

Welcome to Kubernetes & Docker suite documentation!

Overview

User guide

	Kubernetes Cluster guide

	Docker Interfaces Library guide

Developer guide

Indices and tables

Index

Docker support for Murano

Docker is an open-source project that automates the deployment of applications
inside software containers. Docker containers could be run either by the
Docker itself or by container management platforms that built on top of the
Docker and provide extra value to schedule and manage containers on multiple
hosts.

This folder contains needed abstractions and applications to develop and
run Docker applications:

	DockerInterfaceLibrary: library that defines a framework for building Docker
applications. It provides set of common interfaces and data structures
that are used by all Docker applications and Docker hosting services.
If you want to develop your own Docker application this is a good place to
start. See DockerInterfaceLibrary/README.rst for more details.

	DockerStandaloneHost: a regular Docker host. Docker containers are run on
a dedicated VM running docker software (require pre-built image with
docker and murano-agent).

	Kubernetes: an open source container cluster manager by Google. It allows
to schedule and run Docker applications on multiple clustered nodes.
Application both installs Kubernetes and provides capabilities to run
Docker applications similar to DockerStandaloneHost. See
Kubernetes/README.rst for more details.

	Applications: Examples of some of the most popular Docker applications.

Murano-deployed Kubernetes Cluster application

The Packages in this folder are required to deploy both Google Kubernetes and
the applications that run on top of it. The contents of each folder need to be
zipped and uploaded to the Murano Catalog.

Additionally it is required to build a proper image for Kubernetes.
This can be done using diskimage-builder [https://git.openstack.org/cgit/openstack/diskimage-builder]
and DIB elements [https://git.openstack.org/cgit/openstack/murano/tree/contrib/elements/kubernetes].
The image has to be named debian8-x64-kubernetes.qcow2

Overview of Kubernetes

Kubernetes is an open-source platform for automating deployment, scaling, and
operations of application containers across clusters of hosts.

For a more in-depth review of Kubernetes please refer to the official
documentation [http://kubernetes.io/v1.1/docs/user-guide/README.html].

How Murano installs/upgrades a Kubernetes Cluster

Installation

Minimum requirements for Openstack in order to deploy Kubernetes cluster with Murano:

	Openstack configured with Murano and Heat Services

	3 instances of m1.medium flavor (required for Master Node, Kubernetes Node,
Gateway Node)

	1 Floating IP for Gateway, in case required to expose applications outside

	2 Floating IPs for Master and Kubernetes Nodes to access kubectl CLI or
troubleshooting Master and Kubernetes Nodes.

A Kubernetes cluster deployed by Murano provisions 3 types of VMs that can be
observed in the Openstack Horizon Dashboard with this naming convention:

	Single Master Node (murano-kube-1) - which represents the Kubernetes
Control Plane and runs the API server, Scheduler and Controller Manager.
In the current implementation of Kubernetes Cluster deployed by Murano,
the Master Node is not running in HA mode. Additionally it is not possible
to schedule containers on the Master node.

	One or several Kubernetes Nodes (murano-kube-2..n) - Kubernetes worker nodes
that are responsible for running actual containers. Each Kubernetes Node runs
the Docker, kubelet and kube-proxy services.

	One or several Gateway nodes (murano-gateway-1..n) - used as an interconnection
between Kubernetes internal Networking and the OpenStack external network
(Neutron-managed). The Gateway node provides the Kubernetes cluster with
external endpoints and allows users and services to reach Kubernetes pods from
the outside. Each gateway node runs confd and HAProxy services. When the end
user deploys an application and exposes it via a service, confd automatically
detects it and adds it to the haproxy configuration. HAProxy will expose
the application via the floating IP of the Gateway node and required port.
If the user choses multiple Gateways, the result will be several endpoints for
the application, which can be registered in the physical load balancer or DNS.

	ETCD - Kubernetes uses etcd for key value store as well as for cluster
consensus between different software components. Additionally, if the Kubernetes
cluster is configured to run Calico networking, etcd will be configured to
support Calico configurations. In the current implementation of Kubernetes
Cluster deployed by Murano, the etcd cluster is not running on dedicated nodes.
Instead etcd is running on each node deployed by Murano. For example, if
Kubernetes Cluster deployed by Murano is running in the minimum available
configuration with 3 nodes: Master Node, Kubernetes Node and Gateway, then
etcd will run as a 3 node cluster.

Upgrade

Upgrade of Kubernetes Cluster components: In current implementation of
Kubernetes Cluster deployed by Murano, which uses binaries and hyperkube,
we do not provide a scenario to upgrade Kubernetes Cluster from a previous
version to a newer one. However, we are planning to introduce upgrade
capability in the coming releases of Murano Kubernetes application, by
introducing self-hosted architecture of the Kubernetes Cluster. This will
allow to perform Rolling Update of Kubernetes Cluster itself to the new version.

Framework to Update Murano Kubernetes Application to the new version:
Currently, Murano doesn’t support versioning of application as well as not
having a well-defined framework on how to perform an Upgrade of Murano
Applications. This also affects the possibility to enable Kubernetes Upgrades
via Murano. This is planned to be addressed in the coming release of Murano.

Rolling updates of application running inside of Kubernetes Cluster:
The Kubernetes Cluster deployed by Murano supports rolling updates with the
use of “Deployments” and “Replication Controllers (RC)” abstractions.
Please refer to the Rolling updates section of the Kubernetes application
for more details.

Features

Murano deployed Kubernetes Cluster supports following features:

	Networking: Calico by default, Flannel optional

	Container runtime: Docker

	Rolling updates of the Kubernetes application

	Publishing services: ClusterIP Type

Networking

Kubernetes Cluster deployed by Murano supports Calico networking by default.
Calico provides a highly scalable networking and network policy solution for
connecting Kubernetes pods based on the same IP networking principles as a
layer 3 approach.

Calico Networking deployed by Murano as CNI plugin contains following components:

	etcd - distributed key-value store, which ensures Calico can always build an
accurate network, used primerly for data storage and communication

	Felix, the Calico worker process, which primarily routes and provides desired
connectivity to and from the workloads on host. As well as provides the interface
to kernels for outgoing endpoint traffic

	BIRD, BGP client that exchanges routing information between hosts

	Confd, a templating process to auto-generate configuration for BIRD

	calicoctl, the command line used to configure and start the Calico service

See Project Calico [http://docs.projectcalico.org/en/latest/index.html] documentation
for more information.

Support for Flannel is disabled by default, but can be enabled as an option.
Flannel is simple overlay network that satisfies the Kubernetes requirements.
See flannel [https://github.com/coreos/flannel] documentation for more information.

Container runtime

A container runtime is responsible for pulling container images from a registry,
unpacking the container and running the application. Kubernetes by default
supports the Docker runtime. Recently in Kubernetes version 1.3 support for the
rkt runtime has been added. More runtimes are planned to be added in the future.
The Kubernetes Cluster deployed by Murano currently supports only the Docker
runtime, but we planning to add rkt runtime in close future.

Rolling updates of the Kubernetes application

The Kubernetes Cluster deployed by Murano supports rolling updates with the use
of “Deployments” and “Replication Controllers (RC)” abstractions. Rolling updates
using Deployments is the recommended way to perform updates. Rolling update via
Deployments provides following benefits over RC:

	Declarative way to control how service updates are performed

	Rollback to an earlier Deployment version

	Pause and resume a Deployment.

To use Rolling updates via Deployments refer to the Kubernetes documentation [http://kubernetes.io/docs/user-guide/deployments/#updating-a-deployment].

NOTE: Currently all applications deployed from the Apps Catalog have been
created as Replication Controllers (RC), so Rolling updates via Deployments
are not available for those applications.

If an application running as a Replication Controllers (RC) requires an update,
please refer to the Kubernetes documentation here [http://kubernetes.io/docs/user-guide/rolling-updates].

Interacting with the Kubernetes Cluster deployed by Murano

There are several ways to create and manage applications on Kubernetes cluster:

Using the Murano Environments view in Horizon:

Users can perform the following actions:

	Deploy/Destroy the Kubernetes Cluster

	Perform Kubernetes Cluster related actions such as scale Nodes and Gateways.

	Perform Kubernetes Pod related actions such as scale, recreate pods or restart Containers.

	Deploy selected Application from the Apps Catalog via the Murano Dashboard.

	Deploy any docker image from the Docker Hub using Docker Container apps from the Apps Catalog.

Using kubectl CLI:

You can also deploy and manage applications using the Kubernetes command-line
tool - kubectl from your laptop or any local environment:

	Download and install [http://kubernetes.io/docs/getting-started-guides/minikube/#install-kubectl] the kubectl executable based on OS of the choice.

	Configure kubectl context on the local environments:

	kubectl config set-cluster kubernetes --server=http://<kube1-floating_IP>:8080

	kubectl config set-context kubelet-context --cluster=kubernetes --user=""

	kubectl config use-context kubelet-context

	Verify kubectl Configuration and Connection:

	kubectl config view

	kubectl get nodes

The resulting kubeconfig file will be stored in ~/.kube/config and
can be sourced at any time afterwards.

Additionally, it is possible to access kubectl cli from Master Node (kube-1),
where kubectl cli is installed and configured by default.

NOTE: If the application has been deployed using kubectl CLI, it will be
automatically exposed outside based on the port information provided in
service yaml file. However, you will need to manually update the OpenStack
Security Groups configuration with the required port information in order to be
able reach the application from the outside.

KubernetesCluster

This is the main application representing Kubernetes Cluster.
It is responsible for deployment of the Kubernetes and its nodes.

The procedure is:

	Create VMs for all node types - 1 for Kubernetes API and requested number
for worker and gateway nodes.

	Join them into etcd cluster. etcd is a distributed key-value storage
used by the Kubernetes to store and synchronize cluster state.

	Setup Networking (Calico or Flannel) over etcd cluster. Networking uses
etcd to track network and nodes.

	Configure required services on master node.

	Configure worker nodes. They will register themselves in master nodes using
etcd.

	Setup HAProxy on each gateway node. Configure confd to watch etcd to
register public ports in HAProxy config file. Each time new Kubernetes
service is created it regenerates HAProxy config.

Internally KubernetesCluster contains separate classes for all node types.
They all inherit from KubernetesNode that defines the common interface
for all nodes. The deployment of each node is split into several methods:
deployInstance -> setupEtcd -> setupNode -> removeFromCluster as
described above.

KubernetesPod

KubernetesPod represents a single Kubernetes pod with its containers and
associated volumes. KubernetesPod provides an implementation of
DockerContainerHost interface defined in DockerInterfacesLibrary.
Thus each pod can be used as a drop-in replacement for regular Docker
host implementation (DockerStandaloneHost).

All pods must have a unique name within single KubernetesCluster
(which is selected for each pod).

Thus KubernetesCluster is an aggregation of Docker hosts (pods) which also
handles all inter-pod entities (services, endpoints).

KubernetesPod creates Replication Controllers rather than pods. Replication
Controller with replica count equal to 1 will result in single pod being
created while it is always possible to increase/decrease replica count after
deployment. Replica count is specified using replicas input property.

Pods also may have labels to group them (for example into layers etc.)

Kubernetes actions

Both KubernetesCluster and KubernetesPod expose number of actions that can
be used by both user (through the dashboard) and automation systems (through
API) to perform actions on the deployed applications.

See http://docs.openstack.org/developer/murano/draft/appdev-guide/murano_pl.html#murano-actions
and http://docs.openstack.org/developer/murano/specification/index.html#actions-api
for more details on actions API.

KubernetesCluster provides the following actions:

	scaleNodesUp: increase the number of worker nodes by 1.

	scaleNodesDown: decrease the number of worker nodes by 1.

	scaleGatewaysUp: increase the number of gateway nodes by 1.

	scaleGatewaysDown: decrease the number of gateway nodes by 1.

KubernetesPod has the following actions:

	scalePodUp: increase the number of pod replicas by 1.

	scalePodDown: decrease the number of pod replicas by 1.

	recreatePod: delete the pod and create the new one from scratch.

	restartContainers: restart Docker containers belonging to the pod.

Applications documentation

Documentation for KubernetesCluster application classes

KubernetesCluster

Represents Kubernetes Cluster and is the main class responsible for
deploying both Kubernetes and it’s nodes.

	isAvailable()

	Return whether masterNode.isAvailable() or not.

	deploy()

	Deploy Kubernetes Cluster.

	getIp()

	Return IP of the masterNode.

	createPod(definition, isNew)

	Create new Kubernetes Pod. definition is a dict of parameters, defining
the pod. isNew is a boolean parameter, telling if the pod should be
created or updated.

	createReplicationController(definition, isNew)

	Create new Replication Controller. definition is a dict of parameters,
definition of the pod. isNew is a boolean parameter,
telling if the pod should be created or updated.

	deleteReplicationController(id)

	Calls kubectl delete replicationcontrollers with given id on master node.

	deletePods(labels)

	Accepts a dict of labels with string-keys and string-values, that would
be passed to kubectl delete pod on master node.

	createService(applicationName, applicationPorts, podId)

	
	applicationName a string holding application’s name.

	applicationPorts list of instances of
com.mirantis.docker.ApplicationPort class.

	podId a string holding a name of the pod.

Check each port in applicationPorts and creates or updates it if the port
differs from what it was before (or did not exist). Calls
kubectl replace or kubectl create on master node.

	deleteServices(applicationName, podId)

	
	applicationName a string holding application’s name,

	podId a string holding a name of the pod.

Delete all of the services of a given pod, calling
kubectl delete service for each one of them.

	scaleRc(rcName, newSize)

	
	rnName string holding the name of the RC

	newSize integer holding the number of replicas.

Call kubectl scale rc on master node, setting number of replicas for a
given RC.

	scaleNodesUp()

	Increase the number of nodes by one ($.nodeCount up to the
len($.minionNodes)) and call .deploy().
Can be used as an Action.

	scaleGatewaysUp()

	Increase the number of gateways by one ($.gatewayCount up to the
len($.gatewayNodes)) and call .deploy().
Can be used as an Action.

	scaleNodesDown()

	Decrease the number of nodes by one ($.nodeCount up to 1)
and call .deploy().
Can be used as an Action.

	scaleGatewaysUp()

	Decrease the number of gateways by one ($.gatewayCount up to 1)
and call .deploy().
Can be used as an Action.

	restartContainers(podName)

	
	podName string holding the name of the pod.

Call restartContainers($podName) on each Kubernetes node.

KubernetesNode

Base class for all Kubernetes nodes.

	getIp(preferFloatingIp)

	Return IP address of the instance. If preferFloatingIp is False (default)
return first IP address found. Otherwise give preference to floating IP.

	deployInstance()

	Call .deploy() method of underlying instance.

KubernetesGatewayNode

Kubernetes Gateway Node. Extends KubernetesNode class.
All methods in this class are idempotent. This is achieved by memoizing the
fact that the function has been called.

	deployInstance()

	Deploy underlying instance.

	setupEtcd()

	Add current node to etcd config (by calling etcdctl member add) on
master node and start etcd member service on underlying instance.

	setupNode()

	Set up the node, by first setting up Calico or Flannel and
then setting up HAProxy load balancer on underlying instance.

	removeFromCluster()

	Remove current node from etcd cluster and call
$.instance.releaseResources(). Also clear up memoized values for
deployInstance, setupEtcd, setupNode, allowing you to call these
functions again.

KubernetesMasterNode

Kubernetes Master Node. Extends KubernetesNode class.
Most methods in this class are idempotent. This is achieved by memoizing the
fact that the function has been called.

	deployInstance()

	Deploy underlying instance.

	setupEtcd()

	Set up etcd master node config and launch etcd service on master node.

	setupNode()

	Set up the node. This includes setting up Calico or Flannel for master and
configuring and launching kube-apiserver, kube-scheduler and
kube-controller-manager services
on the underlying instance.

	isAvailable()

	Return whether underlying instance has been deployed.

KubernetesMinionNode

Kubernetes Minion Node. Extends KubernetesNode class.
All methods in this class are idempotent. This is achieved by memoizing the
fact that the function has been called.

	deployInstance()

	Deploy underlying instance.

	setupEtcd()

	Add current node to etcd config (by calling etcdctl member add) on
master node and start etcd member service on underlying instance.

	setupNode()

	Set up the node, by first setting up Calico or Flannel and
then joining the Kubernetes Nodes into the cluster. If dockerRegistry or
dockerMirror are supplied for underlying cluster, those are appended to
the list of docker parameters. If gcloudKey is supplied for underlying
cluster, then current node attempts to login to google cloud registry.
Afterwards restart docker and configure and launch kubelet and
kube-proxy services

	removeFromCluster()

	Remove current node from etcd cluster and call
$.instance.releaseResources(). Also clear up memoized values for
deployInstance, setupEtcd, setupNode, allowing you to call these
functions again.

	restartContainers(podName)

	
	podName string holding the name of the pod.

Filter docker containers on the node containing the specified podName in
their names and call docker restart command on them.

Docker Interface Library

This library provides 3 major things:

	DockerApplication: base class that all Docker applications must inherit.
Provides a way to define image name and docker container parameters.

	DockerContainerHost: interface for applications that provide Docker
application hosting capabilities. Docker applications use this interface
to deploy themselves on the Docker host.

	Data structures that are pass between DockerApplications and
DockerContainerHosts. They define things like volumes, ports etc.
Most important data structure is DockerContainer which describes the
container itself.

DockerApplication

This is the base class for all Docker applications. At minimum all inheritors
must provide an implementation of getContainer method. Everything else is
either optional or implemented in the base class.

It has the following properties:

	host: an instance of DockerContainerHost. This is the hosting provider
(DockerStandaloneHost, KubernetesPod, etc.) that applications should
be deployed to.

	applicationEndpoints: output property that is filled with application
endpoints after deployment. See below for exact format details.

Class also has the following methods:

	getContainer: returns an instance of DockerContainer class that describes
container information. Alternatively method can return a properties
dictionary that would automatically be converted to DockerContainer by
MuranoPL. This method must be implemented by inheritors!

	deploy: used to deploy Docker application on given DockerContainerHost.
This method is already implemented in this class and should not be overridden
by inheritors. It relies on the information returned by getContainer.

	getConnectionTo: used to get full endpoint for another Docker application’s
port when there is a need to connect two Docker applications.
Requires three parameters:

	application: an instance of DockerApplication that we want to
talk to.

	port: port number of the target application.

	protocol: TCP or UDP.

Returns a dictionary with two keys - host and port that represent the
endpoint. Note that target application must be deployed before calling this
method so it is advised to call deploy() first.

See DockerGrafana/DockerInfluxDB as an example or connected Docker
applications.

	onInstallationStart: a method that get get called when installation starts.
May be overridden by inheritor class to provide extra logging or reporting.

	onInstallationFinish: a method that get get called when installation ends.
May be overridden by inheritor class to provide extra logging or reporting.

DockerContainer

This is a data structure defining a Docker container.

It has the following properties:

	name: container name. Must be unique within single DockerContainerHost.
This is the same as application name for regular
applications.

	image: Docker image name.

	commands: optional list of shell commands to execute upon container start.

	env: a dictionary of environment key-values (inputs for Docker containers)

	ports: a list of ApplicationPort instances. This is a list of ports that
need to be opened/exposed by the container.

	volumes: an optional mapping that defines volumes that need to be mounted
into Docker container. Keys are the paths within container and values are
instances of DockerVolume.

	privileged: a flag that forces running container in privileged mode.

ApplicationPort

Defines a network port that need to be exposed by the application.
This is a structure with three properties:

	port: port number

	protocol: TCP or UDP

	scope: one of public, cloud, host or internal.
This property specifies the scope of port visibility: within the single
docker instance (on single server) - host, within single
DockerContainerHost - internal, single OpenStack cloud - cloud
or public for ports that are bind to public floating IP.

DockerVolume

Represents base class for Docker volumes. One of the two inheritors must be
used:

	DockerTempVolume: temporary storage space

	DockerHostVolume: a directory on the host machine that is mounted inside
container. The path on host server is specified by the path property
of DockerHostVolume.

DockerContainerHost

Defines an interface that all applications capable of hosting Docker
applications must implement. Currently there are two implementations of this
interface: DockerStandaloneHost and KubernetesPod.

It has the following property:

	name: name of the application instance.

It also has the following methods:

	hostContainer: Docker applications call this method to register Docker
containers on the Docker host during deployment. It accepts single argument -
container - an instance of DockerContainer class.

deleteContainer: deletes container from Docker host. Container is
identified by its name through name parameter.

getEndpoints: returns a list of endpoints for specified Docker container
Container is identified by its name through applicationName parameter.
See below on endpoint format specification.

getInternalScopeId: returns an common identifier for all Docker hosts
belonging to the same container manager (host aggregation used to group
together endpoints of internal scope.

Endpoint representation

Docker container hosts are responsible for management of application
endpoints. Application define what ports they want to expose and what
should be the scope of visibility for those ports. It is up to the host
to map those ports to ports on hosting server and OpenStack floating IPs.

Single port on the container might be accesses in different ways.
It usually it may be accessed using 127.0.0.1 address from other containers
on the same server, using internal IP from containers on the same cluster,
using internal OpenStack server IP from other servers in the same environment
or using floating IP for external access. Scope defines maximum level of
visibility in the order host -> internal -> cloud -> public.
Each subsequent scope extends the visibility for the previous one. So if
the application wants a public endpoint for its port the host allocates four
endpoints for that port starting from 127.0.0.1:port to access it from the
same server and up to FIP:port to access it from the Internet. Thus
each port/protocol pair results in 1-4 entries in applicationEndpoints list.

Each entry of that list is a dictionary that has the following keys:

	address: IP or hostname.

	port: port number that caller must use to access the application.

	scope: greatest visibility scope name for the endpoint.

	portScope: scope name for the port endpoint was allocated for. For example
if ApplicationPort had a ‘local` scope then two endpoints will be allocated
(host and local and each of them will have local in portScope).

	containerPort: port number inside the container.

	protocol: TCP or UDP. There can be two endpoints with the same port
number that differ only in protocol.

Tips on Docker applications development

	MuranoPL can automatically convert dictionaries to an instances of
appropriate class when passing it as an input to a function that has
proper class() contract on that value. Thus in most cases data structures
can be represented as a dictionaries of property name->value form rather
than as MuranoPL objects (thus no need to use new() function to construct
them)

	Use getConnectionTo method of DockerApplication to get endpoint to
access one docker application from another. If application A wants to talk
to application B then this method is called on A with an information about
what port of B it requires. The method is smart enough to return the nearest
endpoint. This if both A and B are located on the same server returned
endpoint will likely to have 127.0.0.1 as an address.

	Call deploy() on dependent applications before retrieving endpoints or
obtaining connections to it.

 nav.xhtml

 Table of Contents

 		
 Welcome to Kubernetes & Docker suite documentation!

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

