

Kafka-Utils v1.2.0

Description

Kafka-Utils is a library containing tools to interact with kafka clusters and manage them. The tool provides utilities
like listing of all the clusters, balancing the partition distribution across brokers and replication-groups, managing
consumer groups, rolling-restart of the cluster, cluster healthchecks.

For more information about Apache Kafka see the official Kafka documentation [http://kafka.apache.org/documentation.html#introduction].

How to install

$ pip install kafka-utils

List available clusters.

$ kafka-utils
Cluster type sample_type:
 Cluster name: cluster-1
 broker list: cluster-elb-1:9092
 zookeeper: 11.11.11.111:2181,11.11.11.112:2181,11.11.11.113:2181/kafka-1

	Configuration

	Cluster Manager
	Replication group parser

	Cluster Balancers
	Partition Count Balancer

	Genetic Balancer

	Partition Measurement

	Cluster rebalance

	Brokers decommissioning

	Revoke Leadership

	Set Replication Factor

	Stats

	Store assignments

	Consumer Manager
	Subcommands

	Listing consumer groups

	Listing topics

	Getting consumer offsets

	Manipulating consumer offsets

	Copying or renaming consumer group

	Deleting or unsubscribing consumer groups

	Rolling Restart
	Cluster health

	Parameters

	Examples

	Kafka Check
	Checking in-sync replicas

	Checking replicas available

	Checking offline partitions

	Corruption Check
	Parameters

	Examples

Indices and tables

	Index

	Module Index

	Search Page

Configuration

Kafka-Utils reads the cluster configuration needed to access Kafka clusters from yaml files.
Each cluster is identified by type and name.
Multiple clusters of the same type should be listed in the same type.yaml file.
The yaml files are read from $KAFKA_DISCOVERY_DIR, $HOME/.kafka_discovery and /etc/kafka_discovery,
the former overrides the latter.

Sample configuration for sample_type cluster at /etc/kafka_discovery/sample_type.yaml

 clusters:
 cluster-1:
 broker_list:
 - "cluster-elb-1:9092"
 zookeeper: "11.11.11.111:2181,11.11.11.112:2181,11.11.11.113:2181/kafka-1"
 cluster-2:
 broker_list:
 - "cluster-elb-2:9092"
 zookeeper: "11.11.11.211:2181,11.11.11.212:2181,11.11.11.213:2181/kafka-2"
 local_config:
 cluster: cluster-1

For example the kafka-cluster-manager command:

$ kafka-cluster-manager --cluster-type sample_type stats

will pick up default cluster cluster-1 from the local_config at /etc/kafka_discovery/sample_type.yaml to display
statistics of default kafka-configuration.

Cluster Manager

This tool provides a set of commands to manipulate and modify the cluster topology
and get metrics for different states of the cluster. These include balancing the
cluster-state, decommissioning brokers, evaluating metrics for the current state of
the cluster. Each of these commands is as described below.

Replication group parser

The tool supports the grouping of brokers in replication groups.
kafka-cluster-manager will try to distribute replicas of the same partition
across different replication group.
The user can use this feature to map replication groups to failure zones, so that
a balanced cluster will be more resilient to zone failures.

By default all brokers are considered as part of a single replication group.
Custom replication group parsers can be defined by extending the class
ReplicationGroupParser as shown in the example below:

from kafka_utils.kafka_cluster_manager.cluster_info.replication_group_parser \
 import ReplicationGroupParser

class SampleGroupParser(ReplicationGroupParser):

 def get_replication_group(self, broker):
 """Extract the replication group from a Broker instance.
 Suppose each broker hostname is in the form broker-rack<n>, this
 function will return "rack<n>" as replication group
 """
 if broker.inactive:
 # Can't extract replication group from inactive brokers because they
 # don't have metadata
 return None
 hostname = broker.metadata['host']
 return hostname.rsplit('-', 1)[1]

Create a file named sample_parser.py into a directory containing the
__init__.py.

Example:

$HOME/parser
 |-- __init__.py
 |-- sample_parser.py

To use the custom parser:

$ kafka-cluster-manager --cluster-type sample_type --group-parser $HOME/parser:sample_parser rebalance --replication-groups

Cluster Balancers

Every command attempts to find a partition assignment that improves or
maintains the balance of the cluster. This tool provides two different cluster
balancers that implement different cluster balancing strategies. The
Partition Count Balancer is the default cluster balancer and is recommended
for most users. The Genetic Balancer is recommended for users that are able
to provide partition measurements. See partition measurement for more
information.

Partition Count Balancer

This balancing strategy attempts to balance the number of partitions and
leaders across replication groups and brokers. Balancing is done in four
stages.

	Replica distribution: Uniform distribution of partition replicas across
replication groups.

	Partition distribution: Uniform distribution of partitions across groups
and brokers.

	Leader distribution: Uniform distribution of preferred partition leaders
across brokers.

	Topic-partition distribution: Uniform distribution of partitions of the
same topic across brokers.

Genetic Balancer

This balancing strategy considers not only the number of partitions on each
broker, but the weight of each partition (see partition measurement). It
uses a genetic algorithm to approximate the optimal assignment while also
limiting the total size of the partitions moved.

The uniform distribution of replicas across replication groups is guaranteed
by an initial stage that greedily reassigns replicas across replication groups.

The fitness function used by the genetic algorithm to score partition
assignments considers the following:

	Broker weight balance: The sum of the weights of the partitions on each
broker should be as balanced as possible.

	Leader weight balance: The sum of the weights of the preferred leader
partitions on each broker should be as balanced as possible.

	Weighted topic-partition balance: The distribution of partitions of the
same topic across brokers weighted by the total weight of each topic.

The Genetic Balancer can be enabled by using the --genetic-balancer
toggle.

Partition Measurement

Throughput can vary significantly across the topics of a cluster. To
prevent placing too many high-throughput partitions on the same brokers, the
cluster manager needs additional information about each partition. For the
purposes of this tool, there are two values that need to be defined for each
partition: weight and size.

The weight of a partition is a measure of how much load that partition places
on the broker that it is assigned to. The weight can have any unit and should
represent the relative weight of one partition compared to another. For
example a partition with weight 2 is assumed to cause twice as much load on a
broker as a partition with weight 1. In practice, a possible metric could be
the average byte in/out rate over a certain time period.

The size of a partition is a measure of how expensive it is to move the
partition. This value is also relative and can have any unit. The length of the
partition’s log in bytes is one possible metric.

Since Kafka doesn’t keep detailed partition usage information, the task of
collecting this information is left to the user. By default every partition is
given an equal weight and size of 1. Custom partition measurement approaches
can be implemented by extending the PartitionMeasurer class. Here is a
sample measurer that pulls partition metrics from an external service.

import argparse
from requests import get

from kafka.kafka_utils.kafka_cluster_manager.cluster_info.partition_measurer \
 import PartitionMeasurer

class SampleMeasurer(PartitionMeasurer):

 def __init__(self, cluster_config, brokers, assignment, args):
 super(SampleMeasurer, self).__init__(
 cluster_config,
 brokers,
 assignment,
 args
)
 self.metrics = {}
 for partition_name in assignment.keys():
 self.metrics[partition_name] = get(self.args.metric_url +
 "/{cluster_type}/{cluster_name}/{topic}/{partition}"
 .format(
 cluster_type=cluster_config.type,
 cluster_name=cluster_config.name,
 topic=partition_name[0],
 partition=partition_name[1],
)
).json()

 def parse_args(self, measurer_args):
 parser = argparse.ArgumentParser(prog='SampleMeasurer')
 parser.add_argument(
 '--metric-url',
 type=string,
 required=True,
 help='URL of the metric service.',
)
 return parser.parse_args(measurer_args, self.args)

 def get_weight(self, partition_name):
 return self.metrics[partition_name]['bytes_in_per_sec'] + \
 self.metrics[partition_name]['bytes_out_per_sec']

 def get_size(self, partition_name):
 return self.metrics[partition_name]['size']

Place this file in a file called sample_measurer.py and place it in a
python module.

Example:

$HOME/measurer
 |-- __init__.py
 |-- sample_measurer.py

To use the partition measurer:

$ kafka-cluster-manager \
--cluster-type sample_type \
--partition-measurer $HOME/measurer:sample_measurer \
--measurer-args "--metric-url $METRIC_URL" \
stats

Cluster rebalance

This command provides the functionality to re-distribute partitions across the
cluster to bring it into a more balanced state. The behavior of this command
is determined by the choice of cluster balancer.

The command provides three toggles to control how the cluster is rebalanced:

	--replication-groups: Rebalance partition replicas across replication
groups.

	--brokers: Rebalance partitions across brokers.

	--leaders: Rebalance partition preferred leaders across brokers.

The command also provides toggles to control how many partitions are moved at
once:

	--max-partition-movements: The maximum number of partition replicas
that will be moved. Default: 1.

	--max-leader-changes: The maximum number of partition preferred
leader changes. Default: 5.

	--max-movement-size: The maximum total size of the partition replicas
that will be moved. Default: No limit.

	--auto-max-movement-size: Set --max-movement-size to the
size of the largest partition in the cluster.

	--score-improvement-threshold: When the Genetic Balancer is being
used, this option checks the Genetic Balancer‘s scoring function and only
applies the new assignment if the improvement in score is greater than this
threshold.

$ kafka-cluster-manager --group-parser $HOME/parser:sample_parser --apply
--cluster-type sample_type rebalance --replication-groups --brokers --leaders
--max-partition-movements 10 --max-leader-changes 25

Or using the Genetic Balancer:

$ kafka-cluster-manager --group-parser $HOME/parser:sample_parser --apply
--cluster-type sample_type --genetic-balancer --partition-measurer
$HOME/measurer:sample_measurer rebalance --replication-groups --brokers
--leaders --max-partition-movements 10 --max-leader-changes 25
--auto-max-partition-size --score-improvement-threshold 0.01

Brokers decommissioning

This command provides functionalities to decommission a given list of brokers. The key
idea is to move all partitions from brokers that are going to be decommissioned to other
brokers in either their replication group (preferred) or others replication groups
while keeping the cluster balanced as above.

Note

While decommissioning brokers we need to ensure that we have at least ‘n’ number
of active brokers where n is the max replication-factor of a partition.

$ kafka-cluster-manager --cluster-type sample_type decommission 123456 123457 123458

Or using the Genetic Balancer:

$ kafka-cluster-manager --cluster-type sample_type --genetic-balancer
--partition-measurer $HOME/measurer:sample_measurer decommission
123456 123457 123458

Revoke Leadership

This command provides functionalities to revoke leadership for a particular given
set of brokers. The key idea is to move leadership for all partitions on given brokers
to other brokers while keeping the cluster balanced.

$ kafka-cluster-manager --cluster-type sample_type revoke-leadership 123456 123457 123458

Set Replication Factor

This command provides the ability to increase or decrease the replication-factor
of a topic. Replicas are added or removed in such a way that the balance of the
cluster is maintained. Additionally, when the replication-factor is decreased,
any out-of-sync replicas will be removed first.

$ kafka-cluster-manager --cluster-type sample_type set_replication_factor --topic sample_topic 3

Or using the Genetic Balancer:

$ kafka-cluster-manager --cluster-type sample_type --genetic-balancer
--partition-measurer $HOME/measurer:sample_measurer set_replication_factor
--topic sample_topic 3

Stats

This command provides statistics for the current imbalance state of the cluster. It also
provides imbalance statistics of the cluster if a given partition-assignment plan were
to be applied to the cluster. The details include the imbalance value of each of the above
layers for the overall cluster, each broker and across each replication-group.

$ kafka-cluster-manager --group-parser $HOME/parser:sample_parser --cluster-type
sample_type stats

Store assignments

Dump the current cluster-topology in json format.

$ kafka-cluster-manager --group-parser $HOME/parser:sample_parser --cluster-type
sample_type store_assignments

Consumer Manager

This kafka tool provides the ability to view and manipulate consumer offsets
for a specific consumer group. For a given cluster, this tool provides us with
the following functionalities:

	Manipulating consumer-groups: Listing consumer-groups subscribed to the
cluster. Copying, deleting and renaming of the group.

	Manipulating offsets: For a given consumer-group, fetching current offsets,
low and high watermarks for topics and partitions subscribed to the group.
Setting, advancing, rewinding, saving and restoring of current-offsets.

	Manipulating topics: For a given consumer-group and cluster, listing and
unsubscribing topics.

	Offset storage choice: Supports Kafka 0.8.2 and 0.9.0, using offsets
stored in either Zookeeper or Kafka. Version 0 and 2 of the Kafka Protocol
are supported for committing offsets.

Subcommands

	copy_group

	delete_group

	list_groups

	list_topics

	offset_advance

	offset_get

	offset_restore

	offset_rewind

	offset_save

	offset_set

	rename_group

	unsubscribe_topics

Listing consumer groups

The list_groups command shows all of the consumer groups that exist in
the cluster.

$ kafka-consumer-manager --cluster-type=test list_groups
 Consumer Groups:
 group1
 group2
 group3

If list_groups is called with the --storage option, then the groups will
only be fetched from Zookeeper or Kafka.

Listing topics

For information about the topics subscribed by a consumer group, the
list_topics subcommand can be used.

$ kafka-consumer-manager --cluster-type=test list_topics group3
 Consumer Group ID: group3
 Topic: topic_foo
 Partitions: [0, 1, 2, 3, 4, 5]
 Topic: topic_bar
 Partitions: [0, 1, 2]

Getting consumer offsets

The offset_get subcommand gets information about a specific consumer group.

The most basic usage is to call offset_get with a consumer group id.

$ kafka-consumer-manager --cluster-type test --cluster-name my_cluster offset_get my_group
 Cluster name: my_cluster, consumer group: my_group
 Topic Name: topic1
 Partition ID: 0
 High Watermark: 787656
 Low Watermark: 787089
 Current Offset: 787645

The offsets for all topics in the consumer group will be shown by default.
A single topic can be specified using the --topic option. If a topic is
specified, then a list of partitions can also be specified using the
--partitions option.

By default, the offsets will be fetched from both Zookeeper and Kafka’s
internal offset storage. A specific offset storage location can be speficied
using the --storage option.

Manipulating consumer offsets

The offsets for a consumer group can also be saved into a json file.

$ kafka-consumer-manager --cluster-type test --cluster-name my_cluster offset_save my_group my_offsets.json
 Cluster name: my_cluster, consumer group: my_group
 Consumer offset data saved in json-file my_offsets.json

The save offsets file can then be used to restore the consumer group.

$ kafka-consumer-manager --cluster-type test --cluster-name my_cluster offset_restore my_offsets.json
 Restored to new offsets {u'topic1': {0: 425447}}

The offsets can also be set directly using the offset_set command. This
command takes a group id, and a set of topics, partitions, and offsets.

$ kafka-consumer-manager --cluster-type test --cluster-name my_cluster offset_set my_group topic1.0.38531

There is also an offset_advance command, which will advance the current offset
to the same value as the high watermark of a topic, and an offset_rewind
command, which will rewind to the low watermark.

If the offset needs to be modified for a consumer group does not already
exist, then the --force option can be used. This option can be used with
offset_set, offset_rewind, and offset_advance.

Copying or renaming consumer group

Consumer groups can have metadata copied into a new group using the
copy_group subcommand.

$ kafka-consumer-manager --cluster-type=test copy_group my_group1 my_group2

They can be renamed using rename_group.

$ kafka-consumer-manager --cluster-type=test rename_group my_group1 my_group2

When the group is copied, if a topic is specified using the --topic option,
then only the offsets for that topic will be copied. If a topic is specified,
then a set of partitions of that topic can also be specified using the
--partitions option.

Deleting or unsubscribing consumer groups

A consumer group can be deleted using the delete_group subcommand.

$ kafka-consumer-manager --cluster-type=test delete_group my_group

A consumer group be unsubscribed from topics using the unsubscribe_topics
subcommand. If a single topic is specified using the --topic option, then
the group will be unsubscribed from only that topic.

Rolling Restart

The kafka-rolling-restart script can be used to safely restart an entire
cluster, one server at a time. The script finds all the servers in a cluster,
checks their health status and executes the restart.

Cluster health

The health of the cluster is defined in terms of broker availability and under
replicated partitions. Kafka-rolling-restart will check that all brokers are
answering to JMX requests, and that the total numer of under replicated
partitions is zero. If both conditions are fulfilled, the cluster is considered
healthy and the next broker will be restarted.

The JMX metrics are accessed via Jolokia [https://jolokia.org], which must be
running on all brokers.

Note

If a broker is not registered in Zookeeper when the tool is executed,
it will not appear in the list of known brokers and it will be ignored.

Parameters

The parameters specific for kafka-rolling-restart are:

	--check-interval INTERVAL: the number of seconds between each check.
Default 10.

	--check-count COUNT: the number of consecutive checks that must result
in cluster healthy before restarting the next server. Default 12.

	--unhealthy-time-limit LIMIT: the maximum time in seconds that a
cluster can be unhealthy for. If the limit is reached, the script will
terminate with an error. Default 600.

	--jolokia-port PORT: The Jolokia port. Default 8778.

	--jolokia-prefix PREFIX: The Jolokia prefix. Default “jolokia/”.

	--no-confirm: If specified, the script will not ask for confirmation.

	--skip N: Skip the first N servers. Useful to recover from a partial
rolling restart. Default 0.

	--verbose: Turn on verbose output.

Examples

Restart the generic dev cluster, checking the JMX metrics every 30 seconds, and
restarting the next broker after 5 consecutive checks have confirmed the health
of the cluster:

$ kafka-rolling-restart --cluster-type generic --cluster-name dev --check-interval 30 --check-count 5

Check the generic prod cluster. It will report an error if the cluster is
unhealthy for more than 900 seconds:

$ kafka-rolling-restart --cluster-type generic --cluster-name prod --unhealthy-time-limit 900

Kafka Check

The kafka-check command performs multiple checks on the health of the cluster.
Each subcommand will run a different check. The tool can run on the broker
itself or on any other machine, and it will check the health of the entire
cluster.

One possible way to deploy the tool is to install the kafka-utils package on
every broker, and schedule kafka-check to run periodically on each machine
with cron. Kafka-check provides two simple coordination mechanisms to make
sure that the check only runs on a single broker per cluster.

Coordination strategies:
* First broker only: the script will only run on the broker with lowest

broker id.

	Controller only: the script will only run on the controller of the cluster.

Coordination parameters:
* --broker-id: the id of the broker where the script is running.

Set it to -1 if automatic broker ids are used.

	--data-path DATA_PATH: Path to the Kafka data folder, used in case of
automatic broker ids to find the assigned id.

	--controller-only: if is specified, the script will only run on the
controller. The execution on other brokers won’t perform any check and it
will always succeed.

	--first-broker-only: if specified, the command will only perform the
check if broker_id is the lowest broker id in the cluster. If it is not the ‘
lowest, it will not perform any check and succeed immediately.

Checking in-sync replicas

The min_isr subcommand checks if the number of in-sync replicas for a
partition is equal or greater than the minimum number of in-sync replicas
configured for the topic the partition belongs to. A topic specific
min.insync.replicas overrides the given default.

The parameters for min_isr check are:

	--default_min_isr DEFAULT_MIN_ISR: Default min.isr value for cases without
settings in Zookeeper for some topics.

$ kafka-check --cluster-type=sample_type min_isr
OK: All replicas in sync.

In case of min isr violations:

$ kafka-check --cluster-type=sample_type min_isr --default_min_isr 3

 isr=2 is lower than min_isr=3 for sample_topic:0
 CRITICAL: 1 partition(s) have the number of replicas in sync that is lower
 than the specified min ISR.

Checking replicas available

The replica_unavailability subcommand checks if the number of replicas not
available for communication is equal to zero. It will report the aggregated result
of unavailable replicas of each broker if any.

The parameters specific to replica_unavailability check are:

$ kafka-check --cluster-type=sample_type replica_unavailability
OK: All replicas available for communication.

In case of not first broker in the broker list in Zookeeper:

$ kafka-check --cluster-type=sample_type --broker-id 3 replica_unavailability --first-broker-only
OK: Provided broker is not the first in broker-list.

In case where some partitions replicas not available for communication.

$ kafka-check --cluster-type=sample_type replica_unavailability
CRITICAL: 2 replica(s) unavailable for communication.

Checking offline partitions

The offline subcommand checks if there are any offline partitions in the cluster.
If any offline partition is found, it will terminate with an error, indicating the number
of offline partitions.

$ kafka-check --cluster-type=sample_type offline
CRITICAL: 64 offline partitions.

Corruption Check

The kafka-corruption-check script performs a check on the log files stored on
the Kafka brokers. This tool finds all the log files modified in the specified
time range and runs DumpLogSegments [https://github.com/apache/kafka/blob/0.9.0/core/src/main/scala/kafka/tools/DumpLogSegments.scala]
on them. The output is collected and filtered, and all information related to
corrupted messages will be reported to the user.

Even though this tool executes the log check with a low ionice priority, it can
slow down the cluster given the high number of io operations required. Consider
decreasing the batch size to reduce the additional load.

Parameters

The parameters specific for kafka-corruption-check are:

	--minutes N: check the log files modified in the last N minutes.

	--start-time START_TIME: check the log files modified after
START_TIME. Example format: --start-time "2015-11-26 11:00:00"

	--end-time END_TIME: check the log files modified before END_TIME.
Example format: --end-time "2015-11-26 12:00:00"

	--data-path: the path to the data files on the Kafka broker.

	--java-home: the JAVA_HOME on the Kafka broker.

	--batch-size BATCH_SIZE: the number of files that will be checked
in parallel on each broker. Default: 5.

	--check-replicas: if set it will also check the data on replicas.
Default: false.

	--verbose: enable verbose output.

Examples

Check all the files (leaders only) in the generic dev cluster and which were
modified in the last 30 minutes:

$ kafka-corruption-check --cluster-type generic --cluster-name dev --data-path /var/kafka-logs --minutes 30
Filtering leaders
Broker: 0, leader of 9 over 13 files
Broker: 1, leader of 4 over 11 files
Starting 2 parallel processes
 Broker: broker0.example.org, 9 files to check
 Broker: broker1.example.org, 4 files to check
Processes running:
 broker0.example.org: file 0 of 9
 broker0.example.org: file 5 of 9
ERROR Host: broker0.example.org: /var/kafka-logs/test_topic-0/00000000000000003363.log
ERROR Output: offset: 3371 position: 247 isvalid: false payloadsize: 22 magic: 0 compresscodec: NoCompressionCodec crc: 2230473982
 broker1.example.org: file 0 of 4

In this example, one corrupted file was found in broker 0.

Check all the files modified after the specified date, in both leaders and replicas:

$ kafka-corruption-check [...] --start-time "2015-11-26 11:00:00" --check-replicas

Check all the files that were modified in the specified range:

$ kafka-corruption-check [...] --start-time "2015-11-26 11:00:00" --end-time "2015-11-26 12:00:00"

Index

 _static/comment.png

nav.xhtml

 Table of Contents

 		Kafka-Utils v1.2.0

 		Configuration

 		Cluster Manager

 		Replication group parser

 		Cluster Balancers

 		Partition Count Balancer

 		Genetic Balancer

 		Partition Measurement

 		Cluster rebalance

 		Brokers decommissioning

 		Revoke Leadership

 		Set Replication Factor

 		Stats

 		Store assignments

 		Consumer Manager

 		Subcommands

 		Listing consumer groups

 		Listing topics

 		Getting consumer offsets

 		Manipulating consumer offsets

 		Copying or renaming consumer group

 		Deleting or unsubscribing consumer groups

 		Rolling Restart

 		Cluster health

 		Parameters

 		Examples

 		Kafka Check

 		Checking in-sync replicas

 		Checking replicas available

 		Checking offline partitions

 		Corruption Check

 		Parameters

 		Examples

_static/down-pressed.png

_static/up.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

