

 Navigation

 	
 index

 	jupyter_contrib_nbextensions stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/jupyter-contrib-nbextensions/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/jupyter-contrib-nbextensions/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	jupyter_contrib_nbextensions stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

src/jupyter_contrib_nbextensions/nbextensions/notify/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Notebook web notifications

Jupyter notebook extension to display a web notification to notify you when the
kernel becomes idle.
This can be useful when running tasks that take more than a couple of seconds
to complete.

The extension has been tested with the most recent versions of Firefox, Chrome
and Safari.

Initially, a button to request notification permissions is shown in the toolbar.
After notification permissions have been granted, this button is replaced by a
dropdown menu with five choices: Disabled, 0, 5, 10 and 30.
To activate notifications, select a minimum kernel busy time required to
trigger a notification (e.g. if selecting 5, a notification will only be shown
if the kernel was busy for more than 5 seconds). The selection is saved in the
notebook’s metadata and restored when the notebook is re-opened.

[image: notification]

Original Source

This extension originally comes from @sjpfenniger [https://github.com/sjpfenninger]‘s GitHub repository [https://github.com/sjpfenninger/ipython-extensions].

License

The MIT License (MIT)

Copyright (c) 2014 Stefan Pfenninger

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/latex_envs/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

(some) LaTeX environments for Jupyter notebook

This extension for IPython 3.x or Jupyter enables to use some LaTeX commands and environments in the notebook’s markdown cells.

		LaTeX commands and environments

		support for some LaTeX commands within markdown cells, e.g. \textit, \textbf, \underline

		support for theorem-like environments

		support for lists: enumerate, itemize,

		limited support for a figure environment,

		support for an environment listing,

		additional textboxa environment

		Citations and bibliography

		support for \cite with creation of a References section, rendering of references can be customized (to some extent)

		Document-wide numbering of equations, support for \label and \ref

		Configuration toolbar

		Styles can be customized in the latex_env.css stylesheet

More environments can be simply added in the source file (thmsInNb4.js).

The conversion directory contains scripts for converting the notebooks to html and LaTeX while taking into account the structures
enabled by the extension. Theses scripts require nodejs, perl, ipython3. Examples of such conversions are in the doc subdirectory that constains an example notebook and its html and pdf versions. This serves as the documentation.

Demo/documentation

A demo notebook latex_env_doc.ipynb is provided. Its html version is latex_env_doc.html [https://rawgit.com/jfbercher/latex_envs/master/doc/latex_env_doc.html] and a pdf resulting
from conversion to LaTeX is available as documentation [https://rawgit.com/jfbercher/latex_envs/master/doc/latex_env_doc.html].

Installation

You should follow the instructions in the wiki [https://github.com/ipython-contrib/jupyter_contrib_nbextensions/wiki].

		Manual installation: Clone the repository and then copy the files to the notebook extension directory, usually ~/.local/share/jupyter/nebextensions (Jupyter) or ~/.ipython/nbextensions (IPython 3.x). Copy the scripts in conversion/ to some directory (preferably in your path).

		Automated installation

An even more simple procedure is to issue

jupyter nbextension install https://rawgit.com/jfbercher/latex_envs/master/latex_envs.zip --user

at the command line.
Either load the extension from your custom.js or use a code cell with

%%javascript
require("base/js/utils").load_extensions("latex_envs/latex_envs")

You can automatically load the extension via

jupyter nbextension enable latex_envs/latex_envs

Disclaimer, sources and acknowledgments

Code certainly needs improvements. Contributions, comments, issues are most welcome and will be deeply appreciated.

The original idea and starting code come from a discussion here: https://github.com/benweet/stackedit/issues/187. Examples and code from https://github.com/ipython-contrib/jupyter_contrib_nbextensions were also used. The bibliography part was inspired by the nice extension icalico-document-tools [https://bitbucket.org/ipre/calico/downloads/].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/help_panel/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Description

Installing the extension adds a new button to the toolbar:

[image:]

On clicking the button, the notebook width is reduced and a side panel is displayed showing help.
The contents of the help panel are exactly the same as when going to Keyboard Shortcuts in the Help menu.

[image:]

You can drag the sidebar divider to resize it, or click the expand icon at the top left of the bar to get the help panel to expand to fill the screen:

[image:]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

src/jupyter_contrib_nbextensions/nbextensions/toc2/README.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Table of Contents (2)

Description and main features

The toc2 extension enables to collect all running headers and display them in a floating window, as a sidebar or with a navigation menu. The extension is also draggable, resizable, collapsable, dockable and features automatic numerotation with unique links ids, and an optional toc cell. Finally, the toc can preserved when exporting to html.

First demo:

[image:]

Second demo:

[image:]

The table of contents is automatically updated when modifications occur in the notebook. The toc window can be moved and resized. It can be docked as a sidebar or dragged from the sidebar into a floating window. The table of contents can be collapsed or the window can be completely hidden. The navigation menu can be enabled/disabled via the nbextensions configuration utility. It can also be resized. The position, dimensions, and states (that is ‘collapsed’ and ‘hidden’ states) are remembered (actually stored in the notebook’s metadata) and restored on the next session. The toc window also provides two links in its header for further functionalities:

		the “n” link toggles automatic numerotation of all header lines

		the “t” link toggles a toc cell in the notebook, which contains the actual table of contents, possibly with the numerotation of the different sections.

The state of these two toggles is memorized and restored on reload.

[image:]

Configuration

The initial configuration can be given using the IPython-contrib nbextensions facility. It includes:

		The toc initial mode (floating or sidebar)

		The maximum depth of headers to display on toc (with a default of 6)

		The state of the toc cell (default: false, ie not present)

		The numbering of headers (true by default).

The differents states and position of the floating window have reasonable defaults and can be modfied per notebook).

Export

It is possible to export (most of) table of contents functionalities to html. The idea is to link a relevant part of the javascript
extension and the css, and add a small script in the html file. This is done using a template by

jupyter nbconvert FILE.ipynb --template toc

or

jupyter nbconvert FILE.ipynb --template toc2

For the first template (toc), the files toc2.js and main.css (originally located in

<

python site-packages>

/jupyter_contrib_nbextensions/nbextensions/toc2) must reside in the same directory as intended for the html file. In the second template, these files are linked to the ipython-contrib/jupyter_contrib_nbextensions github website. Export configuration (parameters) shall be edited directly in the template files (in templates directory <

python site-packages>

/jupyter_contrib_nbextensions/templates). An option “Save as HTML (with toc)” is also provided in the File menu and enable to directly convert the actual notebook. This option requires the IPython kernel and is not present with other kernels.

Testing

		At loading of the notebook, configuration and initial rendering of the table of contents were fired on the event “notebook_loaded.Notebook”. It happens that the extension is sometimes loaded after this event. I now rely on a direct rendering at load and on a combination of “notebook_loaded.Notebook” and “kernel_ready.Kernel”.

		This extension also includes a quick workaround as described in https://github.com/ipython-contrib/jupyter_contrib_nbextensions/issues/429

History

		This extension was adapted by minrk https://github.com/minrk/ipython_extensions
from https://gist.github.com/magican/5574556

		Added to the ipython-contrib/jupyter_contrib_nbextensions repo by @JanSchulz

		@junasch, automatic update on markdown rendering,

		@JanSchulz, enable maths in headers links

		@jfbercher december 06, 2015 – Big update: automatic numbering, toc cell, window dragging, configuration parameters

		@jfbercher december 24, 2015 – nested numbering in toc-window, following the fix by @paulovn [https://github.com/minrk/ipython_extensions/pull/53] in @minrk’s repo. December 30-31, updated config in toc2.yaml to enable choosing the initial visible state of toc_window via a checkbox ; and now resizable.

		@slonik-az february 13, 2016. Rewritten toc numberings (more robust version), fixed problems with skipped heading levels, some code cleanup

		@jfbercher february 21, 2016. Fixed some issues when resizing the toc window. Now avoid overflows, clip the text and add a scrollbar.

		@jfbercher february 22, 2016. Add current toc number to headings anchors. This enable to get unique anchors for recurring headings with the same text. An anchor with the original ID is still created and can be used (but toc uses the new ones!). It is also possible to directly add an html anchor within the heading text. This is taken into account when building toc links (see comments in code).

		@jfbercher april 29, 2016. Triggered by @cqcn1991, cf discussion here [https://github.com/ipython-contrib/jupyter_contrib_nbextensions/issues/532], add a sidebar option. The floating toc window can be dragged and docked as a left sidebar. The sidebar can be dragged out as a floating window. These different states are stored and restored when reloading the notebook. Add html export capability via templates toc.tpl and toc2.tpl (see above).

		
		@jfbercher may 04, 2016. Added a “Save as HTML with toc” menu. Added a new “Navigate” menu with presents the contents of the toc. Changed default styling for links in tocs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/equation-numbering/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Description

Enable automatic equation numbering and reset numbering upon pressing toolbar button [image:].

A LaTeX equation like:

\begin{equation}
E = F \cdot s
\end{equation}

generates the numbered equation:[image:]

Internals

Equation numbering is activated this way:

MathJax.Hub.Config({
 TeX: { equationNumbers: { autoNumber: "AMS" } }
});

Equation numbers are reset and math equations rerendered using this code:

MathJax.Hub.Queue(
 ["resetEquationNumbers", MathJax.InputJax.TeX],
 ["PreProcess", MathJax.Hub],
 ["Reprocess", MathJax.Hub]
);

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/codefolding/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 This extension adds codefolding functionality from CodeMirror to a codecell.

After clicking on the gutter (left margin of codecell) or typing Alt+F, the code gets folded. See the examples below. The folding status is saved in the cell metadata of the notebook, so reloading of a notebook will restore the folding view.

Supported modes

Three different folding modes are supported:

Indent Folding

Python-style code folding, detetects indented code.
[image:]

The unfolded code above can be folded like this:

[image:]

or this:

[image:]

Bracket Folding

Other languages like Javascript use brackets to designate code blocks. Codefolding is supported for Javascript in using the %%javascript magic in a codecell.

Firstline Comment Folding

Allows collapsing of Python code cells to a single comment line. This is useful for long codecells. The algorithm simply looks for a comment in the first line and allows folding in the rest of the cell.

[image:]

The code above can be folded like this:

[image:]

Magics Folding

If you specify a magic in the first line of a cell, it can be folded, too.

[image:]

Folded:

[image:]

Internals

You need the current master branch from Codemirror in order to get codefolding to work. This is still very much work-in-progress.

The folding information is saved in the metadata of each codecell. The number of the folding start line (beginning with 0) is stored in an array:

cell.metadata.code_folding = [3, 20, 33]

When reloading the IPython notebook, the folding status is restored.

Exporting

To export a notebook containing folded cells you will need to apply a export template.
The template needs to be in a path where nbconvert can find it. This can be your local path or specified in
jupyter_nbconvert_config or jupyter_notebook_config as c.Exporter.template_path, see Jupyter docs [http://jupyter-notebook.readthedocs.io/en/latest/config.html].

For HTML export a template is provided as nbextensions.tpl in the jupyter_contrib_nbextensions templates directory. Alternatively you can create your own template:

{%- extends 'full.tpl' -%}

{% block input_group -%}
{%- if cell.metadata.hide_input -%}
{%- else -%}
{{ super() }}
{%- endif -%}
{% endblock input_group %}

{% block output_group -%}
{%- if cell.metadata.hide_output -%}
{%- else -%}
{{ super() }}
{%- endif -%}
{% endblock output_group %}

For LaTeX export a different template is required, which is included as nbextensions.tplx in the jupyter_contrib_nbextensions templates directory. Alternatively you can create your own template:

((- extends 'report.tplx' -))

((* block input_group -))
((- if cell.metadata.hide_input -))
((- else -))
(((super())))
((- endif -))
((endblock input_group *))

((* block output_group -))
((- if cell.metadata.hide_output -))
((- else -))
(((super())))
((- endif -))
((endblock output_group *))

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/latex_envs/conversion/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 This directory contains utilitary functions used to convert the notebook, with embedded LaTeX structures, to LaTeX or html.
Procedures are detailed in the documentation latex_env_doc.* and documentation.pdf.

Files

File | description
———————-|——————————————————–
header.tex | Header used for LaTeX compilation
ipynb_thms_to_html | Converter from ipynb to html
ipynb_thms_to_latex | Converter from ipynb to LaTeX
post_html_thms.js | Utilitary script used during ipynb –> html conversion
readme.md | This file
texheaders_rm.py | Utilitary script used during ipynb –> LaTeX conversion (removes header/footer)
thmInNb_tolatex.py | Utilitary script used during ipynb –> LaTeX conversion
thmsInNb_article.tplx | Template for LaTeX conversion (article style)
thmsInNb_book.tplx | Template for LaTeX conversion (book style)
thmsInNb.tpl | Template for html conversion

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/execute_time/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Description

This extension displays when the last execution of a code cell occurred, and
how long it took.

Every executed code cell is extended with a new area, attached at the bottom of
the input area, that displays the time at which the user sent the cell to the
kernel for execution.
When the kernel finishes executing the cell, the area is updated with the
duration of the execution.
The timing information is stored in the cell metadata, and restored on notebook
load.

[image:]

Toggling display

The timing area can be hidden by double clicking on it, or using the
Cell -> Toggle timings -> Selected
menu item.
The menu item
Cell -> Toggle timings -> All
hides (shows) all the timing areas in the notebook, if the first cell is
currently shown (hidden).

[image:]

Limitations

For a reason I don’t understand, when multiple cells are queued for execution,
the kernel doesn’t send a reply immediately after finishing executing each
cell.
Some replies are delayed, and sent at the same time as later replies, meaning
that the output of a cell can be updated with its finished value, before the
notebook recieves the kernel execution reply.
For the same reason, you can see this in the fact that the star for an
executing cell can remain next to two cells at once, if several are queued to
execute together.
Since this extension uses the times in the kernel message (see internals,
below), and these remain correct, the timings displayed are still accurate,
but they may get displayed later due to this kernel issue.

Installation

Install the master version of the jupyter_contrib_nbextensions repository as
explained in the
readme [https://github.com/ipython-contrib/jupyter_contrib_nbextensions#installation]
or in the
wiki [https://github.com/ipython-contrib/jupyter_contrib_nbextensions/wiki/].

Then you can use the /nbextensions config page to enable/disable this
extension for all notebooks.

Internals

The execution start and end times are stored in the cell metadata as ISO8601
strings, for example:

{
 "ExecuteTime": {
 "start_time": "2016-02-11T18:51:18.536796",
 "end_time": "2016-02-11T18:51:35.806119"
 }
}

The times in the timing areas are formatted using the
moment.js [http://momentjs.com/] library (already included as part of
Jupyter), but the durations use a custom formatting function, as
I (@jcb91 [https://github.com/jcb91])
couldn’t find an existing one that I liked.

The event execute.CodeCell is caught in order to create a start time, and add
the timing area with its ‘Execution queued at’ message.
The extension again uses moment.js [http://momentjs.com/] for formatting this
as an ISO string time.

To determine the execution time, the extension patches the Jupyter class
prototype CodeCell.prototype.get_callbacks from notebook/js/codecell.js.
This patch then patches the callbacks.shell.reply function returned by the
original CodeCell.prototype.get_callbacks, wrapping it in a function which
reads the msg.header.date value from the kernel message, to provide the
execution end time.
This is more accurate than creating a new time, which can be affected by
client-side variability.
In addition, for accurate timings, the start time is also revised using
the msg.metadata.started value supplied in the callback, which can be very
different from the time the cell was queued for execution (as a result of
other cells already being executed).
The kernel reply message times are already ISO8601 strings, so no conversion is
necessary, although again, moment.js [http://momentjs.com/] is used for
parsing and diff’ing them.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/toggle_all_line_numbers/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 This extension adds a toolbar button, along with an optional hotkey,
to toggle all cells’ line numbers on or off in one action.

Installation

Install the master version of the jupyter_contrib_nbextensions repository as
explained on the
main repository readme page [https://github.com/ipython-contrib/jupyter_contrib_nbextensions].

Then you can enable the extension by doing one of:

		Using the config page at the /nbextensions URL

		Running

%%javascript
Jupyter.notebook.config.update({
 "load_extensions": {
 "toggle_all_line_numbers/main": true
 }
});

from within the IPython notebook

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/navigation-hotkeys/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 Hotkeys in

Edit Mode

Hotkey	Description
—————–	———————————————————–
pageup	scroll page up
pagedown	scroll page down
Alt- +	Split cell and keep cursor position
Alt- -	Combine cell and keep cursor position
Alt-n	Toggle line number display in current codecell
Shift-Enter	Execute cell, goto next cell and stay in edit mode if next cell is a code cell or unredered markdown cell
Ctrl-Enter	Execute cell and stay in edit mode if cell is a code cell
Ctrl-y	toggle celltype between markdown and code

Command Mode

Hotkey	Description
————	————————–
esc	toggle to edit mode
home	Go to top of notebook
end	Go to bottom of notebook
pageup	scroll page up
pagedown	scroll page down

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/icon.png
®

_images/python-markdown-pre.png
In [14]:

In [15]:

In [16]:

Python Code in Markdown Cells
a = 2.123

The variable a is {{a}}.
b=Latex(r'sb = \frac{\epsilon}{2}$"')

‘You can also embed Latex: {{b}} in here!

from IPython.display import Image, SVG
i = Image(filename='mouse-toy.ipg');

Even images can be embedded: {{i}}.

_images/readme_shortcut_editor_blank.png
i Caa ey || TR TSR AR T I ARSI AR IR I Y T T Ll —'

Edit keyboard shortcut

Rebinding jupyter-notebook:change-cell-to-code from to:

c <new shortcut> press keys ng_)add to the shortcut

m Cancel

src/jupyter_contrib_nbextensions/nbextensions/dragdrop/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 This IPython notebook extension allows dragging&dropping images from the desktop or other programs into a notebook. A new markdown cell is created below the currently selected cell and the image is embedded.
The notebook has been tested with Firefox and Chrome.

A demo video showing drag&drop of images is here:
http://youtu.be/buAL1bTZ73c

Internals

The image will be uploaded to the server into the directory where your notebook resides. This means, the image is not copied into the notebook itself, it will only be linked to. The markdown cell in the notebook will contain this tag:

If you run nbconvert to generate a HTML file, this image will remain outside of the html file. You can embedd all images by calling nbconvert with the option --post=embed.EmbedPostProcessor. The file embed.py, located in the same directory of this extension needs to be in PYTHONPATH to be found.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/rubberband/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 Multi-Cell selection using a rubberband. This extension is only available for IPython version 3.x.

Description

The rubberband extension allows selecting multiple cells. Cells are selected by pressing shift or ctrl+shift + left mouse button click and dragging the rubber band over the cells.

		shift + left mouse button : select cells that are currently touched by the rubberband

		ctrl + shift + left mouse button : select cells that were touched by the rubberband

The ctrl+shift action is useful when scrolling inside the notebook. Scrolling is activated when the mouse reaches the upper or lower boundary of the notebook area. For now, the mouse has to be moved to achieve continuous scrolling.

A short video demonstrating the rubberband extension can be found here:
[image: screenshot] [http://youtu.be/TOPfWhqa3oI]

Two other extensions make use of this feature: exercise and chrome_clipboard.

Installation

Copy the contents of the rubberband directory to a new /nbextensions/rubberband directory of your user’s IPython directory.
Then you can manually load the extension from within the IPython notebook:

%%javascript
IPython.load_extensions('rubberband/main');

Or, for permanent installation instructions, please see the readme,
or the wiki [https://github.com/ipython-contrib/jupyter_contrib_nbextensions/wiki].

Internals

New metadata element added to each cell:

		cell.metadata.selected - means this cell is selected

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/hide_input_all/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 This extension allows hiding all codecells of a notebook. This can be achieved by clicking on the button toolbar:

[image:]

Typically, all codecells are shown with their corresponding output:

[image:]

Clicking on the “Toggle codecell display” toolbar button hides all codecells:

[image:]

Internals

The codecell hiding state is stored in the metadata IPython.notebook.metadata.hide_input.
If it is set to true, all codecells will be hidden on reload.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/collapsible_headings/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 Allows notebook to have collapsible sections, separated by headings.

Any markdown heading cell (that is, one which begins with 1-6 # characters),
becomes collapsible once rendered.

The collapsed/expanded status of the headings is stored in the cell metadata,
and reloaded on notebook load.

[image: screenshot]

Options

The extension offers a few options for how to display and toggle the collapsed
status of headings, each of which can be enabled, disabled or configured from
the nbextensions config page:

		Command-mode keyboard shortcuts, (enabled by default, and set to left and
right arrow keys to collapse/expand sections, or go to the previous/next
heading, plus shift-right to select a heading cell’s section).
Bindings are also configurable from the config page

		A toggle control in the input prompt area of each heading cell (as seen in
the screenshot below, enabled by default)
		Configurable icons and icon color for the toggle control (by default, grey
right/down carets are used)

		The option to make the toggle control into a button (by default it’s just a
clickable icon)

		Mathematica-style grouping brackets around each collapsible section on the
right of the notebook. Single-clicking a bracket will select all cells in the
section (hold shift to extend existing selection), while double-clicking the
bracket toggles the section’s collpased/expanded status (disabled by default)
		Bracket width is configurable, defaults to 10 (px)

		A gray bracketed ellipsis added to the end of each collapsed heading,
indicating hidden content (disabled by default)

		A toolbar button to collapse the nearest heading to the curently selected
cell (disabled by default)

css

The extension add the css class collapsible_headings_collapsed to each
collapsed heading cell, which you could use for custom css rules, such as
adding a bottom border to collapsed headings, to visually distinguish them a
bit more.

The toggle controls’ icons currently spin by 360 degrees when the heading gets
collapsed or uncollapsed, via a css transition property (not in IE).
If this annoys you,
you could turn it off using the following rule in your custom.css:

.cell .collapsible_headings_toggle .fa {
 transition: transform 0s;
}

Internals

Heading cells which are collapsed have a value set in the cell metadata, so
that

cell.metadata.heading_collapsed = true

The extension patches some Jupyter methods:

		TextCell.prototype.execute is patched to add/remove the toggle buttons,
as well as update the visibility of any cells below the new one.

		Notebook.prototype.select is patched to make sure any collapsed headings
which would be hiding the new selection get uncollapsed (expanded).

		Notebook.prototype.undelete and Notebook.prototype.delete_cells are
patched to trigger an update of which cells should be visible or hidden.

		Tooltip._show is patched to toggle the div.cell { position:relative; }
css rule of while the tooltip displays, as otherwise it interferes with the
tooltip’s position-determining logic. Since this method is not part of the
public API (leading underscore), this may break in future, but it should
fallback gracefully, with the result that the tooltip will appear at the top
of the notebook document, rather than where the cursor is currently.

The extension also patches two existing Jupyter actions: those triggered in
command mode by the up/down arrow keys. Ordinarily, these select the cell
above/below the current selection. Once patched by collapsible_headings, they
have the same behaviour, but skip over any cells which have been hidden (by a
collapsed heading, or, in fact, by any other mechanism).

Finally, collapsible_headings registers two new actions, namely
collapsible_headings:collapse_heading and
collapsible_headings:uncollapse_heading, which are used by the keyboard
shortcuts (if used), and can be called as with any other action.

The classes have been built into an nbconvert preprocessor, but I
(@jcb91 [https://github.com/jcb91]) don’t have any experience of nbconvert, so
I don’t know how well it works.
Currently, you’d need to enable the preprocessor in your config manually, as it
isn’t enabled by the repo installation.
If you have questions, comments, or would like alterations, get in touch and
I’ll see what I can do :)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/ruler/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 This extension enables the Ruler CodeMirror feature

Configuration

You can set the number of characters in the notebook extensions configration page or use the ConfigManager:

from IPython.html.services.config import ConfigManager
ip = get_ipython()
cm = ConfigManager(parent=ip)
cm.update('notebook', {"ruler_column": [80]})

Multiple Rulers

To specify multiple rulers, set the ruler_column to an list of values, for example

cm.update('notebook', {"ruler_column": [10, 20, 30, 40, 50, 60, 70, 80]})

A separate color and style can be specified for each ruler.

cm.update('notebook', {"color": ["#000000", "#111111", "#222222", "#333333", "#444444",
 "#555555", "#666666", "#777777", "#888888", "#999999"]})

Creating a repeating pattern for either color or style is as simple as giving a list shorter than the total number of rulers

cm.update('notebook', {"ruler_column": [10, 20, 30, 40, 50, 60, 70, 80]})
cm.update('notebook', {"color": ["#FF0000", "#00FF00", "#0000FF"]})
cm.update('notebook', {"style": ["dashed", "dotted"]})

will result in red, green, blue, red, green, blue, red, green, blue, red and alternating dashed, dotted

See here [http://www.w3schools.com/cssref/pr_border-left_style.asp] for other line styles

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/exercise/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 Copyright (c) IPython-Contrib Team.
Distributed under the terms of the Modified BSD License.

Exercises extensions – exercise and exercise2

These are two extensions for Jupyter, for hiding/showing solutions cells. They use the same approach and codebase and differ only by the type of cell widget used the show/hide the solutions. The two extensions can be used simultaneously. They require the rubberband extension to be installed and enabled.

The example below demonstrates some of the features of the exercise extensions.

		First, an solution or “details” cell is created by (a) selecting two cells with the rubberband and (b) clicking on the menu-button [exercise extension]

		Second, the two next cells are selected using the keyboard shortcut Shift-J and a solution is created using the shortcut Alt-D [exercise2 extension]

		Third, the two solutions are expanded by clicking on the corresponding widgets

		Fourth, the solutions are removed by selecting them and clicking on the buttons in the toolbar.

[image:]

The extensions provide

		a menubar button

		a cell widget – A plus/minus button in exercise and a sliding checkbox in exercise2.

The menubar button is devoted to the creation or removing of the solution. The solution consists in several consecutive cells that can be selected either by multicell selection (Shift-J (select next) or Shift-K (select previous) keyboard shortcuts –
Shift-up and Shift-down will probably work in a near future) or using the rubberband extension.

**Creating a solution **
Several cells being selected, pressing the menubar button adds a cell widget and hides the cells excepted the first one which serves as a heading cell. Do not forget to keep the Shift key pressed down while clicking on the menu button
(otherwise selected cells will be lost). It is also possible to use a keyboard shortcut for creating the solution from selected cells: Alt-S for exercise extension and Alt-D for exercise2.

Removing a solution If a solution heading (first) cell is selected, then clicking the menu bar button removes this solution and its solutions cells are shown. Using the keyboard shortcut has the same effect.

Showing/hiding solution At creation of the solution, the solution cells are hidden. Clicking the cell widget toggles the hidden/shown state of the solution.

Persistence The state of solutions, hidden or shown, is preserved and automatically restored at startup and on reload. <

Internals exercise and exercise2 add respectively a solution and solution2 metadata to solution cells, with for value the current state hidden/shown of the solution. For exercise, a div with the plus/minus character is prepended to the solution heading cell. For exercise2, a flex-wrap style is added to the solution heading cell and a checkbox widget, with some css styling, is appended to the cell.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/printview/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Description

This extension adds a toolbar button to call jupyter nbconvert for the current the notebook and optionally display the converted file in a
new browser tab.

[image: printview toolbar button]

Supported ouput types to display in a tab are html and pdf.

Parameters

nbconvert optionsOptions to pass to nbconvert.Default: --to html

To convert to PDF you can use --to pdf.
Using --to pdf --template printviewlatex.tplx as parameter, using a custom template generates a nice looking PDF document.
Note: Converting to PDF requires a Latex installation running on the notebook server.

open a new tab in the browser to display nbconvert output (forhtmlandpdfonly)After conversion, open a new tab. Only available when converting to html or pdf output format.

Note

If you use matplotlib plots and want to generate a PDF document, it is usefult to have the IPython backend generate high quality pdf versions of plots
using this code snippet:

ip = get_ipython()
ibe = ip.configurables[-1]
ibe.figure_formats = { 'pdf', 'png'}

Internals

The configuration is stored in the Jupyter configuration path nbconfig/notebook.js using two keys:
printview_nbconvert_options and printview_open_tab.

You can check the current configuration with this code snippet:

import os
from jupyter_core.paths import jupyter_config_dir, jupyter_data_dir
from traitlets.config.loader import Config, JSONFileConfigLoader

json_config = os.path.join(jupyter_config_dir(), 'nbconfig/notebook.json')
if os.path.isfile(json_config) is True:
 cl = JSONFileConfigLoader(json_config)
 config = cl.load_config()
 for k in config:
 if k.startswith('printview'):
 print("%s: %s" % (k, config[k]))

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/runtools/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 Runtools provide a number of additional functions for working with code cells in the IPython notebook:

Code Cell Execution

		Execute a single cell

		Execute from top cell to currently selected cell

		Execute from currently selected cell to bottom cell

		Execute all cells

		Execute all cells, ignore exceptions (requires https://github.com/ipython/ipython/pull/6521)

		Execute marked code cells (cells with green gutter area are marked)

		Stop execution (duplicate to standard toolbar button)

Code Cell Marking

		Mark one or more code cell

Code Cell Display

		Hide or show input (i.e. the source code) of marked code cells

		Hide or show output of marked code cells

Description

The runtools extension adds a button to turn on/off a floating toolbar:[image:]

This adds Code execution buttons:[image:]

Codecells can be marked by clicking on the gutter of a codecell or by clicking on the markers toolbar:[image:]

Marked codecells can be locked to read-only mode and moved upd and down:[image:]

The input and output areas of marked codecells can be hidden:[image:]

A IPython notebook with marked cells looks like this:
[image:]

Internals

New metadata elements added to each cell:

		cell.metadata.hide_input - hide input field of the cell

		cell.metadata.hide_output - hide output field of the cell

		cell.metadata.run_control.marked - mark a codecell

To export a notebook with hidden input/output fields, the custom template hide_input_output.tpl is required.
It should have been installed in the templates folder.
You can find the templates folder of jupyter_contrib_nbextensions from python using

from jupyter_contrib_nbextensions.nbconvert_support import templates_directory
print(templates_directory())

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/exercise/history.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 Update december 30, 2015:
(@jfbercher) Updated to jupyter notebook 4.1.x

Update december 22, 2015:
(@jfbercher)
Added the metadata solution_first to mark the beginning of an exercise. It is now possible to have several consecutive exercises.

October 21-27,2015:
(@jfbercher)

1- the extension now works with the multicell API, that is

		several cells can be selected either via the rubberband extension

		or via Shift-J (select next) or Shift-K (select previous) keyboard shortcuts
(probably Shit-up and down will work in a near future)
Note: previously, the extension required the selected cells to be marked with a “selected” key in metadata. This is no more necessary with the new API.
Then clicking on the toolbar button turns these cells into a “solution” which is hidden by default ** Do not forget to keep the Shift key pressed down while clicking on the menu button (otherwise selected cells will be lost)**
2- the “state” of solutions, hidden or shown, is saved and restored at reload/restart. We use the “solution” metadata to store the current state.
3- A small issue (infinite loop when a solution was defined at the bottom edge of the notebook have been corrected)
4- Added a keyboard shortcut (Alt-S with S for solution]

October-November 2014 (?):

Several versions (@juhasch)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/spellchecker/README.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 This extension provides a CodeMirror overlay mode to highlight incorrectly
spelled words in Markdown and Raw cells:

[image: screenshot.png]

It was inspired in part by
NextStepWebs/codemirror-spell-checker [https://github.com/NextStepWebs/codemirror-spell-checker/blob/78773ebdd6c8cf8acd043342023636ae345ca0f3/src/js/spell-checker.js]
at the
suggestion [https://github.com/ipython-contrib/jupyter_contrib_nbextensions/issues/521]
of @JanSchulz [https://github.com/JanSchulz].

Spellchecking

The actual spellchecking is performed by the
Typo.js [https://github.com/cfinke/Typo.js] library, which is included as a
dependency, with its own license.
Typo.js allows the use of
hunspell [https://en.wikipedia.org/wiki/Hunspell]-style dictionaries in a
javascript-based spellchecker.

Dictionaries

The dictionaries used by the extension are fetched according to the parameters.
To keep this repository lightweight, no dictionaries are incuded, and by
default the extension fetches an en_US dictionary from a cdn.
However, you can also add your own dictionaries for other languages, or to
remove dependency on the cdn.
To use your own dictionary, you’ll need to alter the .aff and .dic urls in
the extension config.
The urls can be relative (for files on your jupyter server) or absolute (for
files hosted elsewhere, e.g. on a cdn like the defaults).

This is probably easiest to understand with some explicit examples.
Let’s say I want to install a de_DE dictionary.
I can get the hunspell files from anywhere I like, but in this example I’m
going to use ones listed in the
chromium source distribution [https://chromium.googlesource.com/chromium/deps/hunspell_dictionaries/+/master],
which includes quite a lot of different languages.
I place my dictionary .aff and .dic files inside the nbextension, such that
the directory structure looks like the following:

spellchecker/
 README.md
 config.yaml
 main.css
 main.js
 screenshot.png
 typo/
 LICENSE.txt
 typo.js
 dictionaries/
 de_DE.aff
 de_DE.dic

Then, I need to set the urls in the config to give the location of the
dictinaries relative to the spellchecker/main.js file and starting with ./.
So, in this case, I would use ./typo/dictionaries/de_DE.aff and
./typo/dictionaries/de_DE.dic.

If you’ve installed the nbextension in the usual place (that is, the per-user
jupyter_data_dir() as done by the repo installation script), you can use the
following python snippet with the appropriate language code to fetch and save
the appropriate files, and configure the extension to use the newly-installed
language:

from __future__ import print_function
import os.path
import sys
import base64
from jupyter_core.paths import jupyter_data_dir
from notebook.services.config import ConfigManager

try:
 from urllib.request import urlopen # Py3
 from urllib.parse import urljoin
except ImportError:
 from urllib import urlopen # Py2
 from urlparse import urljoin

cm = ConfigManager()

remote_base_url = 'https://chromium.googlesource.com/chromium/deps/hunspell_dictionaries/+/master'
local_base_url = os.path.join(jupyter_data_dir(), 'nbextensions', 'spellchecker', 'typo', 'dictionaries')

lang_code = 'de_DE'

for ext in ('dic', 'aff'):
 dict_fname = lang_code + '.' + ext
 remote_path = remote_base_url + '/' + dict_fname + '?format=TEXT'
 local_path = os.path.join(local_base_url, dict_fname)

 print('saving {!r}\n to {!r}'.format(remote_path, local_path))
 with open(local_path, 'wb') as loc_file:
 base64.decode(urlopen(remote_path), loc_file)
 rel_path = './typo/dictionaries/' + dict_fname
 cm.update('notebook', {'spellchecker': {ext + '_url': rel_path}})

cm.update('notebook', {'spellchecker': {'lang_code': lang_code}})

The above is also included as part of the nbextension, and should be
available here.

Internals

Any mispelled word has the css class cm-spell-error applied to it, so you can
customize their styling in cutom.css if you’d like.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/move_selected_cells/README.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Move selected cells

This is a quick (and dirty) extension - move up or down several selected cells. Moving cells or series of cells via simple keystrokes can be super useful.

It is a bit dirty because it would be better to act on DOM elements and write a correct move_cells() function.

Cautionary note: It is very probable that such functionality will be available shortly in the official Jupyter notebook. But in the meantime, it could be useful to some people.

Keyboard shortcuts: Alt-up and Alt-down (works also with single cells!)

Cell selection: Cells can be selected using the rubberband (required extension) or via Shift-J and Shift-K

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/hide_input/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 This extension allows hiding of an individual codecell in a notebook. This can be achieved by clicking on the toolbar
button:
[image:]

Internals

The codecell hiding state is stored in the metadata cell.metadata.hide_input.
If it is set to true, the codecell will be hidden on reload.

To export a notebook with hidden cells using nbconvert, you need to add a custom template and a custom filter:

c = get_config()
c.Exporter.template_file = 'nbextensions'
c.Exporter.filters = {'strip_output_prompt': 'strip_output_prompt.strip_output_prompt'}

The template will respect the cell.metadata.hide_input flag, and the filter will remove the cell output prompt
that looks like Out[27]:. The filter is not used for PDF or LaTeX output.

If you want to keep the cell output prompt, you will have to change the line

 {{ super() | strip_output_prompt }}

to

 {{ super() }}

in the nbextensions.tpl file.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/skip-traceback/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Description

This extension hides Python tracebacks and only displays the error type an name.

Example

With extension enabled:

[image:]With extension disabled:
[image:]

After loading the extension, only newly executed cells are affected. Previous tracebacks will remain visible until the
corresponding cell is executed again.

If you press the button on the toolbar with the exclamation mark, you can temporarily turn on tracebacks again.

Internals

This extensions works by overriding the OutputArea.prototype.append_error function, replacing it with a new function
that only displays the error type and message.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/tree-filter/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Description

An extension that allows you to filter by filename in the Jupyter notebook file tree (aka dashboard) page.
Based on https://github.com/jdfreder/jupyter-tree-filter.git

[image:]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/scratchpad/README.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Scratchpad notebook extension

Adds a scratchpad cell to Jupyter notebook.
This is a cell in which you can execute code against the current kernel without modifying the notebook document.

Scratchpad cells can be executed using Shift-Enter (other shortcuts are appled to the notebook document). The scratchpad can be toggled by clicking the icon in the bottom-right, or via the keyboard shortcut Ctrl-B.

[image: demo]

Install

You can install with bower:

bower install --config.directory="$(jupyter --data-dir)/nbextensions" nbextension-scratchpad

Or clone the repo manually:

git clone git://github.com/minrk/nbextension-scratchpad
jupyter nbextension install nbextension-scratchpad

And enable the extension:

jupyter nbextension enable nbextension-scratchpad/main

You can disable the extension again:

jupyter nbextension disable nbextension-scratchpad/main

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/chrome-clipboard/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Description

This IPython notebook extension adds system clipboard actions for single or multiple cells.
It allows cut/copy/paste operation of notebook cells and images. Images will be saved to the directory where the
current notebook sits. There is currently no way to embed images in markdown cells, due to the google-caja sanitizer
used to prevent malicous code execution. Multi-cell operation is possible with the latest Jupyter version, or using the rubberband extension in this repository.

A demo showing single-cell copy & paste operating in Chrome is available on youtube:
http://youtu.be/iU9dNe4vMUY

[image: copy & paste extension on youtube] [http://youtu.be/iU9dNe4vMUY]

This extension works only for Chrome, as other browsers do not expose the system clipboard to Javascript.

Hotkey	Function
——–	——————————————-
CTRL+C	Copy cell to system clipboard
CTRL+X	Cut cell and copy to system clipboard
CTRL+V	Paste cell or image from system clipboard

Installation

You can manually load the extension from within the IPython notebook:

%%javascript
IPython.load_extensions('chrome_clipboard');

For installation instructions using the nbextensions config tool, please see the
Readme

Internals

Regarding copying notebook cells over the clipboard, they are stored as mime-type notebook-cell/json.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/gist_it/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 Publish notebooks as Github gists with a single button click!

Authentication

The extension works with no special settings, publishing anonymous,
non-modifiable gists.

To create gists owned by your Github user, or to modify existing gists (useful
for multiple revisions of a notebook!), you need to be authenticate with Github.

Anonymous

You can publish anonymous gists without any authentication (the default mode).
Anonymous gists can’t be edited, so every time you click the button, a new gist
is created.

Personal access tokens

At the moment, the only supported method of authentication is client-side,
using Github personal access tokens.

Important: using personal access token authentication only makes sense if
you are the only user of the notebook server, and control the server.
Otherwise, other users of the server may use your token
(either accidentally or maliciously) to create/edit/delete gists,
or exercise any other permissions you might have given to the token.
If the server is only for your personal use, then you can create a github
personal access token at https://github.com/settings/tokens.
It makes sense to only grant the token the minimum permissions (scopes)
necessary for the extension to work, in this case, the gists scope.
Once you’ve got your token from Github, enter it on the
extension configuration page for it to
be stored in the server config.

Full Github OAuth

Github’s full OAuth authentication
(which would be required to make this extension useful for authenticating users
in a multi-notebook setup)
requires some server-side code.
There are some issues with implementing this directly (
essentially related to a secret which the App server must know, and can’t be
published as part of open-source code, see here for details
) as a Jupyter extension.
I (@jcb91 [https://github.com/jcb91]) started writing this Gist it extension
to work with a 3rd-party authentication app, but didn’t finish it or test it,
so it’s not functional at the moment.
If you’d like to have the full OAuth model, I’d be happy to help with any
attempt you make - drop me a line on Github.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/keyboard_shortcut_editor/README.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 Copyright

©

 2015 IPython-Contrib Team.
Distributed under the terms of the Modified BSD License.

This extension allows you to edit or remove the default notebook keyboard
shortcuts, or create your own new ones.

Currently, this extension supports the editing of any shortcut provided by
Jupyter, with the exception of those provided by the CodeMirror editors, since
they use a different API.

To edit your keyboard shortcuts, open the keyboard shortcuts help dialog,
either by pressing h in command mode, or by selecting
help > keyboard shortcuts from the menu:

[image: keyboard shortcuts menu item]

When the extension has been loaded, each shortcut in the dialog will show a
small dropdown menu next to it, with items to remove or edit the shortcut:

[image: keyboard shortcut edit dropdown]

Clicking the edit item opens a second modal dialog, with a text input. While
the input has focus, you can press keys to form your combination. The reset
button (the curly arrow to the left hand side) allows you to clear any keys you
may input accidentally.

[image: the shortcut editor dialog]
[image: the shortcut editor dialog]

If you’d like to disable an existing shortcut, you can click the ‘Disable’
button on the dropdown. This will move the shortcut into a new section on the
dialog headed ‘disabled’. You can click the reset button next to disabled
shortcuts to re-enable them:

[image: re-enabling a disabled shortcut]

You can create new custom keyboard shortcuts using the link at the base of the
shortcut list for each mode:

[image: add a new keyboard shortcut]

This opens a dialog similar to the editor, with the addition of a select box
from which you can select the action which will be called:

[image: selecting an action for a new keyboard shortcut]

Limitations: problem shortcuts

Since this editor uses the same key-identification method as the notebook,
anything you can get it to recognise should (?!) work as a notebook shortcut,
even if it gets represented by the editor differently to the letters on your
actual, physical, keyboard. However, bear in mind that key identification is
not perfect, (this is a problem on the web in general), so it’s possible that
some combinations may not be identified by Jupyter at all. In such cases, the
editor should notify you:

[image: an unrecognised keypress]

In addition, the handling of shortcuts including commas is currently
compromised to the extent that they don’t really work properly, so the editor
also won’t accept anything with a comma in it:

[image: commas don't work properly!]

The dialog will also not accept a shortcut that would conflict with one which
already exists:

[image: conflicting keyboard shortcuts are not accepted]

If the conflicting shortcut is provided by Jupyter rather than CodeMirror, you
can of course disable it to prevent the conflict occurring.

Internals

The extension stores a record of the edits in use in the config, as a list
of objects for each mode. Those without a to key denote shortcuts to disable,
while those without a from key denote new shortcuts. For example:

// the config object with section name 'notebook' at the base URL
{
 ...
 "kse_rebinds": {
 // command-mode rebindings
 'command': [
 { // disable the default 'space' shortcut, which used to scroll the notebook down
 from: "space",
 action_name: "jupyter-notebook:scroll-notebook-down"
 },
 { // create a new shortcut 't,t' to trust the notebook
 action_name: "jupyter-notebook:trust-notebook",
 to: "t,t"
 },
 { // change the default save-notebook shortcut from 's' to 'shift-s'
 action_name: "jupyter-notebook:save-notebook",
 to: "shift-s",
 from: "s"
 }
],
 // edit-mode rebindings:
 "edit": [
 { // disable the default edit-mode binding which switches to command mode
 action_name: "jupyter-notebook:enter-command-mode",
 from: "ctrl-m"
 }
]
 },
 ...
}

The extension applies the shortcut edits when it is loaded, and in addition to
any shortcut registered subsequently, as detailed below.

Patches

The extension applies patches to two Jupyter class prototypes.
The method ShortcutManager.prototype.add_shortcut from base/js/keyboard,
is patched to ensure any appropriate edits are applied to any shortcuts which
get registered after the extension is loaded, for example by other notebook
extensions.

The QuickHelp.prototype.build_command_help and
QuickHelp.prototype.build_edit_help methods from notebook/js/quickhelp, are
patched to insert the dropdown menus, disabled shortcuts and other links.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/splitcell/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Split Cells for Jupyter/Ipython Notebooks

Enter command mode (esc), use shift-s to toggle the current cell to either a split cell or full width.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/skill/README.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

SKILL for Codemirror

This extension provides a SKILL mode for CodeMirror editor.

The extension adds a MIME type x-skill and a mode skill that can be
used with CodeMirror.

About SKILL

From Wikipedia [https://en.wikipedia.org/wiki/Cadence_SKILL]:
SKILL is a Lisp dialect used as a scripting language and PCell (parameterized
cells) description language used in many EDA software suites by Cadence Design
Systems (e.g. Cadence Allegro and Cadence Virtuoso)

Notes

This extension was written to enhance the Virtuoso kernel for Jupyter
(https://github.com/benvarkey/JuVi).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/search-replace/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Description

This extension provides a notebook-wide search & replace toolbar.

[image: before]

It uses the codemirror search and searchcursor add ons and allows search and replace operation through the
whole notebook.

Alternatively, a ‘Find an Replace’ feature is available in the Jupyter notebook itself.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/image2.gif
v hnset Cel Kemel Help

Y A v M B C varkdown v CellToolbar: None M

%javascript
equire("base/js/utils").load_extensions("usability/highlighter/highlighter")

he highlighter extension:

o Firstable, the extension provides several toolbar buttons for highlighting a selected te>
Three different " color schemes' are provided, which can be easily customized in the s
The last button enables to remove all highlightings in the current cell.

e This works both when the cell is rendered and when the cell is in edit mode;

In both modes, it is possible to highlight formatted portions of text (In rendered mod

its formatting, an heuristic is applied to find the best alignment with the actual text)

When no text is selected, the whole cell is highlighted;

o The extension also provides two keyboard shortcuts (Alt-G and Alt-H) which fire the
text.

src/jupyter_contrib_nbextensions/nbextensions/exercise2/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 Copyright (c) IPython-Contrib Team.
Distributed under the terms of the Modified BSD License.

Exercises extensions – exercise and exercise2

These are two extensions for Jupyter, for hiding/showing solutions cells. They use the same approach and codebase and differ only by the type of cell widget used the show/hide the solutions. The two extensions can be used simultaneously. They require the rubberband extension to be installed and enabled.

The example below demonstrates some of the features of the exercise extensions.

		First, an solution or “details” cell is created by (a) selecting two cells with the rubberband and (b) clicking on the menu-button [exercise extension]

		Second, the two next cells are selected using the keyboard shortcut Shift-J and a solution is created using the shortcut Alt-D [exercise2 extension]

		Third, the two solutions are expanded by clicking on the corresponding widgets

		Fourth, the solutions are removed by selecting them and clicking on the buttons in the toolbar.

[image:]

The extensions provide

		a menubar button

		a cell widget – A plus/minus button in exercise and a sliding checkbox in exercise2.

The menubar button is devoted to the creation or removing of the solution. The solution consists in several consecutive cells that can be selected either by multicell selection (Shift-J (select next) or Shift-K (select previous) keyboard shortcuts –
Shift-up and Shift-down will probably work in a near future) or using the rubberband extension.

**Creating a solution **
Several cells being selected, pressing the menubar button adds a cell widget and hides the cells excepted the first one which serves as a heading cell. Do not forget to keep the Shift key pressed down while clicking on the menu button
(otherwise selected cells will be lost). It is also possible to use a keyboard shortcut for creating the solution from selected cells: Alt-S for exercise extension and Alt-D for exercise2.

Removing a solution If a solution heading (first) cell is selected, then clicking the menu bar button removes this solution and its solutions cells are shown. Using the keyboard shortcut has the same effect.

Showing/hiding solution At creation of the solution, the solution cells are hidden. Clicking the cell widget toggles the hidden/shown state of the solution.

Persistence The state of solutions, hidden or shown, is preserved and automatically restored at startup and on reload. <

Internals exercise and exercise2 add respectively a solution and solution2 metadata to solution cells, with for value the current state hidden/shown of the solution. For exercise, a div with the plus/minus character is prepended to the solution heading cell. For exercise2, a flex-wrap style is added to the solution heading cell and a checkbox widget, with some css styling, is appended to the cell. A solution[.2]_first metadada is also added to enable an easy detection of the first cell in an “exercise” and then allow several consecutive exercises.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/notification.png
Scratchbook.ipynb
Kernel is now idle

(6 secs)

_images/runtools_move_lock.png
Runtools

Move marked Move marked Lock marked Unlock marked
cells down cells up cells cells

_images/readme_add_new_link.png
L WvdiliVel. WV TTVILMVV G LIV I Y T I

Keyboard shortcuts

D: scroll notebook down i

: Trust the current notebook o

+: Add a new,command-mode shortcut

@: View active’ command-mode shortcut edits

Edit Mode (press

Enter

to enable)

|:|: code completion or indent cm

_images/demo1.gif
B+ %

@ B A v N B C varkdown v = Celfoobar A 4

$MATPLOTLLD 1nllne

Introduction to Random S*~~~'~

Contents [-] v n t
Auteur: J.-F. Bercher Introduction to Random Signals
date: october, 2014 Notations

Last update: october, 2015 Fundamental properties
Stationnarity

Ergodism
Just as a random variable is a set of values asso Definition

random process, is a set of functions associated Examples of random signals
random variables, the study of random processe; White noise

(namely notions of correlation), the study the bel ~ Second order analysis

some optimal transformations.

Notations

o =

1dom ¢
to pro
ssintl
ons (fil

_images/hide_input_all_show.png
IPyl: Notebook

In

In

In

In

File

Edit

View

Insert

Cell

Untitled1 Last Checkpoint: May 21 22:10 (autosaved)

Kemel

B O x & B 4+ > EC

[31:

[41:

[51:

[6]:

This is a markdown cell.

print

1

print

print

print

wyn

Help

Markdown

v Cell Toobar: None

_images/runtools_show_hide.png
Runtools

Show input Hide input Show output Hide output
of codecell of codecell of code cell of code cell

_images/skip-traceback.png
In [1]: aaa

NameError: name 'aaa' is not defined

_images/codefolding_indent_folded_1.png
In [2]: v class MyClass(object):

This is a test class
win

> def afun(paraml):«<

_images/help_panel_ext.png
...,CHome x

{ _ Notebook Extension Confi. % / _ Untitled

>N {Josh}

& [N localhost:8888/notebooks/Untitled.ipynb

P

C J u pyter Untitled Last Checkpoint: 09/29/2015 (autosaved)

File

+

In [6]:

In [7]:

Edit

View Insert Cell Kernel Help

M E C Code 4

®x @B+ ¥

from jupyter core.paths import jupyter_data dir
print(jupyter_data_dir())

import notebook

from notebook.nbextensions import _get_nbext dir as
print(get_nbext_dir())

import os.path

/Users/josh/Library/Jupyter
/usr/local/share/jupyter/nbextensions

aaa
NameError Traceback
<ipython-input-7-5c9597£3c824> in <module>()
--—-> 1 aaa
NameError: name 'aaa’ is not defined
hello, this is a markdown cell.
L)
X s -
b =
o o

Cell Toolbar:

| Python2 O

None = &

& k| expand to fill window

The Jupyter Notebook has two different keyboard input modes. Edit mode
allows you to type code/text into a cell and is indicated by a green cell
border. Command mode binds the keyboard to notebook level actions and
is indicated by a grey cell border.
MacOS modifier keys:
Command

Control

Option

Command Mode (press

Esc| to enable)

: insert cell below
Eli cut selected cell

V|: paste cell above

enter edit mode
: open the
command palette

: run cell, select

: copy selected cell

below : paste cell below
run cell El: undo last cell
: run cell, insert deletion
below |E| ’ |E|: delete selected
to code cell
to markdown : merge selected
|E|: to raw cells

— B - —,

_images/readme_add_new_select_action.png
Edit keyboard shortcut Edit keyboard shortcut

Bind | select an action : Bin v select an action
A\ auto:toggle-output-autoscroll

jupyter-notebook:change-cell-to-code
jupyter-notebook:chang ell-to-heading-1
jupyter-notebook:change-cell-to-heading-2
jupyter-notebook:change-cell-to-heading-3
jupyter-notebook:change-cell-to-heading-4
jupyter-notebook:change-cell-to-heading-5
jupyter-notebook:change-cell-to-heading-6
jupyter-notebook:change-cell-to-markdown
jupyter-notebook:change-cell-to-raw

(& <new shortcut> press keys to add to the shortcut

Cancel

_images/image.gif
File Edit Insert Cell Kemel Help

B+ < & B 4 ¢ N B C coe v Cell Toolbar: lone v S © i

It is easy to check that the z-transform of h(n) = a" for lal > 1andn > 0 is
1
H@)=——
@ T—art
for Izl > lal.

Indeed, take the classical definition of the Z-transform and use the formula for the geometric ser

S 1- (@) 1
H(z) = 2 N — =
@ ,,Zou ¢ I—az™! 1—az!

provided that laz™!l < 1, that is Izl > lal.

Exercise 1 Using the function 1 filter, compute and plot the impulse response of the filter w

for instance a = 0.8. Compare it to theoretical impulse response h(n).

I (3]: from scipy.signal import 1filter
a=0.8
d=np.zeros((20)); dl0]=1
h=Ufilter([1],[1, -a],d)
_=plt.stem(h)

_images/codefolding_indent_folded_2.png
In [2]: »class MyClass(object):«

_images/magic-folded.png
In []:

» %%javascriptes

_images/readme_conflict.png
| L R R e A T IR AT AT TR T T

Edit keyboard shortcut

Rebinding jupyter-notebook:find-and-replace from |£| to:

c [r] press keys to add to the shortcut

x

|£| conflicts with the existing shortcut:

|£| jupyter-notebook:change-cell-to-raw

: to code

_images/execution-timings-box.png
File Edit View Insert Cell Kernel Help | Python2 @

In [1]: import time
import string
import random

def randword(delay=1, length=10):
time.sleep(delay)
return ''.join(
random.choice(string.lowercase)
for i in range(length)

)
Last executed 2016-02-17 13:39:49 in 5ms

In [2]: randword(0.5)
Last executed 2016-02-17 13:39:49 in 519ms

Out[2]: 'zsygaoxnhe'

In [3]: print(randword(3))
Last executed 2016-02-17 13:39:50 in 3.01s

aiskvdsoxf

In [*]: randword(2)

Execution queued at 2016-02-17 13:39:49

_images/codefolding_indent_unfolded.png
In [2]: ~cla:

This is a test class

v def afun(paraml):
" something gets computed here
return paraml**2

_images/magic-unfolded.png
In []: - %%javascript
var a = 1;
a = 2%a;

_static/up.png

_static/down.png

_static/up-pressed.png

src/jupyter_contrib_nbextensions/nbextensions/freeze/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Description

This extension allows to make cells read-only or frozen. If a cell is read-only, it can be executed, but its input cannot be changed. Frozen cells cannot be either altered or executed.

To change cells’ state, select them and press corresponding button.

Cell’s state is stored in its metadata and is applied to the cell if the extension is loaded.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/slidemode/slidemode2/README.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Legacy Slidemode

This folder contains the legacy slidemode

Put the following in your custom.js

// Slidemode
require(['nbextensions/slidemode/main','base/js/events'], function(slidemode, events){
 events.on('app_initialized.NotebookApp', function(){
 slidemode.init();
 });
});
// end slidemode

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/highlighter/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

The highlighter extension:

		Firstable, the extension provides several toolbar buttons for highlighting a selected text within a markdown cell. Three different `color schemes’ are provided, which can be easily customized in the stylesheet highlighter.css. The last button enables to remove all highlightings in the current cell.

		This works both when the cell is rendered and when the cell is in edit mode;

		In both modes, it is possible to highlight formatted portions of text (In rendered mode, since the selected text loose its formatting, an heuristic is applied to find the best alignment with the actual text)

		When no text is selected, the whole cell is highlighted;

		The extension also provides two keyboard shortcuts (Alt-G and Alt-H) which fire the highlighting of the selected text.

		Highlights can be preserved when exporting to html or to LaTeX – details are provided in export_highlights [https://rawgit.com/jfbercher/small_nbextensions/master/usability/highlighter/export_highlights.html]

[image:]

Installation:

The extension can be installed with the nice UI available on jupyter_nbextensions_configurator website, which also allows to enable/disable the extension.

You may also install the extension from the original repo: issue

jupyter nbextension install https://rawgit.com/jfbercher/small_nbextensions/master/highlighter.zip --user

at the command line.

Testing:

Use a code cell with

%%javascript
require("base/js/utils").load_extensions("highlighter/highlighter")

Automatic load

You may also automatically load the extension for any notebook via

jupyter nbextension enable highlighter/highlighter

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/limit_output/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 This extension limits the number of characters a codecell can output as text. This also allows to interrupt endless loops.

[image: Demo Video] [https://youtu.be/U26ujuPXf00]

You can set the number of characters using the ConfigManager:

from notebook.services.config import ConfigManager
cm = ConfigManager().update('notebook', {'limit_output': 1000})

or by using the jupyter_nbextensions_configurator [https://github.com/Jupyter-contrib/jupyter_nbextensions_configurator]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/jupyter_contrib_nbextensions/nbextensions/python-markdown/readme.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Description

The Python Markdown extension allows displaying output produced by the currently kernel
in markdown cells. The extensions is basically agnostic to the kernel language, however most
testing has been done using Python.

For example:
If you set variable a in Python

a = 1.23

and write the following line in a markdown cell:

a is {{a}}

It will be displayed as:

a is 1.23

[image: Demo Video] [https://youtu.be/_wLwLsgkExc]

The notebook needs to be trusted in order to execute Python commands in markdown.
This is indicated by the “trusted” check mark:

[image: trusted]

If you see the “unstrusted” question mark, use File->Trust Notebook in the menu.

Caution: If you trust a notebook, you allow it to execute any code that is contained between the {{...}}
curly braces on your notebook server.

Further examples

Before rendering the markdown cell:

[image: before]

After rendering the markdown cell:

[image: after]

Code is only executed when the notebook is trusted. So if your original code is shown as
rendered markdown output, please make sure your notebook is trusted. You can check if the notebook
is trusted by looking at the check mark at the top of the window.

Caution: There is no restriction in the expression you can embedd between the curly braces {{ }}.
Be careful as you might crash your browser if you return too large datasets, or worse.

Exporting

In order to have nbconvert show the computed output when exporting to another format,
use the pre_pymarkdown.py preprocessor. If you used the python setup.py install command to install the
IPython-contrib extension package, this will already be installed.

For manual setup, you need to copy this file to a location within the Python path (or extend PYTHONPATH).
Additionally, you need to add these two lines to your jupyter_nbconvert_config.py configuration file:

c = get_config()
c.Exporter.preprocessors = ['pre_pymarkdown.PyMarkdownPreprocessor']

Internals

The extension overrides the textcell.MarkdownCell.prototype.render function and searches for the expression enclosed
in double curly braced {{ <expr> }}. It then executes the expression and replaces it with the result returned from
the running kernel, embedded in a tag.
Additionally, the result is saved in the metadata of the markdown cell, i.e. cell.metadata.variables[varname].
This stored value is displayed when reloading the notebook and used for the nbconvert preprocesser.

The preprocessor pre_pymarkdown.PyMarkdownPreprocessor allows nbconvert to display the computed variables
when converting the notebook to an output file format.

Unfortunately, embedding in LaTeX is not supported currently, as computing expressions between the curly braces
and rendering LaTeX equations is happening asynchronously, and it is difficult to handle this in a consistent way.
Ideas or pull request to implement this functionality are welcome.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/readme_reset_disabled.png
N N ‘_[10CallNOSL.O00O/TIOICDOORS/UTIULCA.IPYND

X
I

Keyboard shortcuts

mo|.

[
i

+:
@:

Disabled:

N e >
close the pager d

: scroll notebook up d
Add a new command-mode shortcut

View active command-mode shortcut edits

D: scroll notebook down

Edit Mode (press |Enter

to enable) Restore

README.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

Jupyter notebook extensions

[image: Join the chat at https://gitter.im/ipython-contrib/jupyter_contrib_nbextensions] [https://gitter.im/ipython-contrib/jupyter_contrib_nbextensions?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge] [image: GitHub issues] [https://github.com/ipython-contrib/jupyter_contrib_nbextensions/issues]

[image: Travis-CI Build Status] [https://travis-ci.org/ipython-contrib/jupyter_contrib_nbextensions] [image: Appveyor Build status] [https://ci.appveyor.com/project/jcb91/ipython-notebook-extensions-ynb9f] [image: Coveralls python test coverage] [https://coveralls.io/github/ipython-contrib/jupyter_contrib_nbextensions] [image: Codecov python test coverage] [https://codecov.io/gh/ipython-contrib/jupyter_contrib_nbextensions]

[image: GitHub tag] [https://github.com/ipython-contrib/jupyter_contrib_nbextensions] [image: Github All Releases] [https://github.com/ipython-contrib/jupyter_contrib_nbextensions] [image: PyPI] [https://pypi.python.org/pypi/jupyter_contrib_nbextensions] [image: PyPI] [https://pypi.python.org/pypi/jupyter_contrib_nbextensions]

This repository contains a collection of extensions that add functionality to the Jupyter notebook.
These extensions are mostly written in Javascript and will be loaded locally in
your browser.

The IPython-contrib repository is maintained independently by a group of users and developers and not officially related
to the IPython development team.

The maturity of the provided extensions varies, so please
create an issue [https://github.com/ipython-contrib/jupyter_contrib_nbextensions/issues/new]
at the project’s
github repository [https://github.com/ipython-contrib/jupyter_contrib_nbextensions]
if you encounter any problems.

IPython/Jupyter version support

Version	Description
————-	————————————————————————————————
IPython 2.x	checkout 2.x branch [https://github.com/ipython-contrib/jupyter_contrib_nbextensions/tree/2.x]
IPython 3.x	checkout 3.x branch [https://github.com/ipython-contrib/jupyter_contrib_nbextensions/tree/3.x]
Jupyter 4.x	checkout master branch [https://github.com/ipython-contrib/jupyter_contrib_nbextensions/]

There are different branches of the notebook extensions in this repository.
Please make sure you use the branch corresponding to your IPython/Jupyter version.

Documentation

In the 4.x Jupyter repository, all extensions that are maintained and active
have at least a yaml file to allow them being configured using the
jupyter_nbextensions_configurator [https://github.com/Jupyter-contrib/jupyter_nbextensions_configurator]
server extension, which is installed as a dependency of this package.
Most also have a markdown readme file for documentation.
The jupyter_nbextensions_configurator server extension shows an nbextensions
tab on the main notebook dashboard (file tree page) from which you can see each
nbextension’s markdown readme, and configure its options.
To view documentation without installing, you can browse the nbextensions
directory to read markdown readmes on github at
https://github.com/ipython-contrib/jupyter_contrib_nbextensions/tree/master/src/jupyter_contrib_nbextensions/nbextensions.

For older releases (2.x and 3.x), look at the Wiki [https://github.com/ipython-contrib/jupyter_contrib_nbextensions/wiki]

Some extensions are not documented. We encourage you to add documentation for them.

Installation

To install notebook extensions, three steps are required. First, this Python package needs to be installed.
Then, the notebook extensions themselves can be copied to the Jupyter data directory.
Finally, the installed notebook extensions can be enabled, either by using built-in Jupyter commands,
or more convenient by using the jupyter_nbextensions_configurator server extension.

The Python package installation step is necessary to allow painless installation of the extensions togther with
additional items like nbconvert templates, pre-/postprocessors, and exporters.

		Install the python package

All of the nbextensions in this repo are provided as parts of a python package,
which is installable in the usual manner, using pip or the setup.py script.
You can install directly from the current master branch of the repository

pip install https://github.com/ipython-contrib/jupyter_contrib_nbextensions/tarball/master

All the usual pip options apply, e.g. using pip’s --upgrade flag to force an
upgrade, or -e for an editable install.

You can also install from a cloned repo, which can be useful for development.
You can clone the repo using

git clone https://github.com/ipython-contrib/jupyter_contrib_nbextensions.git jupyter_contrib_nbextensions

Then perform an editable pip install using

pip install -e jupyter_contrib_nbextensions

		Install javascript and css files

This step copies the nbextensions javascript and css files into the jupyter
server’s search directory. A jupyter subcommand is provided which installs
all of the nbextensions files:

jupyter contrib nbextension install --user

The command is essentially a wrapper around the notebook-provided
jupyter nbextension, and can take most of the same options, such as --user
to install into the user’s home jupyter directories, --system to perform
installation into system-wide jupyter directories, sys-prefix to install into
python’s sys.prefix, useful for instance in virtual environments, and
--symlink to symlink the nbextensions rather than copying each file
(recommended).

An analogous uninstall command is also provided, to remove all of the
nbextension files from the jupyter directories.

		Enabling/Disabling extensions

To use an nbextension, you’ll also need to enable it, which tells the notebook
interface to load it. To do this, you can use a Jupyter subcommand:

jupyter nbextension enable <nbextension>

for example,

jupyter nbextension enable codefolding/main

To disable the extension again, use

jupyter nbextension disable <nbextension>

Alternatively, and more conveniently, you can use the
jupyter_nbextensions_configurator [https://github.com/Jupyter-contrib/jupyter_nbextensions_configurator]
server extension, which is installed as a dependency of this repo, and can be
used to enable and disable the individual nbextensions, as well as configure
their options.

		Migrating from older versions of this repo

The jupyter contrib nbextensions command also offers a migrate subcommand,
which will

		uninstall the old repository version’s files, config and python package

		adapt all require paths which have changed. E.g. if you had the
collapsible headings nbextension enabled with its old require path of
usability/collapsible_headings/main, the migrate command will alter
this to match the new require path of collapsible_headings/main.

For complex or customized installation scenarios, please look at the
documentation for installing notebook extensions, server extensions, nbconvert
pre/postprocessors and templates on the Jupyter homepage http://www.jupyter.org.
More information can also be found in the
Wiki [https://github.com/ipython-contrib/jupyter_contrib_nbextensions/wiki].

Notebook extension structure

The nbextensions are stored each as a separate subdirectory of src/jupyter_contrib_nbextensions/nbextensions
Each notebook extension typically has it’s own directory containing:

		thisextension/main.js - javascript implementing the extension

		thisextension/main.css - optional CSS

		thisextension/readme.md - readme file describing the extension in markdown format

		thisextension/config.yaml - file describing the extension to the jupyter_nbextensions_configurator server extension

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/screenshot1.png
abc

Markdown : CellToolbar = Notify: Disabled %

I wonder if I've mispelled anything?

_images/readme_dropdown.png
N | L R R e A T IR AT AT TR T T A [E—

Keyboard shortcuts

Command Mode (press |Esc| to enable)
E : find and replace d
E : enter edit mode 4
#1{rp|: open the command palette & Edit
4|2 run cell, select below 7)) Disatﬁzdit slhmcu
~«|: run selected cells T~ —I

_images/demo3.gif
ZJupyter

Files = Ruming Clusters

Select tems to perform actions on them. Upload || New ~
O 07518204

[0 25105d85508198508314

3 anaconda

© Applications

9 au

processor

©bin
3 birds-scipy2014
9 bitiet

O bitplexity

_images/button.png
!

COPYING.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

The IPython-contrib licensing terms

IPython-contrib is licensed under the terms of the Modified BSD License (also
known as New or Revised or 3-Clause BSD), as follows:

		Copyright (c) 2013-2015, IPython-contrib Developers

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

Neither the name of the IPython-contrib Developers nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/icon2.png
;| None : A

W

Toggle selected cell input display

_images/image.png
Table of Contents

1 - General description for any a

1.1 - Precision
1.2 - Further precisions with ot = Tt

2 - Detailed description
2.1 - Details

2.2 - Further details

- %matplotlib inline

Tmnort nLmByY ae np

search.html

 Navigation

 		
 index

 		jupyter_contrib_nbextensions stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/runtools_marker.png
Mark single Markall ~ Unmark all
code cell code cells code cells

Runtools

_images/readme_undefined_key.png
i Caa ey || TR TSR AR T I ARSI AR TR I Y T T Ll —'

Edit keyboard shortcut

Rebinding jupyter-notebook:show-keyboard-shortcuts from |E| to:

c <new shortcut> press keys to {ib’d to the shortcut

Unrecognised key! (code 229)

m Cancel

@ View active command-mode shortcut edits

_static/plus.png

_static/file.png

_static/down-pressed.png

_static/ajax-loader.gif

_images/runtools_execute.png
Run current Run from first Run from current Run all cells Run all cells Run marked Interrupt
cell to current cell to last cell ignore errors cells execution

_images/help_panel_ext_fullscreen.png
o0 / Home

% _ Notebook Extension Confic x / Untitled X

{ Josh ‘

& [N localhost:8888/notebooks/Untitled.ipynb

DG
]

"&D)| shrink to not fill the wi

The Jupyter Notebook has two different keyboard input modes. Edit mode allows you to type code/text into a cell and is indicated by a green cell border. Command mode binds the

keyboard to notebook level actions and is indicated by a grey cell border.

MacOS modifier keys:
: Command

Control

: Option

Command Mode (press

run cell

to code

to markdown
|E|: to raw

: to heading 1

|z|: to heading 2

: to heading 3
E|5 to heading 4
: to heading 5
|?|: to heading 6

Esc

enter edit mode
open the command palette

run cell, select below

run cell, insert below

: Shift
Return
: Space
Tab

to enable)

: insert cell below

: cut selected cell
copy selected cell
paste cell above
paste cell below

: undo last cell deletion
: delete selected cell

: merge selected cells
: Save and Checkpoint
Save and Checkpoint
toggle line numbers

: toggle output

: toggle output scrolling

: close pager

_images/hide_input_all_hide.png
IPIyl: Notebook Untitled1 tastcheckpoint May 212210 (autosavea)

File Edit View Insert Cell Kemel Help

© x @ B A % > B C Markdwn | Cell Toolbar: | None

This is a markdown cell.

1

_images/icon4.png
e

| Python3 O

_images/traceback.png
NameError

Traceback (most recent call last)
<ipython-input-2-5c9597£3c824> in <module>()

-—=-> 1 aaa

NameError: name 'aaa' is not defined

_images/execution-timings-menu.png
sert Cell Kernel Help | Python2 O

¥ Run Cells CellToolbar
Run Cells and Select Below

Run Cells and Insert Below

ime Run All
tring Run All Above
andom
Run All Below
word (
.slee Cell Type »
rn '
rand? Current Outputs > e)
for i
All Output »

12016-0 Toggle timings > Selected @
i Al

(0.5) | Toggle

_images/icon3.png
wod)

e

|Pyten3 O

_images/demo2.gif
File Edit

+ % E3 | CellToobar f»

Contents [-] v n t 1 Spectrum: a Spectral Analysi
| Spectrum: a Spectral Analysis Library
1.1 Quickstart
1.2 The object approach versus functio:
1.3 ARMA functional approach

Spectrum contains tools to estimate Power Spectral Densitie

The Fourier methods are based upon correlogram, perio
L4 FFT Spectrum ones are available (DPSS, Taylor, ...).

) Books « The parametric methods are based on Yule-Walker, BUR
3 Articles = Non-parametric methods based on eigen analysis (e.g., |
b un « Multitapering is also available (Granger, 2013)
4.1 deux

4.1.1 trois
5 un i
. 1.1 Quickstart

5.1.1 trois Then, the simplest way to start with Spectrum is to import eve
5 un
6.1 deux

- 1.

_images/image1.gif
File Edit Insert Cell Kemel Help

B+ < & B 4 ¢ N B C coe v Cell Toolbar: lone v S © i

It is easy to check that the z-transform of h(n) = a" for lal > 1andn > 0 is
1
H@)=——
@ T—art
for Izl > lal.

Indeed, take the classical definition of the Z-transform and use the formula for the geometric ser

S 1- (@) 1
H(z) = 2 N — =
@ ,,Zou ¢ I—az™! 1—az!

provided that laz™!l < 1, that is Izl > lal.

Exercise 1 Using the function 1 filter, compute and plot the impulse response of the filter w

for instance a = 0.8. Compare it to theoretical impulse response h(n).

I (3]: from scipy.signal import 1filter
a=0.8
d=np.zeros((20)); dl0]=1
h=Ufilter([1],[1, -a],d)
_=plt.stem(h)

_images/printview-button.png
IPIyl: Notebook untitiedo Lastcheckpoint sep 15 19:52 (autosaved)

File Edt View Inset Cell Kemel Help

B[/ @/ m|+v|[0]0]r|m|cwe [5]ceimoobar tone ;. y

_images/demo.gif
Z Jupyter scratchpad tascheccpoint a few seconds sgo autosaved)

Insert Cell Kernel Widgets Help.

Scratchpad cell

I have a scratchpad cell that | can bring up whenever | like, to interact with my kernel without sullying my
notebook.

#matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(0, 5, 1000)

y = np.cumsun(np. randon. random (1080) - ©.5)
ple.plotix, y)| 1

_images/codefolding_firstline_unfolded.png
In [1]: v # Do some computations
a=1
b=2*a + 3*4 -5

_images/trusted.png
= Ju pyte I test Last Checkpoint: a minute ago (unsaved changes) v

File Edt View insert Cel Kemel Help

_images/screenshot.png
Z Untitled x

L) C' | [localhost:8888/notebooks/Untitled.ipynb#

C J u pyte r Untltled (autosaved)

File Edit View Insert Cell Kernel Help

+ < @A B 42 ¥ M B C Markdown

@ h1heading)

In [37]: import time
time.sleep(10)
print('hello world')

hello world

heading h2

collapsed heading h3
another open hi

closed h3

o o 0 o O

closed h3

A
v

CellToolbar

| Python2 O

o

Josh

_images/codefolding_firstline_folded.png
In [1]: » # Do some computations<

_images/runtools_nb.png
In[2]:la:1

In [3]: I print(a)
1

[

_images/readme_shortcut_editor_success.png
N B | || T TSR AR I IR AT AT RIS I Y T Ll —'

Edit keyboard shortcut

Rebinding jupyter-notebook:change-cell-to-code from to:

cC s press keys to add to the shortcut v

m Cancel

_images/icon1.png
«

r: | None %
Show help panel

_images/readme_comma.png
| L R R e A I IR AT AT TR T T

Edit keyboard shortcut

Rebinding jupyter-notebook:confirm-restart-kernel from @,@
to:

cC |Z| click here to edit the shortcut b4

Unfortunately, Jupyter's handling of shortcuts containing commas (|Z|) is
fundamentally flawed, as the comma is used as the key-separator
character ®. Please try something else for your rebind!

_images/readme_menu_item.png
~ | o=

L IWvdiliVel. WV TTVILMVV G IV I Y T I

T Mot
Z Jupyter untited (o
File Edit View Insert Cell Kernel Help | Python2 O
® + X an » v NN C UserInterface Tour CellToolbar

Keyboard Shortcuts

o

| Opens a tooltip with all keyboard shortcuts,
In [1]: from _ future import prin plus controls to edit them)
from jupyter core.paths imp Markdown &+, jupy
print(jupyter_data_dir())
print(jupyter config_dir()) Python @

_images/python-markdown-post.png
In [15]:

In [16]:

In [17]:

Python Code in Markdown Cells
a = 2.123

The variable a is 2.123.
b=Latex(r'sb = \frac{\epsilon}{2}$"')

You can also embed Latex: b = % in here!

from IPython.display import Image, SVG
i = Image(filename='mouse-toy.ipg');

-4

Even images can be embedded:

