

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Kadabra 0.0.1 documentation

Kadabra - Metrics Made Easy

You need to know what’s going on with your Python application. How many people
signed up today? How often does it crash? How long did it take to run your
weekly processing jobs? How many orders did you fill yesterday?

You should be able to answer these questions quickly and easily. It shouldn’t
be a hassle to check the status of your web app, or answer important business
questions about your service. And it shouldn’t cost a fortune. There are plenty
of metrics services out there, but they cost [https://newrelic.com/calculator] a lot [https://azure.microsoft.com/en-us/pricing/details/application-insights/] of
money [https://aws.amazon.com/cloudwatch/pricing/] and sometimes even
require some sort of contractual commitment. And they usually give you more
than you really need.

Kadabra provides a simple API to instrument your application code to record
metrics and a performant, reliable agent to publish your metrics into a
database. It is cost-effective, scales with your application, is fully
unit-tested, and best of all, it runs completely on open-source software.

If you’re willing to put in a bit of work, you can save a lot of money and
maintain control of your application infrastructure.

Head on over to the Overview section to get started.

Contents:

	Overview

	Installation

	Getting Started
	Install and Run Redis Server

	Run the Agent

	Publish Some Metrics

	Configuration

	Publishing to Storage

	Learning More

	Configuration
	Client API

	Agent

	Collecting Metrics
	Dimensions

	Counters

	Timers

	Metadata

	Timestamps

	Sending Metrics
	Why channels?

	How Channels Work

	RedisChannel

	Publishing Metrics
	Agent

	DebugPublisher

	InfluxDBPublisher

	Using with InfluxDB
	Install Kadabra and Redis

	Install and Run InfluxDB

	Create the Metrics Database

	Configure and Run the Agent

	Send Some Metrics

	See the Metrics in InfluxDB

	Next Steps

	Running in Production

	API
	Client

	Agent

	Metrics

	Channels

	Publishers

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kadabra 0.0.1 documentation

Overview

At a high level Kadabra consists of three components:

	A client for collecting the metrics in your application. You will configure
the client API and instrument your application code to record relevant
metrics, such as user signups or 500 errors.

	Channels for temporarily queueing the metrics to be published asynchronously.
Currently the only supported channel is Redis, so all you’ll need to do is
make sure you have a local Redis server running side-by-side with your
application (this is covered later, don’t fret!).

	An agent for dequeueing metrics and publishing them. You will provide
configuration and run the agent in a dedicated process, separate from your
application.

Metrics are published asynchronously to have minimal impact on your
application’s performance. The client provides a simple interface for gathering
metrics in your application, and the agent takes metrics from the intermediate
channel and publishes them.

If you’re ready to start using Kadabra, head on over to Installation.

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kadabra 0.0.1 documentation

Installation

Kadabra is a library available through the Python package index (pip) [https://pypi.python.org/pypi/pip]. Installation is simple:

$ sudo pip install Kadabra

I recommend you use virtualenv [https://virtualenv.pypa.io/en/latest/] to
isolate your installs to specific development environments and avoid installing
libraries system-wide.

Once you’ve installed Kadabra (ideally in a virtualenv), you’re ready to head
to the Getting Started section.

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kadabra 0.0.1 documentation

Getting Started

In this section we will demonstrate the basic functionality of Kadabra by
publishing some metrics using the DebugPublisher,
which just outputs the metrics to a logger.

Make sure you have installed Kadabra following the directions in the
Installation section.

Install and Run Redis Server

First, we need to have an instance of Redis server running locally. Redis is
very easy to setup and run. If you haven’t used it before,
follow the docs here [http://redis.io/download#installation]
to get your Redis server up and running. We will assume the Redis server is
running locally on port 6379 (the default port).

Run the Agent

Next, we will run the agent, which will watch for metrics and publish them (in
this case, to a logger setup to write to stdout). Put the following code into a
file called run_agent.py:

import logging, sys, kadabra

handler = logging.StreamHandler(sys.stdout)

agent_logger = logging.getLogger("kadabra.agent")
agent_logger.setLevel("INFO")
agent_logger.addHandler(handler)

publisher_logger = logging.getLogger("kadabra.publisher")
publisher_logger.setLevel("INFO")
publisher_logger.addHandler(handler)

agent = kadabra.Agent()
agent.start()

This code sets up the agent’s logger (so we can see what it’s doing) and the
publisher’s logger (so we can see the metrics get printed).

Now we can run the agent:

python run_agent.py

You should see some output indicating that the agent has started running,
meaning it is listening to Redis for metrics. If you see some output about
connection errors, ensure that the Redis server is actually running and that
you can connect to it.

Publish Some Metrics

Now, in a separate terminal, open up a Python interpreter. We’ll record some
metrics and publish them. First, let’s initialize the Kadabra client:

>>> import kadabra
>>> client = kadabra.Kadabra()

Now let’s get a MetricsCollector object from our
client. This is the API we use to record metrics in our application. It is
thread-safe and can be shared throughout our application:

>>> metrics = client.metrics()

In a real application, the metrics code would be located in places where we
care about recording important information, such as customer sales, user
signups, or application failures. But since we are just demonstrating
basic functionality, let’s record a few counters and a timer:

>>> import datetime
>>> metrics.add_count("myCount", 1.0)
>>> metrics.add_count("myOtherCount", 1.0)
>>> metrics.add_count("myOtherCount", 1.0)
>>> metrics.set_timer("myTimer", datetime.timedelta(seconds=30), kadabra.Units.MILLISECONDS)

Note

Timers record a datetime.timedelta [https://docs.python.org/2/library/datetime.html#datetime.timedelta], but you can report the actual
value in any of the units from kadabra.Units.

Now we’re ready to send our metrics for publishing:

>>> client.send(metrics.close())

Go over to the terminal where your agent is running. You should see the metrics
output as serialized JSON. Lastly, hit CTRL+C to gracefully shut down the
agent.

Configuration

You can configure the client API and the Agent using a dictionary when you
instantiate them to control various aspects of their functionality. For more
information see the Configuration section.

Publishing to Storage

The DebugPublisher just serializes the metrics
into JSON and outputs them to a logger. You could pipe this output into another
program which writes the metrics into more permanant storage. But it would be
best to publish the metrics directly into a database that is designed for
metrics.
Time-series databases [https://en.wikipedia.org/wiki/Time_series_database]
are ideal for storing metrics data.

One such database engine is
InfluxDB [https://www.influxdata.com/time-series-platform/influxdb/], which
is capable of storing metrics with indexed tags and provides mechanisms for
querying those metrics in useful ways. Kadabra ships with an
InfluxDBPublisher that can publish metrics
straight to an InfluxDB server - you just provide the host, port, and database
name.

For a guide on how to set up Kadabra to publish metrics using InfluxDB, see
Using with InfluxDB.

Learning More

You now have everything you need to use Kadabra in your application. You can
find out more about Collecting Metrics, Sending Metrics, and Publishing Metrics in
the corresponding sections. For a complete look at the API, see API.

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kadabra 0.0.1 documentation

Configuration

Kadabra has a default set of configuration values. You can override the default
configuration by specifying a dictionary when you initialize the
Kadabra and Agent whose keys are the
configuration you want to override and whose values are the values you want to
use.

For exampe, configuring the client API to use a different Redis port might look
like this:

my_config = {
 'CLIENT_CHANNEL_ARGS': {
 'port': 6500
}
client = kadabra.Kadabra(configuration=my_config)

Note that for configuration values that are dictionaries (like arguments for
initializing the channel), you only need to specify the keys/values that you
are overriding - the defaults will be used for the other arguments.

Configuring the Agent to write to a local InfluxDB server (using the default
arguments) might look like this:

my_config = {
 'AGENT_CHANNEL_ARGS': {
 'port': 6500
 },
 'AGENT_PUBLISHER_TYPE': 'influxdb'
}
agent = kadabra.Agent(configuration=my_config)

A full list of the recognized configuration keys, descriptions of each, and
their default values for the client API and the Agent are provided below.

Client API

	CLIENT_DEFAULT_DIMENSIONS
	If specified, any collectors instantiated from the
client will have these dimensions upon
instantiation. Should be dictionary of strings to
strings. Default: {}

	CLIENT_TIMESTAMP_FORMAT
	The (Python-style) format to use for timestamps
when serializing metrics to be sent over the
channel. Must match the format of the agent that is
publishing those metrics.
Default: %Y-%m-%dT%H:%M:%S.%fZ

	CLIENT_CHANNEL_TYPE
	The type of the channel to use for transporting
metrics. Currently the only accepted value is
‘redis’. Default: redis

	CLIENT_CHANNEL_ARGS
	Dictionary of overrides for the default channel
arguments. Keys should match the argument names for
the channel constructor. You can specify any, all,
or none of the arguments to override; the defaults
will be used for any arguments that are not
overridden. Default: None

Agent

	AGENT_LOGGER_NAME
	The name of the logger that the agent will use
to log messages. Default:
kadabra.agent

	AGENT_CHANNEL_TYPE
	The type of the channel to use for receiving
metrics. Currently the only accepted value is
‘redis’. Default: redis

	AGENT_CHANNEL_ARGS
	Dictionary of overrides for the default channel
arguments. Keys should match the argument names
for the channel constructor. You can specify
any, all, or none of the arguments to override;
the defaults will be used for any arguments
that are not overridden. Default: None

	AGENT_PUBLISHER_TYPE
	The type of the publisher to use for
publishing metrics. The acceptable values are
‘debug’ and ‘influxdb’. Default: debug

	AGENT_PUBLISHER_ARGS
	Dictionary of overrides for the default
publisher arguments. Keys should match the
argument names for the publisher constructor.
You can specify any, all, or none of the
arguments to override; the defaults will be
used for any arguments that are not
overridden. Default: None

	AGENT_RECEIVER_THREADS
	The number of threads the agent will use for
publishing metrics from the channel.
Default: 3

	AGENT_NANNY_FREQUENCY_SECONDS
	How often the agent will check for metrics
that have been in-progress for a long time so
that they can be republished. Default:
30

	AGENT_NANNY_THRESHOLD_SECONDS
	How many seconds metrics must be in-progress
before they are considered in-progress for a
“long time” (and will be retried by the
nanny). Default: 60

	AGENT_NANNY_QUERY_LIMIT
	The maximum number of in-progress metrics that
the nanny will process at once. This is
necessary because the in-progress queue is
always changing, so the nanny must take a
“snapshot” of the currently in-progress
metrics. Default: 5000

	AGENT_NANNY_THREADS
	The number of threads the agent will use for
re-publishing metrics that have been
in-progress for a long time. Default: 3

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kadabra 0.0.1 documentation

Collecting Metrics

This section describes in detail the kinds of metrics you can gather in your
application using a MetricsCollector which can be
retrieved via the client’s metrics() method, and the
semantics of using the collector.

Dimensions

Dimensions are simply key-value pairs that allow you to
categorize and label metrics based on shared traits such as “environment”
(e.g. beta, prod) or “jobType” (e.g. notifyUsers, processData):

>>> metrics.set_dimension("name", "value")

Dimensions will apply to all counters and timers associated with the collector.

When you use a publisher such as the
InfluxDBPublisher you will publish metrics into
a database. For databases that support it, dimensions will become indexed fields
on your data, allowing you to efficiently query and filter on these dimensions.

Note that dimensions should never be tied to an “unbounded” domain of values
(like, for example, user ID). You should keep dimensions to a small domain of
known values to prevent your indexes from exploding in size.

Counters

Counters track floating point values identified by a key.
The collector’s add_count() method will
create a counter if it doesn’t exist or add a value to an existing counter.
Once the collector is closed and sent, only the final value will be reported
for each counter:

>>> metrics.add_count("myCount", 1)
>>> metrics.add_count("myCount", 3)
>>> closed = metrics.close()
>>> len(closed.counters)
1
>>> closed.counters[0].name
'myCount'
>>> closed.counters[0].value
4.0

This allows you to aggregate counts locally before publishing them as a single
metric.

Timers

Timers associate a key with a timedelta [https://docs.python.org/2/library/datetime.html#datetime.timedelta],
along with a Unit representing the offset from seconds that
the time should be reported in:

>>> metrics.set_timer("myCount", datetime.timedelta(seconds=30),\
 kadabra.Units.MILLISECONDS)

Common units are found in Units.

Timers can only be set; if you call
set_timer() with an existing key, the
timer will be overwritten with the new value.

Metadata

Metadata are also simple key-value pairs, but unlike dimensions they are not
meant to be indexed in a database. They provide a way to associate additional
context with your metrics without having to pay the storage costs associated
with indexing dimensions. Metadata is particularly useful for storing keys
with highly dimensional values (e.g. the user ID associated with a particular
metric), which you wouldn’t need to query/filter on later.

Metadata can be associated with individual counters or timers by passing in a
dictionary to the “metadata” argument when you record a counter or timer:

>>> metrics.add_count("myCount", 1.0, metadata={"name", "value"})
>>> metrics.set_timer("myCount", datetime.timedelta(seconds=30),\
 kadabra.Units.MILLISECONDS, metadata={"name", "value"})

If you specify metadata for an existing counter or timer, the previous
metadata will be completely replaced with the new metadata. If you have
specified previous metadata for a timer or counter and don’t specify metadata
on subsequent calls to add_count() or
set_timer() for the same counter or
timer, the previous metadata will remain.

The way metadata is ultimately handled depends on the publisher. For example,
the InfluxDBPublisher will transform the metadata
into fields for each measurement.

Note

Don’t use value or unit for metadata keys; these are reserved and
will be overwritten.

Timestamps

Because metric data may be published some time after the metric was originally
recorded, you will want to associate the timestamp of the metric with when it
was originally created, not when it gets published/writted to a database.
Otherwise your metric data may appear delayed and inaccurate.

By default, timestamps are associated with counters when they are first
created, and timers each time they are set. You can override this behavior by
passing your own datetime.datetime [https://docs.python.org/2/library/datetime.html#datetime.datetime] to the timestamp argument of
add_count() or
set_timer(), which will associate the
metric with that timestamp.

For example, if you wanted to set the timestamp for a metric to 5 minutes ago:

>>> metrics.add_count("myCount", 1, timestamp=\
 datetime.datetime.utcnow() - datetime.timedelta(minutes=5))

For existing timers, any time you set the timestamp it will replace whatever
timestamp already exists. However, if you try to set the timestamp for an
existing counter, it will only replace the current timestamp if you pass the
replace_timestamp parameter with a value of False:

>>> metrics.add_count("myCount", 1, timestamp=datetime.datetime.utcnow(),\
 replace_timestamp=True)

Because the timestamp defaults to “now” (in UTC) if unspecified, this allows
you to easily update the timestamp of a counter each time you add to it:

>>> metrics.add_count("myCount", 1, replace_timestamp=True)

If you don’t specify replace_timestamp the timestamp will remain at whatever
value was set when you first created the counter.

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kadabra 0.0.1 documentation

Sending Metrics

This section describes channels in more detail, including the philosophy behind
them and how they work internally. You won’t need to use channels directly;
rather you will configure one when you initialize your
Kadabra and Agent (and usually the defaults
are fine). You also don’t need to understand this section to use Kadabra; it’s
for those who are curious how the internals work.

Why channels?

You could publish metrics to a database directly from your application.
However, there are problems with this approach:

	It adds performance overhead. Usually the database will be on a different
server, which means you have to pay the cost for an extra network call
directly in your application.

	What happens if publishing fails? Should your application fail? Should it
silently ignore the metrics that failed to publish? Should it retry
publishing them? How many times should it retry?

	You may have multiple applications running on a single host that publish
metrics to the same database but with different cadences. You need to make
sure your database can handle the load without slowing down and impacting
your applications.

Channels solve these issues by providing temporary intermediate storage that
allows metrics to be published asynchronously with robust handling of failures.

To use a channel you need to set up the appropriate storage mechanism (e.g.
Redis server) and configure your client API and Agent to use it.

How Channels Work

Channels expose four methods:

	transport() pushes metrics into the intermediate storage. It is used by
Kadabra to send metrics for publishing.

	receive() pulls metrics from the intermediate storage. It is used by the
Agent to fetch metrics for publishing. It also moves the
metrics into a special “in-progress” queue, indicating that they are in the
process of being published.

	complete() marks metrics as successfully published, removing them from
intermediate storage. It is called by the Agent once metrics have been
successfully published.

	in_progress() queries metrics from the in-progress queue. It is used by
the Agent’s Nanny to retry metrics that have been
in progress for a long time (e.g. if they failed to publish because the
backing store experience an outage).

These mechanisms allow your application to efficiently queue metrics for
publishing (the performance of transport() is very fast) and enables to
agent to publish metrics asynchronously, and re-attempt publishing failures.

RedisChannel

The RedisChannel sends your metrics over a Redis
server at the host, port, and database that you specify. Redis is extremely
simple to set up, and provides great performance. The configuration values are:

	host: The host of the Redis server. I recommend just using localhost.
(Defaults to localhost)

	port: The port of the Redis server. (Defaults to 6379)

	db: The database on the Redis server to store the metrics before they are
published. I highly recommend using a dedicated database for Kadabra to
prevent collision with your application keys (if your application uses
Redis).

You can overwrite any or none of these values in the CLIENT_CHANNEL_ARGS
and AGENT_CHANNEL_ARGS configuration keys. For more information on how to
configure the client API and Agent see Configuration.

Note

Make sure your agent and client use the same channel type and
arguments. Otherwise your metrics will not get published!

Generally I recommend just running the Redis server locally on the host that is
running the application(s) from which you want to get metrics. In fact, you
should probably run it as part of your deployment stack. For more information
see Running in Production.

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kadabra 0.0.1 documentation

Publishing Metrics

Metrics are published by receiving them over the channel and calling the
publisher’s publish() method. This functionality is handled entirely by
the Agent. All you need to do is configure it and call
start() from a dedicated process. This section describes
the Agent in more detail as well as the different publishers that are available
to you.

Agent

The agent is a program that runs in a dedicated process. It reads metrics from
the configured channel and publishes them into the configured backing store,
completely independent of the application(s) that is/are sending metrics over
the channel.

The agent basically manages a Receiver and a
Nanny. The receiver manages a list of
ReceiverThreads which poll the channel for any metrics
that need to be published. The nanny periodically queries the the channel for
any metrics that are in the process of being published, and attempts to publish
any that have been in that state for a long time (over a certain threshold of
seconds) using NannyThreads.

This allows the agent to be robust to publishing failures, and be scaled
indepedently from your application (by increasing the number of receiver and
nanny threads as appropriate, depending on how often your application publishes
metrics).

One important implication from this design is that publishers should be
idempotent, meaning publishing the exact same metrics multiple times should not
impact your underlying database. For example, InfluxDB will not create a new
measurement if you publish metrics with the same timestamp, dimensions, names,
metadata, and values. This means that you will not end up with duplicated
metrics from the agent retrying to publish the same metrics multiple times.

DebugPublisher

The DebugPublisher simply takes a logger name, and
will log metrics (as serialized JSON) to the logger at the INFO level. This is
useful for ensuring that your metrics are being properly calculated and
reported by your application during development, before you use a publisher
that goes to a database.

InfluxDBPublisher

The InfluxDBPublisher sends metrics to InfluxDB [https://www.influxdata.com/time-series-platform/influxdb/], a powerful
open-source time series database. Each counter and timer will result in a
seperate measurement which has the name of the counter or timer.

For each measurement:

	Dimensions will become tags (which are indexed, making queries
for specific dimension values extremely fast)

	Counters will have a single field called value with the counter value

	Timers will have two fields: value which contains the timer value (as the
timedelta [https://docs.python.org/2/library/datetime.html#datetime.timedelta] seconds multiplied by the unit’s seconds offset)
and unit which is the name of the unit.

	Metadata will become additional fields (each key becomes a field’s name, and
each value becomes the field’s value).

The configuration values for this publisher are:

	host: The host of the InfluxDB server. (Defaults to localhost)

	port: The port of the InfluxDB server. (Defaults to 8086)

	database: The name of the InfluxDB database to use. Make sure you create
this database on the server before you start sending metrics to it! (Defaults
to kadabra)

	timeout: The timeout in seconds to wait for the InfluxDB server to respond
before failing to publish. (Defaults to 5)

You can overwrite any or none of these values in the AGENT_PUBLISHER_ARGS
configuration key. For more information on how to configure the Agent see
Configuration.

For a guide to use Kadabra with InfluxDB see Using with InfluxDB.

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kadabra 0.0.1 documentation

Using with InfluxDB

InfluxDB [https://www.influxdata.com/time-series-platform/influxdb/] is a
great open-source time-series database that works very well for storing
metrics. It is scalable, simple to use, and has an active developer
community. Plus, open-source dashboarding software such as Graphana [http://grafana.org/] includes plugins for InfluxDB, making it very easy to
create dashboards from your Kadabra metrics.

This section of the docs will help you set up Kadabra with a locally-running
instance of InfluxDB from scratch.

Install Kadabra and Redis

First, make sure you have installed Kadabra and have a locally running Redis
server by following the directions from Getting Started. Make sure you
can connect to Redis using the CLI:

=> redis-cli
127.0.0.1:6379> ping
PONG

Install and Run InfluxDB

Now you need to install the InfluxDB server by following the directions here [https://docs.influxdata.com/influxdb/latest/introduction/installation]. Make
sure the InfluxDB server is running and that you can connect to it using the
CLI:

⇒ influx
Visit https://enterprise.influxdata.com to register for updates, InfluxDB
server management, and monitoring.
Connected to http://localhost:8086 version 0.9.6.1
InfluxDB shell 0.9.6.1
>

Note that your InfluxDB might be a later version.

Create the Metrics Database

You will create the database that Kadabra will use to store metrics. The
easiest way to do this is through the command line:

> create database kadabra;
>

Make sure the database exists by switching to it (we will use this to see the
metrics we send shortly):

> use kadabra;
Using database kadabra
>

Configure and Run the Agent

Save the following into a file called run_agent.py:

import logging, sys, kadabra

handler = logging.StreamHandler(sys.stdout)

agent_logger = logging.getLogger("kadabra.agent")
agent_logger.setLevel("INFO")
agent_logger.addHandler(handler)

publisher_logger = logging.getLogger("kadabra.publisher")
publisher_logger.setLevel("INFO")
publisher_logger.addHandler(handler)

agent = kadabra.Agent(configuration={"AGENT_PUBLISHER_TYPE": "influxdb"})
agent.start()

The default arguments for the InfluxDBPublisher
target the InfluxDB server running locally on port 8086, using the kadabra
database.

Run the agent in its own terminal window:

python run_agent.py

Send Some Metrics

Let’s write a simple program that calculates the Nth fibonacci number, and
records some metrics. We’ll call it fib.py:

import kadabra, sys, datetime

client = kadabra.Kadabra()
metrics = client.metrics()
metrics.set_dimension("program", "fibonacci")

n = int(sys.argv[1])

start = datetime.datetime.utcnow()
a, b = 0, 1
for i in range(n):
 metrics.add_count("iterations", 1)
 a, b = b, a + b
end = datetime.datetime.utcnow()

metrics.set_timer("runTime", end - start, kadabra.Units.MILLISECONDS)
client.send(metrics.close())

print a

This program will take a single command line integer argument, calculate that
fibonacci number, and print it. But, it will also time how long this takes and
count the number of loop iterations (admittedly a silly metric, since it will
always be equal to N), and send these to InfluxDB.

Make sure the agent is running in a seperate terminal, and run the fibonacci
program with a reasonable number (like 30):

=> python fib.py 30
832040

See the Metrics in InfluxDB

Now let’s take a look at what ended up in InfluxDB. Using the CLI, let’s view
what measurements are available in our kadabra database:

> show measurements;
name: measurements

name
iterations
runTime

There are two measurements available, iterations and runTime
corresponding to the counter and timer we set in our application.

Let’s look at runTime:

> select * from runTime;
name: runTime

time program unit value
1479333981920492032 fibonacci milliseconds 0.828

time is the Unix epoch timestamp when the metric was created. program is
the dimension we set. It’s actually an indexed tag in InfluxDB, meaning we
could efficiently query for all the metrics that share the same program. The
unit tells us how to interpret the value: on my machine the fibonacci
program calculated the value in 0.828 milliseconds.

Now let’s take a look at iterations:

> select * from iterations;
name: iterations

time program value
1479333981919803904 fibonacci 30

This counter looks mostly the same as our timer, although there is only a
value field which is, as expected, equal to the value we passed in for N.

Next Steps

You’ve now used Kadabra to publish metrics into a real database suitable for
storing and querying! But the database is running locally, which isn’t
particularly helpful as your infrastructure starts to grow and incorporate
additional hosts. For deployment in a real production environment you’ll want
to host the InfluxDB server separately from your application hosts. It’s easy
to use any InfluxDB host with Kadabra; you just need to change the “host”
argument to the IP or DNS of the remote InfluxDB host.

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Kadabra 0.0.1 documentation

Running in Production

Kadabra’s client can be very easily integrated into your application’s code.
But how do you run the agent alongside your application in a production
environment? How do you ensure that when your application shuts down, the agent
shuts down gracefully without losing metrics?

You will typically want to run a long-running process like the agent under a
process control system such as supervisord [http://supervisord.org/]. Such a
program ensures that the agent is restarted if it is suddenly killed, and will
usually be part of your broader application deployment system for managing
other processes you might want to run on the same host.

Most of these systems will communicate to the processes under their control the
need to shutdown using operating system signals [https://en.wikipedia.org/wiki/Unix_signal#POSIX_signals]. The process that
runs the Kadabra agent should respond to these signals by calling the agent’s
stop() method, which gracefully shuts down the agent and
all associated threads, ensuring that none of them are killed in the process of
publishing metrics.

For example, you could use this simple program to run your agent:

from kadabra import Agent

import logging, sys, os, signal

agent = Agent()
signal.signal(signal.SIGINT, agent.stop)
signal.signal(signal.SIGTERM, agent.stop)
agent.start()

This will ensure that when the process control system sends a SIGINT or
SIGTERM signal to your agent process, it will shut down gracefully.

Note

Although this will prevent the agent from shutting down in the middle
of publishing metrics, it does not guarantee that the channel queues
will be completely empty. There may still be pending metrics,
depending on how often your application publishes metrics and how
fast the metrics get published. Thus it’s also a good idea to backup
your channel periodically so you can restore pending metrics when
your application starts up again. For example, if you use the
RedisChannel you can set up Redis
snapshots [http://redis.io/topics/persistence].

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Kadabra 0.0.1 documentation

API

This covers all the documentation for Kadabra’s various classes, including
the client API, Agent, Metrics, Channels, and Publishers.

Client

	
class kadabra.Kadabra(configuration=None)

	Main client API for Kadabra. In conjunction with the
MetricsCollector, allows you to collect metrics
from your application and queue them for publishing via a channel.

Typically you will use like so:

kadabra = Kadabra()
metrics = kadabra.metrics()
...
metrics.add_count("myCount", 1.0)
...
metrics.set_timer("myTimer", datetime.timedelta(seconds=5))
...
metrics.add_count("myCount", 1.0)
...
kadabra.send(metrics.close())

	Parameters:	configuration (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Dictionary of configuration to use in place of the
defaults.

	
metrics()

	Return a MetricsCollector initialized with
any dimensions as specified by the default dimensions. The collector
can be used to gather metrics from your application code.

	Return type:	MetricsCollector

	Returns:	A MetricsCollector instance.

	
send(metrics)

	Send a Metrics instance to this client’s configured channel
so that it can be received and published by the agent. Note that a
Metrics instance can be retrieved from a collector by calling its
close() method.

	Parameters:	metrics (Metrics) – The Metrics instance to be published.

	
class kadabra.client.MetricsCollector(timestamp_format, **dimensions)

	A class for collecting metrics. Once initialized, instances of this
class collect metrics by aggregating counts and keeping track of dimensions
and timers. Typically you won’t instantiate this class directly, but rather
retrieve an instance from the client’s metrics() method.

Counters are floating point values aggregated over the lifetime
of this object, and published as a single value (per counter name).

Timers will be a floating point value along with a unit.

A collector instance can be used to collect metrics until it is closed by
calling its close() method. After
close() has been called, this object can be safely published without the
possibility of “losing” additional metrics between the time it is closed
and the time it is published.

Although collector objects are thread-safe (meaning the same object can be
used by multiple threads), note that any threads that attempt to use a
collector instance after it has been closed will throw an exception.

	Parameters:	
	timestamp_format (string [https://docs.python.org/2/library/string.html#module-string]) – The format for timestamps when serializing into a
Metrics instance.

	dimensions (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Any dimensions that this object should be initialized
with.

	
add_count(name, value, timestamp=None, metadata=None, replace_timestamp=False)

	Add a new counter to this collector object, or add the value to an
existing counter if it already exists.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the counter.

	value (float [https://docs.python.org/2/library/functions.html#float]) – The floating point value to either initialize a new
counter with, or add to an existing one.

	timestamp (datetime [https://docs.python.org/2/library/datetime.html#datetime.datetime]) – The timestamp to use for when this count was
recorded. If unspecified, defaults to now (in UTC).

	metadata (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Any metadata to include with this counter as a
dictionary of strings to strings. These will be
included as unindexed fields for this counter in
certain metrics databases. Note that if you specify
this for an existing counter, it will completely
overwrite the existing metadata. However if you do not
specify it, the previous metadata for the counter will
remain unchanged.

	replace_timestamp (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether to replace the exisiting timestamp
for a counter if it already exists. This can
be set to True if you want to update the
timestamp when you add to an existing
counter.

	Raises:	CollectorClosedError – If this collector object has
already been closed.

	
close()

	Close this collector object and return an equivalent
Metrics object. After this method is called, you can no longer
set dimensions, set timers, or add counts to this object.

	Return type:	Metrics

	Returns:	A Metrics instance from the collector’s dimensions,
counters, and timers.

	Raises:	CollectorClosedError – Raised if this collector object
has already been closed.

	
set_dimension(name, value)

	Set a dimension for this collector object. If it already exists, it
will be overwritten with the new value.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the dimension to set.

	value (string [https://docs.python.org/2/library/string.html#module-string]) – The value of the dimension to be set.

	Raises:	CollectorClosedError – If this collector object has
already been closed.

	
set_timer(name, value, unit, timestamp=None, metadata=None)

	Set a timer value for this collector object using a
timedelta [https://docs.python.org/2/library/datetime.html#datetime.timedelta]. If it already exists, it will be
overwritten with the new value.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the timer to set.

	value (timedelta [https://docs.python.org/2/library/datetime.html#datetime.timedelta]) – The value to use for the timer.

	unit (Unit) – The unit to use for this timer. Common units are specified
in kadabra.Units.

	timestamp (datetime [https://docs.python.org/2/library/datetime.html#datetime.datetime]) – The timestamp to use for when this timer was
recorded. If unspecified, defaults to now (in UTC).

	metadata (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Any metadata to include with this timer as a
dictionary of strings to strings. These will be
included as unindexed fields for this timer in
certain metrics databases. Note that if you specify
this for an existing timer, it will completely
overwrite the existing metadata. However if you do not
specify it, the previous metadata for the timer will
remain unchanged.

	Raises:	CollectorClosedError – If this collector object has
already been closed.

	
class kadabra.client.CollectorClosedError

	Raised if you try to add metrics to or close a
MetricsCollector object that has already been
closed.

Agent

	
class kadabra.Agent(configuration=None)

	Reads metrics from a channel and publishes them (see
Publishers). The agent will spin up threads which listen
to the configured channel and attempt to publish the metrics using the
configured publisher. The agent will also periodically monitor the metrics
that have been in progress for a while and attempt to republish them.
Because the agent is meant to run indefinitely, side by side with your
application, it should be configured and started in a separate, dedicated
process.

Internally this object just manages a Receiver and
Nanny.

	Parameters:	configuration (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Dictionary of configuration to use in place of the
defaults.

	
start()

	Start the agent. It will receive metrics from the channel, publish
them, and attempt to republish metrics that have been pending for a
long time (in the case of publishing failures). The agent runs until
stopped; thus, you should call this method from a dedicated Python
process, as it will block until the process is killed, a keyboard
interrupt is detected, or the stop() method is
called.

	
stop(*args, **kwargs)

	Stop the Agent gracefully, ensuring that any pending publish
attempts are finished. This method accepts arbitrary arguments so that
it can be called from any context (such as a signal handler).

	
class kadabra.agent.Receiver(channel, publisher, logger, num_threads)

	Manages ReceiverThreads which receive metrics
from the channel, move them from the queue to in-progress, and attempt to
publish them. Publishing failures will result in the metrics remaining
in-progress and getting picked up by the Nanny
which will attempt to republish them.

	Parameters:	
	channel (Channels) – The channel to read metrics from. See
Channels.

	publisher (Publishers) – The publisher to use for publishing metrics. See
Publishers.

	logger (Logger [https://docs.python.org/2/library/logging.html#logging.Logger]) – The logger to use.

	num_threads (integer) – The number of threads to use for publishing metrics.

	
start()

	Start the receiver by starting up each
ReceiverThread.

	
stop()

	Stop the receiver by stopping each
ReceiverThread.

	
class kadabra.agent.ReceiverThread(channel, publisher, logger)

	Listens to a channel for metrics and publishes them.

	Parameters:	
	channel (Channels) – The channel to read metrics from. See
Channels.

	publisher (Publishers) – The publisher to use for publishing metrics. See
Publishers.

	logger (Logger [https://docs.python.org/2/library/logging.html#logging.Logger]) – The logger to use.

	
run()

	Run this thread until stopped.

	
stop()

	Stops this this thread, ensuring that the current run will be the
last one.

	
class kadabra.agent.Nanny(channel, publisher, logger, frequency_seconds, threshold_seconds, query_limit, num_threads)

	Monitors metrics that have been in-progress for a long time and attemps
to republish them. This object will periodically query objects in the
in-progress queue, and try to republish them if the time between now and
when they were serialized is greater than a threshold (indicating the first
attempt to publish the metrics failed). It will grab the first X elements
from the in-progress queue (where X is a configured value) and add them to
a queue, which NannyThreads will read from and
attempt to republish. If metrics are successfully published they will be
marked as complete.

	Parameters:	
	channel (Channels) – The channel to monitor.

	publisher (Publishers) – The publisher to use for republishing metrics.

	logger (Logger [https://docs.python.org/2/library/logging.html#logging.Logger]) – The logger to use.

	frequency_seconds (integer) – How often the Nanny should query the in_progress
queue.

	threshold_seconds (integer) – The threshold seconds to determine if metrics
should be attempted to be republished.

	query_limit (integer) – The maximum number of elements to query from the
in-progress queue for any given Nanny run. This is
necessary because the in-progress queue will constantly
be changing. Thus nanny needs to take a “snapshot”
rather than iterate through the queue.

	num_threads (integer) – The number of NannyThreads to
use for republishing.

	
start()

	Start the nanny by starting up each
NannyThread.

	
stop()

	Stop the nanny by stopping the Nanny from listening to the channela
nd by stopping each NannyThread.

	
class kadabra.agent.NannyThread(channel, publisher, queue, logger)

	Listens to a queue for metrics that have been in progress for a long
time and attempts to republish them. If the publishing is successful,
marks the metrics as complete.

	Parameters:	
	channel (Channels) – The channel to mark the metrics as complete upon successful
publishing.

	publisher (Publishers) – The publisher to be used to publish the metrics object.

	queue (Queue [https://docs.python.org/2/library/queue.html#module-Queue]) – The queue to monitor for metrics to republish.

	logger (Logger [https://docs.python.org/2/library/logging.html#logging.Logger]) – The Logger to log messages to.

	
run()

	Run this thread until stopped.

	
stop()

	Stops this this thread, ensuring that the current run will be the
last one.

Metrics

	
class kadabra.Dimension(name, value)

	Dimensions are used for grouping sets of metrics by shared components.
They are key-value string pairs which are meant to be indexed in the
metrics storage for ease of querying metrics.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the dimension.

	value (string [https://docs.python.org/2/library/string.html#module-string]) – The value of the dimension.

	
static deserialize(value)

	Deserializes a dictionary into a Dimension
instance.

	Parameters:	value (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The dictionary to deserialize into a
Dimension instance.

	Return type:	Dimension

	Returns:	A dimension that the dictionary represents.

	
serialize()

	Serializes this dimension to a dictionary.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Returns:	The dimension as a dictionary.

	
class kadabra.Counter(name, timestamp, metadata, value)

	A counter metric, which consists of a name and a floating-point
value.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the metric.

	timestamp (datetime [https://docs.python.org/2/library/datetime.html#datetime.datetime]) – The timestamp of the metric.

	metadata (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Metadata associated with this metric, in the form of
string-string key-value pairs. This metadata is meant to
be stored as non-indexed fields in the metrics storage.

	value (float [https://docs.python.org/2/library/functions.html#float]) – The floating-point value of this counter.

	
static deserialize(value, timestamp_format)

	Deserializes a dictionary into a Counter
instance.

	Parameters:	value (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The dictionary to deserialize into a
Counter instance.

	Return type:	Counter

	Returns:	A counter that the dictionary represents.

	
serialize(timestamp_format)

	Serializes this counter to a dictionary.

	Parameters:	timestamp_format (string [https://docs.python.org/2/library/string.html#module-string]) – The format string for this counter’s timestamp.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Returns:	The counter as a dictionary.

	
class kadabra.Timer(name, timestamp, metadata, value, unit)

	A timer metric representing an elapsed period of time, identified by a
datetime.timedelta [https://docs.python.org/2/library/datetime.html#datetime.timedelta] and a Unit.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the timer.

	timestamp (datetime [https://docs.python.org/2/library/datetime.html#datetime.datetime]) – The timestamp of the timer.

	metadata (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The metadata associated with the timer.

	value (timedelta [https://docs.python.org/2/library/datetime.html#datetime.timedelta]) – The value of the timer.

	unit (kadabra.Unit) – The unit of the timer value.

	
static deserialize(value, timestamp_format)

	Deserializes a dictionary into a Timer instance.

	Parameters:	value (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The dictionary to deserialize into a
Timer instance.

	Return type:	Timer

	Returns:	A timer that the dictionary represents.

	
serialize(timestamp_format)

	Serializes this timer to a dictionary.

	Parameters:	timestamp_format (string [https://docs.python.org/2/library/string.html#module-string]) – The format string for this timer’s timestamp.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Returns:	The timer as a dictionary.

	
class kadabra.Unit(name, seconds_offset)

	A unit, representing an offset from seconds. This is used by by
kadabra.Timers for unambiguous reporting of the timer’s value.

	Parameters:	
	name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the unit.

	seconds_offset (integer) – The offset of the unit relative to seconds.

	
static deserialize(value)

	Deserializes a dictionary into a Unit instance.

	Parameters:	value (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The dictionary to deserialize into a
Unit instance.

	Return type:	Unit

	Returns:	A unit that the dictionary represents.

	
serialize()

	Serializes this unit to a dictionary.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Returns:	The unit as a dictionary.

	
class kadabra.Units

	Container for commonly used units.

	
MILLISECONDS = <kadabra.metrics.Unit object>

	Unit representing milliseconds.

	
SECONDS = <kadabra.metrics.Unit object>

	Unit representing seconds.

	
class kadabra.Metrics(dimensions, counters, timers, timestamp_format='%Y-%m-%dT%H:%M:%S.%fZ', serialized_at=None)

	This class encapsulates metrics which can be transported over a channel,
and received by the agent. It should only ever be initialized (e.g.
instances are meant to be immutable). This guarantees correct behavior with
respect to the client (which transports the metrics) and the agent (which
receives and publishes the metrics).

	Parameters:	
	dimensions (list [https://docs.python.org/2/library/functions.html#list]) – Dimensions for this set of metrics.

	counters (list [https://docs.python.org/2/library/functions.html#list]) – Counters for this set of metrics.

	timers (list [https://docs.python.org/2/library/functions.html#list]) – Timers for this set of metrics.

	timestamp_format (string [https://docs.python.org/2/library/string.html#module-string]) – The format string for timestamps.

	serialized_at (string [https://docs.python.org/2/library/string.html#module-string]) – The timestamp string for when the metrics were
serialized, if they were previously serialized.

	
static deserialize(value)

	Deserializes a dictionary into a Metrics
instance.

	Parameters:	value (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The dictionary to deserialize into a
Metrics instance.

	Return type:	Metrics

	Returns:	A metrics that the dictionary represents.

	
serialize()

	Serializes this set of metrics into a dictionary.

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Returns:	The metrics as a dictionary.

Channels

	
class kadabra.channels.RedisChannel(host, port, db, logger, queue_key, inprogress_key)

	A channel for transporting metrics using Redis.

	Parameters:	
	host (string [https://docs.python.org/2/library/string.html#module-string]) – The host of the Redis server.

	port (int [https://docs.python.org/2/library/functions.html#int]) – The port of the Redis server.

	db (int [https://docs.python.org/2/library/functions.html#int]) – The database to use on the Redis server. This should be used
exclusively for Kadabra to prevent collisions with keys that
might be used by your application.

	logger (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the logger to use.

	
DEFAULT_ARGS = {'db': 0, 'host': 'localhost', 'inprogress_key': 'kadabra_inprogress', 'logger': 'kadabra.channel', 'queue_key': 'kadabra_queue', 'port': 6379}

	Default arguments for the Redis channel. These will be used by the
client and agent to initialize this channel if custom configuration
values are not provided.

	
complete(metrics)

	Mark metrics as completed by removing them from the in-progress
queue.

	Parameters:	metrics (Metrics) – The metris to mark as complete.

	
in_progress(query_limit)

	Return a list of the metrics that are in_progress.

	Parameters:	query_limit (int [https://docs.python.org/2/library/functions.html#int]) – The maximum number of items to get from the in
progress queue.

	Return type:	list [https://docs.python.org/2/library/functions.html#list]

	Returns:	A list of Metrics that are in progress.

	
receive()

	Receive metrics from the queue so they can be published. Once
received, the metrics will be moved into a temporary “in progress”
queue until they have been acknowledged as published (by calling
complete()). This method will
block until there are metrics available on the queue or after 10
seconds.

	Return type:	Metrics

	Returns:	The metrics to be published, or None if there were no metrics
received after the timeout.

	
send(metrics)

	Send metrics to a Redis list, which will act as queue for pending
metrics to be received and published.

	Parameters:	metrics (Metrics) – The metrics to be sent.

Publishers

	
class kadabra.publishers.DebugPublisher(logger_name)

	Publish metrics to a logger using the given logger name. Useful for
debugging.

	Parameters:	logger_name (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the logger to use.

	
DEFAULT_ARGS = {'logger_name': 'kadabra.publisher'}

	Default arguments for this publisher. These will be used by the
agent to initialize this publisher if custom configuration values are
not provided.

	
publish(metrics)

	Publish the metrics by logging them (in serialized JSON format) to
the publisher’s logger at the INFO level.

	Parameters:	metrics (Metrics) – The metrics to publish.

	
class kadabra.publishers.InfluxDBPublisher(host, port, database, timeout)

	Publish metrics by persisting them into an InfluxDB database. Series
will be created for each metric. Each metric name becomes a measurement
and dimensions become the tag set. A single field will be created called
‘value’ which contains the value of the counter or timer. Timers will have
an additional field called ‘unit’ which contains the name of the unit. Any
metadata will become additional fields, although note that ‘value’ is a
reserved name that will be overwritten for both metric types, and ‘unit’
will be overwritten for timers. For more information about InfluxDB see
the docs <https://docs.influxdata.com/influxdb>.

	Parameters:	
	host (string [https://docs.python.org/2/library/string.html#module-string]) – The hostname of the InfluxDB database.

	port (int [https://docs.python.org/2/library/functions.html#int]) – The port of the InfluxDB database.

	database (string [https://docs.python.org/2/library/string.html#module-string]) – The name of the database to use for publishing metrics
with this publisher. Note that this database must exist
prior to publishing metrics with this publisher - make
sure you set it up beforehand!

	timeout (int [https://docs.python.org/2/library/functions.html#int]) – The timeout to wait for when calling the InfluxDB database
before failing.

	
DEFAULT_ARGS = {'host': 'localhost', 'port': 8086, 'timeout': 5, 'database': 'kadabra'}

	Default arguments for this publisher. These will be used by the
agent to initialize this publisher if custom configuration values are
not provided.

	
publish(metrics)

	Publish the metrics by writing them to InfluxDB.

	Parameters:	metrics (Metrics) – The metrics to publish.

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Kadabra 0.0.1 documentation

 Python Module Index

 k

 			

 		
 k	

 	
 	
 kadabra	

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Kadabra 0.0.1 documentation

Index

 A
 | C
 | D
 | I
 | K
 | M
 | N
 | P
 | R
 | S
 | T
 | U

A

 	

 	add_count() (kadabra.client.MetricsCollector method)

 	

 	Agent (class in kadabra)

C

 	

 	close() (kadabra.client.MetricsCollector method)

 	CollectorClosedError (class in kadabra.client)

 	

 	complete() (kadabra.channels.RedisChannel method)

 	Counter (class in kadabra)

D

 	

 	DebugPublisher (class in kadabra.publishers)

 	DEFAULT_ARGS (kadabra.channels.RedisChannel attribute)

 	

 	(kadabra.publishers.DebugPublisher attribute)

 	(kadabra.publishers.InfluxDBPublisher attribute)

 	

 	deserialize() (kadabra.Counter static method)

 	

 	(kadabra.Dimension static method)

 	(kadabra.Metrics static method)

 	(kadabra.Timer static method)

 	(kadabra.Unit static method)

 	Dimension (class in kadabra)

I

 	

 	in_progress() (kadabra.channels.RedisChannel method)

 	

 	InfluxDBPublisher (class in kadabra.publishers)

K

 	

 	Kadabra (class in kadabra)

 	

 	kadabra (module)

M

 	

 	Metrics (class in kadabra)

 	metrics() (kadabra.Kadabra method)

 	

 	MetricsCollector (class in kadabra.client)

 	MILLISECONDS (kadabra.Units attribute)

N

 	

 	Nanny (class in kadabra.agent)

 	

 	NannyThread (class in kadabra.agent)

P

 	

 	publish() (kadabra.publishers.DebugPublisher method)

 	

 	(kadabra.publishers.InfluxDBPublisher method)

R

 	

 	receive() (kadabra.channels.RedisChannel method)

 	Receiver (class in kadabra.agent)

 	ReceiverThread (class in kadabra.agent)

 	

 	RedisChannel (class in kadabra.channels)

 	run() (kadabra.agent.NannyThread method)

 	

 	(kadabra.agent.ReceiverThread method)

S

 	

 	SECONDS (kadabra.Units attribute)

 	send() (kadabra.channels.RedisChannel method)

 	

 	(kadabra.Kadabra method)

 	serialize() (kadabra.Counter method)

 	

 	(kadabra.Dimension method)

 	(kadabra.Metrics method)

 	(kadabra.Timer method)

 	(kadabra.Unit method)

 	set_dimension() (kadabra.client.MetricsCollector method)

 	

 	set_timer() (kadabra.client.MetricsCollector method)

 	start() (kadabra.Agent method)

 	

 	(kadabra.agent.Nanny method)

 	(kadabra.agent.Receiver method)

 	stop() (kadabra.Agent method)

 	

 	(kadabra.agent.Nanny method)

 	(kadabra.agent.NannyThread method)

 	(kadabra.agent.Receiver method)

 	(kadabra.agent.ReceiverThread method)

T

 	

 	Timer (class in kadabra)

U

 	

 	Unit (class in kadabra)

 	

 	Units (class in kadabra)

 Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Kadabra 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Alex Landau.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

