]
S | —
=[]
Q3 Qam2 ||
Qam3 Qamz (ch2) (ch 1) T
(ch14) (h13)
sean
Qzma QM1
Q3ma Q3m1 (7 (cn5)
(ch11) (ch8)
Qzm3 QM2
Q3m3 Qam2 (ch6) (chs)
(h10) (ch9)

_images/apply_geometry_19_2.png

_images/apply_geometry_9_0.png
50000

40000

30000

20000

10000

30000

25000

20000

15000

10000

5000

1000

500

1000 1500

_images/dssc_geometry_8_0.png
005

000

_images/dssc_hexes.png
128 rows

This orientation is for Q1 & Q2.
- Modules in Q3 & Q4 are rotated 180°.

512
s
columns

y Z (beam direction)

.
Reference point for module

_images/dssc_geometry_11_0.png
00074

00072

metres

00o6e

00066

00070 I

00070 00072 00074 00076 -0.0076 00080 -0.0082 —0.0084
metres

_images/dssc_geometry_3_1.png
pixels

DSSC detector geometry (dssc_geo_junel9.h5)

. Frst pinel
x Firstrow
n
qut ama n
w00 3
= i s n
n Qa3
0 amz n
n
ama Q. n
0
n Qam
ama n
200 n Qam2
a3 n
n Qa3
o J a2 n
n Qame
am n
600
a0 @0 00 1) i)) 600

pixels

_images/lpd_layout.png
Reference corners
for quadrant position

Z (beam direction)

Qs Q1 e mod
Qam4. Qam1 (ch3) (ch0) ach module:
LT ——
(ch15) (h12) =
[
=[]
S | —
=[]
Q3 Qam2 ||
Qam3 Qamz (ch2) (ch 1) T
(ch14) (h13)
sean
Qzma QM1
Q3ma Q3m1 (7 (cn5)
(ch11) (ch8)
Qzm3 QM2
Q3m3 Qam2 (ch6) (chs)
(h10) (ch9)

_images/xpd_examples2_16_1.png
train dentifier

012

uosssauddrs

_images/dssc_layout.png
st i

™ el et i
Q4M1|(ch 12) Q1M4l(ch 3)
Q4M2|(ch 13) Q1M3|(ch 2)
Q4M3|(ch 14) Q1M2(ch 1)
Q4M4(ch 15) Q1M1 (ch 0)
6
Q3M1(ch 8) Q2M4|(ch 7)
Q3M2|(ch 9) Q2M3/(ch 6)
Q3M3|(ch 10) Q2M2,(ch 5)
Q3M4(ch 11) Q2M1 (ch 4)
i) U Y il

Z (beam direction)

_images/examine_geometry_4_1.png
pixels

&0

00

20

200

—a00

600

LPD-1M detector geometry (Ipd_mar_18_axesfixed h5)

x Firstpicl
6 ma 6 (e First row
T6 oms M6 o
n) n)
= = - = me Caws Tt me i
6 Qams ™ e Qamz
™ m., ™ o
B ™ B — s oM ms Mt
nsams me gamn
o,
™) ™ T
- = - = ne Gams
6 M3 e Qamz
™ T
™ Ty ™ T
&0 o 0 o) B a0

_images/xpd_examples2_22_1.png
fousnbay

‘suppression

_images/xpd_examples2_27_0.png
pulselndex

SASE3 XTD10 XGM intensity (fast)

500

@0 1000
train index

1000 1500 2000

1200

200

3000

_images/xpd_examples2_20_1.png

_images/xpd_examples2_36_1.png
frequency

500

w00

E

£

ol
00000 00025 00050 00075 00100 00125 00350 00L75 00200
‘suppression

_images/xpd_examples2_9_0.png
SASEL XTD2 XGM intensity (fast)

&0 a0 1000 1400
train index

_images/xpd_examples2_32_1.png
00200

o017

00150

00125

00100

uosssauddrs

00075

00050

00025

00000

train dentifier

_images/xpd_examples2_34_1.png
s 7 7 s s

#
rrrrrrrrrrrrrr

&

#

_images/xpd_examples_7_0.png
2175

2200

2225

2250

2275

2300

2325

2350

12375

‘SPB_XTD9_XGM/XGM/DOOCS/beamPosition.ixPos.

200

201 202 203 208 205
‘SAL XTD2_XGM/XGM/DOOCS/beamPosition. ixPos

208

_images/xpd_examples_21_0.png
Neon; 900 eV; [A B CD]

-0.1-0.1-0.1-0.11