

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.
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Julia Documentation README

Julia’s documentation is written in Markdown. A reference of all supported syntax can be found in the manual [https://docs.julialang.org/en/latest/manual/documentation/#markdown-syntax]. All documentation can be found in the Markdown files in doc/src/ and the docstrings in Julia source files in base/.


Requirements

This documentation is built using the Documenter.jl [https://github.com/JuliaDocs/Documenter.jl] package.

All dependencies are automatically installed into a sandboxed package directory in doc/deps/ to avoid interfering with user-installed packages.




Building

To build Julia’s documentation run

$ make docs





from the root directory. This will build the HTML documentation and output it to the doc/_build/ folder.




Testing

To run the doctests found in the manual run

$ make -C doc check





from the root directory.
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	Memory layout of Julia Objects


	Eval of Julia code


	Calling Conventions


	High-level Overview of the Native-Code Generation Process


	Julia Functions


	Base.Cartesian


	Talking to the compiler (the :meta mechanism)


	SubArrays


	System Image Building


	Working with LLVM


	printf() and stdio in the Julia runtime


	Bounds checking


	Proper maintenance and care of multi-threading locks


	Arrays with custom indices


	Base.LibGit2


	Module loading






	Developing/debugging Julia’s C code


	Reporting and analyzing crashes (segfaults)


	gdb debugging tips


	Using Valgrind with Julia


	Sanitizer support














          

      

      

    

  

    
      
          
            
  
Julia ASTs

Julia has two representations of code. First there is a surface syntax AST returned by the parser
(e.g. the parse() function), and manipulated by macros. It is a structured representation
of code as it is written, constructed by julia-parser.scm from a character stream. Next there
is a lowered form, or IR (intermediate representation), which is used by type inference and code
generation. In the lowered form there are fewer types of nodes, all macros are expanded, and all
control flow is converted to explicit branches and sequences of statements. The lowered form is
constructed by julia-syntax.scm.

First we will focus on the lowered form, since it is more important to the compiler. It is also
less obvious to the human, since it results from a significant rearrangement of the input syntax.


Lowered form

The following data types exist in lowered form:


	Expr

Has a node type indicated by the head field, and an args field which is a Vector{Any} of
subexpressions.



	Slot

Identifies arguments and local variables by consecutive numbering. Slot is an abstract type
with subtypes SlotNumber and TypedSlot. Both types have an integer-valued id field giving
the slot index. Most slots have the same type at all uses, and so are represented with SlotNumber.
The types of these slots are found in the slottypes field of their MethodInstance object.
Slots that require per-use type annotations are represented with TypedSlot, which has a typ
field.



	CodeInfo

Wraps the IR of a method.



	LineNumberNode

Contains a single number, specifying the line number the next statement came from.



	LabelNode

Branch target, a consecutively-numbered integer starting at 0.



	GotoNode

Unconditional branch.



	QuoteNode

Wraps an arbitrary value to reference as data. For example, the function f() = :a contains a
QuoteNode whose value field is the symbol a, in order to return the symbol itself instead
of evaluating it.



	GlobalRef

Refers to global variable name in module mod.



	SSAValue

Refers to a consecutively-numbered (starting at 0) static single assignment (SSA) variable inserted
by the compiler.



	NewvarNode

Marks a point where a variable is created. This has the effect of resetting a variable to undefined.






Expr types

These symbols appear in the head field of Exprs in lowered form.


	call

Function call (dynamic dispatch). args[1] is the function to call, args[2:end] are the arguments.



	invoke

Function call (static dispatch). args[1] is the MethodInstance to call, args[2:end] are the
arguments (including the function that is being called, at args[2]).



	static_parameter

Reference a static parameter by index.



	line

Line number and file name metadata. Unlike a LineNumberNode, can also contain a file name.



	gotoifnot

Conditional branch. If args[1] is false, goes to label identified in args[2].



	=

Assignment.



	method

Adds a method to a generic function and assigns the result if necessary.

Has a 1-argument form and a 4-argument form. The 1-argument form arises from the syntax function foo end.
In the 1-argument form, the argument is a symbol. If this symbol already names a function in the
current scope, nothing happens. If the symbol is undefined, a new function is created and assigned
to the identifier specified by the symbol. If the symbol is defined but names a non-function,
an error is raised. The definition of “names a function” is that the binding is constant, and
refers to an object of singleton type. The rationale for this is that an instance of a singleton
type uniquely identifies the type to add the method to. When the type has fields, it wouldn’t
be clear whether the method was being added to the instance or its type.

The 4-argument form has the following arguments:


	args[1]

A function name, or false if unknown. If a symbol, then the expression first
behaves like the 1-argument form above. This argument is ignored from then on. When
this is false, it means a method is being added strictly by type, (::T)(x) = x.



	args[2]

A SimpleVector of argument type data. args[2][1] is a SimpleVector of the
argument types, and args[2][2] is a SimpleVector of type variables corresponding
to the method’s static parameters.



	args[3]

A CodeInfo of the method itself. For “out of scope” method definitions (adding a
method to a function that also has methods defined in different scopes) this is an
expression that evaluates to a :lambda expression.



	args[4]

true or false, identifying whether the method is staged (@generated function).







	const

Declares a (global) variable as constant.



	null

Has no arguments; simply yields the value nothing.



	new

Allocates a new struct-like object. First argument is the type. The new pseudo-function is lowered
to this, and the type is always inserted by the compiler.  This is very much an internal-only
feature, and does no checking. Evaluating arbitrary new expressions can easily segfault.



	return

Returns its argument as the value of the enclosing function.



	the_exception

Yields the caught exception inside a catch block. This is the value of the run time system variable
jl_exception_in_transit.



	enter

Enters an exception handler (setjmp). args[1] is the label of the catch block to jump to on
error.



	leave

Pop exception handlers. args[1] is the number of handlers to pop.



	inbounds

Controls turning bounds checks on or off. A stack is maintained; if the first argument of this
expression is true or false (true means bounds checks are disabled), it is pushed onto the stack.
If the first argument is :pop, the stack is popped.



	boundscheck

Indicates the beginning or end of a section of code that performs a bounds check. Like inbounds,
a stack is maintained, and the second argument can be one of: true, false, or :pop.



	copyast

Part of the implementation of quasi-quote. The argument is a surface syntax AST that is simply
copied recursively and returned at run time.



	meta

Metadata. args[1] is typically a symbol specifying the kind of metadata, and the rest of the
arguments are free-form. The following kinds of metadata are commonly used:


	:inline and :noinline: Inlining hints.


	:push_loc: enters a sequence of statements from a specified source location.


	args[2] specifies a filename, as a symbol.


	args[3] optionally specifies the name of an (inlined) function that originally contained the
code.






	:pop_loc: returns to the source location before the matching :push_loc.











Method

A unique’d container describing the shared metadata for a single method.


	name, module, file, line, sig

Metadata to uniquely identify the method for the computer and the human.



	ambig

Cache of other methods that may be ambiguous with this one.



	specializations

Cache of all MethodInstance ever created for this Method, used to ensure uniqueness.
Uniqueness is required for efficiency, especially for incremental precompile and
tracking of method invalidation.



	source

The original source code (usually compressed).



	roots

Pointers to non-AST things that have been interpolated into the AST, required by
compression of the AST, type-inference, or the generation of native code.



	nargs, isva, called, isstaged, pure

Descriptive bit-fields for the source code of this Method.



	min_world / max_world

The range of world ages for which this method is visible to dispatch.








MethodInstance

A unique’d container describing a single callable signature for a Method. See especially Proper maintenance and care of multi-threading locks
for important details on how to modify these fields safely.


	specTypes

The primary key for this MethodInstance. Uniqueness is guaranteed through a
def.specializations lookup.



	def

The Method that this function describes a specialization of. Or #undef, if this is
a top-level Lambda that is not part of a Method.



	sparam_vals

The values of the static parameters in specTypes indexed by def.sparam_syms. For the
MethodInstance at Method.unspecialized, this is the empty SimpleVector. But for a
runtime MethodInstance from the MethodTable cache, this will always be defined and
indexable.



	rettype

The inferred return type for the specFunctionObject field, which (in most cases) is
also the computed return type for the function in general.



	inferred

May contain a cache of the inferred source for this function, or other information about
the inference result such as a constant return value may be put here (if jlcall_api == 2), or it could be set to nothing to just indicate rettype is inferred.



	ftpr

The generic jlcall entry point.



	jlcall_api

The ABI to use when calling fptr. Some significant ones include:


	0 - Not compiled yet


	1 - JL_CALLABLE jl_value_t *(*)(jl_function_t *f, jl_value_t *args[nargs], uint32_t nargs)


	2 - Constant (value stored in inferred)


	3 - With Static-parameters forwarded jl_value_t *(*)(jl_svec_t *sparams, jl_function_t *f, jl_value_t *args[nargs], uint32_t nargs)


	4 - Run in interpreter jl_value_t *(*)(jl_method_instance_t *meth, jl_function_t *f, jl_value_t *args[nargs], uint32_t nargs)






	min_world / max_world

The range of world ages for which this method instance is valid to be called.








CodeInfo

A temporary container for holding lowered source code.


	code

An Any array of statements



	slotnames

An array of symbols giving the name of each slot (argument or local variable).



	slottypes

An array of types for the slots.



	slotflags

A UInt8 array of slot properties, represented as bit flags:


	2  - assigned (only false if there are no assignment statements with this var on the left)


	8  - const (currently unused for local variables)


	16 - statically assigned once


	32 - might be used before assigned. This flag is only valid after type inference.






	ssavaluetypes

Either an array or an Int.

If an Int, it gives the number of compiler-inserted temporary locations in the
function. If an array, specifies a type for each location.





Boolean properties:


	inferred

Whether this has been produced by type inference.



	inlineable

Whether this should be inlined.



	propagate_inbounds

Whether this should should propagate @inbounds when inlined for the purpose of eliding
@boundscheck blocks.



	pure

Whether this is known to be a pure function of its arguments, without respect to the
state of the method caches or other mutable global state.










Surface syntax AST

Front end ASTs consist entirely of Exprs and atoms (e.g. symbols, numbers). There is generally
a different expression head for each visually distinct syntactic form. Examples will be given
in s-expression syntax. Each parenthesized list corresponds to an Expr, where the first element
is the head. For example (call f x) corresponds to Expr(:call, :f, :x) in Julia.


Calls

| Input            | AST                                |
|:—————- |:———————————- |
| f(x)           | (call f x)                       |
| f(x, y=1, z=2) | (call f x (kw y 1) (kw z 2))     |
| f(x; y=1)      | (call f (parameters (kw y 1)) x) |
| f(x...)        | (call f (... x))                 |

do syntax:

f(x) do a,b
    body
end





parses as (call f (-> (tuple a b) (block body)) x).




Operators

Most uses of operators are just function calls, so they are parsed with the head call. However
some operators are special forms (not necessarily function calls), and in those cases the operator
itself is the expression head. In julia-parser.scm these are referred to as “syntactic operators”.
Some operators (+ and *) use N-ary parsing; chained calls are parsed as a single N-argument
call. Finally, chains of comparisons have their own special expression structure.

| Input       | AST                       |
|:———– |:————————- |
| x+y       | (call + x y)            |
| a+b+c+d   | (call + a b c d)        |
| 2x        | (call * 2 x)            |
| a&&b      | (&& a b)                |
| x += 1    | (+= x 1)                |
| a ? 1 : 2 | (if a 1 2)              |
| a:b       | (: a b)                 |
| a:b:c     | (: a b c)               |
| a,b       | (tuple a b)             |
| a==b      | (call == a b)           |
| 1<i<=n    | (comparison 1 < i <= n) |
| a.b       | (. a (quote b))         |
| a.(b)     | (. a b)                 |




Bracketed forms

| Input                    | AST                                  |
|:———————— |:———————————— |
| a[i]                   | (ref a i)                          |
| t[i;j]                 | (typed_vcat t i j)                 |
| t[i j]                 | (typed_hcat t i j)                 |
| t[a b; c d]            | (typed_vcat t (row a b) (row c d)) |
| a{b}                   | (curly a b)                        |
| a{b;c}                 | (curly a (parameters c) b)         |
| [x]                    | (vect x)                           |
| [x,y]                  | (vect x y)                         |
| [x;y]                  | (vcat x y)                         |
| [x y]                  | (hcat x y)                         |
| [x y; z t]             | (vcat (row x y) (row z t))         |
| [x for y in z, a in b] | (comprehension x (= y z) (= a b))  |
| T[x for y in z]        | (typed_comprehension T x (= y z))  |
| (a, b, c)              | (tuple a b c)                      |
| (a; b; c)              | (block a (block b c))              |




Macros

| Input         | AST                                   |
|:————- |:————————————- |
| @m x y      | (macrocall @m x y)                  |
| Base.@m x y | (macrocall (. Base (quote @m)) x y) |
| @Base.m x y | (macrocall (. Base (quote @m)) x y) |




Strings

| Input           | AST                          |
|:————— |:—————————- |
| "a"           | "a"                        |
| x"y"          | (macrocall @x_str "y")     |
| x"y"z         | (macrocall @x_str "y" "z") |
| "x = $x"      | (string "x = " x)          |
| `a b c` | (macrocall @cmd "a b c")   |

Doc string syntax:

"some docs"
f(x) = x





parses as (macrocall (|.| Core '@doc) "some docs" (= (call f x) (block x))).




Imports and such

| Input               | AST                                          |
|:——————- |:——————————————– |
| import a          | (import a)                                 |
| import a.b.c      | (import a b c)                             |
| import ...a       | (import . . . a)                           |
| import a.b, c.d   | (toplevel (import a b) (import c d))       |
| import Base: x    | (import Base x)                            |
| import Base: x, y | (toplevel (import Base x) (import Base y)) |
| export a, b       | (export a b)                               |




Numbers

Julia supports more number types than many scheme implementations, so not all numbers are represented
directly as scheme numbers in the AST.

| Input                   | AST                                              |
|:———————– |:———————————————— |
| 11111111111111111111  | (macrocall @int128_str "11111111111111111111") |
| 0xfffffffffffffffff   | (macrocall @uint128_str "0xfffffffffffffffff") |
| 1111...many digits... | (macrocall @big_str "1111....")                |




Block forms

A block of statements is parsed as (block stmt1 stmt2 ...).

If statement:

if a
    b
elseif c
    d
else e
    f
end





parses as:

(if a (block (line 2) b)
    (block (line 3) (if c (block (line 4) d)
                        (block (line 5) e (line 6) f))))





A while loop parses as (while condition body).

A for loop parses as (for (= var iter) body). If there is more than one iteration specification,
they are parsed as a block: (for (block (= v1 iter1) (= v2 iter2)) body).

break and continue are parsed as 0-argument expressions (break) and (continue).

let is parsed as (let body (= var1 val1) (= var2 val2) ...).

A basic function definition is parsed as (function (call f x) body). A more complex example:

function f{T}(x::T; k = 1)
    return x+1
end





parses as:

(function (call (curly f T) (parameters (kw k 1))
                (:: x T))
          (block (line 2 file.jl) (return (call + x 1))))





Type definition:

mutable struct Foo{T<:S}
    x::T
end





parses as:

(type #t (curly Foo (<: T S))
      (block (line 2 none) (:: x T)))





The first argument is a boolean telling whether the type is mutable.

try blocks parse as (try try_block var catch_block finally_block). If no variable is present
after catch, var is #f. If there is no finally clause, then the last argument is not present.









          

      

      

    

  

    
      
          
            
  
Reporting and analyzing crashes (segfaults)

So you managed to break Julia.  Congratulations!  Collected here are some general procedures you
can undergo for common symptoms encountered when something goes awry.  Including the information
from these debugging steps can greatly help the maintainers when tracking down a segfault or trying
to figure out why your script is running slower than expected.

If you’ve been directed to this page, find the symptom that best matches what you’re experiencing
and follow the instructions to generate the debugging information requested.  Table of symptoms:


	Segfaults during bootstrap (sysimg.jl)


	Segfaults when running a script


	Errors during Julia startup





[Version/Environment info](@id dev-version-info)

No matter the error, we will always need to know what version of Julia you are running. When Julia
first starts up, a header is printed out with a version number and date.  If your version is
0.2.0 or higher, please include the output of versioninfo() in any report you create:

versioninfo()








Segfaults during bootstrap (sysimg.jl)

Segfaults toward the end of the make process of building Julia are a common symptom of something
going wrong while Julia is preparsing the corpus of code in the base/ folder.  Many factors
can contribute toward this process dying unexpectedly, however it is as often as not due to an
error in the C-code portion of Julia, and as such must typically be debugged with a debug build
inside of gdb.  Explicitly:

Create a debug build of Julia:

$ cd <julia_root>
$ make debug





Note that this process will likely fail with the same error as a normal make incantation, however
this will create a debug executable that will offer gdb the debugging symbols needed to get
accurate backtraces.  Next, manually run the bootstrap process inside of gdb:

$ cd base/
$ gdb -x ../contrib/debug_bootstrap.gdb





This will start gdb, attempt to run the bootstrap process using the debug build of Julia, and
print out a backtrace if (when) it segfaults.  You may need to hit <enter> a few times to get
the full backtrace.  Create a gist [https://gist.github.com] with the backtrace, the [version info](@ref dev-version-info),
and any other pertinent information you can think of and open a new issue [https://github.com/JuliaLang/julia/issues?q=is%3Aopen]
on Github with a link to the gist.




Segfaults when running a script

The procedure is very similar to Segfaults during bootstrap (sysimg.jl).  Create a debug
build of Julia, and run your script inside of a debugged Julia process:

$ cd <julia_root>
$ make debug
$ gdb --args usr/bin/julia-debug <path_to_your_script>





Note that gdb will sit there, waiting for instructions.  Type r to run the process, and bt
to generate a backtrace once it segfaults:

(gdb) r
Starting program: /home/sabae/src/julia/usr/bin/julia-debug ./test.jl
...
(gdb) bt





Create a gist [https://gist.github.com] with the backtrace, the [version info](@ref dev-version-info), and any
other pertinent information you can think of and open a new issue [https://github.com/JuliaLang/julia/issues?q=is%3Aopen]
on Github with a link to the gist.




Errors during Julia startup

Occasionally errors occur during Julia’s startup process (especially when using binary distributions,
as opposed to compiling from source) such as the following:

$ julia
exec: error -5





These errors typically indicate something is not getting loaded properly very early on in the
bootup phase, and our best bet in determining what’s going wrong is to use external tools to audit
the disk activity of the julia process:


	On Linux, use strace:

$ strace julia







	On OSX, use dtruss:

$ dtruss -f julia









Create a gist [https://gist.github.com] with the strace/ dtruss ouput, the [version info](@ref dev-version-info),
and any other pertinent information and open a new issue [https://github.com/JuliaLang/julia/issues?q=is%3Aopen]
on Github with a link to the gist.




Glossary

A few terms have been used as shorthand in this guide:


	<julia_root> refers to the root directory of the Julia source tree; e.g. it should contain folders
such as base, deps, src, test, etc…..










          

      

      

    

  

    
      
          
            
  
Bounds checking

Like many modern programming languages, Julia uses bounds checking to ensure program safety when
accessing arrays. In tight inner loops or other performance critical situations, you may wish
to skip these bounds checks to improve runtime performance. For instance, in order to emit vectorized
(SIMD) instructions, your loop body cannot contain branches, and thus cannot contain bounds checks.
Consequently, Julia includes an @inbounds(...) macro to tell the compiler to skip such bounds
checks within the given block. For the built-in Array type, the magic happens inside the arrayref
and arrayset intrinsics. User-defined array types instead use the @boundscheck(...) macro
to achieve context-sensitive code selection.


Eliding bounds checks

The @boundscheck(...) macro marks blocks of code that perform bounds checking. When such blocks
appear inside of an @inbounds(...) block, the compiler removes these blocks. When the @boundscheck(...)
is nested inside of a calling function containing an @inbounds(...), the compiler will remove
the @boundscheck block only if it is inlined into the calling function. For example, you might
write the method sum as:

function sum(A::AbstractArray)
    r = zero(eltype(A))
    for i = 1:length(A)
        @inbounds r += A[i]
    end
    return r
end





With a custom array-like type MyArray having:

@inline getindex(A::MyArray, i::Real) = (@boundscheck checkbounds(A,i); A.data[to_index(i)])





Then when getindex is inlined into sum, the call to checkbounds(A,i) will be elided. If
your function contains multiple layers of inlining, only @boundscheck blocks at most one level
of inlining deeper are eliminated. The rule prevents unintended changes in program behavior from
code further up the stack.




Propagating inbounds

There may be certain scenarios where for code-organization reasons you want more than one layer
between the @inbounds and @boundscheck declarations. For instance, the default getindex
methods have the chain getindex(A::AbstractArray, i::Real) calls getindex(IndexStyle(A), A, i)
calls _getindex(::IndexLinear, A, i).

To override the “one layer of inlining” rule, a function may be marked with @propagate_inbounds
to propagate an inbounds context (or out of bounds context) through one additional layer of inlining.




The bounds checking call hierarchy

The overall hierarchy is:


	checkbounds(A, I...) which calls


	checkbounds(Bool, A, I...) which calls


	checkbounds_indices(Bool, indices(A), I) which recursively calls


	checkindex for each dimension
















Here A is the array, and I contains the “requested” indices. indices(A) returns a tuple
of “permitted” indices of A.

checkbounds(A, I...) throws an error if the indices are invalid, whereas checkbounds(Bool, A, I...)
returns false in that circumstance.  checkbounds_indices discards any information about the
array other than its indices tuple, and performs a pure indices-vs-indices comparison: this
allows relatively few compiled methods to serve a huge variety of array types. Indices are specified
as tuples, and are usually compared in a 1-1 fashion with individual dimensions handled by calling
another important function, checkindex: typically,

checkbounds_indices(Bool, (IA1, IA...), (I1, I...)) = checkindex(Bool, IA1, I1) &
                                                      checkbounds_indices(Bool, IA, I)





so checkindex checks a single dimension.  All of these functions, including the unexported
checkbounds_indices have docstrings accessible with ? .

If you have to customize bounds checking for a specific array type, you should specialize checkbounds(Bool, A, I...).
However, in most cases you should be able to rely on checkbounds_indices as long as you supply
useful indices for your array type.

If you have novel index types, first consider specializing checkindex, which handles a single
index for a particular dimension of an array.  If you have a custom multidimensional index type
(similar to CartesianIndex), then you may have to consider specializing checkbounds_indices.

Note this hierarchy has been designed to reduce the likelihood of method ambiguities.  We try
to make checkbounds the place to specialize on array type, and try to avoid specializations
on index types; conversely, checkindex is intended to be specialized only on index type (especially,
the last argument).







          

      

      

    

  

    
      
          
            
  
Calling Conventions

Julia uses three calling conventions for four distinct purposes:

| Name    | Prefix    | Purpose                          |
|:——- |:——— |:——————————– |
| Native  | julia_  | Speed via specialized signatures |
| JL Call | jlcall_ | Wrapper for generic calls        |
| JL Call | jl_     | Builtins                         |
| C ABI   | jlcapi_ | Wrapper callable from C          |


Julia Native Calling Convention

The native calling convention is designed for fast non-generic calls. It usually uses a specialized
signature.


	LLVM ghosts (zero-length types) are omitted.


	LLVM scalars and vectors are passed by value.


	LLVM aggregates (arrays and structs) are passed by reference.




A small return values is returned as LLVM return values. A large return values is returned via
the “structure return” (sret) convention, where the caller provides a pointer to a return slot.

An argument or return values thta is a homogeneous tuple is sometimes represented as an LLVM vector
instead of an LLVM array.




JL Call Convention

The JL Call convention is for builtins and generic dispatch. Hand-written functions using this
convention are declared via the macro JL_CALLABLE. The convention uses exactly 3 parameters:


	F  - Julia representation of function that is being applied


	args - pointer to array of pointers to boxes


	nargs - length of the array




The return value is a pointer to a box.




C ABI

C ABI wrappers enable calling Julia from C. The wrapper calls a function using the native calling
convention.

Tuples are always represented as C arrays.







          

      

      

    

  

    
      
          
            
  
Base.Cartesian

The (non-exported) Cartesian module provides macros that facilitate writing multidimensional algorithms.
It is hoped that Cartesian will not, in the long term, be necessary; however, at present it is
one of the few ways to write compact and performant multidimensional code.


Principles of usage

A simple example of usage is:

@nloops 3 i A begin
    s += @nref 3 A i
end





which generates the following code:

for i_3 = 1:size(A,3)
    for i_2 = 1:size(A,2)
        for i_1 = 1:size(A,1)
            s += A[i_1,i_2,i_3]
        end
    end
end





In general, Cartesian allows you to write generic code that contains repetitive elements, like
the nested loops in this example.  Other applications include repeated expressions (e.g., loop
unwinding) or creating function calls with variable numbers of arguments without using the “splat”
construct (i...).




Basic syntax

The (basic) syntax of @nloops is as follows:


	The first argument must be an integer (not a variable) specifying the number of loops.


	The second argument is the symbol-prefix used for the iterator variable. Here we used i, and
variables i_1, i_2, i_3 were generated.


	The third argument specifies the range for each iterator variable. If you use a variable (symbol)
here, it’s taken as 1:size(A,dim). More flexibly, you can use the anonymous-function expression
syntax described below.


	The last argument is the body of the loop. Here, that’s what appears between the begin...end.




There are some additional features of @nloops described in the [reference section](@ref dev-cartesian-reference).

@nref follows a similar pattern, generating A[i_1,i_2,i_3] from @nref 3 A i. The general
practice is to read from left to right, which is why @nloops is @nloops 3 i A expr (as in
for i_2 = 1:size(A,2), where i_2 is to the left and the range is to the right) whereas @nref
is @nref 3 A i (as in A[i_1,i_2,i_3], where the array comes first).

If you’re developing code with Cartesian, you may find that debugging is easier when you examine
the generated code, using macroexpand:

DocTestSetup = quote
    import Base.Cartesian: @nref
end





julia> macroexpand(:(@nref 2 A i))
:(A[i_1, i_2])





DocTestSetup = nothing






Supplying the number of expressions

The first argument to both of these macros is the number of expressions, which must be an integer.
When you’re writing a function that you intend to work in multiple dimensions, this may not be
something you want to hard-code. If you’re writing code that you need to work with older Julia
versions, currently you should use the @ngenerate macro described in an older version of this documentation [https://docs.julialang.org/en/release-0.3/devdocs/cartesian/#supplying-the-number-of-expressions].

Starting in Julia 0.4-pre, the recommended approach is to use a @generated function.  Here’s
an example:

@generated function mysum(A::Array{T,N}) where {T,N}
    quote
        s = zero(T)
        @nloops $N i A begin
            s += @nref $N A i
        end
        s
    end
end





Naturally, you can also prepare expressions or perform calculations before the quote block.




Anonymous-function expressions as macro arguments

Perhaps the single most powerful feature in Cartesian is the ability to supply anonymous-function
expressions that get evaluated at parsing time.  Let’s consider a simple example:

@nexprs 2 j->(i_j = 1)





@nexprs generates n expressions that follow a pattern. This code would generate the following
statements:

i_1 = 1
i_2 = 1





In each generated statement, an “isolated” j (the variable of the anonymous function) gets replaced
by values in the range 1:2. Generally speaking, Cartesian employs a LaTeX-like syntax.  This
allows you to do math on the index j.  Here’s an example computing the strides of an array:

s_1 = 1
@nexprs 3 j->(s_{j+1} = s_j * size(A, j))





would generate expressions

s_1 = 1
s_2 = s_1 * size(A, 1)
s_3 = s_2 * size(A, 2)
s_4 = s_3 * size(A, 3)





Anonymous-function expressions have many uses in practice.


[Macro reference](@id dev-cartesian-reference)

Base.Cartesian.@nloops
Base.Cartesian.@nref
Base.Cartesian.@nextract
Base.Cartesian.@nexprs
Base.Cartesian.@ncall
Base.Cartesian.@ntuple
Base.Cartesian.@nall
Base.Cartesian.@nany
Base.Cartesian.@nif















          

      

      

    

  

    
      
          
            
  
High-level Overview of the Native-Code Generation Process


Representation of Pointers

When emitting code to an object file, pointers will be emitted as relocations.
The deserialization code will ensure any object that pointed to one of these constants
gets recreated and contains the right runtime pointer.

Otherwise, they will be emitted as literal constants.

To emit one of these objects, call literal_pointer_val.
It’ll handle tracking the Julia value and the LLVM global,
ensuring they are valid both for the current runtime and after deserialization.

When emitted into the object file, these globals are stored as references
in a large gvals table. This allows the deserializer to reference them by index,
and implement a custom manual mechanism similar to a Global Offset Table (GOT) to restore them.

Function pointers are handled similarly.
They are stored as values in a large fvals table.
Like globals, this allows the deserializer to reference them by index.

Note that extern functions are handled separately,
with names, via the usual symbol resolution mechanism in the linker.

Note too that ccall functions are also handled separately,
via a manual GOT and Procedure Linkage Table (PLT).




Representation of Intermediate Values

Values are passed around in a jl_cgval_t struct.
This represents an R-value, and includes enough information to
determine how to assign or pass it somewhere.

They are created via one of the helper constructors, usually:
mark_julia_type (for immediate values) and mark_julia_slot (for pointers to values).

The function convert_julia_type can transform between any two types.
It returns an R-value with cgval.typ set to typ.
It’ll cast the object to the requested representation,
making heap boxes, allocating stack copies, and computing tagged unions as
needed to change the representation.

By contrast update_julia_type will change cgval.typ to typ,
only if it can be done at zero-cost (i.e. without emitting any code).




Union representation

Inferred union types may be stack allocated via a tagged type representation.

The primitive routines that need to be able to handle tagged unions are:


	mark-type


	load-local


	store-local


	isa


	is


	emit_typeof


	emit_sizeof


	boxed


	unbox


	specialized cc-ret




Everything else should be possible to handle in inference by using these
primitives to implement union-splitting.

The representation of the tagged-union is as a pair
of < void* union, byte selector >.
The selector is fixed-size as byte & 0x7f,
and will union-tag the first 126 isbits.
It records the one-based depth-first count into the type-union of the
isbits objects inside. An index of zero indicates that the union* is
actually a tagged heap-allocated jl_value_t*,
and needs to be treated as normal for a boxed object rather than as a
tagged union.

The high bit of the selector (byte & 0x80) can be tested to determine if the
void* is actually a heap-allocated (jl_value_t*) box,
thus avoiding the cost of re-allocating a box,
while maintaining the ability to efficiently handle union-splitting based on the low bits.

It is guaranteed that byte & 0x7f is an exact test for the type,
if the value can be represented by a tag – it will never be marked byte = 0x80.
It is not necessary to also test the type-tag when testing isa.

The union* memory region may be allocated at any size.
The only constraint is that it is big enough to contain the data
currently specified by selector.
It might not be big enough to contain the union of all types that
could be stored there according to the associated Union type field.
Use appropriate care when copying.




Specialized Calling Convention Signature Representation

A jl_returninfo_t object describes the calling convention details of any callable.

If any of the arguments or return type of a method can be represented unboxed,
and the method is not varargs, it’ll be given an optimized calling convention
signature based on its specTypes and rettype fields.

The general principles are that:


	Primitive types get passed in int/float registers.


	Tuples of VecElement types get passed in vector registers.


	Structs get passed on the stack.


	Return values are handle similarly to arguments,
with a size-cutoff at which they will instead be returned via a hidden sret argument.




The total logic for this is implemented by get_specsig_function and deserves_sret.

Additionally, if the return type is a union, it may be returned as a pair of values (a pointer and a tag).
If the union values can be stack-allocated, then sufficient space to store them will also be passed as a hidden first argument.
It is up to the callee whether the returned pointer will point to this space, a boxed object, or even other constant memory.







          

      

      

    

  

    
      
          
            
  
gdb debugging tips


Displaying Julia variables

Within gdb, any jl_value_t* object obj can be displayed using

(gdb) call jl_(obj)





The object will be displayed in the julia session, not in the gdb session. This is a useful
way to discover the types and values of objects being manipulated by Julia’s C code.

Similarly, if you’re debugging some of Julia’s internals (e.g., inference.jl), you can print
obj using

ccall(:jl_, Void, (Any,), obj)





This is a good way to circumvent problems that arise from the order in which julia’s output streams
are initialized.

Julia’s flisp interpreter uses value_t objects; these can be displayed with call fl_print(fl_ctx, ios_stdout, obj).




Useful Julia variables for Inspecting

While the addresses of many variables, like singletons, can be be useful to print for many failures,
there are a number of additional variables (see julia.h for a complete list) that are even more
useful.


	(when in jl_apply_generic) mfunc and jl_uncompress_ast(mfunc->def, mfunc->code) :: for
figuring out a bit about the call-stack


	jl_lineno and jl_filename :: for figuring out what line in a test to go start debugging from
(or figure out how far into a file has been parsed)


	$1 :: not really a variable, but still a useful shorthand for referring to the result of the
last gdb command (such as print)


	jl_options :: sometimes useful, since it lists all of the command line options that were successfully
parsed


	jl_uv_stderr :: because who doesn’t like to be able to interact with stdio







Useful Julia functions for Inspecting those variables


	jl_gdblookup($rip) :: For looking up the current function and line. (use $eip on i686 platforms)


	jlbacktrace() :: For dumping the current Julia backtrace stack to stderr. Only usable after
record_backtrace() has been called.


	jl_dump_llvm_value(Value*) :: For invoking Value->dump() in gdb, where it doesn’t work natively.
For example, f->linfo->functionObject, f->linfo->specFunctionObject, and to_function(f->linfo).


	Type->dump() :: only works in lldb. Note: add something like ;1 to prevent lldb from printing
its prompt over the output


	jl_eval_string("expr") :: for invoking side-effects to modify the current state or to lookup
symbols


	jl_typeof(jl_value_t*) :: for extracting the type tag of a Julia value (in gdb, call macro define jl_typeof jl_typeof
first, or pick something short like ty for the first arg to define a shorthand)







Inserting breakpoints for inspection from gdb

In your gdb session, set a breakpoint in jl_breakpoint like so:

(gdb) break jl_breakpoint





Then within your Julia code, insert a call to jl_breakpoint by adding

ccall(:jl_breakpoint, Void, (Any,), obj)





where obj can be any variable or tuple you want to be accessible in the breakpoint.

It’s particularly helpful to back up to the jl_apply frame, from which you can display the arguments
to a function using, e.g.,

(gdb) call jl_(args[0])





Another useful frame is to_function(jl_method_instance_t *li, bool cstyle). The jl_method_instance_t*
argument is a struct with a reference to the final AST sent into the compiler. However, the AST
at this point will usually be compressed; to view the AST, call jl_uncompress_ast and then pass
the result to jl_:

#2  0x00007ffff7928bf7 in to_function (li=0x2812060, cstyle=false) at codegen.cpp:584
584          abort();
(gdb) p jl_(jl_uncompress_ast(li, li->ast))








Inserting breakpoints upon certain conditions


Loading a particular file

Let’s say the file is sysimg.jl:

(gdb) break jl_load if strcmp(fname, "sysimg.jl")==0








Calling a particular method

(gdb) break jl_apply_generic if strcmp((char*)(jl_symbol_name)(jl_gf_mtable(F)->name), "method_to_break")==0





Since this function is used for every call, you will make everything 1000x slower if you do this.






Dealing with signals

Julia requires a few signal to function property. The profiler uses SIGUSR2 for sampling and
the garbage collector uses SIGSEGV for threads synchronization. If you are debugging some code
that uses the profiler or multiple threads, you may want to let the debugger ignore these signals
since they can be triggered very often during normal operations. The command to do this in GDB
is (replace SIGSEGV with SIGUSRS or other signals you want to ignore):

(gdb) handle SIGSEGV noprint nostop pass





The corresponding LLDB command is (after the process is started):

(lldb) pro hand -p true -s false -n false SIGSEGV





If you are debugging a segfault with threaded code, you can set a breakpoint on jl_critical_error
(sigdie_handler should also work on Linux and BSD) in order to only catch the actual segfault
rather than the GC synchronization points.




Debugging during Julia’s build process (bootstrap)

Errors that occur during make need special handling. Julia is built in two stages, constructing
sys0 and sys.ji. To see what commands are running at the time of failure, use make VERBOSE=1.

At the time of this writing, you can debug build errors during the sys0 phase from the base
directory using:

julia/base$ gdb --args ../usr/bin/julia-debug -C native --build ../usr/lib/julia/sys0 sysimg.jl





You might need to delete all the files in usr/lib/julia/ to get this to work.

You can debug the sys.ji phase using:

julia/base$ gdb --args ../usr/bin/julia-debug -C native --build ../usr/lib/julia/sys -J ../usr/lib/julia/sys0.ji sysimg.jl





By default, any errors will cause Julia to exit, even under gdb. To catch an error “in the act”,
set a breakpoint in jl_error (there are several other useful spots, for specific kinds of failures,
including: jl_too_few_args, jl_too_many_args, and jl_throw).

Once an error is caught, a useful technique is to walk up the stack and examine the function by
inspecting the related call to jl_apply. To take a real-world example:

Breakpoint 1, jl_throw (e=0x7ffdf42de400) at task.c:802
802 {
(gdb) p jl_(e)
ErrorException("auto_unbox: unable to determine argument type")
$2 = void
(gdb) bt 10
#0  jl_throw (e=0x7ffdf42de400) at task.c:802
#1  0x00007ffff65412fe in jl_error (str=0x7ffde56be000 <_j_str267> "auto_unbox:
   unable to determine argument type")
   at builtins.c:39
#2  0x00007ffde56bd01a in julia_convert_16886 ()
#3  0x00007ffff6541154 in jl_apply (f=0x7ffdf367f630, args=0x7fffffffc2b0, nargs=2) at julia.h:1281
...





The most recent jl_apply is at frame #3, so we can go back there and look at the AST for the
function julia_convert_16886. This is the uniqued name for some method of convert. f in
this frame is a jl_function_t*, so we can look at the type signature, if any, from the specTypes
field:

(gdb) f 3
#3  0x00007ffff6541154 in jl_apply (f=0x7ffdf367f630, args=0x7fffffffc2b0, nargs=2) at julia.h:1281
1281            return f->fptr((jl_value_t*)f, args, nargs);
(gdb) p f->linfo->specTypes
$4 = (jl_tupletype_t *) 0x7ffdf39b1030
(gdb) p jl_( f->linfo->specTypes )
Tuple{Type{Float32}, Float64}           # <-- type signature for julia_convert_16886





Then, we can look at the AST for this function:

(gdb) p jl_( jl_uncompress_ast(f->linfo, f->linfo->ast) )
Expr(:lambda, Array{Any, 1}[:#s29, :x], Array{Any, 1}[Array{Any, 1}[], Array{Any, 1}[Array{Any, 1}[:#s29, :Any, 0], Array{Any, 1}[:x, :Any, 0]], Array{Any, 1}[], 0], Expr(:body,
Expr(:line, 90, :float.jl)::Any,
Expr(:return, Expr(:call, :box, :Float32, Expr(:call, :fptrunc, :Float32, :x)::Any)::Any)::Any)::Any)::Any





Finally, and perhaps most usefully, we can force the function to be recompiled in order to step
through the codegen process. To do this, clear the cached functionObject from the jl_lamdbda_info_t*:

(gdb) p f->linfo->functionObject
$8 = (void *) 0x1289d070
(gdb) set f->linfo->functionObject = NULL





Then, set a breakpoint somewhere useful (e.g. emit_function, emit_expr, emit_call, etc.),
and run codegen:

(gdb) p jl_compile(f)
... # your breakpoint here








Debugging precompilation errors

Module precompilation spawns a separate Julia process to precompile each module. Setting a breakpoint
or catching failures in a precompile worker requires attaching a debugger to the worker. The easiest
approach is to set the debugger watch for new process launches matching a given name. For example:

(gdb) attach -w -n julia-debug





or:

(lldb) process attach -w -n julia-debug





Then run a script/command to start precompilation. As described earlier, use conditional breakpoints
in the parent process to catch specific file-loading events and narrow the debugging window. (some
operating systems may require alternative approaches, such as following each fork from the parent
process)




Mozilla’s Record and Replay Framework (rr)

Julia now works out of the box with rr [http://rr-project.org/], the lightweight recording and
deterministic debugging framework from Mozilla. This allows you to replay the trace of an execution
deterministically.  The replayed execution’s address spaces, register contents, syscall data etc
are exactly the same in every run.

A recent version of rr (3.1.0 or higher) is required.







          

      

      

    

  

    
      
          
            
  
Eval of Julia code

One of the hardest parts about learning how the Julia Language runs code is learning how all of
the pieces work together to execute a block of code.

Each chunk of code typically makes a trip through many steps with potentially unfamiliar names,
such as (in no particular order): flisp, AST, C++, LLVM, eval, typeinf, macroexpand, sysimg
(or system image), bootstrapping, compile, parse, execute, JIT, interpret, box, unbox, intrinsic
function, and primitive function, before turning into the desired result (hopefully).

!!! sidebar “Definitions”
* REPL

    REPL stands for Read-Eval-Print Loop. It's just what we call the command line environment for
    short.
  * AST

    Abstract Syntax Tree The AST is the digital representation of the code structure. In this form
    the code has been tokenized for meaning so that it is more suitable for manipulation and execution.






Julia Execution

The 10,000 foot view of the whole process is as follows:


	The user starts julia.


	The C function main() from ui/repl.c gets called. This function processes the command line
arguments, filling in the jl_options struct and setting the variable ARGS. It then initializes
Julia (by calling julia_init in task.c [https://github.com/JuliaLang/julia/blob/master/src/task.c],
which may load a previously compiled [sysimg](@ref dev-sysimg)). Finally, it passes off control to Julia
by calling Base._start() [https://github.com/JuliaLang/julia/blob/master/base/client.jl].


	When _start() takes over control, the subsequent sequence of commands depends on the command
line arguments given. For example, if a filename was supplied, it will proceed to execute that
file. Otherwise, it will start an interactive REPL.


	Skipping the details about how the REPL interacts with the user, let’s just say the program ends
up with a block of code that it wants to run.


	If the block of code to run is in a file, jl_load(char *filename) [https://github.com/JuliaLang/julia/blob/master/src/toplevel.c]
gets invoked to load the file and [parse](@ref dev-parsing) it. Each fragment of code is then passed to eval
to execute.


	Each fragment of code (or AST), is handed off to eval() to turn into results.


	eval() takes each code fragment and tries to run it in jl_toplevel_eval_flex() [https://github.com/JuliaLang/julia/blob/master/src/toplevel.c].


	jl_toplevel_eval_flex() decides whether the code is a “toplevel” action (such as using or
module), which would be invalid inside a function. If so, it passes off the code to the toplevel
interpreter.


	jl_toplevel_eval_flex() then [expands](@ref dev-macro-expansion) the code to eliminate any macros and to “lower”
the AST to make it simpler to execute.


	jl_toplevel_eval_flex() then uses some simple heuristics to decide whether to JIT compiler the
AST or to interpret it directly.


	The bulk of the work to interpret code is handled by eval in interpreter.c [https://github.com/JuliaLang/julia/blob/master/src/interpreter.c].


	If instead, the code is compiled, the bulk of the work is handled by codegen.cpp. Whenever a
Julia function is called for the first time with a given set of argument types, [type inference](@ref dev-type-inference)
will be run on that function. This information is used by the [codegen](@ref dev-codegen) step to generate
faster code.


	Eventually, the user quits the REPL, or the end of the program is reached, and the _start()
method returns.


	Just before exiting, main() calls jl_atexit_hook(exit_code) [https://github.com/JuliaLang/julia/blob/master/src/init.c].
This calls Base._atexit() (which calls any functions registered to atexit() inside
Julia). Then it calls jl_gc_run_all_finalizers() [https://github.com/JuliaLang/julia/blob/master/src/gc.c].
Finally, it gracefully cleans up all libuv handles and waits for them to flush and close.







[Parsing](@id dev-parsing)

The Julia parser is a small lisp program written in femtolisp, the source-code for which is distributed
inside Julia in src/flisp [https://github.com/JuliaLang/julia/tree/master/src/flisp].

The interface functions for this are primarily defined in jlfrontend.scm [https://github.com/JuliaLang/julia/blob/master/src/jlfrontend.scm].
The code in ast.c [https://github.com/JuliaLang/julia/blob/master/src/ast.c] handles this handoff
on the Julia side.

The other relevant files at this stage are julia-parser.scm [https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm],
which handles tokenizing Julia code and turning it into an AST, and julia-syntax.scm [https://github.com/JuliaLang/julia/blob/master/src/julia-syntax.scm],
which handles transforming complex AST representations into simpler, “lowered” AST representations
which are more suitable for analysis and execution.




[Macro Expansion](@id dev-macro-expansion)

When eval() encounters a macro, it expands that AST node before attempting to evaluate
the expression. Macro expansion involves a handoff from eval() (in Julia), to the parser
function jl_macroexpand() (written in flisp) to the Julia macro itself (written in - what
else - Julia) via fl_invoke_julia_macro(), and back.

Typically, macro expansion is invoked as a first step during a call to expand()/jl_expand(),
although it can also be invoked directly by a call to macroexpand()/jl_macroexpand().




[Type Inference](@id dev-type-inference)

Type inference is implemented in Julia by typeinf() in inference.jl [https://github.com/JuliaLang/julia/blob/master/base/inference.jl].
Type inference is the process of examining a Julia function and determining bounds for the types
of each of its variables, as well as bounds on the type of the return value from the function.
This enables many future optimizations, such as unboxing of known immutable values, and compile-time
hoisting of various run-time operations such as computing field offsets and function pointers.
Type inference may also include other steps such as constant propagation and inlining.

!!! sidebar “More Definitions”
* JIT

    Just-In-Time Compilation The process of generating native-machine code into memory right when
    it is needed.
  * LLVM

    Low-Level Virtual Machine (a compiler) The Julia JIT compiler is a program/library called libLLVM.
    Codegen in Julia refers both to the process of taking a Julia AST and turning it into LLVM instructions,
    and the process of LLVM optimizing that and turning it into native assembly instructions.
  * C++

    The programming language that LLVM is implemented in, which means that codegen is also implemented
    in this language. The rest of Julia's library is implemented in C, in part because its smaller
    feature set makes it more usable as a cross-language interface layer.
  * box

    This term is used to describe the process of taking a value and allocating a wrapper around the
    data that is tracked by the garbage collector (gc) and is tagged with the object's type.
  * unbox

    The reverse of boxing a value. This operation enables more efficient manipulation of data when
    the type of that data is fully known at compile-time (through type inference).
  * generic function

    A Julia function composed of multiple "methods" that are selected for dynamic dispatch based on
    the argument type-signature
  * anonymous function or "method"

    A Julia function without a name and without type-dispatch capabilities
  * primitive function

    A function implemented in C but exposed in Julia as a named function "method" (albeit without
    generic function dispatch capabilities, similar to a anonymous function)
  * intrinsic function

    A low-level operation exposed as a function in Julia. These pseudo-functions implement operations
    on raw bits such as add and sign extend that cannot be expressed directly in any other way. Since
    they operate on bits directly, they must be compiled into a function and surrounded by a call
    to `Core.Intrinsics.box(T, ...)` to reassign type information to the value.








[JIT Code Generation](@id dev-codegen)

Codegen is the process of turning a Julia AST into native machine code.

The JIT environment is initialized by an early call to jl_init_codegen in codegen.cpp [https://github.com/JuliaLang/julia/blob/master/src/codegen.cpp].

On demand, a Julia method is converted into a native function by the function emit_function(jl_method_instance_t*).
(note, when using the MCJIT (in LLVM v3.4+), each function must be JIT into a new module.) This
function recursively calls emit_expr() until the entire function has been emitted.

Much of the remaining bulk of this file is devoted to various manual optimizations of specific
code patterns. For example, emit_known_call() knows how to inline many of the primitive functions
(defined in builtins.c [https://github.com/JuliaLang/julia/blob/master/src/builtins.c]) for various
combinations of argument types.

Other parts of codegen are handled by various helper files:


	debuginfo.cpp [https://github.com/JuliaLang/julia/blob/master/src/debuginfo.cpp]

Handles backtraces for JIT functions



	ccall.cpp [https://github.com/JuliaLang/julia/blob/master/src/ccall.cpp]

Handles the ccall and llvmcall FFI, along with various abi_*.cpp files



	intrinsics.cpp [https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp]

Handles the emission of various low-level intrinsic functions





!!! sidebar “Bootstrapping”
The process of creating a new system image is called “bootstrapping”.

The etymology of this word comes from the phrase "pulling oneself up by the bootstraps", and
refers to the idea of starting from a very limited set of available functions and definitions
and ending with the creation of a full-featured environment.








[System Image](@id dev-sysimg)

The system image is a precompiled archive of a set of Julia files. The sys.ji file distributed
with Julia is one such system image, generated by executing the file sysimg.jl [https://github.com/JuliaLang/julia/blob/master/base/sysimg.jl],
and serializing the resulting environment (including Types, Functions, Modules, and all other
defined values) into a file. Therefore, it contains a frozen version of the Main, Core, and
Base modules (and whatever else was in the environment at the end of bootstrapping). This serializer/deserializer
is implemented by jl_save_system_image/jl_restore_system_image in dump.c [https://github.com/JuliaLang/julia/blob/master/src/dump.c].

If there is no sysimg file (jl_options.image_file == NULL), this also implies that --build
was given on the command line, so the final result should be a new sysimg file. During Julia initialization,
minimal Core and Main modules are created. Then a file named boot.jl is evaluated from the
current directory. Julia then evaluates any file given as a command line argument until it reaches
the end. Finally, it saves the resulting environment to a “sysimg” file for use as a starting
point for a future Julia run.







          

      

      

    

  

    
      
          
            
  
Julia Functions

This document will explain how functions, method definitions, and method tables work.


Method Tables

Every function in Julia is a generic function. A generic function is conceptually a single function,
but consists of many definitions, or methods. The methods of a generic function are stored in
a method table. Method tables (type MethodTable) are associated with TypeNames. A TypeName
describes a family of parameterized types. For example Complex{Float32} and Complex{Float64}
share the same Complex type name object.

All objects in Julia are potentially callable, because every object has a type, which in turn
has a TypeName.




Function calls

Given the call f(x,y), the following steps are performed: first, the method table to use is
accessed as typeof(f).name.mt. Second, an argument tuple type is formed, Tuple{typeof(f), typeof(x), typeof(y)}.
Note that the type of the function itself is the first element. This is because the type might
have parameters, and so needs to take part in dispatch. This tuple type is looked up in the method
table.

This dispatch process is performed by jl_apply_generic, which takes two arguments: a pointer
to an array of the values f, x, and y, and the number of values (in this case 3).

Throughout the system, there are two kinds of APIs that handle functions and argument lists: those
that accept the function and arguments separately, and those that accept a single argument structure.
In the first kind of API, the “arguments” part does not contain information about the function,
since that is passed separately. In the second kind of API, the function is the first element
of the argument structure.

For example, the following function for performing a call accepts just an args pointer, so the
first element of the args array will be the function to call:

jl_value_t *jl_apply(jl_value_t **args, uint32_t nargs)





This entry point for the same functionality accepts the function separately, so the args array
does not contain the function:

jl_value_t *jl_call(jl_function_t *f, jl_value_t **args, int32_t nargs);








Adding methods

Given the above dispatch process, conceptually all that is needed to add a new method is (1) a
tuple type, and (2) code for the body of the method. jl_method_def implements this operation.
jl_first_argument_datatype is called to extract the relevant method table from what would be
the type of the first argument. This is much more complicated than the corresponding procedure
during dispatch, since the argument tuple type might be abstract. For example, we can define:

(::Union{Foo{Int},Foo{Int8}})(x) = 0





which works since all possible matching methods would belong to the same method table.




Creating generic functions

Since every object is callable, nothing special is needed to create a generic function. Therefore
jl_new_generic_function simply creates a new singleton (0 size) subtype of Function and returns
its instance. A function can have a mnemonic “display name” which is used in debug info and when
printing objects. For example the name of Base.sin is sin. By convention, the name of the
created type is the same as the function name, with a # prepended. So typeof(sin) is Base.#sin.




Closures

A closure is simply a callable object with field names corresponding to captured variables. For
example, the following code:

function adder(x)
    return y->x+y
end





is lowered to (roughly):

struct ##1{T}
    x::T
end

(_::##1)(y) = _.x + y

function adder(x)
    return ##1(x)
end








Constructors

A constructor call is just a call to a type. The type of most types is DataType, so the method
table for DataType contains most constructor definitions. One wrinkle is the fallback definition
that makes all types callable via convert:

(::Type{T}){T}(args...) = convert(T, args...)::T





In this definition the function type is abstract, which is not normally supported. To make this
work, all subtypes of Type (Type, UnionAll, Union, and DataType) currently share
a method table via special arrangement.




Builtins

The “builtin” functions, defined in the Core module, are:

=== typeof sizeof issubtype isa typeassert throw tuple getfield setfield! fieldtype
nfields isdefined arrayref arrayset arraysize applicable invoke apply_type _apply
_expr svec





These are all singleton objects whose types are subtypes of Builtin, which is a subtype of
Function. Their purpose is to expose entry points in the run time that use the “jlcall” calling
convention:

jl_value_t *(jl_value_t*, jl_value_t**, uint32_t)





The method tables of builtins are empty. Instead, they have a single catch-all method cache entry
(Tuple{Vararg{Any}}) whose jlcall fptr points to the correct function. This is kind of a hack
but works reasonably well.




Keyword arguments

Keyword arguments work by associating a special, hidden function object with each method table
that has definitions with keyword arguments. This function is called the “keyword argument sorter”
or “keyword sorter”, or “kwsorter”, and is stored in the kwsorter field of MethodTable objects.
Every definition in the kwsorter function has the same arguments as some definition in the normal
method table, except with a single Array argument prepended. This array contains alternating
symbols and values that represent the passed keyword arguments. The kwsorter’s job is to move
keyword arguments into their canonical positions based on name, plus evaluate and substite any
needed default value expressions. The result is a normal positional argument list, which is then
passed to yet another function.

The easiest way to understand the process is to look at how a keyword argument method definition
is lowered. The code:

function circle(center, radius; color = black, fill::Bool = true, options...)
    # draw
end





actually produces three method definitions. The first is a function that accepts all arguments
(including keywords) as positional arguments, and includes the code for the method body. It has
an auto-generated name:

function #circle#1(color, fill::Bool, options, circle, center, radius)
    # draw
end





The second method is an ordinary definition for the original circle function, which handles
the case where no keyword arguments are passed:

function circle(center, radius)
    #circle#1(black, true, Any[], circle, center, radius)
end





This simply dispatches to the first method, passing along default values. Finally there is the
kwsorter definition:

function (::Core.kwftype(typeof(circle)))(kw::Array, circle, center, radius)
    options = Any[]
    color = arg associated with :color, or black if not found
    fill = arg associated with :fill, or true if not found
    # push remaining elements of kw into options array
    #circle#1(color, fill, options, circle, center, radius)
end





The front end generates code to loop over the kw array and pick out arguments in the right order,
evaluating default expressions when an argument is not found.

The function Core.kwftype(t) fetches (and creates, if necessary) the field t.name.mt.kwsorter.

This design has the feature that call sites that don’t use keyword arguments require no special
handling; everything works as if they were not part of the language at all. Call sites that do
use keyword arguments are dispatched directly to the called function’s kwsorter. For example the
call:

circle((0,0), 1.0, color = red; other...)





is lowered to:

kwfunc(circle)(Any[:color,red,other...], circle, (0,0), 1.0)





The unpacking procedure represented here as other... actually further unpacks each element
of other, expecting each one to contain two values (a symbol and a value). kwfunc (also in
Core) fetches the kwsorter for the called function. Notice that the original circle function
is passed through, to handle closures.




Compiler efficiency issues

Generating a new type for every function has potentially serious consequences for compiler resource
use when combined with Julia’s “specialize on all arguments by default” design. Indeed, the initial
implementation of this design suffered from much longer build and test times, higher memory use,
and a system image nearly 2x larger than the baseline. In a naive implementation, the problem
is bad enough to make the system nearly unusable. Several significant optimizations were needed
to make the design practical.

The first issue is excessive specialization of functions for different values of function-valued
arguments. Many functions simply “pass through” an argument to somewhere else, e.g. to another
function or to a storage location. Such functions do not need to be specialized for every closure
that might be passed in. Fortunately this case is easy to distinguish by simply considering whether
a function calls one of its arguments (i.e. the argument appears in “head position” somewhere).
Performance-critical higher-order functions like map certainly call their argument function
and so will still be specialized as expected. This optimization is implemented by recording which
arguments are called during the analyze-variables pass in the front end. When cache_method
sees an argument in the Function type hierarchy passed to a slot declared as Any or Function,
it pretends the slot was declared as ANY (the “don’t specialize” hint). This heuristic seems
to be extremely effective in practice.

The next issue concerns the structure of method cache hash tables. Empirical studies show that
the vast majority of dynamically-dispatched calls involve one or two arguments. In turn, many
of these cases can be resolved by considering only the first argument. (Aside: proponents of single
dispatch would not be surprised by this at all. However, this argument means “multiple dispatch
is easy to optimize in practice”, and that we should therefore use it, not “we should use single
dispatch”!) So the method cache uses the type of the first argument as its primary key. Note,
however, that this corresponds to the second element of the tuple type for a function call (the
first element being the type of the function itself). Typically, type variation in head position
is extremely low – indeed, the majority of functions belong to singleton types with no parameters.
However, this is not the case for constructors, where a single method table holds constructors
for every type. Therefore the Type method table is special-cased to use the first tuple type
element instead of the second.

The front end generates type declarations for all closures. Initially, this was implemented by
generating normal type declarations. However, this produced an extremely large number of constructors,
all of which were trivial (simply passing all arguments through to new). Since methods are partially
ordered, inserting all of these methods is O(n^2), plus there are just too many of them to keep
around. This was optimized by generating composite_type expressions directly (bypassing default
constructor generation), and using new directly to create closure instances. Not the prettiest
thing ever, but you do what you gotta do.

The next problem was the @test macro, which generated a 0-argument closure for each test case.
This is not really necessary, since each test case is simply run once in place. Therefore I modified
@test to expand to a try-catch block that records the test result (true, false, or exception
raised) and calls the test suite handler on it.

However this caused a new problem. When many tests are grouped together in a single function,
e.g. a single top level expression, or some other test grouping function, that function could
have a very large number of exception handlers. This triggered a kind of dataflow analysis worst
case, where type inference spun around for minutes enumerating possible paths through the forest
of handlers. This was fixed by simply bailing out of type inference when it encounters more than
some number of handlers (currently 25). Presumably no performance-critical function will have
more than 25 exception handlers. If one ever does, I’m willing to raise the limit to 26.

A minor issue occurs during the bootstrap process due to storing all constructors in a single
method table. In the second bootstrap step, where inference.ji is compiled using inference0.ji,
constructors for inference0’s types remain in the table, so there are still references to the
old inference module and inference.ji is 2x the size it should be. This was fixed in dump.c by
filtering definitions from “replaced modules” out of method tables and caches before saving a
system image. A “replaced module” is one that satisfies the condition m != jl_get_global(m->parent, m->name)
– in other words, some newer module has taken its name and place.

Another type inference worst case was triggered by the following code from the QuadGK.jl package [https://github.com/JuliaMath/QuadGK.jl],
formerly part of Base:

function do_quadgk(f, s, n, ::Type{Tw}, abstol, reltol, maxevals, nrm) where Tw
    if eltype(s) <: Real # check for infinite or semi-infinite intervals
        s1 = s[1]; s2 = s[end]; inf1 = isinf(s1); inf2 = isinf(s2)
        if inf1 || inf2
            if inf1 && inf2 # x = t/(1-t^2) coordinate transformation
                return do_quadgk(t -> begin t2 = t*t; den = 1 / (1 - t2);
                                            f(t*den) * (1+t2)*den*den; end,
                                 map(x -> isinf(x) ? copysign(one(x), x) : 2x / (1+hypot(1,2x)), s),
                                 n, Tw, abstol, reltol, maxevals, nrm)
            end
            s0,si = inf1 ? (s2,s1) : (s1,s2)
            if si < 0 # x = s0 - t/(1-t)
                return do_quadgk(t -> begin den = 1 / (1 - t);
                                            f(s0 - t*den) * den*den; end,
                                 reverse!(map(x -> 1 / (1 + 1 / (s0 - x)), s)),
                                 n, Tw, abstol, reltol, maxevals, nrm)
            else # x = s0 + t/(1-t)
                return do_quadgk(t -> begin den = 1 / (1 - t);
                                            f(s0 + t*den) * den*den; end,
                                 map(x -> 1 / (1 + 1 / (x - s0)), s),
                                 n, Tw, abstol, reltol, maxevals, nrm)
            end
        end
    end





This code has a 3-way tail recursion, where each call wraps the current function argument f
in a different new closure. Inference must consider 3^n (where n is the call depth) possible signatures.
This blows up way too quickly, so logic was added to typeinf_uncached to immediately widen any
argument that is a subtype of Function and that grows in depth down the stack.







          

      

      

    

  

    
      
          
            
  
Initialization of the Julia runtime

How does the Julia runtime execute julia -e 'println("Hello World!")' ?


main()

Execution starts at main() in ui/repl.c [https://github.com/JuliaLang/julia/blob/master/ui/repl.c].

main() calls libsupport_init() [https://github.com/JuliaLang/julia/blob/master/src/support/libsupportinit.c]
to set the C library locale and to initialize the “ios” library (see ios_init_stdstreams() [https://github.com/JuliaLang/julia/blob/master/src/support/ios.c]
and Legacy ios.c library).

Next parse_opts() [https://github.com/JuliaLang/julia/blob/master/ui/repl.c] is called to process
command line options. Note that parse_opts() only deals with options that affect code generation
or early initialization. Other options are handled later by process_options() in base/client.jl [https://github.com/JuliaLang/julia/blob/master/base/client.jl].

parse_opts() stores command line options in the global jl_options struct [https://github.com/JuliaLang/julia/blob/master/src/julia.h].




julia_init()

julia_init() in task.c [https://github.com/JuliaLang/julia/blob/master/src/task.c] is called
by main() and calls _julia_init() in init.c [https://github.com/JuliaLang/julia/blob/master/src/init.c].

_julia_init() begins by calling libsupport_init() again (it does nothing the second time).

restore_signals() [https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c] is called
to zero the signal handler mask.

jl_resolve_sysimg_location() [https://github.com/JuliaLang/julia/blob/master/src/init.c] searches
configured paths for the base system image. See Building the Julia system image.

jl_gc_init() [https://github.com/JuliaLang/julia/blob/master/src/gc.c] sets up allocation pools
and lists for weak refs, preserved values and finalization.

jl_init_frontend() [https://github.com/JuliaLang/julia/blob/master/src/ast.c] loads and initializes
a pre-compiled femtolisp image containing the scanner/parser.

jl_init_types() [https://github.com/JuliaLang/julia/blob/master/src/jltypes.c] creates jl_datatype_t
type description objects for the built-in types defined in julia.h [https://github.com/JuliaLang/julia/blob/master/src/julia.h].
e.g.

jl_any_type = jl_new_abstracttype(jl_symbol("Any"), NULL, jl_null);
jl_any_type->super = jl_any_type;

jl_type_type = jl_new_abstracttype(jl_symbol("Type"), jl_any_type, jl_null);

jl_int32_type = jl_new_bitstype(jl_symbol("Int32"),
                                jl_any_type, jl_null, 32);





jl_init_tasks() [https://github.com/JuliaLang/julia/blob/master/src/task.c] creates the jl_datatype_t* jl_task_type
object; initializes the global jl_root_task struct; and sets jl_current_task to the root task.

jl_init_codegen() [https://github.com/JuliaLang/julia/blob/master/src/codegen.cpp] initializes
the LLVM library [http://llvm.org].

jl_init_serializer() [https://github.com/JuliaLang/julia/blob/master/src/dump.c] initializes
8-bit serialization tags for 256 frequently used jl_value_t values. The serialization mechanism
uses these tags as shorthand (in lieu of storing whole objects) to save storage space.

If there is no sysimg file (!jl_options.image_file) then the Core and Main modules are
created and boot.jl is evaluated:

jl_core_module = jl_new_module(jl_symbol("Core")) creates the Julia Core module.

jl_init_intrinsic_functions() [https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp]
creates a new Julia module Intrinsics containing constant jl_intrinsic_type symbols. These define
an integer code for each intrinsic function [https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp].
emit_intrinsic() [https://github.com/JuliaLang/julia/blob/master/src/intrinsics.cpp] translates
these symbols into LLVM instructions during code generation.

jl_init_primitives() [https://github.com/JuliaLang/julia/blob/master/src/builtins.c] hooks C
functions up to Julia function symbols. e.g. the symbol Base.is() is bound to C function pointer
jl_f_is() by calling add_builtin_func("eval", jl_f_top_eval).

jl_new_main_module() [https://github.com/JuliaLang/julia/blob/master/src/toplevel.c] creates
the global “Main” module and sets jl_current_task->current_module = jl_main_module.

Note: _julia_init() then sets [https://github.com/JuliaLang/julia/blob/master/src/init.c] jl_root_task->current_module = jl_core_module.
jl_root_task is an alias of jl_current_task at this point, so the current_module set by jl_new_main_module()
above is overwritten.

jl_load("boot.jl", sizeof("boot.jl")) [https://github.com/JuliaLang/julia/blob/master/src/init.c]
calls jl_parse_eval_all [https://github.com/JuliaLang/julia/blob/master/src/ast.c] which repeatedly
calls jl_toplevel_eval_flex() [https://github.com/JuliaLang/julia/blob/master/src/toplevel.c]
to execute boot.jl [https://github.com/JuliaLang/julia/blob/master/base/boot.jl]. 

jl_get_builtin_hooks() [https://github.com/JuliaLang/julia/blob/master/src/init.c] initializes
global C pointers to Julia globals defined in boot.jl.

jl_init_box_caches() [https://github.com/JuliaLang/julia/blob/master/src/datatype.c] pre-allocates
global boxed integer value objects for values up to 1024. This speeds up allocation of boxed ints
later on. e.g.:

jl_value_t *jl_box_uint8(uint32_t x)
{
    return boxed_uint8_cache[(uint8_t)x];
}





_julia_init() iterates [https://github.com/JuliaLang/julia/blob/master/src/init.c] over the
jl_core_module->bindings.table looking for jl_datatype_t values and sets the type name’s module
prefix to jl_core_module.

jl_add_standard_imports(jl_main_module) [https://github.com/JuliaLang/julia/blob/master/src/toplevel.c]
does “using Base” in the “Main” module.

Note: _julia_init() now reverts to jl_root_task->current_module = jl_main_module as it was
before being set to jl_core_module above.

Platform specific signal handlers are initialized for SIGSEGV (OSX, Linux), and SIGFPE (Windows).

Other signals (SIGINFO, SIGBUS, SIGILL, SIGTERM, SIGABRT, SIGQUIT, SIGSYS and SIGPIPE) are
hooked up to sigdie_handler() [https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c]
which prints a backtrace.

jl_init_restored_modules() [https://github.com/JuliaLang/julia/blob/master/src/dump.c] calls
jl_module_run_initializer() [https://github.com/JuliaLang/julia/blob/master/src/module.c] for
each deserialized module to run the __init__() function.

Finally sigint_handler() [https://github.com/JuliaLang/julia/blob/master/src/signals-unix.c]
is hooked up to SIGINT and calls jl_throw(jl_interrupt_exception).

_julia_init() then returns back to main() in ui/repl.c [https://github.com/JuliaLang/julia/blob/master/ui/repl.c]
and main() calls true_main(argc, (char**)argv).

!!! sidebar “sysimg”
If there is a sysimg file, it contains a pre-cooked image of the Core and Main modules (and
whatever else is created by boot.jl). See Building the Julia system image.

[`jl_restore_system_image()`](https://github.com/JuliaLang/julia/blob/master/src/dump.c) deserializes
the saved sysimg into the current Julia runtime environment and initialization continues after
`jl_init_box_caches()` below...

Note: [`jl_restore_system_image()` (and `dump.c` in general)](https://github.com/JuliaLang/julia/blob/master/src/dump.c)
uses the [Legacy `ios.c` library](@ref).








true_main()

true_main() [https://github.com/JuliaLang/julia/blob/master/ui/repl.c] loads the contents of
argv[] into Base.ARGS.

If a .jl “program” file was supplied on the command line, then exec_program() [https://github.com/JuliaLang/julia/blob/master/ui/repl.c]
calls jl_load(program,len) [https://github.com/JuliaLang/julia/blob/master/src/toplevel.c] which
calls jl_parse_eval_all [https://github.com/JuliaLang/julia/blob/master/src/ast.c] which repeatedly
calls jl_toplevel_eval_flex() [https://github.com/JuliaLang/julia/blob/master/src/toplevel.c]
to execute the program.

However, in our example (julia -e 'println("Hello World!")'), jl_get_global(jl_base_module, jl_symbol("_start")) [https://github.com/JuliaLang/julia/blob/master/src/module.c]
looks up Base._start [https://github.com/JuliaLang/julia/blob/master/base/client.jl] and jl_apply() [https://github.com/JuliaLang/julia/blob/master/src/julia.h]
executes it.




Base._start

Base._start [https://github.com/JuliaLang/julia/blob/master/base/client.jl] calls Base.process_options [https://github.com/JuliaLang/julia/blob/master/base/client.jl]
which calls jl_parse_input_line("println("Hello World!")") [https://github.com/JuliaLang/julia/blob/master/src/ast.c]
to create an expression object and [Base.eval()](@ref eval) to execute it.




Base.eval

[Base.eval()](@ref eval) was mapped to jl_f_top_eval [https://github.com/JuliaLang/julia/blob/master/src/builtins.c]
by jl_init_primitives().

jl_f_top_eval() [https://github.com/JuliaLang/julia/blob/master/src/builtins.c] calls jl_toplevel_eval_in(jl_main_module, ex) [https://github.com/JuliaLang/julia/blob/master/src/builtins.c],
where ex is the parsed expression println("Hello World!").

jl_toplevel_eval_in() [https://github.com/JuliaLang/julia/blob/master/src/builtins.c] calls
jl_toplevel_eval_flex() [https://github.com/JuliaLang/julia/blob/master/src/toplevel.c] which
calls eval() in interpreter.c [https://github.com/JuliaLang/julia/blob/master/src/interpreter.c].

The stack dump below shows how the interpreter works its way through various methods of Base.println()
and Base.print() before arriving at write(s::IO, a::Array{T}) where T [https://github.com/JuliaLang/julia/blob/master/base/stream.jl]
which does ccall(jl_uv_write()).

jl_uv_write() [https://github.com/JuliaLang/julia/blob/master/src/jl_uv.c] calls uv_write()
to write “Hello World!” to JL_STDOUT. See Libuv wrappers for stdio.:

Hello World!





| Stack frame                    | Source code     | Notes                                                |
|:—————————— |:————— |:—————————————————- |
| jl_uv_write()                | jl_uv.c       | called though ccall                        |
| julia_write_282942           | stream.jl     | function write!(s::IO, a::Array{T}) where T        |
| julia_print_284639           | ascii.jl      | print(io::IO, s::String) = (write(io, s); nothing) |
| jlcall_print_284639          |                 |                                                      |
| jl_apply()                   | julia.h       |                                                      |
| jl_trampoline()              | builtins.c    |                                                      |
| jl_apply()                   | julia.h       |                                                      |
| jl_apply_generic()           | gf.c          | Base.print(Base.TTY, String)                       |
| jl_apply()                   | julia.h       |                                                      |
| jl_trampoline()              | builtins.c    |                                                      |
| jl_apply()                   | julia.h       |                                                      |
| jl_apply_generic()           | gf.c          | Base.print(Base.TTY, String, Char, Char...)        |
| jl_apply()                   | julia.h       |                                                      |
| jl_f_apply()                 | builtins.c    |                                                      |
| jl_apply()                   | julia.h       |                                                      |
| jl_trampoline()              | builtins.c    |                                                      |
| jl_apply()                   | julia.h       |                                                      |
| jl_apply_generic()           | gf.c          | Base.println(Base.TTY, String, String...)          |
| jl_apply()                   | julia.h       |                                                      |
| jl_trampoline()              | builtins.c    |                                                      |
| jl_apply()                   | julia.h       |                                                      |
| jl_apply_generic()           | gf.c          | Base.println(String,)                              |
| jl_apply()                   | julia.h       |                                                      |
| do_call()                    | interpreter.c |                                                      |
| eval()                       | interpreter.c |                                                      |
| jl_interpret_toplevel_expr() | interpreter.c |                                                      |
| jl_toplevel_eval_flex()      | toplevel.c    |                                                      |
| jl_toplevel_eval()           | toplevel.c    |                                                      |
| jl_toplevel_eval_in()        | builtins.c    |                                                      |
| jl_f_top_eval()              | builtins.c    |                                                      |

Since our example has just one function call, which has done its job of printing “Hello World!”,
the stack now rapidly unwinds back to main().




jl_atexit_hook()

main() calls jl_atexit_hook() [https://github.com/JuliaLang/julia/blob/master/src/init.c].
This calls _atexit for each module, then calls jl_gc_run_all_finalizers() [https://github.com/JuliaLang/julia/blob/master/src/gc.c]
and cleans up libuv handles.




julia_save()

Finally, main() calls julia_save() [https://github.com/JuliaLang/julia/blob/master/src/init.c],
which if requested on the command line, saves the runtime state to a new system image. See jl_compile_all() [https://github.com/JuliaLang/julia/blob/master/src/gf.c]
and jl_save_system_image() [https://github.com/JuliaLang/julia/blob/master/src/dump.c].







          

      

      

    

  

    
      
          
            
  
Base.LibGit2

The LibGit2 module provides bindings to libgit2 [https://libgit2.github.com/], a portable C library that
implements core functionality for the Git [https://git-scm.com/] version control system.
These bindings are currently used to power Julia’s package manager.
It is expected that this module will eventually be moved into a separate package.


Functionality

Some of this documentation assumes some prior knowledge of the libgit2 API.
For more information on some of the objects and methods referenced here, consult the upstream
libgit2 API reference [https://libgit2.github.com/libgit2/#v0.25.1].

Base.LibGit2.AbstractCredentials
Base.LibGit2.Buffer
Base.LibGit2.CachedCredentials
Base.LibGit2.CheckoutOptions
Base.LibGit2.CloneOptions
Base.LibGit2.DiffDelta
Base.LibGit2.DiffFile
Base.LibGit2.DiffOptionsStruct
Base.LibGit2.FetchHead
Base.LibGit2.FetchOptions
Base.LibGit2.GitBlob
Base.LibGit2.GitCommit
Base.LibGit2.GitHash
Base.LibGit2.GitObject
Base.LibGit2.GitRemote
Base.LibGit2.GitRemoteAnon
Base.LibGit2.GitRepo
Base.LibGit2.GitRepoExt
Base.LibGit2.GitShortHash
Base.LibGit2.GitSignature
Base.LibGit2.GitStatus
Base.LibGit2.GitTag
Base.LibGit2.GitTree
Base.LibGit2.IndexEntry
Base.LibGit2.IndexTime
Base.LibGit2.MergeOptions
Base.LibGit2.ProxyOptions
Base.LibGit2.PushOptions
Base.LibGit2.RebaseOperation
Base.LibGit2.RebaseOptions
Base.LibGit2.RemoteCallbacks
Base.LibGit2.SSHCredentials
Base.LibGit2.SignatureStruct
Base.LibGit2.StatusEntry
Base.LibGit2.StatusOptions
Base.LibGit2.StrArrayStruct
Base.LibGit2.TimeStruct
Base.LibGit2.UserPasswordCredentials
Base.LibGit2.add_fetch!
Base.LibGit2.add_push!
Base.LibGit2.addblob!
Base.LibGit2.authors
Base.LibGit2.branch
Base.LibGit2.branch!
Base.LibGit2.checkout!
Base.LibGit2.checkused!
Base.LibGit2.clone
Base.LibGit2.commit
Base.LibGit2.create_branch
Base.LibGit2.credentials_callback
Base.LibGit2.credentials_cb
Base.LibGit2.default_signature
Base.LibGit2.delete_branch
Base.LibGit2.diff_files
Base.LibGit2.fetch
Base.LibGit2.fetch_refspecs
Base.LibGit2.fetchhead_foreach_cb
Base.LibGit2.ffmerge!
Base.LibGit2.fullname
Base.LibGit2.get_creds!
Base.LibGit2.gitdir
Base.LibGit2.head
Base.LibGit2.head!
Base.LibGit2.head_oid
Base.LibGit2.headname
Base.LibGit2.init
Base.LibGit2.is_ancestor_of
Base.LibGit2.isbinary
Base.LibGit2.iscommit
Base.LibGit2.isdiff
Base.LibGit2.isdirty
Base.LibGit2.isorphan
Base.LibGit2.lookup_branch
Base.LibGit2.mirror_callback
Base.LibGit2.mirror_cb
Base.LibGit2.name
Base.LibGit2.need_update
Base.LibGit2.objtype
Base.LibGit2.path
Base.LibGit2.peel
Base.LibGit2.posixpath
Base.LibGit2.push
Base.LibGit2.push_refspecs
Base.LibGit2.read_tree!
Base.LibGit2.rebase!
Base.LibGit2.ref_list
Base.LibGit2.reftype
Base.LibGit2.remotes
Base.LibGit2.reset!
Base.LibGit2.restore
Base.LibGit2.revcount
Base.LibGit2.set_remote_url
Base.LibGit2.shortname
Base.LibGit2.snapshot
Base.LibGit2.status
Base.LibGit2.tag_create
Base.LibGit2.tag_delete
Base.LibGit2.tag_list
Base.LibGit2.target
Base.LibGit2.treewalk
Base.LibGit2.upstream
Base.LibGit2.url
Base.LibGit2.with
Base.LibGit2.workdir











          

      

      

    

  

    
      
          
            
  
Working with LLVM

This is not a replacement for the LLVM documentation, but a collection of tips for working on
LLVM for Julia.


Overview of Julia to LLVM Interface

Julia statically links in LLVM by default. Build with USE_LLVM_SHLIB=1 to link dynamically.

The code for lowering Julia AST to LLVM IR or interpreting it directly is in directory src/.

| File                | Description                                                |
|:——————- |:———————————————————- |
| builtins.c        | Builtin functions                                          |
| ccall.cpp         | Lowering ccall                                           |
| cgutils.cpp       | Lowering utilities, notably for array and tuple accesses   |
| codegen.cpp       | Top-level of code generation, pass list, lowering builtins |
| debuginfo.cpp     | Tracks debug information for JIT code                      |
| disasm.cpp        | Handles native object file and JIT code diassembly         |
| gf.c              | Generic functions                                          |
| intrinsics.cpp    | Lowering intrinsics                                        |
| llvm-simdloop.cpp | Custom LLVM pass for @simd                               |
| sys.c             | I/O and operating system utility functions                 |

Some of the .cpp files form a group that compile to a single object.

The difference between an intrinsic and a builtin is that a builtin is a first class function
that can be used like any other Julia function.  An intrinsic can operate only on unboxed data,
and therefore its arguments must be statically typed.


Alias Analysis

Julia currently uses LLVM’s Type Based Alias Analysis [http://llvm.org/docs/LangRef.html#tbaa-metadata].
To find the comments that document the inclusion relationships, look for static MDNode* in
src/codegen.cpp.

The -O option enables LLVM’s Basic Alias Analysis [http://llvm.org/docs/AliasAnalysis.html#the-basicaa-pass].






Building Julia with a different version of LLVM

The default version of LLVM is specified in deps/Versions.make. You can override it by creating
a file called Make.user in the top-level directory and adding a line to it such as:

LLVM_VER = 3.5.0





Besides the LLVM release numerals, you can also use LLVM_VER = svn to bulid against the latest
development version of LLVM.




Passing options to LLVM

You can pass options to LLVM using debug builds of Julia.  To create a debug build, run make debug.
The resulting executable is usr/bin/julia-debug. You can pass LLVM options to this executable
via the environment variable JULIA_LLVM_ARGS. Here are example settings using bash syntax:


	export JULIA_LLVM_ARGS = -print-after-all dumps IR after each pass.


	export JULIA_LLVM_ARGS = -debug-only=loop-vectorize dumps LLVM DEBUG(...) diagnostics for
loop vectorizer if you built Julia with LLVM_ASSERTIONS=1. Otherwise you will get warnings
about “Unknown command line argument”. Counter-intuitively, building Julia with LLVM_DEBUG=1
is not enough to dump DEBUG diagnostics from a pass.







Improving LLVM optimizations for Julia

Improving LLVM code generation usually involves either changing Julia lowering to be more friendly
to LLVM’s passes, or improving a pass.

If you are planning to improve a pass, be sure to read the LLVM developer policy [http://llvm.org/docs/DeveloperPolicy.html].
The best strategy is to create a code example in a form where you can use LLVM’s opt tool to
study it and the pass of interest in isolation.


	Create an example Julia code of interest.


	Use JULIA_LLVM_ARGS = -print-after-all to dump the IR.


	Pick out the IR at the point just before the pass of interest runs.


	Strip the debug metadata and fix up the TBAA metadata by hand.




The last step is labor intensive.  Suggestions on a better way would be appreciated.







          

      

      

    

  

    
      
          
            
  
Proper maintenance and care of multi-threading locks

The following strategies are used to ensure that the code is dead-lock free (generally by addressing
the 4th Coffman condition: circular wait).



	structure code such that only one lock will need to be acquired at a time


	always acquire shared locks in the same order, as given by the table below


	avoid constructs that expect to need unrestricted recursion








Locks

Below are all of the locks that exist in the system and the mechanisms for using them that avoid
the potential for deadlocks (no Ostrich algorithm allowed here):

The following are definitely leaf locks (level 1), and must not try to acquire any other lock:



	safepoint


Note that this lock is acquired implicitly by JL_LOCK and JL_UNLOCK. use the _NOGC variants
to avoid that for level 1 locks.

While holding this lock, the code must not do any allocation or hit any safepoints. Note that
there are safepoints when doing allocation, enabling / disabling GC, entering / restoring exception
frames, and taking / releasing locks.






	shared_map


	finalizers


	pagealloc


	gc_perm_lock


	flisp


flisp itself is already threadsafe, this lock only protects the jl_ast_context_list_t pool











The following is a leaf lock (level 2), and only acquires level 1 locks (safepoint) internally:



	typecache







The following is a level 3 lock, which can only acquire level 1 or level 2 locks internally:



	Method->writelock







The following is a level 4 lock, which can only recurse to acquire level 1, 2, or 3 locks:



	MethodTable->writelock







No Julia code may be called while holding a lock above this point.

The following is a level 6 lock, which can only recurse to acquire locks at lower levels:



	codegen







The following is an almost root lock (level end-1), meaning only the root look may be held when
trying to acquire it:



	typeinf


this one is perhaps one of the most tricky ones, since type-inference can be invoked from many
points

currently the lock is merged with the codegen lock, since they call each other recursively











The following is the root lock, meaning no other lock shall be held when trying to acquire it:



	toplevel


this should be held while attempting a top-level action (such as making a new type or defining
a new method): trying to obtain this lock inside a staged function will cause a deadlock condition!

additionally, it’s unclear if any code can safely run in parallel with an arbitrary toplevel
expression, so it may require all threads to get to a safepoint first














Broken Locks

The following locks are broken:


	toplevel


doesn’t exist right now

fix: create it











Shared Global Data Structures

These data structures each need locks due to being shared mutable global state. It is the inverse
list for the above lock priority list. This list does not include level 1 leaf resources due to
their simplicity.

MethodTable modifications (def, cache, kwsorter type) : MethodTable->writelock

Type declarations : toplevel lock

Type application : typecache lock

Module serializer : toplevel lock

JIT & type-inference : codegen lock

MethodInstance updates : codegen lock



	These fields are generally lazy initialized, using the test-and-test-and-set pattern.


	These are set at construction and immutable:


	specTypes


	sparam_vals


	def






	These are set by jl_type_infer (while holding codegen lock):


	rettype


	inferred


	these can also be reset, see jl_set_lambda_rettype for that logic as it needs to keep functionObjectsDecls
in sync






	inInference flag:


	optimization to quickly avoid recurring into jl_type_infer while it is already running


	actual state (of setting inferred, then fptr) is protected by codegen lock






	Function pointers (jlcall_api and fptr, unspecialized_ducttape):


	these transition once, from NULL to a value, while the codegen lock is held






	Code-generator cache (the contents of functionObjectsDecls):


	these can transition multiple times, but only while the codegen lock is held


	it is valid to use old version of this, or block for new versions of this, so races are benign,
as long as the code is careful not to reference other data in the method instance (such as rettype)
and assume it is coordinated, unless also holding the codegen lock






	compile_traced flag:


	unknown











LLVMContext : codegen lock

Method : Method->writelock


	roots array (serializer and codegen)


	invoke / specializations / tfunc modifications










          

      

      

    

  

    
      
          
            
  
Talking to the compiler (the :meta mechanism)

In some circumstances, one might wish to provide hints or instructions that a given block of code
has special properties: you might always want to inline it, or you might want to turn on special
compiler optimization passes.  Starting with version 0.4, Julia has a convention that these instructions
can be placed inside a :meta expression, which is typically (but not necessarily) the first
expression in the body of a function.

:meta expressions are created with macros. As an example, consider the implementation of the
@inline macro:

macro inline(ex)
    esc(isa(ex, Expr) ? pushmeta!(ex, :inline) : ex)
end





Here, ex is expected to be an expression defining a function. A statement like this:

@inline function myfunction(x)
    x*(x+3)
end





gets turned into an expression like this:

quote
    function myfunction(x)
        Expr(:meta, :inline)
        x*(x+3)
    end
end





Base.pushmeta!(ex, :symbol, args...) appends :symbol to the end of the :meta expression,
creating a new :meta expression if necessary. If args is specified, a nested expression containing
:symbol and these arguments is appended instead, which can be used to specify additional information.

To use the metadata, you have to parse these :meta expressions. If your implementation can be
performed within Julia, Base.popmeta! is very handy: Base.popmeta!(body, :symbol) will scan
a function body expression (one without the function signature) for the first :meta expression
containing :symbol, extract any arguments, and return a tuple (found::Bool, args::Array{Any}).
If the metadata did not have any arguments, or :symbol was not found, the args array will
be empty.

Not yet provided is a convenient infrastructure for parsing :meta expressions from C++.





          

      

      

    

  

    
      
          
            
  
Memory layout of Julia Objects


Object layout (jl_value_t)

The jl_value_t struct is the name for a block of memory owned by the Julia Garbage Collector,
representing the data associated with a Julia object in memory. Absent any type information, it
is simply an opaque pointer:

typedef struct jl_value_t* jl_pvalue_t;





Each jl_value_t struct is contained in a jl_typetag_t struct that contains metadata information
about the Julia object, such as its type and garbage collector (gc) reachability:

typedef struct {
    opaque metadata;
    jl_value_t value;
} jl_typetag_t;





The type of any Julia object is an instance of a leaf jl_datatype_t object. The jl_typeof()
function can be used to query for it:

jl_value_t *jl_typeof(jl_value_t *v);





The layout of the object depends on its type. Reflection methods can be used to inspect that layout.
A field can be accessed by calling one of the get-field methods:

jl_value_t *jl_get_nth_field_checked(jl_value_t *v, size_t i);
jl_value_t *jl_get_field(jl_value_t *o, char *fld);





If the field types are known, a priori, to be all pointers, the values can also be extracted directly
as an array access:

jl_value_t *v = value->fieldptr[n];





As an example, a “boxed” uint16_t is stored as follows:

struct {
    opaque metadata;
    struct {
        uint16_t data;        // -- 2 bytes
    } jl_value_t;
};





This object is created by jl_box_uint16(). Note that the jl_value_t pointer references the
data portion, not the metadata at the top of the struct.

A value may be stored “unboxed” in many circumstances (just the data, without the metadata, and
possibly not even stored but just kept in registers), so it is unsafe to assume that the address
of a box is a unique identifier. The “egal” test (corresponding to the === function in Julia),
should instead be used to compare two unknown objects for equivalence:

int jl_egal(jl_value_t *a, jl_value_t *b);





This optimization should be relatively transparent to the API, since the object will be “boxed”
on-demand, whenever a jl_value_t pointer is needed.

Note that modification of a jl_value_t pointer in memory is permitted only if the object is
mutable. Otherwise, modification of the value may corrupt the program and the result will be undefined.
The mutability property of a value can be queried for with:

int jl_is_mutable(jl_value_t *v);





If the object being stored is a jl_value_t, the Julia garbage collector must be notified also:

void jl_gc_wb(jl_value_t *parent, jl_value_t *ptr);





However, the Embedding Julia section of the manual is also required reading at this point,
for covering other details of boxing and unboxing various types, and understanding the gc interactions.

Mirror structs for some of the built-in types are defined in julia.h [https://github.com/JuliaLang/julia/blob/master/src/julia.h].
The corresponding global jl_datatype_t objects are created by jl_init_types in jltypes.c [https://github.com/JuliaLang/julia/blob/master/src/jltypes.c].




Garbage collector mark bits

The garbage collector uses several bits from the metadata portion of the jl_typetag_t to track
each object in the system. Further details about this algorithm can be found in the comments of
the garbage collector implementation in gc.c [https://github.com/JuliaLang/julia/blob/master/src/gc.c].




Object allocation

Most new objects are allocated by jl_new_structv():

jl_value_t *jl_new_struct(jl_datatype_t *type, ...);
jl_value_t *jl_new_structv(jl_datatype_t *type, jl_value_t **args, uint32_t na);





Although, isbits objects can be also constructed directly from memory:

jl_value_t *jl_new_bits(jl_value_t *bt, void *data)





And some objects have special constructors that must be used instead of the above functions:

Types:

jl_datatype_t *jl_apply_type(jl_datatype_t *tc, jl_tuple_t *params);
jl_datatype_t *jl_apply_array_type(jl_datatype_t *type, size_t dim);
jl_uniontype_t *jl_new_uniontype(jl_tuple_t *types);





While these are the most commonly used options, there are more low-level constructors too, which
you can find declared in julia.h [https://github.com/JuliaLang/julia/blob/master/src/julia.h].
These are used in jl_init_types() to create the initial types needed to bootstrap the creation
of the Julia system image.

Tuples:

jl_tuple_t *jl_tuple(size_t n, ...);
jl_tuple_t *jl_tuplev(size_t n, jl_value_t **v);
jl_tuple_t *jl_alloc_tuple(size_t n);





The representation of tuples is highly unique in the Julia object representation ecosystem. In
some cases, a Base.tuple() object may be an array of pointers to the objects contained
by the tuple equivalent to:

typedef struct {
    size_t length;
    jl_value_t *data[length];
} jl_tuple_t;





However, in other cases, the tuple may be converted to an anonymous isbits type and
stored unboxed, or it may not stored at all (if it is not being used in a generic context as a
jl_value_t*).

Symbols:

jl_sym_t *jl_symbol(const char *str);





Functions and MethodInstance:

jl_function_t *jl_new_generic_function(jl_sym_t *name);
jl_method_instance_t *jl_new_method_instance(jl_value_t *ast, jl_tuple_t *sparams);





Arrays:

jl_array_t *jl_new_array(jl_value_t *atype, jl_tuple_t *dims);
jl_array_t *jl_new_arrayv(jl_value_t *atype, ...);
jl_array_t *jl_alloc_array_1d(jl_value_t *atype, size_t nr);
jl_array_t *jl_alloc_array_2d(jl_value_t *atype, size_t nr, size_t nc);
jl_array_t *jl_alloc_array_3d(jl_value_t *atype, size_t nr, size_t nc, size_t z);
jl_array_t *jl_alloc_vec_any(size_t n);





Note that many of these have alternative allocation functions for various special-purposes. The
list here reflects the more common usages, but a more complete list can be found by reading the
julia.h header file [https://github.com/JuliaLang/julia/blob/master/src/julia.h].

Internal to Julia, storage is typically allocated by newstruct() (or newobj() for the special
types):

jl_value_t *newstruct(jl_value_t *type);
jl_value_t *newobj(jl_value_t *type, size_t nfields);





And at the lowest level, memory is getting allocated by a call to the garbage collector (in gc.c),
then tagged with its type:

jl_value_t *jl_gc_allocobj(size_t nbytes);
void jl_set_typeof(jl_value_t *v, jl_datatype_t *type);





Note that all objects are allocated in multiples of 4 bytes and aligned to the platform pointer
size. Memory is allocated from a pool for smaller objects, or directly with malloc() for large
objects.

!!! sidebar “Singleton Types”
Singleton types have only one instance and no data fields. Singleton instances have a size of
0 bytes, and consist only of their metadata. e.g. nothing::Void.

See [Singleton Types](@ref man-singleton-types) and [Nothingness and missing values](@ref)











          

      

      

    

  

    
      
          
            
  
Arrays with custom indices

Julia 0.5 adds experimental support for arrays with arbitrary indices. Conventionally, Julia’s
arrays are indexed starting at 1, whereas some other languages start numbering at 0, and yet others
(e.g., Fortran) allow you to specify arbitrary starting indices.  While there is much merit in
picking a standard (i.e., 1 for Julia), there are some algorithms which simplify considerably
if you can index outside the range 1:size(A,d) (and not just 0:size(A,d)-1, either). Such
array types are expected to be supplied through packages.

The purpose of this page is to address the question, “what do I have to do to support such arrays
in my own code?”  First, let’s address the simplest case: if you know that your code will never
need to handle arrays with unconventional indexing, hopefully the answer is “nothing.” Old code,
on conventional arrays, should function essentially without alteration as long as it was using
the exported interfaces of Julia.


Generalizing existing code

As an overview, the steps are:


	replace many uses of size with indices


	replace 1:length(A) with linearindices(A), and length(A) with length(linearindices(A))


	replace explicit allocations like Array{Int}(size(B)) with similar(Array{Int}, indices(B))




These are described in more detail below.


Background

Because unconventional indexing breaks deeply-held assumptions throughout the Julia ecosystem,
early adopters running code that has not been updated are likely to experience errors.  The most
frustrating bugs would be incorrect results or segfaults (total crashes of Julia).  For example,
consider the following function:

function mycopy!(dest::AbstractVector, src::AbstractVector)
    length(dest) == length(src) || throw(DimensionMismatch("vectors must match"))
    # OK, now we're safe to use @inbounds, right? (not anymore!)
    for i = 1:length(src)
        @inbounds dest[i] = src[i]
    end
    dest
end





This code implicitly assumes that vectors are indexed from 1. Previously that was a safe assumption,
so this code was fine, but (depending on what types the user passes to this function) it may no
longer be safe.  If this code continued to work when passed a vector with non-1 indices, it would
either produce an incorrect answer or it would segfault.  (If you do get segfaults, to help locate
the cause try running julia with the option --check-bounds=yes.)

To ensure that such errors are caught, in Julia 0.5 both length and sizeshould throw an
error when passed an array with non-1 indexing.  This is designed to force users of such arrays
to check the code, and inspect it for whether it needs to be generalized.




Using indices for bounds checks and loop iteration

indices(A) (reminiscent of size(A)) returns a tuple of AbstractUnitRange objects, specifying
the range of valid indices along each dimension of A.  When A has unconventional indexing,
the ranges may not start at 1.  If you just want the range for a particular dimension d, there
is indices(A, d).

Base implements a custom range type, OneTo, where OneTo(n) means the same thing as 1:n but
in a form that guarantees (via the type system) that the lower index is 1. For any new AbstractArray
type, this is the default returned by indices, and it indicates that this array type uses “conventional”
1-based indexing.  Note that if you don’t want to be bothered supporting arrays with non-1 indexing,
you can add the following line:

@assert all(x->isa(x, Base.OneTo), indices(A))





at the top of any function.

For bounds checking, note that there are dedicated functions checkbounds and checkindex which
can sometimes simplify such tests.




Linear indexing (linearindices)

Some algorithms are most conveniently (or efficiently) written in terms of a single linear index,
A[i] even if A is multi-dimensional.  In “true” linear indexing, the indices always range
from 1:length(A). However, this raises an ambiguity for one-dimensional arrays (a.k.a., AbstractVector):
does v[i] mean linear indexing, or Cartesian indexing with the array’s native indices?

For this reason, if you want to use linear indexing in an algorithm, your best option is to get
the index range by calling linearindices(A).  This will return indices(A, 1) if A is an
AbstractVector, and the equivalent of 1:length(A) otherwise.

In a sense, one can say that 1-dimensional arrays always use Cartesian indexing. To help enforce
this, it’s worth noting that sub2ind(shape, i...) and ind2sub(shape, ind) will throw an error
if shape indicates a 1-dimensional array with unconventional indexing (i.e., is a Tuple{UnitRange}
rather than a tuple of OneTo).  For arrays with conventional indexing, these functions continue
to work the same as always.

Using indices and linearindices, here is one way you could rewrite mycopy!:

function mycopy!(dest::AbstractVector, src::AbstractVector)
    indices(dest) == indices(src) || throw(DimensionMismatch("vectors must match"))
    for i in linearindices(src)
        @inbounds dest[i] = src[i]
    end
    dest
end








Allocating storage using generalizations of similar

Storage is often allocated with Array{Int}(dims) or similar(A, args...). When the result needs
to match the indices of some other array, this may not always suffice. The generic replacement
for such patterns is to use similar(storagetype, shape).  storagetype indicates the kind of
underlying “conventional” behavior you’d like, e.g., Array{Int} or BitArray or even dims->zeros(Float32, dims)
(which would allocate an all-zeros array). shape is a tuple of Integer or
AbstractUnitRange values, specifying the indices that you want the result to use.

Let’s walk through a couple of explicit examples. First, if A has conventional indices, then
similar(Array{Int}, indices(A)) would end up calling Array{Int}(size(A)), and thus return
an array.  If A is an AbstractArray type with unconventional indexing, then similar(Array{Int}, indices(A))
should return something that “behaves like” an Array{Int} but with a shape (including indices)
that matches A.  (The most obvious implementation is to allocate an Array{Int}(size(A)) and
then “wrap” it in a type that shifts the indices.)

Note also that similar(Array{Int}, (indices(A, 2),)) would allocate an AbstractVector{Int}
(i.e., 1-dimensional array) that matches the indices of the columns of A.




Deprecations

In generalizing Julia’s code base, at least one deprecation was unavoidable: earlier versions
of Julia defined first(::Colon) = 1, meaning that the first index along a dimension indexed
by : is 1. This definition can no longer be justified, so it was deprecated. There is no provided
replacement, because the proper replacement depends on what you are doing and might need to know
more about the array. However, it appears that many uses of first(::Colon) are really about
computing an index offset; when that is the case, a candidate replacement is:

indexoffset(r::AbstractVector) = first(r) - 1
indexoffset(::Colon) = 0





In other words, while first(:) does not itself make sense, in general you can say that the offset
associated with a colon-index is zero.






Writing custom array types with non-1 indexing

Most of the methods you’ll need to define are standard for any AbstractArray type, see [Abstract Arrays](@ref man-interface-array).
This page focuses on the steps needed to define unconventional indexing.


Do not implement size or length

Perhaps the majority of pre-existing code that uses size will not work properly for arrays with
non-1 indices.  For that reason, it is much better to avoid implementing these methods, and use
the resulting MethodError to identify code that needs to be audited and perhaps generalized.




Do not annotate bounds checks

Julia 0.5 includes @boundscheck to annotate code that can be removed for callers that exploit
@inbounds. Initially, it seems far preferable to run with bounds checking always enabled (i.e.,
omit the @boundscheck annotation so the check always runs).




Custom AbstractUnitRange types

If you’re writing a non-1 indexed array type, you will want to specialize indices so it returns
a UnitRange, or (perhaps better) a custom AbstractUnitRange.  The advantage of a custom type
is that it “signals” the allocation type for functions like similar. If we’re writing an array
type for which indexing will start at 0, we likely want to begin by creating a new AbstractUnitRange,
ZeroRange, where ZeroRange(n) is equivalent to 0:n-1.

In general, you should probably not export ZeroRange from your package: there may be other
packages that implement their own ZeroRange, and having multiple distinct ZeroRange types
is (perhaps counterintuitively) an advantage: ModuleA.ZeroRange indicates that similar should
create a ModuleA.ZeroArray, whereas ModuleB.ZeroRange indicates a ModuleB.ZeroArray type.
This design allows peaceful coexistence among many different custom array types.

Note that the Julia package CustomUnitRanges.jl [https://github.com/JuliaArrays/CustomUnitRanges.jl]
can sometimes be used to avoid the need to write your own ZeroRange type.




Specializing indices

Once you have your AbstractUnitRange type, then specialize indices:

Base.indices(A::ZeroArray) = map(n->ZeroRange(n), A.size)





where here we imagine that ZeroArray has a field called size (there would be other ways to
implement this).

In some cases, the fallback definition for indices(A, d):

indices(A::AbstractArray{T,N}, d) where {T,N} = d <= N ? indices(A)[d] : OneTo(1)





may not be what you want: you may need to specialize it to return something other than OneTo(1)
when d > ndims(A).  Likewise, in Base there is a dedicated function indices1 which is equivalent
to indices(A, 1) but which avoids checking (at runtime) whether ndims(A) > 0. (This is purely
a performance optimization.)  It is defined as:

indices1(A::AbstractArray{T,0}) where {T} = OneTo(1)
indices1(A::AbstractArray) = indices(A)[1]





If the first of these (the zero-dimensional case) is problematic for your custom array type, be
sure to specialize it appropriately.




Specializing similar

Given your custom ZeroRange type, then you should also add the following two specializations
for similar:

function Base.similar(A::AbstractArray, T::Type, shape::Tuple{ZeroRange,Vararg{ZeroRange}})
    # body
end

function Base.similar(f::Union{Function,DataType}, shape::Tuple{ZeroRange,Vararg{ZeroRange}})
    # body
end





Both of these should allocate your custom array type.




Specializing reshape

Optionally, define a method

Base.reshape(A::AbstractArray, shape::Tuple{ZeroRange,Vararg{ZeroRange}}) = ...





and you can reshape an array so that the result has custom indices.






Summary

Writing code that doesn’t make assumptions about indexing requires a few extra abstractions, but
hopefully the necessary changes are relatively straightforward.

As a reminder, this support is still experimental. While much of Julia’s base code has been updated
to support unconventional indexing, without a doubt there are many omissions that will be discovered
only through usage.  Moreover, at the time of this writing, most packages do not support unconventional
indexing.  As a consequence, early adopters should be prepared to identify and/or fix bugs.  On
the other hand, only through practical usage will it become clear whether this experimental feature
should be retained in future versions of Julia; consequently, interested parties are encouraged
to accept some ownership for putting it through its paces.







          

      

      

    

  

    
      
          
            
  
Reflection and introspection

Julia provides a variety of runtime reflection capabilities.


Module bindings

The exported names for a Module are available using names(m::Module), which will return
an array of Symbol elements representing the exported bindings. names(m::Module, true)
returns symbols for all bindings in m, regardless of export status.




DataType fields

The names of DataType fields may be interrogated using fieldnames(). For example,
given the following type, fieldnames(Point) returns an arrays of Symbol elements representing
the field names:

julia> struct Point
           x::Int
           y
       end

julia> fieldnames(Point)
2-element Array{Symbol,1}:
 :x
 :y





The type of each field in a Point object is stored in the types field of the Point variable
itself:

julia> Point.types
svec(Int64, Any)





While x is annotated as an Int, y was unannotated in the type definition, therefore y
defaults to the Any type.

Types are themselves represented as a structure called DataType:

julia> typeof(Point)
DataType





Note that fieldnames(DataType) gives the names for each field of DataType itself, and one
of these fields is the types field observed in the example above.




Subtypes

The direct subtypes of any DataType may be listed using subtypes(). For example,
the abstract DataType AbstractFloat has four (concrete) subtypes:

julia> subtypes(AbstractFloat)
4-element Array{Union{DataType, UnionAll},1}:
 BigFloat
 Float16
 Float32
 Float64





Any abstract subtype will also be included in this list, but further subtypes thereof will not;
recursive application of subtypes() may be used to inspect the full type tree.




DataType layout

The internal representation of a DataType is critically important when interfacing with C code
and several functions are available to inspect these details. isbits(T::DataType) returns
true if T is stored with C-compatible alignment. fieldoffset(T::DataType, i::Integer)
returns the (byte) offset for field i relative to the start of the type.




Function methods

The methods of any generic function may be listed using methods(). The method dispatch
table may be searched for methods accepting a given type using methodswith().




Expansion and lowering

As discussed in the Metaprogramming section, the macroexpand() function gives
the unquoted and interpolated expression (Expr) form for a given macro. To use macroexpand,
quote the expression block itself (otherwise, the macro will be evaluated and the result will
be passed instead!). For example:

julia> macroexpand( :(@edit println("")) )
:((Base.edit)(println, (Base.typesof)("")))





The functions Base.Meta.show_sexpr() and dump() are used to display S-expr style views
and depth-nested detail views for any expression.

Finally, the expand() function gives the lowered form of any expression and is of
particular interest for understanding both macros and top-level statements such as function declarations
and variable assignments:

julia> expand( :(f() = 1) )
:(begin
        $(Expr(:method, :f))
        $(Expr(:method, :f, :((Core.svec)((Core.svec)((Core.Typeof)(f)), (Core.svec)())), CodeInfo(:(begin  # none, line 1:
        return 1
    end)), false))
        return f
    end)








Intermediate and compiled representations

Inspecting the lowered form for functions requires selection of the specific method to display,
because generic functions may have many methods with different type signatures. For this purpose,
method-specific code-lowering is available using code_lowered(f::Function, (Argtypes...)),
and the type-inferred form is available using code_typed(f::Function, (Argtypes...)).
code_warntype(f::Function, (Argtypes...)) adds highlighting to the output of code_typed()
(see @code_warntype).

Closer to the machine, the LLVM intermediate representation of a function may be printed using
by code_llvm(f::Function, (Argtypes...)), and finally the compiled machine code is available
using code_native(f::Function, (Argtypes...)) (this will trigger JIT compilation/code
generation for any function which has not previously been called).

For convenience, there are macro versions of the above functions which take standard function
calls and expand argument types automatically:

julia> @code_llvm +(1,1)

; Function Attrs: sspreq
define i64 @"julia_+_130862"(i64, i64) #0 {
top:
    %2 = add i64 %1, %0, !dbg !8
    ret i64 %2, !dbg !8
}





(likewise @code_typed, @code_warntype, @code_lowered, and @code_native)







          

      

      

    

  

    
      
          
            
  
Module loading

Base.require[@ref] is responsible for loading modules and it also manages the
precompilation cache. It is the implementation of the import statement.


Experimental features

The features below are experimental and not part of the stable Julia API.
Before building upon them inform yourself about the current thinking and whether they might change soon.


Module loading callbacks

It is possible to listen to the modules loaded by Base.require, by registering a callback.

loaded_packages = Channel{Symbol}()
callback = (mod::Symbol) -> put!(loaded_packages, mod)
push!(Base.package_callbacks, callback)





Please note that the symbol given to the callback is a non-unique identifier and
it is the responsibility of the callback provider to walk the module chain to
determine the fully qualified name of the loaded binding.

The callback below is an example of how to do that:

# Get the fully-qualified name of a module.
function module_fqn(name::Symbol)
    fqn = Symbol[name]
    mod = getfield(Main, name)
    parent = Base.module_parent(mod)
    while parent !== Main
        push!(fqn, Base.module_name(parent))
        parent = Base.module_parent(parent)
    end
    fqn = reverse!(fqn)
    return join(fqn, '.')
end













          

      

      

    

  

    
      
          
            
  
Sanitizer support


General considerations

Using Clang’s sanitizers obviously require you to use Clang (USECLANG=1), but there’s another
catch: most sanitizers require a run-time library, provided by the host compiler, while the instrumented
code generated by Julia’s JIT relies on functionality from that library. This implies that the
LLVM version of your host compiler matches that of the LLVM library used within Julia.

An easy solution is to have an dedicated build folder for providing a matching toolchain, by building
with BUILD_LLVM_CLANG=1 and overriding LLVM_USE_CMAKE=1 (Autotool-based builds are incompatible
with ASAN). You can then refer to this toolchain from another build folder by specifying USECLANG=1
while overriding the CC and CXX variables.




Address Sanitizer (ASAN)

For detecting or debugging memory bugs, you can use Clang’s address sanitizer (ASAN) [http://clang.llvm.org/docs/AddressSanitizer.html].
By compiling with SANITIZE=1 you enable ASAN for the Julia compiler and its generated code.
In addition, you can specify LLVM_SANITIZE=1 to sanitize the LLVM library as well. Note that
these options incur a high performance and memory cost. For example, using ASAN for Julia and
LLVM makes testall1 takes 8-10 times as long while using 20 times as much memory (this can be
reduced to respectively a factor of 3 and 4 by using the options described below).

By default, Julia sets the allow_user_segv_handler=1 ASAN flag, which is required for signal
delivery to work properly. You can define other options using the ASAN_OPTIONS environment flag,
in which case you’ll need to repeat the default option mentioned before. For example, memory usage
can be reduced by specifying fast_unwind_on_malloc=0 and malloc_context_size=2, at the cost
of backtrace accuracy. For now, Julia also sets detect_leaks=0, but this should be removed in
the future.




Memory Sanitizer (MSAN)

For detecting use of uninitialized memory, you can use Clang’s memory sanitizer (MSAN) [http://clang.llvm.org/docs/MemorySanitizer.html]
by compiling with SANITIZE_MEMORY=1.







          

      

      

    

  

    
      
          
            
  
printf() and stdio in the Julia runtime


Libuv wrappers for stdio

julia.h defines libuv [http://docs.libuv.org] wrappers for the stdio.h streams:

uv_stream_t *JL_STDIN;
uv_stream_t *JL_STDOUT;
uv_stream_t *JL_STDERR;





… and corresponding output functions:

int jl_printf(uv_stream_t *s, const char *format, ...);
int jl_vprintf(uv_stream_t *s, const char *format, va_list args);





These printf functions are used by the .c files in the src/ and ui/ directories wherever stdio is
needed to ensure that output buffering is handled in a unified way.

In special cases, like signal handlers, where the full libuv infrastructure is too heavy, jl_safe_printf()
can be used to write(2) directly to STDERR_FILENO:

void jl_safe_printf(const char *str, ...);








Interface between JL_STD* and Julia code

Base.STDIN, Base.STDOUT and Base.STDERR are bound to the JL_STD* libuv
streams defined in the runtime.

Julia’s __init__() function (in base/sysimg.jl) calls reinit_stdio() (in base/stream.jl)
to create Julia objects for Base.STDIN, Base.STDOUT and Base.STDERR.

reinit_stdio() uses ccall to retrieve pointers to JL_STD* and calls jl_uv_handle_type()
to inspect the type of each stream.  It then creates a Julia Base.IOStream, Base.TTY or Base.PipeEndpoint
object to represent each stream, e.g.:

$ julia -e 'println(typeof((STDIN, STDOUT, STDERR)))'
Tuple{Base.TTY,Base.TTY,Base.TTY}

$ julia -e 'println(typeof((STDIN, STDOUT, STDERR)))' < /dev/null 2>/dev/null
Tuple{IOStream,Base.TTY,IOStream}

$ echo hello | julia -e 'println(typeof((STDIN, STDOUT, STDERR)))' | cat
Tuple{Base.PipeEndpoint,Base.PipeEndpoint,Base.TTY}





The Base.read() and Base.write() methods for these streams use ccall
to call libuv wrappers in src/jl_uv.c, e.g.:

stream.jl: function write(s::IO, p::Ptr, nb::Integer)
               -> ccall(:jl_uv_write, ...)
  jl_uv.c:          -> int jl_uv_write(uv_stream_t *stream, ...)
                        -> uv_write(uvw, stream, buf, ...)








printf() during initialization

The libuv streams relied upon by jl_printf() etc., are not available until midway through
initialization of the runtime (see init.c, init_stdio()).  Error messages or warnings that
need to be printed before this are routed to the standard C library fwrite() function by the
following mechanism:

In sys.c, the JL_STD* stream pointers are statically initialized to integer constants: STD*_FILENO (0, 1 and 2).
In jl_uv.c the jl_uv_puts() function checks its uv_stream_t* stream argument and calls
fwrite() if stream is set to STDOUT_FILENO or STDERR_FILENO.

This allows for uniform use of jl_printf() throughout the runtime regardless of whether or not
any particular piece of code is reachable before initialization is complete.




Legacy ios.c library

The src/support/ios.c library is inherited from femtolisp [https://github.com/JeffBezanson/femtolisp].
It provides cross-platform buffered file IO and in-memory temporary buffers.

ios.c is still used by:


	src/flisp/*.c


	src/dump.c – for serialization file IO and for memory buffers.


	base/iostream.jl – for file IO (see base/fs.jl for libuv equivalent).




Use of ios.c in these modules is mostly self-contained and separated from the libuv I/O system.
However, there is one place [https://github.com/JuliaLang/julia/blob/master/src/flisp/print.c#L654]
where femtolisp calls through to jl_printf() with a legacy ios_t stream.

There is a hack in ios.h that makes the ios_t.bm field line up with the uv_stream_t.type
and ensures that the values used for ios_t.bm to not overlap with valid UV_HANDLE_TYPE values.
This allows uv_stream_t pointers to point to ios_t streams.

This is needed because jl_printf() caller jl_static_show() is passed an ios_t stream by
femtolisp’s fl_print() function. Julia’s jl_uv_puts() function has special handling for this:

if (stream->type > UV_HANDLE_TYPE_MAX) {
    return ios_write((ios_t*)stream, str, n);
}











          

      

      

    

  

    
      
          
            
  
SubArrays

Julia’s SubArray type is a container encoding a “view” of a parent AbstractArray.  This page
documents some of the design principles and implementation of SubArrays.


Indexing: cartesian vs. linear indexing

Broadly speaking, there are two main ways to access data in an array. The first, often called
cartesian indexing, uses N indexes for an N -dimensional AbstractArray.  For example, a
matrix A (2-dimensional) can be indexed in cartesian style as A[i,j].  The second indexing
method, referred to as linear indexing, uses a single index even for higher-dimensional objects.
For example, if A = reshape(1:12, 3, 4), then the expression A[5] returns the value 5.  Julia
allows you to combine these styles of indexing: for example, a 3d array A3 can be indexed as
A3[i,j], in which case i is interpreted as a cartesian index for the first dimension, and
j is a linear index over dimensions 2 and 3.

For Arrays, linear indexing appeals to the underlying storage format: an array is laid out as
a contiguous block of memory, and hence the linear index is just the offset (+1) of the corresponding
entry relative to the beginning of the array.  However, this is not true for many other AbstractArray
types: examples include SparseMatrixCSC, arrays that require some kind of
computation (such as interpolation), and the type under discussion here, SubArray.
For these types, the underlying information is more naturally described in terms of
cartesian indexes.

You can manually convert from a cartesian index to a linear index with sub2ind, and vice versa
using ind2sub.  getindex and setindex! functions for AbstractArray types may include similar
operations.

While converting from a cartesian index to a linear index is fast (it’s just multiplication and
addition), converting from a linear index to a cartesian index is very slow: it relies on the
div operation, which is one of the slowest low-level operations you can perform with a CPU.
For this reason, any code that deals with AbstractArray types is best designed in terms of
cartesian, rather than linear, indexing.




Index replacement

Consider making 2d slices of a 3d array:

S1 = view(A, :, 5, 2:6)
S2 = view(A, 5, :, 2:6)





view drops “singleton” dimensions (ones that are specified by an Int), so both S1 and S2
are two-dimensional SubArrays. Consequently, the natural way to index these is with S1[i,j].
To extract the value from the parent array A, the natural approach is to replace S1[i,j]
with A[i,5,(2:6)[j]] and S2[i,j] with A[5,i,(2:6)[j]].

The key feature of the design of SubArrays is that this index replacement can be performed without
any runtime overhead.




SubArray design


Type parameters and fields

The strategy adopted is first and foremost expressed in the definition of the type:

struct SubArray{T,N,P,I,L} <: AbstractArray{T,N}
    parent::P
    indexes::I
    offset1::Int       # for linear indexing and pointer, only valid when L==true
    stride1::Int       # used only for linear indexing
    ...
end





SubArray has 5 type parameters.  The first two are the standard element type and dimensionality.
The next is the type of the parent AbstractArray.  The most heavily-used is the fourth parameter,
a Tuple of the types of the indices for each dimension. The final one, L, is only provided
as a convenience for dispatch; it’s a boolean that represents whether the index types support
fast linear indexing. More on that later.

If in our example above A is a Array{Float64, 3}, our S1 case above would be a SubArray{Int64,2,Array{Int64,3},Tuple{Colon,Int64,UnitRange{Int64}},false}.
Note in particular the tuple parameter, which stores the types of the indices used to create
S1.  Likewise,

julia> S1.indexes
(Colon(),5,2:6)





Storing these values allows index replacement, and having the types encoded as parameters allows
one to dispatch to efficient algorithms.




Index translation

Performing index translation requires that you do different things for different concrete SubArray
types.  For example, for S1, one needs to apply the i,j indices to the first and third dimensions
of the parent array, whereas for S2 one needs to apply them to the second and third.  The simplest
approach to indexing would be to do the type-analysis at runtime:

parentindexes = Array{Any}(0)
for thisindex in S.indexes
    ...
    if isa(thisindex, Int)
        # Don't consume one of the input indexes
        push!(parentindexes, thisindex)
    elseif isa(thisindex, AbstractVector)
        # Consume an input index
        push!(parentindexes, thisindex[inputindex[j]])
        j += 1
    elseif isa(thisindex, AbstractMatrix)
        # Consume two input indices
        push!(parentindexes, thisindex[inputindex[j], inputindex[j+1]])
        j += 2
    elseif ...
end
S.parent[parentindexes...]





Unfortunately, this would be disastrous in terms of performance: each element access would allocate
memory, and involves the running of a lot of poorly-typed code.

The better approach is to dispatch to specific methods to handle each type of stored index. That’s
what reindex does: it dispatches on the type of the first stored index and consumes the appropriate
number of input indices, and then it recurses on the remaining indices. In the case of S1, this
expands to

Base.reindex(S1, S1.indexes, (i, j)) == (i, S1.indexes[2], S1.indexes[3][j])





for any pair of indices (i,j) (except CartesianIndexs and arrays thereof, see below).

This is the core of a SubArray; indexing methods depend upon reindex to do this index translation.
Sometimes, though, we can avoid the indirection and make it even faster.




Linear indexing

Linear indexing can be implemented efficiently when the entire array has a single stride that
separates successive elements, starting from some offset. This means that we can pre-compute these
values and represent linear indexing simply as an addition and multiplication, avoiding the indirection
of reindex and (more importantly) the slow computation of the cartesian coordinates entirely.

For SubArray types, the availability of efficient linear indexing is based purely on the types
of the indices, and does not depend on values like the size of the parent array. You can ask whether
a given set of indices supports fast linear indexing with the internal Base.viewindexing function:

julia> Base.viewindexing(S1.indexes)
IndexCartesian()

julia> Base.viewindexing(S2.indexes)
IndexLinear()





This is computed during construction of the SubArray and stored in the L type parameter as
a boolean that encodes fast linear indexing support. While not strictly necessary, it means that
we can define dispatch directly on SubArray{T,N,A,I,true} without any intermediaries.

Since this computation doesn’t depend on runtime values, it can miss some cases in which the stride
happens to be uniform:

julia> A = reshape(1:4*2, 4, 2)
4×2 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:
 1  5
 2  6
 3  7
 4  8

julia> diff(A[2:2:4,:][:])
3-element Array{Int64,1}:
 2
 2
 2





A view constructed as view(A, 2:2:4, :) happens to have uniform stride, and therefore linear
indexing indeed could be performed efficiently.  However, success in this case depends on the
size of the array: if the first dimension instead were odd,

julia> A = reshape(1:5*2, 5, 2)
5×2 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:
 1   6
 2   7
 3   8
 4   9
 5  10

julia> diff(A[2:2:4,:][:])
3-element Array{Int64,1}:
 2
 3
 2





then A[2:2:4,:] does not have uniform stride, so we cannot guarantee efficient linear indexing.
Since we have to base this decision based purely on types encoded in the parameters of the SubArray,
S = view(A, 2:2:4, :) cannot implement efficient linear indexing.




A few details


	Note that the Base.reindex function is agnostic to the types of the input indices; it simply
determines how and where the stored indices should be reindexed. It not only supports integer
indices, but it supports non-scalar indexing, too. This means that views of views don’t need two
levels of indirection; they can simply re-compute the indices into the original parent array!


	Hopefully by now it’s fairly clear that supporting slices means that the dimensionality, given
by the parameter N, is not necessarily equal to the dimensionality of the parent array or the
length of the indexes tuple.  Neither do user-supplied indices necessarily line up with entries
in the indexes tuple (e.g., the second user-supplied index might correspond to the third dimension
of the parent array, and the third element in the indexes tuple).

What might be less obvious is that the dimensionality of the stored parent array must be equal
to the number of effective indices in the indexes tuple. Some examples:

A = reshape(1:35, 5, 7) # A 2d parent Array
S = view(A, 2:7)         # A 1d view created by linear indexing
S = view(A, :, :, 1:1)   # Appending extra indices is supported





Naively, you’d think you could just set S.parent = A and S.indexes = (:,:,1:1), but supporting
this dramatically complicates the reindexing process, especially for views of views. Not only
do you need to dispatch on the types of the stored indices, but you need to examine whether a
given index is the final one and “merge” any remaining stored indices together. This is not an
easy task, and even worse: it’s slow since it implicitly depends upon linear indexing.

Fortunately, this is precisely the computation that ReshapedArray performs, and it does so linearly
if possible. Consequently, view ensures that the parent array is the appropriate dimensionality
for the given indices by reshaping it if needed. The inner SubArray constructor ensures that
this invariant is satisfied.



	CartesianIndex and arrays thereof throw a nasty wrench into the reindex scheme. Recall that
reindex simply dispatches on the type of the stored indices in order to determine how many passed
indices should be used and where they should go. But with CartesianIndex, there’s no longer
a one-to-one correspondence between the number of passed arguments and the number of dimensions
that they index into. If we return to the above example of Base.reindex(S1, S1.indexes, (i, j)),
you can see that the expansion is incorrect for i, j = CartesianIndex(), CartesianIndex(2,1).
It should skip the CartesianIndex() entirely and return:

(CartesianIndex(2,1)[1], S1.indexes[2], S1.indexes[3][CartesianIndex(2,1)[2]])





Instead, though, we get:

(CartesianIndex(), S1.indexes[2], S1.indexes[3][CartesianIndex(2,1)])





Doing this correctly would require combined dispatch on both the stored and passed indices across
all combinations of dimensionalities in an intractable manner. As such, reindex must never be
called with CartesianIndex indices. Fortunately, the scalar case is easily handled by first
flattening the CartesianIndex arguments to plain integers. Arrays of CartesianIndex, however,
cannot be split apart into orthogonal pieces so easily. Before attempting to use reindex, view
must ensure that there are no arrays of CartesianIndex in the argument list. If there are, it
can simply “punt” by avoiding the reindex calculation entirely, constructing a nested SubArray
with two levels of indirection instead.













          

      

      

    

  

    
      
          
            
  
System Image Building


Building the Julia system image

Julia ships with a preparsed system image containing the contents of the Base module, named
sys.ji.  This file is also precompiled into a shared library called sys.{so,dll,dylib} on
as many platforms as possible, so as to give vastly improved startup times.  On systems that do
not ship with a precompiled system image file, one can be generated from the source files shipped
in Julia’s DATAROOTDIR/julia/base folder.

This operation is useful for multiple reasons.  A user may:


	Build a precompiled shared library system image on a platform that did not ship with one, thereby
improving startup times.


	Modify Base, rebuild the system image and use the new Base next time Julia is started.


	Include a userimg.jl file that includes packages into the system image, thereby creating a system
image that has packages embedded into the startup environment.




Julia now ships with a script that automates the tasks of building the system image, wittingly
named build_sysimg.jl that lives in DATAROOTDIR/julia/.  That is, to include it into a current
Julia session, type:

include(joinpath(JULIA_HOME, Base.DATAROOTDIR, "julia", "build_sysimg.jl"))





This will include a build_sysimg() function:

BuildSysImg.build_sysimg





Note that this file can also be run as a script itself, with command line arguments taking the
place of arguments passed to the build_sysimg function.  For example, to build a system image
in /tmp/sys.{so,dll,dylib}, with the core2 CPU instruction set, a user image of ~/userimg.jl
and force set to true, one would execute:

julia build_sysimg.jl /tmp/sys core2 ~/userimg.jl --force











          

      

      

    

  

    
      
          
            
  
More about types

If you’ve used Julia for a while, you understand the fundamental role that types play.  Here we
try to get under the hood, focusing particularly on Parametric Types.


Types and sets (and Any and Union{}/Bottom)

It’s perhaps easiest to conceive of Julia’s type system in terms of sets. While programs manipulate
individual values, a type refers to a set of values. This is not the same thing as a collection;
for example a Set of values is itself a single Set value.
Rather, a type describes a set of possible values, expressing uncertainty about which value we
have.

A concrete type T describes the set of values whose direct tag, as returned by the typeof
function, is T. An abstract type describes some possibly-larger set of values.

Any describes the entire universe of possible values. Integer is a subset of
Any that includes Int, Int8, and other concrete types.
Internally, Julia also makes heavy use of another type known as Bottom, which can also be written
as Union{}. This corresponds to the empty set.

Julia’s types support the standard operations of set theory: you can ask whether T1 is a “subset”
(subtype) of T2 with T1 <: T2. Likewise, you intersect two types using typeintersect, take
their union with Union, and compute a type that contains their union with typejoin:

julia> typeintersect(Int, Float64)
Union{}

julia> Union{Int, Float64}
Union{Float64, Int64}

julia> typejoin(Int, Float64)
Real

julia> typeintersect(Signed, Union{UInt8, Int8})
Int8

julia> Union{Signed, Union{UInt8, Int8}}
Union{Signed, UInt8}

julia> typejoin(Signed, Union{UInt8, Int8})
Integer

julia> typeintersect(Tuple{Integer,Float64}, Tuple{Int,Real})
Tuple{Int64,Float64}

julia> Union{Tuple{Integer,Float64}, Tuple{Int,Real}}
Union{Tuple{Int64,Real}, Tuple{Integer,Float64}}

julia> typejoin(Tuple{Integer,Float64}, Tuple{Int,Real})
Tuple{Integer,Real}





While these operations may seem abstract, they lie at the heart of Julia.  For example, method
dispatch is implemented by stepping through the items in a method list until reaching one for which
the type of the argument tuple is a subtype of the method signature.
For this algorithm to work, it’s important that methods be sorted by their specificity, and that the
search begins with the most specific methods. Consequently, Julia also implements a partial order on
types; this is achieved by functionality that is similar to <:, but with differences that will
be discussed below.




UnionAll types

Julia’s type system can also express an iterated union of types: a union of types over all values
of some variable. This is needed to describe parametric types where the values of some parameters
are not known.

For example, :obj:Array has two parameters as in Array{Int,2}. If we did not know the element
type, we could write Array{T,2} where T, which is the union of Array{T,2} for all values of
T: Union{Array{Int8,2}, Array{Int16,2}, ...}.

Such a type is represented by a UnionAll object, which contains a variable (T in this example,
of type TypeVar), and a wrapped type (Array{T,2} in this example).

Consider the following methods:

f1(A::Array) = 1
f2(A::Array{Int}) = 2
f3(A::Array{T}) where {T<:Any} = 3
f4(A::Array{Any}) = 4





The signature of f3 is a UnionAll type wrapping a tuple type.
All but f4 can be called with a = [1,2]; all but f2 can be called with b = Any[1,2].

Let’s look at these types a little more closely:

julia> dump(Array)
UnionAll
  var: TypeVar
    name: Symbol T
    lb: Core.TypeofBottom Union{}
    ub: Any
  body: UnionAll
    var: TypeVar
      name: Symbol N
      lb: Core.TypeofBottom Union{}
      ub: Any
    body: Array{T,N} <: DenseArray{T,N}





This indicates that Array actually names a UnionAll type. There is one UnionAll type for
each parameter, nested. The syntax Array{Int,2} is equivalent to Array{Int}{2};
internally each UnionAll is instantiated with a particular variable value, one at a time,
outermost-first. This gives a natural meaning to the omission of trailing type parameters;
Array{Int} gives a type equivalent to Array{Int,N} where N.

A TypeVar is not itself a type, but rather should be considered part of the structure of a
UnionAll type. Type variables have lower and upper bounds on their values (in the fields
lb and ub). The symbol name is purely cosmetic. Internally, TypeVars are compared by
address, so they are defined as mutable types to ensure that “different” type variables can be
distinguished. However, by convention they should not be mutated.

One can construct TypeVars manually:

julia> TypeVar(:V, Signed, Real)
Signed<:V<:Real





There are convenience versions that allow you to omit any of these arguments except the name
symbol.

The syntax Array{T} where T<:Integer is lowered to

let T = TypeVar(:T,Integer)
    UnionAll(T, Array{T})
end





so it is seldom necessary to construct a TypeVar manually (indeed, this is to be avoided).




Free variables

The concept of a free type variable is extremely important in the type system. We say that a
variable V is free in type T if T does not contain the UnionAll that introduces variable
V. For example, the type Array{Array{V} where V<:Integer} has no free variables, but the
Array{V} part inside of it does have a free variable, V.

A type with free variables is, in some sense, not really a type at all. Consider the type
Array{Array{T}} where T, which refers to all homogeneous arrays of arrays.
The inner type Array{T}, seen by itself, might seem to refer to any kind of array.
However, every element of the outer array must have the same array type, so Array{T} cannot
refer to just any old array. One could say that Array{T} effectively “occurs” multiple times,
and T must have the same value each “time”.

For this reason, the function jl_has_free_typevars in the C API is very important. Types for
which it returns true will not give meaningful answers in subtyping and other type functions.




TypeNames

The following two Array types are functionally equivalent, yet print differently:

julia> TV, NV = TypeVar(:T), TypeVar(:N)
(T, N)

julia> Array
Array

julia> Array{TV,NV}
Array{T,N}





These can be distinguished by examining the name field of the type, which is an object of type
TypeName:

julia> dump(Array{Int,1}.name)
TypeName
  name: Symbol Array
  module: Module Core
  names: empty SimpleVector
  wrapper: UnionAll
    var: TypeVar
      name: Symbol T
      lb: Core.TypeofBottom Union{}
      ub: Any
    body: UnionAll
      var: TypeVar
        name: Symbol N
        lb: Core.TypeofBottom Union{}
        ub: Any
      body: Array{T,N} <: DenseArray{T,N}
  cache: SimpleVector
    ...

  linearcache: SimpleVector
    ...

  hash: Int64 -7900426068641098781
  mt: MethodTable
    name: Symbol Array
    defs: Void nothing
    cache: Void nothing
    max_args: Int64 0
    kwsorter: #undef
    module: Module Core
    : Int64 0
    : Int64 0





In this case, the relevant field is wrapper, which holds a reference to the top-level type used
to make new Array types.

julia> pointer_from_objref(Array)
Ptr{Void} @0x00007fcc7de64850

julia> pointer_from_objref(Array.body.body.name.wrapper)
Ptr{Void} @0x00007fcc7de64850

julia> pointer_from_objref(Array{TV,NV})
Ptr{Void} @0x00007fcc80c4d930

julia> pointer_from_objref(Array{TV,NV}.name.wrapper)
Ptr{Void} @0x00007fcc7de64850





The wrapper field of Array points to itself, but for Array{TV,NV} it points back
to the original definition of the type.

What about the other fields? hash assigns an integer to each type.  To examine the cache
field, it’s helpful to pick a type that is less heavily used than Array. Let’s first create our
own type:

julia> struct MyType{T,N} end

julia> MyType{Int,2}
MyType{Int64,2}

julia> MyType{Float32, 5}
MyType{Float32,5}

julia> MyType.body.body.name.cache
svec(MyType{Float32,5}, MyType{Int64,2}, #undef, #undef, #undef, #undef, #undef, #undef)





(The cache is pre-allocated to have length 8, but only the first two entries are populated.) Consequently,
when you instantiate a parametric type, each concrete type gets saved in a type cache.  However,
instances containing free type variables are not cached.




Tuple types

Tuple types constitute an interesting special case.  For dispatch to work on declarations like
x::Tuple, the type has to be able to accommodate any tuple.  Let’s check the parameters:

julia> Tuple
Tuple

julia> Tuple.parameters
svec(Vararg{Any,N} where N)





Unlike other types, tuple types are covariant in their parameters, so this definition permits
Tuple to match any type of tuple:

julia> typeintersect(Tuple, Tuple{Int,Float64})
Tuple{Int64,Float64}

julia> typeintersect(Tuple{Vararg{Any}}, Tuple{Int,Float64})
Tuple{Int64,Float64}





However, if a variadic (Vararg) tuple type has free variables it can describe different kinds
of tuples:

julia> typeintersect(Tuple{Vararg{T} where T}, Tuple{Int,Float64})
Tuple{Int64,Float64}

julia> typeintersect(Tuple{Vararg{T}} where T, Tuple{Int,Float64})
Union{}





Notice that when T is free with respect to the Tuple type (i.e. its binding UnionAll
type is outside the Tuple type), only one T value must work over the whole type.
Therefore a heterogeneous tuple does not match.

Finally, it’s worth noting that Tuple{} is distinct:

julia> Tuple{}
Tuple{}

julia> Tuple{}.parameters
svec()

julia> typeintersect(Tuple{}, Tuple{Int})
Union{}





What is the “primary” tuple-type?

julia> pointer_from_objref(Tuple)
Ptr{Void} @0x00007f5998a04370

julia> pointer_from_objref(Tuple{})
Ptr{Void} @0x00007f5998a570d0

julia> pointer_from_objref(Tuple.name.wrapper)
Ptr{Void} @0x00007f5998a04370

julia> pointer_from_objref(Tuple{}.name.wrapper)
Ptr{Void} @0x00007f5998a04370





so Tuple == Tuple{Vararg{Any}} is indeed the primary type.




Diagonal types

Consider the type Tuple{T,T} where T.
A method with this signature would look like:

f(x::T, y::T) where {T} = ...





According to the usual interpretation of a UnionAll type, this T ranges over all
types, including Any, so this type should be equivalent to Tuple{Any,Any}.
However, this interpretation causes some practical problems.

First, a value of T needs to be available inside the method definition.
For a call like f(1, 1.0), it’s not clear what T should be.
It could be Union{Int,Float64}, or perhaps Real.
Intuitively, we expect the declaration x::T to mean T === typeof(x).
To make sure that invariant holds, we need typeof(x) === typeof(y) === T in this method.
That implies the method should only be called for arguments of the exact same type.

It turns out that being able to dispatch on whether two values have the same type
is very useful (this is used by the promotion system for example), so we have
multiple reasons to want a different interpretation of Tuple{T,T} where T.
To make this work we add the following rule to subtyping: if a variable occurs
more than once in covariant position, it is restricted to ranging over only concrete
types.
(“Covariant position” means that only Tuple and Union types occur between an
occurrence of a variable and the UnionAll type that introduces it.)
Such variables are called “diagonal variables” or “concrete variables”.

So for example, Tuple{T,T} where T can be seen as
Union{Tuple{Int8,Int8}, Tuple{Int16,Int16}, ...}, where T ranges over all
concrete types.
This gives rise to some interesting subtyping results.
For example Tuple{Real,Real} is not a subtype of Tuple{T,T} where T, because
it includes some types like Tuple{Int8,Int16} where the two elements have
different types.
Tuple{Real,Real} and Tuple{T,T} where T have the non-trivial intersection
Tuple{T,T} where T<:Real.
However, Tuple{Real} is a subtype of Tuple{T} where T, because in that case
T occurs only once and so is not diagonal.

Next consider a signature like the following:

f(a::Array{T}, x::T, y::T) where {T} = ...





In this case, T occurs in invariant position inside Array{T}.
That means whatever type of array is passed unambiguously determines
the value of T — we say T has an equality constraint on it.
Therefore in this case the diagonal rule is not really necessary, since
the array determines T and we can then allow x and y to be of
any subtypes of T.
So variables that occur in invariant position are never considered diagonal.
This choice of behavior is slightly controversial — some feel this definition
should be written as

f(a::Array{T}, x::S, y::S) where {T, S<:T} = ...





to clarify whether x and y need to have the same type.
In this version of the signature they would, or we could introduce a third variable for
the type of y if x and y can have different types.

The next complication is the interaction of unions and diagonal variables, e.g.

f(x::Union{Void,T}, y::T) where {T} = ...





Consider what this declaration means.
y has type T. x then can have either the same type T, or else be of type Void.
So all of the following calls should match:

f(1, 1)
f("", "")
f(2.0, 2.0)
f(nothing, 1)
f(nothing, "")
f(nothing, 2.0)





These examples are telling us something: when x is nothing::Void, there are no
extra constraints on y.
It is as if the method signature had y::Any.
This means that whether a variable is diagonal is not a static property based on
where it appears in a type.
Rather, it depends on where a variable appears when the subtyping algorithm uses it.
When x has type Void, we don’t need to use the T in Union{Void,T}, so T
does not “occur”.
Indeed, we have the following type equivalence:

(Tuple{Union{Void,T},T} where T) == Union{Tuple{Void,Any}, Tuple{T,T} where T}








Subtyping diagonal variables

The subtyping algorithm for diagonal variables has two components:
(1) identifying variable occurrences, and (2) ensuring that diagonal
variables range over concrete types only.

The first task is accomplished by keeping counters occurs_inv and occurs_cov
(in src/subtype.c) for each variable in the environment, tracking the number
of invariant and covariant occurrences, respectively.
A variable is diagonal when occurs_inv == 0 && occurs_cov > 1.

The second task is accomplished by imposing a condition on a variable’s lower bound.
As the subtyping algorithm runs, it narrows the bounds of each variable
(raising lower bounds and lowering upper bounds) to keep track of the
range of variable values for which the subtype relation would hold.
When we are done evaluating the body of a UnionAll type whose variable is diagonal,
we look at the final values of the bounds.
Since the variable must be concrete, a contradiction occurs if its lower bound
could not be a subtype of a concrete type.
For example, an abstract type like AbstractArray cannot be a subtype of a concrete
type, but a concrete type like Int can be, and the empty type Bottom can be as well.
If a lower bound fails this test the algorithm stops with the answer false.

For example, in the problem Tuple{Int,String} <: Tuple{T,T} where T, we derive that
this would be true if T were a supertype of Union{Int,String}.
However, Union{Int,String} is an abstract type, so the relation does not hold.

This concreteness test is done by the function is_leaf_bound.
Note that this test is slightly different from jl_is_leaf_type, since it also returns
true for Bottom.
Currently this function is heuristic, and does not catch all possible concrete types.
The difficulty is that whether a lower bound is concrete might depend on the values
of other type variable bounds.
For example, Vector{T} is equivalent to the concrete type Vector{Int} only if
both the upper and lower bounds of T equal Int.
We have not yet worked out a complete algorithm for this.




Introduction to the internal machinery

Most operations for dealing with types are found in the files jltypes.c and subtype.c.
A good way to start is to watch subtyping in action.
Build Julia with make debug and fire up Julia within a debugger.
gdb debugging tips has some tips which may be useful.

Because the subtyping code is used heavily in the REPL itself–and hence breakpoints in this
code get triggered often–it will be easiest if you make the following definition:

julia> function mysubtype(a,b)
           ccall(:jl_breakpoint, Void, (Any,), nothing)
           issubtype(a, b)
       end





and then set a breakpoint in jl_breakpoint.  Once this breakpoint gets triggered, you can set
breakpoints in other functions.

As a warm-up, try the following:

mysubtype(Tuple{Int,Float64}, Tuple{Integer,Real})





We can make it more interesting by trying a more complex case:

mysubtype(Tuple{Array{Int,2}, Int8}, Tuple{Array{T}, T} where T)








Subtyping and method sorting

The type_morespecific functions are used for imposing a partial order on functions in method
tables (from most-to-least specific). Specificity is strict; if a is more specific than b,
then a does not equal b and b is not more specific than a.

If a is a strict subtype of b, then it is automatically considered more specific.
From there, type_morespecific employs some less formal rules.
For example, subtype is sensitive to the number of arguments, but type_morespecific may not be.
In particular, Tuple{Int,AbstractFloat} is more specific than Tuple{Integer}, even though it is
not a subtype.  (Of Tuple{Int,AbstractFloat} and Tuple{Integer,Float64}, neither is more specific
than the other.)  Likewise, Tuple{Int,Vararg{Int}} is not a subtype of Tuple{Integer}, but it is
considered more specific. However, morespecific does get a bonus for length: in particular,
Tuple{Int,Int} is more specific than Tuple{Int,Vararg{Int}}.

If you’re debugging how methods get sorted, it can be convenient to define the function:

type_morespecific(a, b) = ccall(:jl_type_morespecific, Cint, (Any,Any), a, b)





which allows you to test whether tuple type a is more specific than tuple type b.







          

      

      

    

  

    
      
          
            
  
Using Valgrind with Julia

Valgrind [http://valgrind.org/] is a tool for memory debugging, memory leak detection, and profiling.
This section describes things to keep in mind when using Valgrind to debug memory issues with
Julia.


General considerations

By default, Valgrind assumes that there is no self modifying code in the programs it runs.  This
assumption works fine in most instances but fails miserably for a just-in-time compiler like
julia.  For this reason it is crucial to pass --smc-check=all-non-file to valgrind, else
code may crash or behave unexpectedly (often in subtle ways).

In some cases, to better detect memory errors using Valgrind it can help to compile julia with
memory pools disabled.  The compile-time flag MEMDEBUG disables memory pools in Julia, and
MEMDEBUG2 disables memory pools in FemtoLisp.  To build julia with both flags, add the following
line to Make.user:

CFLAGS = -DMEMDEBUG -DMEMDEBUG2





Another thing to note: if your program uses multiple workers processes, it is likely that you
want all such worker processes to run under Valgrind, not just the parent process.  To do this,
pass --trace-children=yes to valgrind.




Suppressions

Valgrind will typically display spurious warnings as it runs.  To reduce the number of such warnings,
it helps to provide a suppressions file [http://valgrind.org/docs/manual/manual-core.html#manual-core.suppress]
to Valgrind.  A sample suppressions file is included in the Julia source distribution at contrib/valgrind-julia.supp.

The suppressions file can be used from the julia/ source directory as follows:

$ valgrind --smc-check=all-non-file --suppressions=contrib/valgrind-julia.supp ./julia progname.jl





Any memory errors that are displayed should either be reported as bugs or contributed as additional
suppressions.  Note that some versions of Valgrind are shipped with insufficient default suppressions [https://github.com/JuliaLang/julia/issues/8314#issuecomment-55766210],
so that may be one thing to consider before submitting any bugs.




Running the Julia test suite under Valgrind

It is possible to run the entire Julia test suite under Valgrind, but it does take quite some
time (typically several hours).  To do so, run the following command from the julia/test/ directory:

valgrind --smc-check=all-non-file --trace-children=yes --suppressions=$PWD/../contrib/valgrind-julia.supp ../julia runtests.jl all





If you would like to see a report of “definite” memory leaks, pass the flags --leak-check=full --show-leak-kinds=definite
to valgrind as well.




Caveats

Valgrind currently does not support multiple rounding modes [https://bugs.kde.org/show_bug.cgi?id=136779],
so code that adjusts the rounding mode will behave differently when run under Valgrind.

In general, if after setting --smc-check=all-non-file you find that your program behaves differently
when run under Valgrind, it may help to pass --tool=none to valgrind as you investigate further.
This will enable the minimal Valgrind machinery but will also run much faster than when the full
memory checker is enabled.







          

      

      

    

  

    
      
          
            
  
[Multi-dimensional Arrays](@id man-multi-dim-arrays)

Julia, like most technical computing languages, provides a first-class array implementation. Most
technical computing languages pay a lot of attention to their array implementation at the expense
of other containers. Julia does not treat arrays in any special way. The array library is implemented
almost completely in Julia itself, and derives its performance from the compiler, just like any
other code written in Julia. As such, it’s also possible to define custom array types by inheriting
from AbstractArray. See the [manual section on the AbstractArray interface](@ref man-interface-array) for more details
on implementing a custom array type.

An array is a collection of objects stored in a multi-dimensional grid. In the most general case,
an array may contain objects of type Any. For most computational purposes, arrays should contain
objects of a more specific type, such as Float64 or Int32.

In general, unlike many other technical computing languages, Julia does not expect programs to
be written in a vectorized style for performance. Julia’s compiler uses type inference and generates
optimized code for scalar array indexing, allowing programs to be written in a style that is convenient
and readable, without sacrificing performance, and using less memory at times.

In Julia, all arguments to functions are passed by reference. Some technical computing languages
pass arrays by value, and this is convenient in many cases. In Julia, modifications made to input
arrays within a function will be visible in the parent function. The entire Julia array library
ensures that inputs are not modified by library functions. User code, if it needs to exhibit similar
behavior, should take care to create a copy of inputs that it may modify.


Arrays


Basic Functions

| Function               | Description                                                                      |
|:———————- |:——————————————————————————– |
| eltype(A)    | the type of the elements contained in A                                        |
| length(A)    | the number of elements in A                                                    |
| ndims(A)     | the number of dimensions of A                                                  |
| size(A)      | a tuple containing the dimensions of A                                         |
| size(A,n)    | the size of A along dimension n                                              |
| indices(A)   | a tuple containing the valid indices of A                                      |
| indices(A,n) | a range expressing the valid indices along dimension n                         |
| eachindex(A) | an efficient iterator for visiting each position in A                          |
| stride(A,k)  | the stride (linear index distance between adjacent elements) along dimension k |
| strides(A)   | a tuple of the strides in each dimension                                         |




Construction and Initialization

Many functions for constructing and initializing arrays are provided. In the following list of
such functions, calls with a dims... argument can either take a single tuple of dimension sizes
or a series of dimension sizes passed as a variable number of arguments. Most of these functions
also accept a first input T, which is the element type of the array. If the type T is
omitted it will default to Float64.

| Function                           | Description                                                                                                                                                                                                                                  |
|:———————————- |:——————————————————————————————————————————————————————————————————————————————– |
| Array{T}(dims...)        | an uninitialized dense Array                                                                                                                                                                                                       |
| zeros(T, dims...)        | an Array of all zeros                                                                                                                                                                                                                      |
| zeros(A)                 | an array of all zeros with the same type, element type and shape as A                                                                                                                                                                      |
| ones(T, dims...)         | an Array of all ones                                                                                                                                                                                                                       |
| ones(A)                  | an array of all ones with the same type, element type and shape as A                                                                                                                                                                       |
| trues(dims...)           | a BitArray with all values true                                                                                                                                                                                                  |
| trues(A)                 | a BitArray with all values true and the same shape as A                                                                                                                                                                                |
| falses(dims...)          | a BitArray with all values false                                                                                                                                                                                                         |
| falses(A)                | a BitArray with all values false and the same shape as A                                                                                                                                                                               |
| reshape(A, dims...)      | an array containing the same data as A, but with different dimensions                                                                                                                                                                      |
| copy(A)                  | copy A                                                                                                                                                                                                                                     |
| deepcopy(A)              | copy A, recursively copying its elements                                                                                                                                                                                                   |
| similar(A, T, dims...)   | an uninitialized array of the same type as A (dense, sparse, etc.), but with the specified element type and dimensions. The second and third arguments are both optional, defaulting to the element type and dimensions of A if omitted. |
| reinterpret(T, A)        | an array with the same binary data as A, but with element type T                                                                                                                                                                         |
| rand(T, dims...)         | an Array with random, iid [^1] and uniformly distributed values in the half-open interval [0, 1)                                                                                                                                       |
| randn(T, dims...)        | an Array with random, iid and standard normally distributed values                                                                                                                                                                         |
| eye(T, n)                | n-by-n identity matrix                                                                                                                                                                                                                   |
| eye(T, m, n)             | m-by-n identity matrix                                                                                                                                                                                                                   |
| linspace(start, stop, n) | range of n linearly spaced elements from start to stop                                                                                                                                                                                 |
| fill!(A, x)              | fill the array A with the value x                                                                                                                                                                                                        |
| fill(x, dims...)         | an Array filled with the value x                                                                                                                                                                                                         |

[^1]: iid, independently and identically distributed.

The syntax [A, B, C, ...] constructs a 1-d array (vector) of its arguments. If all
arguments have a common [promotion type](@ref conversion-and-promotion) then they get
converted to that type using convert().




Concatenation

Arrays can be constructed and also concatenated using the following functions:

| Function               | Description                                          |
|:———————- |:—————————————————- |
| cat(k, A...) | concatenate input n-d arrays along the dimension k |
| vcat(A...)   | shorthand for cat(1, A...)                         |
| hcat(A...)   | shorthand for cat(2, A...)                         |

Scalar values passed to these functions are treated as 1-element arrays.

The concatenation functions are used so often that they have special syntax:

| Expression        | Calls             |
|:—————– |:—————– |
| [A; B; C; ...]  | vcat()  |
| [A B C ...]     | hcat()  |
| [A B; C D; ...] | hvcat() |

hvcat() concatenates in both dimension 1 (with semicolons) and dimension 2 (with spaces).




Typed array initializers

An array with a specific element type can be constructed using the syntax T[A, B, C, ...]. This
will construct a 1-d array with element type T, initialized to contain elements A, B, C,
etc. For example Any[x, y, z] constructs a heterogeneous array that can contain any values.

Concatenation syntax can similarly be prefixed with a type to specify the element type of the
result.

julia> [[1 2] [3 4]]
1×4 Array{Int64,2}:
 1  2  3  4

julia> Int8[[1 2] [3 4]]
1×4 Array{Int8,2}:
 1  2  3  4








Comprehensions

Comprehensions provide a general and powerful way to construct arrays. Comprehension syntax is
similar to set construction notation in mathematics:

A = [ F(x,y,...) for x=rx, y=ry, ... ]





The meaning of this form is that F(x,y,...) is evaluated with the variables x, y, etc. taking
on each value in their given list of values. Values can be specified as any iterable object, but
will commonly be ranges like 1:n or 2:(n-1), or explicit arrays of values like [1.2, 3.4, 5.7].
The result is an N-d dense array with dimensions that are the concatenation of the dimensions
of the variable ranges rx, ry, etc. and each F(x,y,...) evaluation returns a scalar.

The following example computes a weighted average of the current element and its left and right
neighbor along a 1-d grid. :

julia> x = rand(8)
8-element Array{Float64,1}:
 0.843025
 0.869052
 0.365105
 0.699456
 0.977653
 0.994953
 0.41084
 0.809411

julia> [ 0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1 ]
6-element Array{Float64,1}:
 0.736559
 0.57468
 0.685417
 0.912429
 0.8446
 0.656511





The resulting array type depends on the types of the computed elements. In order to control the
type explicitly, a type can be prepended to the comprehension. For example, we could have requested
the result in single precision by writing:

Float32[ 0.25*x[i-1] + 0.5*x[i] + 0.25*x[i+1] for i=2:length(x)-1 ]








Generator Expressions

Comprehensions can also be written without the enclosing square brackets, producing an object
known as a generator. This object can be iterated to produce values on demand, instead of allocating
an array and storing them in advance (see Iteration). For example, the following expression
sums a series without allocating memory:

julia> sum(1/n^2 for n=1:1000)
1.6439345666815615





When writing a generator expression with multiple dimensions inside an argument list, parentheses
are needed to separate the generator from subsequent arguments:

julia> map(tuple, 1/(i+j) for i=1:2, j=1:2, [1:4;])
ERROR: syntax: invalid iteration specification





All comma-separated expressions after for are interpreted as ranges. Adding parentheses lets
us add a third argument to map:

julia> map(tuple, (1/(i+j) for i=1:2, j=1:2), [1 3; 2 4])
2×2 Array{Tuple{Float64,Int64},2}:
 (0.5, 1)       (0.333333, 3)
 (0.333333, 2)  (0.25, 4)





Ranges in generators and comprehensions can depend on previous ranges by writing multiple for
keywords:

julia> [(i,j) for i=1:3 for j=1:i]
6-element Array{Tuple{Int64,Int64},1}:
 (1, 1)
 (2, 1)
 (2, 2)
 (3, 1)
 (3, 2)
 (3, 3)





In such cases, the result is always 1-d.

Generated values can be filtered using the if keyword:

julia> [(i,j) for i=1:3 for j=1:i if i+j == 4]
2-element Array{Tuple{Int64,Int64},1}:
 (2, 2)
 (3, 1)








[Indexing](@id man-array-indexing)

The general syntax for indexing into an n-dimensional array A is:

X = A[I_1, I_2, ..., I_n]





where each I_k may be a scalar integer, an array of integers, or any other
[supported index](@ref man-supported-index-types). This includes
Colon (:) to select all indices within the entire dimension,
ranges of the form a:c or a:b:c to select contiguous or strided
subsections, and arrays of booleans to select elements at their true indices.

If all the indices are scalars, then the result X is a single element from the array A. Otherwise,
X is an array with the same number of dimensions as the sum of the dimensionalities of all the
indices.

If all indices are vectors, for example, then the shape of X would be (length(I_1), length(I_2), ..., length(I_n)),
with location (i_1, i_2, ..., i_n) of X containing the value A[I_1[i_1], I_2[i_2], ..., I_n[i_n]].
If I_1 is changed to a two-dimensional matrix, then X becomes an n+1-dimensional array of
shape (size(I_1, 1), size(I_1, 2), length(I_2), ..., length(I_n)). The matrix adds a dimension.
The location (i_1, i_2, i_3, ..., i_{n+1}) contains the value at A[I_1[i_1, i_2], I_2[i_3], ..., I_n[i_{n+1}]].
All dimensions indexed with scalars are dropped. For example, the result of A[2, I, 3] is an
array with size size(I). Its ith element is populated by A[2, I[i], 3].

As a special part of this syntax, the end keyword may be used to represent the last index of
each dimension within the indexing brackets, as determined by the size of the innermost array
being indexed. Indexing syntax without the end keyword is equivalent to a call to getindex:

X = getindex(A, I_1, I_2, ..., I_n)





Example:

julia> x = reshape(1:16, 4, 4)
4×4 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:
 1  5   9  13
 2  6  10  14
 3  7  11  15
 4  8  12  16

julia> x[2:3, 2:end-1]
2×2 Array{Int64,2}:
 6  10
 7  11

julia> x[1, [2 3; 4 1]]
2×2 Array{Int64,2}:
  5  9
 13  1





Empty ranges of the form n:n-1 are sometimes used to indicate the inter-index location between
n-1 and n. For example, the searchsorted() function uses this convention to indicate
the insertion point of a value not found in a sorted array:

julia> a = [1,2,5,6,7];

julia> searchsorted(a, 3)
3:2








Assignment

The general syntax for assigning values in an n-dimensional array A is:

A[I_1, I_2, ..., I_n] = X





where each I_k may be a scalar integer, an array of integers, or any other
[supported index](@ref man-supported-index-types). This includes
Colon (:) to select all indices within the entire dimension,
ranges of the form a:c or a:b:c to select contiguous or strided
subsections, and arrays of booleans to select elements at their true indices.

If X is an array, it must have the same number of elements as the product of the lengths of
the indices: prod(length(I_1), length(I_2), ..., length(I_n)). The value in location I_1[i_1], I_2[i_2], ..., I_n[i_n]
of A is overwritten with the value X[i_1, i_2, ..., i_n]. If X is not an array, its value
is written to all referenced locations of A.

Just as in [Indexing](@ref man-array-indexing), the end keyword may be used
to represent the last index of each dimension within the indexing brackets, as
determined by the size of the array being assigned into. Indexed assignment
syntax without the end keyword is equivalent to a call to
setindex!():

setindex!(A, X, I_1, I_2, ..., I_n)





Example:

julia> x = collect(reshape(1:9, 3, 3))
3×3 Array{Int64,2}:
 1  4  7
 2  5  8
 3  6  9

julia> x[1:2, 2:3] = -1
-1

julia> x
3×3 Array{Int64,2}:
 1  -1  -1
 2  -1  -1
 3   6   9








[Supported index types](@id man-supported-index-types)

In the expression A[I_1, I_2, ..., I_n], each I_k may be a scalar index, an
array of scalar indices, or an object that represents an array of scalar
indices and can be converted to such by to_indices:


	A scalar index. By default this includes:


	Non-boolean integers


	CartesianIndex{N}s, which behave like an N-tuple of integers spanning multiple dimensions (see below for more details)






	An array of scalar indices. This includes:


	Vectors and multidimensional arrays of integers


	Empty arrays like [], which select no elements


	Ranges of the form a:c or a:b:c, which select contiguous or strided subsections from a to c (inclusive)


	Any custom array of scalar indices that is a subtype of AbstractArray


	Arrays of CartesianIndex{N} (see below for more details)






	An object that represents an array of scalar indices and can be converted to such by to_indices. By default this includes:


	Colon() (:), which represents all indices within an entire dimension or across the entire array


	Arrays of booleans, which select elements at their true indices (see below for more details)









Cartesian indices

The special CartesianIndex{N} object represents a scalar index that behaves
like an N-tuple of integers spanning multiple dimensions.  For example:

julia> A = reshape(1:32, 4, 4, 2);

julia> A[3, 2, 1]
7

julia> A[CartesianIndex(3, 2, 1)] == A[3, 2, 1] == 7
true





Considered alone, this may seem relatively trivial; CartesianIndex simply
gathers multiple integers together into one object that represents a single
multidimensional index. When combined with other indexing forms and iterators
that yield CartesianIndexes, however, this can lead directly to very elegant
and efficient code. See Iteration below, and for some more advanced
examples, see this blog post on multidimensional algorithms and
iteration [https://julialang.org/blog/2016/02/iteration].

Arrays of CartesianIndex{N} are also supported. They represent a collection
of scalar indices that each span N dimensions, enabling a form of indexing
that is sometimes referred to as pointwise indexing. For example, it enables
accessing the diagonal elements from the first “page” of A from above:

julia> page = A[:,:,1]
4×4 Array{Int64,2}:
 1  5   9  13
 2  6  10  14
 3  7  11  15
 4  8  12  16

julia> page[[CartesianIndex(1,1),
             CartesianIndex(2,2),
             CartesianIndex(3,3),
             CartesianIndex(4,4)]]
4-element Array{Int64,1}:
  1
  6
 11
 16





This can be expressed much more simply with [dot broadcasting](@ref man-vectorized)
and by combining it with a normal integer index (instead of extracting the
first page from A as a separate step). It can even be combined with a :
to extract both diagonals from the two pages at the same time:

julia> A[CartesianIndex.(indices(A, 1), indices(A, 2)), 1]
4-element Array{Int64,1}:
  1
  6
 11
 16

julia> A[CartesianIndex.(indices(A, 1), indices(A, 2)), :]
4×2 Array{Int64,2}:
  1  17
  6  22
 11  27
 16  32





!!! warning

`CartesianIndex` and arrays of `CartesianIndex` are not compatible with the
`end` keyword to represent the last index of a dimension. Do not use `end`
in indexing expressions that may contain either `CartesianIndex` or arrays thereof.








Logical indexing

Often referred to as logical indexing or indexing with a logical mask, indexing
by a boolean array selects elements at the indices where its values are true.
Indexing by a boolean vector B is effectively the same as indexing by the
vector of integers that is returned by find(B). Similarly, indexing
by a N-dimensional boolean array is effectively the same as indexing by the
vector of CartesianIndex{N}s where its values are true. A logical index
must be a vector of the same length as the dimension it indexes into, or it
must be the only index provided and match the size and dimensionality of the
array it indexes into. It is generally more efficient to use boolean arrays as
indices directly instead of first calling find().

julia> x = reshape(1:16, 4, 4)
4×4 Base.ReshapedArray{Int64,2,UnitRange{Int64},Tuple{}}:
 1  5   9  13
 2  6  10  14
 3  7  11  15
 4  8  12  16

julia> x[[false, true, true, false], :]
2×4 Array{Int64,2}:
 2  6  10  14
 3  7  11  15

julia> mask = map(ispow2, x)
4×4 Array{Bool,2}:
  true  false  false  false
  true  false  false  false
 false  false  false  false
  true   true  false   true

julia> x[mask]
5-element Array{Int64,1}:
  1
  2
  4
  8
 16










Iteration

The recommended ways to iterate over a whole array are

for a in A
    # Do something with the element a
end

for i in eachindex(A)
    # Do something with i and/or A[i]
end





The first construct is used when you need the value, but not index, of each element. In the second
construct, i will be an Int if A is an array type with fast linear indexing; otherwise,
it will be a CartesianIndex:

julia> A = rand(4,3);

julia> B = view(A, 1:3, 2:3);

julia> for i in eachindex(B)
           @show i
       end
i = CartesianIndex{2}((1, 1))
i = CartesianIndex{2}((2, 1))
i = CartesianIndex{2}((3, 1))
i = CartesianIndex{2}((1, 2))
i = CartesianIndex{2}((2, 2))
i = CartesianIndex{2}((3, 2))





In contrast with for i = 1:length(A), iterating with eachindex provides an efficient way to
iterate over any array type.




Array traits

If you write a custom AbstractArray type, you can specify that it has fast linear indexing using

Base.IndexStyle(::Type{<:MyArray}) = IndexLinear()





This setting will cause eachindex iteration over a MyArray to use integers. If you don’t
specify this trait, the default value IndexCartesian() is used.




Array and Vectorized Operators and Functions

The following operators are supported for arrays:


	Unary arithmetic – -, +


	Binary arithmetic – -, +, *, /, \, ^


	Comparison – ==, !=, ≈ (isapprox), ≉




Most of the binary arithmetic operators listed above also operate elementwise
when one argument is scalar: -, +, and * when either argument is scalar,
and / and \ when the denominator is scalar. For example, [1, 2] + 3 == [4, 5]
and [6, 4] / 2 == [3, 2].

Additionally, to enable convenient vectorization of mathematical and other operations,
Julia [provides the dot syntax](@ref man-vectorized) f.(args...), e.g. sin.(x)
or min.(x,y), for elementwise operations over arrays or mixtures of arrays and
scalars (a Broadcasting operation); these have the additional advantage of
“fusing” into a single loop when combined with other dot calls, e.g. sin.(cos.(x)).

Also, every binary operator supports a [dot version](@ref man-dot-operators)
that can be applied to arrays (and combinations of arrays and scalars) in such
[fused broadcasting operations](@ref man-vectorized), e.g. z .== sin.(x .* y).

Note that comparisons such as == operate on whole arrays, giving a single boolean
answer. Use dot operators like .== for elementwise comparisons. (For comparison
operations like <, only the elementwise .< version is applicable to arrays.)

Also notice the difference between max.(a,b), which broadcasts max()
elementwise over a and b, and maximum(a), which finds the largest value within
a. The same relationship holds for min.(a,b) and minimum(a).




Broadcasting

It is sometimes useful to perform element-by-element binary operations on arrays of different
sizes, such as adding a vector to each column of a matrix. An inefficient way to do this would
be to replicate the vector to the size of the matrix:

julia> a = rand(2,1); A = rand(2,3);

julia> repmat(a,1,3)+A
2×3 Array{Float64,2}:
 1.20813  1.82068  1.25387
 1.56851  1.86401  1.67846





This is wasteful when dimensions get large, so Julia offers broadcast(), which expands
singleton dimensions in array arguments to match the corresponding dimension in the other array
without using extra memory, and applies the given function elementwise:

julia> broadcast(+, a, A)
2×3 Array{Float64,2}:
 1.20813  1.82068  1.25387
 1.56851  1.86401  1.67846

julia> b = rand(1,2)
1×2 Array{Float64,2}:
 0.867535  0.00457906

julia> broadcast(+, a, b)
2×2 Array{Float64,2}:
 1.71056  0.847604
 1.73659  0.873631





[Dotted operators](@ref man-dot-operators) such as .+ and .* are equivalent
to broadcast calls (except that they fuse, as described below). There is also a
broadcast!() function to specify an explicit destination (which can also
be accessed in a fusing fashion by .= assignment), and functions broadcast_getindex()
and broadcast_setindex!() that broadcast the indices before indexing. Moreover, f.(args...)
is equivalent to broadcast(f, args...), providing a convenient syntax to broadcast any function
([dot syntax](@ref man-vectorized)). Nested “dot calls” f.(...) (including calls to .+ etcetera)
[automatically fuse](@ref man-dot-operators) into a single broadcast call.

Additionally, broadcast() is not limited to arrays (see the function documentation),
it also handles tuples and treats any argument that is not an array, tuple or Ref (except for Ptr) as a “scalar”.

julia> convert.(Float32, [1, 2])
2-element Array{Float32,1}:
 1.0
 2.0

julia> ceil.((UInt8,), [1.2 3.4; 5.6 6.7])
2×2 Array{UInt8,2}:
 0x02  0x04
 0x06  0x07

julia> string.(1:3, ". ", ["First", "Second", "Third"])
3-element Array{String,1}:
 "1. First"
 "2. Second"
 "3. Third"








Implementation

The base array type in Julia is the abstract type AbstractArray{T,N}. It is parametrized by
the number of dimensions N and the element type T. AbstractVector and AbstractMatrix are
aliases for the 1-d and 2-d cases. Operations on AbstractArray objects are defined using higher
level operators and functions, in a way that is independent of the underlying storage. These operations
generally work correctly as a fallback for any specific array implementation.

The AbstractArray type includes anything vaguely array-like, and implementations of it might
be quite different from conventional arrays. For example, elements might be computed on request
rather than stored. However, any concrete AbstractArray{T,N} type should generally implement
at least size(A) (returning an Int tuple), getindex(A,i) and [getindex(A,i1,...,iN)](@ref getindex);
mutable arrays should also implement setindex!(). It is recommended that these operations
have nearly constant time complexity, or technically Õ(1) complexity, as otherwise some array
functions may be unexpectedly slow. Concrete types should also typically provide a similar(A,T=eltype(A),dims=size(A))
method, which is used to allocate a similar array for copy() and other out-of-place
operations. No matter how an AbstractArray{T,N} is represented internally, T is the type of
object returned by integer indexing (A[1, ..., 1], when A is not empty) and N should be
the length of the tuple returned by size().

DenseArray is an abstract subtype of AbstractArray intended to include all arrays that are
laid out at regular offsets in memory, and which can therefore be passed to external C and Fortran
functions expecting this memory layout. Subtypes should provide a method stride(A,k)
that returns the “stride” of dimension k: increasing the index of dimension k by 1 should
increase the index i of getindex(A,i) by stride(A,k). If a pointer conversion
method Base.unsafe_convert(Ptr{T}, A) is provided, the memory layout should correspond
in the same way to these strides.

The Array type is a specific instance of DenseArray where elements are stored in column-major
order (see additional notes in [Performance Tips](@ref man-performance-tips)). Vector and Matrix are aliases for
the 1-d and 2-d cases. Specific operations such as scalar indexing, assignment, and a few other
basic storage-specific operations are all that have to be implemented for Array, so
that the rest of the array library can be implemented in a generic manner.

SubArray is a specialization of AbstractArray that performs indexing by reference rather than
by copying. A SubArray is created with the view() function, which is called the same
way as getindex() (with an array and a series of index arguments). The result of view()
looks the same as the result of getindex(), except the data is left in place. view()
stores the input index vectors in a SubArray object, which can later be used to index the original
array indirectly.  By putting the @views macro in front of an expression or
block of code, any array[...] slice in that expression will be converted to
create a SubArray view instead.

StridedVector and StridedMatrix are convenient aliases defined to make it possible for Julia
to call a wider range of BLAS and LAPACK functions by passing them either Array or
SubArray objects, and thus saving inefficiencies from memory allocation and copying.

The following example computes the QR decomposition of a small section of a larger array, without
creating any temporaries, and by calling the appropriate LAPACK function with the right leading
dimension size and stride parameters.

julia> a = rand(10,10)
10×10 Array{Float64,2}:
 0.561255   0.226678   0.203391  0.308912   …  0.750307  0.235023   0.217964
 0.718915   0.537192   0.556946  0.996234      0.666232  0.509423   0.660788
 0.493501   0.0565622  0.118392  0.493498      0.262048  0.940693   0.252965
 0.0470779  0.736979   0.264822  0.228787      0.161441  0.897023   0.567641
 0.343935   0.32327    0.795673  0.452242      0.468819  0.628507   0.511528
 0.935597   0.991511   0.571297  0.74485    …  0.84589   0.178834   0.284413
 0.160706   0.672252   0.133158  0.65554       0.371826  0.770628   0.0531208
 0.306617   0.836126   0.301198  0.0224702     0.39344   0.0370205  0.536062
 0.890947   0.168877   0.32002   0.486136      0.096078  0.172048   0.77672
 0.507762   0.573567   0.220124  0.165816      0.211049  0.433277   0.539476

julia> b = view(a, 2:2:8,2:2:4)
4×2 SubArray{Float64,2,Array{Float64,2},Tuple{StepRange{Int64,Int64},StepRange{Int64,Int64}},false}:
 0.537192  0.996234
 0.736979  0.228787
 0.991511  0.74485
 0.836126  0.0224702

julia> (q,r) = qr(b);

julia> q
4×2 Array{Float64,2}:
 -0.338809   0.78934
 -0.464815  -0.230274
 -0.625349   0.194538
 -0.527347  -0.534856

julia> r
2×2 Array{Float64,2}:
 -1.58553  -0.921517
  0.0       0.866567










Sparse Vectors and Matrices

Julia has built-in support for sparse vectors and
sparse matrices [https://en.wikipedia.org/wiki/Sparse_matrix]. Sparse arrays are arrays
that contain enough zeros that storing them in a special data structure leads to savings
in space and execution time, compared to dense arrays.


[Compressed Sparse Column (CSC) Sparse Matrix Storage](@id man-csc)

In Julia, sparse matrices are stored in the Compressed Sparse Column (CSC) format [https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_.28CSC_or_CCS.29].
Julia sparse matrices have the type SparseMatrixCSC{Tv,Ti}, where Tv is the
type of the stored values, and Ti is the integer type for storing column pointers and
row indices. The internal representation of SparseMatrixCSC is as follows:

struct SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti}
    m::Int                  # Number of rows
    n::Int                  # Number of columns
    colptr::Vector{Ti}      # Column i is in colptr[i]:(colptr[i+1]-1)
    rowval::Vector{Ti}      # Row indices of stored values
    nzval::Vector{Tv}       # Stored values, typically nonzeros
end





The compressed sparse column storage makes it easy and quick to access the elements in the column
of a sparse matrix, whereas accessing the sparse matrix by rows is considerably slower. Operations
such as insertion of previously unstored entries one at a time in the CSC structure tend to be slow. This is
because all elements of the sparse matrix that are beyond the point of insertion have to be moved
one place over.

All operations on sparse matrices are carefully implemented to exploit the CSC data structure
for performance, and to avoid expensive operations.

If you have data in CSC format from a different application or library, and wish to import it
in Julia, make sure that you use 1-based indexing. The row indices in every column need to be
sorted. If your SparseMatrixCSC object contains unsorted row indices, one quick way to sort
them is by doing a double transpose.

In some applications, it is convenient to store explicit zero values in a SparseMatrixCSC. These
are accepted by functions in Base (but there is no guarantee that they will be preserved in
mutating operations). Such explicitly stored zeros are treated as structural nonzeros by many
routines. The nnz() function returns the number of elements explicitly stored in the
sparse data structure, including structural nonzeros. In order to count the exact number of
numerical nonzeros, use countnz(), which inspects every stored element of a sparse
matrix. dropzeros(), and the in-place dropzeros!(), can be used to
remove stored zeros from the sparse matrix.

julia> A = sparse([1, 2, 3], [1, 2, 3], [0, 2, 0])
3×3 SparseMatrixCSC{Int64,Int64} with 3 stored entries:
  [1, 1]  =  0
  [2, 2]  =  2
  [3, 3]  =  0

julia> dropzeros(A)
3×3 SparseMatrixCSC{Int64,Int64} with 1 stored entry:
  [2, 2]  =  2








Sparse Vector Storage

Sparse vectors are stored in a close analog to compressed sparse column format for sparse
matrices. In Julia, sparse vectors have the type SparseVector{Tv,Ti} where Tv
is the type of the stored values and Ti the integer type for the indices. The internal
representation is as follows:

struct SparseVector{Tv,Ti<:Integer} <: AbstractSparseVector{Tv,Ti}
    n::Int              # Length of the sparse vector
    nzind::Vector{Ti}   # Indices of stored values
    nzval::Vector{Tv}   # Stored values, typically nonzeros
end





As for SparseMatrixCSC, the SparseVector type can also contain explicitly
stored zeros. (See [Sparse Matrix Storage](@ref man-csc).).




Sparse Vector and Matrix Constructors

The simplest way to create sparse arrays is to use functions equivalent to the zeros()
and eye() functions that Julia provides for working with dense arrays. To produce
sparse arrays instead, you can use the same names with an sp prefix:

julia> spzeros(3)
3-element SparseVector{Float64,Int64} with 0 stored entries

julia> speye(3,5)
3×5 SparseMatrixCSC{Float64,Int64} with 3 stored entries:
  [1, 1]  =  1.0
  [2, 2]  =  1.0
  [3, 3]  =  1.0





The sparse() function is often a handy way to construct sparse arrays. For
example, to construct a sparse matrix we can input a vector I of row indices, a vector
J of column indices, and a vector V of stored values (this is also known as the
COO (coordinate) format [https://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_.28COO.29]).
sparse(I,J,V) then constructs a sparse matrix such that S[I[k], J[k]] = V[k]. The
equivalent sparse vector constructor is sparsevec, which takes the (row) index
vector I and the vector V with the stored values and constructs a sparse vector R
such that R[I[k]] = V[k].

julia> I = [1, 4, 3, 5]; J = [4, 7, 18, 9]; V = [1, 2, -5, 3];

julia> S = sparse(I,J,V)
5×18 SparseMatrixCSC{Int64,Int64} with 4 stored entries:
  [1 ,  4]  =  1
  [4 ,  7]  =  2
  [5 ,  9]  =  3
  [3 , 18]  =  -5

julia> R = sparsevec(I,V)
5-element SparseVector{Int64,Int64} with 4 stored entries:
  [1]  =  1
  [3]  =  -5
  [4]  =  2
  [5]  =  3





The inverse of the sparse() and sparsevec functions is
findnz(), which retrieves the inputs used to create the sparse array.
There is also a findn function which only returns the index vectors.

julia> findnz(S)
([1, 4, 5, 3], [4, 7, 9, 18], [1, 2, 3, -5])

julia> findn(S)
([1, 4, 5, 3], [4, 7, 9, 18])

julia> findnz(R)
([1, 3, 4, 5], [1, -5, 2, 3])

julia> findn(R)
4-element Array{Int64,1}:
 1
 3
 4
 5





Another way to create a sparse array is to convert a dense array into a sparse array using
the sparse() function:

julia> sparse(eye(5))
5×5 SparseMatrixCSC{Float64,Int64} with 5 stored entries:
  [1, 1]  =  1.0
  [2, 2]  =  1.0
  [3, 3]  =  1.0
  [4, 4]  =  1.0
  [5, 5]  =  1.0

julia> sparse([1.0, 0.0, 1.0])
3-element SparseVector{Float64,Int64} with 2 stored entries:
  [1]  =  1.0
  [3]  =  1.0





You can go in the other direction using the Array constructor. The issparse()
function can be used to query if a matrix is sparse.

julia> issparse(speye(5))
true








Sparse matrix operations

Arithmetic operations on sparse matrices also work as they do on dense matrices. Indexing of,
assignment into, and concatenation of sparse matrices work in the same way as dense matrices.
Indexing operations, especially assignment, are expensive, when carried out one element at a time.
In many cases it may be better to convert the sparse matrix into (I,J,V) format using findnz(),
manipulate the values or the structure in the dense vectors (I,J,V), and then reconstruct
the sparse matrix.




Correspondence of dense and sparse methods

The following table gives a correspondence between built-in methods on sparse matrices and their
corresponding methods on dense matrix types. In general, methods that generate sparse matrices
differ from their dense counterparts in that the resulting matrix follows the same sparsity pattern
as a given sparse matrix S, or that the resulting sparse matrix has density d, i.e. each matrix
element has a probability d of being non-zero.

Details can be found in the [Sparse Vectors and Matrices](@ref stdlib-sparse-arrays)
section of the standard library reference.

| Sparse                     | Dense                  | Description                                                                                                                                                           |
|:————————– |:———————- |:——————————————————————————————————————————————————————— |
| spzeros(m,n)     | zeros(m,n)   | Creates a m-by-n matrix of zeros. (spzeros(m,n) is empty.)                                                                                              |
| spones(S)        | ones(m,n)    | Creates a matrix filled with ones. Unlike the dense version, spones() has the same sparsity pattern as S.                                                 |
| speye(n)         | eye(n)       | Creates a n-by-n identity matrix.                                                                                                                                 |
| full(S)          | sparse(A)    | Interconverts between dense and sparse formats.                                                                                                                       |
| sprand(m,n,d)    | rand(m,n)    | Creates a m-by-n random matrix (of density d) with iid non-zero elements distributed uniformly on the half-open interval [0, 1).                            |
| sprandn(m,n,d)   | randn(m,n)   | Creates a m-by-n random matrix (of density d) with iid non-zero elements distributed according to the standard normal (Gaussian) distribution.                  |
| sprandn(m,n,d,X) | randn(m,n,X) | Creates a m-by-n random matrix (of density d) with iid non-zero elements distributed according to the X distribution. (Requires the Distributions package.) |









          

      

      

    

  

    
      
          
            
  
Calling C and Fortran Code

Though most code can be written in Julia, there are many high-quality, mature libraries for numerical
computing already written in C and Fortran. To allow easy use of this existing code, Julia makes
it simple and efficient to call C and Fortran functions. Julia has a “no boilerplate” philosophy:
functions can be called directly from Julia without any “glue” code, code generation, or compilation
– even from the interactive prompt. This is accomplished just by making an appropriate call with
ccall syntax, which looks like an ordinary function call.

The code to be called must be available as a shared library. Most C and Fortran libraries ship
compiled as shared libraries already, but if you are compiling the code yourself using GCC (or
Clang), you will need to use the -shared and -fPIC options. The machine instructions generated
by Julia’s JIT are the same as a native C call would be, so the resulting overhead is the same
as calling a library function from C code. (Non-library function calls in both C and Julia can
be inlined and thus may have even less overhead than calls to shared library functions. When both
libraries and executables are generated by LLVM, it is possible to perform whole-program optimizations
that can even optimize across this boundary, but Julia does not yet support that. In the future,
however, it may do so, yielding even greater performance gains.)

Shared libraries and functions are referenced by a tuple of the form (:function, "library")
or ("function", "library") where function is the C-exported function name. library refers
to the shared library name: shared libraries available in the (platform-specific) load path will
be resolved by name, and if necessary a direct path may be specified.

A function name may be used alone in place of the tuple (just :function or "function"). In
this case the name is resolved within the current process. This form can be used to call C library
functions, functions in the Julia runtime, or functions in an application linked to Julia.

By default, Fortran compilers generate mangled names [https://en.wikipedia.org/wiki/Name_mangling#Fortran]
(for example, converting function names to lowercase or uppercase, often appending an underscore),
and so to call a Fortran function via ccall you must pass the mangled identifier corresponding
to the rule followed by your Fortran compiler.  Also, when calling a Fortran function, all inputs
must be passed by reference.

Finally, you can use ccall to actually generate a call to the library function. Arguments
to ccall are as follows:


	A (:function, "library") pair, which must be written as a literal constant,

OR

a function pointer (for example, from dlsym).



	Return type (see below for mapping the declared C type to Julia)


	This argument will be evaluated at compile-time, when the containing method is defined.






	A tuple of input types. The input types must be written as a literal tuple, not a tuple-valued
variable or expression.


	This argument will be evaluated at compile-time, when the containing method is defined.






	The following arguments, if any, are the actual argument values passed to the function.




As a complete but simple example, the following calls the clock function from the standard C
library:

julia> t = ccall((:clock, "libc"), Int32, ())
2292761

julia> t
2292761

julia> typeof(ans)
Int32





clock takes no arguments and returns an Int32. One common gotcha is that a 1-tuple must be
written with a trailing comma. For example, to call the getenv function to get a pointer to
the value of an environment variable, one makes a call like this:

julia> path = ccall((:getenv, "libc"), Cstring, (Cstring,), "SHELL")
Cstring(@0x00007fff5fbffc45)

julia> unsafe_string(path)
"/bin/bash"





Note that the argument type tuple must be written as (Cstring,), rather than (Cstring). This
is because (Cstring) is just the expression Cstring surrounded by parentheses, rather than
a 1-tuple containing Cstring:

julia> (Cstring)
Cstring

julia> (Cstring,)
(Cstring,)





In practice, especially when providing reusable functionality, one generally wraps ccall
uses in Julia functions that set up arguments and then check for errors in whatever manner the
C or Fortran function indicates them, propagating to the Julia caller as exceptions. This is especially
important since C and Fortran APIs are notoriously inconsistent about how they indicate error
conditions. For example, the getenv C library function is wrapped in the following Julia function,
which is a simplified version of the actual definition from env.jl [https://github.com/JuliaLang/julia/blob/master/base/env.jl]:

function getenv(var::AbstractString)
    val = ccall((:getenv, "libc"),
                Cstring, (Cstring,), var)
    if val == C_NULL
        error("getenv: undefined variable: ", var)
    end
    unsafe_string(val)
end





The C getenv function indicates an error by returning NULL, but other standard C functions
indicate errors in various different ways, including by returning -1, 0, 1 and other special values.
This wrapper throws an exception clearly indicating the problem if the caller tries to get a non-existent
environment variable:

julia> getenv("SHELL")
"/bin/bash"

julia> getenv("FOOBAR")
getenv: undefined variable: FOOBAR





Here is a slightly more complex example that discovers the local machine’s hostname:

function gethostname()
    hostname = Vector{UInt8}(128)
    ccall((:gethostname, "libc"), Int32,
          (Ptr{UInt8}, Csize_t),
          hostname, sizeof(hostname))
    hostname[end] = 0; # ensure null-termination
    return unsafe_string(pointer(hostname))
end





This example first allocates an array of bytes, then calls the C library function gethostname
to fill the array in with the hostname, takes a pointer to the hostname buffer, and converts the
pointer to a Julia string, assuming that it is a NUL-terminated C string. It is common for C libraries
to use this pattern of requiring the caller to allocate memory to be passed to the callee and
filled in. Allocation of memory from Julia like this is generally accomplished by creating an
uninitialized array and passing a pointer to its data to the C function. This is why we don’t
use the Cstring type here: as the array is uninitialized, it could contain NUL bytes. Converting
to a Cstring as part of the ccall checks for contained NUL bytes and could therefore
throw a conversion error.


Creating C-Compatible Julia Function Pointers

It is possible to pass Julia functions to native C functions that accept function pointer arguments.
For example, to match C prototypes of the form:

typedef returntype (*functiontype)(argumenttype,...)





The function cfunction() generates the C-compatible function pointer for a call to a
Julia library function. Arguments to cfunction() are as follows:


	A Julia Function


	Return type


	A tuple of input types




A classic example is the standard C library qsort function, declared as:

void qsort(void *base, size_t nmemb, size_t size,
           int(*compare)(const void *a, const void *b));





The base argument is a pointer to an array of length nmemb, with elements of size bytes
each. compare is a callback function which takes pointers to two elements a and b and returns
an integer less/greater than zero if a should appear before/after b (or zero if any order
is permitted). Now, suppose that we have a 1d array A of values in Julia that we want to sort
using the qsort function (rather than Julia’s built-in sort function). Before we worry about
calling qsort and passing arguments, we need to write a comparison function that works for some
arbitrary type T:

julia> function mycompare(a::T, b::T) where T
           return convert(Cint, a < b ? -1 : a > b ? +1 : 0)::Cint
       end
mycompare (generic function with 1 method)





Notice that we have to be careful about the return type: qsort expects a function returning
a C int, so we must be sure to return Cint via a call to convert and a typeassert.

In order to pass this function to C, we obtain its address using the function cfunction:

julia> const mycompare_c = cfunction(mycompare, Cint, (Ref{Cdouble}, Ref{Cdouble}));





cfunction() accepts three arguments: the Julia function (mycompare), the return type
(Cint), and a tuple of the argument types, in this case to sort an array of Cdouble
(Float64) elements.

The final call to qsort looks like this:

julia> A = [1.3, -2.7, 4.4, 3.1]
4-element Array{Float64,1}:
  1.3
 -2.7
  4.4
  3.1

julia> ccall(:qsort, Void, (Ptr{Cdouble}, Csize_t, Csize_t, Ptr{Void}),
             A, length(A), sizeof(eltype(A)), mycompare_c)

julia> A
4-element Array{Float64,1}:
 -2.7
  1.3
  3.1
  4.4





As can be seen, A is changed to the sorted array [-2.7, 1.3, 3.1, 4.4]. Note that Julia
knows how to convert an array into a Ptr{Cdouble}, how to compute the size of a type in bytes
(identical to C’s sizeof operator), and so on. For fun, try inserting a println("mycompare($a,$b)")
line into mycompare, which will allow you to see the comparisons that qsort is performing
(and to verify that it is really calling the Julia function that you passed to it).




Mapping C Types to Julia

It is critical to exactly match the declared C type with its declaration in Julia. Inconsistencies
can cause code that works correctly on one system to fail or produce indeterminate results on
a different system.

Note that no C header files are used anywhere in the process of calling C functions: you are responsible
for making sure that your Julia types and call signatures accurately reflect those in the C header
file. (The Clang package [https://github.com/ihnorton/Clang.jl] can be used to auto-generate
Julia code from a C header file.)


Auto-conversion:

Julia automatically inserts calls to the Base.cconvert() function to convert each argument
to the specified type. For example, the following call:

ccall((:foo, "libfoo"), Void, (Int32, Float64), x, y)





will behave as if the following were written:

ccall((:foo, "libfoo"), Void, (Int32, Float64),
      Base.unsafe_convert(Int32, Base.cconvert(Int32, x)),
      Base.unsafe_convert(Float64, Base.cconvert(Float64, y)))





Base.cconvert() normally just calls convert(), but can be defined to return an
arbitrary new object more appropriate for passing to C. For example, this is used to convert an
Array of objects (e.g. strings) to an array of pointers.

Base.unsafe_convert() handles conversion to Ptr types. It is considered unsafe because
converting an object to a native pointer can hide the object from the garbage collector, causing
it to be freed prematurely.




Type Correspondences:

First, a review of some relevant Julia type terminology:

| Syntax / Keyword              | Example                                     | Description                                                                                                                                                                                                                                                                    |
|:—————————– |:——————————————- |:—————————————————————————————————————————————————————————————————————————————————————————— |
| mutable struct              | String                                    | “Leaf Type” :: A group of related data that includes a type-tag, is managed by the Julia GC, and is defined by object-identity. The type parameters of a leaf type must be fully defined (no TypeVars are allowed) in order for the instance to be constructed.              |
| abstract type               | Any, AbstractArray{T, N}, Complex{T}  | “Super Type” :: A super-type (not a leaf-type) that cannot be instantiated, but can be used to describe a group of types.                                                                                                                                                      |
| T{A}                        | Vector{Int}                               | “Type Parameter” :: A specialization of a type (typically used for dispatch or storage optimization).                                                                                                                                                                          |
|                               |                                             | “TypeVar” :: The T in the type parameter declaration is referred to as a TypeVar (short for type variable).                                                                                                                                                                  |
| primitive type              | Int, Float64                            | “Primitive Type” :: A type with no fields, but a size. It is stored and defined by-value.                                                                                                                                                                                           |
| struct                      | Pair{Int, Int}                            | “Struct” :: A type with all fields defined to be constant. It is defined by-value, and may be stored with a type-tag.                                                                                                                                                       |
|                               | Complex128 (isbits)                     | “Is-Bits”   :: A primitive type, or a struct type where all fields are other isbits types. It is defined by-value, and is stored without a type-tag.                                                                                                                       |
| struct ...; end             | nothing                                   | “Singleton” :: a Leaf Type or Struct with no fields.                                                                                                                                                                                                                        |
| (...) or tuple(...)       | (1, 2, 3)                                 | “Tuple” :: an immutable data-structure similar to an anonymous struct type, or a constant array. Represented as either an array or a struct.                                                                                                                                |




Bits Types:

There are several special types to be aware of, as no other type can be defined to behave the
same:


	Float32

Exactly corresponds to the float type in C (or REAL*4 in Fortran).



	Float64

Exactly corresponds to the double type in C (or REAL*8 in Fortran).



	Complex64

Exactly corresponds to the complex float type in C (or COMPLEX*8 in Fortran).



	Complex128

Exactly corresponds to the complex double type in C (or COMPLEX*16 in Fortran).



	Signed

Exactly corresponds to the signed type annotation in C (or any INTEGER type in Fortran).
Any Julia type that is not a subtype of Signed is assumed to be unsigned.






	Ref{T}

Behaves like a Ptr{T} that can manage its memory via the Julia GC.






	Array{T,N}

When an array is passed to C as a Ptr{T} argument, it is not reinterpret-cast: Julia requires
that the element type of the array matches T, and the address of the first element is passed.

Therefore, if an Array contains data in the wrong format, it will have to be explicitly converted
using a call such as trunc(Int32, a).

To pass an array A as a pointer of a different type without converting the data beforehand
(for example, to pass a Float64 array to a function that operates on uninterpreted bytes), you
can declare the argument as Ptr{Void}.

If an array of eltype Ptr{T} is passed as a Ptr{Ptr{T}} argument, Base.cconvert()
will attempt to first make a null-terminated copy of the array with each element replaced by its
Base.cconvert() version. This allows, for example, passing an argv pointer array of type
Vector{String} to an argument of type Ptr{Ptr{Cchar}}.





On all systems we currently support, basic C/C++ value types may be translated to Julia types
as follows. Every C type also has a corresponding Julia type with the same name, prefixed by C.
This can help for writing portable code (and remembering that an int in C is not the same as
an Int in Julia).

System Independent:

| C name                                                  | Fortran name             | Standard Julia Alias | Julia Base Type                                                                                                |
|:——————————————————- |:———————— |:——————– |:————————————————————————————————————– |
| unsigned char                                         | CHARACTER              | Cuchar             | UInt8                                                                                                        |
| bool (only in C++)                                    |                          | Cuchar             | UInt8                                                                                                        |
| short                                                 | INTEGER*2, LOGICAL*2 | Cshort             | Int16                                                                                                        |
| unsigned short                                        |                          | Cushort            | UInt16                                                                                                       |
| int, BOOL (C, typical)                              | INTEGER*4, LOGICAL*4 | Cint               | Int32                                                                                                        |
| unsigned int                                          |                          | Cuint              | UInt32                                                                                                       |
| long long                                             | INTEGER*8, LOGICAL*8 | Clonglong          | Int64                                                                                                        |
| unsigned long long                                    |                          | Culonglong         | UInt64                                                                                                       |
| intmax_t                                              |                          | Cintmax_t          | Int64                                                                                                        |
| uintmax_t                                             |                          | Cuintmax_t         | UInt64                                                                                                       |
| float                                                 | REAL*4i                | Cfloat             | Float32                                                                                                      |
| double                                                | REAL*8                 | Cdouble            | Float64                                                                                                      |
| complex float                                         | COMPLEX*8              | Complex64          | Complex{Float32}                                                                                             |
| complex double                                        | COMPLEX*16             | Complex128         | Complex{Float64}                                                                                             |
| ptrdiff_t                                             |                          | Cptrdiff_t         | Int                                                                                                          |
| ssize_t                                               |                          | Cssize_t           | Int                                                                                                          |
| size_t                                                |                          | Csize_t            | UInt                                                                                                         |
| void                                                  |                          |                      | Void                                                                                                         |
| void and [[noreturn]] or _Noreturn                |                          |                      | Union{}                                                                                                      |
| void*                                                 |                          |                      | Ptr{Void}                                                                                                    |
| T* (where T represents an appropriately defined type) |                          |                      | Ref{T}                                                                                                       |
| char* (or char[], e.g. a string)                    | CHARACTER*N            |                      | Cstring if NUL-terminated, or Ptr{UInt8} if not                                                            |
| char** (or *char[])                                 |                          |                      | Ptr{Ptr{UInt8}}                                                                                              |
| jl_value_t* (any Julia Type)                          |                          |                      | Any                                                                                                          |
| jl_value_t** (a reference to a Julia Type)            |                          |                      | Ref{Any}                                                                                                     |
| va_arg                                                |                          |                      | Not supported                                                                                                  |
| ... (variadic function specification)                 |                          |                      | T... (where T is one of the above types, variadic functions of different argument types are not supported) |

The Cstring type is essentially a synonym for Ptr{UInt8}, except the conversion to Cstring
throws an error if the Julia string contains any embedded NUL characters (which would cause the
string to be silently truncated if the C routine treats NUL as the terminator).  If you are passing
a char* to a C routine that does not assume NUL termination (e.g. because you pass an explicit
string length), or if you know for certain that your Julia string does not contain NUL and want
to skip the check, you can use Ptr{UInt8} as the argument type. Cstring can also be used as
the ccall return type, but in that case it obviously does not introduce any extra
checks and is only meant to improve readability of the call.

System-dependent:

| C name          | Standard Julia Alias | Julia Base Type                              |
|:————— |:——————– |:——————————————– |
| char          | Cchar              | Int8 (x86, x86_64), UInt8 (powerpc, arm) |
| long          | Clong              | Int (UNIX), Int32 (Windows)              |
| unsigned long | Culong             | UInt (UNIX), UInt32 (Windows)            |
| wchar_t       | Cwchar_t           | Int32 (UNIX), UInt16 (Windows)           |

!!! note
When calling a Fortran function, all inputs must be passed by reference, so all type correspondences
above should contain an additional Ptr{..} or Ref{..} wrapper around their type specification.

!!! warning
For string arguments (char*) the Julia type should be Cstring (if NUL- terminated data is
expected) or either Ptr{Cchar} or Ptr{UInt8} otherwise (these two pointer types have the same
effect), as described above, not String. Similarly, for array arguments (T[] or T*), the
Julia type should again be Ptr{T}, not Vector{T}.

!!! warning
Julia’s Char type is 32 bits, which is not the same as the wide character type (wchar_t or
wint_t) on all platforms.

!!! warning
A return type of Union{} means the function will not return i.e. C++11 [[noreturn]] or C11
_Noreturn (e.g. jl_throw or longjmp). Do not use this for functions that return no value
(void) but do return, use Void instead.

!!! note
For wchar_t* arguments, the Julia type should be Cwstring (if the C routine expects a NUL-terminated
string) or Ptr{Cwchar_t} otherwise. Note also that UTF-8 string data in Julia is internally
NUL-terminated, so it can be passed to C functions expecting NUL-terminated data without making
a copy (but using the Cwstring type will cause an error to be thrown if the string itself contains
NUL characters).

!!! note
C functions that take an argument of the type char** can be called by using a Ptr{Ptr{UInt8}}
type within Julia. For example, C functions of the form:

```c
int main(int argc, char **argv);
```

can be called via the following Julia code:

```julia
argv = [ "a.out", "arg1", "arg2" ]
ccall(:main, Int32, (Int32, Ptr{Ptr{UInt8}}), length(argv), argv)
```





!!! note
A C function declared to return Void will return the value nothing in Julia.




Struct Type correspondences

Composite types, aka struct in C or TYPE in Fortran90 (or STRUCTURE / RECORD in some variants
of F77), can be mirrored in Julia by creating a struct definition with the same
field layout.

When used recursively, isbits types are stored inline. All other types are stored as a pointer
to the data. When mirroring a struct used by-value inside another struct in C, it is imperative
that you do not attempt to manually copy the fields over, as this will not preserve the correct
field alignment. Instead, declare an isbits struct type and use that instead. Unnamed structs
are not possible in the translation to Julia.

Packed structs and union declarations are not supported by Julia.

You can get a near approximation of a union if you know, a priori, the field that will have
the greatest size (potentially including padding). When translating your fields to Julia, declare
the Julia field to be only of that type.

Arrays of parameters can be expressed with NTuple:

in C:
struct B {
    int A[3];
};
b_a_2 = B.A[2];

in Julia:
struct B
    A::NTuple{3, CInt}
end
b_a_2 = B.A[3]  # note the difference in indexing (1-based in Julia, 0-based in C)





Arrays of unknown size (C99-compliant variable length structs specified by [] or [0]) are not directly supported.
Often the best way to deal with these is to deal with the byte offsets directly.
For example, if a C library declared a proper string type and returned a pointer to it:

struct String {
    int strlen;
    char data[];
};





In Julia, we can access the parts independently to make a copy of that string:

str = from_c::Ptr{Void}
len = unsafe_load(Ptr{Cint}(str))
unsafe_string(str + Core.sizeof(Cint), len)








Type Parameters

The type arguments to ccall are evaluated statically, when the method containing the ccall is defined.
They therefore must take the form of a literal tuple, not a variable, and cannot reference local variables.

This may sound like a strange restriction,
but remember that since C is not a dynamic language like Julia,
its functions can only accept argument types with a statically-known, fixed signature.

However, while the type layout must be known statically to compute the ccall ABI,
the static parameters of the function are considered to be part of this static environment.
The static parameters of the function may be used as type parameters in the ccall signature,
as long as they don’t affect the layout of the type.
For example, f(x::T) where {T} = ccall(:valid, Ptr{T}, (Ptr{T},), x)
is valid, since Ptr is always a word-size primitive type.
But, g(x::T) where {T} = ccall(:notvalid, T, (T,), x)
is not valid, since the type layout of T is not known statically.




SIMD Values

Note: This feature is currently implemented on 64-bit x86 and AArch64 platforms only.

If a C/C++ routine has an argument or return value that is a native SIMD type, the corresponding
Julia type is a homogeneous tuple of VecElement that naturally maps to the SIMD type.  Specifically:



	The tuple must be the same size as the SIMD type. For example, a tuple representing an __m128
on x86 must have a size of 16 bytes.


	The element type of the tuple must be an instance of VecElement{T} where T is a primitive type that
is 1, 2, 4 or 8 bytes.







For instance, consider this C routine that uses AVX intrinsics:

#include <immintrin.h>

__m256 dist( __m256 a, __m256 b ) {
    return _mm256_sqrt_ps(_mm256_add_ps(_mm256_mul_ps(a, a),
                                        _mm256_mul_ps(b, b)));
}





The following Julia code calls dist using ccall:

const m256 = NTuple{8, VecElement{Float32}}

a = m256(ntuple(i -> VecElement(sin(Float32(i))), 8))
b = m256(ntuple(i -> VecElement(cos(Float32(i))), 8))

function call_dist(a::m256, b::m256)
    ccall((:dist, "libdist"), m256, (m256, m256), a, b)
end

println(call_dist(a,b))





The host machine must have the requisite SIMD registers.  For example, the code above will not
work on hosts without AVX support.




Memory Ownership

malloc/free

Memory allocation and deallocation of such objects must be handled by calls to the appropriate
cleanup routines in the libraries being used, just like in any C program. Do not try to free an
object received from a C library with Libc.free in Julia, as this may result in the free function
being called via the wrong libc library and cause Julia to crash. The reverse (passing an object
allocated in Julia to be freed by an external library) is equally invalid.




When to use T, Ptr{T} and Ref{T}

In Julia code wrapping calls to external C routines, ordinary (non-pointer) data should be declared
to be of type T inside the ccall, as they are passed by value.  For C code accepting
pointers, Ref{T} should generally be used for the types of input arguments, allowing the use
of pointers to memory managed by either Julia or C through the implicit call to Base.cconvert().
In contrast, pointers returned by the C function called should be declared to be of output type
Ptr{T}, reflecting that the memory pointed to is managed by C only. Pointers contained in C
structs should be represented as fields of type Ptr{T} within the corresponding Julia struct
types designed to mimic the internal structure of corresponding C structs.

In Julia code wrapping calls to external Fortran routines, all input arguments should be declared
as of type Ref{T}, as Fortran passes all variables by reference. The return type should either
be Void for Fortran subroutines, or a T for Fortran functions returning the type T.






Mapping C Functions to Julia


ccall/cfunction argument translation guide

For translating a C argument list to Julia:


	T, where T is one of the primitive types: char, int, long, short, float, double,
complex, enum or any of their typedef equivalents


	T, where T is an equivalent Julia Bits Type (per the table above)


	if T is an enum, the argument type should be equivalent to Cint or Cuint


	argument value will be copied (passed by value)






	struct T (including typedef to a struct)


	T, where T is a Julia leaf type


	argument value will be copied (passed by value)






	void*


	depends on how this parameter is used, first translate this to the intended pointer type, then
determine the Julia equivalent using the remaining rules in this list


	this argument may be declared as Ptr{Void}, if it really is just an unknown pointer






	jl_value_t*


	Any


	argument value must be a valid Julia object


	currently unsupported by cfunction()






	jl_value_t**


	Ref{Any}


	argument value must be a valid Julia object (or C_NULL)


	currently unsupported by cfunction()






	T*


	Ref{T}, where T is the Julia type corresponding to T


	argument value will be copied if it is an isbits type otherwise, the value must be a valid Julia
object






	(T*)(...) (e.g. a pointer to a function)


	Ptr{Void} (you may need to use cfunction() explicitly to create this pointer)






	... (e.g. a vararg)


	T..., where T is the Julia type






	va_arg


	not supported











ccall/cfunction return type translation guide

For translating a C return type to Julia:


	void


	Void (this will return the singleton instance nothing::Void)






	T, where T is one of the primitive types: char, int, long, short, float, double,
complex, enum or any of their typedef equivalents


	T, where T is an equivalent Julia Bits Type (per the table above)


	if T is an enum, the argument type should be equivalent to Cint or Cuint


	argument value will be copied (returned by-value)






	struct T (including typedef to a struct)


	T, where T is a Julia Leaf Type


	argument value will be copied (returned by-value)






	void*


	depends on how this parameter is used, first translate this to the intended pointer type, then
determine the Julia equivalent using the remaining rules in this list


	this argument may be declared as Ptr{Void}, if it really is just an unknown pointer






	jl_value_t*


	Any


	argument value must be a valid Julia object






	jl_value_t**


	Ref{Any}


	argument value must be a valid Julia object (or C_NULL)






	T*


	If the memory is already owned by Julia, or is an isbits type, and is known to be non-null:


	Ref{T}, where T is the Julia type corresponding to T


	a return type of Ref{Any} is invalid, it should either be Any (corresponding to jl_value_t*)
or Ptr{Any} (corresponding to Ptr{Any})


	C MUST NOT modify the memory returned via Ref{T} if T is an isbits type






	If the memory is owned by C:


	Ptr{T}, where T is the Julia type corresponding to T










	(T*)(...) (e.g. a pointer to a function)


	Ptr{Void} (you may need to use cfunction() explicitly to create this pointer)











Passing Pointers for Modifying Inputs

Because C doesn’t support multiple return values, often C functions will take pointers to data
that the function will modify. To accomplish this within a ccall, you need to first
encapsulate the value inside an Ref{T} of the appropriate type. When you pass this Ref object
as an argument, Julia will automatically pass a C pointer to the encapsulated data:

width = Ref{Cint}(0)
range = Ref{Cfloat}(0)
ccall(:foo, Void, (Ref{Cint}, Ref{Cfloat}), width, range)





Upon return, the contents of width and range can be retrieved (if they were changed by foo)
by width[] and range[]; that is, they act like zero-dimensional arrays.




Special Reference Syntax for ccall (deprecated):

The & syntax is deprecated, use the Ref{T} argument type instead.

A prefix & is used on an argument to ccall to indicate that a pointer to a scalar
argument should be passed instead of the scalar value itself (required for all Fortran function
arguments, as noted above). The following example computes a dot product using a BLAS function.

function compute_dot(DX::Vector{Float64}, DY::Vector{Float64})
    @assert length(DX) == length(DY)
    n = length(DX)
    incx = incy = 1
    product = ccall((:ddot_, "libLAPACK"),
                    Float64,
                    (Ptr{Int32}, Ptr{Float64}, Ptr{Int32}, Ptr{Float64}, Ptr{Int32}),
                    &n, DX, &incx, DY, &incy)
    return product
end





The meaning of prefix & is not quite the same as in C. In particular, any changes to the referenced
variables will not be visible in Julia unless the type is mutable (declared via type). However,
even for immutable structs it will not cause any harm for called functions to attempt such modifications
(that is, writing through the passed pointers). Moreover, & may be used with any expression,
such as &0 or &f(x).

When a scalar value is passed with & as an argument of type Ptr{T}, the value will first be
converted to type T.






Some Examples of C Wrappers

Here is a simple example of a C wrapper that returns a Ptr type:

mutable struct gsl_permutation
end

# The corresponding C signature is
#     gsl_permutation * gsl_permutation_alloc (size_t n);
function permutation_alloc(n::Integer)
    output_ptr = ccall(
        (:gsl_permutation_alloc, :libgsl), # name of C function and library
        Ptr{gsl_permutation},              # output type
        (Csize_t,),                        # tuple of input types
        n                                  # name of Julia variable to pass in
    )
    if output_ptr == C_NULL # Could not allocate memory
        throw(OutOfMemoryError())
    end
    return output_ptr
end





The GNU Scientific Library [https://www.gnu.org/software/gsl/] (here assumed to be accessible
through :libgsl) defines an opaque pointer, gsl_permutation *, as the return type of the C
function gsl_permutation_alloc(). As user code never has to look inside the gsl_permutation
struct, the corresponding Julia wrapper simply needs a new type declaration, gsl_permutation,
that has no internal fields and whose sole purpose is to be placed in the type parameter of a
Ptr type.  The return type of the ccall is declared as Ptr{gsl_permutation}, since
the memory allocated and pointed to by output_ptr is controlled by C (and not Julia).

The input n is passed by value, and so the function’s input signature is simply declared as
(Csize_t,) without any Ref or Ptr necessary. (If the wrapper was calling a Fortran function
instead, the corresponding function input signature should instead be (Ref{Csize_t},), since
Fortran variables are passed by reference.) Furthermore, n can be any type that is convertable
to a Csize_t integer; the ccall implicitly calls Base.cconvert(Csize_t, n).

Here is a second example wrapping the corresponding destructor:

# The corresponding C signature is
#     void gsl_permutation_free (gsl_permutation * p);
function permutation_free(p::Ref{gsl_permutation})
    ccall(
        (:gsl_permutation_free, :libgsl), # name of C function and library
        Void,                             # output type
        (Ref{gsl_permutation},),          # tuple of input types
        p                                 # name of Julia variable to pass in
    )
end





Here, the input p is declared to be of type Ref{gsl_permutation}, meaning that the memory
that p points to may be managed by Julia or by C. A pointer to memory allocated by C should
be of type Ptr{gsl_permutation}, but it is convertable using Base.cconvert() and therefore
can be used in the same (covariant) context of the input argument to a ccall. A pointer
to memory allocated by Julia must be of type Ref{gsl_permutation}, to ensure that the memory
address pointed to is valid and that Julia’s garbage collector manages the chunk of memory pointed
to correctly. Therefore, the Ref{gsl_permutation} declaration allows pointers managed by C or
Julia to be used.

If the C wrapper never expects the user to pass pointers to memory managed by Julia, then using
p::Ptr{gsl_permutation} for the method signature of the wrapper and similarly in the ccall
is also acceptable.

Here is a third example passing Julia arrays:

# The corresponding C signature is
#    int gsl_sf_bessel_Jn_array (int nmin, int nmax, double x,
#                                double result_array[])
function sf_bessel_Jn_array(nmin::Integer, nmax::Integer, x::Real)
    if nmax < nmin
        throw(DomainError())
    end
    result_array = Vector{Cdouble}(nmax - nmin + 1)
    errorcode = ccall(
        (:gsl_sf_bessel_Jn_array, :libgsl), # name of C function and library
        Cint,                               # output type
        (Cint, Cint, Cdouble, Ref{Cdouble}),# tuple of input types
        nmin, nmax, x, result_array         # names of Julia variables to pass in
    )
    if errorcode != 0
        error("GSL error code $errorcode")
    end
    return result_array
end





The C function wrapped returns an integer error code; the results of the actual evaluation of
the Bessel J function populate the Julia array result_array. This variable can only be used
with corresponding input type declaration Ref{Cdouble}, since its memory is allocated and managed
by Julia, not C. The implicit call to Base.cconvert(Ref{Cdouble}, result_array) unpacks
the Julia pointer to a Julia array data structure into a form understandable by C.

Note that for this code to work correctly, result_array must be declared to be of type Ref{Cdouble}
and not Ptr{Cdouble}. The memory is managed by Julia and the Ref signature alerts Julia’s
garbage collector to keep managing the memory for result_array while the ccall executes.
If Ptr{Cdouble} were used instead, the ccall may still work, but Julia’s garbage
collector would not be aware that the memory declared for result_array is being used by the
external C function. As a result, the code may produce a memory leak if result_array never gets
freed by the garbage collector, or if the garbage collector prematurely frees result_array,
the C function may end up throwing an invalid memory access exception.




Garbage Collection Safety

When passing data to a ccall, it is best to avoid using the pointer() function.
Instead define a convert method and pass the variables directly to the ccall. ccall
automatically arranges that all of its arguments will be preserved from garbage collection until
the call returns. If a C API will store a reference to memory allocated by Julia, after the ccall
returns, you must arrange that the object remains visible to the garbage collector. The suggested
way to handle this is to make a global variable of type Array{Ref,1} to hold these values, until
the C library notifies you that it is finished with them.

Whenever you have created a pointer to Julia data, you must ensure the original data exists until
you are done with using the pointer. Many methods in Julia such as unsafe_load() and
String() make copies of data instead of taking ownership of the buffer, so that it is
safe to free (or alter) the original data without affecting Julia. A notable exception is unsafe_wrap()
which, for performance reasons, shares (or can be told to take ownership of) the underlying buffer.

The garbage collector does not guarantee any order of finalization. That is, if a contained
a reference to b and both a and b are due for garbage collection, there is no guarantee
that b would be finalized after a. If proper finalization of a depends on b being valid,
it must be handled in other ways.




Non-constant Function Specifications

A (name, library) function specification must be a constant expression. However, it is possible
to use computed values as function names by staging through eval as follows:

@eval ccall(($(string("a", "b")), "lib"), ...





This expression constructs a name using string, then substitutes this name into a new ccall
expression, which is then evaluated. Keep in mind that eval only operates at the top level,
so within this expression local variables will not be available (unless their values are substituted
with $). For this reason, eval is typically only used to form top-level definitions, for example
when wrapping libraries that contain many similar functions.

If your usage is more dynamic, use indirect calls as described in the next section.




Indirect Calls

The first argument to ccall can also be an expression evaluated at run time. In this
case, the expression must evaluate to a Ptr, which will be used as the address of the native
function to call. This behavior occurs when the first ccall argument contains references
to non-constants, such as local variables, function arguments, or non-constant globals.

For example, you might look up the function via dlsym, then cache it in a global
variable for that session. For example:

macro dlsym(func, lib)
    z, zlocal = gensym(string(func)), gensym()
    eval(current_module(), :(global $z = C_NULL))
    z = esc(z)
    quote
        let $zlocal::Ptr{Void} = $z::Ptr{Void}
            if $zlocal == C_NULL
                $zlocal = dlsym($(esc(lib))::Ptr{Void}, $(esc(func)))
                global $z = $zlocal
            end
            $zlocal
        end
    end
end

mylibvar = Libdl.dlopen("mylib")
ccall(@dlsym("myfunc", mylibvar), Void, ())








Calling Convention

The second argument to ccall can optionally be a calling convention specifier (immediately
preceding return type). Without any specifier, the platform-default C calling convention is used.
Other supported conventions are: stdcall, cdecl, fastcall, and thiscall. For example (from
base/libc.jl) we see the same gethostnameccall as above, but with the correct
signature for Windows:

hn = Vector{UInt8}(256)
err = ccall(:gethostname, stdcall, Int32, (Ptr{UInt8}, UInt32), hn, length(hn))





For more information, please see the LLVM Language Reference [http://llvm.org/docs/LangRef.html#calling-conventions].

There is one additional special calling convention llvmcall,
which allows inserting calls to LLVM intrinsics directly.
This can be especially useful when targeting unusual platforms such as GPGPUs.
For example, for CUDA [http://llvm.org/docs/NVPTXUsage.html], we need to be able to read the thread index:

ccall("llvm.nvvm.read.ptx.sreg.tid.x", llvmcall, Int32, ())





As with any ccall, it is essential to get the argument signature exactly correct.
Also, note that there is no compatibility layer that ensures the intrinsic makes
sense and works on the current target,
unlike the equivalent Julia functions exposed by Core.Intrinsics.




Accessing Global Variables

Global variables exported by native libraries can be accessed by name using the cglobal()
function. The arguments to cglobal() are a symbol specification identical to that used
by ccall, and a type describing the value stored in the variable:

julia> cglobal((:errno, :libc), Int32)
Ptr{Int32} @0x00007f418d0816b8





The result is a pointer giving the address of the value. The value can be manipulated through
this pointer using unsafe_load() and unsafe_store!().




Accessing Data through a Pointer

The following methods are described as “unsafe” because a bad pointer or type declaration can
cause Julia to terminate abruptly.

Given a Ptr{T}, the contents of type T can generally be copied from the referenced memory
into a Julia object using unsafe_load(ptr, [index]). The index argument is optional (default
is 1), and follows the Julia-convention of 1-based indexing. This function is intentionally similar
to the behavior of getindex() and setindex!() (e.g. [] access syntax).

The return value will be a new object initialized to contain a copy of the contents of the referenced
memory. The referenced memory can safely be freed or released.

If T is Any, then the memory is assumed to contain a reference to a Julia object (a jl_value_t*),
the result will be a reference to this object, and the object will not be copied. You must be
careful in this case to ensure that the object was always visible to the garbage collector (pointers
do not count, but the new reference does) to ensure the memory is not prematurely freed. Note
that if the object was not originally allocated by Julia, the new object will never be finalized
by Julia’s garbage collector.  If the Ptr itself is actually a jl_value_t*, it can be converted
back to a Julia object reference by unsafe_pointer_to_objref(ptr). (Julia values v
can be converted to jl_value_t* pointers, as Ptr{Void}, by calling pointer_from_objref(v).)

The reverse operation (writing data to a Ptr{T}), can be performed using unsafe_store!(ptr, value, [index]).
Currently, this is only supported for primitive types or other pointer-free (isbits) immutable struct types.

Any operation that throws an error is probably currently unimplemented and should be posted as
a bug so that it can be resolved.

If the pointer of interest is a plain-data array (primitive type or immutable struct), the function unsafe_wrap(Array, ptr,dims,[own])
may be more useful. The final parameter should be true if Julia should “take ownership” of the
underlying buffer and call free(ptr) when the returned Array object is finalized.  If the
own parameter is omitted or false, the caller must ensure the buffer remains in existence until
all access is complete.

Arithmetic on the Ptr type in Julia (e.g. using +) does not behave the same as C’s pointer
arithmetic. Adding an integer to a Ptr in Julia always moves the pointer by some number of
bytes, not elements. This way, the address values obtained from pointer arithmetic do not depend
on the element types of pointers.




Thread-safety

Some C libraries execute their callbacks from a different thread, and since Julia isn’t thread-safe
you’ll need to take some extra precautions. In particular, you’ll need to set up a two-layered
system: the C callback should only schedule (via Julia’s event loop) the execution of your “real”
callback. To do this, create a AsyncCondition object and wait on it:

cond = Base.AsyncCondition()
wait(cond)





The callback you pass to C should only execute a ccall to :uv_async_send, passing
cond.handle as the argument, taking care to avoid any allocations or other interactions with the
Julia runtime.

Note that events may be coalesced, so multiple calls to uv_async_send may result in a single wakeup
notification to the condition.




More About Callbacks

For more details on how to pass callbacks to C libraries, see this blog post [https://julialang.org/blog/2013/05/callback].




C++

For direct C++ interfacing, see the Cxx [https://github.com/Keno/Cxx.jl] package. For tools to create C++
bindings, see the CxxWrap [https://github.com/JuliaInterop/CxxWrap.jl] package.







          

      

      

    

  

    
      
          
            
  
Complex and Rational Numbers

Julia ships with predefined types representing both complex and rational numbers, and supports
all standard Mathematical Operations and Elementary Functions on them. [Conversion and Promotion](@ref conversion-and-promotion) are defined
so that operations on any combination of predefined numeric types, whether primitive or composite,
behave as expected.


Complex Numbers

The global constant im is bound to the complex number i, representing the principal
square root of -1. It was deemed harmful to co-opt the name i for a global constant, since it
is such a popular index variable name. Since Julia allows numeric literals to be [juxtaposed with identifiers as coefficients](@ref man-numeric-literal-coefficients),
this binding suffices to provide convenient syntax for complex numbers, similar to the traditional
mathematical notation:

julia> 1 + 2im
1 + 2im





You can perform all the standard arithmetic operations with complex numbers:

julia> (1 + 2im)*(2 - 3im)
8 + 1im

julia> (1 + 2im)/(1 - 2im)
-0.6 + 0.8im

julia> (1 + 2im) + (1 - 2im)
2 + 0im

julia> (-3 + 2im) - (5 - 1im)
-8 + 3im

julia> (-1 + 2im)^2
-3 - 4im

julia> (-1 + 2im)^2.5
2.7296244647840084 - 6.960664459571898im

julia> (-1 + 2im)^(1 + 1im)
-0.27910381075826657 + 0.08708053414102428im

julia> 3(2 - 5im)
6 - 15im

julia> 3(2 - 5im)^2
-63 - 60im

julia> 3(2 - 5im)^-1.0
0.20689655172413796 + 0.5172413793103449im





The promotion mechanism ensures that combinations of operands of different types just work:

julia> 2(1 - 1im)
2 - 2im

julia> (2 + 3im) - 1
1 + 3im

julia> (1 + 2im) + 0.5
1.5 + 2.0im

julia> (2 + 3im) - 0.5im
2.0 + 2.5im

julia> 0.75(1 + 2im)
0.75 + 1.5im

julia> (2 + 3im) / 2
1.0 + 1.5im

julia> (1 - 3im) / (2 + 2im)
-0.5 - 1.0im

julia> 2im^2
-2 + 0im

julia> 1 + 3/4im
1.0 - 0.75im





Note that 3/4im == 3/(4*im) == -(3/4*im), since a literal coefficient binds more tightly than
division.

Standard functions to manipulate complex values are provided:

julia> z = 1 + 2im
1 + 2im

julia> real(1 + 2im) # real part of z
1

julia> imag(1 + 2im) # imaginary part of z
2

julia> conj(1 + 2im) # complex conjugate of z
1 - 2im

julia> abs(1 + 2im) # absolute value of z
2.23606797749979

julia> abs2(1 + 2im) # squared absolute value
5

julia> angle(1 + 2im) # phase angle in radians
1.1071487177940904





As usual, the absolute value (abs()) of a complex number is its distance from zero.
abs2() gives the square of the absolute value, and is of particular use for complex
numbers where it avoids taking a square root. angle() returns the phase angle in radians
(also known as the argument or arg function). The full gamut of other Elementary Functions
is also defined for complex numbers:

julia> sqrt(1im)
0.7071067811865476 + 0.7071067811865475im

julia> sqrt(1 + 2im)
1.272019649514069 + 0.7861513777574233im

julia> cos(1 + 2im)
2.0327230070196656 - 3.0518977991518im

julia> exp(1 + 2im)
-1.1312043837568135 + 2.4717266720048188im

julia> sinh(1 + 2im)
-0.4890562590412937 + 1.4031192506220405im





Note that mathematical functions typically return real values when applied to real numbers and
complex values when applied to complex numbers. For example, sqrt() behaves differently
when applied to -1 versus -1 + 0im even though -1 == -1 + 0im:

julia> sqrt(-1)
ERROR: DomainError:
sqrt will only return a complex result if called with a complex argument. Try sqrt(complex(x)).
Stacktrace:
 [1] sqrt(::Int64) at ./math.jl:434

julia> sqrt(-1 + 0im)
0.0 + 1.0im





The [literal numeric coefficient notation](@ref man-numeric-literal-coefficients) does not work when constructing a complex number
from variables. Instead, the multiplication must be explicitly written out:

julia> a = 1; b = 2; a + b*im
1 + 2im





However, this is not recommended; Use the complex() function instead to construct
a complex value directly from its real and imaginary parts:

julia> a = 1; b = 2; complex(a, b)
1 + 2im





This construction avoids the multiplication and addition operations.

Inf and NaN propagate through complex numbers in the real and imaginary parts
of a complex number as described in the Special floating-point values section:

julia> 1 + Inf*im
1.0 + Inf*im

julia> 1 + NaN*im
1.0 + NaN*im








Rational Numbers

Julia has a rational number type to represent exact ratios of integers. Rationals are constructed
using the // operator:

julia> 2//3
2//3





If the numerator and denominator of a rational have common factors, they are reduced to lowest
terms such that the denominator is non-negative:

julia> 6//9
2//3

julia> -4//8
-1//2

julia> 5//-15
-1//3

julia> -4//-12
1//3





This normalized form for a ratio of integers is unique, so equality of rational values can be
tested by checking for equality of the numerator and denominator. The standardized numerator and
denominator of a rational value can be extracted using the numerator() and denominator()
functions:

julia> numerator(2//3)
2

julia> denominator(2//3)
3





Direct comparison of the numerator and denominator is generally not necessary, since the standard
arithmetic and comparison operations are defined for rational values:

julia> 2//3 == 6//9
true

julia> 2//3 == 9//27
false

julia> 3//7 < 1//2
true

julia> 3//4 > 2//3
true

julia> 2//4 + 1//6
2//3

julia> 5//12 - 1//4
1//6

julia> 5//8 * 3//12
5//32

julia> 6//5 / 10//7
21//25





Rationals can be easily converted to floating-point numbers:

julia> float(3//4)
0.75





Conversion from rational to floating-point respects the following identity for any integral values
of a and b, with the exception of the case a == 0 and b == 0:

julia> a = 1; b = 2;

julia> isequal(float(a//b), a/b)
true





Constructing infinite rational values is acceptable:

julia> 5//0
1//0

julia> -3//0
-1//0

julia> typeof(ans)
Rational{Int64}





Trying to construct a NaN rational value, however, is not:

julia> 0//0
ERROR: ArgumentError: invalid rational: zero(Int64)//zero(Int64)
Stacktrace:
 [1] Rational{Int64}(::Int64, ::Int64) at ./rational.jl:13
 [2] //(::Int64, ::Int64) at ./rational.jl:40





As usual, the promotion system makes interactions with other numeric types effortless:

julia> 3//5 + 1
8//5

julia> 3//5 - 0.5
0.09999999999999998

julia> 2//7 * (1 + 2im)
2//7 + 4//7*im

julia> 2//7 * (1.5 + 2im)
0.42857142857142855 + 0.5714285714285714im

julia> 3//2 / (1 + 2im)
3//10 - 3//5*im

julia> 1//2 + 2im
1//2 + 2//1*im

julia> 1 + 2//3im
1//1 - 2//3*im

julia> 0.5 == 1//2
true

julia> 0.33 == 1//3
false

julia> 0.33 < 1//3
true

julia> 1//3 - 0.33
0.0033333333333332993











          

      

      

    

  

    
      
          
            
  
[Constructors](@id man-constructors)

Constructors [^1] are functions that create new objects – specifically, instances of Composite Types.
In Julia, type objects also serve as constructor functions: they create new instances of themselves
when applied to an argument tuple as a function. This much was already mentioned briefly when
composite types were introduced. For example:

julia> struct Foo
           bar
           baz
       end

julia> foo = Foo(1, 2)
Foo(1, 2)

julia> foo.bar
1

julia> foo.baz
2





For many types, forming new objects by binding their field values together is all that is ever
needed to create instances. There are, however, cases where more functionality is required when
creating composite objects. Sometimes invariants must be enforced, either by checking arguments
or by transforming them. Recursive data structures [https://en.wikipedia.org/wiki/Recursion_%28computer_science%29#Recursive_data_structures_.28structural_recursion.29],
especially those that may be self-referential, often cannot be constructed cleanly without first
being created in an incomplete state and then altered programmatically to be made whole, as a
separate step from object creation. Sometimes, it’s just convenient to be able to construct objects
with fewer or different types of parameters than they have fields. Julia’s system for object construction
addresses all of these cases and more.

[^1]:
Nomenclature: while the term “constructor” generally refers to the entire function which constructs
objects of a type, it is common to abuse terminology slightly and refer to specific constructor
methods as “constructors”. In such situations, it is generally clear from context that the term
is used to mean “constructor method” rather than “constructor function”, especially as it is often
used in the sense of singling out a particular method of the constructor from all of the others.


Outer Constructor Methods

A constructor is just like any other function in Julia in that its overall behavior is defined
by the combined behavior of its methods. Accordingly, you can add functionality to a constructor
by simply defining new methods. For example, let’s say you want to add a constructor method for
Foo objects that takes only one argument and uses the given value for both the bar and baz
fields. This is simple:

julia> Foo(x) = Foo(x,x)
Foo

julia> Foo(1)
Foo(1, 1)





You could also add a zero-argument Foo constructor method that supplies default values for both
of the bar and baz fields:

julia> Foo() = Foo(0)
Foo

julia> Foo()
Foo(0, 0)





Here the zero-argument constructor method calls the single-argument constructor method, which
in turn calls the automatically provided two-argument constructor method. For reasons that will
become clear very shortly, additional constructor methods declared as normal methods like this
are called outer constructor methods. Outer constructor methods can only ever create a new instance
by calling another constructor method, such as the automatically provided default ones.




Inner Constructor Methods

While outer constructor methods succeed in addressing the problem of providing additional convenience
methods for constructing objects, they fail to address the other two use cases mentioned in the
introduction of this chapter: enforcing invariants, and allowing construction of self-referential
objects. For these problems, one needs inner constructor methods. An inner constructor method
is much like an outer constructor method, with two differences:


	It is declared inside the block of a type declaration, rather than outside of it like normal methods.


	It has access to a special locally existent function called new that creates objects of the
block’s type.




For example, suppose one wants to declare a type that holds a pair of real numbers, subject to
the constraint that the first number is not greater than the second one. One could declare it
like this:

julia> struct OrderedPair
           x::Real
           y::Real
           OrderedPair(x,y) = x > y ? error("out of order") : new(x,y)
       end






Now OrderedPair objects can only be constructed such that x <= y:

julia> OrderedPair(1, 2)
OrderedPair(1, 2)

julia> OrderedPair(2,1)
ERROR: out of order
Stacktrace:
 [1] OrderedPair(::Int64, ::Int64) at ./none:4





If the type were declared mutable, you could reach in and directly change the field values to
violate this invariant, but messing around with an object’s internals uninvited is considered poor form.
You (or someone else) can also provide additional outer constructor methods at any later point, but
once a type is declared, there is no way to add more inner constructor methods. Since outer constructor
methods can only create objects by calling other constructor methods, ultimately, some inner constructor
must be called to create an object. This guarantees that all objects of the declared type must come into
existence by a call to one of the inner constructor methods provided with the type, thereby giving
some degree of enforcement of a type’s invariants.

If any inner constructor method is defined, no default constructor method is provided: it is presumed
that you have supplied yourself with all the inner constructors you need. The default constructor
is equivalent to writing your own inner constructor method that takes all of the object’s fields
as parameters (constrained to be of the correct type, if the corresponding field has a type),
and passes them to new, returning the resulting object:

julia> struct Foo
           bar
           baz
           Foo(bar,baz) = new(bar,baz)
       end






This declaration has the same effect as the earlier definition of the Foo type without an explicit
inner constructor method. The following two types are equivalent – one with a default constructor,
the other with an explicit constructor:

julia> struct T1
           x::Int64
       end

julia> struct T2
           x::Int64
           T2(x) = new(x)
       end

julia> T1(1)
T1(1)

julia> T2(1)
T2(1)

julia> T1(1.0)
T1(1)

julia> T2(1.0)
T2(1)





It is considered good form to provide as few inner constructor methods as possible: only those
taking all arguments explicitly and enforcing essential error checking and transformation. Additional
convenience constructor methods, supplying default values or auxiliary transformations, should
be provided as outer constructors that call the inner constructors to do the heavy lifting. This
separation is typically quite natural.




Incomplete Initialization

The final problem which has still not been addressed is construction of self-referential objects,
or more generally, recursive data structures. Since the fundamental difficulty may not be immediately
obvious, let us briefly explain it. Consider the following recursive type declaration:

julia> mutable struct SelfReferential
           obj::SelfReferential
       end






This type may appear innocuous enough, until one considers how to construct an instance of it.
If a is an instance of SelfReferential, then a second instance can be created by the call:

julia> b = SelfReferential(a)





But how does one construct the first instance when no instance exists to provide as a valid value
for its obj field? The only solution is to allow creating an incompletely initialized instance
of SelfReferential with an unassigned obj field, and using that incomplete instance as a valid
value for the obj field of another instance, such as, for example, itself.

To allow for the creation of incompletely initialized objects, Julia allows the new function
to be called with fewer than the number of fields that the type has, returning an object with
the unspecified fields uninitialized. The inner constructor method can then use the incomplete
object, finishing its initialization before returning it. Here, for example, we take another crack
at defining the SelfReferential type, with a zero-argument inner constructor returning instances
having obj fields pointing to themselves:

julia> mutable struct SelfReferential
           obj::SelfReferential
           SelfReferential() = (x = new(); x.obj = x)
       end






We can verify that this constructor works and constructs objects that are, in fact, self-referential:

julia> x = SelfReferential();

julia> x === x
true

julia> x === x.obj
true

julia> x === x.obj.obj
true





Although it is generally a good idea to return a fully initialized object from an inner constructor,
incompletely initialized objects can be returned:

julia> mutable struct Incomplete
           xx
           Incomplete() = new()
       end

julia> z = Incomplete();





While you are allowed to create objects with uninitialized fields, any access to an uninitialized
reference is an immediate error:

julia> z.xx
ERROR: UndefRefError: access to undefined reference





This avoids the need to continually check for null values. However, not all object fields are
references. Julia considers some types to be “plain data”, meaning all of their data is self-contained
and does not reference other objects. The plain data types consist of primitive types (e.g. Int)
and immutable structs of other plain data types. The initial contents of a plain data type is
undefined:

julia> struct HasPlain
           n::Int
           HasPlain() = new()
       end

julia> HasPlain()
HasPlain(438103441441)





Arrays of plain data types exhibit the same behavior.

You can pass incomplete objects to other functions from inner constructors to delegate their completion:

julia> mutable struct Lazy
           xx
           Lazy(v) = complete_me(new(), v)
       end





As with incomplete objects returned from constructors, if complete_me or any of its callees
try to access the xx field of the Lazy object before it has been initialized, an error will
be thrown immediately.




Parametric Constructors

Parametric types add a few wrinkles to the constructor story. Recall from Parametric Types
that, by default, instances of parametric composite types can be constructed either with explicitly
given type parameters or with type parameters implied by the types of the arguments given to the
constructor. Here are some examples:

julia> struct Point{T<:Real}
           x::T
           y::T
       end

julia> Point(1,2) ## implicit T ##
Point{Int64}(1, 2)

julia> Point(1.0,2.5) ## implicit T ##
Point{Float64}(1.0, 2.5)

julia> Point(1,2.5) ## implicit T ##
ERROR: MethodError: no method matching Point(::Int64, ::Float64)
Closest candidates are:
  Point(::T<:Real, !Matched::T<:Real) where T<:Real at none:2

julia> Point{Int64}(1, 2) ## explicit T ##
Point{Int64}(1, 2)

julia> Point{Int64}(1.0,2.5) ## explicit T ##
ERROR: InexactError()
Stacktrace:
 [1] convert(::Type{Int64}, ::Float64) at ./float.jl:679
 [2] Point{Int64}(::Float64, ::Float64) at ./none:2

julia> Point{Float64}(1.0, 2.5) ## explicit T ##
Point{Float64}(1.0, 2.5)

julia> Point{Float64}(1,2) ## explicit T ##
Point{Float64}(1.0, 2.0)





As you can see, for constructor calls with explicit type parameters, the arguments are converted
to the implied field types: Point{Int64}(1,2) works, but Point{Int64}(1.0,2.5) raises an
InexactError when converting 2.5 to Int64. When the type is implied
by the arguments to the constructor call, as in Point(1,2), then the types of the
arguments must agree – otherwise the T cannot be determined – but any pair of real
arguments with matching type may be given to the generic Point constructor.

What’s really going on here is that Point, Point{Float64} and Point{Int64} are all different
constructor functions. In fact, Point{T} is a distinct constructor function for each type T.
Without any explicitly provided inner constructors, the declaration of the composite type Point{T<:Real}
automatically provides an inner constructor, Point{T}, for each possible type T<:Real, that
behaves just like non-parametric default inner constructors do. It also provides a single general
outer Point constructor that takes pairs of real arguments, which must be of the same type.
This automatic provision of constructors is equivalent to the following explicit declaration:

julia> struct Point{T<:Real}
           x::T
           y::T
           Point{T}(x,y) where {T<:Real} = new(x,y)
       end

julia> Point(x::T, y::T) where {T<:Real} = Point{T}(x,y);





Notice that each definition looks like the form of constructor call that it handles.
The call Point{Int64}(1,2) will invoke the definition Point{T}(x,y) inside the
type block.
The outer constructor declaration, on the other hand, defines a
method for the general Point constructor which only applies to pairs of values of the same real
type. This declaration makes constructor calls without explicit type parameters, like Point(1,2)
and Point(1.0,2.5), work. Since the method declaration restricts the arguments to being of the
same type, calls like Point(1,2.5), with arguments of different types, result in “no method”
errors.

Suppose we wanted to make the constructor call Point(1,2.5) work by “promoting” the integer
value 1 to the floating-point value 1.0. The simplest way to achieve this is to define the
following additional outer constructor method:

julia> Point(x::Int64, y::Float64) = Point(convert(Float64,x),y);





This method uses the convert() function to explicitly convert x to Float64
and then delegates construction to the general constructor for the case where both arguments are
Float64. With this method definition what was previously a MethodError now
successfully creates a point of type Point{Float64}:

julia> Point(1,2.5)
Point{Float64}(1.0, 2.5)

julia> typeof(ans)
Point{Float64}





However, other similar calls still don’t work:

julia> Point(1.5,2)
ERROR: MethodError: no method matching Point(::Float64, ::Int64)
Closest candidates are:
  Point(::T<:Real, !Matched::T<:Real) where T<:Real at none:1





For a more general way to make all such calls work sensibly, see [Conversion and Promotion](@ref conversion-and-promotion).
At the risk of spoiling the suspense, we can reveal here that all it takes is the following outer
method definition to make all calls to the general Point constructor work as one would expect:

julia> Point(x::Real, y::Real) = Point(promote(x,y)...);





The promote function converts all its arguments to a common type – in this case Float64.
With this method definition, the Point constructor promotes its arguments the same way that
numeric operators like + do, and works for all kinds of real numbers:

julia> Point(1.5,2)
Point{Float64}(1.5, 2.0)

julia> Point(1,1//2)
Point{Rational{Int64}}(1//1, 1//2)

julia> Point(1.0,1//2)
Point{Float64}(1.0, 0.5)





Thus, while the implicit type parameter constructors provided by default in Julia are fairly strict,
it is possible to make them behave in a more relaxed but sensible manner quite easily. Moreover,
since constructors can leverage all of the power of the type system, methods, and multiple dispatch,
defining sophisticated behavior is typically quite simple.




Case Study: Rational

Perhaps the best way to tie all these pieces together is to present a real world example of a
parametric composite type and its constructor methods. To that end, here is the (slightly modified) beginning of rational.jl [https://github.com/JuliaLang/julia/blob/master/base/rational.jl],
which implements Julia’s Rational Numbers:

julia> struct OurRational{T<:Integer} <: Real
           num::T
           den::T
           function OurRational{T}(num::T, den::T) where T<:Integer
               if num == 0 && den == 0
                    error("invalid rational: 0//0")
               end
               g = gcd(den, num)
               num = div(num, g)
               den = div(den, g)
               new(num, den)
           end
       end

julia> OurRational(n::T, d::T) where {T<:Integer} = OurRational{T}(n,d)
OurRational

julia> OurRational(n::Integer, d::Integer) = OurRational(promote(n,d)...)
OurRational

julia> OurRational(n::Integer) = OurRational(n,one(n))
OurRational

julia> //(n::Integer, d::Integer) = OurRational(n,d)
// (generic function with 1 method)

julia> //(x::OurRational, y::Integer) = x.num // (x.den*y)
// (generic function with 2 methods)

julia> //(x::Integer, y::OurRational) = (x*y.den) // y.num
// (generic function with 3 methods)

julia> //(x::Complex, y::Real) = complex(real(x)//y, imag(x)//y)
// (generic function with 4 methods)

julia> //(x::Real, y::Complex) = x*y'//real(y*y')
// (generic function with 5 methods)

julia> function //(x::Complex, y::Complex)
           xy = x*y'
           yy = real(y*y')
           complex(real(xy)//yy, imag(xy)//yy)
       end
// (generic function with 6 methods)





The first line – struct OurRational{T<:Integer} <: Real – declares that OurRational takes one
type parameter of an integer type, and is itself a real type. The field declarations num::T
and den::T indicate that the data held in a OurRational{T} object are a pair of integers of type
T, one representing the rational value’s numerator and the other representing its denominator.

Now things get interesting. OurRational has a single inner constructor method which checks that
both of num and den aren’t zero and ensures that every rational is constructed in “lowest
terms” with a non-negative denominator. This is accomplished by dividing the given numerator and
denominator values by their greatest common divisor, computed using the gcd function. Since
gcd returns the greatest common divisor of its arguments with sign matching the first argument
(den here), after this division the new value of den is guaranteed to be non-negative. Because
this is the only inner constructor for OurRational, we can be certain that OurRational objects are
always constructed in this normalized form.

OurRational also provides several outer constructor methods for convenience. The first is the “standard”
general constructor that infers the type parameter T from the type of the numerator and denominator
when they have the same type. The second applies when the given numerator and denominator values
have different types: it promotes them to a common type and then delegates construction to the
outer constructor for arguments of matching type. The third outer constructor turns integer values
into rationals by supplying a value of 1 as the denominator.

Following the outer constructor definitions, we have a number of methods for the //
operator, which provides a syntax for writing rationals. Before these definitions, //
is a completely undefined operator with only syntax and no meaning. Afterwards, it behaves just
as described in Rational Numbers – its entire behavior is defined in these few lines.
The first and most basic definition just makes a//b construct a OurRational by applying the
OurRational constructor to a and b when they are integers. When one of the operands of //
is already a rational number, we construct a new rational for the resulting ratio slightly differently;
this behavior is actually identical to division of a rational with an integer.
Finally, applying
// to complex integral values creates an instance of Complex{OurRational} – a complex
number whose real and imaginary parts are rationals:

julia> ans = (1 + 2im)//(1 - 2im);

julia> typeof(ans)
Complex{OurRational{Int64}}

julia> ans <: Complex{OurRational}
false





Thus, although the // operator usually returns an instance of OurRational, if either
of its arguments are complex integers, it will return an instance of Complex{OurRational} instead.
The interested reader should consider perusing the rest of rational.jl [https://github.com/JuliaLang/julia/blob/master/base/rational.jl]:
it is short, self-contained, and implements an entire basic Julia type.




[Constructors and Conversion](@id constructors-and-conversion)

Constructors T(args...) in Julia are implemented like other callable objects: methods are added
to their types. The type of a type is Type, so all constructor methods are stored in the method
table for the Type type. This means that you can declare more flexible constructors, e.g. constructors
for abstract types, by explicitly defining methods for the appropriate types.

However, in some cases you could consider adding methods to Base.convert instead of defining
a constructor, because Julia falls back to calling convert() if no matching constructor
is found. For example, if no constructor T(args...) = ... exists Base.convert(::Type{T}, args...) = ...
is called.

convert is used extensively throughout Julia whenever one type needs to be converted to another
(e.g. in assignment, ccall, etcetera), and should generally only be defined (or successful)
if the conversion is lossless.  For example, convert(Int, 3.0) produces 3, but convert(Int, 3.2)
throws an InexactError.  If you want to define a constructor for a lossless conversion from
one type to another, you should probably define a convert method instead.

On the other hand, if your constructor does not represent a lossless conversion, or doesn’t represent
“conversion” at all, it is better to leave it as a constructor rather than a convert method.
For example, the Array{Int}() constructor creates a zero-dimensional Array of the type Int,
but is not really a “conversion” from Int to an Array.




Outer-only constructors

As we have seen, a typical parametric type has inner constructors that are called when type parameters
are known; e.g. they apply to Point{Int} but not to Point. Optionally, outer constructors
that determine type parameters automatically can be added, for example constructing a Point{Int}
from the call Point(1,2). Outer constructors call inner constructors to do the core work of
making an instance. However, in some cases one would rather not provide inner constructors, so
that specific type parameters cannot be requested manually.

For example, say we define a type that stores a vector along with an accurate representation of
its sum:

julia> struct SummedArray{T<:Number,S<:Number}
           data::Vector{T}
           sum::S
       end

julia> SummedArray(Int32[1; 2; 3], Int32(6))
SummedArray{Int32,Int32}(Int32[1, 2, 3], 6)





The problem is that we want S to be a larger type than T, so that we can sum many elements
with less information loss. For example, when T is Int32, we would like S to
be Int64. Therefore we want to avoid an interface that allows the user to construct
instances of the type SummedArray{Int32,Int32}. One way to do this is to provide a
constructor only for SummedArray, but inside the type definition block to suppress
generation of default constructors:

julia> struct SummedArray{T<:Number,S<:Number}
           data::Vector{T}
           sum::S
           function SummedArray(a::Vector{T}) where T
               S = widen(T)
               new{T,S}(a, sum(S, a))
           end
       end

julia> SummedArray(Int32[1; 2; 3], Int32(6))
ERROR: MethodError: no method matching SummedArray(::Array{Int32,1}, ::Int32)
Closest candidates are:
  SummedArray(::Array{T,1}) where T at none:5





This constructor will be invoked by the syntax SummedArray(a). The syntax new{T,S} allows
specifying parameters for the type to be constructed, i.e. this call will return a SummedArray{T,S}.
new{T,S} can be used in any constructor definition, but for convenience the parameters
to new{} are automatically derived from the type being constructed when possible.







          

      

      

    

  

    
      
          
            
  
Control Flow

Julia provides a variety of control flow constructs:


	[Compound Expressions](@ref man-compound-expressions): begin and (;).


	[Conditional Evaluation](@ref man-conditional-evaluation): if-elseif-else and ?: (ternary operator).


	Short-Circuit Evaluation: &&, || and chained comparisons.


	[Repeated Evaluation: Loops](@ref man-loops): while and for.


	Exception Handling: try-catch, error() and throw().


	[Tasks (aka Coroutines)](@ref man-tasks): yieldto().




The first five control flow mechanisms are standard to high-level programming languages. Tasks
are not so standard: they provide non-local control flow, making it possible to switch between
temporarily-suspended computations. This is a powerful construct: both exception handling and
cooperative multitasking are implemented in Julia using tasks. Everyday programming requires no
direct usage of tasks, but certain problems can be solved much more easily by using tasks.


[Compound Expressions](@id man-compound-expressions)

Sometimes it is convenient to have a single expression which evaluates several subexpressions
in order, returning the value of the last subexpression as its value. There are two Julia constructs
that accomplish this: begin blocks and (;) chains. The value of both compound expression constructs
is that of the last subexpression. Here’s an example of a begin block:

julia> z = begin
           x = 1
           y = 2
           x + y
       end
3





Since these are fairly small, simple expressions, they could easily be placed onto a single line,
which is where the (;) chain syntax comes in handy:

julia> z = (x = 1; y = 2; x + y)
3





This syntax is particularly useful with the terse single-line function definition form introduced
in Functions. Although it is typical, there is no requirement that begin blocks be multiline
or that (;) chains be single-line:

julia> begin x = 1; y = 2; x + y end
3

julia> (x = 1;
        y = 2;
        x + y)
3








[Conditional Evaluation](@id man-conditional-evaluation)

Conditional evaluation allows portions of code to be evaluated or not evaluated depending on the
value of a boolean expression. Here is the anatomy of the if-elseif-else conditional syntax:

if x < y
    println("x is less than y")
elseif x > y
    println("x is greater than y")
else
    println("x is equal to y")
end





If the condition expression x < y is true, then the corresponding block is evaluated; otherwise
the condition expression x > y is evaluated, and if it is true, the corresponding block is
evaluated; if neither expression is true, the else block is evaluated. Here it is in action:

julia> function test(x, y)
           if x < y
               println("x is less than y")
           elseif x > y
               println("x is greater than y")
           else
               println("x is equal to y")
           end
       end
test (generic function with 1 method)

julia> test(1, 2)
x is less than y

julia> test(2, 1)
x is greater than y

julia> test(1, 1)
x is equal to y





The elseif and else blocks are optional, and as many elseif blocks as desired can be used.
The condition expressions in the if-elseif-else construct are evaluated until the first
one evaluates to true, after which the associated block is evaluated, and no further condition
expressions or blocks are evaluated.

if blocks are “leaky”, i.e. they do not introduce a local scope. This means that new variables
defined inside the if clauses can be used after the if block, even if they weren’t defined
before. So, we could have defined the test function above as

julia> function test(x,y)
           if x < y
               relation = "less than"
           elseif x == y
               relation = "equal to"
           else
               relation = "greater than"
           end
           println("x is ", relation, " y.")
       end
test (generic function with 1 method)

julia> test(2, 1)
x is greater than y.





The variable relation is declared inside the if block, but used outside. However, when depending
on this behavior, make sure all possible code paths define a value for the variable. The following
change to the above function results in a runtime error

julia> function test(x,y)
           if x < y
               relation = "less than"
           elseif x == y
               relation = "equal to"
           end
           println("x is ", relation, " y.")
       end
test (generic function with 1 method)

julia> test(1,2)
x is less than y.

julia> test(2,1)
ERROR: UndefVarError: relation not defined
Stacktrace:
 [1] test(::Int64, ::Int64) at ./none:7





if blocks also return a value, which may seem unintuitive to users coming from many other languages.
This value is simply the return value of the last executed statement in the branch that was chosen,
so

julia> x = 3
3

julia> if x > 0
           "positive!"
       else
           "negative..."
       end
"positive!"





Note that very short conditional statements (one-liners) are frequently expressed using Short-Circuit
Evaluation in Julia, as outlined in the next section.

Unlike C, MATLAB, Perl, Python, and Ruby – but like Java, and a few other stricter, typed languages
– it is an error if the value of a conditional expression is anything but true or false:

julia> if 1
           println("true")
       end
ERROR: TypeError: non-boolean (Int64) used in boolean context





This error indicates that the conditional was of the wrong type: Int64 rather
than the required Bool.

The so-called “ternary operator”, ?:, is closely related to the if-elseif-else syntax,
but is used where a conditional choice between single expression values is required, as opposed
to conditional execution of longer blocks of code. It gets its name from being the only operator
in most languages taking three operands:

a ? b : c





The expression a, before the ?, is a condition expression, and the ternary operation evaluates
the expression b, before the :, if the condition a is true or the expression c, after
the :, if it is false.

The easiest way to understand this behavior is to see an example. In the previous example, the
println call is shared by all three branches: the only real choice is which literal string to
print. This could be written more concisely using the ternary operator. For the sake of clarity,
let’s try a two-way version first:

julia> x = 1; y = 2;

julia> println(x < y ? "less than" : "not less than")
less than

julia> x = 1; y = 0;

julia> println(x < y ? "less than" : "not less than")
not less than





If the expression x < y is true, the entire ternary operator expression evaluates to the string
"less than" and otherwise it evaluates to the string "not less than". The original three-way
example requires chaining multiple uses of the ternary operator together:

julia> test(x, y) = println(x < y ? "x is less than y"    :
                            x > y ? "x is greater than y" : "x is equal to y")
test (generic function with 1 method)

julia> test(1, 2)
x is less than y

julia> test(2, 1)
x is greater than y

julia> test(1, 1)
x is equal to y





To facilitate chaining, the operator associates from right to left.

It is significant that like if-elseif-else, the expressions before and after the : are
only evaluated if the condition expression evaluates to true or false, respectively:

julia> v(x) = (println(x); x)
v (generic function with 1 method)

julia> 1 < 2 ? v("yes") : v("no")
yes
"yes"

julia> 1 > 2 ? v("yes") : v("no")
no
"no"








Short-Circuit Evaluation

Short-circuit evaluation is quite similar to conditional evaluation. The behavior is found in
most imperative programming languages having the && and || boolean operators: in a series
of boolean expressions connected by these operators, only the minimum number of expressions are
evaluated as are necessary to determine the final boolean value of the entire chain. Explicitly,
this means that:


	In the expression a && b, the subexpression b is only evaluated if a evaluates to true.


	In the expression a || b, the subexpression b is only evaluated if a evaluates to false.




The reasoning is that a && b must be false if a is false, regardless of the value of
b, and likewise, the value of a || b must be true if a is true, regardless of the value
of b. Both && and || associate to the right, but && has higher precedence than || does.
It’s easy to experiment with this behavior:

julia> t(x) = (println(x); true)
t (generic function with 1 method)

julia> f(x) = (println(x); false)
f (generic function with 1 method)

julia> t(1) && t(2)
1
2
true

julia> t(1) && f(2)
1
2
false

julia> f(1) && t(2)
1
false

julia> f(1) && f(2)
1
false

julia> t(1) || t(2)
1
true

julia> t(1) || f(2)
1
true

julia> f(1) || t(2)
1
2
true

julia> f(1) || f(2)
1
2
false





You can easily experiment in the same way with the associativity and precedence of various combinations
of && and || operators.

This behavior is frequently used in Julia to form an alternative to very short if statements.
Instead of if <cond> <statement> end, one can write <cond> && <statement> (which could be
read as:  and then ). Similarly, instead of if ! <cond> <statement> end,
one can write <cond> || <statement> (which could be read as:  or else ).
  
    
    [Conversion and Promotion](@id conversion-and-promotion)
    

    
 
  

    
      
          
            
  
[Conversion and Promotion](@id conversion-and-promotion)

Julia has a system for promoting arguments of mathematical operators to a common type, which has
been mentioned in various other sections, including Integers and Floating-Point Numbers,
Mathematical Operations and Elementary Functions, [Types](@ref man-types), and Methods.
In this section, we explain how this promotion system works, as well as how to extend it to new
types and apply it to functions besides built-in mathematical operators. Traditionally, programming
languages fall into two camps with respect to promotion of arithmetic arguments:


	Automatic promotion for built-in arithmetic types and operators. In most languages, built-in
numeric types, when used as operands to arithmetic operators with infix syntax, such as +,
-, *, and /, are automatically promoted to a common type to produce the expected results.
C, Java, Perl, and Python, to name a few, all correctly compute the sum 1 + 1.5 as the floating-point
value 2.5, even though one of the operands to + is an integer. These systems are convenient
and designed carefully enough that they are generally all-but-invisible to the programmer: hardly
anyone consciously thinks of this promotion taking place when writing such an expression, but
compilers and interpreters must perform conversion before addition since integers and floating-point
values cannot be added as-is. Complex rules for such automatic conversions are thus inevitably
part of specifications and implementations for such languages.


	No automatic promotion. This camp includes Ada and ML – very “strict” statically typed languages.
In these languages, every conversion must be explicitly specified by the programmer. Thus, the
example expression 1 + 1.5 would be a compilation error in both Ada and ML. Instead one must
write real(1) + 1.5, explicitly converting the integer 1 to a floating-point value before
performing addition. Explicit conversion everywhere is so inconvenient, however, that even Ada
has some degree of automatic conversion: integer literals are promoted to the expected integer
type automatically, and floating-point literals are similarly promoted to appropriate floating-point
types.




In a sense, Julia falls into the “no automatic promotion” category: mathematical operators are
just functions with special syntax, and the arguments of functions are never automatically converted.
However, one may observe that applying mathematical operations to a wide variety of mixed argument
types is just an extreme case of polymorphic multiple dispatch – something which Julia’s dispatch
and type systems are particularly well-suited to handle. “Automatic” promotion of mathematical
operands simply emerges as a special application: Julia comes with pre-defined catch-all dispatch
rules for mathematical operators, invoked when no specific implementation exists for some combination
of operand types. These catch-all rules first promote all operands to a common type using user-definable
promotion rules, and then invoke a specialized implementation of the operator in question for
the resulting values, now of the same type. User-defined types can easily participate in this
promotion system by defining methods for conversion to and from other types, and providing a handful
of promotion rules defining what types they should promote to when mixed with other types.


Conversion

Conversion of values to various types is performed by the convert function. The convert function
generally takes two arguments: the first is a type object while the second is a value to convert
to that type; the returned value is the value converted to an instance of given type. The simplest
way to understand this function is to see it in action:

julia> x = 12
12

julia> typeof(x)
Int64

julia> convert(UInt8, x)
0x0c

julia> typeof(ans)
UInt8

julia> convert(AbstractFloat, x)
12.0

julia> typeof(ans)
Float64

julia> a = Any[1 2 3; 4 5 6]
2×3 Array{Any,2}:
 1  2  3
 4  5  6

julia> convert(Array{Float64}, a)
2×3 Array{Float64,2}:
 1.0  2.0  3.0
 4.0  5.0  6.0





Conversion isn’t always possible, in which case a no method error is thrown indicating that convert
doesn’t know how to perform the requested conversion:

julia> convert(AbstractFloat, "foo")
ERROR: MethodError: Cannot `convert` an object of type String to an object of type AbstractFloat
This may have arisen from a call to the constructor AbstractFloat(...),
since type constructors fall back to convert methods.





Some languages consider parsing strings as numbers or formatting numbers as strings to be conversions
(many dynamic languages will even perform conversion for you automatically), however Julia does
not: even though some strings can be parsed as numbers, most strings are not valid representations
of numbers, and only a very limited subset of them are. Therefore in Julia the dedicated parse()
function must be used to perform this operation, making it more explicit.


Defining New Conversions

To define a new conversion, simply provide a new method for convert(). That’s really all there
is to it. For example, the method to convert a real number to a boolean is this:

convert(::Type{Bool}, x::Real) = x==0 ? false : x==1 ? true : throw(InexactError())





The type of the first argument of this method is a [singleton type](@ref man-singleton-types),
Type{Bool}, the only instance of which is Bool. Thus, this method is only invoked
when the first argument is the type value Bool. Notice the syntax used for the first
argument: the argument name is omitted prior to the :: symbol, and only the type is given.
This is the syntax in Julia for a function argument whose type is specified but whose value
is never used in the function body. In this example, since the type is a singleton, there
would never be any reason to use its value within the body. When invoked, the method
determines whether a numeric value is true or false as a boolean,
by comparing it to one and zero:

julia> convert(Bool, 1)
true

julia> convert(Bool, 0)
false

julia> convert(Bool, 1im)
ERROR: InexactError()
Stacktrace:
 [1] convert(::Type{Bool}, ::Complex{Int64}) at ./complex.jl:31

julia> convert(Bool, 0im)
false





The method signatures for conversion methods are often quite a bit more involved than this example,
especially for parametric types. The example above is meant to be pedagogical, and is not the
actual Julia behaviour. This is the actual implementation in Julia:

convert(::Type{T}, z::Complex) where {T<:Real} =
    (imag(z) == 0 ? convert(T, real(z)) : throw(InexactError()))








[Case Study: Rational Conversions](@id man-rational-conversion)

To continue our case study of Julia’s Rational type, here are the conversions declared in
rational.jl [https://github.com/JuliaLang/julia/blob/master/base/rational.jl],
right after the declaration of the type and its constructors:

convert(::Type{Rational{T}}, x::Rational) where {T<:Integer} = Rational(convert(T,x.num),convert(T,x.den))
convert(::Type{Rational{T}}, x::Integer) where {T<:Integer} = Rational(convert(T,x), convert(T,1))

function convert(::Type{Rational{T}}, x::AbstractFloat, tol::Real) where T<:Integer
    if isnan(x); return zero(T)//zero(T); end
    if isinf(x); return sign(x)//zero(T); end
    y = x
    a = d = one(T)
    b = c = zero(T)
    while true
        f = convert(T,round(y)); y -= f
        a, b, c, d = f*a+c, f*b+d, a, b
        if y == 0 || abs(a/b-x) <= tol
            return a//b
        end
        y = 1/y
    end
end
convert(rt::Type{Rational{T}}, x::AbstractFloat) where {T<:Integer} = convert(rt,x,eps(x))

convert(::Type{T}, x::Rational) where {T<:AbstractFloat} = convert(T,x.num)/convert(T,x.den)
convert(::Type{T}, x::Rational) where {T<:Integer} = div(convert(T,x.num),convert(T,x.den))





The initial four convert methods provide conversions to rational types. The first method converts
one type of rational to another type of rational by converting the numerator and denominator to
the appropriate integer type. The second method does the same conversion for integers by taking
the denominator to be 1. The third method implements a standard algorithm for approximating a
floating-point number by a ratio of integers to within a given tolerance, and the fourth method
applies it, using machine epsilon at the given value as the threshold. In general, one should
have a//b == convert(Rational{Int64}, a/b).

The last two convert methods provide conversions from rational types to floating-point and integer
types. To convert to floating point, one simply converts both numerator and denominator to that
floating point type and then divides. To convert to integer, one can use the div operator for
truncated integer division (rounded towards zero).






Promotion

Promotion refers to converting values of mixed types to a single common type. Although it is not
strictly necessary, it is generally implied that the common type to which the values are converted
can faithfully represent all of the original values. In this sense, the term “promotion” is appropriate
since the values are converted to a “greater” type – i.e. one which can represent all of the
input values in a single common type. It is important, however, not to confuse this with object-oriented
(structural) super-typing, or Julia’s notion of abstract super-types: promotion has nothing to
do with the type hierarchy, and everything to do with converting between alternate representations.
For instance, although every Int32 value can also be represented as a Float64 value,
Int32 is not a subtype of Float64.

Promotion to a common “greater” type is performed in Julia by the promote function, which takes
any number of arguments, and returns a tuple of the same number of values, converted to a common
type, or throws an exception if promotion is not possible. The most common use case for promotion
is to convert numeric arguments to a common type:

julia> promote(1, 2.5)
(1.0, 2.5)

julia> promote(1, 2.5, 3)
(1.0, 2.5, 3.0)

julia> promote(2, 3//4)
(2//1, 3//4)

julia> promote(1, 2.5, 3, 3//4)
(1.0, 2.5, 3.0, 0.75)

julia> promote(1.5, im)
(1.5 + 0.0im, 0.0 + 1.0im)

julia> promote(1 + 2im, 3//4)
(1//1 + 2//1*im, 3//4 + 0//1*im)





Floating-point values are promoted to the largest of the floating-point argument types. Integer
values are promoted to the larger of either the native machine word size or the largest integer
argument type. Mixtures of integers and floating-point values are promoted to a floating-point
type big enough to hold all the values. Integers mixed with rationals are promoted to rationals.
Rationals mixed with floats are promoted to floats. Complex values mixed with real values are
promoted to the appropriate kind of complex value.

That is really all there is to using promotions. The rest is just a matter of clever application,
the most typical “clever” application being the definition of catch-all methods for numeric operations
like the arithmetic operators +, -, * and /. Here are some of the catch-all method definitions
given in promotion.jl [https://github.com/JuliaLang/julia/blob/master/base/promotion.jl]:

+(x::Number, y::Number) = +(promote(x,y)...)
-(x::Number, y::Number) = -(promote(x,y)...)
*(x::Number, y::Number) = *(promote(x,y)...)
/(x::Number, y::Number) = /(promote(x,y)...)





These method definitions say that in the absence of more specific rules for adding, subtracting,
multiplying and dividing pairs of numeric values, promote the values to a common type and then
try again. That’s all there is to it: nowhere else does one ever need to worry about promotion
to a common numeric type for arithmetic operations – it just happens automatically. There are
definitions of catch-all promotion methods for a number of other arithmetic and mathematical functions
in promotion.jl [https://github.com/JuliaLang/julia/blob/master/base/promotion.jl], but beyond
that, there are hardly any calls to promote required in the Julia standard library. The most
common usages of promote occur in outer constructors methods, provided for convenience, to allow
constructor calls with mixed types to delegate to an inner type with fields promoted to an appropriate
common type. For example, recall that rational.jl [https://github.com/JuliaLang/julia/blob/master/base/rational.jl]
provides the following outer constructor method:

Rational(n::Integer, d::Integer) = Rational(promote(n,d)...)





This allows calls like the following to work:

julia> Rational(Int8(15),Int32(-5))
-3//1

julia> typeof(ans)
Rational{Int32}





For most user-defined types, it is better practice to require programmers to supply the expected
types to constructor functions explicitly, but sometimes, especially for numeric problems, it
can be convenient to do promotion automatically.


Defining Promotion Rules

Although one could, in principle, define methods for the promote function directly, this would
require many redundant definitions for all possible permutations of argument types. Instead, the
behavior of promote is defined in terms of an auxiliary function called promote_rule, which
one can provide methods for. The promote_rule function takes a pair of type objects and returns
another type object, such that instances of the argument types will be promoted to the returned
type. Thus, by defining the rule:

promote_rule(::Type{Float64}, ::Type{Float32}) = Float64





one declares that when 64-bit and 32-bit floating-point values are promoted together, they should
be promoted to 64-bit floating-point. The promotion type does not need to be one of the argument
types, however; the following promotion rules both occur in Julia’s standard library:

promote_rule(::Type{UInt8}, ::Type{Int8}) = Int
promote_rule(::Type{BigInt}, ::Type{Int8}) = BigInt





In the latter case, the result type is BigInt since BigInt is the only type
large enough to hold integers for arbitrary-precision integer arithmetic. Also note that
one does not need to define both promote_rule(::Type{A}, ::Type{B}) and
promote_rule(::Type{B}, ::Type{A}) – the symmetry is implied by the way promote_rule
is used in the promotion process.

The promote_rule function is used as a building block to define a second function called promote_type,
which, given any number of type objects, returns the common type to which those values, as arguments
to promote should be promoted. Thus, if one wants to know, in absence of actual values, what
type a collection of values of certain types would promote to, one can use promote_type:

julia> promote_type(Int8, UInt16)
Int64





Internally, promote_type is used inside of promote to determine what type argument values
should be converted to for promotion. It can, however, be useful in its own right. The curious
reader can read the code in promotion.jl [https://github.com/JuliaLang/julia/blob/master/base/promotion.jl],
which defines the complete promotion mechanism in about 35 lines.




Case Study: Rational Promotions

Finally, we finish off our ongoing case study of Julia’s rational number type, which makes relatively
sophisticated use of the promotion mechanism with the following promotion rules:

promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:Integer} = Rational{promote_type(T,S)}
promote_rule(::Type{Rational{T}}, ::Type{Rational{S}}) where {T<:Integer,S<:Integer} = Rational{promote_type(T,S)}
promote_rule(::Type{Rational{T}}, ::Type{S}) where {T<:Integer,S<:AbstractFloat} = promote_type(T,S)





The first rule says that promoting a rational number with any other integer type promotes to a
rational type whose numerator/denominator type is the result of promotion of its numerator/denominator
type with the other integer type. The second rule applies the same logic to two different types
of rational numbers, resulting in a rational of the promotion of their respective numerator/denominator
types. The third and final rule dictates that promoting a rational with a float results in the
same type as promoting the numerator/denominator type with the float.

This small handful of promotion rules, together with the [conversion methods discussed above](@ref man-rational-conversion),
are sufficient to make rational numbers interoperate completely naturally with all of Julia’s
other numeric types – integers, floating-point numbers, and complex numbers. By providing appropriate
conversion methods and promotion rules in the same manner, any user-defined numeric type can interoperate
just as naturally with Julia’s predefined numerics.
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Date and DateTime

CurrentModule = Base.Dates





The Dates module provides two types for working with dates: Date and DateTime,
representing day and millisecond precision, respectively; both are subtypes of the abstract TimeType.
The motivation for distinct types is simple: some operations are much simpler, both in terms of
code and mental reasoning, when the complexities of greater precision don’t have to be dealt with.
For example, since the Date type only resolves to the precision of a single date (i.e.
no hours, minutes, or seconds), normal considerations for time zones, daylight savings/summer
time, and leap seconds are unnecessary and avoided.

Both Date and DateTime are basically immutable Int64 wrappers.
The single instant field of either type is actually a UTInstant{P} type, which
represents a continuously increasing machine timeline based on the UT second [^1]. The
DateTime type is not aware of time zones (naive, in Python parlance),
analogous to a LocalDateTime in Java 8. Additional time zone functionality
can be added through the TimeZones.jl package [https://github.com/JuliaTime/TimeZones.jl/], which
compiles the IANA time zone database [http://www.iana.org/time-zones]. Both Date and
DateTime are based on the ISO 8601 [https://en.wikipedia.org/wiki/ISO_8601] standard, which follows the proleptic Gregorian calendar.
One note is that the ISO 8601 standard is particular about BC/BCE dates. In general, the last
day of the BC/BCE era, 1-12-31 BC/BCE, was followed by 1-1-1 AD/CE, thus no year zero exists.
The ISO standard, however, states that 1 BC/BCE is year zero, so 0000-12-31 is the day before
0001-01-01, and year -0001 (yes, negative one for the year) is 2 BC/BCE, year -0002 is 3
BC/BCE, etc.

[^1]:
The notion of the UT second is actually quite fundamental. There are basically two different notions
of time generally accepted, one based on the physical rotation of the earth (one full rotation
= 1 day), the other based on the SI second (a fixed, constant value). These are radically different!
Think about it, a “UT second”, as defined relative to the rotation of the earth, may have a different
absolute length depending on the day! Anyway, the fact that Date and DateTime
are based on UT seconds is a simplifying, yet honest assumption so that things like leap seconds
and all their complexity can be avoided. This basis of time is formally called UT [https://en.wikipedia.org/wiki/Universal_Time]
or UT1. Basing types on the UT second basically means that every minute has 60 seconds and every
day has 24 hours and leads to more natural calculations when working with calendar dates.


Constructors

Date and DateTime types can be constructed by integer or Period
types, by parsing, or through adjusters (more on those later):

julia> DateTime(2013)
2013-01-01T00:00:00

julia> DateTime(2013,7)
2013-07-01T00:00:00

julia> DateTime(2013,7,1)
2013-07-01T00:00:00

julia> DateTime(2013,7,1,12)
2013-07-01T12:00:00

julia> DateTime(2013,7,1,12,30)
2013-07-01T12:30:00

julia> DateTime(2013,7,1,12,30,59)
2013-07-01T12:30:59

julia> DateTime(2013,7,1,12,30,59,1)
2013-07-01T12:30:59.001

julia> Date(2013)
2013-01-01

julia> Date(2013,7)
2013-07-01

julia> Date(2013,7,1)
2013-07-01

julia> Date(Dates.Year(2013),Dates.Month(7),Dates.Day(1))
2013-07-01

julia> Date(Dates.Month(7),Dates.Year(2013))
2013-07-01





Date or DateTime parsing is accomplished by the use of format strings. Format
strings work by the notion of defining delimited or fixed-width “slots” that contain a period
to parse and passing the text to parse and format string to a Date or DateTime
constructor, of the form Date("2015-01-01","y-m-d") or DateTime("20150101","yyyymmdd").

Delimited slots are marked by specifying the delimiter the parser should expect between two subsequent
periods; so "y-m-d" lets the parser know that between the first and second slots in a date string
like "2014-07-16", it should find the - character. The y, m, and d characters let the
parser know which periods to parse in each slot.

Fixed-width slots are specified by repeating the period character the number of times corresponding
to the width with no delimiter between characters. So "yyyymmdd" would correspond to a date
string like "20140716". The parser distinguishes a fixed-width slot by the absence of a delimiter,
noting the transition "yyyymm" from one period character to the next.

Support for text-form month parsing is also supported through the u and U characters, for
abbreviated and full-length month names, respectively. By default, only English month names are
supported, so u corresponds to “Jan”, “Feb”, “Mar”, etc. And U corresponds to “January”, “February”,
“March”, etc. Similar to other name=>value mapping functions dayname() and monthname(),
custom locales can be loaded by passing in the locale=>Dict{String,Int} mapping to the MONTHTOVALUEABBR
and MONTHTOVALUE dicts for abbreviated and full-name month names, respectively.

One note on parsing performance: using the Date(date_string,format_string) function is fine
if only called a few times. If there are many similarly formatted date strings to parse however,
it is much more efficient to first create a Dates.DateFormat, and pass it instead of
a raw format string.

julia> df = DateFormat("y-m-d");

julia> dt = Date("2015-01-01",df)
2015-01-01

julia> dt2 = Date("2015-01-02",df)
2015-01-02





You can also use the dateformat"" string macro. This macro creates the DateFormat object once when the macro is expanded and uses the same DateFormat object even if a code snippet is run multiple times.

julia> for i = 1:10^5
           Date("2015-01-01", dateformat"y-m-d")
       end





A full suite of parsing and formatting tests and examples is available in tests/dates/io.jl [https://github.com/JuliaLang/julia/blob/release-0.6/test/dates/io.jl].




Durations/Comparisons

Finding the length of time between two Date or DateTime is straightforward
given their underlying representation as UTInstant{Day} and UTInstant{Millisecond}, respectively.
The difference between Date is returned in the number of Day, and DateTime
in the number of Millisecond. Similarly, comparing TimeType is a simple matter
of comparing the underlying machine instants (which in turn compares the internal Int64 values).

julia> dt = Date(2012,2,29)
2012-02-29

julia> dt2 = Date(2000,2,1)
2000-02-01

julia> dump(dt)
Date
  instant: Base.Dates.UTInstant{Base.Dates.Day}
    periods: Base.Dates.Day
      value: Int64 734562

julia> dump(dt2)
Date
  instant: Base.Dates.UTInstant{Base.Dates.Day}
    periods: Base.Dates.Day
      value: Int64 730151

julia> dt > dt2
true

julia> dt != dt2
true

julia> dt + dt2
ERROR: MethodError: no method matching +(::Date, ::Date)
[...]

julia> dt * dt2
ERROR: MethodError: no method matching *(::Date, ::Date)
[...]

julia> dt / dt2
ERROR: MethodError: no method matching /(::Date, ::Date)
[...]

julia> dt - dt2
4411 days

julia> dt2 - dt
-4411 days

julia> dt = DateTime(2012,2,29)
2012-02-29T00:00:00

julia> dt2 = DateTime(2000,2,1)
2000-02-01T00:00:00

julia> dt - dt2
381110400000 milliseconds








Accessor Functions

Because the Date and DateTime types are stored as single Int64 values, date
parts or fields can be retrieved through accessor functions. The lowercase accessors return the
field as an integer:

julia> t = Date(2014, 1, 31)
2014-01-31

julia> Dates.year(t)
2014

julia> Dates.month(t)
1

julia> Dates.week(t)
5

julia> Dates.day(t)
31





While propercase return the same value in the corresponding Period type:

julia> Dates.Year(t)
2014 years

julia> Dates.Day(t)
31 days





Compound methods are provided, as they provide a measure of efficiency if multiple fields are
needed at the same time:

julia> Dates.yearmonth(t)
(2014, 1)

julia> Dates.monthday(t)
(1, 31)

julia> Dates.yearmonthday(t)
(2014, 1, 31)





One may also access the underlying UTInstant or integer value:

julia> dump(t)
Date
  instant: Base.Dates.UTInstant{Base.Dates.Day}
    periods: Base.Dates.Day
      value: Int64 735264

julia> t.instant
Base.Dates.UTInstant{Base.Dates.Day}(735264 days)

julia> Dates.value(t)
735264








Query Functions

Query functions provide calendrical information about a TimeType. They include information
about the day of the week:

julia> t = Date(2014, 1, 31)
2014-01-31

julia> Dates.dayofweek(t)
5

julia> Dates.dayname(t)
"Friday"

julia> Dates.dayofweekofmonth(t) # 5th Friday of January
5





Month of the year:

julia> Dates.monthname(t)
"January"

julia> Dates.daysinmonth(t)
31





As well as information about the TimeType’s year and quarter:

julia> Dates.isleapyear(t)
false

julia> Dates.dayofyear(t)
31

julia> Dates.quarterofyear(t)
1

julia> Dates.dayofquarter(t)
31





The dayname() and monthname() methods can also take an optional locale keyword
that can be used to return the name of the day or month of the year for other languages/locales.
There are also versions of these functions returning the abbreviated names, namely
dayabbr() and monthabbr().
First the mapping is loaded into the LOCALES variable:

julia> french_months = ["janvier", "février", "mars", "avril", "mai", "juin",
                        "juillet", "août", "septembre", "octobre", "novembre", "décembre"];

julia> french_monts_abbrev = ["janv","févr","mars","avril","mai","juin",
                              "juil","août","sept","oct","nov","déc"];

julia> french_days = ["lundi","mardi","mercredi","jeudi","vendredi","samedi","dimanche"];

julia> Dates.LOCALES["french"] = Dates.DateLocale(french_months, french_monts_abbrev, french_days, [""]);





The above mentioned functions can then be used to perform the queries:

julia> Dates.dayname(t;locale="french")
"vendredi"

julia> Dates.monthname(t;locale="french")
"janvier"

julia> Dates.monthabbr(t;locale="french")
"janv"





Since the abbreviated versions of the days are not loaded, trying to use the
function dayabbr() will error.

julia> Dates.dayabbr(t;locale="french")
ERROR: BoundsError: attempt to access 1-element Array{String,1} at index [5]
Stacktrace:
 [1] #dayabbr#6(::String, ::Function, ::Int64) at ./dates/query.jl:114
 [2] (::Base.Dates.#kw##dayabbr)(::Array{Any,1}, ::Base.Dates.#dayabbr, ::Int64) at ./<missing>:0 (repeats 2 times)








TimeType-Period Arithmetic

It’s good practice when using any language/date framework to be familiar with how date-period
arithmetic is handled as there are some tricky issues [https://codeblog.jonskeet.uk/2010/12/01/the-joys-of-date-time-arithmetic/]
to deal with (though much less so for day-precision types).

The Dates module approach tries to follow the simple principle of trying to change as
little as possible when doing Period arithmetic. This approach is also often known as
calendrical arithmetic or what you would probably guess if someone were to ask you the same
calculation in a conversation. Why all the fuss about this? Let’s take a classic example: add
1 month to January 31st, 2014. What’s the answer? Javascript will say March 3 [http://www.markhneedham.com/blog/2009/01/07/javascript-add-a-month-to-a-date/]
(assumes 31 days). PHP says March 2 [http://stackoverflow.com/questions/5760262/php-adding-months-to-a-date-while-not-exceeding-the-last-day-of-the-month]
(assumes 30 days). The fact is, there is no right answer. In the Dates module, it gives
the result of February 28th. How does it figure that out? I like to think of the classic 7-7-7
gambling game in casinos.

Now just imagine that instead of 7-7-7, the slots are Year-Month-Day, or in our example, 2014-01-31.
When you ask to add 1 month to this date, the month slot is incremented, so now we have 2014-02-31.
Then the day number is checked if it is greater than the last valid day of the new month; if it
is (as in the case above), the day number is adjusted down to the last valid day (28). What are
the ramifications with this approach? Go ahead and add another month to our date, 2014-02-28 + Month(1) == 2014-03-28.
What? Were you expecting the last day of March? Nope, sorry, remember the 7-7-7 slots. As few
slots as possible are going to change, so we first increment the month slot by 1, 2014-03-28,
and boom, we’re done because that’s a valid date. On the other hand, if we were to add 2 months
to our original date, 2014-01-31, then we end up with 2014-03-31, as expected. The other ramification
of this approach is a loss in associativity when a specific ordering is forced (i.e. adding things
in different orders results in different outcomes). For example:

julia> (Date(2014,1,29)+Dates.Day(1)) + Dates.Month(1)
2014-02-28

julia> (Date(2014,1,29)+Dates.Month(1)) + Dates.Day(1)
2014-03-01





What’s going on there? In the first line, we’re adding 1 day to January 29th, which results in
2014-01-30; then we add 1 month, so we get 2014-02-30, which then adjusts down to 2014-02-28.
In the second example, we add 1 month first, where we get 2014-02-29, which adjusts down to
2014-02-28, and then add 1 day, which results in 2014-03-01. One design principle that helps
in this case is that, in the presence of multiple Periods, the operations will be ordered by the
Periods’ types, not their value or positional order; this means Year will always be added
first, then Month, then Week, etc. Hence the following does result in associativity and
Just Works:

julia> Date(2014,1,29) + Dates.Day(1) + Dates.Month(1)
2014-03-01

julia> Date(2014,1,29) + Dates.Month(1) + Dates.Day(1)
2014-03-01





Tricky? Perhaps. What is an innocent Dates user to do? The bottom line is to be aware
that explicitly forcing a certain associativity, when dealing with months, may lead to some unexpected
results, but otherwise, everything should work as expected. Thankfully, that’s pretty much the
extent of the odd cases in date-period arithmetic when dealing with time in UT (avoiding the “joys”
of dealing with daylight savings, leap seconds, etc.).

As a bonus, all period arithmetic objects work directly with ranges:

julia> dr = Date(2014,1,29):Date(2014,2,3)
2014-01-29:1 day:2014-02-03

julia> collect(dr)
6-element Array{Date,1}:
 2014-01-29
 2014-01-30
 2014-01-31
 2014-02-01
 2014-02-02
 2014-02-03

julia> dr = Date(2014,1,29):Dates.Month(1):Date(2014,07,29)
2014-01-29:1 month:2014-07-29

julia> collect(dr)
7-element Array{Date,1}:
 2014-01-29
 2014-02-28
 2014-03-29
 2014-04-29
 2014-05-29
 2014-06-29
 2014-07-29








Adjuster Functions

As convenient as date-period arithmetics are, often the kinds of calculations needed on dates
take on a calendrical or temporal nature rather than a fixed number of periods. Holidays are
a perfect example; most follow rules such as “Memorial Day = Last Monday of May”, or “Thanksgiving
= 4th Thursday of November”. These kinds of temporal expressions deal with rules relative to the
calendar, like first or last of the month, next Tuesday, or the first and third Wednesdays, etc.

The Dates module provides the adjuster API through several convenient methods that
aid in simply and succinctly expressing temporal rules. The first group of adjuster methods deal
with the first and last of weeks, months, quarters, and years. They each take a single TimeType
as input and return or adjust to the first or last of the desired period relative to the input.

julia> Dates.firstdayofweek(Date(2014,7,16)) # Adjusts the input to the Monday of the input's week
2014-07-14

julia> Dates.lastdayofmonth(Date(2014,7,16)) # Adjusts to the last day of the input's month
2014-07-31

julia> Dates.lastdayofquarter(Date(2014,7,16)) # Adjusts to the last day of the input's quarter
2014-09-30





The next two higher-order methods, tonext(), and toprev(), generalize working
with temporal expressions by taking a DateFunction as first argument, along with a starting
TimeType. A DateFunction is just a function, usually anonymous, that takes a single
TimeType as input and returns a Bool, true indicating a satisfied
adjustment criterion.
For example:

julia> istuesday = x->Dates.dayofweek(x) == Dates.Tuesday # Returns true if the day of the week of x is Tuesday
(::#1) (generic function with 1 method)

julia> Dates.tonext(istuesday, Date(2014,7,13)) # 2014-07-13 is a Sunday
2014-07-15

julia> Dates.tonext(Date(2014,7,13), Dates.Tuesday) # Convenience method provided for day of the week adjustments
2014-07-15





This is useful with the do-block syntax for more complex temporal expressions:

julia> Dates.tonext(Date(2014,7,13)) do x
           # Return true on the 4th Thursday of November (Thanksgiving)
           Dates.dayofweek(x) == Dates.Thursday &&
           Dates.dayofweekofmonth(x) == 4 &&
           Dates.month(x) == Dates.November
       end
2014-11-27





The Base.filter() method can be used to obtain all valid dates/moments in a specified
range:

# Pittsburgh street cleaning; Every 2nd Tuesday from April to November
# Date range from January 1st, 2014 to January 1st, 2015
julia> dr = Dates.Date(2014):Dates.Date(2015);

julia> filter(dr) do x
           Dates.dayofweek(x) == Dates.Tue &&
           Dates.April <= Dates.month(x) <= Dates.Nov &&
           Dates.dayofweekofmonth(x) == 2
       end
8-element Array{Date,1}:
 2014-04-08
 2014-05-13
 2014-06-10
 2014-07-08
 2014-08-12
 2014-09-09
 2014-10-14
 2014-11-11





Additional examples and tests are available in test/dates/adjusters.jl [https://github.com/JuliaLang/julia/blob/release-0.6/test/dates/adjusters.jl].




Period Types

Periods are a human view of discrete, sometimes irregular durations of time. Consider 1 month;
it could represent, in days, a value of 28, 29, 30, or 31 depending on the year and month context.
Or a year could represent 365 or 366 days in the case of a leap year. Period types are
simple Int64 wrappers and are constructed by wrapping any Int64 convertible type, i.e. Year(1)
or Month(3.0). Arithmetic between Period of the same type behave like integers, and
limited Period-Real arithmetic is available.

julia> y1 = Dates.Year(1)
1 year

julia> y2 = Dates.Year(2)
2 years

julia> y3 = Dates.Year(10)
10 years

julia> y1 + y2
3 years

julia> div(y3,y2)
5

julia> y3 - y2
8 years

julia> y3 % y2
0 years

julia> div(y3,3) # mirrors integer division
3 years








Rounding

Date and DateTime values can be rounded to a specified resolution (e.g., 1
month or 15 minutes) with floor(), ceil(), or round():

julia> floor(Date(1985, 8, 16), Dates.Month)
1985-08-01

julia> ceil(DateTime(2013, 2, 13, 0, 31, 20), Dates.Minute(15))
2013-02-13T00:45:00

julia> round(DateTime(2016, 8, 6, 20, 15), Dates.Day)
2016-08-07T00:00:00





Unlike the numeric round() method, which breaks ties toward the even number by default,
the TimeTyperound() method uses the RoundNearestTiesUp rounding mode. (It’s
difficult to guess what breaking ties to nearest “even” TimeType would entail.) Further
details on the available RoundingMode s can be found in the [API reference](@ref stdlib-dates).

Rounding should generally behave as expected, but there are a few cases in which the expected
behaviour is not obvious.


Rounding Epoch

In many cases, the resolution specified for rounding (e.g., Dates.Second(30)) divides evenly
into the next largest period (in this case, Dates.Minute(1)). But rounding behaviour in cases
in which this is not true may lead to confusion. What is the expected result of rounding a DateTime
to the nearest 10 hours?

julia> round(DateTime(2016, 7, 17, 11, 55), Dates.Hour(10))
2016-07-17T12:00:00





That may seem confusing, given that the hour (12) is not divisible by 10. The reason that 2016-07-17T12:00:00
was chosen is that it is 17,676,660 hours after 0000-01-01T00:00:00, and 17,676,660 is divisible
by 10.

As Julia Date and DateTime values are represented according to the ISO 8601
standard, 0000-01-01T00:00:00 was chosen as base (or “rounding epoch”) from which to begin the
count of days (and milliseconds) used in rounding calculations. (Note that this differs slightly
from Julia’s internal representation of Date s using Rata Die notation; but since the
ISO 8601 standard is most visible to the end user, 0000-01-01T00:00:00 was chosen as the rounding
epoch instead of the 0000-12-31T00:00:00 used internally to minimize confusion.)

The only exception to the use of 0000-01-01T00:00:00 as the rounding epoch is when rounding
to weeks. Rounding to the nearest week will always return a Monday (the first day of the week
as specified by ISO 8601). For this reason, we use 0000-01-03T00:00:00 (the first day of the
first week of year 0000, as defined by ISO 8601) as the base when rounding to a number of weeks.

Here is a related case in which the expected behaviour is not necessarily obvious: What happens
when we round to the nearest P(2), where P is a Period type? In some cases (specifically,
when P <: Dates.TimePeriod) the answer is clear:

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Hour(2))
2016-07-17T08:00:00

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Minute(2))
2016-07-17T08:56:00





This seems obvious, because two of each of these periods still divides evenly into the next larger
order period. But in the case of two months (which still divides evenly into one year), the answer
may be surprising:

julia> round(DateTime(2016, 7, 17, 8, 55, 30), Dates.Month(2))
2016-07-01T00:00:00





Why round to the first day in July, even though it is month 7 (an odd number)? The key is that
months are 1-indexed (the first month is assigned 1), unlike hours, minutes, seconds, and milliseconds
(the first of which are assigned 0).

This means that rounding a DateTime to an even multiple of seconds, minutes, hours,
or years (because the ISO 8601 specification includes a year zero) will result in a DateTime
with an even value in that field, while rounding a DateTime to an even multiple of months
will result in the months field having an odd value. Because both months and years may contain
an irregular number of days, whether rounding to an even number of days will result in an even
value in the days field is uncertain.

See the [API reference](@ref stdlib-dates) for additional information
on methods exported from the Dates module.
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Documentation

Julia enables package developers and users to document functions, types and other objects easily
via a built-in documentation system since Julia 0.4.

The basic syntax is very simple: any string appearing at the top-level right before an object
(function, macro, type or instance) will be interpreted as documenting it (these are called docstrings).
Here is a very simple example:

"Tell whether there are too foo items in the array."
foo(xs::Array) = ...





Documentation is interpreted as Markdown [https://en.wikipedia.org/wiki/Markdown], so you can
use indentation and code fences to delimit code examples from text. Technically, any object can
be associated with any other as metadata; Markdown happens to be the default, but one can construct
other string macros and pass them to the @doc macro just as well.

Here is a more complex example, still using Markdown:

"""
    bar(x[, y])

Compute the Bar index between `x` and `y`. If `y` is missing, compute
the Bar index between all pairs of columns of `x`.

# Examples
```julia-repl
julia> bar([1, 2], [1, 2])
1
```
"""
function bar(x, y) ...





As in the example above, we recommend following some simple conventions when writing documentation:


	Always show the signature of a function at the top of the documentation, with a four-space indent
so that it is printed as Julia code.

This can be identical to the signature present in the Julia code (like mean(x::AbstractArray)),
or a simplified form. Optional arguments should be represented with their default values (i.e.
f(x, y=1)) when possible, following the actual Julia syntax. Optional arguments which do not
have a default value should be put in brackets (i.e. f(x[, y]) and f(x[, y[, z]])). An alternative
solution is to use several lines: one without optional arguments, the other(s) with them. This
solution can also be used to document several related methods of a given function. When a function
accepts many keyword arguments, only include a <keyword arguments> placeholder in the signature
(i.e. f(x; <keyword arguments>)), and give the complete list under an # Arguments section
(see point 4 below).



	Include a single one-line sentence describing what the function does or what the object represents
after the simplified signature block. If needed, provide more details in a second paragraph, after
a blank line.

The one-line sentence should use the imperative form (“Do this”, “Return that”) instead of the
third person (do not write “Returns the length…”) when documenting functions. It should end
with a period. If the meaning of a function cannot be summarized easily, splitting it into separate
composable parts could be beneficial (this should not be taken as an absolute requirement for
every single case though).



	Do not repeat yourself.

Since the function name is given by the signature, there is no need to start the documentation
with “The function bar…”: go straight to the point. Similarly, if the signature specifies
the types of the arguments, mentioning them in the description is redundant.



	Only provide an argument list when really necessary.

For simple functions, it is often clearer to mention the role of the arguments directly in the
description of the function’s purpose. An argument list would only repeat information already
provided elsewhere. However, providing an argument list can be a good idea for complex functions
with many arguments (in particular keyword arguments). In that case, insert it after the general
description of the function, under an # Arguments header, with one - bullet for each argument.
The list should mention the types and default values (if any) of the arguments:

"""
...
# Arguments
- `n::Integer`: the number of elements to compute.
- `dim::Integer=1`: the dimensions along which to perform the computation.
...
"""







	Include any code examples in an # Examples section.

Examples should, whenever possible, be written as doctests. A doctest is a fenced code block
(see Code blocks) starting with ```jldoctest and contains any number of julia>
prompts together with inputs and expected outputs that mimic the Julia REPL.

For example in the following docstring a variable a is defined and the expected result, as printed
in a Julia REPL, appears afterwards:

"""
Some nice documentation here.

# Examples

```jldoctest
julia> a = [1 2; 3 4]
2×2 Array{Int64,2}:
 1  2
 3  4
```
"""





!!! warning
Calling rand and other RNG-related functions should be avoided in doctests since they will not
produce consistent outputs during different Julia sessions.

Operating system word size ([`Int32`](@ref) or [`Int64`](@ref)) as well as path separator differences
(`/` or `\`) will also affect the reproducibility of some doctests.

Note that whitespace in your doctest is significant! The doctest will fail if you misalign the
output of pretty-printing an array, for example.





You can then run make -C doc doctest to run all the doctests in the Julia Manual, which will
ensure that your example works.

Examples that are untestable should be written within fenced code blocks starting with ```julia
so that they are highlighted correctly in the generated documentation.

!!! tip
Wherever possible examples should be self-contained and runnable so that readers are able
to try them out without having to include any dependencies.



	Use backticks to identify code and equations.

Julia identifiers and code excerpts should always appear between backticks ` to enable
highlighting. Equations in the LaTeX syntax can be inserted between double backticks ``.
Use Unicode characters rather than their LaTeX escape sequence, i.e. ``α = 1`` rather
than ``\\alpha = 1``.



	Place the starting and ending """ characters on lines by themselves.

That is, write:

"""
...

...
"""
f(x, y) = ...





rather than:

"""...

..."""
f(x, y) = ...





This makes it more clear where docstrings start and end.



	Respect the line length limit used in the surrounding code.

Docstrings are edited using the same tools as code. Therefore, the same conventions should apply.
It it advised to add line breaks after 92 characters.






Accessing Documentation

Documentation can be accessed at the REPL or in IJulia [https://github.com/JuliaLang/IJulia.jl]
by typing ? followed by the name of a function or macro, and pressing Enter. For example,

?fft
?@time
?r""





will bring up docs for the relevant function, macro or string macro respectively. In Juno [http://junolab.org]
using Ctrl-J, Ctrl-D will bring up documentation for the object under the cursor.




Functions & Methods

Functions in Julia may have multiple implementations, known as methods. While it’s good practice
for generic functions to have a single purpose, Julia allows methods to be documented individually
if necessary. In general, only the most generic method should be documented, or even the function
itself (i.e. the object created without any methods by function bar end). Specific methods should
only be documented if their behaviour differs from the more generic ones. In any case, they should
not repeat the information provided elsewhere. For example:

"""
    *(x, y, z...)

Multiplication operator. `x * y * z *...` calls this function with multiple
arguments, i.e. `*(x, y, z...)`.
"""
function *(x, y, z...)
    # ... [implementation sold separately] ...
end

"""
    *(x::AbstractString, y::AbstractString, z::AbstractString...)

When applied to strings, concatenates them.
"""
function *(x::AbstractString, y::AbstractString, z::AbstractString...)
    # ... [insert secret sauce here] ...
end

help?> *
search: * .*

  *(x, y, z...)

  Multiplication operator. x * y * z *... calls this function with multiple
  arguments, i.e. *(x,y,z...).

  *(x::AbstractString, y::AbstractString, z::AbstractString...)

  When applied to strings, concatenates them.





When retrieving documentation for a generic function, the metadata for each method is concatenated
with the catdoc function, which can of course be overridden for custom types.




Advanced Usage

The @doc macro associates its first argument with its second in a per-module dictionary called
META. By default, documentation is expected to be written in Markdown, and the doc"" string
macro simply creates an object representing the Markdown content. In the future it is likely to
do more advanced things such as allowing for relative image or link paths.

When used for retrieving documentation, the @doc macro (or equally, the doc function) will
search all META dictionaries for metadata relevant to the given object and return it. The returned
object (some Markdown content, for example) will by default display itself intelligently. This
design also makes it easy to use the doc system in a programmatic way; for example, to re-use
documentation between different versions of a function:

@doc "..." foo!
@doc (@doc foo!) foo





Or for use with Julia’s metaprogramming functionality:

for (f, op) in ((:add, :+), (:subtract, :-), (:multiply, :*), (:divide, :/))
    @eval begin
        $f(a,b) = $op(a,b)
    end
end
@doc "`add(a,b)` adds `a` and `b` together" add
@doc "`subtract(a,b)` subtracts `b` from `a`" subtract





Documentation written in non-toplevel blocks, such as begin, if, for, and let, is
added to the documentation system as blocks are evaluated. For example:

if VERSION > v"0.5"
    "..."
    f(x) = x
end





will add documentation to f(x) when the condition is true. Note that even if f(x) goes
out of scope at the end of the block, its documentation will remain.


Dynamic documentation

Sometimes the appropriate documentation for an instance of a type depends on the field values of that
instance, rather than just on the type itself. In these cases, you can add a method to Docs.getdoc
for your custom type that returns the documentation on a per-instance basis. For instance,

struct MyType
    value::String
end

Docs.getdoc(t::MyType) = "Documentation for MyType with value $(t.value)"

x = MyType("x")
y = MyType("y")





?x will display “Documentation for MyType with value x” while ?y will display
“Documentation for MyType with value y”.






Syntax Guide

A comprehensive overview of all documentable Julia syntax.

In the following examples "..." is used to illustrate an arbitrary docstring which may be one
of the follow four variants and contain arbitrary text:

"..."

doc"..."

"""
...
"""

doc"""
...
"""





@doc_str should only be used when the docstring contains $ or \ characters that should not
be parsed by Julia such as LaTeX syntax or Julia source code examples containing interpolation.


Functions and Methods

"..."
function f end

"..."
f





Adds docstring "..." to Function``f. The first version is the preferred syntax, however both
are equivalent.

"..."
f(x) = x

"..."
function f(x)
    x
end

"..."
f(x)





Adds docstring "..." to Method``f(::Any).

"..."
f(x, y = 1) = x + y





Adds docstring "..." to two Methods, namely f(::Any) and f(::Any, ::Any).




Macros

"..."
macro m(x) end





Adds docstring "..." to the @m(::Any) macro definition.

"..."
:(@m)





Adds docstring "..." to the macro named @m.




Types

"..."
abstract type T1 end

"..."
mutable struct T2
    ...
end

"..."
struct T3
    ...
end





Adds the docstring "..." to types T1, T2, and T3.

"..."
struct T
    "x"
    x
    "y"
    y
end





Adds docstring "..." to type T, "x" to field T.x and "y" to field T.y. Also applicable
to mutable struct types.




Modules

"..."
module M end

module M

"..."
M

end





Adds docstring "..." to the Module``M. Adding the docstring above the Module is the preferred
syntax, however both are equivalent.

"..."
baremodule M
# ...
end

baremodule M

import Base: @doc

"..."
f(x) = x

end





Documenting a baremodule by placing a docstring above the expression automatically imports
@doc into the module. These imports must be done manually when the module expression is not
documented. Empty baremodules cannot be documented.




Global Variables

"..."
const a = 1

"..."
b = 2

"..."
global c = 3





Adds docstring "..." to the Bindings a, b, and c.

Bindings are used to store a reference to a particular Symbol in a Module without storing
the referenced value itself.

!!! note
When a const definition is only used to define an alias of another definition, such as is the
case with the function div and its alias ÷ in Base, do not document the alias and instead
document the actual function.

If the alias is documented and not the real definition then the docsystem (`?` mode) will not
return the docstring attached to the alias when the real definition is searched for.

For example you should write

```julia
"..."
f(x) = x + 1
const alias = f
```

rather than

```julia
f(x) = x + 1
"..."
const alias = f
```





"..."
sym





Adds docstring "..." to the value associated with sym. Users should prefer documenting sym
at it’s definition.




Multiple Objects

"..."
a, b





Adds docstring "..." to a and b each of which should be a documentable expression. This
syntax is equivalent to

"..."
a

"..."
b





Any number of expressions many be documented together in this way. This syntax can be useful when
two functions are related, such as non-mutating and mutating versions f and f!.




Macro-generated code

"..."
@m expression





Adds docstring "..." to expression generated by expanding @m expression. This allows for expressions
decorated with @inline, @noinline, @generated, or any other macro to be documented in the
same way as undecorated expressions.

Macro authors should take note that only macros that generate a single expression will automatically
support docstrings. If a macro returns a block containing multiple subexpressions then the subexpression
that should be documented must be marked using the [@__doc__](@ref Core.@doc) macro.

The @enum macro makes use of @__doc__ to allow for documenting Enums. Examining it’s definition
should serve as an example of how to use @__doc__ correctly.

Core.@__doc__










Markdown syntax

The following markdown syntax is supported in Julia.


Inline elements

Here “inline” refers to elements that can be found within blocks of text, i.e. paragraphs. These
include the following elements.


Bold

Surround words with two asterisks, **, to display the enclosed text in boldface.

A paragraph containing a **bold** word.








Italics

Surround words with one asterisk, *, to display the enclosed text in italics.

A paragraph containing an *emphasised* word.








Literals

Surround text that should be displayed exactly as written with single backticks, ` .

A paragraph containing a `literal` word.





Literals should be used when writing text that refers to names of variables, functions, or other
parts of a Julia program.

!!! tip
To include a backtick character within literal text use three backticks rather than one to enclose
the text.

```
A paragraph containing a ``` `backtick` character ```.
```

By extension any odd number of backticks may be used to enclose a lesser number of backticks.








\LaTeX

Surround text that should be displayed as mathematics using \LaTeX syntax with double backticks,
`` .

A paragraph containing some ``\LaTeX`` markup.





!!! tip
As with literals in the previous section, if literal backticks need to be written within double
backticks use an even number greater than two. Note that if a single literal backtick needs to
be included within \LaTeX markup then two enclosing backticks is sufficient.




Links

Links to either external or internal addresses can be written using the following syntax, where
the text enclosed in square brackets, [ ], is the name of the link and the text enclosed in
parentheses, ( ), is the URL.

A paragraph containing a link to [Julia](http://www.julialang.org).





It’s also possible to add cross-references to other documented functions/methods/variables within
the Julia documentation itself. For example:

"""
    eigvals!(A,[irange,][vl,][vu]) -> values

Same as [`eigvals`](@ref), but saves space by overwriting the input `A`, instead of creating a copy.
"""





This will create a link in the generated docs to the eigvals documentation
(which has more information about what this function actually does). It’s good to include
cross references to mutating/non-mutating versions of a function, or to highlight a difference
between two similar-seeming functions.

!!! note
The above cross referencing is not a Markdown feature, and relies on
Documenter.jl [https://github.com/JuliaDocs/Documenter.jl], which is
used to build base Julia’s documentation.




Footnote references

Named and numbered footnote references can be written using the following syntax. A footnote name
must be a single alphanumeric word containing no punctuation.

A paragraph containing a numbered footnote [^1] and a named one [^named].





!!! note
The text associated with a footnote can be written anywhere within the same page as the footnote
reference. The syntax used to define the footnote text is discussed in the Footnotes section
below.






Toplevel elements

The following elements can be written either at the “toplevel” of a document or within another
“toplevel” element.


Paragraphs

A paragraph is a block of plain text, possibly containing any number of inline elements defined
in the Inline elements section above, with one or more blank lines above and below it.

This is a paragraph.

And this is *another* one containing some emphasised text.
A new line, but still part of the same paragraph.








Headers

A document can be split up into different sections using headers. Headers use the following syntax:

# Level One
## Level Two
### Level Three
#### Level Four
##### Level Five
###### Level Six





A header line can contain any inline syntax in the same way as a paragraph can.

!!! tip
Try to avoid using too many levels of header within a single document. A heavily nested document
may be indicative of a need to restructure it or split it into several pages covering separate
topics.




Code blocks

Source code can be displayed as a literal block using an indent of four spaces as shown in the
following example.

This is a paragraph.

    function func(x)
        # ...
    end

Another paragraph.





Additionally, code blocks can be enclosed using triple backticks with an optional “language” to
specify how a block of code should be highlighted.

A code block without a "language":

```
function func(x)
    # ...
end
```

and another one with the "language" specified as `julia`:

```julia
function func(x)
    # ...
end
```





!!! note
“Fenced” code blocks, as shown in the last example, should be prefered over indented code blocks
since there is no way to specify what language an indented code block is written in.




Block quotes

Text from external sources, such as quotations from books or websites, can be quoted using >
characters prepended to each line of the quote as follows.

Here's a quote:

> Julia is a high-level, high-performance dynamic programming language for
> technical computing, with syntax that is familiar to users of other
> technical computing environments.





Note that a single space must appear after the > character on each line. Quoted blocks may themselves
contain other toplevel or inline elements.




Images

The syntax for images is similar to the link syntax mentioned above. Prepending a ! character
to a link will display an image from the specified URL rather than a link to it.

![alternative text](link/to/image.png)








Lists

Unordered lists can be written by prepending each item in a list with either *, +, or -.

A list of items:

  * item one
  * item two
  * item three





Note the two spaces before each * and the single space after each one.

Lists can contain other nested toplevel elements such as lists, code blocks, or quoteblocks. A
blank line should be left between each list item when including any toplevel elements within a
list.

Another list:

  * item one

  * item two

    ```
    f(x) = x
    ```

  * And a sublist:

      + sub-item one
      + sub-item two





!!! note
The contents of each item in the list must line up with the first line of the item. In the above
example the fenced code block must be indented by four spaces to align with the i in item two.

Ordered lists are written by replacing the “bullet” character, either *, +, or -, with a
positive integer followed by either . or ).

Two ordered lists:

 1. item one
 2. item two
 3. item three

 5) item five
 6) item six
 7) item seven





An ordered list may start from a number other than one, as in the second list of the above example,
where it is numbered from five. As with unordered lists, ordered lists can contain nested toplevel
elements.




Display equations

Large \LaTeX equations that do not fit inline within a paragraph may be written as display
equations using a fenced code block with the “language” math as in the example below.

```math
f(a) = \frac{1}{2\pi}\int_{0}^{2\pi} (\alpha+R\cos(\theta))d\theta
```








Footnotes

This syntax is paired with the inline syntax for Footnote references. Make sure to read
that section as well.

Footnote text is defined using the following syntax, which is similar to footnote reference syntax,
aside from the : character that is appended to the footnote label.

[^1]: Numbered footnote text.

[^note]:

    Named footnote text containing several toplevel elements.

      * item one
      * item two
      * item three

    ```julia
    function func(x)
        # ...
    end
    ```





!!! note
No checks are done during parsing to make sure that all footnote references have matching footnotes.




Horizontal rules

The equivalent of an <hr> HTML tag can be written using the following syntax:

Text above the line.

---

And text below the line.








Tables

Basic tables can be written using the syntax described below. Note that markdown tables have limited
features and cannot contain nested toplevel elements unlike other elements discussed above –
only inline elements are allowed. Tables must always contain a header row with column names. Cells
cannot span multiple rows or columns of the table.

| Column One | Column Two | Column Three |
|:---------- | ---------- |:------------:|
| Row `1`    | Column `2` |              |
| *Row* 2    | **Row** 2  | Column ``3`` |





!!! note
As illustrated in the above example each column of | characters must be aligned vertically.

A `:` character on either end of a column's header separator (the row containing `-` characters)
specifies whether the row is left-aligned, right-aligned, or (when `:` appears on both ends) center-aligned.
Providing no `:` characters will default to right-aligning the column.








Admonitions

Specially formatted blocks with titles such as “Notes”, “Warning”, or “Tips” are known as admonitions
and are used when some part of a document needs special attention. They can be defined using the
following !!! syntax:

!!! note

    This is the content of the note.

!!! warning "Beware!"

    And this is another one.

    This warning admonition has a custom title: `"Beware!"`.





Admonitions, like most other toplevel elements, can contain other toplevel elements. When no title
text, specified after the admonition type in double quotes, is included then the title used will
be the type of the block, i.e. "Note" in the case of the note admonition.








Markdown Syntax Extensions

Julia’s markdown supports interpolation in a very similar way to basic string literals, with the
difference that it will store the object itself in the Markdown tree (as opposed to converting
it to a string). When the Markdown content is rendered the usual show methods will be called,
and these can be overridden as usual. This design allows the Markdown to be extended with arbitrarily
complex features (such as references) without cluttering the basic syntax.

In principle, the Markdown parser itself can also be arbitrarily extended by packages, or an entirely
custom flavour of Markdown can be used, but this should generally be unnecessary.
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Embedding Julia

As we have seen in Calling C and Fortran Code, Julia has a simple and efficient way to
call functions written in C. But there are situations where the opposite is needed: calling Julia
function from C code. This can be used to integrate Julia code into a larger C/C++ project, without
the need to rewrite everything in C/C++. Julia has a C API to make this possible. As almost all
programming languages have some way to call C functions, the Julia C API can also be used to build
further language bridges (e.g. calling Julia from Python or C#).


High-Level Embedding

We start with a simple C program that initializes Julia and calls some Julia code:

#include <julia.h>

int main(int argc, char *argv[])
{
    /* required: setup the Julia context */
    jl_init();

    /* run Julia commands */
    jl_eval_string("print(sqrt(2.0))");

    /* strongly recommended: notify Julia that the
         program is about to terminate. this allows
         Julia time to cleanup pending write requests
         and run all finalizers
    */
    jl_atexit_hook(0);
    return 0;
}





In order to build this program you have to put the path to the Julia header into the include path
and link against libjulia. For instance, when Julia is installed to $JULIA_DIR, one can compile
the above test program test.c with gcc using:

gcc -o test -fPIC -I$JULIA_DIR/include/julia -L$JULIA_DIR/lib test.c -ljulia $JULIA_DIR/lib/julia/libstdc++.so.6





Then if the environment variable JULIA_HOME is set to $JULIA_DIR/bin, the output test program
can be executed.

Alternatively, look at the embedding.c program in the Julia source tree in the examples/ folder.
The file ui/repl.c program is another simple example of how to set jl_options options while
linking against libjulia.

The first thing that has to be done before calling any other Julia C function is to initialize
Julia. This is done by calling jl_init, which tries to automatically determine Julia’s install
location. If you need to specify a custom location, or specify which system image to load,
use jl_init_with_image instead.

The second statement in the test program evaluates a Julia statement using a call to jl_eval_string.

Before the program terminates, it is strongly recommended to call jl_atexit_hook.  The above
example program calls this before returning from main.

!!! note
Currently, dynamically linking with the libjulia shared library requires passing the RTLD_GLOBAL
option. In Python, this looks like:

```
>>> julia=CDLL('./libjulia.dylib',RTLD_GLOBAL)
>>> julia.jl_init.argtypes = []
>>> julia.jl_init()
250593296
```





!!! note
If the julia program needs to access symbols from the main executable, it may be necessary to
add -Wl,--export-dynamic linker flag at compile time on Linux in addition to the ones generated
by julia-config.jl described below. This is not necessary when compiling a shared library.


Using julia-config to automatically determine build parameters

The script julia-config.jl was created to aid in determining what build parameters are required
by a program that uses embedded Julia.  This script uses the build parameters and system configuration
of the particular Julia distribution it is invoked by to export the necessary compiler flags for
an embedding program to interact with that distribution.  This script is located in the Julia
shared data directory.


Example

#include <julia.h>

int main(int argc, char *argv[])
{
    jl_init();
    (void)jl_eval_string("println(sqrt(2.0))");
    jl_atexit_hook(0);
    return 0;
}








On the command line

A simple use of this script is from the command line.  Assuming that julia-config.jl is located
in /usr/local/julia/share/julia, it can be invoked on the command line directly and takes any
combination of 3 flags:

/usr/local/julia/share/julia/julia-config.jl
Usage: julia-config [--cflags|--ldflags|--ldlibs]





If the above example source is saved in the file embed_example.c, then the following command
will compile it into a running program on Linux and Windows (MSYS2 environment), or if on OS/X,
then substitute clang for gcc.:

/usr/local/julia/share/julia/julia-config.jl --cflags --ldflags --ldlibs | xargs gcc embed_example.c








Use in Makefiles

But in general, embedding projects will be more complicated than the above, and so the following
allows general makefile support as well – assuming GNU make because of the use of the shell
macro expansions.  Additionally, though many times julia-config.jl may be found in the directory
/usr/local, this is not necessarily the case, but Julia can be used to locate julia-config.jl
too, and the makefile can be used to take advantage of that.  The above example is extended to
use a Makefile:

JL_SHARE = $(shell julia -e 'print(joinpath(JULIA_HOME,Base.DATAROOTDIR,"julia"))')
CFLAGS   += $(shell $(JL_SHARE)/julia-config.jl --cflags)
CXXFLAGS += $(shell $(JL_SHARE)/julia-config.jl --cflags)
LDFLAGS  += $(shell $(JL_SHARE)/julia-config.jl --ldflags)
LDLIBS   += $(shell $(JL_SHARE)/julia-config.jl --ldlibs)

all: embed_example





Now the build command is simply make.








Converting Types

Real applications will not just need to execute expressions, but also return their values to the
host program. jl_eval_string returns a jl_value_t*, which is a pointer to a heap-allocated
Julia object. Storing simple data types like Float64 in this way is called boxing,
and extracting the stored primitive data is called unboxing. Our improved sample program that
calculates the square root of 2 in Julia and reads back the result in C looks as follows:

jl_value_t *ret = jl_eval_string("sqrt(2.0)");

if (jl_typeis(ret, jl_float64_type)) {
    double ret_unboxed = jl_unbox_float64(ret);
    printf("sqrt(2.0) in C: %e \n", ret_unboxed);
}
else {
    printf("ERROR: unexpected return type from sqrt(::Float64)\n");
}





In order to check whether ret is of a specific Julia type, we can use the
jl_isa, jl_typeis, or jl_is_... functions.
By typing typeof(sqrt(2.0)) into the Julia shell we can see that the return type is
Float64 (double in C). To convert the boxed Julia value into a C double the
jl_unbox_float64 function is used in the above code snippet.

Corresponding jl_box_... functions are used to convert the other way:

jl_value_t *a = jl_box_float64(3.0);
jl_value_t *b = jl_box_float32(3.0f);
jl_value_t *c = jl_box_int32(3);





As we will see next, boxing is required to call Julia functions with specific arguments.




Calling Julia Functions

While jl_eval_string allows C to obtain the result of a Julia expression, it does not allow
passing arguments computed in C to Julia. For this you will need to invoke Julia functions directly,
using jl_call:

jl_function_t *func = jl_get_function(jl_base_module, "sqrt");
jl_value_t *argument = jl_box_float64(2.0);
jl_value_t *ret = jl_call1(func, argument);





In the first step, a handle to the Julia function sqrt is retrieved by calling jl_get_function.
The first argument passed to jl_get_function is a pointer to the Base module in which sqrt
is defined. Then, the double value is boxed using jl_box_float64. Finally, in the last step,
the function is called using jl_call1. jl_call0, jl_call2, and jl_call3 functions also
exist, to conveniently handle different numbers of arguments. To pass more arguments, use jl_call:

jl_value_t *jl_call(jl_function_t *f, jl_value_t **args, int32_t nargs)





Its second argument args is an array of jl_value_t* arguments and nargs is the number of
arguments.




Memory Management

As we have seen, Julia objects are represented in C as pointers. This raises the question of who
is responsible for freeing these objects.

Typically, Julia objects are freed by a garbage collector (GC), but the GC does not automatically
know that we are holding a reference to a Julia value from C. This means the GC can free objects
out from under you, rendering pointers invalid.

The GC can only run when Julia objects are allocated. Calls like jl_box_float64 perform allocation,
and allocation might also happen at any point in running Julia code. However, it is generally
safe to use pointers in between jl_... calls. But in order to make sure that values can survive
jl_... calls, we have to tell Julia that we hold a reference to a Julia value. This can be done
using the JL_GC_PUSH macros:

jl_value_t *ret = jl_eval_string("sqrt(2.0)");
JL_GC_PUSH1(&ret);
// Do something with ret
JL_GC_POP();





The JL_GC_POP call releases the references established by the previous JL_GC_PUSH. Note that
JL_GC_PUSH  is working on the stack, so it must be exactly paired with a JL_GC_POP before
the stack frame is destroyed.

Several Julia values can be pushed at once using the JL_GC_PUSH2 , JL_GC_PUSH3 , and JL_GC_PUSH4
macros. To push an array of Julia values one can use the  JL_GC_PUSHARGS macro, which can be
used as follows:

jl_value_t **args;
JL_GC_PUSHARGS(args, 2); // args can now hold 2 `jl_value_t*` objects
args[0] = some_value;
args[1] = some_other_value;
// Do something with args (e.g. call jl_... functions)
JL_GC_POP();





The garbage collector also operates under the assumption that it is aware of every old-generation
object pointing to a young-generation one. Any time a pointer is updated breaking that assumption,
it must be signaled to the collector with the jl_gc_wb (write barrier) function like so:

jl_value_t *parent = some_old_value, *child = some_young_value;
((some_specific_type*)parent)->field = child;
jl_gc_wb(parent, child);





It is in general impossible to predict which values will be old at runtime, so the write barrier
must be inserted after all explicit stores. One notable exception is if the parent object was
just allocated and garbage collection was not run since then. Remember that most jl_... functions
can sometimes invoke garbage collection.

The write barrier is also necessary for arrays of pointers when updating their data directly.
For example:

jl_array_t *some_array = ...; // e.g. a Vector{Any}
void **data = (void**)jl_array_data(some_array);
jl_value_t *some_value = ...;
data[0] = some_value;
jl_gc_wb(some_array, some_value);






Manipulating the Garbage Collector

There are some functions to control the GC. In normal use cases, these should not be necessary.

| Function             | Description                                  |
|:——————– |:——————————————– |
| jl_gc_collect()    | Force a GC run                               |
| jl_gc_enable(0)    | Disable the GC, return previous state as int |
| jl_gc_enable(1)    | Enable the GC,  return previous state as int |
| jl_gc_is_enabled() | Return current state as int                  |






Working with Arrays

Julia and C can share array data without copying. The next example will show how this works.

Julia arrays are represented in C by the datatype jl_array_t*. Basically, jl_array_t is a
struct that contains:


	Information about the datatype


	A pointer to the data block


	Information about the sizes of the array




To keep things simple, we start with a 1D array. Creating an array containing Float64 elements
of length 10 is done by:

jl_value_t* array_type = jl_apply_array_type(jl_float64_type, 1);
jl_array_t* x          = jl_alloc_array_1d(array_type, 10);





Alternatively, if you have already allocated the array you can generate a thin wrapper around
its data:

double *existingArray = (double*)malloc(sizeof(double)*10);
jl_array_t *x = jl_ptr_to_array_1d(array_type, existingArray, 10, 0);





The last argument is a boolean indicating whether Julia should take ownership of the data. If
this argument is non-zero, the GC will call free on the data pointer when the array is no longer
referenced.

In order to access the data of x, we can use jl_array_data:

double *xData = (double*)jl_array_data(x);





Now we can fill the array:

for(size_t i=0; i<jl_array_len(x); i++)
    xData[i] = i;





Now let us call a Julia function that performs an in-place operation on x:

jl_function_t *func = jl_get_function(jl_base_module, "reverse!");
jl_call1(func, (jl_value_t*)x);





By printing the array, one can verify that the elements of x are now reversed.


Accessing Returned Arrays

If a Julia function returns an array, the return value of jl_eval_string and jl_call can be
cast to a jl_array_t*:

jl_function_t *func  = jl_get_function(jl_base_module, "reverse");
jl_array_t *y = (jl_array_t*)jl_call1(func, (jl_value_t*)x);





Now the content of y can be accessed as before using jl_array_data. As always, be sure to
keep a reference to the array while it is in use.




Multidimensional Arrays

Julia’s multidimensional arrays are stored in memory in column-major order. Here is some code
that creates a 2D array and accesses its properties:

// Create 2D array of float64 type
jl_value_t *array_type = jl_apply_array_type(jl_float64_type, 2);
jl_array_t *x  = jl_alloc_array_2d(array_type, 10, 5);

// Get array pointer
double *p = (double*)jl_array_data(x);
// Get number of dimensions
int ndims = jl_array_ndims(x);
// Get the size of the i-th dim
size_t size0 = jl_array_dim(x,0);
size_t size1 = jl_array_dim(x,1);

// Fill array with data
for(size_t i=0; i<size1; i++)
    for(size_t j=0; j<size0; j++)
        p[j + size0*i] = i + j;





Notice that while Julia arrays use 1-based indexing, the C API uses 0-based indexing (for example
in calling jl_array_dim) in order to read as idiomatic C code.






Exceptions

Julia code can throw exceptions. For example, consider:

jl_eval_string("this_function_does_not_exist()");





This call will appear to do nothing. However, it is possible to check whether an exception was
thrown:

if (jl_exception_occurred())
    printf("%s \n", jl_typeof_str(jl_exception_occurred()));





If you are using the Julia C API from a language that supports exceptions (e.g. Python, C#, C++),
it makes sense to wrap each call into libjulia with a function that checks whether an exception
was thrown, and then rethrows the exception in the host language.


Throwing Julia Exceptions

When writing Julia callable functions, it might be necessary to validate arguments and throw exceptions
to indicate errors. A typical type check looks like:

if (!jl_typeis(val, jl_float64_type)) {
    jl_type_error(function_name, (jl_value_t*)jl_float64_type, val);
}





General exceptions can be raised using the functions:

void jl_error(const char *str);
void jl_errorf(const char *fmt, ...);





jl_error takes a C string, and jl_errorf is called like printf:

jl_errorf("argument x = %d is too large", x);





where in this example x is assumed to be an integer.
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Environment Variables

Julia may be configured with a number of environment variables, either in the
usual way of the operating system, or in a portable way from within Julia.
Suppose you want to set the environment variable JULIA_EDITOR to
vim, then either type ENV["JULIA_EDITOR"] = "vim" for instance in the REPL
to make this change on a case by case basis, or add the same to the user
configuration file .juliarc.jl in the user’s home directory to have
a permanent effect. The current value of the same environment variable is
determined by evaluating ENV["JULIA_EDITOR"].

The environment variables that Julia uses generally start with JULIA. If
Base.versioninfo is called with verbose equal to true, then the
output will list defined environment variables relevant for Julia, including
those for which JULIA appears in the name.


File locations


JULIA_HOME

The absolute path of the directory containing the Julia executable, which sets
the global variable Base.JULIA_HOME. If $JULIA_HOME is not set, then
Julia determines the value Base.JULIA_HOME at run-time.

The executable itself is one of

$JULIA_HOME/julia
$JULIA_HOME/julia-debug





by default.

The global variable Base.DATAROOTDIR determines a relative path from
Base.JULIA_HOME to the data directory associated with Julia. Then the path

$JULIA_HOME/$DATAROOTDIR/julia/base





determines the directory in which Julia initially searches for source files (via
Base.find_source_file()).

Likewise, the global variable Base.SYSCONFDIR determines a relative path to the
configuration file directory. Then Julia searches for a juliarc.jl file at

$JULIA_HOME/$SYSCONFDIR/julia/juliarc.jl
$JULIA_HOME/../etc/julia/juliarc.jl





by default (via Base.load_juliarc()).

For example, a Linux installation with a Julia executable located at
/bin/julia, a DATAROOTDIR of ../share, and a SYSCONFDIR of ../etc will
have JULIA_HOME set to /bin, a source-file search path of

/share/julia/base





and a global configuration search path of

/etc/julia/juliarc.jl








JULIA_LOAD_PATH

A separated list of absolute paths that are to be appended to the variable
LOAD_PATH. (In Unix-like systems, the path separator is :; in Windows
systems, the path separator is ;.) The LOAD_PATH variable is where
Base.require and Base.load_in_path() look for code; it defaults to the absolute
paths

$JULIA_HOME/../local/share/julia/site/v$(VERSION.major).$(VERSION.minor)
$JULIA_HOME/../share/julia/site/v$(VERSION.major).$(VERSION.minor)





so that, e.g., version 0.6 of Julia on a Linux system with a Julia executable at
/bin/julia will have a default LOAD_PATH of

/local/share/julia/site/v0.6
/share/julia/site/v0.6








JULIA_PKGDIR

The path of the parent directory Pkg.Dir._pkgroot() for the version-specific
Julia package repositories. If the path is relative, then it is taken with
respect to the working directory. If $JULIA_PKGDIR is not set, then
Pkg.Dir._pkgroot() defaults to

$HOME/.julia





Then the repository location Pkg.dir for a given Julia version is

$JULIA_PKGDIR/v$(VERSION.major).$(VERSION.minor)





For example, for a Linux user whose home directory is /home/alice, the directory
containing the package repositories would by default be

/home/alice/.julia





and the package repository for version 0.6 of Julia would be

/home/alice/.julia/v0.6








JULIA_HISTORY

The absolute path Base.REPL.find_hist_file() of the REPL’s history file. If
$JULIA_HISTORY is not set, then Base.REPL.find_hist_file() defaults to

$HOME/.julia_history








JULIA_PKGRESOLVE_ACCURACY

A positive Int that determines how much time the max-sum subroutine
MaxSum.maxsum() of the package dependency resolver Base.Pkg.resolve
will devote to attempting satisfying constraints before giving up: this value is
by default 1, and larger values correspond to larger amounts of time.

Suppose the value of $JULIA_PKGRESOLVE_ACCURACY is n. Then


	the number of pre-decimation iterations is 20*n,


	the number of iterations between decimation steps is 10*n, and


	at decimation steps, at most one in every 20*n packages is decimated.









External applications


JULIA_SHELL

The absolute path of the shell with which Julia should execute external commands
(via Base.repl_cmd()). Defaults to the environment variable $SHELL, and
falls back to /bin/sh if $SHELL is unset.

!!! note

On Windows, this environment variable is ignored, and external commands are
executed directly.








JULIA_EDITOR

The editor returned by Base.editor() and used in, e.g., Base.edit,
referring to the command of the preferred editor, for instance vim.

$JULIA_EDITOR takes precedence over $VISUAL, which in turn takes precedence
over $EDITOR. If none of these environment variables is set, then the editor
is taken to be open on Windows and OS X, or /etc/alternatives/editor if it
exists, or emacs otherwise.

!!! note

`$JULIA_EDITOR` is *not* used in the determination of the editor for
[`Base.Pkg.edit`](@ref): this function checks `$VISUAL` and `$EDITOR` alone.










Parallelization


JULIA_CPU_CORES

Overrides the global variable Base.Sys.CPU_CORES, the number of
logical CPU cores available.




JULIA_WORKER_TIMEOUT

A Float64 that sets the value of Base.worker_timeout() (default: 60.0).
This function gives the number of seconds a worker process will wait for
a master process to establish a connection before dying.




JULIA_NUM_THREADS

An unsigned 64-bit integer (uint64_t) that sets the maximum number of threads
available to Julia. If $JULIA_NUM_THREADS exceeds the number of available
physical CPU cores, then the number of threads is set to the number of cores. If
$JULIA_NUM_THREADS is not positive or is not set, or if the number of CPU
cores cannot be determined through system calls, then the number of threads is
set to 1.




JULIA_THREAD_SLEEP_THRESHOLD

If set to a string that starts with the case-insensitive substring "infinite",
then spinning threads never sleep. Otherwise, $JULIA_THREAD_SLEEP_THRESHOLD is
interpreted as an unsigned 64-bit integer (uint64_t) and gives, in
nanoseconds, the amount of time after which spinning threads should sleep.




JULIA_EXCLUSIVE

If set to anything besides 0, then Julia’s thread policy is consistent with
running on a dedicated machine: the master thread is on proc 0, and threads are
affinitized. Otherwise, Julia lets the operating system handle thread policy.






REPL formatting

Environment variables that determine how REPL output should be formatted at the
terminal. Generally, these variables should be set to ANSI terminal escape
sequences [http://ascii-table.com/ansi-escape-sequences.php]. Julia provides
a high-level interface with much of the same functionality: see the section on
Interacting With Julia.


JULIA_ERROR_COLOR

The formatting Base.error_color() (default: light red, "\033[91m") that
errors should have at the terminal.




JULIA_WARN_COLOR

The formatting Base.warn_color() (default: yellow, "\033[93m") that warnings
should have at the terminal.




JULIA_INFO_COLOR

The formatting Base.info_color() (default: cyan, "\033[36m") that info
should have at the terminal.




JULIA_INPUT_COLOR

The formatting Base.input_color() (default: normal, "\033[0m") that input
should have at the terminal.




JULIA_ANSWER_COLOR

The formatting Base.answer_color() (default: normal, "\033[0m") that output
should have at the terminal.




JULIA_STACKFRAME_LINEINFO_COLOR

The formatting Base.stackframe_lineinfo_color() (default: bold, "\033[1m")
that line info should have during a stack trace at the terminal.




JULIA_STACKFRAME_FUNCTION_COLOR

The formatting Base.stackframe_function_color() (default: bold, "\033[1m")
that function calls should have during a stack trace at the terminal.






Debugging and profiling


JULIA_GC_ALLOC_POOL, JULIA_GC_ALLOC_OTHER, JULIA_GC_ALLOC_PRINT

If set, these environment variables take strings that optionally start with the
character 'r', followed by a string interpolation of a colon-separated list of
three signed 64-bit integers (int64_t). This triple of integers a:b:c
represents the arithmetic sequence a, a + b, a + 2*b, … c.


	If it’s the nth time that jl_gc_pool_alloc() has been called, and n
belongs to the arithmetic sequence represented by $JULIA_GC_ALLOC_POOL,
then garbage collection is forced.


	If it’s the nth time that maybe_collect() has been called, and n belongs
to the arithmetic sequence represented by $JULIA_GC_ALLOC_OTHER, then garbage
collection is forced.


	If it’s the nth time that jl_gc_collect() has been called, and n belongs
to the arithmetic sequence represented by $JULIA_GC_ALLOC_PRINT, then counts
for the number of calls to jl_gc_pool_alloc() and maybe_collect() are
printed.




If the value of the environment variable begins with the character 'r', then
the interval between garbage collection events is randomized.

!!! note

These environment variables only have an effect if Julia was compiled with
garbage-collection debugging (that is, if `WITH_GC_DEBUG_ENV` is set to `1`
in the build configuration).








JULIA_GC_NO_GENERATIONAL

If set to anything besides 0, then the Julia garbage collector never performs
“quick sweeps” of memory.

!!! note

This environment variable only has an effect if Julia was compiled with
garbage-collection debugging (that is, if `WITH_GC_DEBUG_ENV` is set to `1`
in the build configuration).








JULIA_GC_WAIT_FOR_DEBUGGER

If set to anything besides 0, then the Julia garbage collector will wait for
a debugger to attach instead of aborting whenever there’s a critical error.

!!! note

This environment variable only has an effect if Julia was compiled with
garbage-collection debugging (that is, if `WITH_GC_DEBUG_ENV` is set to `1`
in the build configuration).








ENABLE_JITPROFILING

If set to anything besides 0, then the compiler will create and register an
event listener for just-in-time (JIT) profiling.

!!! note

This environment variable only has an effect if Julia was compiled with JIT
profiling support, using either






	Intel’s VTune™ Amplifier [https://software.intel.com/en-us/intel-vtune-amplifier-xe]
(USE_INTEL_JITEVENTS set to 1 in the build configuration), or


	OProfile [http://oprofile.sourceforge.net/news/] (USE_OPROFILE_JITEVENTS set to 1
in the build configuration).







JULIA_LLVM_ARGS

Arguments to be passed to the LLVM backend.

!!! note

This environment variable has an effect only if Julia was compiled with
`JL_DEBUG_BUILD` set — in particular, the `julia-debug` executable is always
compiled with this build variable.








JULIA_DEBUG_LOADING

If set, then Julia prints detailed information about the cache in the loading
process of Base.require.
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Frequently Asked Questions


Sessions and the REPL


How do I delete an object in memory?

Julia does not have an analog of MATLAB’s clear function; once a name is defined in a Julia
session (technically, in module Main), it is always present.

If memory usage is your concern, you can always replace objects with ones that consume less memory.
For example, if A is a gigabyte-sized array that you no longer need, you can free the memory
with A = 0.  The memory will be released the next time the garbage collector runs; you can force
this to happen with gc().




How can I modify the declaration of a type in my session?

Perhaps you’ve defined a type and then realize you need to add a new field.  If you try this at
the REPL, you get the error:

ERROR: invalid redefinition of constant MyType





Types in module Main cannot be redefined.

While this can be inconvenient when you are developing new code, there’s an excellent workaround.
Modules can be replaced by redefining them, and so if you wrap all your new code inside a module
you can redefine types and constants.  You can’t import the type names into Main and then expect
to be able to redefine them there, but you can use the module name to resolve the scope.  In other
words, while developing you might use a workflow something like this:

include("mynewcode.jl")              # this defines a module MyModule
obj1 = MyModule.ObjConstructor(a, b)
obj2 = MyModule.somefunction(obj1)
# Got an error. Change something in "mynewcode.jl"
include("mynewcode.jl")              # reload the module
obj1 = MyModule.ObjConstructor(a, b) # old objects are no longer valid, must reconstruct
obj2 = MyModule.somefunction(obj1)   # this time it worked!
obj3 = MyModule.someotherfunction(obj2, c)
...










Functions


I passed an argument x to a function, modified it inside that function, but on the outside,

the variable x is still unchanged. Why?

Suppose you call a function like this:

julia> x = 10
10

julia> function change_value!(y)
           y = 17
       end
change_value! (generic function with 1 method)

julia> change_value!(x)
17

julia> x # x is unchanged!
10





In Julia, the binding of a variable x cannot be changed by passing x as an argument to a function.
When calling change_value!(x) in the above example, y is a newly created variable, bound initially
to the value of x, i.e. 10; then y is rebound to the constant 17, while the variable
x of the outer scope is left untouched.

But here is a thing you should pay attention to: suppose x is bound to an object of type Array
(or any other mutable type). From within the function, you cannot “unbind” x from this Array,
but you can change its content. For example:

julia> x = [1,2,3]
3-element Array{Int64,1}:
 1
 2
 3

julia> function change_array!(A)
           A[1] = 5
       end
change_array! (generic function with 1 method)

julia> change_array!(x)
5

julia> x
3-element Array{Int64,1}:
 5
 2
 3





Here we created a function change_array!(), that assigns 5 to the first element of the passed
array (bound to x at the call site, and bound to A within the function). Notice that, after
the function call, x is still bound to the same array, but the content of that array changed:
the variables A and x were distinct bindings refering to the same mutable Array object.




Can I use using or import inside a function?

No, you are not allowed to have a using or import statement inside a function.  If you want
to import a module but only use its symbols inside a specific function or set of functions, you
have two options:


	Use import:

import Foo
function bar(...)
    # ... refer to Foo symbols via Foo.baz ...
end





This loads the module Foo and defines a variable Foo that refers to the module, but does not
import any of the other symbols from the module into the current namespace.  You refer to the
Foo symbols by their qualified names Foo.bar etc.



	Wrap your function in a module:

module Bar
export bar
using Foo
function bar(...)
    # ... refer to Foo.baz as simply baz ....
end
end
using Bar





This imports all the symbols from Foo, but only inside the module Bar.








What does the ... operator do?




The two uses of the ... operator: slurping and splatting

Many newcomers to Julia find the use of ... operator confusing. Part of what makes the ...
operator confusing is that it means two different things depending on context.




... combines many arguments into one argument in function definitions

In the context of function definitions, the ... operator is used to combine many different arguments
into a single argument. This use of ... for combining many different arguments into a single
argument is called slurping:

julia> function printargs(args...)
           @printf("%s\n", typeof(args))
           for (i, arg) in enumerate(args)
               @printf("Arg %d = %s\n", i, arg)
           end
       end
printargs (generic function with 1 method)

julia> printargs(1, 2, 3)
Tuple{Int64,Int64,Int64}
Arg 1 = 1
Arg 2 = 2
Arg 3 = 3





If Julia were a language that made more liberal use of ASCII characters, the slurping operator
might have been written as <-... instead of ....




... splits one argument into many different arguments in function calls

In contrast to the use of the ... operator to denote slurping many different arguments into
one argument when defining a function, the ... operator is also used to cause a single function
argument to be split apart into many different arguments when used in the context of a function
call. This use of ... is called splatting:

julia> function threeargs(a, b, c)
           @printf("a = %s::%s\n", a, typeof(a))
           @printf("b = %s::%s\n", b, typeof(b))
           @printf("c = %s::%s\n", c, typeof(c))
       end
threeargs (generic function with 1 method)

julia> vec = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> threeargs(vec...)
a = 1::Int64
b = 2::Int64
c = 3::Int64





If Julia were a language that made more liberal use of ASCII characters, the splatting operator
might have been written as ...-> instead of ....






Types, type declarations, and constructors


[What does “type-stable” mean?](@id man-type-stability)

It means that the type of the output is predictable from the types of the inputs.  In particular,
it means that the type of the output cannot vary depending on the values of the inputs. The
following code is not type-stable:

julia> function unstable(flag::Bool)
           if flag
               return 1
           else
               return 1.0
           end
       end
unstable (generic function with 1 method)





It returns either an Int or a Float64 depending on the value of its argument.
Since Julia can’t predict the return type of this function at compile-time, any computation
that uses it will have to guard against both types possibly occurring, making generation of
fast machine code difficult.




[Why does Julia give a DomainError for certain seemingly-sensible operations?](@id faq-domain-errors)

Certain operations make mathematical sense but result in errors:

julia> sqrt(-2.0)
ERROR: DomainError:
sqrt will only return a complex result if called with a complex argument. Try sqrt(complex(x)).
Stacktrace:
 [1] sqrt(::Float64) at ./math.jl:425

julia> 2^-5
ERROR: DomainError:
Cannot raise an integer x to a negative power -n.
Make x a float by adding a zero decimal (e.g. 2.0^-n instead of 2^-n), or write 1/x^n, float(x)^-n, or (x//1)^-n.
Stacktrace:
 [1] power_by_squaring(::Int64, ::Int64) at ./intfuncs.jl:173
 [2] literal_pow(::Base.#^, ::Int64, ::Type{Val{-5}}) at ./intfuncs.jl:208





This behavior is an inconvenient consequence of the requirement for type-stability.  In the case
of sqrt(), most users want sqrt(2.0) to give a real number, and would be unhappy if
it produced the complex number 1.4142135623730951 + 0.0im.  One could write the sqrt()
function to switch to a complex-valued output only when passed a negative number (which is what
sqrt() does in some other languages), but then the result would not be [type-stable](@ref man-type-stability)
and the sqrt() function would have poor performance.

In these and other cases, you can get the result you want by choosing an input type that conveys
your willingness to accept an output type in which the result can be represented:

julia> sqrt(-2.0+0im)
0.0 + 1.4142135623730951im

julia> 2.0^-5
0.03125








Why does Julia use native machine integer arithmetic?

Julia uses machine arithmetic for integer computations. This means that the range of Int values
is bounded and wraps around at either end so that adding, subtracting and multiplying integers
can overflow or underflow, leading to some results that can be unsettling at first:

julia> typemax(Int)
9223372036854775807

julia> ans+1
-9223372036854775808

julia> -ans
-9223372036854775808

julia> 2*ans
0





Clearly, this is far from the way mathematical integers behave, and you might think it less than
ideal for a high-level programming language to expose this to the user. For numerical work where
efficiency and transparency are at a premium, however, the alternatives are worse.

One alternative to consider would be to check each integer operation for overflow and promote
results to bigger integer types such as Int128 or BigInt in the case of overflow.
Unfortunately, this introduces major overhead on every integer operation (think incrementing a
loop counter) – it requires emitting code to perform run-time overflow checks after arithmetic
instructions and branches to handle potential overflows. Worse still, this would cause every computation
involving integers to be type-unstable. As we mentioned above, [type-stability is crucial](@ref man-type-stability)
for effective generation of efficient code. If you can’t count on the results of integer operations
being integers, it’s impossible to generate fast, simple code the way C and Fortran compilers
do.

A variation on this approach, which avoids the appearance of type instability is to merge the
Int and BigInt types into a single hybrid integer type, that internally changes representation
when a result no longer fits into the size of a machine integer. While this superficially avoids
type-instability at the level of Julia code, it just sweeps the problem under the rug by foisting
all of the same difficulties onto the C code implementing this hybrid integer type. This approach
can be made to work and can even be made quite fast in many cases, but has several drawbacks.
One problem is that the in-memory representation of integers and arrays of integers no longer
match the natural representation used by C, Fortran and other languages with native machine integers.
Thus, to interoperate with those languages, we would ultimately need to introduce native integer
types anyway. Any unbounded representation of integers cannot have a fixed number of bits, and
thus cannot be stored inline in an array with fixed-size slots – large integer values will always
require separate heap-allocated storage. And of course, no matter how clever a hybrid integer
implementation one uses, there are always performance traps – situations where performance degrades
unexpectedly. Complex representation, lack of interoperability with C and Fortran, the inability
to represent integer arrays without additional heap storage, and unpredictable performance characteristics
make even the cleverest hybrid integer implementations a poor choice for high-performance numerical
work.

An alternative to using hybrid integers or promoting to BigInts is to use saturating integer arithmetic,
where adding to the largest integer value leaves it unchanged and likewise for subtracting from
the smallest integer value. This is precisely what Matlab™ does:

>> int64(9223372036854775807)

ans =

  9223372036854775807

>> int64(9223372036854775807) + 1

ans =

  9223372036854775807

>> int64(-9223372036854775808)

ans =

 -9223372036854775808

>> int64(-9223372036854775808) - 1

ans =

 -9223372036854775808





At first blush, this seems reasonable enough since 9223372036854775807 is much closer to 9223372036854775808
than -9223372036854775808 is and integers are still represented with a fixed size in a natural
way that is compatible with C and Fortran. Saturated integer arithmetic, however, is deeply problematic.
The first and most obvious issue is that this is not the way machine integer arithmetic works,
so implementing saturated operations requires emitting instructions after each machine integer
operation to check for underflow or overflow and replace the result with typemin(Int)
or typemax(Int) as appropriate. This alone expands each integer operation from a single,
fast instruction into half a dozen instructions, probably including branches. Ouch. But it gets
worse – saturating integer arithmetic isn’t associative. Consider this Matlab computation:

>> n = int64(2)^62
4611686018427387904

>> n + (n - 1)
9223372036854775807

>> (n + n) - 1
9223372036854775806





This makes it hard to write many basic integer algorithms since a lot of common techniques depend
on the fact that machine addition with overflow is associative. Consider finding the midpoint
between integer values lo and hi in Julia using the expression (lo + hi) >>> 1:

julia> n = 2^62
4611686018427387904

julia> (n + 2n) >>> 1
6917529027641081856





See? No problem. That’s the correct midpoint between 2^62 and 2^63, despite the fact that n + 2n
is -4611686018427387904. Now try it in Matlab:

>> (n + 2*n)/2

ans =

  4611686018427387904





Oops. Adding a >>> operator to Matlab wouldn’t help, because saturation that occurs when adding
n and 2n has already destroyed the information necessary to compute the correct midpoint.

Not only is lack of associativity unfortunate for programmers who cannot rely it for techniques
like this, but it also defeats almost anything compilers might want to do to optimize integer
arithmetic. For example, since Julia integers use normal machine integer arithmetic, LLVM is free
to aggressively optimize simple little functions like f(k) = 5k-1. The machine code for this
function is just this:

julia> code_native(f, Tuple{Int})
  .text
Filename: none
  pushq %rbp
  movq  %rsp, %rbp
Source line: 1
  leaq  -1(%rdi,%rdi,4), %rax
  popq  %rbp
  retq
  nopl  (%rax,%rax)





The actual body of the function is a single leaq instruction, which computes the integer multiply
and add at once. This is even more beneficial when f gets inlined into another function:

julia> function g(k, n)
           for i = 1:n
               k = f(k)
           end
           return k
       end
g (generic function with 1 methods)

julia> code_native(g, Tuple{Int,Int})
  .text
Filename: none
  pushq %rbp
  movq  %rsp, %rbp
Source line: 2
  testq %rsi, %rsi
  jle L26
  nopl  (%rax)
Source line: 3
L16:
  leaq  -1(%rdi,%rdi,4), %rdi
Source line: 2
  decq  %rsi
  jne L16
Source line: 5
L26:
  movq  %rdi, %rax
  popq  %rbp
  retq
  nop





Since the call to f gets inlined, the loop body ends up being just a single leaq instruction.
Next, consider what happens if we make the number of loop iterations fixed:

julia> function g(k)
           for i = 1:10
               k = f(k)
           end
           return k
       end
g (generic function with 2 methods)

julia> code_native(g,(Int,))
  .text
Filename: none
  pushq %rbp
  movq  %rsp, %rbp
Source line: 3
  imulq $9765625, %rdi, %rax    # imm = 0x9502F9
  addq  $-2441406, %rax         # imm = 0xFFDABF42
Source line: 5
  popq  %rbp
  retq
  nopw  %cs:(%rax,%rax)





Because the compiler knows that integer addition and multiplication are associative and that multiplication
distributes over addition – neither of which is true of saturating arithmetic – it can optimize
the entire loop down to just a multiply and an add. Saturated arithmetic completely defeats this
kind of optimization since associativity and distributivity can fail at each loop iteration, causing
different outcomes depending on which iteration the failure occurs in. The compiler can unroll
the loop, but it cannot algebraically reduce multiple operations into fewer equivalent operations.

The most reasonable alternative to having integer arithmetic silently overflow is to do checked
arithmetic everywhere, raising errors when adds, subtracts, and multiplies overflow, producing
values that are not value-correct. In this blog post [http://danluu.com/integer-overflow/], Dan
Luu analyzes this and finds that rather than the trivial cost that this approach should in theory
have, it ends up having a substantial cost due to compilers (LLVM and GCC) not gracefully optimizing
around the added overflow checks. If this improves in the future, we could consider defaulting
to checked integer arithmetic in Julia, but for now, we have to live with the possibility of overflow.




What are the possible causes of an UndefVarError during remote execution?

As the error states, an immediate cause of an UndefVarError on a remote node is that a binding
by that name does not exist. Let us explore some of the possible causes.

julia> module Foo
           foo() = remotecall_fetch(x->x, 2, "Hello")
       end

julia> Foo.foo()
ERROR: On worker 2:
UndefVarError: Foo not defined
[...]





The closure x->x carries a reference to Foo, and since Foo is unavailable on node 2,
an UndefVarError is thrown.

Globals under modules other than Main are not serialized by value to the remote node. Only a reference is sent.
Functions which create global bindings (except under Main) may cause an UndefVarError to be thrown later.

julia> @everywhere module Foo
           function foo()
               global gvar = "Hello"
               remotecall_fetch(()->gvar, 2)
           end
       end

julia> Foo.foo()
ERROR: On worker 2:
UndefVarError: gvar not defined
[...]





In the above example, @everywhere module Foo defined Foo on all nodes. However the call to Foo.foo() created
a new global binding gvar on the local node, but this was not found on node 2 resulting in an UndefVarError error.

Note that this does not apply to globals created under module Main. Globals under module Main are serialized
and new bindings created under Main on the remote node.

julia> gvar_self = "Node1"
"Node1"

julia> remotecall_fetch(()->gvar_self, 2)
"Node1"

julia> remotecall_fetch(whos, 2)
    From worker 2:                            Base  41762 KB     Module
    From worker 2:                            Core  27337 KB     Module
    From worker 2:                             Foo   2477 bytes  Module
    From worker 2:                            Main  46191 KB     Module
    From worker 2:                       gvar_self     13 bytes  String





This does not apply to function or type declarations. However, anonymous functions bound to global
variables are serialized as can be seen below.

julia> bar() = 1
bar (generic function with 1 method)

julia> remotecall_fetch(bar, 2)
ERROR: On worker 2:
UndefVarError: #bar not defined
[...]

julia> anon_bar  = ()->1
(::#21) (generic function with 1 method)

julia> remotecall_fetch(anon_bar, 2)
1










Packages and Modules


What is the difference between “using” and “importall”?

There is only one difference, and on the surface (syntax-wise) it may seem very minor. The difference
between using and importall is that with using you need to say function Foo.bar(.. to
extend module Foo’s function bar with a new method, but with importall or import Foo.bar,
you only need to say function bar(... and it automatically extends module Foo’s function bar.

If you use importall, then function Foo.bar(... and function bar(... become equivalent.
If you use using, then they are different.

The reason this is important enough to have been given separate syntax is that you don’t want
to accidentally extend a function that you didn’t know existed, because that could easily cause
a bug. This is most likely to happen with a method that takes a common type like a string or integer,
because both you and the other module could define a method to handle such a common type. If you
use importall, then you’ll replace the other module’s implementation of bar(s::AbstractString)
with your new implementation, which could easily do something completely different (and break
all/many future usages of the other functions in module Foo that depend on calling bar).






Nothingness and missing values


How does “null” or “nothingness” work in Julia?

Unlike many languages (for example, C and Java), Julia does not have a “null” value. When a reference
(variable, object field, or array element) is uninitialized, accessing it will immediately throw
an error. This situation can be detected using the isdefined function.

Some functions are used only for their side effects, and do not need to return a value. In these
cases, the convention is to return the value nothing, which is just a singleton object of type
Void. This is an ordinary type with no fields; there is nothing special about it except for
this convention, and that the REPL does not print anything for it. Some language constructs that
would not otherwise have a value also yield nothing, for example if false; end.

For situations where a value exists only sometimes (for example, missing statistical data), it
is best to use the Nullable{T} type, which allows specifying the type of a missing value.

The empty tuple (()) is another form of nothingness. But, it should not really be thought of
as nothing but rather a tuple of zero values.

In code written for Julia prior to version 0.4 you may occasionally see None, which is quite
different. It is the empty (or “bottom”) type, a type with no values and no subtypes (except itself).
This is now written as Union{} (an empty union type). You will generally not need to use this
type.






Memory


Why does x += y allocate memory when x and y are arrays?

In Julia, x += y gets replaced during parsing by x = x + y. For arrays, this has the consequence
that, rather than storing the result in the same location in memory as x, it allocates a new
array to store the result.

While this behavior might surprise some, the choice is deliberate. The main reason is the presence
of immutable objects within Julia, which cannot change their value once created.  Indeed, a
number is an immutable object; the statements x = 5; x += 1 do not modify the meaning of 5,
they modify the value bound to x. For an immutable, the only way to change the value is to reassign
it.

To amplify a bit further, consider the following function:

function power_by_squaring(x, n::Int)
    ispow2(n) || error("This implementation only works for powers of 2")
    while n >= 2
        x *= x
        n >>= 1
    end
    x
end





After a call like x = 5; y = power_by_squaring(x, 4), you would get the expected result: x == 5 && y == 625.
However, now suppose that *=, when used with matrices, instead mutated the left hand side.
There would be two problems:


	For general square matrices, A = A*B cannot be implemented without temporary storage: A[1,1]
gets computed and stored on the left hand side before you’re done using it on the right hand side.


	Suppose you were willing to allocate a temporary for the computation (which would eliminate most
of the point of making *= work in-place); if you took advantage of the mutability of x, then
this function would behave differently for mutable vs. immutable inputs. In particular, for immutable
x, after the call you’d have (in general) y != x, but for mutable x you’d have y == x.




Because supporting generic programming is deemed more important than potential performance optimizations
that can be achieved by other means (e.g., using explicit loops), operators like += and *=
work by rebinding new values.






Asynchronous IO and concurrent synchronous writes


Why do concurrent writes to the same stream result in inter-mixed output?

While the streaming I/O API is synchronous, the underlying implementation is fully asynchronous.

Consider the printed output from the following:

julia> @sync for i in 1:3
           @async write(STDOUT, string(i), " Foo ", " Bar ")
       end
123 Foo  Foo  Foo  Bar  Bar  Bar





This is happening because, while the write call is synchronous, the writing of each argument
yields to other tasks while waiting for that part of the I/O to complete.

print and println “lock” the stream during a call. Consequently changing write to println
in the above example results in:

julia> @sync for i in 1:3
           @async println(STDOUT, string(i), " Foo ", " Bar ")
       end
1 Foo  Bar
2 Foo  Bar
3 Foo  Bar





You can lock your writes with a ReentrantLock like this:

julia> l = ReentrantLock()
ReentrantLock(Nullable{Task}(), Condition(Any[]), 0)

julia> @sync for i in 1:3
           @async begin
               lock(l)
               try
                   write(STDOUT, string(i), " Foo ", " Bar ")
               finally
                   unlock(l)
               end
           end
       end
1 Foo  Bar 2 Foo  Bar 3 Foo  Bar










Julia Releases


Do I want to use a release, beta, or nightly version of Julia?

You may prefer the release version of Julia if you are looking for a stable code base. Releases
generally occur every 6 months, giving you a stable platform for writing code.

You may prefer the beta version of Julia if you don’t mind being slightly behind the latest bugfixes
and changes, but find the slightly faster rate of changes more appealing. Additionally, these
binaries are tested before they are published to ensure they are fully functional.

You may prefer the nightly version of Julia if you want to take advantage of the latest updates
to the language, and don’t mind if the version available today occasionally doesn’t actually work.

Finally, you may also consider building Julia from source for yourself. This option is mainly
for those individuals who are comfortable at the command line, or interested in learning. If this
describes you, you may also be interested in reading our guidelines for contributing [https://github.com/JuliaLang/julia/blob/master/CONTRIBUTING.md].

Links to each of these download types can be found on the download page at https://julialang.org/downloads/.
Note that not all versions of Julia are available for all platforms.




When are deprecated functions removed?

Deprecated functions are removed after the subsequent release. For example, functions marked as
deprecated in the 0.1 release will not be available starting with the 0.2 release.
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[Functions](@id man-functions)

In Julia, a function is an object that maps a tuple of argument values to a return value. Julia
functions are not pure mathematical functions, in the sense that functions can alter and be affected
by the global state of the program. The basic syntax for defining functions in Julia is:

julia> function f(x,y)
           x + y
       end
f (generic function with 1 method)





There is a second, more terse syntax for defining a function in Julia. The traditional function
declaration syntax demonstrated above is equivalent to the following compact “assignment form”:

julia> f(x,y) = x + y
f (generic function with 1 method)





In the assignment form, the body of the function must be a single expression, although it can
be a compound expression (see [Compound Expressions](@ref man-compound-expressions)). Short, simple function definitions
are common in Julia. The short function syntax is accordingly quite idiomatic, considerably reducing
both typing and visual noise.

A function is called using the traditional parenthesis syntax:

julia> f(2,3)
5





Without parentheses, the expression f refers to the function object, and can be passed around
like any value:

julia> g = f;

julia> g(2,3)
5





As with variables, Unicode can also be used for function names:

julia> ∑(x,y) = x + y
∑ (generic function with 1 method)

julia> ∑(2, 3)
5






Argument Passing Behavior

Julia function arguments follow a convention sometimes called “pass-by-sharing”, which means that
values are not copied when they are passed to functions. Function arguments themselves act as
new variable bindings (new locations that can refer to values), but the values they refer to
are identical to the passed values. Modifications to mutable values (such as Arrays) made within
a function will be visible to the caller. This is the same behavior found in Scheme, most Lisps,
Python, Ruby and Perl, among other dynamic languages.




The return Keyword

The value returned by a function is the value of the last expression evaluated, which, by default,
is the last expression in the body of the function definition. In the example function, f, from
the previous section this is the value of the expression x + y. As in C and most other imperative
or functional languages, the return keyword causes a function to return immediately, providing
an expression whose value is returned:

function g(x,y)
    return x * y
    x + y
end





Since function definitions can be entered into interactive sessions, it is easy to compare these
definitions:

julia> f(x,y) = x + y
f (generic function with 1 method)

julia> function g(x,y)
           return x * y
           x + y
       end
g (generic function with 1 method)

julia> f(2,3)
5

julia> g(2,3)
6





Of course, in a purely linear function body like g, the usage of return is pointless since
the expression x + y is never evaluated and we could simply make x * y the last expression
in the function and omit the return. In conjunction with other control flow, however, return
is of real use. Here, for example, is a function that computes the hypotenuse length of a right
triangle with sides of length x and y, avoiding overflow:

julia> function hypot(x,y)
           x = abs(x)
           y = abs(y)
           if x > y
               r = y/x
               return x*sqrt(1+r*r)
           end
           if y == 0
               return zero(x)
           end
           r = x/y
           return y*sqrt(1+r*r)
       end
hypot (generic function with 1 method)

julia> hypot(3, 4)
5.0





There are three possible points of return from this function, returning the values of three different
expressions, depending on the values of x and y. The return on the last line could be omitted
since it is the last expression.




Operators Are Functions

In Julia, most operators are just functions with support for special syntax. (The exceptions are
operators with special evaluation semantics like && and ||. These operators cannot be functions
since Short-Circuit Evaluation requires that their operands are not evaluated before evaluation
of the operator.) Accordingly, you can also apply them using parenthesized argument lists, just
as you would any other function:

julia> 1 + 2 + 3
6

julia> +(1,2,3)
6





The infix form is exactly equivalent to the function application form – in fact the former is
parsed to produce the function call internally. This also means that you can assign and pass around
operators such as +() and *() just like you would with other function values:

julia> f = +;

julia> f(1,2,3)
6





Under the name f, the function does not support infix notation, however.




Operators With Special Names

A few special expressions correspond to calls to functions with non-obvious names. These are:

| Expression        | Calls                  |
|:—————– |:———————- |
| [A B C ...]     | hcat()       |
| [A; B; C; ...]  | vcat()       |
| [A B; C D; ...] | hvcat()      |
| A'              | ctranspose() |
| A.'             | transpose()  |
| 1:n             | colon()      |
| A[i]            | getindex()   |
| A[i]=x          | setindex!()  |

These functions are included in the Base.Operators module even though they do not have operator-like
names.




[Anonymous Functions](@id man-anonymous-functions)

Functions in Julia are first-class objects [https://en.wikipedia.org/wiki/First-class_citizen]:
they can be assigned to variables, and called using the standard function call syntax from the
variable they have been assigned to. They can be used as arguments, and they can be returned as
values. They can also be created anonymously, without being given a name, using either of these
syntaxes:

julia> x -> x^2 + 2x - 1
(::#1) (generic function with 1 method)

julia> function (x)
           x^2 + 2x - 1
       end
(::#3) (generic function with 1 method)





This creates a function taking one argument x and returning the value of the polynomial x^2 + 2x - 1 at that value. Notice that the result is a generic function, but with a compiler-generated
name based on consecutive numbering.

The primary use for anonymous functions is passing them to functions which take other functions
as arguments. A classic example is map(), which applies a function to each value of
an array and returns a new array containing the resulting values:

julia> map(round, [1.2,3.5,1.7])
3-element Array{Float64,1}:
 1.0
 4.0
 2.0





This is fine if a named function effecting the transform one wants already exists to pass as the
first argument to map(). Often, however, a ready-to-use, named function does not exist.
In these situations, the anonymous function construct allows easy creation of a single-use function
object without needing a name:

julia> map(x -> x^2 + 2x - 1, [1,3,-1])
3-element Array{Int64,1}:
  2
 14
 -2





An anonymous function accepting multiple arguments can be written using the syntax (x,y,z)->2x+y-z.
A zero-argument anonymous function is written as ()->3. The idea of a function with no arguments
may seem strange, but is useful for “delaying” a computation. In this usage, a block of code is
wrapped in a zero-argument function, which is later invoked by calling it as f().




Multiple Return Values

In Julia, one returns a tuple of values to simulate returning multiple values. However, tuples
can be created and destructured without needing parentheses, thereby providing an illusion that
multiple values are being returned, rather than a single tuple value. For example, the following
function returns a pair of values:

julia> function foo(a,b)
           a+b, a*b
       end
foo (generic function with 1 method)





If you call it in an interactive session without assigning the return value anywhere, you will
see the tuple returned:

julia> foo(2,3)
(5, 6)





A typical usage of such a pair of return values, however, extracts each value into a variable.
Julia supports simple tuple “destructuring” that facilitates this:

julia> x, y = foo(2,3)
(5, 6)

julia> x
5

julia> y
6





You can also return multiple values via an explicit usage of the return keyword:

function foo(a,b)
    return a+b, a*b
end





This has the exact same effect as the previous definition of foo.




Varargs Functions

It is often convenient to be able to write functions taking an arbitrary number of arguments.
Such functions are traditionally known as “varargs” functions, which is short for “variable number
of arguments”. You can define a varargs function by following the last argument with an ellipsis:

julia> bar(a,b,x...) = (a,b,x)
bar (generic function with 1 method)





The variables a and b are bound to the first two argument values as usual, and the variable
x is bound to an iterable collection of the zero or more values passed to bar after its first
two arguments:

julia> bar(1,2)
(1, 2, ())

julia> bar(1,2,3)
(1, 2, (3,))

julia> bar(1, 2, 3, 4)
(1, 2, (3, 4))

julia> bar(1,2,3,4,5,6)
(1, 2, (3, 4, 5, 6))





In all these cases, x is bound to a tuple of the trailing values passed to bar.

It is possible to constrain the number of values passed as a variable argument; this will be discussed
later in Parametrically-constrained Varargs methods.

On the flip side, it is often handy to “splice” the values contained in an iterable collection
into a function call as individual arguments. To do this, one also uses ... but in the function
call instead:

julia> x = (3, 4)
(3, 4)

julia> bar(1,2,x...)
(1, 2, (3, 4))





In this case a tuple of values is spliced into a varargs call precisely where the variable number
of arguments go. This need not be the case, however:

julia> x = (2, 3, 4)
(2, 3, 4)

julia> bar(1,x...)
(1, 2, (3, 4))

julia> x = (1, 2, 3, 4)
(1, 2, 3, 4)

julia> bar(x...)
(1, 2, (3, 4))





Furthermore, the iterable object spliced into a function call need not be a tuple:

julia> x = [3,4]
2-element Array{Int64,1}:
 3
 4

julia> bar(1,2,x...)
(1, 2, (3, 4))

julia> x = [1,2,3,4]
4-element Array{Int64,1}:
 1
 2
 3
 4

julia> bar(x...)
(1, 2, (3, 4))





Also, the function that arguments are spliced into need not be a varargs function (although it
often is):

julia> baz(a,b) = a + b;

julia> args = [1,2]
2-element Array{Int64,1}:
 1
 2

julia> baz(args...)
3

julia> args = [1,2,3]
3-element Array{Int64,1}:
 1
 2
 3

julia> baz(args...)
ERROR: MethodError: no method matching baz(::Int64, ::Int64, ::Int64)
Closest candidates are:
  baz(::Any, ::Any) at none:1





As you can see, if the wrong number of elements are in the spliced container, then the function
call will fail, just as it would if too many arguments were given explicitly.




Optional Arguments

In many cases, function arguments have sensible default values and therefore might not need to
be passed explicitly in every call. For example, the library function parse(T, num, base)
interprets a string as a number in some base. The base argument defaults to 10. This behavior
can be expressed concisely as:

function parse(T, num, base=10)
    ###
end





With this definition, the function can be called with either two or three arguments, and 10
is automatically passed when a third argument is not specified:

julia> parse(Int,"12",10)
12

julia> parse(Int,"12",3)
5

julia> parse(Int,"12")
12





Optional arguments are actually just a convenient syntax for writing multiple method definitions
with different numbers of arguments (see Note on Optional and keyword Arguments).




Keyword Arguments

Some functions need a large number of arguments, or have a large number of behaviors. Remembering
how to call such functions can be difficult. Keyword arguments can make these complex interfaces
easier to use and extend by allowing arguments to be identified by name instead of only by position.

For example, consider a function plot that plots a line. This function might have many options,
for controlling line style, width, color, and so on. If it accepts keyword arguments, a possible
call might look like plot(x, y, width=2), where we have chosen to specify only line width. Notice
that this serves two purposes. The call is easier to read, since we can label an argument with
its meaning. It also becomes possible to pass any subset of a large number of arguments, in any
order.

Functions with keyword arguments are defined using a semicolon in the signature:

function plot(x, y; style="solid", width=1, color="black")
    ###
end





When the function is called, the semicolon is optional: one can either call plot(x, y, width=2)
or plot(x, y; width=2), but the former style is more common. An explicit semicolon is required
only for passing varargs or computed keywords as described below.

Keyword argument default values are evaluated only when necessary (when a corresponding keyword
argument is not passed), and in left-to-right order. Therefore default expressions may refer to
prior keyword arguments.

The types of keyword arguments can be made explicit as follows:

function f(;x::Int64=1)
    ###
end





Extra keyword arguments can be collected using ..., as in varargs functions:

function f(x; y=0, kwargs...)
    ###
end





Inside f, kwargs will be a collection of (key,value) tuples, where each key is a symbol.
Such collections can be passed as keyword arguments using a semicolon in a call, e.g. f(x, z=1; kwargs...).
Dictionaries can also be used for this purpose.

One can also pass (key,value) tuples, or any iterable expression (such as a => pair) that
can be assigned to such a tuple, explicitly after a semicolon. For example, plot(x, y; (:width,2))
and plot(x, y; :width => 2) are equivalent to plot(x, y, width=2). This is useful in situations
where the keyword name is computed at runtime.

The nature of keyword arguments makes it possible to specify the same argument more than once.
For example, in the call plot(x, y; options..., width=2) it is possible that the options structure
also contains a value for width. In such a case the rightmost occurrence takes precedence; in
this example, width is certain to have the value 2.




Evaluation Scope of Default Values

Optional and keyword arguments differ slightly in how their default values are evaluated. When
optional argument default expressions are evaluated, only previous arguments are in scope. In
contrast, all the arguments are in scope when keyword arguments default expressions are evaluated.
For example, given this definition:

function f(x, a=b, b=1)
    ###
end





the b in a=b refers to a b in an outer scope, not the subsequent argument b. However,
if a and b were keyword arguments instead, then both would be created in the same scope and
the b in a=b would refer to the subsequent argument b (shadowing any b in an outer scope),
which would result in an undefined variable error (since the default expressions are evaluated
left-to-right, and b has not been assigned yet).




Do-Block Syntax for Function Arguments

Passing functions as arguments to other functions is a powerful technique, but the syntax for
it is not always convenient. Such calls are especially awkward to write when the function argument
requires multiple lines. As an example, consider calling map() on a function with several
cases:

map(x->begin
           if x < 0 && iseven(x)
               return 0
           elseif x == 0
               return 1
           else
               return x
           end
       end,
    [A, B, C])





Julia provides a reserved word do for rewriting this code more clearly:

map([A, B, C]) do x
    if x < 0 && iseven(x)
        return 0
    elseif x == 0
        return 1
    else
        return x
    end
end





The do x syntax creates an anonymous function with argument x and passes it as the first argument
to map(). Similarly, do a,b would create a two-argument anonymous function, and a
plain do would declare that what follows is an anonymous function of the form () -> ....

How these arguments are initialized depends on the “outer” function; here, map() will
sequentially set x to A, B, C, calling the anonymous function on each, just as would happen
in the syntax map(func, [A, B, C]).

This syntax makes it easier to use functions to effectively extend the language, since calls look
like normal code blocks. There are many possible uses quite different from map(), such
as managing system state. For example, there is a version of open() that runs code ensuring
that the opened file is eventually closed:

open("outfile", "w") do io
    write(io, data)
end





This is accomplished by the following definition:

function open(f::Function, args...)
    io = open(args...)
    try
        f(io)
    finally
        close(io)
    end
end





Here, open() first opens the file for writing and then passes the resulting output stream
to the anonymous function you defined in the do ... end block. After your function exits, open()
will make sure that the stream is properly closed, regardless of whether your function exited
normally or threw an exception. (The try/finally construct will be described in Control Flow.)

With the do block syntax, it helps to check the documentation or implementation to know how
the arguments of the user function are initialized.




[Dot Syntax for Vectorizing Functions](@id man-vectorized)

In technical-computing languages, it is common to have “vectorized” versions of functions, which
simply apply a given function f(x) to each element of an array A to yield a new array via
f(A). This kind of syntax is convenient for data processing, but in other languages vectorization
is also often required for performance: if loops are slow, the “vectorized” version of a function
can call fast library code written in a low-level language. In Julia, vectorized functions are
not required for performance, and indeed it is often beneficial to write your own loops (see
[Performance Tips](@ref man-performance-tips)), but they can still be convenient. Therefore, any Julia function
f can be applied elementwise to any array (or other collection) with the syntax f.(A).
For example sin can be applied to all elements in the vector A, like so:

julia> A = [1.0, 2.0, 3.0]
3-element Array{Float64,1}:
 1.0
 2.0
 3.0

julia> sin.(A)
3-element Array{Float64,1}:
 0.841471
 0.909297
 0.14112





Of course, you can omit the dot if you write a specialized “vector” method of f, e.g. via f(A::AbstractArray) = map(f, A),
and this is just as efficient as f.(A). But that approach requires you to decide in advance
which functions you want to vectorize.

More generally, f.(args...) is actually equivalent to broadcast(f, args...), which allows
you to operate on multiple arrays (even of different shapes), or a mix of arrays and scalars (see
Broadcasting). For example, if you have f(x,y) = 3x + 4y, then f.(pi,A) will return
a new array consisting of f(pi,a) for each a in A, and f.(vector1,vector2) will return
a new vector consisting of f(vector1[i],vector2[i]) for each index i (throwing an exception
if the vectors have different length).

julia> f(x,y) = 3x + 4y;

julia> A = [1.0, 2.0, 3.0];

julia> B = [4.0, 5.0, 6.0];

julia> f.(pi, A)
3-element Array{Float64,1}:
 13.4248
 17.4248
 21.4248

julia> f.(A, B)
3-element Array{Float64,1}:
 19.0
 26.0
 33.0





Moreover, nested f.(args...) calls are fused into a single broadcast loop. For example,
sin.(cos.(X)) is equivalent to broadcast(x -> sin(cos(x)), X), similar to [sin(cos(x)) for x in X]:
there is only a single loop over X, and a single array is allocated for the result. [In contrast,
sin(cos(X)) in a typical “vectorized” language would first allocate one temporary array for
tmp=cos(X), and then compute sin(tmp) in a separate loop, allocating a second array.] This
loop fusion is not a compiler optimization that may or may not occur, it is a syntactic guarantee
whenever nested f.(args...) calls are encountered. Technically, the fusion stops as soon as
a “non-dot” function call is encountered; for example, in sin.(sort(cos.(X))) the sin and cos
loops cannot be merged because of the intervening sort function.

Finally, the maximum efficiency is typically achieved when the output array of a vectorized operation
is pre-allocated, so that repeated calls do not allocate new arrays over and over again for
the results (Pre-allocating outputs:). A convenient syntax for this is X .= ..., which
is equivalent to broadcast!(identity, X, ...) except that, as above, the broadcast! loop is
fused with any nested “dot” calls. For example, X .= sin.(Y) is equivalent to broadcast!(sin, X, Y),
overwriting X with sin.(Y) in-place. If the left-hand side is an array-indexing expression,
e.g. X[2:end] .= sin.(Y), then it translates to broadcast! on a view, e.g. broadcast!(sin, view(X, 2:endof(X)), Y),
so that the left-hand side is updated in-place.

Since adding dots to many operations and function calls in an expression
can be tedious and lead to code that is difficult to read, the macro
[@.](@ref @dot) is provided to convert every function call,
operation, and assignment in an expression into the “dotted” version.

julia> Y = [1.0, 2.0, 3.0, 4.0];

julia> X = similar(Y); # pre-allocate output array

julia> @. X = sin(cos(Y)) # equivalent to X .= sin.(cos.(Y))
4-element Array{Float64,1}:
  0.514395
 -0.404239
 -0.836022
 -0.608083





Binary (or unary) operators like .+ are handled with the same mechanism:
they are equivalent to broadcast calls and are fused with other nested “dot” calls.
X .+= Y etcetera is equivalent to X .= X .+ Y and results in a fused in-place assignment;
see also [dot operators](@ref man-dot-operators).




Further Reading

We should mention here that this is far from a complete picture of defining functions. Julia has
a sophisticated type system and allows multiple dispatch on argument types. None of the examples
given here provide any type annotations on their arguments, meaning that they are applicable to
all types of arguments. The type system is described in [Types](@ref man-types) and defining a function
in terms of methods chosen by multiple dispatch on run-time argument types is described in Methods.
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Getting Started

Julia installation is straightforward, whether using precompiled binaries or compiling from source.
Download and install Julia by following the instructions at https://julialang.org/downloads/.

The easiest way to learn and experiment with Julia is by starting an interactive session (also
known as a read-eval-print loop or “repl”) by double-clicking the Julia executable or running
julia from the command line:

$ julia
               _
   _       _ _(_)_     |  A fresh approach to technical computing
  (_)     | (_) (_)    |  Documentation: https://docs.julialang.org
   _ _   _| |_  __ _   |  Type "?help" for help.
  | | | | | | |/ _` |  |
  | | |_| | | | (_| |  |  Version 0.5.0-dev+2440 (2016-02-01 02:22 UTC)
 _/ |\__'_|_|_|\__'_|  |  Commit 2bb94d6 (11 days old master)
|__/                   |  x86_64-apple-darwin13.1.0

julia> 1 + 2
3

julia> ans
3





To exit the interactive session, type ^D – the control key together with the d key or type
quit(). When run in interactive mode, julia displays a banner and prompts the user for input.
Once the user has entered a complete expression, such as 1 + 2, and hits enter, the interactive
session evaluates the expression and shows its value. If an expression is entered into an interactive
session with a trailing semicolon, its value is not shown. The variable ans is bound to the
value of the last evaluated expression whether it is shown or not. The ans variable is only
bound in interactive sessions, not when Julia code is run in other ways.

To evaluate expressions written in a source file file.jl, write include("file.jl").

To run code in a file non-interactively, you can give it as the first argument to the julia
command:

$ julia script.jl arg1 arg2...





As the example implies, the following command-line arguments to julia are taken as command-line
arguments to the program script.jl, passed in the global constant ARGS. The name of the script
itself is passed in as the global PROGRAM_FILE. Note that ARGS is also set when script code
is given using the -e option on the command line (see the julia help output below) but PROGRAM_FILE
will be empty. For example, to just print the arguments given to a script, you could do this:

$ julia -e 'println(PROGRAM_FILE); for x in ARGS; println(x); end' foo bar

foo
bar





Or you could put that code into a script and run it:

$ echo 'println(PROGRAM_FILE); for x in ARGS; println(x); end' > script.jl
$ julia script.jl foo bar
script.jl
foo
bar





The -- delimiter can be used to separate command-line args to the scriptfile from args to Julia:

$ julia --color=yes -O -- foo.jl arg1 arg2..





Julia can be started in parallel mode with either the -p or the --machinefile options. -p n
will launch an additional n worker processes, while --machinefile file will launch a worker
for each line in file file. The machines defined in file must be accessible via a passwordless
ssh login, with Julia installed at the same location as the current host. Each machine definition
takes the form [count*][user@]host[:port] [bind_addr[:port]] . user defaults to current user,
port to the standard ssh port. count is the number of workers to spawn on the node, and defaults
to 1. The optional bind-to bind_addr[:port] specifies the ip-address and port that other workers
should use to connect to this worker.

If you have code that you want executed whenever Julia is run, you can put it in ~/.juliarc.jl:

$ echo 'println("Greetings! 你好! 안녕하세요?")' > ~/.juliarc.jl
$ julia
Greetings! 你好! 안녕하세요?

...





There are various ways to run Julia code and provide options, similar to those available for the
perl and ruby programs:

julia [switches] -- [programfile] [args...]
 -v, --version             Display version information
 -h, --help                Print this message

 -J, --sysimage <file>     Start up with the given system image file
 --precompiled={yes|no}    Use precompiled code from system image if available
 --compilecache={yes|no}   Enable/disable incremental precompilation of modules
 -H, --home <dir>          Set location of `julia` executable
 --startup-file={yes|no}   Load ~/.juliarc.jl
 --handle-signals={yes|no} Enable or disable Julia's default signal handlers

 -e, --eval <expr>         Evaluate <expr>
 -E, --print <expr>        Evaluate and show <expr>
 -L, --load <file>         Load <file> immediately on all processors

 -p, --procs {N|auto}      Integer value N launches N additional local worker processes
                           "auto" launches as many workers as the number of local cores
 --machinefile <file>      Run processes on hosts listed in <file>

 -i                        Interactive mode; REPL runs and isinteractive() is true
 -q, --quiet               Quiet startup (no banner)
 --color={yes|no}          Enable or disable color text
 --history-file={yes|no}   Load or save history

 --compile={yes|no|all|min}Enable or disable JIT compiler, or request exhaustive compilation
 -C, --cpu-target <target> Limit usage of cpu features up to <target>
 -O, --optimize={0,1,2,3}  Set the optimization level (default is 2 if unspecified or 3 if specified as -O)
 -g, -g <level>            Enable / Set the level of debug info generation (default is 1 if unspecified or 2 if specified as -g)
 --inline={yes|no}         Control whether inlining is permitted (overrides functions declared as @inline)
 --check-bounds={yes|no}   Emit bounds checks always or never (ignoring declarations)
 --math-mode={ieee,fast}   Disallow or enable unsafe floating point optimizations (overrides @fastmath declaration)

 --depwarn={yes|no|error}  Enable or disable syntax and method deprecation warnings ("error" turns warnings into errors)

 --output-o name           Generate an object file (including system image data)
 --output-ji name          Generate a system image data file (.ji)
 --output-bc name          Generate LLVM bitcode (.bc)
 --output-incremental=no   Generate an incremental output file (rather than complete)

 --code-coverage={none|user|all}, --code-coverage
                           Count executions of source lines (omitting setting is equivalent to "user")
 --track-allocation={none|user|all}, --track-allocation
                           Count bytes allocated by each source line






Resources

In addition to this manual, there are various other resources that may help new users get started
with Julia:


	Julia and IJulia cheatsheet [http://math.mit.edu/~stevenj/Julia-cheatsheet.pdf]


	Learn Julia in a few minutes [https://learnxinyminutes.com/docs/julia/]


	Learn Julia the Hard Way [https://github.com/chrisvoncsefalvay/learn-julia-the-hard-way]


	Julia by Example [http://samuelcolvin.github.io/JuliaByExample/]


	Hands-on Julia [https://github.com/dpsanders/hands_on_julia]


	Tutorial for Homer Reid’s numerical analysis class [http://homerreid.dyndns.org/teaching/18.330/JuliaProgramming.shtml]


	An introductory presentation [https://raw.githubusercontent.com/ViralBShah/julia-presentations/master/Fifth-Elephant-2013/Fifth-Elephant-2013.pdf]


	Videos from the Julia tutorial at MIT [https://julialang.org/blog/2013/03/julia-tutorial-MIT]


	YouTube videos from the JuliaCons [https://www.youtube.com/user/JuliaLanguage/playlists]
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Handling Operating System Variation

When dealing with platform libraries, it is often necessary to provide special cases for various
platforms. The variable Sys.KERNEL can be used to write these special cases. There are several
functions intended to make this easier: is_unix, is_linux, is_apple, is_bsd, and is_windows.
These may be used as follows:

if is_windows()
    some_complicated_thing(a)
end





Note that is_linux and is_apple are mutually exclusive subsets of is_unix. Additionally,
there is a macro @static which makes it possible to use these functions to conditionally hide
invalid code, as demonstrated in the following examples.

Simple blocks:

ccall( (@static is_windows() ? :_fopen : :fopen), ...)





Complex blocks:

@static if is_linux()
    some_complicated_thing(a)
else
    some_different_thing(a)
end





When chaining conditionals (including if/elseif/end), the @static must be repeated for each
level (parentheses optional, but recommended for readability):

@static is_windows() ? :a : (@static is_apple() ? :b : :c)
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The Julia Manual


	[Introduction](@ref man-introduction)


	Getting Started


	Variables


	Integers and Floating-Point Numbers


	Mathematical Operations and Elementary Functions


	Complex and Rational Numbers


	Strings


	Functions


	Control Flow


	[Scope of Variables](@ref scope-of-variables)


	[Types](@ref man-types)


	Methods


	[Constructors](@ref man-constructors)


	[Conversion and Promotion](@ref conversion-and-promotion)


	Interfaces


	Modules


	Documentation


	Metaprogramming


	[Multi-dimensional Arrays](@ref man-multi-dim-arrays)


	Linear algebra


	Networking and Streams


	Parallel Computing


	Date and DateTime


	Running External Programs


	Calling C and Fortran Code


	Handling Operating System Variation


	Environment Variables


	Interacting With Julia


	Embedding Julia


	Packages


	Package Development


	Profiling


	Memory allocation analysis


	Stack Traces


	[Performance Tips](@ref man-performance-tips)


	[Workflow Tips](@ref man-workflow-tips)


	Style Guide


	Frequently Asked Questions


	Noteworthy Differences from other Languages


	Unicode Input
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Integers and Floating-Point Numbers

Integers and floating-point values are the basic building blocks of arithmetic and computation.
Built-in representations of such values are called numeric primitives, while representations of
integers and floating-point numbers as immediate values in code are known as numeric literals.
For example, 1 is an integer literal, while 1.0 is a floating-point literal; their binary
in-memory representations as objects are numeric primitives.

Julia provides a broad range of primitive numeric types, and a full complement of arithmetic and
bitwise operators as well as standard mathematical functions are defined over them. These map
directly onto numeric types and operations that are natively supported on modern computers, thus
allowing Julia to take full advantage of computational resources. Additionally, Julia provides
software support for Arbitrary Precision Arithmetic, which can handle operations on numeric
values that cannot be represented effectively in native hardware representations, but at the cost
of relatively slower performance.

The following are Julia’s primitive numeric types:


	Integer types:




| Type              | Signed? | Number of bits | Smallest value | Largest value |
|:—————– |:——- |:————– |:————– |:————- |
| Int8    | ✓       | 8              | -2^7           | 2^7 - 1       |
| UInt8   |         | 8              | 0              | 2^8 - 1       |
| Int16   | ✓       | 16             | -2^15          | 2^15 - 1      |
| UInt16  |         | 16             | 0              | 2^16 - 1      |
| Int32   | ✓       | 32             | -2^31          | 2^31 - 1      |
| UInt32  |         | 32             | 0              | 2^32 - 1      |
| Int64   | ✓       | 64             | -2^63          | 2^63 - 1      |
| UInt64  |         | 64             | 0              | 2^64 - 1      |
| Int128  | ✓       | 128            | -2^127         | 2^127 - 1     |
| UInt128 |         | 128            | 0              | 2^128 - 1     |
| Bool    | N/A     | 8              | false (0)    | true (1)    |


	Floating-point types:




| Type              | Precision                                                                      | Number of bits |
|:—————– |:—————————————————————————— |:————– |
| Float16 | half [https://en.wikipedia.org/wiki/Half-precision_floating-point_format]     | 16             |
| Float32 | single [https://en.wikipedia.org/wiki/Single_precision_floating-point_format] | 32             |
| Float64 | double [https://en.wikipedia.org/wiki/Double_precision_floating-point_format] | 64             |

Additionally, full support for Complex and Rational Numbers is built on top of these primitive
numeric types. All numeric types interoperate naturally without explicit casting, thanks to a
flexible, user-extensible [type promotion system](@ref conversion-and-promotion).


Integers

Literal integers are represented in the standard manner:

julia> 1
1

julia> 1234
1234





The default type for an integer literal depends on whether the target system has a 32-bit architecture
or a 64-bit architecture:

# 32-bit system:
julia> typeof(1)
Int32

# 64-bit system:
julia> typeof(1)
Int64





The Julia internal variable Sys.WORD_SIZE indicates whether the target system is 32-bit
or 64-bit:

# 32-bit system:
julia> Sys.WORD_SIZE
32

# 64-bit system:
julia> Sys.WORD_SIZE
64





Julia also defines the types Int and UInt, which are aliases for the system’s signed and unsigned
native integer types respectively:

# 32-bit system:
julia> Int
Int32
julia> UInt
UInt32

# 64-bit system:
julia> Int
Int64
julia> UInt
UInt64





Larger integer literals that cannot be represented using only 32 bits but can be represented in
64 bits always create 64-bit integers, regardless of the system type:

# 32-bit or 64-bit system:
julia> typeof(3000000000)
Int64





Unsigned integers are input and output using the 0x prefix and hexadecimal (base 16) digits
0-9a-f (the capitalized digits A-F also work for input). The size of the unsigned value is
determined by the number of hex digits used:

julia> 0x1
0x01

julia> typeof(ans)
UInt8

julia> 0x123
0x0123

julia> typeof(ans)
UInt16

julia> 0x1234567
0x01234567

julia> typeof(ans)
UInt32

julia> 0x123456789abcdef
0x0123456789abcdef

julia> typeof(ans)
UInt64





This behavior is based on the observation that when one uses unsigned hex literals for integer
values, one typically is using them to represent a fixed numeric byte sequence, rather than just
an integer value.

Recall that the variable ans is set to the value of the last expression evaluated in
an interactive session. This does not occur when Julia code is run in other ways.

Binary and octal literals are also supported:

julia> 0b10
0x02

julia> typeof(ans)
UInt8

julia> 0o10
0x08

julia> typeof(ans)
UInt8





The minimum and maximum representable values of primitive numeric types such as integers are given
by the typemin() and typemax() functions:

julia> (typemin(Int32), typemax(Int32))
(-2147483648, 2147483647)

julia> for T in [Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128]
           println("$(lpad(T,7)): [$(typemin(T)),$(typemax(T))]")
       end
   Int8: [-128,127]
  Int16: [-32768,32767]
  Int32: [-2147483648,2147483647]
  Int64: [-9223372036854775808,9223372036854775807]
 Int128: [-170141183460469231731687303715884105728,170141183460469231731687303715884105727]
  UInt8: [0,255]
 UInt16: [0,65535]
 UInt32: [0,4294967295]
 UInt64: [0,18446744073709551615]
UInt128: [0,340282366920938463463374607431768211455]





The values returned by typemin() and typemax() are always of the given argument
type. (The above expression uses several features we have yet to introduce, including [for loops](@ref man-loops),
[Strings](@ref man-strings), and Interpolation, but should be easy enough to understand for users
with some existing programming experience.)


Overflow behavior

In Julia, exceeding the maximum representable value of a given type results in a wraparound behavior:

julia> x = typemax(Int64)
9223372036854775807

julia> x + 1
-9223372036854775808

julia> x + 1 == typemin(Int64)
true





Thus, arithmetic with Julia integers is actually a form of modular arithmetic [https://en.wikipedia.org/wiki/Modular_arithmetic].
This reflects the characteristics of the underlying arithmetic of integers as implemented on modern
computers. In applications where overflow is possible, explicit checking for wraparound produced
by overflow is essential; otherwise, the BigInt type in Arbitrary Precision Arithmetic
is recommended instead.




Division errors

Integer division (the div function) has two exceptional cases: dividing by zero, and dividing
the lowest negative number (typemin()) by -1. Both of these cases throw a DivideError.
The remainder and modulus functions (rem and mod) throw a DivideError when their
second argument is zero.






Floating-Point Numbers

Literal floating-point numbers are represented in the standard formats:

julia> 1.0
1.0

julia> 1.
1.0

julia> 0.5
0.5

julia> .5
0.5

julia> -1.23
-1.23

julia> 1e10
1.0e10

julia> 2.5e-4
0.00025





The above results are all Float64 values. Literal Float32 values can be
entered by writing an f in place of e:

julia> 0.5f0
0.5f0

julia> typeof(ans)
Float32

julia> 2.5f-4
0.00025f0





Values can be converted to Float32 easily:

julia> Float32(-1.5)
-1.5f0

julia> typeof(ans)
Float32





Hexadecimal floating-point literals are also valid, but only as Float64 values:

julia> 0x1p0
1.0

julia> 0x1.8p3
12.0

julia> 0x.4p-1
0.125

julia> typeof(ans)
Float64





Half-precision floating-point numbers are also supported (Float16), but they are
implemented in software and use Float32 for calculations.

julia> sizeof(Float16(4.))
2

julia> 2*Float16(4.)
Float16(8.0)





The underscore _ can be used as digit separator:

julia> 10_000, 0.000_000_005, 0xdead_beef, 0b1011_0010
(10000, 5.0e-9, 0xdeadbeef, 0xb2)






Floating-point zero

Floating-point numbers have two zeros [https://en.wikipedia.org/wiki/Signed_zero], positive zero
and negative zero. They are equal to each other but have different binary representations, as
can be seen using the bits function: :

julia> 0.0 == -0.0
true

julia> bits(0.0)
"0000000000000000000000000000000000000000000000000000000000000000"

julia> bits(-0.0)
"1000000000000000000000000000000000000000000000000000000000000000"








Special floating-point values

There are three specified standard floating-point values that do not correspond to any point on
the real number line:

| Float16 | Float32 | Float64 | Name              | Description                                                     |
|:——— |:——— |:——— |:—————– |:————————————————————— |
| Inf16   | Inf32   | Inf     | positive infinity | a value greater than all finite floating-point values           |
| -Inf16  | -Inf32  | -Inf    | negative infinity | a value less than all finite floating-point values              |
| NaN16   | NaN32   | NaN     | not a number      | a value not == to any floating-point value (including itself) |

For further discussion of how these non-finite floating-point values are ordered with respect
to each other and other floats, see Numeric Comparisons. By the IEEE 754 standard [https://en.wikipedia.org/wiki/IEEE_754-2008],
these floating-point values are the results of certain arithmetic operations:

julia> 1/Inf
0.0

julia> 1/0
Inf

julia> -5/0
-Inf

julia> 0.000001/0
Inf

julia> 0/0
NaN

julia> 500 + Inf
Inf

julia> 500 - Inf
-Inf

julia> Inf + Inf
Inf

julia> Inf - Inf
NaN

julia> Inf * Inf
Inf

julia> Inf / Inf
NaN

julia> 0 * Inf
NaN





The typemin() and typemax() functions also apply to floating-point types:

julia> (typemin(Float16),typemax(Float16))
(-Inf16, Inf16)

julia> (typemin(Float32),typemax(Float32))
(-Inf32, Inf32)

julia> (typemin(Float64),typemax(Float64))
(-Inf, Inf)








Machine epsilon

Most real numbers cannot be represented exactly with floating-point numbers, and so for many purposes
it is important to know the distance between two adjacent representable floating-point numbers,
which is often known as machine epsilon [https://en.wikipedia.org/wiki/Machine_epsilon].

Julia provides eps(), which gives the distance between 1.0 and the next larger representable
floating-point value:

julia> eps(Float32)
1.1920929f-7

julia> eps(Float64)
2.220446049250313e-16

julia> eps() # same as eps(Float64)
2.220446049250313e-16





These values are 2.0^-23 and 2.0^-52 as Float32 and Float64 values,
respectively. The eps() function can also take a floating-point value as an
argument, and gives the absolute difference between that value and the next representable
floating point value. That is, eps(x) yields a value of the same type as x such that
x + eps(x) is the next representable floating-point value larger than x:

julia> eps(1.0)
2.220446049250313e-16

julia> eps(1000.)
1.1368683772161603e-13

julia> eps(1e-27)
1.793662034335766e-43

julia> eps(0.0)
5.0e-324





The distance between two adjacent representable floating-point numbers is not constant, but is
smaller for smaller values and larger for larger values. In other words, the representable floating-point
numbers are densest in the real number line near zero, and grow sparser exponentially as one moves
farther away from zero. By definition, eps(1.0) is the same as eps(Float64) since 1.0 is
a 64-bit floating-point value.

Julia also provides the nextfloat() and prevfloat() functions which return
the next largest or smallest representable floating-point number to the argument respectively:

julia> x = 1.25f0
1.25f0

julia> nextfloat(x)
1.2500001f0

julia> prevfloat(x)
1.2499999f0

julia> bits(prevfloat(x))
"00111111100111111111111111111111"

julia> bits(x)
"00111111101000000000000000000000"

julia> bits(nextfloat(x))
"00111111101000000000000000000001"





This example highlights the general principle that the adjacent representable floating-point numbers
also have adjacent binary integer representations.




Rounding modes

If a number doesn’t have an exact floating-point representation, it must be rounded to an appropriate
representable value, however, if wanted, the manner in which this rounding is done can be changed
according to the rounding modes presented in the IEEE 754 standard [https://en.wikipedia.org/wiki/IEEE_754-2008].

julia> x = 1.1; y = 0.1;

julia> x + y
1.2000000000000002

julia> setrounding(Float64,RoundDown) do
           x + y
       end
1.2





The default mode used is always RoundNearest, which rounds to the nearest representable
value, with ties rounded towards the nearest value with an even least significant bit.

!!! warning
Rounding is generally only correct for basic arithmetic functions (+(), -(),
*(), /() and sqrt()) and type conversion operations. Many other
functions assume the default RoundNearest mode is set, and can give erroneous results
when operating under other rounding modes.




Background and References

Floating-point arithmetic entails many subtleties which can be surprising to users who are unfamiliar
with the low-level implementation details. However, these subtleties are described in detail in
most books on scientific computation, and also in the following references:


	The definitive guide to floating point arithmetic is the IEEE 754-2008 Standard [http://standards.ieee.org/findstds/standard/754-2008.html];
however, it is not available for free online.


	For a brief but lucid presentation of how floating-point numbers are represented, see John D.
Cook’s article [https://www.johndcook.com/blog/2009/04/06/anatomy-of-a-floating-point-number/]
on the subject as well as his introduction [https://www.johndcook.com/blog/2009/04/06/numbers-are-a-leaky-abstraction/]
to some of the issues arising from how this representation differs in behavior from the idealized
abstraction of real numbers.


	Also recommended is Bruce Dawson’s series of blog posts on floating-point numbers [https://randomascii.wordpress.com/2012/05/20/thats-not-normalthe-performance-of-odd-floats/].


	For an excellent, in-depth discussion of floating-point numbers and issues of numerical accuracy
encountered when computing with them, see David Goldberg’s paper What Every Computer Scientist Should Know About Floating-Point Arithmetic [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.6768&rep=rep1&type=pdf].


	For even more extensive documentation of the history of, rationale for, and issues with floating-point
numbers, as well as discussion of many other topics in numerical computing, see the collected writings [https://people.eecs.berkeley.edu/~wkahan/]
of William Kahan [https://en.wikipedia.org/wiki/William_Kahan], commonly known as the “Father
of Floating-Point”. Of particular interest may be An Interview with the Old Man of Floating-Point [https://people.eecs.berkeley.edu/~wkahan/ieee754status/754story.html].









Arbitrary Precision Arithmetic

To allow computations with arbitrary-precision integers and floating point numbers, Julia wraps
the GNU Multiple Precision Arithmetic Library (GMP) [https://gmplib.org] and the GNU MPFR Library [http://www.mpfr.org],
respectively. The BigInt and BigFloat types are available in Julia for arbitrary
precision integer and floating point numbers respectively.

Constructors exist to create these types from primitive numerical types, and parse()
can be used to construct them from AbstractStrings.  Once created, they participate in arithmetic
with all other numeric types thanks to Julia’s [type promotion and conversion mechanism](@ref conversion-and-promotion):

julia> BigInt(typemax(Int64)) + 1
9223372036854775808

julia> parse(BigInt, "123456789012345678901234567890") + 1
123456789012345678901234567891

julia> parse(BigFloat, "1.23456789012345678901")
1.234567890123456789010000000000000000000000000000000000000000000000000000000004

julia> BigFloat(2.0^66) / 3
2.459565876494606882133333333333333333333333333333333333333333333333333333333344e+19

julia> factorial(BigInt(40))
815915283247897734345611269596115894272000000000





However, type promotion between the primitive types above and BigInt/BigFloat
is not automatic and must be explicitly stated.

julia> x = typemin(Int64)
-9223372036854775808

julia> x = x - 1
9223372036854775807

julia> typeof(x)
Int64

julia> y = BigInt(typemin(Int64))
-9223372036854775808

julia> y = y - 1
-9223372036854775809

julia> typeof(y)
BigInt





The default precision (in number of bits of the significand) and rounding mode of BigFloat
operations can be changed globally by calling setprecision() and setrounding(),
and all further calculations will take these changes in account.  Alternatively, the precision
or the rounding can be changed only within the execution of a particular block of code by using
the same functions with a do block:

julia> setrounding(BigFloat, RoundUp) do
           BigFloat(1) + parse(BigFloat, "0.1")
       end
1.100000000000000000000000000000000000000000000000000000000000000000000000000003

julia> setrounding(BigFloat, RoundDown) do
           BigFloat(1) + parse(BigFloat, "0.1")
       end
1.099999999999999999999999999999999999999999999999999999999999999999999999999986

julia> setprecision(40) do
           BigFloat(1) + parse(BigFloat, "0.1")
       end
1.1000000000004








[Numeric Literal Coefficients](@id man-numeric-literal-coefficients)

To make common numeric formulas and expressions clearer, Julia allows variables to be immediately
preceded by a numeric literal, implying multiplication. This makes writing polynomial expressions
much cleaner:

julia> x = 3
3

julia> 2x^2 - 3x + 1
10

julia> 1.5x^2 - .5x + 1
13.0





It also makes writing exponential functions more elegant:

julia> 2^2x
64





The precedence of numeric literal coefficients is the same as that of unary operators such as
negation. So 2^3x is parsed as 2^(3x), and 2x^3 is parsed as 2*(x^3).

Numeric literals also work as coefficients to parenthesized expressions:

julia> 2(x-1)^2 - 3(x-1) + 1
3





!!! note
The precedence of numeric literal coefficients used for implicit
multiplication is higher than other binary operators such as multiplication
(*), and division (/, \, and //).  This means, for example, that
1 / 2im equals -0.5im and 6 // 2(2 + 1) equals 1 // 1.

Additionally, parenthesized expressions can be used as coefficients to variables, implying multiplication
of the expression by the variable:

julia> (x-1)x
6





Neither juxtaposition of two parenthesized expressions, nor placing a variable before a parenthesized
expression, however, can be used to imply multiplication:

julia> (x-1)(x+1)
ERROR: MethodError: objects of type Int64 are not callable

julia> x(x+1)
ERROR: MethodError: objects of type Int64 are not callable





Both expressions are interpreted as function application: any expression that is not a numeric
literal, when immediately followed by a parenthetical, is interpreted as a function applied to
the values in parentheses (see Functions for more about functions). Thus, in both of these
cases, an error occurs since the left-hand value is not a function.

The above syntactic enhancements significantly reduce the visual noise incurred when writing common
mathematical formulae. Note that no whitespace may come between a numeric literal coefficient
and the identifier or parenthesized expression which it multiplies.


Syntax Conflicts

Juxtaposed literal coefficient syntax may conflict with two numeric literal syntaxes: hexadecimal
integer literals and engineering notation for floating-point literals. Here are some situations
where syntactic conflicts arise:


	The hexadecimal integer literal expression 0xff could be interpreted as the numeric literal
0 multiplied by the variable xff.


	The floating-point literal expression 1e10 could be interpreted as the numeric literal 1 multiplied
by the variable e10, and similarly with the equivalent E form.




In both cases, we resolve the ambiguity in favor of interpretation as a numeric literals:


	Expressions starting with 0x are always hexadecimal literals.


	Expressions starting with a numeric literal followed by e or E are always floating-point literals.









Literal zero and one

Julia provides functions which return literal 0 and 1 corresponding to a specified type or the
type of a given variable.

| Function          | Description                                      |
|:—————– |:———————————————— |
| zero(x) | Literal zero of type x or type of variable x |
| one(x)  | Literal one of type x or type of variable x  |

These functions are useful in Numeric Comparisons to avoid overhead from unnecessary
[type conversion](@ref conversion-and-promotion).

Examples:

julia> zero(Float32)
0.0f0

julia> zero(1.0)
0.0

julia> one(Int32)
1

julia> one(BigFloat)
1.000000000000000000000000000000000000000000000000000000000000000000000000000000
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Interacting With Julia

Julia comes with a full-featured interactive command-line REPL (read-eval-print loop) built into
the julia executable. In addition to allowing quick and easy evaluation of Julia statements,
it has a searchable history, tab-completion, many helpful keybindings, and dedicated help and
shell modes. The REPL can be started by simply calling julia with no arguments or double-clicking
on the executable:

$ julia
               _
   _       _ _(_)_     |  A fresh approach to technical computing
  (_)     | (_) (_)    |  Documentation: https://docs.julialang.org
   _ _   _| |_  __ _   |  Type "?help" for help.
  | | | | | | |/ _` |  |
  | | |_| | | | (_| |  |  Version 0.6.0-dev.2493 (2017-01-31 18:53 UTC)
 _/ |\__'_|_|_|\__'_|  |  Commit c99e12c* (0 days old master)
|__/                   |  x86_64-linux-gnu

julia>





To exit the interactive session, type ^D – the control key together with the d key on a blank
line – or type quit() followed by the return or enter key. The REPL greets you with a banner
and a julia> prompt.


The different prompt modes


The Julian mode

The REPL has four main modes of operation. The first and most common is the Julian prompt. It
is the default mode of operation; each new line initially starts with julia>. It is here that
you can enter Julia expressions. Hitting return or enter after a complete expression has been
entered will evaluate the entry and show the result of the last expression.

julia> string(1 + 2)
"3"





There are a number useful features unique to interactive work. In addition to showing the result,
the REPL also binds the result to the variable ans. A trailing semicolon on the line can be
used as a flag to suppress showing the result.

julia> string(3 * 4);

julia> ans
"12"





In Julia mode, the REPL supports something called prompt pasting. This activates when pasting
text that starts with julia> into the REPL. In that case, only expressions starting with
julia> are parsed, others are removed. This makes it is possible to paste a chunk of code
that has been copied from a REPL session without having to scrub away prompts and outputs. This
feature is enabled by default but can be disabled or enabled at will with Base.REPL.enable_promptpaste(::Bool).
If it is enabled, you can try it out by pasting the code block above this paragraph straight into
the REPL. This feature does not work on the standard Windows command prompt due to its limitation
at detecting when a paste occurs.




Help mode

When the cursor is at the beginning of the line, the prompt can be changed to a help mode by typing
?. Julia will attempt to print help or documentation for anything entered in help mode:

julia> ? # upon typing ?, the prompt changes (in place) to: help?>

help?> string
search: string String stringmime Cstring Cwstring RevString readstring randstring bytestring SubString

  string(xs...)

  Create a string from any values using the print function.





Macros, types and variables can also be queried:

help?> @time
  @time

  A macro to execute an expression, printing the time it took to execute, the number of allocations,
  and the total number of bytes its execution caused to be allocated, before returning the value of the
  expression.

  See also @timev, @timed, @elapsed, and @allocated.

help?> AbstractString
search: AbstractString AbstractSparseMatrix AbstractSparseVector AbstractSet

  No documentation found.

  Summary:

  abstract AbstractString <: Any

  Subtypes:

  Base.Test.GenericString
  DirectIndexString
  String





Help mode can be exited by pressing backspace at the beginning of the line.




[Shell mode](@id man-shell-mode)

Just as help mode is useful for quick access to documentation, another common task is to use the
system shell to execute system commands. Just as ? entered help mode when at the beginning
of the line, a semicolon (;) will enter the shell mode. And it can be exited by pressing backspace
at the beginning of the line.

julia> ; # upon typing ;, the prompt changes (in place) to: shell>

shell> echo hello
hello








Search modes

In all of the above modes, the executed lines get saved to a history file, which can be searched.
To initiate an incremental search through the previous history, type ^R – the control key
together with the r key. The prompt will change to (reverse-i-search)`':, and as you
type the search query will appear in the quotes. The most recent result that matches the query
will dynamically update to the right of the colon as more is typed. To find an older result using
the same query, simply type ^R again.

Just as ^R is a reverse search, ^S is a forward search, with the prompt (i-search)`':.
The two may be used in conjunction with each other to move through the previous or next matching
results, respectively.






Key bindings

The Julia REPL makes great use of key bindings. Several control-key bindings were already introduced
above (^D to exit, ^R and ^S for searching), but there are many more. In addition to the
control-key, there are also meta-key bindings. These vary more by platform, but most terminals
default to using alt- or option- held down with a key to send the meta-key (or can be configured
to do so).

| Keybinding          | Description                                                                      |
|:——————- |:——————————————————————————– |
| Program control |                                                                                  |
| ^D                | Exit (when buffer is empty)                                                      |
| ^C                | Interrupt or cancel                                                              |
| ^L                | Clear console screen                                                             |
| Return/Enter, ^J  | New line, executing if it is complete                                            |
| meta-Return/Enter   | Insert new line without executing it                                             |
| ? or ;          | Enter help or shell mode (when at start of a line)                               |
| ^R, ^S          | Incremental history search, described above                                      |
| Cursor movement |                                                                                  |
| Right arrow, ^F   | Move right one character                                                         |
| Left arrow, ^B    | Move left one character                                                          |
| Home, ^A          | Move to beginning of line                                                        |
| End, ^E           | Move to end of line                                                              |
| ^P                | Change to the previous or next history entry                                     |
| ^N                | Change to the next history entry                                                 |
| Up arrow            | Move up one line (or to the previous history entry)                              |
| Down arrow          | Move down one line (or to the next history entry)                                |
| Page-up             | Change to the previous history entry that matches the text before the cursor     |
| Page-down           | Change to the next history entry that matches the text before the cursor         |
| meta-F            | Move right one word                                                              |
| meta-B            | Move left one word                                                               |
| Editing         |                                                                                  |
| Backspace, ^H     | Delete the previous character                                                    |
| Delete, ^D        | Forward delete one character (when buffer has text)                              |
| meta-Backspace      | Delete the previous word                                                         |
| meta-D            | Forward delete the next word                                                     |
| ^W                | Delete previous text up to the nearest whitespace                                |
| ^K                | “Kill” to end of line, placing the text in a buffer                              |
| ^Y                | “Yank” insert the text from the kill buffer                                      |
| ^T                | Transpose the characters about the cursor                                        |
| ^Q                | Write a number in REPL and press ^Q to open editor at corresponding stackframe |


Customizing keybindings

Julia’s REPL keybindings may be fully customized to a user’s preferences by passing a dictionary
to REPL.setup_interface(). The keys of this dictionary may be characters or strings. The key
'*' refers to the default action. Control plus character x bindings are indicated with "^x".
Meta plus x can be written "\\Mx". The values of the custom keymap must be nothing (indicating
that the input should be ignored) or functions that accept the signature (PromptState, AbstractREPL, Char).
The REPL.setup_interface() function must be called before the REPL is initialized, by registering
the operation with atreplinit(). For example, to bind the up and down arrow keys to move through
history without prefix search, one could put the following code in .juliarc.jl:

import Base: LineEdit, REPL

const mykeys = Dict{Any,Any}(
    # Up Arrow
    "\e[A" => (s,o...)->(LineEdit.edit_move_up(s) || LineEdit.history_prev(s, LineEdit.mode(s).hist)),
    # Down Arrow
    "\e[B" => (s,o...)->(LineEdit.edit_move_up(s) || LineEdit.history_next(s, LineEdit.mode(s).hist))
)

function customize_keys(repl)
    repl.interface = REPL.setup_interface(repl; extra_repl_keymap = mykeys)
end

atreplinit(customize_keys)





Users should refer to base/LineEdit.jl to discover the available actions on key input.






Tab completion

In both the Julian and help modes of the REPL, one can enter the first few characters of a function
or type and then press the tab key to get a list all matches:

julia> stri[TAB]
stride     strides     string      stringmime  strip

julia> Stri[TAB]
StridedArray    StridedMatrix    StridedVecOrMat  StridedVector    String





The tab key can also be used to substitute LaTeX math symbols with their Unicode equivalents,
and get a list of LaTeX matches as well:

julia> \pi[TAB]
julia> π
π = 3.1415926535897...

julia> e\_1[TAB] = [1,0]
julia> e₁ = [1,0]
2-element Array{Int64,1}:
 1
 0

julia> e\^1[TAB] = [1 0]
julia> e¹ = [1 0]
1×2 Array{Int64,2}:
 1  0

julia> \sqrt[TAB]2     # √ is equivalent to the sqrt() function
julia> √2
1.4142135623730951

julia> \hbar[TAB](h) = h / 2\pi[TAB]
julia> ħ(h) = h / 2π
ħ (generic function with 1 method)

julia> \h[TAB]
\hat              \hermitconjmatrix  \hkswarow          \hrectangle
\hatapprox        \hexagon           \hookleftarrow     \hrectangleblack
\hbar             \hexagonblack      \hookrightarrow    \hslash
\heartsuit        \hksearow          \house             \hspace

julia> α="\alpha[TAB]"   # LaTeX completion also works in strings
julia> α="α"





A full list of tab-completions can be found in the Unicode Input section of the manual.

Completion of paths works for strings and julia’s shell mode:

julia> path="/[TAB]"
.dockerenv  .juliabox/   boot/        etc/         lib/         media/       opt/         root/        sbin/        sys/         usr/
.dockerinit bin/         dev/         home/        lib64/       mnt/         proc/        run/         srv/         tmp/         var/
shell> /[TAB]
.dockerenv  .juliabox/   boot/        etc/         lib/         media/       opt/         root/        sbin/        sys/         usr/
.dockerinit bin/         dev/         home/        lib64/       mnt/         proc/        run/         srv/         tmp/         var/





Tab completion can help with investigation of the available methods matching the input arguments:

julia> max([TAB] # All methods are displayed, not shown here due to size of the list

julia> max([1, 2], [TAB] # All methods where `Vector{Int}` matches as first argument
max(x, y) in Base at operators.jl:215
max(a, b, c, xs...) in Base at operators.jl:281

julia> max([1, 2], max(1, 2), [TAB] # All methods matching the arguments.
max(x, y) in Base at operators.jl:215
max(a, b, c, xs...) in Base at operators.jl:281





Keywords are also displayed in the suggested methods, see second line after ; where limit
and keep are keyword arguments:

julia> split("1 1 1", [TAB]
split(str::AbstractString) in Base at strings/util.jl:278
split{T<:AbstractString}(str::T, splitter; limit, keep) in Base at strings/util.jl:254





The completion of the methods uses type inference and can therefore see if the arguments match
even if the arguments are output from functions. The function needs to be type stable for the
completion to be able to remove non-matching methods.

Tab completion can also help completing fields:

julia> Pkg.a[TAB]
add       available





Fields for output from functions can also be completed:

julia> split("","")[1].[TAB]
endof  offset  string





The completion of fields for output from functions uses type inference, and it can only suggest
fields if the function is type stable.




Customizing Colors

The colors used by Julia and the REPL can be customized, as well. To change the
color of the Julia prompt you can add something like the following to your
.juliarc.jl file, which is to be placed inside your home directory:

function customize_colors(repl)
    repl.prompt_color = Base.text_colors[:cyan]
end

atreplinit(customize_colors)





The available color keys can be seen by typing Base.text_colors in the help mode of the REPL.
In addition, the integers 0 to 255 can be used as color keys for terminals
with 256 color support.

You can also change the colors for the help and shell prompts and
input and answer text by setting the appropriate field of repl in the customize_colors function
above (respectively, help_color, shell_color, input_color, and answer_color). For the
latter two, be sure that the envcolors field is also set to false.

It is also possible to apply boldface formatting by using
Base.text_colors[:bold] as a color. For instance, to print answers in
boldface font, one can use the following as a .juliarc.jl:

function customize_colors(repl)
    repl.envcolors = false
    repl.answer_color = Base.text_colors[:bold]
end

atreplinit(customize_colors)





You can also customize the color used to render warning and informational messages by
setting the appropriate environment variables. For instance, to render error, warning, and informational
messages respectively in magenta, yellow, and cyan you can add the following to your .juliarc.jl file:

ENV["JULIA_ERROR_COLOR"] = :magenta
ENV["JULIA_WARN_COLOR"] = :yellow
ENV["JULIA_INFO_COLOR"] = :cyan
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Interfaces

A lot of the power and extensibility in Julia comes from a collection of informal interfaces.
By extending a few specific methods to work for a custom type, objects of that type not only
receive those functionalities, but they are also able to be used in other methods that are written
to generically build upon those behaviors.


[Iteration](@id man-interface-iteration)

| Required methods               |                        | Brief description                                                                     |
|:—————————— |:———————- |:————————————————————————————- |
| start(iter)                  |                        | Returns the initial iteration state                                                   |
| next(iter, state)            |                        | Returns the current item and the next state                                           |
| done(iter, state)            |                        | Tests if there are any items remaining                                                |
| Important optional methods | Default definition | Brief description                                                                 |
| iteratorsize(IterType)       | HasLength()          | One of HasLength(), HasShape(), IsInfinite(), or SizeUnknown() as appropriate |
| iteratoreltype(IterType)     | HasEltype()          | Either EltypeUnknown() or HasEltype() as appropriate                              |
| eltype(IterType)             | Any                  | The type the items returned by next()                                               |
| length(iter)                 | (undefined)          | The number of items, if known                                                         |
| size(iter, [dim...])         | (undefined)          | The number of items in each dimension, if known                                       |

| Value returned by iteratorsize(IterType) | Required Methods                           |
|:—————————————— |:—————————————— |
| HasLength()                              | length(iter)                             |
| HasShape()                               | length(iter)  and size(iter, [dim...]) |
| IsInfinite()                             | (none)                                   |
| SizeUnknown()                            | (none)                                   |

| Value returned by iteratoreltype(IterType) | Required Methods   |
|:——————————————– |:—————— |
| HasEltype()                                | eltype(IterType) |
| EltypeUnknown()                            | (none)           |

Sequential iteration is implemented by the methods start(), done(), and next(). Instead
of mutating objects as they are iterated over, Julia provides these three methods to keep track
of the iteration state externally from the object. The start(iter) method returns the initial
state for the iterable object iter. That state gets passed along to done(iter, state), which
tests if there are any elements remaining, and next(iter, state), which returns a tuple containing
the current element and an updated state. The state object can be anything, and is generally
considered to be an implementation detail private to the iterable object.

Any object defines these three methods is iterable and can be used in the [many functions that rely upon iteration](@ref lib-collections-iteration).
It can also be used directly in a for loop since the syntax:

for i in iter   # or  "for i = iter"
    # body
end





is translated into:

state = start(iter)
while !done(iter, state)
    (i, state) = next(iter, state)
    # body
end





A simple example is an iterable sequence of square numbers with a defined length:

julia> struct Squares
           count::Int
       end

julia> Base.start(::Squares) = 1

julia> Base.next(S::Squares, state) = (state*state, state+1)

julia> Base.done(S::Squares, state) = state > S.count

julia> Base.eltype(::Type{Squares}) = Int # Note that this is defined for the type

julia> Base.length(S::Squares) = S.count





With only start, next, and done definitions, the Squares type is already pretty powerful.
We can iterate over all the elements:

julia> for i in Squares(7)
           println(i)
       end
1
4
9
16
25
36
49





We can use many of the builtin methods that work with iterables, like in(), mean() and std():

julia> 25 in Squares(10)
true

julia> mean(Squares(100))
3383.5

julia> std(Squares(100))
3024.355854282583





There are a few more methods we can extend to give Julia more information about this iterable
collection.  We know that the elements in a Squares sequence will always be Int. By extending
the eltype() method, we can give that information to Julia and help it make more specialized
code in the more complicated methods. We also know the number of elements in our sequence, so
we can extend length(), too.

Now, when we ask Julia to collect() all the elements into an array it can preallocate a Vector{Int}
of the right size instead of blindly push!ing each element into a Vector{Any}:

julia> collect(Squares(10))' # transposed to save space
1×10 RowVector{Int64,Array{Int64,1}}:
 1  4  9  16  25  36  49  64  81  100





While we can rely upon generic implementations, we can also extend specific methods where we know
there is a simpler algorithm. For example, there’s a formula to compute the sum of squares, so
we can override the generic iterative version with a more performant solution:

julia> Base.sum(S::Squares) = (n = S.count; return n*(n+1)*(2n+1)÷6)

julia> sum(Squares(1803))
1955361914





This is a very common pattern throughout the Julia standard library: a small set of required methods
define an informal interface that enable many fancier behaviors. In some cases, types will want
to additionally specialize those extra behaviors when they know a more efficient algorithm can
be used in their specific case.




Indexing

| Methods to implement | Brief description                |
|:——————– |:——————————– |
| getindex(X, i)     | X[i], indexed element access   |
| setindex!(X, v, i) | X[i] = v, indexed assignment   |
| endof(X)           | The last index, used in X[end] |

For the Squares iterable above, we can easily compute the ith element of the sequence by squaring
it.  We can expose this as an indexing expression S[i]. To opt into this behavior, Squares
simply needs to define getindex():

julia> function Base.getindex(S::Squares, i::Int)
           1 <= i <= S.count || throw(BoundsError(S, i))
           return i*i
       end

julia> Squares(100)[23]
529





Additionally, to support the syntax S[end], we must define endof() to specify the last valid
index:

julia> Base.endof(S::Squares) = length(S)

julia> Squares(23)[end]
529





Note, though, that the above only defines getindex() with one integer index. Indexing with
anything other than an Int will throw a MethodError saying that there was no matching method.
In order to support indexing with ranges or vectors of Ints, separate methods must be written:

julia> Base.getindex(S::Squares, i::Number) = S[convert(Int, i)]

julia> Base.getindex(S::Squares, I) = [S[i] for i in I]

julia> Squares(10)[[3,4.,5]]
3-element Array{Int64,1}:
  9
 16
 25





While this is starting to support more of the [indexing operations supported by some of the builtin types](@ref man-array-indexing),
there’s still quite a number of behaviors missing. This Squares sequence is starting to look
more and more like a vector as we’ve added behaviors to it. Instead of defining all these behaviors
ourselves, we can officially define it as a subtype of an AbstractArray.




[Abstract Arrays](@id man-interface-array)

| Methods to implement                            |                                          | Brief description                                                                     |
|:———————————————– |:—————————————- |:————————————————————————————- |
| size(A)                                       |                                          | Returns a tuple containing the dimensions of A                                      |
| getindex(A, i::Int)                           |                                          | (if IndexLinear) Linear scalar indexing                                              |
| getindex(A, I::Vararg{Int, N})                |                                          | (if IndexCartesian, where N = ndims(A)) N-dimensional scalar indexing                 |
| setindex!(A, v, i::Int)                       |                                          | (if IndexLinear) Scalar indexed assignment                                           |
| setindex!(A, v, I::Vararg{Int, N})            |                                          | (if IndexCartesian, where N = ndims(A)) N-dimensional scalar indexed assignment       |
| Optional methods                            | Default definition                   | Brief description                                                                 |
| IndexStyle(::Type)                            | IndexCartesian()                       | Returns either IndexLinear() or IndexCartesian(). See the description below.      |
| getindex(A, I...)                             | defined in terms of scalar getindex()  | [Multidimensional and nonscalar indexing](@ref man-array-indexing)                    |
| setindex!(A, I...)                            | defined in terms of scalar setindex!() | [Multidimensional and nonscalar indexed assignment](@ref man-array-indexing)          |
| start()/next()/done()                     | defined in terms of scalar getindex()  | Iteration                                                                             |
| length(A)                                     | prod(size(A))                          | Number of elements                                                                    |
| similar(A)                                    | similar(A, eltype(A), size(A))         | Return a mutable array with the same shape and element type                           |
| similar(A, ::Type{S})                         | similar(A, S, size(A))                 | Return a mutable array with the same shape and the specified element type             |
| similar(A, dims::NTuple{Int})                 | similar(A, eltype(A), dims)            | Return a mutable array with the same element type and size dims                     |
| similar(A, ::Type{S}, dims::NTuple{Int})      | Array{S}(dims)                         | Return a mutable array with the specified element type and size                       |
| Non-traditional indices                     | Default definition                   | Brief description                                                                 |
| indices(A)                                    | map(OneTo, size(A))                    | Return the AbstractUnitRange of valid indices                                       |
| Base.similar(A, ::Type{S}, inds::NTuple{Ind}) | similar(A, S, Base.to_shape(inds))     | Return a mutable array with the specified indices inds (see below)                  |
| Base.similar(T::Union{Type,Function}, inds)   | T(Base.to_shape(inds))                 | Return an array similar to T with the specified indices inds (see below)          |

If a type is defined as a subtype of AbstractArray, it inherits a very large set of rich behaviors
including iteration and multidimensional indexing built on top of single-element access.  See
the [arrays manual page](@ref man-multi-dim-arrays) and [standard library section](@ref lib-arrays) for more supported methods.

A key part in defining an AbstractArray subtype is IndexStyle. Since indexing is
such an important part of an array and often occurs in hot loops, it’s important to make both
indexing and indexed assignment as efficient as possible.  Array data structures are typically
defined in one of two ways: either it most efficiently accesses its elements using just one index
(linear indexing) or it intrinsically accesses the elements with indices specified for every dimension.
These two modalities are identified by Julia as IndexLinear() and IndexCartesian().
Converting a linear index to multiple indexing subscripts is typically very expensive, so this
provides a traits-based mechanism to enable efficient generic code for all array types.

This distinction determines which scalar indexing methods the type must define. IndexLinear()
arrays are simple: just define getindex(A::ArrayType, i::Int).  When the array is subsequently
indexed with a multidimensional set of indices, the fallback getindex(A::AbstractArray, I...)()
efficiently converts the indices into one linear index and then calls the above method. IndexCartesian()
arrays, on the other hand, require methods to be defined for each supported dimensionality with
ndims(A) Int indices. For example, the built-in SparseMatrixCSC type only
supports two dimensions, so it just defines
getindex(A::SparseMatrixCSC, i::Int, j::Int). The same holds for setindex!().

Returning to the sequence of squares from above, we could instead define it as a subtype of an
AbstractArray{Int, 1}:

julia> struct SquaresVector <: AbstractArray{Int, 1}
           count::Int
       end

julia> Base.size(S::SquaresVector) = (S.count,)

julia> Base.IndexStyle(::Type{<:SquaresVector}) = IndexLinear()

julia> Base.getindex(S::SquaresVector, i::Int) = i*i





Note that it’s very important to specify the two parameters of the AbstractArray; the first
defines the eltype(), and the second defines the ndims(). That supertype and those three
methods are all it takes for SquaresVector to be an iterable, indexable, and completely functional
array:

julia> s = SquaresVector(7)
7-element SquaresVector:
  1
  4
  9
 16
 25
 36
 49

julia> s[s .> 20]
3-element Array{Int64,1}:
 25
 36
 49

julia> s \ [1 2; 3 4; 5 6; 7 8; 9 10; 11 12; 13 14]
1×2 Array{Float64,2}:
 0.305389  0.335329

julia> s ⋅ s # dot(s, s)
4676





As a more complicated example, let’s define our own toy N-dimensional sparse-like array type built
on top of Dict:

julia> struct SparseArray{T,N} <: AbstractArray{T,N}
           data::Dict{NTuple{N,Int}, T}
           dims::NTuple{N,Int}
       end

julia> SparseArray{T}(::Type{T}, dims::Int...) = SparseArray(T, dims);

julia> SparseArray{T,N}(::Type{T}, dims::NTuple{N,Int}) = SparseArray{T,N}(Dict{NTuple{N,Int}, T}(), dims);

julia> Base.size(A::SparseArray) = A.dims

julia> Base.similar(A::SparseArray, ::Type{T}, dims::Dims) where {T} = SparseArray(T, dims)

julia> Base.getindex(A::SparseArray{T,N}, I::Vararg{Int,N}) where {T,N} = get(A.data, I, zero(T))

julia> Base.setindex!(A::SparseArray{T,N}, v, I::Vararg{Int,N}) where {T,N} = (A.data[I] = v)





Notice that this is an IndexCartesian array, so we must manually define getindex() and setindex!()
at the dimensionality of the array. Unlike the SquaresVector, we are able to define setindex!(),
and so we can mutate the array:

julia> A = SparseArray(Float64, 3, 3)
3×3 SparseArray{Float64,2}:
 0.0  0.0  0.0
 0.0  0.0  0.0
 0.0  0.0  0.0

julia> fill!(A, 2)
3×3 SparseArray{Float64,2}:
 2.0  2.0  2.0
 2.0  2.0  2.0
 2.0  2.0  2.0

julia> A[:] = 1:length(A); A
3×3 SparseArray{Float64,2}:
 1.0  4.0  7.0
 2.0  5.0  8.0
 3.0  6.0  9.0





The result of indexing an AbstractArray can itself be an array (for instance when indexing by
a Range). The AbstractArray fallback methods use similar() to allocate an Array of the
appropriate size and element type, which is filled in using the basic indexing method described
above. However, when implementing an array wrapper you often want the result to be wrapped as
well:

julia> A[1:2,:]
2×3 SparseArray{Float64,2}:
 1.0  4.0  7.0
 2.0  5.0  8.0





In this example it is accomplished by defining Base.similar{T}(A::SparseArray, ::Type{T}, dims::Dims)
to create the appropriate wrapped array. (Note that while similar supports 1- and 2-argument
forms, in most case you only need to specialize the 3-argument form.) For this to work it’s important
that SparseArray is mutable (supports setindex!). Defining similar(), getindex() and
setindex!() for SparseArray also makes it possible to copy() the array:

julia> copy(A)
3×3 SparseArray{Float64,2}:
 1.0  4.0  7.0
 2.0  5.0  8.0
 3.0  6.0  9.0





In addition to all the iterable and indexable methods from above, these types can also interact
with each other and use most of the methods defined in the standard library for AbstractArrays:

julia> A[SquaresVector(3)]
3-element SparseArray{Float64,1}:
 1.0
 4.0
 9.0

julia> dot(A[:,1],A[:,2])
32.0





If you are defining an array type that allows non-traditional indexing (indices that start at
something other than 1), you should specialize indices. You should also specialize similar
so that the dims argument (ordinarily a Dims size-tuple) can accept AbstractUnitRange objects,
perhaps range-types Ind of your own design. For more information, see Arrays with custom indices.
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[Introduction](@id man-introduction)

Scientific computing has traditionally required the highest performance, yet domain experts have
largely moved to slower dynamic languages for daily work. We believe there are many good reasons
to prefer dynamic languages for these applications, and we do not expect their use to diminish.
Fortunately, modern language design and compiler techniques make it possible to mostly eliminate
the performance trade-off and provide a single environment productive enough for prototyping and
efficient enough for deploying performance-intensive applications. The Julia programming language
fills this role: it is a flexible dynamic language, appropriate for scientific and numerical computing,
with performance comparable to traditional statically-typed languages.

Because Julia’s compiler is different from the interpreters used for languages like Python or
R, you may find that Julia’s performance is unintuitive at first. If you find that something is
slow, we highly recommend reading through the [Performance Tips](@ref man-performance-tips) section before trying anything
else. Once you understand how Julia works, it’s easy to write code that’s nearly as fast as C.

Julia features optional typing, multiple dispatch, and good performance, achieved using type inference
and just-in-time (JIT) compilation [https://en.wikipedia.org/wiki/Just-in-time_compilation],
implemented using LLVM [https://en.wikipedia.org/wiki/Low_Level_Virtual_Machine]. It is multi-paradigm,
combining features of imperative, functional, and object-oriented programming. Julia provides
ease and expressiveness for high-level numerical computing, in the same way as languages such
as R, MATLAB, and Python, but also supports general programming. To achieve this, Julia builds
upon the lineage of mathematical programming languages, but also borrows much from popular dynamic
languages, including Lisp [https://en.wikipedia.org/wiki/Lisp_(programming_language)], Perl [https://en.wikipedia.org/wiki/Perl_(programming_language)],
Python [https://en.wikipedia.org/wiki/Python_(programming_language)], Lua [https://en.wikipedia.org/wiki/Lua_(programming_language)],
and Ruby [https://en.wikipedia.org/wiki/Ruby_(programming_language)].

The most significant departures of Julia from typical dynamic languages are:


	The core language imposes very little; the standard library is written in Julia itself, including
primitive operations like integer arithmetic


	A rich language of types for constructing and describing objects, that can also optionally be
used to make type declarations


	The ability to define function behavior across many combinations of argument types via multiple dispatch [https://en.wikipedia.org/wiki/Multiple_dispatch]


	Automatic generation of efficient, specialized code for different argument types


	Good performance, approaching that of statically-compiled languages like C




Although one sometimes speaks of dynamic languages as being “typeless”, they are definitely not:
every object, whether primitive or user-defined, has a type. The lack of type declarations in
most dynamic languages, however, means that one cannot instruct the compiler about the types of
values, and often cannot explicitly talk about types at all. In static languages, on the other
hand, while one can – and usually must – annotate types for the compiler, types exist only at
compile time and cannot be manipulated or expressed at run time. In Julia, types are themselves
run-time objects, and can also be used to convey information to the compiler.

While the casual programmer need not explicitly use types or multiple dispatch, they are the core
unifying features of Julia: functions are defined on different combinations of argument types,
and applied by dispatching to the most specific matching definition. This model is a good fit
for mathematical programming, where it is unnatural for the first argument to “own” an operation
as in traditional object-oriented dispatch. Operators are just functions with special notation
– to extend addition to new user-defined data types, you define new methods for the + function.
Existing code then seamlessly applies to the new data types.

Partly because of run-time type inference (augmented by optional type annotations), and partly
because of a strong focus on performance from the inception of the project, Julia’s computational
efficiency exceeds that of other dynamic languages, and even rivals that of statically-compiled
languages. For large scale numerical problems, speed always has been, continues to be, and probably
always will be crucial: the amount of data being processed has easily kept pace with Moore’s Law
over the past decades.

Julia aims to create an unprecedented combination of ease-of-use, power, and efficiency in a single
language. In addition to the above, some advantages of Julia over comparable systems include:


	Free and open source (MIT licensed [https://github.com/JuliaLang/julia/blob/master/LICENSE.md])


	User-defined types are as fast and compact as built-ins


	No need to vectorize code for performance; devectorized code is fast


	Designed for parallelism and distributed computation


	Lightweight “green” threading (coroutines [https://en.wikipedia.org/wiki/Coroutine])


	Unobtrusive yet powerful type system


	Elegant and extensible conversions and promotions for numeric and other types


	Efficient support for Unicode [https://en.wikipedia.org/wiki/Unicode], including but not limited
to UTF-8 [https://en.wikipedia.org/wiki/UTF-8]


	Call C functions directly (no wrappers or special APIs needed)


	Powerful shell-like capabilities for managing other processes


	Lisp-like macros and other metaprogramming facilities
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Linear algebra

In addition to (and as part of) its support for multi-dimensional arrays, Julia provides native implementations
of many common and useful linear algebra operations. Basic operations, such as trace, det,
and inv are all supported:

julia> A = [1 2 3; 4 1 6; 7 8 1]
3×3 Array{Int64,2}:
 1  2  3
 4  1  6
 7  8  1

julia> trace(A)
3

julia> det(A)
104.0

julia> inv(A)
3×3 Array{Float64,2}:
 -0.451923   0.211538    0.0865385
  0.365385  -0.192308    0.0576923
  0.240385   0.0576923  -0.0673077





As well as other useful operations, such as finding eigenvalues or eigenvectors:

julia> A = [1.5 2 -4; 3 -1 -6; -10 2.3 4]
3×3 Array{Float64,2}:
   1.5   2.0  -4.0
   3.0  -1.0  -6.0
 -10.0   2.3   4.0

julia> eigvals(A)
3-element Array{Complex{Float64},1}:
  9.31908+0.0im
 -2.40954+2.72095im
 -2.40954-2.72095im

julia> eigvecs(A)
3×3 Array{Complex{Float64},2}:
 -0.488645+0.0im  0.182546-0.39813im   0.182546+0.39813im
 -0.540358+0.0im  0.692926+0.0im       0.692926-0.0im
   0.68501+0.0im  0.254058-0.513301im  0.254058+0.513301im





In addition, Julia provides many [factorizations](@ref man-linalg-factorizations) which can be used to
speed up problems such as linear solve or matrix exponentiation by pre-factorizing a matrix into a form
more amenable (for performance or memory reasons) to the problem. See the documentation on factorize
for more information. As an example:

julia> A = [1.5 2 -4; 3 -1 -6; -10 2.3 4]
3×3 Array{Float64,2}:
   1.5   2.0  -4.0
   3.0  -1.0  -6.0
 -10.0   2.3   4.0

julia> factorize(A)
Base.LinAlg.LU{Float64,Array{Float64,2}} with factors L and U:
[1.0 0.0 0.0; -0.15 1.0 0.0; -0.3 -0.132196 1.0]
[-10.0 2.3 4.0; 0.0 2.345 -3.4; 0.0 0.0 -5.24947]





Since A is not Hermitian, symmetric, triangular, tridiagonal, or bidiagonal, an LU factorization may be the
best we can do. Compare with:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]
3×3 Array{Float64,2}:
  1.5   2.0  -4.0
  2.0  -1.0  -3.0
 -4.0  -3.0   5.0

julia> factorize(B)
Base.LinAlg.BunchKaufman{Float64,Array{Float64,2}}([-1.64286 0.142857 -0.8; 2.0 -2.8 -0.6; -4.0 -3.0 5.0], [1, 2, 3], 'U', true, false, 0)





Here, Julia was able to detect that B is in fact symmetric, and used a more appropriate factorization.
Often it’s possible to write more efficient code for a matrix that is known to have certain properties e.g.
it is symmetric, or tridiagonal. Julia provides some special types so that you can “tag” matrices as having
these properties. For instance:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]
3×3 Array{Float64,2}:
  1.5   2.0  -4.0
  2.0  -1.0  -3.0
 -4.0  -3.0   5.0

julia> sB = Symmetric(B)
3×3 Symmetric{Float64,Array{Float64,2}}:
  1.5   2.0  -4.0
  2.0  -1.0  -3.0
 -4.0  -3.0   5.0





sB has been tagged as a matrix that’s (real) symmetric, so for later operations we might perform on it,
such as eigenfactorization or computing matrix-vector products, efficiencies can be found by only referencing
half of it. For example:

julia> B = [1.5 2 -4; 2 -1 -3; -4 -3 5]
3×3 Array{Float64,2}:
  1.5   2.0  -4.0
  2.0  -1.0  -3.0
 -4.0  -3.0   5.0

julia> sB = Symmetric(B)
3×3 Symmetric{Float64,Array{Float64,2}}:
  1.5   2.0  -4.0
  2.0  -1.0  -3.0
 -4.0  -3.0   5.0

julia> x = [1; 2; 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> sB\x
3-element Array{Float64,1}:
 -1.73913
 -1.1087
 -1.45652





The \ operation here performs the linear solution. Julia’s parser provides convenient dispatch
to specialized methods for the transpose of a matrix left-divided by a vector, or for the various combinations
of transpose operations in matrix-matrix solutions. Many of these are further specialized for certain special
matrix types. For example, A\B will end up calling Base.LinAlg.A_ldiv_B! while A'\B will end up calling
Base.LinAlg.Ac_ldiv_B, even though we used the same left-division operator. This works for matrices too: A.'\B.'
would call Base.LinAlg.At_ldiv_Bt. The left-division operator is pretty powerful and it’s easy to write compact,
readable code that is flexible enough to solve all sorts of systems of linear equations.


Special matrices

Matrices with special symmetries and structures [http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274]
arise often in linear algebra and are frequently associated with various matrix factorizations.
Julia features a rich collection of special matrix types, which allow for fast computation with
specialized routines that are specially developed for particular matrix types.

The following tables summarize the types of special matrices that have been implemented in Julia,
as well as whether hooks to various optimized methods for them in LAPACK are available.

| Type                      | Description                                                                      |
|:————————- |:——————————————————————————– |
| Hermitian       | Hermitian matrix [https://en.wikipedia.org/wiki/Hermitian_matrix]               |
| UpperTriangular | Upper triangular matrix [https://en.wikipedia.org/wiki/Triangular_matrix]       |
| LowerTriangular | Lower triangular matrix [https://en.wikipedia.org/wiki/Triangular_matrix]       |
| Tridiagonal     | Tridiagonal matrix [https://en.wikipedia.org/wiki/Tridiagonal_matrix]           |
| SymTridiagonal  | Symmetric tridiagonal matrix                                                     |
| Bidiagonal      | Upper/lower bidiagonal matrix [https://en.wikipedia.org/wiki/Bidiagonal_matrix] |
| Diagonal        | Diagonal matrix [https://en.wikipedia.org/wiki/Diagonal_matrix]                 |
| UniformScaling          | Uniform scaling operator [https://en.wikipedia.org/wiki/Uniform_scaling]        |


Elementary operations

| Matrix type               | + | - | * | \ | Other functions with optimized methods                              |
|:————————- |:— |:— |:— |:— |:——————————————————————- |
| Hermitian       |     |     |     | MV  | inv(), sqrtm(), expm()                |
| UpperTriangular |     |     | MV  | MV  | inv(), det()                                    |
| LowerTriangular |     |     | MV  | MV  | inv(), det()                                    |
| SymTridiagonal  | M   | M   | MS  | MV  | eigmax(), eigmin()                              |
| Tridiagonal     | M   | M   | MS  | MV  |                                                                     |
| Bidiagonal      | M   | M   | MS  | MV  |                                                                     |
| Diagonal        | M   | M   | MV  | MV  | inv(), det(), logdet(), /() |
| UniformScaling          | M   | M   | MVS | MVS | /()                                                       |

Legend:

| Key        | Description                                                   |
|:———- |:————————————————————- |
| M (matrix) | An optimized method for matrix-matrix operations is available |
| V (vector) | An optimized method for matrix-vector operations is available |
| S (scalar) | An optimized method for matrix-scalar operations is available |




Matrix factorizations

| Matrix type               | LAPACK | eig() | eigvals() | eigvecs() | svd() | svdvals() |
|:————————- |:—— |:————— |:——————- |:——————- |:————— |:——————- |
| Hermitian       | HE     |                 | ARI                 |                     |                 |                     |
| UpperTriangular | TR     | A               | A                   | A                   |                 |                     |
| LowerTriangular | TR     | A               | A                   | A                   |                 |                     |
| SymTridiagonal  | ST     | A               | ARI                 | AV                  |                 |                     |
| Tridiagonal     | GT     |                 |                     |                     |                 |                     |
| Bidiagonal      | BD     |                 |                     |                     | A               | A                   |
| Diagonal        | DI     |                 | A                   |                     |                 |                     |

Legend:

| Key          | Description                                                                                                                     | Example              |
|:———— |:——————————————————————————————————————————- |:——————– |
| A (all)      | An optimized method to find all the characteristic values and/or vectors is available                                           | e.g. eigvals(M)    |
| R (range)    | An optimized method to find the ilth through the ihth characteristic values are available                                   | eigvals(M, il, ih) |
| I (interval) | An optimized method to find the characteristic values in the interval [vl, vh] is available                                 | eigvals(M, vl, vh) |
| V (vectors)  | An optimized method to find the characteristic vectors corresponding to the characteristic values x=[x1, x2,...] is available | eigvecs(M, x)      |




The uniform scaling operator

A UniformScaling operator represents a scalar times the identity operator, λ*I. The identity
operator  I is defined as a constant and is an instance of UniformScaling. The size of these
operators are generic and match the other matrix in the binary operations +, -,
* and \. For A+I and A-I this means that A must be square. Multiplication
with the identity operator I is a noop (except for checking that the scaling factor is one)
and therefore almost without overhead.






[Matrix factorizations](@id man-linalg-factorizations)

Matrix factorizations (a.k.a. matrix decompositions) [https://en.wikipedia.org/wiki/Matrix_decomposition]
compute the factorization of a matrix into a product of matrices, and are one of the central concepts
in linear algebra.

The following table summarizes the types of matrix factorizations that have been implemented in
Julia. Details of their associated methods can be found in the Linear Algebra section
of the standard library documentation.

| Type              | Description                                                                                                    |
|:—————– |:————————————————————————————————————– |
| Cholesky        | Cholesky factorization [https://en.wikipedia.org/wiki/Cholesky_decomposition]                                 |
| CholeskyPivoted | Pivoted [https://en.wikipedia.org/wiki/Pivot_element] Cholesky factorization                                  |
| LU              | LU factorization [https://en.wikipedia.org/wiki/LU_decomposition]                                             |
| LUTridiagonal   | LU factorization for Tridiagonal matrices                                                            |
| UmfpackLU       | LU factorization for sparse matrices (computed by UMFPack)                                                     |
| QR              | QR factorization [https://en.wikipedia.org/wiki/QR_decomposition]                                             |
| QRCompactWY     | Compact WY form of the QR factorization                                                                        |
| QRPivoted       | Pivoted QR factorization [https://en.wikipedia.org/wiki/QR_decomposition]                                     |
| Hessenberg      | Hessenberg decomposition [http://mathworld.wolfram.com/HessenbergDecomposition.html]                          |
| Eigen           | Spectral decomposition [https://en.wikipedia.org/wiki/Eigendecomposition_(matrix)]                            |
| SVD             | Singular value decomposition [https://en.wikipedia.org/wiki/Singular_value_decomposition]                     |
| GeneralizedSVD  | Generalized SVD [https://en.wikipedia.org/wiki/Generalized_singular_value_decomposition#Higher_order_version] |
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Mathematical Operations and Elementary Functions

Julia provides a complete collection of basic arithmetic and bitwise operators across all of its
numeric primitive types, as well as providing portable, efficient implementations of a comprehensive
collection of standard mathematical functions.


Arithmetic Operators

The following arithmetic operators [https://en.wikipedia.org/wiki/Arithmetic#Arithmetic_operations]
are supported on all primitive numeric types:

| Expression | Name           | Description                            |
|:———- |:————– |:————————————– |
| +x       | unary plus     | the identity operation                 |
| -x       | unary minus    | maps values to their additive inverses |
| x + y    | binary plus    | performs addition                      |
| x - y    | binary minus   | performs subtraction                   |
| x * y    | times          | performs multiplication                |
| x / y    | divide         | performs division                      |
| x \ y    | inverse divide | equivalent to y / x                  |
| x ^ y    | power          | raises x to the yth power          |
| x % y    | remainder      | equivalent to rem(x,y)               |

as well as the negation on Bool types:

| Expression | Name     | Description                              |
|:———- |:——– |:—————————————- |
| !x       | negation | changes true to false and vice versa |

Julia’s promotion system makes arithmetic operations on mixtures of argument types “just work”
naturally and automatically. See [Conversion and Promotion](@ref conversion-and-promotion) for details of the promotion
system.

Here are some simple examples using arithmetic operators:

julia> 1 + 2 + 3
6

julia> 1 - 2
-1

julia> 3*2/12
0.5





(By convention, we tend to space operators more tightly if they get applied before other nearby
operators. For instance, we would generally write -x + 2 to reflect that first x gets negated,
and then 2 is added to that result.)




Bitwise Operators

The following bitwise operators [https://en.wikipedia.org/wiki/Bitwise_operation#Bitwise_operators]
are supported on all primitive integer types:

| Expression | Name                                                                     |
|:———- |:———————————————————————— |
| ~x       | bitwise not                                                              |
| x & y    | bitwise and                                                              |
| x \| y   | bitwise or                                                               |
| x ⊻ y    | bitwise xor (exclusive or)                                               |
| x >>> y  | logical shift [https://en.wikipedia.org/wiki/Logical_shift] right       |
| x >> y   | arithmetic shift [https://en.wikipedia.org/wiki/Arithmetic_shift] right |
| x << y   | logical/arithmetic shift left                                            |

Here are some examples with bitwise operators:

julia> ~123
-124

julia> 123 & 234
106

julia> 123 | 234
251

julia> 123 ⊻ 234
145

julia> xor(123, 234)
145

julia> ~UInt32(123)
0xffffff84

julia> ~UInt8(123)
0x84








Updating operators

Every binary arithmetic and bitwise operator also has an updating version that assigns the result
of the operation back into its left operand. The updating version of the binary operator is formed
by placing a = immediately after the operator. For example, writing x += 3 is equivalent to
writing x = x + 3:

julia> x = 1
1

julia> x += 3
4

julia> x
4





The updating versions of all the binary arithmetic and bitwise operators are:

+=  -=  *=  /=  \=  ÷=  %=  ^=  &=  |=  ⊻=  >>>=  >>=  <<=





!!! note
An updating operator rebinds the variable on the left-hand side. As a result, the type of the
variable may change.

```jldoctest
julia> x = 0x01; typeof(x)
UInt8

julia> x *= 2 # Same as x = x * 2
2

julia> typeof(x)
Int64
```








[Vectorized “dot” operators](@id man-dot-operators)

For every binary operation like ^, there is a corresponding
“dot” operation .^ that is automatically defined
to perform ^ element-by-element on arrays. For example,
[1,2,3] ^ 3 is not defined, since there is no standard
mathematical meaning to “cubing” an array, but [1,2,3] .^ 3
is defined as computing the elementwise
(or “vectorized”) result [1^3, 2^3, 3^3].  Similarly for unary
operators like ! or √, there is a corresponding .√ that
applies the operator elementwise.

julia> [1,2,3] .^ 3
3-element Array{Int64,1}:
  1
  8
 27





More specifically, a .^ b is parsed as the [“dot” call](@ref man-vectorized)
(^).(a,b), which performs a [broadcast](@ref Broadcasting) operation:
it can combine arrays and scalars, arrays of the same size (performing
the operation elementwise), and even arrays of different shapes (e.g.
combining row and column vectors to produce a matrix). Moreover, like
all vectorized “dot calls,” these “dot operators” are
fusing. For example, if you compute 2 .* A.^2 .+ sin.(A) (or
equivalently @. 2A^2 + sin(A), using the [@.](@ref @dot) macro) for
an array A, it performs a single loop over A, computing 2a^2 + sin(a)
for each element of A. In particular, nested dot calls like f.(g.(x))
are fused, and “adjacent” binary operators like x .+ 3 .* x.^2 are
equivalent to nested dot calls (+).(x, (*).(3, (^).(x, 2))).

Furthermore, “dotted” updating operators like a .+= b (or @. a += b) are parsed
as a .= a .+ b, where .= is a fused in-place assignment operation
(see the [dot syntax documentation](@ref man-vectorized)).

Note the dot syntax is also applicable to user-defined operators.
For example, if you define ⊗(A,B) = kron(A,B) to give a convenient
infix syntax A ⊗ B for Kronecker products (kron), then
[A,B] .⊗ [C,D] will compute [A⊗C, B⊗D] with no additional coding.




Numeric Comparisons

Standard comparison operations are defined for all the primitive numeric types:

| Operator                     | Name                     |
|:—————————- |:———————— |
| ==                 | equality                 |
| !=, [≠](@ref !=) | inequality               |
| <                  | less than                |
| <=, [≤](@ref <=) | less than or equal to    |
| >                  | greater than             |
| >=, [≥](@ref >=) | greater than or equal to |

Here are some simple examples:

julia> 1 == 1
true

julia> 1 == 2
false

julia> 1 != 2
true

julia> 1 == 1.0
true

julia> 1 < 2
true

julia> 1.0 > 3
false

julia> 1 >= 1.0
true

julia> -1 <= 1
true

julia> -1 <= -1
true

julia> -1 <= -2
false

julia> 3 < -0.5
false





Integers are compared in the standard manner – by comparison of bits. Floating-point numbers
are compared according to the IEEE 754 standard [https://en.wikipedia.org/wiki/IEEE_754-2008]:


	Finite numbers are ordered in the usual manner.


	Positive zero is equal but not greater than negative zero.


	Inf is equal to itself and greater than everything else except NaN.


	-Inf is equal to itself and less then everything else except NaN.


	NaN is not equal to, not less than, and not greater than anything, including itself.




The last point is potentially surprising and thus worth noting:

julia> NaN == NaN
false

julia> NaN != NaN
true

julia> NaN < NaN
false

julia> NaN > NaN
false





and can cause especial headaches with Arrays:

julia> [1 NaN] == [1 NaN]
false





Julia provides additional functions to test numbers for special values, which can be useful in
situations like hash key comparisons:

| Function                | Tests if                  |
|:———————– |:————————- |
| isequal(x, y) | x and y are identical |
| isfinite(x)   | x is a finite number    |
| isinf(x)      | x is infinite           |
| isnan(x)      | x is not a number       |

isequal() considers NaNs equal to each other:

julia> isequal(NaN, NaN)
true

julia> isequal([1 NaN], [1 NaN])
true

julia> isequal(NaN, NaN32)
true





isequal() can also be used to distinguish signed zeros:

julia> -0.0 == 0.0
true

julia> isequal(-0.0, 0.0)
false





Mixed-type comparisons between signed integers, unsigned integers, and floats can be tricky. A
great deal of care has been taken to ensure that Julia does them correctly.

For other types, isequal() defaults to calling ==(), so if you want to define
equality for your own types then you only need to add a ==() method.  If you define
your own equality function, you should probably define a corresponding hash() method
to ensure that isequal(x,y) implies hash(x) == hash(y).


Chaining comparisons

Unlike most languages, with the notable exception of Python [https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Comparison_operators],
comparisons can be arbitrarily chained:

julia> 1 < 2 <= 2 < 3 == 3 > 2 >= 1 == 1 < 3 != 5
true





Chaining comparisons is often quite convenient in numerical code. Chained comparisons use the
&& operator for scalar comparisons, and the & operator for elementwise comparisons,
which allows them to work on arrays. For example, 0 .< A .< 1 gives a boolean array whose entries
are true where the corresponding elements of A are between 0 and 1.

Note the evaluation behavior of chained comparisons:

julia> v(x) = (println(x); x)
v (generic function with 1 method)

julia> v(1) < v(2) <= v(3)
2
1
3
true

julia> v(1) > v(2) <= v(3)
2
1
false





The middle expression is only evaluated once, rather than twice as it would be if the expression
were written as v(1) < v(2) && v(2) <= v(3). However, the order of evaluations in a chained
comparison is undefined. It is strongly recommended not to use expressions with side effects (such
as printing) in chained comparisons. If side effects are required, the short-circuit && operator
should be used explicitly (see Short-Circuit Evaluation).




Elementary Functions

Julia provides a comprehensive collection of mathematical functions and operators. These mathematical
operations are defined over as broad a class of numerical values as permit sensible definitions,
including integers, floating-point numbers, rationals, and complex numbers,
wherever such definitions make sense.

Moreover, these functions (like any Julia function) can be applied in “vectorized” fashion to
arrays and other collections with the [dot syntax](@ref man-vectorized) f.(A),
e.g. sin.(A) will compute the sine of each element of an array A.






Operator Precedence

Julia applies the following order of operations, from highest precedence to lowest:

| Category       | Operators                                                                                         |
|:————– |:————————————————————————————————- |
| Syntax         | . followed by ::                                                                              |
| Exponentiation | ^                                                                                               |
| Fractions      | //                                                                                              |
| Multiplication | * / % & \                                                                                       |
| Bitshifts      | << >> >>>                                                                                       |
| Addition       | + - \| ⊻                                                                                        |
| Syntax         | : .. followed by \|>                                                                          |
| Comparisons    | > < >= <= == === != !== <:                                                                      |
| Control flow   | && followed by \|\| followed by ?                                                           |
| Assignments    | = += -= *= /= //= \= ^= ÷= %= \|= &= ⊻= <<= >>= >>>=                                            |

For a complete list of every Julia operator’s precedence, see the top of this file:
src/julia-parser.scm [https://github.com/JuliaLang/julia/blob/master/src/julia-parser.scm]

You can also find the numerical precedence for any given operator via the built-in function Base.operator_precedence, where higher numbers take precedence:

julia> Base.operator_precedence(:+), Base.operator_precedence(:*), Base.operator_precedence(:.)
(9, 11, 15)

julia> Base.operator_precedence(:+=), Base.operator_precedence(:(=))  # (Note the necessary parens on `:(=)`)
(1, 1)








Numerical Conversions

Julia supports three forms of numerical conversion, which differ in their handling of inexact
conversions.


	The notation T(x) or convert(T,x) converts x to a value of type T.


	If T is a floating-point type, the result is the nearest representable value, which could be
positive or negative infinity.


	If T is an integer type, an InexactError is raised if x is not representable by T.






	x % T converts an integer x to a value of integer type T congruent to x modulo 2^n,
where n is the number of bits in T. In other words, the binary representation is truncated
to fit.


	The Rounding functions take a type T as an optional argument. For example, round(Int,x)
is a shorthand for Int(round(x)).




The following examples show the different forms.

julia> Int8(127)
127

julia> Int8(128)
ERROR: InexactError()
Stacktrace:
 [1] Int8(::Int64) at ./sysimg.jl:77

julia> Int8(127.0)
127

julia> Int8(3.14)
ERROR: InexactError()
Stacktrace:
 [1] convert(::Type{Int8}, ::Float64) at ./float.jl:658
 [2] Int8(::Float64) at ./sysimg.jl:77

julia> Int8(128.0)
ERROR: InexactError()
Stacktrace:
 [1] convert(::Type{Int8}, ::Float64) at ./float.jl:658
 [2] Int8(::Float64) at ./sysimg.jl:77

julia> 127 % Int8
127

julia> 128 % Int8
-128

julia> round(Int8,127.4)
127

julia> round(Int8,127.6)
ERROR: InexactError()
Stacktrace:
 [1] trunc(::Type{Int8}, ::Float64) at ./float.jl:651
 [2] round(::Type{Int8}, ::Float64) at ./float.jl:337





See [Conversion and Promotion](@ref conversion-and-promotion) for how to define your own conversions and promotions.


Rounding functions

| Function              | Description                      | Return type |
|:——————— |:——————————– |:———– |
| round(x)    | round x to the nearest integer | typeof(x) |
| round(T, x) | round x to the nearest integer | T         |
| floor(x)    | round x towards -Inf         | typeof(x) |
| floor(T, x) | round x towards -Inf         | T         |
| ceil(x)     | round x towards +Inf         | typeof(x) |
| ceil(T, x)  | round x towards +Inf         | T         |
| trunc(x)    | round x towards zero           | typeof(x) |
| trunc(T, x) | round x towards zero           | T         |




Division functions

| Function              | Description                                                                                               |
|:——————— |:——————————————————————————————————— |
| div(x,y)    | truncated division; quotient rounded towards zero                                                         |
| fld(x,y)    | floored division; quotient rounded towards -Inf                                                         |
| cld(x,y)    | ceiling division; quotient rounded towards +Inf                                                         |
| rem(x,y)    | remainder; satisfies x == div(x,y)*y + rem(x,y); sign matches x                                       |
| mod(x,y)    | modulus; satisfies x == fld(x,y)*y + mod(x,y); sign matches y                                         |
| mod1(x,y)   | mod() with offset 1; returns r∈(0,y] for y>0 or r∈[y,0) for y<0, where mod(r, y) == mod(x, y) |
| mod2pi(x)   | modulus with respect to 2pi;  0 <= mod2pi(x)   < 2pi                                                   |
| divrem(x,y) | returns (div(x,y),rem(x,y))                                                                             |
| fldmod(x,y) | returns (fld(x,y),mod(x,y))                                                                             |
| gcd(x,y...) | greatest positive common divisor of x, y,…                                                          |
| lcm(x,y...) | least positive common multiple of x, y,…                                                            |




Sign and absolute value functions

| Function                | Description                                                |
|:———————– |:———————————————————- |
| abs(x)        | a positive value with the magnitude of x                 |
| abs2(x)       | the squared magnitude of x                               |
| sign(x)       | indicates the sign of x, returning -1, 0, or +1          |
| signbit(x)    | indicates whether the sign bit is on (true) or off (false) |
| copysign(x,y) | a value with the magnitude of x and the sign of y      |
| flipsign(x,y) | a value with the magnitude of x and the sign of x*y    |




Powers, logs and roots

| Function                 | Description                                                                |
|:———————— |:————————————————————————– |
| sqrt(x), √x  | square root of x                                                         |
| cbrt(x), ∛x  | cube root of x                                                           |
| hypot(x,y)     | hypotenuse of right-angled triangle with other sides of length x and y |
| exp(x)         | natural exponential function at x                                        |
| expm1(x)       | accurate exp(x)-1 for x near zero                                      |
| ldexp(x,n)     | x*2^n computed efficiently for integer values of n                     |
| log(x)         | natural logarithm of x                                                   |
| log(b,x)       | base b logarithm of x                                                  |
| log2(x)        | base 2 logarithm of x                                                    |
| log10(x)       | base 10 logarithm of x                                                   |
| log1p(x)       | accurate log(1+x) for x near zero                                      |
| exponent(x)    | binary exponent of x                                                     |
| significand(x) | binary significand (a.k.a. mantissa) of a floating-point number x        |

For an overview of why functions like hypot(), expm1(), and log1p()
are necessary and useful, see John D. Cook’s excellent pair of blog posts on the subject: expm1, log1p, erfc [https://www.johndcook.com/blog/2010/06/07/math-library-functions-that-seem-unnecessary/],
and hypot [https://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/].




Trigonometric and hyperbolic functions

All the standard trigonometric and hyperbolic functions are also defined:

sin    cos    tan    cot    sec    csc
sinh   cosh   tanh   coth   sech   csch
asin   acos   atan   acot   asec   acsc
asinh  acosh  atanh  acoth  asech  acsch
sinc   cosc   atan2





These are all single-argument functions, with the exception of atan2 [https://en.wikipedia.org/wiki/Atan2],
which gives the angle in radians [https://en.wikipedia.org/wiki/Radian] between the x-axis
and the point specified by its arguments, interpreted as x and y coordinates.

Additionally, sinpi(x) and cospi(x) are provided for more accurate computations
of sin(pi*x) and cos(pi*x) respectively.

In order to compute trigonometric functions with degrees instead of radians, suffix the function
with d. For example, sind(x) computes the sine of x where x is specified in degrees.
The complete list of trigonometric functions with degree variants is:

sind   cosd   tand   cotd   secd   cscd
asind  acosd  atand  acotd  asecd  acscd








Special functions

| Function                                                      | Description                                                                                                                                                     |
|:————————————————————- |:————————————————————————————————————————————————————— |
| gamma(x)                                            | gamma function [https://en.wikipedia.org/wiki/Gamma_function] at x                                                                                           |
| lgamma(x)                                           | accurate log(gamma(x)) for large x                                                                                                                          |
| lfact(x)                                            | accurate log(factorial(x)) for large x; same as lgamma(x+1) for x > 1, zero otherwise                                                                   |
| beta(x,y)                                           | beta function [https://en.wikipedia.org/wiki/Beta_function] at x,y                                                                                           |
| lbeta(x,y)                                          | accurate log(beta(x,y)) for large x or y                                                                                                                  |
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Metaprogramming

The strongest legacy of Lisp in the Julia language is its metaprogramming support. Like Lisp,
Julia represents its own code as a data structure of the language itself. Since code is represented
by objects that can be created and manipulated from within the language, it is possible for a
program to transform and generate its own code. This allows sophisticated code generation without
extra build steps, and also allows true Lisp-style macros operating at the level of abstract syntax trees [https://en.wikipedia.org/wiki/Abstract_syntax_tree].
In contrast, preprocessor “macro” systems, like that of C and C++, perform textual manipulation
and substitution before any actual parsing or interpretation occurs. Because all data types and
code in Julia are represented by Julia data structures, powerful reflection [https://en.wikipedia.org/wiki/Reflection_%28computer_programming%29]
capabilities are available to explore the internals of a program and its types just like any other
data.


Program representation

Every Julia program starts life as a string:

julia> prog = "1 + 1"
"1 + 1"





What happens next?

The next step is to parse [https://en.wikipedia.org/wiki/Parsing#Computer_languages] each string
into an object called an expression, represented by the Julia type Expr:

julia> ex1 = parse(prog)
:(1 + 1)

julia> typeof(ex1)
Expr





Expr objects contain two parts:


	a Symbol identifying the kind of expression. A symbol is an interned string [https://en.wikipedia.org/wiki/String_interning]
identifier (more discussion below).




julia> ex1.head
:call






	the expression arguments, which may be symbols, other expressions, or literal values:




julia> ex1.args
3-element Array{Any,1}:
  :+
 1
 1





Expressions may also be constructed directly in prefix notation [https://en.wikipedia.org/wiki/Polish_notation]:

julia> ex2 = Expr(:call, :+, 1, 1)
:(1 + 1)





The two expressions constructed above – by parsing and by direct construction – are equivalent:

julia> ex1 == ex2
true





The key point here is that Julia code is internally represented as a data structure that is accessible
from the language itself.

The dump() function provides indented and annotated display of Expr objects:

julia> dump(ex2)
Expr
  head: Symbol call
  args: Array{Any}((3,))
    1: Symbol +
    2: Int64 1
    3: Int64 1
  typ: Any





Expr objects may also be nested:

julia> ex3 = parse("(4 + 4) / 2")
:((4 + 4) / 2)





Another way to view expressions is with Meta.show_sexpr, which displays the S-expression [https://en.wikipedia.org/wiki/S-expression]
form of a given Expr, which may look very familiar to users of Lisp. Here’s an example illustrating
the display on a nested Expr:

julia> Meta.show_sexpr(ex3)
(:call, :/, (:call, :+, 4, 4), 2)






Symbols

The : character has two syntactic purposes in Julia. The first form creates a Symbol,
an interned string [https://en.wikipedia.org/wiki/String_interning] used as one building-block
of expressions:

julia> :foo
:foo

julia> typeof(ans)
Symbol





The Symbol constructor takes any number of arguments and creates a new symbol by concatenating
their string representations together:

julia> :foo == Symbol("foo")
true

julia> Symbol("func",10)
:func10

julia> Symbol(:var,'_',"sym")
:var_sym





In the context of an expression, symbols are used to indicate access to variables; when an expression
is evaluated, a symbol is replaced with the value bound to that symbol in the appropriate [scope](@ref scope-of-variables).

Sometimes extra parentheses around the argument to : are needed to avoid ambiguity in parsing.:

julia> :(:)
:(:)

julia> :(::)
:(::)










Expressions and evaluation


Quoting

The second syntactic purpose of the : character is to create expression objects without using
the explicit Expr constructor. This is referred to as quoting. The : character, followed
by paired parentheses around a single statement of Julia code, produces an Expr object based
on the enclosed code. Here is example of the short form used to quote an arithmetic expression:

julia> ex = :(a+b*c+1)
:(a + b * c + 1)

julia> typeof(ex)
Expr





(to view the structure of this expression, try ex.head and ex.args, or use dump()
as above)

Note that equivalent expressions may be constructed using parse() or the direct Expr
form:

julia>      :(a + b*c + 1)  ==
       parse("a + b*c + 1") ==
       Expr(:call, :+, :a, Expr(:call, :*, :b, :c), 1)
true





Expressions provided by the parser generally only have symbols, other expressions, and literal
values as their args, whereas expressions constructed by Julia code can have arbitrary run-time
values without literal forms as args. In this specific example, + and a are symbols, *(b,c)
is a subexpression, and 1 is a literal 64-bit signed integer.

There is a second syntactic form of quoting for multiple expressions: blocks of code enclosed
in quote ... end. Note that this form introduces QuoteNode elements to the expression tree,
which must be considered when directly manipulating an expression tree generated from quote
blocks. For other purposes, :( ... ) and quote .. end blocks are treated identically.

julia> ex = quote
           x = 1
           y = 2
           x + y
       end
quote  # none, line 2:
    x = 1 # none, line 3:
    y = 2 # none, line 4:
    x + y
end

julia> typeof(ex)
Expr








Interpolation

Direct construction of Expr objects with value arguments is powerful, but Expr constructors
can be tedious compared to “normal” Julia syntax. As an alternative, Julia allows “splicing” or
interpolation of literals or expressions into quoted expressions. Interpolation is indicated by
the $ prefix.

In this example, the literal value of a is interpolated:

julia> a = 1;

julia> ex = :($a + b)
:(1 + b)





Interpolating into an unquoted expression is not supported and will cause a compile-time error:

julia> $a + b
ERROR: unsupported or misplaced expression $
 ...





In this example, the tuple (1,2,3) is interpolated as an expression into a conditional test:

julia> ex = :(a in $:((1,2,3)) )
:(a in (1, 2, 3))





Interpolating symbols into a nested expression requires enclosing each symbol in an enclosing
quote block:

julia> :( :a in $( :(:a + :b) ) )
                   ^^^^^^^^^^
                   quoted inner expression





The use of $ for expression interpolation is intentionally reminiscent of [string interpolation](@ref string-interpolation)
and [command interpolation](@ref command-interpolation). Expression interpolation allows convenient, readable programmatic
construction of complex Julia expressions.




eval() and effects

Given an expression object, one can cause Julia to evaluate (execute) it at global scope using
eval():

julia> :(1 + 2)
:(1 + 2)

julia> eval(ans)
3

julia> ex = :(a + b)
:(a + b)

julia> eval(ex)
ERROR: UndefVarError: b not defined
[...]

julia> a = 1; b = 2;

julia> eval(ex)
3





Every [module](@ref modules) has its own eval() function that evaluates expressions in its global
scope. Expressions passed to eval() are not limited to returning values – they can
also have side-effects that alter the state of the enclosing module’s environment:

julia> ex = :(x = 1)
:(x = 1)

julia> x
ERROR: UndefVarError: x not defined

julia> eval(ex)
1

julia> x
1





Here, the evaluation of an expression object causes a value to be assigned to the global variable
x.

Since expressions are just Expr objects which can be constructed programmatically and then evaluated,
it is possible to dynamically generate arbitrary code which can then be run using eval().
Here is a simple example:

julia> a = 1;

julia> ex = Expr(:call, :+, a, :b)
:(1 + b)

julia> a = 0; b = 2;

julia> eval(ex)
3





The value of a is used to construct the expression ex which applies the + function to the
value 1 and the variable b. Note the important distinction between the way a and b are used:


	The value of the variablea at expression construction time is used as an immediate value in
the expression. Thus, the value of a when the expression is evaluated no longer matters: the
value in the expression is already 1, independent of whatever the value of a might be.


	On the other hand, the symbol:b is used in the expression construction, so the value of the
variable b at that time is irrelevant – :b is just a symbol and the variable b need not
even be defined. At expression evaluation time, however, the value of the symbol :b is resolved
by looking up the value of the variable b.







Functions on Expressions

As hinted above, one extremely useful feature of Julia is the capability to generate and manipulate
Julia code within Julia itself. We have already seen one example of a function returning Expr
objects: the parse() function, which takes a string of Julia code and returns the corresponding
Expr. A function can also take one or more Expr objects as arguments, and return another
Expr. Here is a simple, motivating example:

julia> function math_expr(op, op1, op2)
           expr = Expr(:call, op, op1, op2)
           return expr
       end
math_expr (generic function with 1 method)

julia>  ex = math_expr(:+, 1, Expr(:call, :*, 4, 5))
:(1 + 4 * 5)

julia> eval(ex)
21





As another example, here is a function that doubles any numeric argument, but leaves expressions
alone:

julia> function make_expr2(op, opr1, opr2)
           opr1f, opr2f = map(x -> isa(x, Number) ? 2*x : x, (opr1, opr2))
           retexpr = Expr(:call, op, opr1f, opr2f)
           return retexpr
       end
make_expr2 (generic function with 1 method)

julia> make_expr2(:+, 1, 2)
:(2 + 4)

julia> ex = make_expr2(:+, 1, Expr(:call, :*, 5, 8))
:(2 + 5 * 8)

julia> eval(ex)
42










[Macros](@id man-macros)

Macros provide a method to include generated code in the final body of a program. A macro maps
a tuple of arguments to a returned expression, and the resulting expression is compiled directly
rather than requiring a runtime eval() call. Macro arguments may include expressions,
literal values, and symbols.


Basics

Here is an extraordinarily simple macro:

julia> macro sayhello()
           return :( println("Hello, world!") )
       end
@sayhello (macro with 1 method)





Macros have a dedicated character in Julia’s syntax: the @ (at-sign), followed by the unique
name declared in a macro NAME ... end block. In this example, the compiler will replace all
instances of @sayhello with:

:( println("Hello, world!") )





When @sayhello is entered in the REPL, the expression executes immediately, thus we only see the
evaluation result:

julia> @sayhello()
Hello, world!





Now, consider a slightly more complex macro:

julia> macro sayhello(name)
           return :( println("Hello, ", $name) )
       end
@sayhello (macro with 1 method)





This macro takes one argument: name. When @sayhello is encountered, the quoted expression
is expanded to interpolate the value of the argument into the final expression:

julia> @sayhello("human")
Hello, human





We can view the quoted return expression using the function macroexpand() (important note:
this is an extremely useful tool for debugging macros):

julia> ex = macroexpand( :(@sayhello("human")) )
:((println)("Hello, ", "human"))

julia> typeof(ex)
Expr





We can see that the "human" literal has been interpolated into the expression.

There also exists a macro @macroexpand that is perhaps a bit more convenient than the macroexpand function:

julia> @macroexpand @sayhello "human"
:((println)("Hello, ", "human"))








Hold up: why macros?

We have already seen a function f(::Expr...) -> Expr in a previous section. In fact, macroexpand()
is also such a function. So, why do macros exist?

Macros are necessary because they execute when code is parsed, therefore, macros allow the programmer
to generate and include fragments of customized code before the full program is run. To illustrate
the difference, consider the following example:

julia> macro twostep(arg)
           println("I execute at parse time. The argument is: ", arg)
           return :(println("I execute at runtime. The argument is: ", $arg))
       end
@twostep (macro with 1 method)

julia> ex = macroexpand( :(@twostep :(1, 2, 3)) );
I execute at parse time. The argument is: $(Expr(:quote, :((1, 2, 3))))





The first call to println() is executed when macroexpand() is called. The
resulting expression contains only the second println:

julia> typeof(ex)
Expr

julia> ex
:((println)("I execute at runtime. The argument is: ", $(Expr(:copyast, :($(QuoteNode(:((1, 2, 3)))))))))

julia> eval(ex)
I execute at runtime. The argument is: (1, 2, 3)








Macro invocation

Macros are invoked with the following general syntax:

@name expr1 expr2 ...
@name(expr1, expr2, ...)





Note the distinguishing @ before the macro name and the lack of commas between the argument
expressions in the first form, and the lack of whitespace after @name in the second form. The
two styles should not be mixed. For example, the following syntax is different from the examples
above; it passes the tuple (expr1, expr2, ...) as one argument to the macro:

@name (expr1, expr2, ...)





It is important to emphasize that macros receive their arguments as expressions, literals, or
symbols. One way to explore macro arguments is to call the show() function within the
macro body:

julia> macro showarg(x)
           show(x)
           # ... remainder of macro, returning an expression
       end
@showarg (macro with 1 method)

julia> @showarg(a)
:a

julia> @showarg(1+1)
:(1 + 1)

julia> @showarg(println("Yo!"))
:(println("Yo!"))








Building an advanced macro

Here is a simplified definition of Julia’s @assert macro:

julia> macro assert(ex)
           return :( $ex ? nothing : throw(AssertionError($(string(ex)))) )
       end
@assert (macro with 1 method)





This macro can be used like this:

julia> @assert 1 == 1.0

julia> @assert 1 == 0
ERROR: AssertionError: 1 == 0





In place of the written syntax, the macro call is expanded at parse time to its returned result.
This is equivalent to writing:

1 == 1.0 ? nothing : throw(AssertionError("1 == 1.0"))
1 == 0 ? nothing : throw(AssertionError("1 == 0"))





That is, in the first call, the expression :(1 == 1.0) is spliced into the test condition slot,
while the value of string(:(1 == 1.0)) is spliced into the assertion message slot. The entire
expression, thus constructed, is placed into the syntax tree where the @assert macro call occurs.
Then at execution time, if the test expression evaluates to true, then nothing is returned,
whereas if the test is false, an error is raised indicating the asserted expression that was false.
Notice that it would not be possible to write this as a function, since only the value of the
condition is available and it would be impossible to display the expression that computed it in
the error message.

The actual definition of @assert in the standard library is more complicated. It allows the
user to optionally specify their own error message, instead of just printing the failed expression.
Just like in functions with a variable number of arguments, this is specified with an ellipses
following the last argument:

julia> macro assert(ex, msgs...)
           msg_body = isempty(msgs) ? ex : msgs[1]
           msg = string(msg_body)
           return :($ex ? nothing : throw(AssertionError($msg)))
       end
@assert (macro with 1 method)





Now @assert has two modes of operation, depending upon the number of arguments it receives!
If there’s only one argument, the tuple of expressions captured by msgs will be empty and it
will behave the same as the simpler definition above. But now if the user specifies a second argument,
it is printed in the message body instead of the failing expression. You can inspect the result
of a macro expansion with the aptly named macroexpand() function:

julia> macroexpand(:(@assert a == b))
:(if a == b
        nothing
    else
        (throw)((AssertionError)("a == b"))
    end)

julia> macroexpand(:(@assert a==b "a should equal b!"))
:(if a == b
        nothing
    else
        (throw)((AssertionError)("a should equal b!"))
    end)





There is yet another case that the actual @assert macro handles: what if, in addition to printing
“a should equal b,” we wanted to print their values? One might naively try to use string interpolation
in the custom message, e.g., @assert a==b "a ($a) should equal b ($b)!", but this won’t work
as expected with the above macro. Can you see why? Recall from [string interpolation](@ref string-interpolation) that
an interpolated string is rewritten to a call to string(). Compare:

julia> typeof(:("a should equal b"))
String

julia> typeof(:("a ($a) should equal b ($b)!"))
Expr

julia> dump(:("a ($a) should equal b ($b)!"))
Expr
  head: Symbol string
  args: Array{Any}((5,))
    1: String "a ("
    2: Symbol a
    3: String ") should equal b ("
    4: Symbol b
    5: String ")!"
  typ: Any





So now instead of getting a plain string in msg_body, the macro is receiving a full expression
that will need to be evaluated in order to display as expected. This can be spliced directly into
the returned expression as an argument to the string() call; see error.jl [https://github.com/JuliaLang/julia/blob/master/base/error.jl]
for the complete implementation.

The @assert macro makes great use of splicing into quoted expressions to simplify the manipulation
of expressions inside the macro body.




Hygiene

An issue that arises in more complex macros is that of hygiene [https://en.wikipedia.org/wiki/Hygienic_macro].
In short, macros must ensure that the variables they introduce in their returned expressions do
not accidentally clash with existing variables in the surrounding code they expand into. Conversely,
the expressions that are passed into a macro as arguments are often expected to evaluate in
the context of the surrounding code, interacting with and modifying the existing variables. Another
concern arises from the fact that a macro may be called in a different module from where it was
defined. In this case we need to ensure that all global variables are resolved to the correct
module. Julia already has a major advantage over languages with textual macro expansion (like
C) in that it only needs to consider the returned expression. All the other variables (such as
msg in @assert above) follow the [normal scoping block behavior](@ref scope-of-variables).

To demonstrate these issues, let us consider writing a @time macro that takes an expression
as its argument, records the time, evaluates the expression, records the time again, prints the
difference between the before and after times, and then has the value of the expression as its
final value. The macro might look like this:

macro time(ex)
    return quote
        local t0 = time()
        local val = $ex
        local t1 = time()
        println("elapsed time: ", t1-t0, " seconds")
        val
    end
end





Here, we want t0, t1, and val to be private temporary variables, and we want time to refer
to the time() function in the standard library, not to any time variable the user
might have (the same applies to println). Imagine the problems that could occur if the user
expression ex also contained assignments to a variable called t0, or defined its own time
variable. We might get errors, or mysteriously incorrect behavior.

Julia’s macro expander solves these problems in the following way. First, variables within a macro
result are classified as either local or global. A variable is considered local if it is assigned
to (and not declared global), declared local, or used as a function argument name. Otherwise,
it is considered global. Local variables are then renamed to be unique (using the gensym()
function, which generates new symbols), and global variables are resolved within the macro definition
environment. Therefore both of the above concerns are handled; the macro’s locals will not conflict
with any user variables, and time and println will refer to the standard library definitions.

One problem remains however. Consider the following use of this macro:

module MyModule
import Base.@time

time() = ... # compute something

@time time()
end





Here the user expression ex is a call to time, but not the same time function that the macro
uses. It clearly refers to MyModule.time. Therefore we must arrange for the code in ex to
be resolved in the macro call environment. This is done by “escaping” the expression with esc():

macro time(ex)
    ...
    local val = $(esc(ex))
    ...
end





An expression wrapped in this manner is left alone by the macro expander and simply pasted into
the output verbatim. Therefore it will be resolved in the macro call environment.

This escaping mechanism can be used to “violate” hygiene when necessary, in order to introduce
or manipulate user variables. For example, the following macro sets x to zero in the call environment:

julia> macro zerox()
           return esc(:(x = 0))
       end
@zerox (macro with 1 method)

julia> function foo()
           x = 1
           @zerox
           return x # is zero
       end
foo (generic function with 1 method)

julia> foo()
0





This kind of manipulation of variables should be used judiciously, but is occasionally quite handy.






Code Generation

When a significant amount of repetitive boilerplate code is required, it is common to generate
it programmatically to avoid redundancy. In most languages, this requires an extra build step,
and a separate program to generate the repetitive code. In Julia, expression interpolation and
eval() allow such code generation to take place in the normal course of program execution.
For example, the following code defines a series of operators on three arguments in terms of their
2-argument forms:

for op = (:+, :*, :&, :|, :$)
    eval(quote
        ($op)(a,b,c) = ($op)(($op)(a,b),c)
    end)
end





In this manner, Julia acts as its own preprocessor [https://en.wikipedia.org/wiki/Preprocessor],
and allows code generation from inside the language. The above code could be written slightly
more tersely using the : prefix quoting form:

for op = (:+, :*, :&, :|, :$)
    eval(:(($op)(a,b,c) = ($op)(($op)(a,b),c)))
end





This sort of in-language code generation, however, using the eval(quote(...)) pattern, is common
enough that Julia comes with a macro to abbreviate this pattern:

for op = (:+, :*, :&, :|, :$)
    @eval ($op)(a,b,c) = ($op)(($op)(a,b),c)
end





The @eval macro rewrites this call to be precisely equivalent to the above longer versions.
For longer blocks of generated code, the expression argument given to @eval can be a
block:

@eval begin
    # multiple lines
end








Non-Standard String Literals

Recall from [Strings](@ref non-standard-string-literals) that string literals prefixed by an identifier are called non-standard
string literals, and can have different semantics than un-prefixed string literals. For example:


	r"^\s*(?:#|$)" produces a regular expression object rather than a string


	b"DATA\xff\u2200" is a byte array literal for [68,65,84,65,255,226,136,128].




Perhaps surprisingly, these behaviors are not hard-coded into the Julia parser or compiler. Instead,
they are custom behaviors provided by a general mechanism that anyone can use: prefixed string
literals are parsed as calls to specially-named macros. For example, the regular expression macro
is just the following:

macro r_str(p)
    Regex(p)
end





That’s all. This macro says that the literal contents of the string literal r"^\s*(?:#|$)" should
be passed to the @r_str macro and the result of that expansion should be placed in the syntax
tree where the string literal occurs. In other words, the expression r"^\s*(?:#|$)" is equivalent
to placing the following object directly into the syntax tree:

Regex("^\\s*(?:#|\$)")





Not only is the string literal form shorter and far more convenient, but it is also more efficient:
since the regular expression is compiled and the Regex object is actually created when the code is compiled,
the compilation occurs only once, rather than every time the code is executed. Consider if the
regular expression occurs in a loop:

for line = lines
    m = match(r"^\s*(?:#|$)", line)
    if m === nothing
        # non-comment
    else
        # comment
    end
end





Since the regular expression r"^\s*(?:#|$)" is compiled and inserted into the syntax tree when
this code is parsed, the expression is only compiled once instead of each time the loop is executed.
In order to accomplish this without macros, one would have to write this loop like this:

re = Regex("^\\s*(?:#|\$)")
for line = lines
    m = match(re, line)
    if m === nothing
        # non-comment
    else
        # comment
    end
end





Moreover, if the compiler could not determine that the regex object was constant over all loops,
certain optimizations might not be possible, making this version still less efficient than the
more convenient literal form above. Of course, there are still situations where the non-literal
form is more convenient: if one needs to interpolate a variable into the regular expression, one
must take this more verbose approach; in cases where the regular expression pattern itself is
dynamic, potentially changing upon each loop iteration, a new regular expression object must be
constructed on each iteration. In the vast majority of use cases, however, regular expressions
are not constructed based on run-time data. In this majority of cases, the ability to write regular
expressions as compile-time values is invaluable.

Like non-standard string literals, non-standard command literals exist using a prefixed variant
of the command literal syntax. The command literal custom`literal` is parsed as @custom_cmd "literal".
Julia itself does not contain any non-standard command literals, but packages can make use of
this syntax. Aside from the different syntax and the _cmd suffix instead of the _str suffix,
non-standard command literals behave exactly like non-standard string literals.

In the event that two modules provide non-standard string or command literals with the same name,
it is possible to qualify the string or command literal with a module name. For instance, if both
Foo and Bar provide non-standard string literal @x_str, then one can write Foo.x"literal"
or Bar.x"literal" to disambiguate between the two.

The mechanism for user-defined string literals is deeply, profoundly powerful. Not only are Julia’s
non-standard literals implemented using it, but also the command literal syntax (`echo "Hello, $person"`)
is implemented with the following innocuous-looking macro:

macro cmd(str)
    :(cmd_gen($(shell_parse(str)[1])))
end





Of course, a large amount of complexity is hidden in the functions used in this macro definition,
but they are just functions, written entirely in Julia. You can read their source and see precisely
what they do – and all they do is construct expression objects to be inserted into your program’s
syntax tree.




Generated functions

A very special macro is @generated, which allows you to define so-called generated functions.
These have the capability to generate specialized code depending on the types of their arguments
with more flexibility and/or less code than what can be achieved with multiple dispatch. While
macros work with expressions at parsing-time and cannot access the types of their inputs, a generated
function gets expanded at a time when the types of the arguments are known, but the function is
not yet compiled.

Instead of performing some calculation or action, a generated function declaration returns a quoted
expression which then forms the body for the method corresponding to the types of the arguments.
When called, the body expression is first evaluated and compiled, then the returned expression
is compiled and run. To make this efficient, the result is often cached. And to make this inferable,
only a limited subset of the language is usable. Thus, generated functions provide a flexible
framework to move work from run-time to compile-time, at the expense of greater restrictions on
the allowable constructs.

When defining generated functions, there are four main differences to ordinary functions:


	You annotate the function declaration with the @generated macro. This adds some information
to the AST that lets the compiler know that this is a generated function.


	In the body of the generated function you only have access to the types of the arguments –
not their values – and any function that was defined before the definition of the generated
function.


	Instead of calculating something or performing some action, you return a quoted expression which,
when evaluated, does what you want.


	Generated functions must not mutate or observe any non-constant global state (including,
for example, IO, locks, non-local dictionaries, or using method_exists).
This means they can only read global constants, and cannot have any side effects.
In other words, they must be completely pure.
Due to an implementation limitation, this also means that they currently cannot define a closure
or untyped generator.




It’s easiest to illustrate this with an example. We can declare a generated function foo as

julia> @generated function foo(x)
           Core.println(x)
           return :(x * x)
       end
foo (generic function with 1 method)





Note that the body returns a quoted expression, namely :(x * x), rather than just the value
of x * x.

From the caller’s perspective, they are very similar to regular functions; in fact, you don’t
have to know if you’re calling a regular or generated function - the syntax and result of the
call is just the same. Let’s see how foo behaves:

julia> x = foo(2); # note: output is from println() statement in the body
Int64

julia> x           # now we print x
4

julia> y = foo("bar");
String

julia> y
"barbar"





So, we see that in the body of the generated function, x is the type of the passed argument,
and the value returned by the generated function, is the result of evaluating the quoted expression
we returned from the definition, now with the value of x.

What happens if we evaluate foo again with a type that we have already used?

julia> foo(4)
16





Note that there is no printout of Int64. We can see that the body of the generated function
was only executed once here, for the specific set of argument types, and the result was cached.
After that, for this example, the expression returned from the generated function on the first
invocation was re-used as the method body. However, the actual caching behavior is an implementation-defined
performance optimization, so it is invalid to depend too closely on this behavior.

The number of times a generated function is generated might be only once, but it might also
be more often, or appear to not happen at all. As a consequence, you should never write a generated
function with side effects - when, and how often, the side effects occur is undefined. (This is
true for macros too - and just like for macros, the use of eval() in a generated function
is a sign that you’re doing something the wrong way.) However, unlike macros, the runtime system
cannot correctly handle a call to eval(), so it is disallowed.

It is also important to see how @generated functions interact with method redefinition.
Following the principle that a correct @generated function must not observe any
mutable state or cause any mutation of global state, we see the following behavior.
Observe that the generated function cannot call any method that was not defined
prior to the definition of the generated function itself.

Initially f(x) has one definition

julia> f(x) = "original definition";





Define other operations that use f(x):

julia> g(x) = f(x);

julia> @generated gen1(x) = f(x);

julia> @generated gen2(x) = :(f(x));





We now add some new definitions for f(x):

julia> f(x::Int) = "definition for Int";

julia> f(x::Type{Int}) = "definition for Type{Int}";





and compare how these results differ:

julia> f(1)
"definition for Int"

julia> g(1)
"definition for Int"

julia> gen1(1)
"original definition"

julia> gen2(1)
"definition for Int"





Each method of a generated function has its own view of defined functions:

julia> @generated gen1(x::Real) = f(x);

julia> gen1(1)
"definition for Type{Int}"





The example generated function foo above did not do anything a normal function foo(x) = x * x
could not do (except printing the type on the first invocation, and incurring higher overhead).
However, the power of a generated function lies in its ability to compute different quoted expressions
depending on the types passed to it:

julia> @generated function bar(x)
           if x <: Integer
               return :(x ^ 2)
           else
               return :(x)
           end
       end
bar (generic function with 1 method)

julia> bar(4)
16

julia> bar("baz")
"baz"





(although of course this contrived example would be more easily implemented using multiple dispatch…)

Abusing this will corrupt the runtime system and cause undefined behavior:

julia> @generated function baz(x)
           if rand() < .9
               return :(x^2)
           else
               return :("boo!")
           end
       end
baz (generic function with 1 method)





Since the body of the generated function is non-deterministic, its behavior, and the behavior of all subsequent code
is undefined.

Don’t copy these examples!

These examples are hopefully helpful to illustrate how generated functions work, both in the definition
end and at the call site; however, don’t copy them, for the following reasons:


	the foo function has side-effects (the call to Core.println), and it is undefined exactly
when, how often or how many times these side-effects will occur


	the bar function solves a problem that is better solved with multiple dispatch - defining bar(x) = x
and bar(x::Integer) = x ^ 2 will do the same thing, but it is both simpler and faster.


	the baz function is pathologically insane




Note that the set of operations that should not be attempted in a generated function is unbounded,
and the runtime system can currently only detect a subset of the invalid operations. There are
many other operations that will simply corrupt the runtime system without notification, usually
in subtle ways not obviously connected to the bad definition. Because the function generator is
run during inference, it must respect all of the limitations of that code.

Some operations that should not be attempted include:


	Caching of native pointers.


	Interacting with the contents or methods of Core.Inference in any way.


	Observing any mutable state.


	Inference on the generated function may be run at any time, including while your code is attempting
to observe or mutate this state.






	Taking any locks: C code you call out to may use locks internally, (for example, it is not problematic
to call malloc, even though most implementations require locks internally) but don’t attempt
to hold or acquire any while executing Julia code.


	Calling any function that is defined after the body of the generated function. This condition
is relaxed for incrementally-loaded precompiled modules to allow calling any function in the module.




Alright, now that we have a better understanding of how generated functions work, let’s use them
to build some more advanced (and valid) functionality…


An advanced example

Julia’s base library has a sub2ind() function to calculate a linear index into an n-dimensional
array, based on a set of n multilinear indices - in other words, to calculate the index i that
can be used to index into an array A using A[i], instead of A[x,y,z,...]. One possible implementation
is the following:

julia> function sub2ind_loop(dims::NTuple{N}, I::Integer...) where N
           ind = I[N] - 1
           for i = N-1:-1:1
               ind = I[i]-1 + dims[i]*ind
           end
           return ind + 1
       end
sub2ind_loop (generic function with 1 method)

julia> sub2ind_loop((3, 5), 1, 2)
4





The same thing can be done using recursion:

julia> sub2ind_rec(dims::Tuple{}) = 1;

julia> sub2ind_rec(dims::Tuple{}, i1::Integer, I::Integer...) =
           i1 == 1 ? sub2ind_rec(dims, I...) : throw(BoundsError());

julia> sub2ind_rec(dims::Tuple{Integer, Vararg{Integer}}, i1::Integer) = i1;

julia> sub2ind_rec(dims::Tuple{Integer, Vararg{Integer}}, i1::Integer, I::Integer...) =
           i1 + dims[1] * (sub2ind_rec(Base.tail(dims), I...) - 1);

julia> sub2ind_rec((3, 5), 1, 2)
4





Both these implementations, although different, do essentially the same thing: a runtime loop
over the dimensions of the array, collecting the offset in each dimension into the final index.

However, all the information we need for the loop is embedded in the type information of the arguments.
Thus, we can utilize generated functions to move the iteration to compile-time; in compiler parlance,
we use generated functions to manually unroll the loop. The body becomes almost identical, but
instead of calculating the linear index, we build up an expression that calculates the index:

julia> @generated function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N
           ex = :(I[$N] - 1)
           for i = (N - 1):-1:1
               ex = :(I[$i] - 1 + dims[$i] * $ex)
           end
           return :($ex + 1)
       end
sub2ind_gen (generic function with 1 method)

julia> sub2ind_gen((3, 5), 1, 2)
4





What code will this generate?

An easy way to find out is to extract the body into another (regular) function:

julia> @generated function sub2ind_gen(dims::NTuple{N}, I::Integer...) where N
           return sub2ind_gen_impl(dims, I...)
       end
sub2ind_gen (generic function with 1 method)

julia> function sub2ind_gen_impl(dims::Type{T}, I...) where T <: NTuple{N,Any} where N
           length(I) == N || return :(error("partial indexing is unsupported"))
           ex = :(I[$N] - 1)
           for i = (N - 1):-1:1
               ex = :(I[$i] - 1 + dims[$i] * $ex)
           end
           return :($ex + 1)
       end
sub2ind_gen_impl (generic function with 1 method)





We can now execute sub2ind_gen_impl and examine the expression it returns:

julia> sub2ind_gen_impl(Tuple{Int,Int}, Int, Int)
:(((I[1] - 1) + dims[1] * (I[2] - 1)) + 1)





So, the method body that will be used here doesn’t include a loop at all - just indexing into
the two tuples, multiplication and addition/subtraction. All the looping is performed compile-time,
and we avoid looping during execution entirely. Thus, we only loop once per type, in this case
once per N (except in edge cases where the function is generated more than once - see disclaimer
above).
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Methods

Recall from [Functions](@ref man-functions) that a function is an object that maps a tuple of arguments to a
return value, or throws an exception if no appropriate value can be returned. It is common for
the same conceptual function or operation to be implemented quite differently for different types
of arguments: adding two integers is very different from adding two floating-point numbers, both
of which are distinct from adding an integer to a floating-point number. Despite their implementation
differences, these operations all fall under the general concept of “addition”. Accordingly, in
Julia, these behaviors all belong to a single object: the + function.

To facilitate using many different implementations of the same concept smoothly, functions need
not be defined all at once, but can rather be defined piecewise by providing specific behaviors
for certain combinations of argument types and counts. A definition of one possible behavior for
a function is called a method. Thus far, we have presented only examples of functions defined
with a single method, applicable to all types of arguments. However, the signatures of method
definitions can be annotated to indicate the types of arguments in addition to their number, and
more than a single method definition may be provided. When a function is applied to a particular
tuple of arguments, the most specific method applicable to those arguments is applied. Thus, the
overall behavior of a function is a patchwork of the behaviors of its various method definitions.
If the patchwork is well designed, even though the implementations of the methods may be quite
different, the outward behavior of the function will appear seamless and consistent.

The choice of which method to execute when a function is applied is called dispatch. Julia allows
the dispatch process to choose which of a function’s methods to call based on the number of arguments
given, and on the types of all of the function’s arguments. This is different than traditional
object-oriented languages, where dispatch occurs based only on the first argument, which often
has a special argument syntax, and is sometimes implied rather than explicitly written as an argument.
[^1] Using all of a function’s arguments to choose which method should be invoked, rather than
just the first, is known as multiple dispatch [https://en.wikipedia.org/wiki/Multiple_dispatch].
Multiple dispatch is particularly useful for mathematical code, where it makes little sense to
artificially deem the operations to “belong” to one argument more than any of the others: does
the addition operation in x + y belong to x any more than it does to y? The implementation
of a mathematical operator generally depends on the types of all of its arguments. Even beyond
mathematical operations, however, multiple dispatch ends up being a powerful and convenient paradigm
for structuring and organizing programs.

[^1]:
In C++ or Java, for example, in a method call like obj.meth(arg1,arg2), the object obj “receives”
the method call and is implicitly passed to the method via the this keyword, rather than as
an explicit method argument. When the current this object is the receiver of a method call,
it can be omitted altogether, writing just meth(arg1,arg2), with this implied as the receiving
object.


Defining Methods

Until now, we have, in our examples, defined only functions with a single method having unconstrained
argument types. Such functions behave just like they would in traditional dynamically typed languages.
Nevertheless, we have used multiple dispatch and methods almost continually without being aware
of it: all of Julia’s standard functions and operators, like the aforementioned + function,
have many methods defining their behavior over various possible combinations of argument type
and count.

When defining a function, one can optionally constrain the types of parameters it is applicable
to, using the :: type-assertion operator, introduced in the section on Composite Types:

julia> f(x::Float64, y::Float64) = 2x + y
f (generic function with 1 method)





This function definition applies only to calls where x and y are both values of type
Float64:

julia> f(2.0, 3.0)
7.0





Applying it to any other types of arguments will result in a MethodError:

julia> f(2.0, 3)
ERROR: MethodError: no method matching f(::Float64, ::Int64)
Closest candidates are:
  f(::Float64, !Matched::Float64) at none:1

julia> f(Float32(2.0), 3.0)
ERROR: MethodError: no method matching f(::Float32, ::Float64)
Closest candidates are:
  f(!Matched::Float64, ::Float64) at none:1

julia> f(2.0, "3.0")
ERROR: MethodError: no method matching f(::Float64, ::String)
Closest candidates are:
  f(::Float64, !Matched::Float64) at none:1

julia> f("2.0", "3.0")
ERROR: MethodError: no method matching f(::String, ::String)





As you can see, the arguments must be precisely of type Float64. Other numeric
types, such as integers or 32-bit floating-point values, are not automatically converted
to 64-bit floating-point, nor are strings parsed as numbers. Because Float64 is a concrete
type and concrete types cannot be subclassed in Julia, such a definition can only be applied
to arguments that are exactly of type Float64. It may often be useful, however, to write
more general methods where the declared parameter types are abstract:

julia> f(x::Number, y::Number) = 2x - y
f (generic function with 2 methods)

julia> f(2.0, 3)
1.0





This method definition applies to any pair of arguments that are instances of Number.
They need not be of the same type, so long as they are each numeric values. The problem of
handling disparate numeric types is delegated to the arithmetic operations in the
expression 2x - y.

To define a function with multiple methods, one simply defines the function multiple times, with
different numbers and types of arguments. The first method definition for a function creates the
function object, and subsequent method definitions add new methods to the existing function object.
The most specific method definition matching the number and types of the arguments will be executed
when the function is applied. Thus, the two method definitions above, taken together, define the
behavior for f over all pairs of instances of the abstract type Number – but with a different
behavior specific to pairs of Float64 values. If one of the arguments is a 64-bit
float but the other one is not, then the f(Float64,Float64) method cannot be called and
the more general f(Number,Number) method must be used:

julia> f(2.0, 3.0)
7.0

julia> f(2, 3.0)
1.0

julia> f(2.0, 3)
1.0

julia> f(2, 3)
1





The 2x + y definition is only used in the first case, while the 2x - y definition is used
in the others. No automatic casting or conversion of function arguments is ever performed: all
conversion in Julia is non-magical and completely explicit. [Conversion and Promotion](@ref conversion-and-promotion),
however, shows how clever application of sufficiently advanced technology can be indistinguishable
from magic. [^Clarke61]

For non-numeric values, and for fewer or more than two arguments, the function f remains undefined,
and applying it will still result in a MethodError:

julia> f("foo", 3)
ERROR: MethodError: no method matching f(::String, ::Int64)
Closest candidates are:
  f(!Matched::Number, ::Number) at none:1

julia> f()
ERROR: MethodError: no method matching f()
Closest candidates are:
  f(!Matched::Float64, !Matched::Float64) at none:1
  f(!Matched::Number, !Matched::Number) at none:1





You can easily see which methods exist for a function by entering the function object itself in
an interactive session:

julia> f
f (generic function with 2 methods)





This output tells us that f is a function object with two methods. To find out what the signatures
of those methods are, use the methods() function:

julia> methods(f)
# 2 methods for generic function "f":
f(x::Float64, y::Float64) in Main at none:1
f(x::Number, y::Number) in Main at none:1





which shows that f has two methods, one taking two Float64 arguments and one taking arguments
of type Number. It also indicates the file and line number where the methods were defined: because
these methods were defined at the REPL, we get the apparent line number none:1.

In the absence of a type declaration with ::, the type of a method parameter is Any by default,
meaning that it is unconstrained since all values in Julia are instances of the abstract type
Any. Thus, we can define a catch-all method for f like so:

julia> f(x,y) = println("Whoa there, Nelly.")
f (generic function with 3 methods)

julia> f("foo", 1)
Whoa there, Nelly.





This catch-all is less specific than any other possible method definition for a pair of parameter
values, so it will only be called on pairs of arguments to which no other method definition applies.

Although it seems a simple concept, multiple dispatch on the types of values is perhaps the single
most powerful and central feature of the Julia language. Core operations typically have dozens
of methods:

julia> methods(+)
# 180 methods for generic function "+":
+(x::Bool, z::Complex{Bool}) in Base at complex.jl:224
+(x::Bool, y::Bool) in Base at bool.jl:89
+(x::Bool) in Base at bool.jl:86
+(x::Bool, y::T) where T<:AbstractFloat in Base at bool.jl:96
+(x::Bool, z::Complex) in Base at complex.jl:231
+(a::Float16, b::Float16) in Base at float.jl:372
+(x::Float32, y::Float32) in Base at float.jl:374
+(x::Float64, y::Float64) in Base at float.jl:375
+(z::Complex{Bool}, x::Bool) in Base at complex.jl:225
+(z::Complex{Bool}, x::Real) in Base at complex.jl:239
+(x::Char, y::Integer) in Base at char.jl:40
+(c::BigInt, x::BigFloat) in Base.MPFR at mpfr.jl:303
+(a::BigInt, b::BigInt, c::BigInt, d::BigInt, e::BigInt) in Base.GMP at gmp.jl:303
+(a::BigInt, b::BigInt, c::BigInt, d::BigInt) in Base.GMP at gmp.jl:296
+(a::BigInt, b::BigInt, c::BigInt) in Base.GMP at gmp.jl:290
+(x::BigInt, y::BigInt) in Base.GMP at gmp.jl:258
+(x::BigInt, c::Union{UInt16, UInt32, UInt64, UInt8}) in Base.GMP at gmp.jl:315
...
+(a, b, c, xs...) at operators.jl:119





Multiple dispatch together with the flexible parametric type system give Julia its ability to
abstractly express high-level algorithms decoupled from implementation details, yet generate efficient,
specialized code to handle each case at run time.




[Method Ambiguities](@id man-ambiguities)

It is possible to define a set of function methods such that there is no unique most specific
method applicable to some combinations of arguments:

julia> g(x::Float64, y) = 2x + y
g (generic function with 1 method)

julia> g(x, y::Float64) = x + 2y
g (generic function with 2 methods)

julia> g(2.0, 3)
7.0

julia> g(2, 3.0)
8.0

julia> g(2.0, 3.0)
ERROR: MethodError: g(::Float64, ::Float64) is ambiguous.
[...]





Here the call g(2.0, 3.0) could be handled by either the g(Float64, Any) or the g(Any, Float64)
method, and neither is more specific than the other. In such cases, Julia raises a MethodError
rather than arbitrarily picking a method. You can avoid method ambiguities by specifying an appropriate
method for the intersection case:

julia> g(x::Float64, y::Float64) = 2x + 2y
g (generic function with 3 methods)

julia> g(2.0, 3)
7.0

julia> g(2, 3.0)
8.0

julia> g(2.0, 3.0)
10.0





It is recommended that the disambiguating method be defined first, since otherwise the ambiguity
exists, if transiently, until the more specific method is defined.

In more complex cases, resolving method ambiguities involves a certain
element of design; this topic is explored further [below](@ref man-method-design-ambiguities).




Parametric Methods

Method definitions can optionally have type parameters qualifying the signature:

julia> same_type(x::T, y::T) where {T} = true
same_type (generic function with 1 method)

julia> same_type(x,y) = false
same_type (generic function with 2 methods)





The first method applies whenever both arguments are of the same concrete type, regardless of
what type that is, while the second method acts as a catch-all, covering all other cases. Thus,
overall, this defines a boolean function that checks whether its two arguments are of the same
type:

julia> same_type(1, 2)
true

julia> same_type(1, 2.0)
false

julia> same_type(1.0, 2.0)
true

julia> same_type("foo", 2.0)
false

julia> same_type("foo", "bar")
true

julia> same_type(Int32(1), Int64(2))
false





Such definitions correspond to methods whose type signatures are UnionAll types
(see UnionAll Types).

This kind of definition of function behavior by dispatch is quite common – idiomatic, even –
in Julia. Method type parameters are not restricted to being used as the types of arguments:
they can be used anywhere a value would be in the signature of the function or body of the function.
Here’s an example where the method type parameter T is used as the type parameter to the parametric
type Vector{T} in the method signature:

julia> myappend(v::Vector{T}, x::T) where {T} = [v..., x]
myappend (generic function with 1 method)

julia> myappend([1,2,3],4)
4-element Array{Int64,1}:
 1
 2
 3
 4

julia> myappend([1,2,3],2.5)
ERROR: MethodError: no method matching myappend(::Array{Int64,1}, ::Float64)
Closest candidates are:
  myappend(::Array{T,1}, !Matched::T) where T at none:1

julia> myappend([1.0,2.0,3.0],4.0)
4-element Array{Float64,1}:
 1.0
 2.0
 3.0
 4.0

julia> myappend([1.0,2.0,3.0],4)
ERROR: MethodError: no method matching myappend(::Array{Float64,1}, ::Int64)
Closest candidates are:
  myappend(::Array{T,1}, !Matched::T) where T at none:1





As you can see, the type of the appended element must match the element type of the vector it
is appended to, or else a MethodError is raised. In the following example, the method type parameter
T is used as the return value:

julia> mytypeof(x::T) where {T} = T
mytypeof (generic function with 1 method)

julia> mytypeof(1)
Int64

julia> mytypeof(1.0)
Float64





Just as you can put subtype constraints on type parameters in type declarations (see Parametric Types),
you can also constrain type parameters of methods:

julia> same_type_numeric(x::T, y::T) where {T<:Number} = true
same_type_numeric (generic function with 1 method)

julia> same_type_numeric(x::Number, y::Number) = false
same_type_numeric (generic function with 2 methods)

julia> same_type_numeric(1, 2)
true

julia> same_type_numeric(1, 2.0)
false

julia> same_type_numeric(1.0, 2.0)
true

julia> same_type_numeric("foo", 2.0)
ERROR: MethodError: no method matching same_type_numeric(::String, ::Float64)
Closest candidates are:
  same_type_numeric(!Matched::T<:Number, ::T<:Number) where T<:Number at none:1
  same_type_numeric(!Matched::Number, ::Number) at none:1

julia> same_type_numeric("foo", "bar")
ERROR: MethodError: no method matching same_type_numeric(::String, ::String)

julia> same_type_numeric(Int32(1), Int64(2))
false





The same_type_numeric function behaves much like the same_type function defined above, but
is only defined for pairs of numbers.

Parametric methods allow the same syntax as where expressions used to write types
(see UnionAll Types).
If there is only a single parameter, the enclosing curly braces (in where {T}) can be omitted,
but are often preferred for clarity.
Multiple parameters can be separated with commas, e.g. where {T, S<:Real}, or written using
nested where, e.g. where S<:Real where T.




Redefining Methods

When redefining a method or adding new methods,
it is important to realize that these changes don’t take effect immediately.
This is key to Julia’s ability to statically infer and compile code to run fast,
without the usual JIT tricks and overhead.
Indeed, any new method definition won’t be visible to the current runtime environment,
including Tasks and Threads (and any previously defined @generated functions).
Let’s start with an example to see what this means:

julia> function tryeval()
           @eval newfun() = 1
           newfun()
       end
tryeval (generic function with 1 method)

julia> tryeval()
ERROR: MethodError: no method matching newfun()
The applicable method may be too new: running in world age xxxx1, while current world is xxxx2.
Closest candidates are:
  newfun() at none:1 (method too new to be called from this world context.)
 in tryeval() at none:1
 ...

julia> newfun()
1





In this example, observe that the new definition for newfun has been created,
but can’t be immediately called.
The new global is immediately visible to the tryeval function,
so you could write return newfun (without parentheses).
But neither you, nor any of your callers, nor the functions they call, or etc.
can call this new method definition!

But there’s an exception: future calls to newfun from the REPL work as expected,
being able to both see and call the new definition of newfun.

However, future calls to tryeval will continue to see the definition of newfun as it was
at the previous statement at the REPL, and thus before that call to tryeval.

You may want to try this for yourself to see how it works.

The implementation of this behavior is a “world age counter”.
This monotonically increasing value tracks each method definition operation.
This allows describing “the set of method definitions visible to a given runtime environment”
as a single number, or “world age”.
It also allows comparing the methods available in two worlds just by comparing their ordinal value.
In the example above, we see that the “current world” (in which the method newfun() exists),
is one greater than the task-local “runtime world” that was fixed when the execution of tryeval started.

Sometimes it is necessary to get around this (for example, if you are implementing the above REPL).
Fortunately, there is an easy solution: call the function using Base.invokelatest:

julia> function tryeval2()
           @eval newfun2() = 2
           Base.invokelatest(newfun2)
       end
tryeval2 (generic function with 1 method)

julia> tryeval2()
2





Finally, let’s take a look at some more complex examples where this rule comes into play.
Define a function f(x), which initially has one method:

julia> f(x) = "original definition"
f (generic function with 1 method)





Start some other operations that use f(x):

julia> g(x) = f(x)
g (generic function with 1 method)

julia> t = @async f(wait()); yield();





Now we add some new methods to f(x):

julia> f(x::Int) = "definition for Int"
f (generic function with 2 methods)

julia> f(x::Type{Int}) = "definition for Type{Int}"
f (generic function with 3 methods)





Compare how these results differ:

julia> f(1)
"definition for Int"

julia> g(1)
"definition for Int"

julia> wait(schedule(t, 1))
"original definition"

julia> t = @async f(wait()); yield();

julia> wait(schedule(t, 1))
"definition for Int"








Parametrically-constrained Varargs methods

Function parameters can also be used to constrain the number of arguments that may be supplied
to a “varargs” function (Varargs Functions).  The notation Vararg{T,N} is used to indicate
such a constraint.  For example:

julia> bar(a,b,x::Vararg{Any,2}) = (a,b,x)
bar (generic function with 1 method)

julia> bar(1,2,3)
ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64)
Closest candidates are:
  bar(::Any, ::Any, ::Any, !Matched::Any) at none:1

julia> bar(1,2,3,4)
(1, 2, (3, 4))

julia> bar(1,2,3,4,5)
ERROR: MethodError: no method matching bar(::Int64, ::Int64, ::Int64, ::Int64, ::Int64)
Closest candidates are:
  bar(::Any, ::Any, ::Any, ::Any) at none:1





More usefully, it is possible to constrain varargs methods by a parameter. For example:

function getindex(A::AbstractArray{T,N}, indexes::Vararg{Number,N}) where {T,N}





would be called only when the number of indexes matches the dimensionality of the array.




Note on Optional and keyword Arguments

As mentioned briefly in [Functions](@ref man-functions), optional arguments are implemented as syntax for multiple
method definitions. For example, this definition:

f(a=1,b=2) = a+2b





translates to the following three methods:

f(a,b) = a+2b
f(a) = f(a,2)
f() = f(1,2)





This means that calling f() is equivalent to calling f(1,2). In this case the result is 5,
because f(1,2) invokes the first method of f above. However, this need not always be the case.
If you define a fourth method that is more specialized for integers:

f(a::Int,b::Int) = a-2b





then the result of both f() and f(1,2) is -3. In other words, optional arguments are tied
to a function, not to any specific method of that function. It depends on the types of the optional
arguments which method is invoked. When optional arguments are defined in terms of a global variable,
the type of the optional argument may even change at run-time.

Keyword arguments behave quite differently from ordinary positional arguments. In particular,
they do not participate in method dispatch. Methods are dispatched based only on positional arguments,
with keyword arguments processed after the matching method is identified.




Function-like objects

Methods are associated with types, so it is possible to make any arbitrary Julia object “callable”
by adding methods to its type. (Such “callable” objects are sometimes called “functors.”)

For example, you can define a type that stores the coefficients of a polynomial, but behaves like
a function evaluating the polynomial:

julia> struct Polynomial{R}
           coeffs::Vector{R}
       end

julia> function (p::Polynomial)(x)
           v = p.coeffs[end]
           for i = (length(p.coeffs)-1):-1:1
               v = v*x + p.coeffs[i]
           end
           return v
       end





Notice that the function is specified by type instead of by name. In the function body, p will
refer to the object that was called. A Polynomial can be used as follows:

julia> p = Polynomial([1,10,100])
Polynomial{Int64}([1, 10, 100])

julia> p(3)
931





This mechanism is also the key to how type constructors and closures (inner functions that refer
to their surrounding environment) work in Julia, discussed [later in the manual](@ref constructors-and-conversion).




Empty generic functions

Occasionally it is useful to introduce a generic function without yet adding methods. This can
be used to separate interface definitions from implementations. It might also be done for the
purpose of documentation or code readability. The syntax for this is an empty function block
without a tuple of arguments:

function emptyfunc
end








[Method design and the avoidance of ambiguities](@id man-method-design-ambiguities)

Julia’s method polymorphism is one of its most powerful features, yet
exploiting this power can pose design challenges.  In particular, in
more complex method hierarchies it is not uncommon for
[ambiguities](@ref man-ambiguities) to arise.

Above, it was pointed out that one can resolve ambiguities like

f(x, y::Int) = 1
f(x::Int, y) = 2





by defining a method

f(x::Int, y::Int) = 3





This is often the right strategy; however, there are circumstances
where following this advice blindly can be counterproductive. In
particular, the more methods a generic function has, the more
possibilities there are for ambiguities. When your method hierarchies
get more complicated than this simple example, it can be worth your
while to think carefully about alternative strategies.

Below we discuss particular challenges and some alternative ways to resolve such issues.


Tuple and NTuple arguments

Tuple (and NTuple) arguments present special challenges. For example,

f(x::NTuple{N,Int}) where {N} = 1
f(x::NTuple{N,Float64}) where {N} = 2





are ambiguous because of the possibility that N == 0: there are no
elements to determine whether the Int or Float64 variant should be
called. To resolve the ambiguity, one approach is define a method for
the empty tuple:

f(x::Tuple{}) = 3





Alternatively, for all methods but one you can insist that there is at
least one element in the tuple:

f(x::NTuple{N,Int}) where {N} = 1           # this is the fallback
f(x::Tuple{Float64, Vararg{Float64}}) = 2   # this requires at least one Float64








[Orthogonalize your design](@id man-methods-orthogonalize)

When you might be tempted to dispatch on two or more arguments,
consider whether a “wrapper” function might make for a simpler
design. For example, instead of writing multiple variants:

f(x::A, y::A) = ...
f(x::A, y::B) = ...
f(x::B, y::A) = ...
f(x::B, y::B) = ...





you might consider defining

f(x::A, y::A) = ...
f(x, y) = f(g(x), g(y))





where g converts the argument to type A. This is a very specific
example of the more general principle of
orthogonal design [https://en.wikipedia.org/wiki/Orthogonality_(programming)],
in which separate concepts are assigned to separate methods. Here, g
will most likely need a fallback definition

g(x::A) = x





A related strategy exploits promote to bring x and y to a common
type:

f(x::T, y::T) where {T} = ...
f(x, y) = f(promote(x, y)...)





One risk with this design is the possibility that if there is no
suitable promotion method converting x and y to the same type, the
second method will recurse on itself infinitely and trigger a stack
overflow. The non-exported function Base.promote_noncircular can be
used as an alternative; when promotion fails it will still throw an
error, but one that fails faster with a more specific error message.




Dispatch on one argument at a time

If you need to dispatch on multiple arguments, and there are many
fallbacks with too many combinations to make it practical to define
all possible variants, then consider introducing a “name cascade”
where (for example) you dispatch on the first argument and then call
an internal method:

f(x::A, y) = _fA(x, y)
f(x::B, y) = _fB(x, y)





Then the internal methods _fA and _fB can dispatch on y without
concern about ambiguities with each other with respect to x.

Be aware that this strategy has at least one major disadvantage: in
many cases, it is not possible for users to further customize the
behavior of f by defining further specializations of your exported
function f. Instead, they have to define specializations for your
internal methods _fA and _fB, and this blurs the lines between
exported and internal methods.




Abstract containers and element types

Where possible, try to avoid defining methods that dispatch on
specific element types of abstract containers. For example,

-(A::AbstractArray{T}, b::Date) where {T<:Date}





generates ambiguities for anyone who defines a method

-(A::MyArrayType{T}, b::T) where {T}





The best approach is to avoid defining either of these methods:
instead, rely on a generic method -(A::AbstractArray, b) and make
sure this method is implemented with generic calls (like similar and
-) that do the right thing for each container type and element type
separately. This is just a more complex variant of the advice to
[orthogonalize](@ref man-methods-orthogonalize) your methods.

When this approach is not possible, it may be worth starting a
discussion with other developers about resolving the ambiguity; just
because one method was defined first does not necessarily mean that it
can’t be modified or eliminated.  As a last resort, one developer can
define the “band-aid” method

-(A::MyArrayType{T}, b::Date) where {T<:Date} = ...





that resolves the ambiguity by brute force.




Complex method “cascades” with default arguments

If you are defining a method “cascade” that supplies defaults, be
careful about dropping any arguments that correspond to potential
defaults. For example, suppose you’re writing a digital filtering
algorithm and you have a method that handles the edges of the signal
by applying padding:

function myfilter(A, kernel, ::Replicate)
    Apadded = replicate_edges(A, size(kernel))
    myfilter(Apadded, kernel)  # now perform the "real" computation
end





This will run afoul of a method that supplies default padding:

myfilter(A, kernel) = myfilter(A, kernel, Replicate()) # replicate the edge by default





Together, these two methods generate an infinite recursion with A constantly growing bigger.

The better design would be to define your call hierarchy like this:

struct NoPad end  # indicate that no padding is desired, or that it's already applied

myfilter(A, kernel) = myfilter(A, kernel, Replicate())  # default boundary conditions

function myfilter(A, kernel, ::Replicate)
    Apadded = replicate_edges(A, size(kernel))
    myfilter(Apadded, kernel, NoPad())  # indicate the new boundary conditions
end

# other padding methods go here

function myfilter(A, kernel, ::NoPad)
    # Here's the "real" implementation of the core computation
end





NoPad is supplied in the same argument position as any other kind of
padding, so it keeps the dispatch hierarchy well organized and with
reduced likelihood of ambiguities. Moreover, it extends the “public”
myfilter interface: a user who wants to control the padding
explicitly can call the NoPad variant directly.

[^Clarke61]: Arthur C. Clarke, Profiles of the Future (1961): Clarke’s Third Law.
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[Modules](@id modules)

Modules in Julia are separate variable workspaces, i.e. they introduce a new global scope. They
are delimited syntactically, inside module Name ... end. Modules allow you to create top-level
definitions (aka global variables) without worrying about name conflicts when your code is used
together with somebody else’s. Within a module, you can control which names from other modules
are visible (via importing), and specify which of your names are intended to be public (via exporting).

The following example demonstrates the major features of modules. It is not meant to be run, but
is shown for illustrative purposes:

module MyModule
using Lib

using BigLib: thing1, thing2

import Base.show

importall OtherLib

export MyType, foo

struct MyType
    x
end

bar(x) = 2x
foo(a::MyType) = bar(a.x) + 1

show(io::IO, a::MyType) = print(io, "MyType $(a.x)")
end





Note that the style is not to indent the body of the module, since that would typically lead to
whole files being indented.

This module defines a type MyType, and two functions. Function foo and type MyType are exported,
and so will be available for importing into other modules.  Function bar is private to MyModule.

The statement using Lib means that a module called Lib will be available for resolving names
as needed. When a global variable is encountered that has no definition in the current module,
the system will search for it among variables exported by Lib and import it if it is found there.
This means that all uses of that global within the current module will resolve to the definition
of that variable in Lib.

The statement using BigLib: thing1, thing2 is a syntactic shortcut for using BigLib.thing1, BigLib.thing2.

The import keyword supports all the same syntax as using, but only operates on a single name
at a time. It does not add modules to be searched the way using does. import also differs
from using in that functions must be imported using import to be extended with new methods.

In MyModule above we wanted to add a method to the standard show function, so we had to write
import Base.show. Functions whose names are only visible via using cannot be extended.

The keyword importall explicitly imports all names exported by the specified module, as if
import were individually used on all of them.

Once a variable is made visible via using or import, a module may not create its own variable
with the same name. Imported variables are read-only; assigning to a global variable always affects
a variable owned by the current module, or else raises an error.


Summary of module usage

To load a module, two main keywords can be used: using and import. To understand their differences,
consider the following example:

module MyModule

export x, y

x() = "x"
y() = "y"
p() = "p"

end





In this module we export the x and y functions (with the keyword export), and also have
the non-exported function p. There are several different ways to load the Module and its inner
functions into the current workspace:

| Import Command                  | What is brought into scope                                                      | Available for method extension              |
|:——————————- |:——————————————————————————- |:——————————————- |
| using MyModule                | All exported names (x and y), MyModule.x, MyModule.y and MyModule.p | MyModule.x, MyModule.y and MyModule.p |
| using MyModule.x, MyModule.p  | x and p                                                                     |                                             |
| using MyModule: x, p          | x and p                                                                     |                                             |
| import MyModule               | MyModule.x, MyModule.y and MyModule.p                                     | MyModule.x, MyModule.y and MyModule.p |
| import MyModule.x, MyModule.p | x and p                                                                     | x and p                                 |
| import MyModule: x, p         | x and p                                                                     | x and p                                 |
| importall MyModule            | All exported names (x and y)                                              | x and y                                 |


Modules and files

Files and file names are mostly unrelated to modules; modules are associated only with module
expressions. One can have multiple files per module, and multiple modules per file:

module Foo

include("file1.jl")
include("file2.jl")

end





Including the same code in different modules provides mixin-like behavior. One could use this
to run the same code with different base definitions, for example testing code by running it with
“safe” versions of some operators:

module Normal
include("mycode.jl")
end

module Testing
include("safe_operators.jl")
include("mycode.jl")
end








Standard modules

There are three important standard modules: Main, Core, and Base.

Main is the top-level module, and Julia starts with Main set as the current module.  Variables
defined at the prompt go in Main, and whos() lists variables in Main.

Core contains all identifiers considered “built in” to the language, i.e. part of the core language
and not libraries. Every module implicitly specifies using Core, since you can’t do anything
without those definitions.

Base is the standard library (the contents of base/). All modules implicitly contain using Base,
since this is needed in the vast majority of cases.




Default top-level definitions and bare modules

In addition to using Base, modules also automatically contain a definition of the eval function,
which evaluates expressions within the context of that module.

If these default definitions are not wanted, modules can be defined using the keyword baremodule
instead (note: Core is still imported, as per above). In terms of baremodule, a standard
module looks like this:

baremodule Mod

using Base

eval(x) = Core.eval(Mod, x)
eval(m,x) = Core.eval(m, x)

...

end








Relative and absolute module paths

Given the statement using Foo, the system looks for Foo within Main. If the module does
not exist, the system attempts to require("Foo"), which typically results in loading code from
an installed package.

However, some modules contain submodules, which means you sometimes need to access a module that
is not directly available in Main. There are two ways to do this. The first is to use an absolute
path, for example using Base.Sort. The second is to use a relative path, which makes it easier
to import submodules of the current module or any of its enclosing modules:

module Parent

module Utils
...
end

using .Utils

...
end





Here module Parent contains a submodule Utils, and code in Parent wants the contents of
Utils to be visible. This is done by starting the using path with a period. Adding more leading
periods moves up additional levels in the module hierarchy. For example using ..Utils would
look for Utils in Parent’s enclosing module rather than in Parent itself.

Note that relative-import qualifiers are only valid in using and import statements.




Module file paths

The global variable LOAD_PATH contains the directories Julia searches for modules when calling
require. It can be extended using push!:

push!(LOAD_PATH, "/Path/To/My/Module/")





Putting this statement in the file ~/.juliarc.jl will extend LOAD_PATH on every Julia startup.
Alternatively, the module load path can be extended by defining the environment variable JULIA_LOAD_PATH.




Namespace miscellanea

If a name is qualified (e.g. Base.sin), then it can be accessed even if it is not exported.
This is often useful when debugging. It can also have methods added to it by using the qualified
name as the function name. However, due to syntactic ambiguities that arise, if you wish to add
methods to a function in a different module whose name contains only symbols, such as an operator,
Base.+ for example, you must use Base.:+ to refer to it. If the operator is more than one
character in length you must surround it in brackets, such as: Base.:(==).

Macro names are written with @ in import and export statements, e.g. import Mod.@mac. Macros
in other modules can be invoked as Mod.@mac or @Mod.mac.

The syntax M.x = y does not work to assign a global in another module; global assignment is
always module-local.

A variable can be “reserved” for the current module without assigning to it by declaring it as
global x at the top level. This can be used to prevent name conflicts for globals initialized
after load time.




Module initialization and precompilation

Large modules can take several seconds to load because executing all of the statements in a module
often involves compiling a large amount of code. Julia provides the ability to create precompiled
versions of modules to reduce this time.

To create an incremental precompiled module file, add __precompile__() at the top of your module
file (before the module starts). This will cause it to be automatically compiled the first time
it is imported. Alternatively, you can manually call Base.compilecache(modulename). The resulting
cache files will be stored in Base.LOAD_CACHE_PATH[1]. Subsequently, the module is automatically
recompiled upon import whenever any of its dependencies change; dependencies are modules it
imports, the Julia build, files it includes, or explicit dependencies declared by include_dependency(path)
in the module file(s).

For file dependencies, a change is determined by examining whether the modification time (mtime)
of each file loaded by include or added explicitly by include_dependency is unchanged, or equal
to the modification time truncated to the nearest second (to accommodate systems that can’t copy
mtime with sub-second accuracy). It also takes into account whether the path to the file chosen
by the search logic in require matches the path that had created the precompile file.

It also takes into account the set of dependencies already loaded into the current process and
won’t recompile those modules, even if their files change or disappear, in order to avoid creating
incompatibilities between the running system and the precompile cache. If you want to have changes
to the source reflected in the running system, you should call reload("Module") on the module
you changed, and any module that depended on it in which you want to see the change reflected.

Precompiling a module also recursively precompiles any modules that are imported therein. If you
know that it is not safe to precompile your module (for the reasons described below), you should
put __precompile__(false) in the module file to cause Base.compilecache to throw an error
(and thereby prevent the module from being imported by any other precompiled module).

__precompile__() should not be used in a module unless all of its dependencies are also using
__precompile__(). Failure to do so can result in a runtime error when loading the module.

In order to make your module work with precompilation, however, you may need to change your module
to explicitly separate any initialization steps that must occur at runtime from steps that can
occur at compile time.  For this purpose, Julia allows you to define an __init__() function
in your module that executes any initialization steps that must occur at runtime. This function
will not be called during compilation (--output-* or __precompile__()). You may, of course,
call it manually if necessary, but the default is to assume this function deals with computing
state for the local machine, which does not need to be – or even should not be – captured
in the compiled image. It will be called after the module is loaded into a process, including
if it is being loaded into an incremental compile (--output-incremental=yes), but not if it
is being loaded into a full-compilation process.

In particular, if you define a function __init__() in a module, then Julia will call __init__()
immediately after the module is loaded (e.g., by import, using, or require) at runtime
for the first time (i.e., __init__ is only called once, and only after all statements in the
module have been executed). Because it is called after the module is fully imported, any submodules
or other imported modules have their __init__ functions called before the __init__ of the
enclosing module.

Two typical uses of __init__ are calling runtime initialization functions of external C libraries
and initializing global constants that involve pointers returned by external libraries.  For example,
suppose that we are calling a C library libfoo that requires us to call a foo_init() initialization
function at runtime. Suppose that we also want to define a global constant foo_data_ptr that
holds the return value of a void *foo_data() function defined by libfoo – this constant must
be initialized at runtime (not at compile time) because the pointer address will change from run
to run.  You could accomplish this by defining the following __init__ function in your module:

const foo_data_ptr = Ref{Ptr{Void}}(0)
function __init__()
    ccall((:foo_init, :libfoo), Void, ())
    foo_data_ptr[] = ccall((:foo_data, :libfoo), Ptr{Void}, ())
end





Notice that it is perfectly possible to define a global inside a function like __init__; this
is one of the advantages of using a dynamic language. But by making it a constant at global scope,
we can ensure that the type is known to the compiler and allow it to generate better optimized
code. Obviously, any other globals in your module that depends on foo_data_ptr would also have
to be initialized in __init__.

Constants involving most Julia objects that are not produced by ccall do not need to be placed
in __init__: their definitions can be precompiled and loaded from the cached module image. This
includes complicated heap-allocated objects like arrays. However, any routine that returns a raw
pointer value must be called at runtime for precompilation to work (Ptr objects will turn into
null pointers unless they are hidden inside an isbits object). This includes the return values
of the Julia functions cfunction and pointer.

Dictionary and set types, or in general anything that depends on the output of a hash(key) method,
are a trickier case.  In the common case where the keys are numbers, strings, symbols, ranges,
Expr, or compositions of these types (via arrays, tuples, sets, pairs, etc.) they are safe to
precompile.  However, for a few other key types, such as Function or DataType and generic
user-defined types where you haven’t defined a hash method, the fallback hash method depends
on the memory address of the object (via its object_id) and hence may change from run to run.
If you have one of these key types, or if you aren’t sure, to be safe you can initialize this
dictionary from within your __init__ function. Alternatively, you can use the ObjectIdDict
dictionary type, which is specially handled by precompilation so that it is safe to initialize
at compile-time.

When using precompilation, it is important to keep a clear sense of the distinction between the
compilation phase and the execution phase. In this mode, it will often be much more clearly apparent
that Julia is a compiler which allows execution of arbitrary Julia code, not a standalone interpreter
that also generates compiled code.

Other known potential failure scenarios include:


	Global counters (for example, for attempting to uniquely identify objects) Consider the following
code snippet:

mutable struct UniquedById
    myid::Int
    let counter = 0
        UniquedById() = new(counter += 1)
    end
end





while the intent of this code was to give every instance a unique id, the counter value is recorded
at the end of compilation. All subsequent usages of this incrementally compiled module will start
from that same counter value.

Note that object_id (which works by hashing the memory pointer) has similar issues (see notes
on Dict usage below).

One alternative is to store both current_module() and the current counter value, however,
it may be better to redesign the code to not depend on this global state.



	Associative collections (such as Dict and Set) need to be re-hashed in __init__. (In the
future, a mechanism may be provided to register an initializer function.)


	Depending on compile-time side-effects persisting through load-time. Example include: modifying
arrays or other variables in other Julia modules; maintaining handles to open files or devices;
storing pointers to other system resources (including memory);


	Creating accidental “copies” of global state from another module, by referencing it directly instead
of via its lookup path. For example, (in global scope):

#mystdout = Base.STDOUT #= will not work correctly, since this will copy Base.STDOUT into this module =#
# instead use accessor functions:
getstdout() = Base.STDOUT #= best option =#
# or move the assignment into the runtime:
__init__() = global mystdout = Base.STDOUT #= also works =#









Several additional restrictions are placed on the operations that can be done while precompiling
code to help the user avoid other wrong-behavior situations:


	Calling eval to cause a side-effect in another module. This will also cause a warning to be
emitted when the incremental precompile flag is set.


	global const statements from local scope after __init__() has been started (see issue #12010
for plans to add an error for this)


	Replacing a module (or calling workspace()) is a runtime error while doing an incremental precompile.




A few other points to be aware of:


	No code reload / cache invalidation is performed after changes are made to the source files themselves,
(including by Pkg.update), and no cleanup is done after Pkg.rm


	The memory sharing behavior of a reshaped array is disregarded by precompilation (each view gets
its own copy)


	Expecting the filesystem to be unchanged between compile-time and runtime e.g. @__FILE__/source_path()
to find resources at runtime, or the BinDeps @checked_lib macro. Sometimes this is unavoidable.
However, when possible, it can be good practice to copy resources into the module at compile-time
so they won’t need to be found at runtime.


	WeakRef objects and finalizers are not currently handled properly by the serializer (this will
be fixed in an upcoming release).


	It is usually best to avoid capturing references to instances of internal metadata objects such
as Method, MethodInstance, MethodTable, TypeMapLevel, TypeMapEntry and fields of those objects,
as this can confuse the serializer and may not lead to the outcome you desire. It is not necessarily
an error to do this, but you simply need to be prepared that the system will try to copy some
of these and to create a single unique instance of others.




It is sometimes helpful during module development to turn off incremental precompilation. The
command line flag --compilecache={yes|no} enables you to toggle module precompilation on and
off. When Julia is started with --compilecache=no the serialized modules in the compile cache
are ignored when loading modules and module dependencies. Base.compilecache() can still be called
manually and it will respect __precompile__() directives for the module. The state of this command
line flag is passed to Pkg.build() to disable automatic precompilation triggering when installing,
updating, and explicitly building packages.
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Networking and Streams

Julia provides a rich interface to deal with streaming I/O objects such as terminals, pipes and
TCP sockets. This interface, though asynchronous at the system level, is presented in a synchronous
manner to the programmer and it is usually unnecessary to think about the underlying asynchronous
operation. This is achieved by making heavy use of Julia cooperative threading ([coroutine](@ref man-tasks))
functionality.


Basic Stream I/O

All Julia streams expose at least a read() and a write() method, taking the
stream as their first argument, e.g.:

julia> write(STDOUT,"Hello World");  # suppress return value 11 with ;
Hello World
julia> read(STDIN,Char)

'\n': ASCII/Unicode U+000a (category Cc: Other, control)





Note that write() returns 11, the number of bytes (in "Hello World") written to STDOUT,
but this return value is suppressed with the ;.

Here Enter was pressed again so that Julia would read the newline. Now, as you can see from this
example, write() takes the data to write as its second argument, while read()
takes the type of the data to be read as the second argument.

For example, to read a simple byte array, we could do:

julia> x = zeros(UInt8, 4)
4-element Array{UInt8,1}:
 0x00
 0x00
 0x00
 0x00

julia> read!(STDIN, x)
abcd
4-element Array{UInt8,1}:
 0x61
 0x62
 0x63
 0x64





However, since this is slightly cumbersome, there are several convenience methods provided. For
example, we could have written the above as:

julia> read(STDIN,4)
abcd
4-element Array{UInt8,1}:
 0x61
 0x62
 0x63
 0x64





or if we had wanted to read the entire line instead:

julia> readline(STDIN)
abcd
"abcd"





Note that depending on your terminal settings, your TTY may be line buffered and might thus require
an additional enter before the data is sent to Julia.

To read every line from STDIN you can use eachline():

for line in eachline(STDIN)
    print("Found $line")
end





or read() if you wanted to read by character instead:

while !eof(STDIN)
    x = read(STDIN, Char)
    println("Found: $x")
end








Text I/O

Note that the write() method mentioned above operates on binary streams. In particular,
values do not get converted to any canonical text representation but are written out as is:

julia> write(STDOUT,0x61);  # suppress return value 1 with ;
a





Note that a is written to STDOUT by the write() function and that the returned
value is 1 (since 0x61 is one byte).

For text I/O, use the print() or show() methods, depending on your needs (see
the standard library reference for a detailed discussion of the difference between the two):

julia> print(STDOUT, 0x61)
97








IO Output Contextual Properties

Sometimes IO output can benefit from the ability to pass contextual information into show methods.
The IOContext object provides this framework for associating arbitrary metadata with an IO object.
For example, showcompact adds a hinting parameter to the IO object that the invoked show method
should print a shorter output (if applicable).




Working with Files

Like many other environments, Julia has an open() function, which takes a filename and
returns an IOStream object that you can use to read and write things from the file. For example
if we have a file, hello.txt, whose contents are Hello, World!:

julia> f = open("hello.txt")
IOStream(<file hello.txt>)

julia> readlines(f)
1-element Array{String,1}:
 "Hello, World!"





If you want to write to a file, you can open it with the write ("w") flag:

julia> f = open("hello.txt","w")
IOStream(<file hello.txt>)

julia> write(f,"Hello again.")
12





If you examine the contents of hello.txt at this point, you will notice that it is empty; nothing
has actually been written to disk yet. This is because the IOStream must be closed before the
write is actually flushed to disk:

julia> close(f)





Examining hello.txt again will show its contents have been changed.

Opening a file, doing something to its contents, and closing it again is a very common pattern.
To make this easier, there exists another invocation of open() which takes a function
as its first argument and filename as its second, opens the file, calls the function with the
file as an argument, and then closes it again. For example, given a function:

function read_and_capitalize(f::IOStream)
    return uppercase(readstring(f))
end





You can call:

julia> open(read_and_capitalize, "hello.txt")
"HELLO AGAIN."





to open hello.txt, call read_and_capitalize on it, close hello.txt and return the capitalized
contents.

To avoid even having to define a named function, you can use the do syntax, which creates an
anonymous function on the fly:

julia> open("hello.txt") do f
           uppercase(readstring(f))
       end
"HELLO AGAIN."








A simple TCP example

Let’s jump right in with a simple example involving TCP sockets. Let’s first create a simple server:

julia> @async begin
           server = listen(2000)
           while true
               sock = accept(server)
               println("Hello World\n")
           end
       end
Task (runnable) @0x00007fd31dc11ae0





To those familiar with the Unix socket API, the method names will feel familiar, though their
usage is somewhat simpler than the raw Unix socket API. The first call to listen() will
create a server waiting for incoming connections on the specified port (2000) in this case. The
same function may also be used to create various other kinds of servers:

julia> listen(2000) # Listens on localhost:2000 (IPv4)
TCPServer(active)

julia> listen(ip"127.0.0.1",2000) # Equivalent to the first
TCPServer(active)

julia> listen(ip"::1",2000) # Listens on localhost:2000 (IPv6)
TCPServer(active)

julia> listen(IPv4(0),2001) # Listens on port 2001 on all IPv4 interfaces
TCPServer(active)

julia> listen(IPv6(0),2001) # Listens on port 2001 on all IPv6 interfaces
TCPServer(active)

julia> listen("testsocket") # Listens on a UNIX domain socket/named pipe
PipeServer(active)





Note that the return type of the last invocation is different. This is because this server does
not listen on TCP, but rather on a named pipe (Windows) or UNIX domain socket. The difference
is subtle and has to do with the accept() and connect() methods. The accept()
method retrieves a connection to the client that is connecting on the server we just created,
while the connect() function connects to a server using the specified method. The connect()
function takes the same arguments as listen(), so, assuming the environment (i.e. host,
cwd, etc.) is the same you should be able to pass the same arguments to connect() as
you did to listen to establish the connection. So let’s try that out (after having created the
server above):

julia> connect(2000)
TCPSocket(open, 0 bytes waiting)

julia> Hello World





As expected we saw “Hello World” printed. So, let’s actually analyze what happened behind the
scenes. When we called connect(), we connect to the server we had just created. Meanwhile,
the accept function returns a server-side connection to the newly created socket and prints “Hello
World” to indicate that the connection was successful.

A great strength of Julia is that since the API is exposed synchronously even though the I/O is
actually happening asynchronously, we didn’t have to worry callbacks or even making sure that
the server gets to run. When we called connect() the current task waited for the connection
to be established and only continued executing after that was done. In this pause, the server
task resumed execution (because a connection request was now available), accepted the connection,
printed the message and waited for the next client. Reading and writing works in the same way.
To see this, consider the following simple echo server:

julia> @async begin
           server = listen(2001)
           while true
               sock = accept(server)
               @async while isopen(sock)
                   write(sock,readline(sock))
               end
           end
       end
Task (runnable) @0x00007fd31dc12e60

julia> clientside = connect(2001)
TCPSocket(RawFD(28) open, 0 bytes waiting)

julia> @async while true
           write(STDOUT,readline(clientside))
       end
Task (runnable) @0x00007fd31dc11870

julia> println(clientside,"Hello World from the Echo Server")
Hello World from the Echo Server





As with other streams, use close() to disconnect the socket:

julia> close(clientside)








Resolving IP Addresses

One of the connect() methods that does not follow the listen() methods is
connect(host::String,port), which will attempt to connect to the host given by the host parameter
on the port given by the port parameter. It allows you to do things like:

julia> connect("google.com",80)
TCPSocket(RawFD(30) open, 0 bytes waiting)





At the base of this functionality is getaddrinfo(), which will do the appropriate address
resolution:

julia> getaddrinfo("google.com")
ip"74.125.226.225"
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Noteworthy Differences from other Languages


Noteworthy differences from MATLAB

Although MATLAB users may find Julia’s syntax familiar, Julia is not a MATLAB clone. There are
major syntactic and functional differences. The following are some noteworthy differences that
may trip up Julia users accustomed to MATLAB:


	Julia arrays are indexed with square brackets, A[i,j].


	Julia arrays are assigned by reference. After A=B, changing elements of B will modify A
as well.


	Julia values are passed and assigned by reference. If a function modifies an array, the changes
will be visible in the caller.


	Julia does not automatically grow arrays in an assignment statement. Whereas in MATLAB a(4) = 3.2
can create the array a = [0 0 0 3.2] and a(5) = 7 can grow it into a = [0 0 0 3.2 7], the
corresponding Julia statement a[5] = 7 throws an error if the length of a is less than 5 or
if this statement is the first use of the identifier a. Julia has push!() and append!(),
which grow Vectors much more efficiently than MATLAB’s a(end+1) = val.


	The imaginary unit sqrt(-1) is represented in Julia as im, not i or j as in MATLAB.


	In Julia, literal numbers without a decimal point (such as 42) create integers instead of floating
point numbers. Arbitrarily large integer literals are supported. As a result, some operations
such as 2^-1 will throw a domain error as the result is not an integer (see [the FAQ entry on domain errors](@ref faq-domain-errors)
for details).


	In Julia, multiple values are returned and assigned as tuples, e.g. (a, b) = (1, 2) or a, b = 1, 2.
MATLAB’s nargout, which is often used in MATLAB to do optional work based on the number of returned
values, does not exist in Julia. Instead, users can use optional and keyword arguments to achieve
similar capabilities.


	Julia has true one-dimensional arrays. Column vectors are of size N, not Nx1. For example,
rand(N) makes a 1-dimensional array.


	In Julia, [x,y,z] will always construct a 3-element array containing x, y and z.


	To concatenate in the first (“vertical”) dimension use either vcat(x,y,z) or separate
with semicolons ([x; y; z]).


	To concatenate in the second (“horizontal”) dimension use either hcat(x,y,z) or separate
with spaces ([x y z]).


	To construct block matrices (concatenating in the first two dimensions), use either hvcat()
or combine spaces and semicolons ([a b; c d]).






	In Julia, a:b and a:b:c construct Range objects. To construct a full vector like in MATLAB,
use collect(a:b). Generally, there is no need to call collect though. Range will
act like a normal array in most cases but is more efficient because it lazily computes its values.
This pattern of creating specialized objects instead of full arrays is used frequently, and is
also seen in functions such as linspace, or with iterators such as enumerate, and
zip. The special objects can mostly be used as if they were normal arrays.


	Functions in Julia return values from their last expression or the return keyword instead of
listing the names of variables to return in the function definition (see The return Keyword
for details).


	A Julia script may contain any number of functions, and all definitions will be externally visible
when the file is loaded. Function definitions can be loaded from files outside the current working
directory.


	In Julia, reductions such as sum(), prod(), and max() are performed
over every element of an array when called with a single argument, as in sum(A), even if A
has more than one dimension.


	In Julia, functions such as sort() that operate column-wise by default (sort(A) is
equivalent to sort(A,1)) do not have special behavior for 1xN arrays; the argument is returned
unmodified since it still performs sort(A,1). To sort a 1xN matrix like a vector, use sort(A,2).


	In Julia, if A is a 2-dimensional array, fft(A) computes a 2D FFT. In particular, it is not
equivalent to fft(A,1), which computes a 1D FFT acting column-wise.


	In Julia, parentheses must be used to call a function with zero arguments, like in tic()
and toc().


	Julia discourages the used of semicolons to end statements. The results of statements are not
automatically printed (except at the interactive prompt), and lines of code do not need to end
with semicolons. println() or @printf() can be used to print specific output.


	In Julia, if A and B are arrays, logical comparison operations like A == B do not return
an array of booleans. Instead, use A .== B, and similarly for the other boolean operators like
<, > and =.


	In Julia, the operators &, |, and [⊻](@ref xor) (xor) perform the
bitwise operations equivalent to and, or, and xor respectively in MATLAB, and have precedence
similar to Python’s bitwise operators (unlike C). They can operate on scalars or element-wise
across arrays and can be used to combine logical arrays, but note the difference in order of operations:
parentheses may be required (e.g., to select elements of A equal to 1 or 2 use (A .== 1) | (A .== 2)).


	In Julia, the elements of a collection can be passed as arguments to a function using the splat
operator ..., as in xs=[1,2]; f(xs...).


	Julia’s svd() returns singular values as a vector instead of as a dense diagonal matrix.


	In Julia, ... is not used to continue lines of code. Instead, incomplete expressions automatically
continue onto the next line.


	In both Julia and MATLAB, the variable ans is set to the value of the last expression issued
in an interactive session. In Julia, unlike MATLAB, ans is not set when Julia code is run in
non-interactive mode.


	Julia’s types do not support dynamically adding fields at runtime, unlike MATLAB’s classes.
Instead, use a Dict.


	In Julia each module has its own global scope/namespace, whereas in MATLAB there is just one global
scope.


	In MATLAB, an idiomatic way to remove unwanted values is to use logical indexing, like in the
expression x(x>3) or in the statement x(x>3) = [] to modify x in-place. In contrast, Julia
provides the higher order functions filter() and filter!(), allowing users
to write filter(z->z>3, x) and filter!(z->z>3, x) as alternatives to the corresponding transliterations
x[x.>3] and x = x[x.>3]. Using filter!() reduces the use of temporary arrays.


	The analogue of extracting (or “dereferencing”) all elements of a cell array, e.g. in vertcat(A{:})
in MATLAB, is written using the splat operator in Julia, e.g. as vcat(A...).







Noteworthy differences from R

One of Julia’s goals is to provide an effective language for data analysis and statistical programming.
For users coming to Julia from R, these are some noteworthy differences:


	Julia’s single quotes enclose characters, not strings.


	Julia can create substrings by indexing into strings. In R, strings must be converted into character
vectors before creating substrings.


	In Julia, like Python but unlike R, strings can be created with triple quotes """ ... """. This
syntax is convenient for constructing strings that contain line breaks.


	In Julia, varargs are specified using the splat operator ..., which always follows the name
of a specific variable, unlike R, for which ... can occur in isolation.


	In Julia, modulus is mod(a, b), not a %% b. % in Julia is the remainder operator.


	In Julia, not all data structures support logical indexing. Furthermore, logical indexing in Julia
is supported only with vectors of length equal to the object being indexed. For example:


	In R, c(1, 2, 3, 4)[c(TRUE, FALSE)] is equivalent to c(1, 3).


	In R, c(1, 2, 3, 4)[c(TRUE, FALSE, TRUE, FALSE)] is equivalent to c(1, 3).


	In Julia, [1, 2, 3, 4][[true, false]] throws a BoundsError.


	In Julia, [1, 2, 3, 4][[true, false, true, false]] produces [1, 3].






	Like many languages, Julia does not always allow operations on vectors of different lengths, unlike
R where the vectors only need to share a common index range.  For example, c(1, 2, 3, 4) + c(1, 2)
is valid R but the equivalent [1, 2, 3, 4] + [1, 2] will throw an error in Julia.


	Julia’s map() takes the function first, then its arguments, unlike lapply(<structure>, function, ...)
in R. Similarly Julia’s equivalent of apply(X, MARGIN, FUN, ...) in R is mapslices()
where the function is the first argument.


	Multivariate apply in R, e.g. mapply(choose, 11:13, 1:3), can be written as broadcast(binomial, 11:13, 1:3)
in Julia. Equivalently Julia offers a shorter dot syntax for vectorizing functions binomial.(11:13, 1:3).


	Julia uses end to denote the end of conditional blocks, like if, loop blocks, like while/
for, and functions. In lieu of the one-line if ( cond ) statement, Julia allows statements
of the form if cond; statement; end, cond && statement and !cond || statement. Assignment
statements in the latter two syntaxes must be explicitly wrapped in parentheses, e.g. cond && (x = value).


	In Julia, <-, <<- and -> are not assignment operators.


	Julia’s -> creates an anonymous function, like Python.


	Julia constructs vectors using brackets. Julia’s [1, 2, 3] is the equivalent of R’s c(1, 2, 3).


	Julia’s * operator can perform matrix multiplication, unlike in R. If A and B are
matrices, then A * B denotes a matrix multiplication in Julia, equivalent to R’s A %*% B.
In R, this same notation would perform an element-wise (Hadamard) product. To get the element-wise
multiplication operation, you need to write A .* B in Julia.


	Julia performs matrix transposition using the .' operator and conjugated transposition using
the ' operator. Julia’s A.' is therefore equivalent to R’s t(A).


	Julia does not require parentheses when writing if statements or for/while loops: use for i in [1, 2, 3]
instead of for (i in c(1, 2, 3)) and if i == 1 instead of if (i == 1).


	Julia does not treat the numbers 0 and 1 as Booleans. You cannot write if (1) in Julia,
because if statements accept only booleans. Instead, you can write if true, if Bool(1),
or if 1==1.


	Julia does not provide nrow and ncol. Instead, use size(M, 1) for nrow(M) and size(M, 2)
for ncol(M).


	Julia is careful to distinguish scalars, vectors and matrices.  In R, 1 and c(1) are the same.
In Julia, they cannot be used interchangeably.


	Julia’s diag and diagm are not like R’s.


	Julia cannot assign to the results of function calls on the left hand side of an assignment operation:
you cannot write diag(M) = ones(n).


	Julia discourages populating the main namespace with functions. Most statistical functionality
for Julia is found in packages [http://pkg.julialang.org/] under the JuliaStats organization [https://github.com/JuliaStats].
For example:


	Functions pertaining to probability distributions are provided by the Distributions package [https://github.com/JuliaStats/Distributions.jl].


	The DataFrames package [https://github.com/JuliaData/DataFrames.jl] provides data frames.


	Generalized linear models are provided by the GLM package [https://github.com/JuliaStats/GLM.jl].






	Julia provides tuples and real hash tables, but not R-style lists. When returning multiple items,
you should typically use a tuple: instead of list(a = 1, b = 2), use (1, 2).


	Julia encourages users to write their own types, which are easier to use than S3 or S4 objects
in R. Julia’s multiple dispatch system means that table(x::TypeA) and table(x::TypeB) act
like R’s table.TypeA(x) and table.TypeB(x).


	In Julia, values are passed and assigned by reference. If a function modifies an array, the changes
will be visible in the caller. This is very different from R and allows new functions to operate
on large data structures much more efficiently.


	In Julia, vectors and matrices are concatenated using hcat(), vcat() and
hvcat(), not c, rbind and cbind like in R.


	In Julia, a range like a:b is not shorthand for a vector like in R, but is a specialized Range
that is used for iteration without high memory overhead. To convert a range into a vector, use
collect(a:b).


	Julia’s max() and min() are the equivalent of pmax and pmin respectively
in R, but both arguments need to have the same dimensions.  While maximum() and minimum()
replace max and min in R, there are important differences.


	Julia’s sum(), prod(), maximum(), and minimum() are different
from their counterparts in R. They all accept one or two arguments. The first argument is an iterable
collection such as an array.  If there is a second argument, then this argument indicates the
dimensions, over which the operation is carried out.  For instance, let A=[[1 2],[3 4]] in Julia
and B=rbind(c(1,2),c(3,4)) be the same matrix in R.  Then sum(A) gives the same result as
sum(B), but sum(A, 1) is a row vector containing the sum over each column and sum(A, 2)
is a column vector containing the sum over each row.  This contrasts to the behavior of R, where
sum(B,1)=11 and sum(B,2)=12.  If the second argument is a vector, then it specifies all the
dimensions over which the sum is performed, e.g., sum(A,[1,2])=10.  It should be noted that
there is no error checking regarding the second argument.


	Julia has several functions that can mutate their arguments. For example, it has both sort()
and sort!().


	In R, performance requires vectorization. In Julia, almost the opposite is true: the best performing
code is often achieved by using devectorized loops.


	Julia is eagerly evaluated and does not support R-style lazy evaluation. For most users, this
means that there are very few unquoted expressions or column names.


	Julia does not support the NULL type.


	Julia lacks the equivalent of R’s assign or get.


	In Julia, return does not require parentheses.


	In R, an idiomatic way to remove unwanted values is to use logical indexing, like in the expression
x[x>3] or in the statement x = x[x>3] to modify x in-place. In contrast, Julia provides
the higher order functions filter() and filter!(), allowing users to write
filter(z->z>3, x) and filter!(z->z>3, x) as alternatives to the corresponding transliterations
x[x.>3] and x = x[x.>3]. Using filter!() reduces the use of temporary arrays.







Noteworthy differences from Python


	Julia requires end to end a block. Unlike Python, Julia has no pass keyword.


	In Julia, indexing of arrays, strings, etc. is 1-based not 0-based.


	Julia’s slice indexing includes the last element, unlike in Python. a[2:3] in Julia is a[1:3]
in Python.


	Julia does not support negative indexes. In particular, the last element of a list or array is
indexed with end in Julia, not -1 as in Python.


	Julia’s for, if, while, etc. blocks are terminated by the end keyword. Indentation level
is not significant as it is in Python.


	Julia has no line continuation syntax: if, at the end of a line, the input so far is a complete
expression, it is considered done; otherwise the input continues. One way to force an expression
to continue is to wrap it in parentheses.


	Julia arrays are column major (Fortran ordered) whereas NumPy arrays are row major (C-ordered)
by default. To get optimal performance when looping over arrays, the order of the loops should
be reversed in Julia relative to NumPy (see relevant section of [Performance Tips](@ref man-performance-tips)).


	Julia’s updating operators (e.g. +=, -=, …) are not in-place whereas NumPy’s are. This
means A = ones(4); B = A; B += 3 doesn’t change values in A, it rather rebinds the name B
to the result of the right- hand side B = B + 3, which is a new array. Use B[:] += 3, explicit
loops, or InplaceOps.jl.


	Julia evaluates default values of function arguments every time the method is invoked, unlike
in Python where the default values are evaluated only once when the function is defined. For example,
the function f(x=rand()) = x returns a new random number every time it is invoked without argument.
On the other hand, the function g(x=[1,2]) = push!(x,3) returns [1,2,3] every time it is called
as g().


	In Julia % is the remainder operator, whereas in Python it is the modulus.







Noteworthy differences from C/C++


	Julia arrays are indexed with square brackets, and can have more than one dimension A[i,j].
This syntax is not just syntactic sugar for a reference to a pointer or address as in C/C++. See
the Julia documentation for the syntax for array construction (it has changed between versions).


	In Julia, indexing of arrays, strings, etc. is 1-based not 0-based.


	Julia arrays are assigned by reference. After A=B, changing elements of B will modify A
as well. Updating operators like += do not operate in-place, they are equivalent to A = A + B
which rebinds the left-hand side to the result of the right-hand side expression.


	Julia arrays are column major (Fortran ordered) whereas C/C++ arrays are row major ordered by
default. To get optimal performance when looping over arrays, the order of the loops should be
reversed in Julia relative to C/C++ (see relevant section of [Performance Tips](@ref man-performance-tips)).


	Julia values are passed and assigned by reference. If a function modifies an array, the changes
will be visible in the caller.


	In Julia, whitespace is significant, unlike C/C++, so care must be taken when adding/removing
whitespace from a Julia program.


	In Julia, literal numbers without a decimal point (such as 42) create signed integers, of type
Int, but literals too large to fit in the machine word size will automatically be promoted to
a larger size type, such as Int64 (if Int is Int32), Int128, or the arbitrarily large
BigInt type. There are no numeric literal suffixes, such as L, LL, U, UL, ULL to indicate
unsigned and/or signed vs. unsigned. Decimal literals are always signed, and hexadecimal literals
(which start with 0x like C/C++), are unsigned. Hexadecimal literals also, unlike C/C++/Java
and unlike decimal literals in Julia, have a type based on the length of the literal, including
leading 0s. For example, 0x0 and 0x00 have type UInt8, 0x000 and 0x0000 have type
UInt16, then literals with 5 to 8 hex digits have type UInt32, 9 to 16 hex digits type
UInt64 and 17 to 32 hex digits type UInt128. This needs to be taken into account when defining
hexadecimal masks, for example ~0xf == 0xf0 is very different from ~0x000f == 0xfff0. 64 bit Float64
and 32 bit Float32 bit literals are expressed as 1.0 and 1.0f0 respectively. Floating point
literals are rounded (and not promoted to the BigFloat type) if they can not be exactly represented.
Floating point literals are closer in behavior to C/C++. Octal (prefixed with 0o) and binary
(prefixed with 0b) literals are also treated as unsigned.


	String literals can be delimited with either "  or """, """ delimited literals can contain
" characters without quoting it like "\"" String literals can have values of other variables
or expressions interpolated into them, indicated by $variablename or $(expression), which
evaluates the variable name or the expression in the context of the function.


	// indicates a Rational number, and not a single-line comment (which is # in Julia)


	#= indicates the start of a multiline comment, and =# ends it.


	Functions in Julia return values from their last expression(s) or the return keyword.  Multiple
values can be returned from functions and assigned as tuples, e.g. (a, b) = myfunction() or
a, b = myfunction(), instead of having to pass pointers to values as one would have to do in
C/C++ (i.e. a = myfunction(&b).


	Julia does not require the use of semicolons to end statements. The results of expressions are
not automatically printed (except at the interactive prompt, i.e. the REPL), and lines of code
do not need to end with semicolons. println() or @printf() can be used to
print specific output. In the REPL, ; can be used to suppress output. ; also has a different
meaning within [ ], something to watch out for. ; can be used to separate expressions on a
single line, but are not strictly necessary in many cases, and are more an aid to readability.


	In Julia, the operator [⊻](@ref xor) (xor) performs the bitwise XOR operation, i.e.
^ in C/C++.  Also, the bitwise operators do not have the same precedence as C/++, so
parenthesis may be required.


	Julia’s ^ is exponentiation (pow), not bitwise XOR as in C/C++ (use [⊻](@ref xor), or
xor, in Julia)


	Julia has two right-shift operators, >> and >>>.  >>> performs an arithmetic shift, >>
always performs a logical shift, unlike C/C++, where the meaning of >> depends on the type of
the value being shifted.


	Julia’s -> creates an anonymous function, it does not access a member via a pointer.


	Julia does not require parentheses when writing if statements or for/while loops: use for i in [1, 2, 3]
instead of for (int i=1; i <= 3; i++) and if i == 1 instead of if (i == 1).


	Julia does not treat the numbers 0 and 1 as Booleans. You cannot write if (1) in Julia,
because if statements accept only booleans. Instead, you can write if true, if Bool(1),
or if 1==1.


	Julia uses end to denote the end of conditional blocks, like if, loop blocks, like while/
for, and functions. In lieu of the one-line if ( cond ) statement, Julia allows statements
of the form if cond; statement; end, cond && statement and !cond || statement. Assignment
statements in the latter two syntaxes must be explicitly wrapped in parentheses, e.g. cond && (x = value),
because of the operator precedence.


	Julia has no line continuation syntax: if, at the end of a line, the input so far is a complete
expression, it is considered done; otherwise the input continues. One way to force an expression
to continue is to wrap it in parentheses.


	Julia macros operate on parsed expressions, rather than the text of the program, which allows
them to perform sophisticated transformations of Julia code. Macro names start with the @ character,
and have both a function-like syntax, @mymacro(arg1, arg2, arg3), and a statement-like syntax,
@mymacro arg1 arg2 arg3. The forms are interchangable; the function-like form is particularly
useful if the macro appears within another expression, and is often clearest. The statement-like
form is often used to annotate blocks, as in the parallel for construct: @parallel for i in 1:n; #= body =#; end.
Where the end of the macro construct may be unclear, use the function-like form.


	Julia now has an enumeration type, expressed using the macro @enum(name, value1, value2, ...)
For example: @enum(Fruit, banana=1, apple, pear)


	By convention, functions that modify their arguments have a ! at the end of the name, for example
push!.


	In C++, by default, you have static dispatch, i.e. you need to annotate a function as virtual,
in order to have dynamic dispatch. On the other hand, in Julia every method is “virtual” (although
it’s more general than that since methods are dispatched on every argument type, not only this,
using the most-specific-declaration rule).
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Packages

Julia has a built-in package manager for installing add-on functionality written in Julia. It
can also install external libraries using your operating system’s standard system for doing so,
or by compiling from source. The list of registered Julia packages can be found at http://pkg.julialang.org.
All package manager commands are found in the Pkg module, included in Julia’s Base
install.

First we’ll go over the mechanics of the Pkg family of commands and then we’ll provide some
guidance on how to get your package registered. Be sure to read the section below on package naming
conventions, tagging versions and the importance of a REQUIRE file for when you’re ready to
add your code to the curated METADATA repository.


Package Status

The Pkg.status() function prints out a summary of the state of packages you have installed.
Initially, you’ll have no packages installed:

julia> Pkg.status()
INFO: Initializing package repository /Users/stefan/.julia/v0.6
INFO: Cloning METADATA from git://github.com/JuliaLang/METADATA.jl
No packages installed.





Your package directory is automatically initialized the first time you run a Pkg command
that expects it to exist – which includes Pkg.status(). Here’s an example non-trivial
set of required and additional packages:

julia> Pkg.status()
Required packages:
 - Distributions                 0.2.8
 - SHA                           0.3.2
Additional packages:
 - NumericExtensions             0.2.17
 - Stats                         0.2.6





These packages are all on registered versions, managed by Pkg. Packages can be in more
complicated states, indicated by annotations to the right of the installed package version; we
will explain these states and annotations as we encounter them. For programmatic usage, Pkg.installed()
returns a dictionary, mapping installed package names to the version of that package which is
installed:

julia> Pkg.installed()
Dict{String,VersionNumber} with 4 entries:
"Distributions"     => v"0.2.8"
"Stats"             => v"0.2.6"
"SHA"               => v"0.3.2"
"NumericExtensions" => v"0.2.17"








Adding and Removing Packages

Julia’s package manager is a little unusual in that it is declarative rather than imperative.
This means that you tell it what you want and it figures out what versions to install (or remove)
to satisfy those requirements optimally – and minimally. So rather than installing a package,
you just add it to the list of requirements and then “resolve” what needs to be installed. In
particular, this means that if some package had been installed because it was needed by a previous
version of something you wanted, and a newer version doesn’t have that requirement anymore, updating
will actually remove that package.

Your package requirements are in the file ~/.julia/v0.6/REQUIRE. You can edit this file by hand
and then call Pkg.resolve() to install, upgrade or remove packages to optimally satisfy
the requirements, or you can do Pkg.edit(), which will open REQUIRE in your editor
(configured via the EDITOR or VISUAL environment variables), and then automatically call
Pkg.resolve() afterwards if necessary. If you only want to add or remove the requirement
for a single package, you can also use the non-interactive Pkg.add() and Pkg.rm()
commands, which add or remove a single requirement to REQUIRE and then call Pkg.resolve().

You can add a package to the list of requirements with the Pkg.add() function, and the
package and all the packages that it depends on will be installed:

julia> Pkg.status()
No packages installed.

julia> Pkg.add("Distributions")
INFO: Cloning cache of Distributions from git://github.com/JuliaStats/Distributions.jl.git
INFO: Cloning cache of NumericExtensions from git://github.com/lindahua/NumericExtensions.jl.git
INFO: Cloning cache of Stats from git://github.com/JuliaStats/Stats.jl.git
INFO: Installing Distributions v0.2.7
INFO: Installing NumericExtensions v0.2.17
INFO: Installing Stats v0.2.6
INFO: REQUIRE updated.

julia> Pkg.status()
Required packages:
 - Distributions                 0.2.7
Additional packages:
 - NumericExtensions             0.2.17
 - Stats                         0.2.6





What this is doing is first adding Distributions to your ~/.julia/v0.6/REQUIRE file:

$ cat ~/.julia/v0.6/REQUIRE
Distributions





It then runs Pkg.resolve() using these new requirements, which leads to the conclusion
that the Distributions package should be installed since it is required but not installed. As
stated before, you can accomplish the same thing by editing your ~/.julia/v0.6/REQUIRE file
by hand and then running Pkg.resolve() yourself:

$ echo SHA >> ~/.julia/v0.6/REQUIRE

julia> Pkg.resolve()
INFO: Cloning cache of SHA from git://github.com/staticfloat/SHA.jl.git
INFO: Installing SHA v0.3.2

julia> Pkg.status()
Required packages:
 - Distributions                 0.2.7
 - SHA                           0.3.2
Additional packages:
 - NumericExtensions             0.2.17
 - Stats                         0.2.6





This is functionally equivalent to calling Pkg.add("SHA"), except that Pkg.add()
doesn’t change REQUIRE until after installation has completed, so if there are problems,
REQUIRE will be left as it was before calling Pkg.add(). The format of the REQUIRE
file is described in Requirements Specification; it allows, among other things, requiring
specific ranges of versions of packages.

When you decide that you don’t want to have a package around any more, you can use Pkg.rm()
to remove the requirement for it from the REQUIRE file:

julia> Pkg.rm("Distributions")
INFO: Removing Distributions v0.2.7
INFO: Removing Stats v0.2.6
INFO: Removing NumericExtensions v0.2.17
INFO: REQUIRE updated.

julia> Pkg.status()
Required packages:
 - SHA                           0.3.2

julia> Pkg.rm("SHA")
INFO: Removing SHA v0.3.2
INFO: REQUIRE updated.

julia> Pkg.status()
No packages installed.





Once again, this is equivalent to editing the REQUIRE file to remove the line with each package
name on it then running Pkg.resolve() to update the set of installed packages to match.
While Pkg.add() and Pkg.rm() are convenient for adding and removing requirements
for a single package, when you want to add or remove multiple packages, you can call Pkg.edit()
to manually change the contents of REQUIRE and then update your packages accordingly. Pkg.edit()
does not roll back the contents of REQUIRE if Pkg.resolve() fails – rather, you
have to run Pkg.edit() again to fix the files contents yourself.

Because the package manager uses libgit2 internally to manage the package git repositories, users
may run into protocol issues (if behind a firewall, for example), when running Pkg.add().
By default, all GitHub-hosted packages wil be accessed via ‘https’; this default can be modified
by calling Pkg.setprotocol!(). The following command can be run from the command line
in order to tell git to use ‘https’ instead of the ‘git’ protocol when cloning all repositories,
wherever they are hosted:

git config --global url."https://".insteadOf git://





However, this change will be system-wide and thus the use of Pkg.setprotocol!() is preferable.

!!! note
The package manager functions also accept the .jl suffix on package names, though the suffix is
stripped internally. For example:

```julia
Pkg.add("Distributions.jl")
Pkg.rm("Distributions.jl")
```








Offline Installation of Packages

For machines with no Internet connection, packages may be installed by copying the package root
directory (given by Pkg.dir()) from a machine with the same operating system and environment.

Pkg.add() does the following within the package root directory:


	Adds the name of the package to REQUIRE.


	Downloads the package to .cache, then copies the package to the package root directory.


	Recursively performs step 2 against all the packages listed in the package’s REQUIRE file.


	Runs Pkg.build()




!!! warning
Copying installed packages from a different machine is brittle for packages requiring binary external
dependencies. Such packages may break due to differences in operating system versions, build environments,
and/or absolute path dependencies.




Installing Unregistered Packages

Julia packages are simply git repositories, clonable via any of the protocols [https://www.kernel.org/pub/software/scm/git/docs/git-clone.html#URLS]
that git supports, and containing Julia code that follows certain layout conventions. Official
Julia packages are registered in the METADATA.jl [https://github.com/JuliaLang/METADATA.jl] repository,
available at a well-known location [^1]. The Pkg.add() and Pkg.rm() commands
in the previous section interact with registered packages, but the package manager can install
and work with unregistered packages too. To install an unregistered package, use Pkg.clone(url),
where url is a git URL from which the package can be cloned:

julia> Pkg.clone("git://example.com/path/to/Package.jl.git")
INFO: Cloning Package from git://example.com/path/to/Package.jl.git
Cloning into 'Package'...
remote: Counting objects: 22, done.
remote: Compressing objects: 100% (10/10), done.
remote: Total 22 (delta 8), reused 22 (delta 8)
Receiving objects: 100% (22/22), 2.64 KiB, done.
Resolving deltas: 100% (8/8), done.





By convention, Julia repository names end with .jl (the additional .git indicates a “bare”
git repository), which keeps them from colliding with repositories for other languages, and also
makes Julia packages easy to find in search engines. When packages are installed in your .julia/v0.6
directory, however, the extension is redundant so we leave it off.

If unregistered packages contain a REQUIRE file at the top of their source tree, that file will
be used to determine which registered packages the unregistered package depends on, and they will
automatically be installed. Unregistered packages participate in the same version resolution logic
as registered packages, so installed package versions will be adjusted as necessary to satisfy
the requirements of both registered and unregistered packages.

[^1]:
The official set of packages is at https://github.com/JuliaLang/METADATA.jl,
but individuals and organizations can easily use a different metadata repository. This allows
control which packages are available for automatic installation. One can allow only audited and
approved package versions, and make private packages or forks available. See Custom METADATA Repository
for details.




Updating Packages

When package developers publish new registered versions of packages that you’re using, you will,
of course, want the new shiny versions. To get the latest and greatest versions of all your packages,
just do Pkg.update():

julia> Pkg.update()
INFO: Updating METADATA...
INFO: Computing changes...
INFO: Upgrading Distributions: v0.2.8 => v0.2.10
INFO: Upgrading Stats: v0.2.7 => v0.2.8





The first step of updating packages is to pull new changes to ~/.julia/v0.6/METADATA and see
if any new registered package versions have been published. After this, Pkg.update()
attempts to update packages that are checked out on a branch and not dirty (i.e. no changes have
been made to files tracked by git) by pulling changes from the package’s upstream repository.
Upstream changes will only be applied if no merging or rebasing is necessary – i.e. if the branch
can be “fast-forwarded” [https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging].
If the branch cannot be fast-forwarded, it is assumed that you’re working on it and will update
the repository yourself.

Finally, the update process recomputes an optimal set of package versions to have installed to
satisfy your top-level requirements and the requirements of “fixed” packages. A package is considered
fixed if it is one of the following:


	Unregistered: the package is not in METADATA – you installed it with Pkg.clone().


	Checked out: the package repo is on a development branch.


	Dirty: changes have been made to files in the repo.




If any of these are the case, the package manager cannot freely change the installed version of
the package, so its requirements must be satisfied by whatever other package versions it picks.
The combination of top-level requirements in ~/.julia/v0.6/REQUIRE and the requirement of fixed
packages are used to determine what should be installed.

You can also update only a subset of the installed packages, by providing arguments to the Pkg.update
function. In that case, only the packages provided as arguments and their dependencies will be
updated:

julia> Pkg.update("Example")
INFO: Updating METADATA...
INFO: Computing changes...
INFO: Upgrading Example: v0.4.0 => 0.4.1





This partial update process still computes the new set of package versions according to top-level
requirements and “fixed” packages, but it additionally considers all other packages except those
explicitly provided, and their dependencies, as fixed.




Checkout, Pin and Free

You may want to use the master version of a package rather than one of its registered versions.
There might be fixes or functionality on master that you need that aren’t yet published in any
registered versions, or you may be a developer of the package and need to make changes on master
or some other development branch. In such cases, you can do Pkg.checkout(pkg) to checkout
the master branch of pkg or Pkg.checkout(pkg,branch) to checkout some other branch:

julia> Pkg.add("Distributions")
INFO: Installing Distributions v0.2.9
INFO: Installing NumericExtensions v0.2.17
INFO: Installing Stats v0.2.7
INFO: REQUIRE updated.

julia> Pkg.status()
Required packages:
 - Distributions                 0.2.9
Additional packages:
 - NumericExtensions             0.2.17
 - Stats                         0.2.7

julia> Pkg.checkout("Distributions")
INFO: Checking out Distributions master...
INFO: No packages to install, update or remove.

julia> Pkg.status()
Required packages:
 - Distributions                 0.2.9+             master
Additional packages:
 - NumericExtensions             0.2.17
 - Stats                         0.2.7





Immediately after installing Distributions with Pkg.add() it is on the current most
recent registered version – 0.2.9 at the time of writing this. Then after running Pkg.checkout("Distributions"),
you can see from the output of Pkg.status() that Distributions is on an unregistered
version greater than 0.2.9, indicated by the “pseudo-version” number 0.2.9+.

When you checkout an unregistered version of a package, the copy of the REQUIRE file in the
package repo takes precedence over any requirements registered in METADATA, so it is important
that developers keep this file accurate and up-to-date, reflecting the actual requirements of
the current version of the package. If the REQUIRE file in the package repo is incorrect or
missing, dependencies may be removed when the package is checked out. This file is also used to
populate newly published versions of the package if you use the API that Pkg provides
for this (described below).

When you decide that you no longer want to have a package checked out on a branch, you can “free”
it back to the control of the package manager with Pkg.free(pkg):

julia> Pkg.free("Distributions")
INFO: Freeing Distributions...
INFO: No packages to install, update or remove.

julia> Pkg.status()
Required packages:
 - Distributions                 0.2.9
Additional packages:
 - NumericExtensions             0.2.17
 - Stats                         0.2.7





After this, since the package is on a registered version and not on a branch, its version will
be updated as new registered versions of the package are published.

If you want to pin a package at a specific version so that calling Pkg.update() won’t
change the version the package is on, you can use the Pkg.pin() function:

julia> Pkg.pin("Stats")
INFO: Creating Stats branch pinned.47c198b1.tmp

julia> Pkg.status()
Required packages:
 - Distributions                 0.2.9
Additional packages:
 - NumericExtensions             0.2.17
 - Stats                         0.2.7              pinned.47c198b1.tmp





After this, the Stats package will remain pinned at version 0.2.7 – or more specifically,
at commit 47c198b1, but since versions are permanently associated a given git hash, this is
the same thing. Pkg.pin() works by creating a throw-away branch for the commit you want
to pin the package at and then checking that branch out. By default, it pins a package at the
current commit, but you can choose a different version by passing a second argument:

julia> Pkg.pin("Stats",v"0.2.5")
INFO: Creating Stats branch pinned.1fd0983b.tmp
INFO: No packages to install, update or remove.

julia> Pkg.status()
Required packages:
 - Distributions                 0.2.9
Additional packages:
 - NumericExtensions             0.2.17
 - Stats                         0.2.5              pinned.1fd0983b.tmp





Now the Stats package is pinned at commit 1fd0983b, which corresponds to version 0.2.5.
When you decide to “unpin” a package and let the package manager update it again, you can use
Pkg.free() like you would to move off of any branch:

julia> Pkg.free("Stats")
INFO: Freeing Stats...
INFO: No packages to install, update or remove.

julia> Pkg.status()
Required packages:
 - Distributions                 0.2.9
Additional packages:
 - NumericExtensions             0.2.17
 - Stats                         0.2.7





After this, the Stats package is managed by the package manager again, and future calls to
Pkg.update() will upgrade it to newer versions when they are published. The throw-away
pinned.1fd0983b.tmp branch remains in your local Stats repo, but since git branches are extremely
lightweight, this doesn’t really matter; if you feel like cleaning them up, you can go into the
repo and delete those branches [^2].

[^2]:
Packages that aren’t on branches will also be marked as dirty if you make changes in the repo,
but that’s a less common thing to do.




Custom METADATA Repository

By default, Julia assumes you will be using the official METADATA.jl [https://github.com/JuliaLang/METADATA.jl]
repository for downloading and installing packages. You can also provide a different metadata
repository location. A common approach is to keep your metadata-v2 branch up to date with the
Julia official branch and add another branch with your custom packages. You can initialize your
local metadata repository using that custom location and branch and then periodically rebase your
custom branch with the official metadata-v2 branch. In order to use a custom repository and
branch, issue the following command:

julia> Pkg.init("https://me.example.com/METADATA.jl.git", "branch")





The branch argument is optional and defaults to metadata-v2. Once initialized, a file named
META_BRANCH in your ~/.julia/vX.Y/ path will track the branch that your METADATA repository
was initialized with. If you want to change branches, you will need to either modify the META_BRANCH
file directly (be careful!) or remove the vX.Y directory and re-initialize your METADATA repository
using the Pkg.init command.






Package Development

Julia’s package manager is designed so that when you have a package installed, you are already
in a position to look at its source code and full development history. You are also able to make
changes to packages, commit them using git, and easily contribute fixes and enhancements upstream.
Similarly, the system is designed so that if you want to create a new package, the simplest way
to do so is within the infrastructure provided by the package manager.


[Initial Setup](@id man-initial-setup)

Since packages are git repositories, before doing any package development you should setup the
following standard global git configuration settings:

$ git config --global user.name "FULL NAME"
$ git config --global user.email "EMAIL"





where FULL NAME is your actual full name (spaces are allowed between the double quotes) and
EMAIL is your actual email address. Although it isn’t necessary to use GitHub [https://github.com/]
to create or publish Julia packages, most Julia packages as of writing this are hosted on GitHub
and the package manager knows how to format origin URLs correctly and otherwise work with the
service smoothly. We recommend that you create a free account [https://github.com/join] on GitHub
and then do:

$ git config --global github.user "USERNAME"





where USERNAME is your actual GitHub user name. Once you do this, the package manager knows
your GitHub user name and can configure things accordingly. You should also upload [https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fsettings%2Fssh]
your public SSH key to GitHub and set up an SSH agent [https://linux.die.net/man/1/ssh-agent]
on your development machine so that you can push changes with minimal hassle. In the future, we
will make this system extensible and support other common git hosting options like BitBucket [https://bitbucket.org]
and allow developers to choose their favorite. Since the package development functions has been
moved to the PkgDev [https://github.com/JuliaLang/PkgDev.jl] package, you need to run Pkg.add("PkgDev"); import PkgDev
to access the functions starting with PkgDev. in the document below.




Making changes to an existing package


Documentation changes

If you want to improve the online documentation of a package, the easiest approach (at least for
small changes) is to use GitHub’s online editing functionality. First, navigate to the repository’s
GitHub “home page,” find the file (e.g., README.md) within the repository’s folder structure,
and click on it. You’ll see the contents displayed, along with a small “pencil” icon in the upper
right hand corner. Clicking that icon opens the file in edit mode. Make your changes, write a
brief summary describing the changes you want to make (this is your commit message), and then
hit “Propose file change.” Your changes will be submitted for consideration by the package owner(s)
and collaborators.

For larger documentation changes–and especially ones that you expect to have to update in response
to feedback–you might find it easier to use the procedure for code changes described below.




Code changes


Executive summary

Here we assume you’ve already set up git on your local machine and have a GitHub account (see
above). Let’s imagine you’re fixing a bug in the Images package:

Pkg.checkout("Images")           # check out the master branch
<here, make sure your bug is still a bug and hasn't been fixed already>
cd(Pkg.dir("Images"))
;git checkout -b myfixes         # create a branch for your changes
<edit code>                      # be sure to add a test for your bug
Pkg.test("Images")               # make sure everything works now
;git commit -a -m "Fix foo by calling bar"   # write a descriptive message
using PkgDev
PkgDev.submit("Images")





The last line will present you with a link to submit a pull request to incorporate your changes.




Detailed description

If you want to fix a bug or add new functionality, you want to be able to test your changes before
you submit them for consideration. You also need to have an easy way to update your proposal in
response to the package owner’s feedback. Consequently, in this case the strategy is to work locally
on your own machine; once you are satisfied with your changes, you submit them for consideration.
This process is called a pull request because you are asking to “pull” your changes into the
project’s main repository. Because the online repository can’t see the code on your private machine,
you first push your changes to a publicly-visible location, your own online fork of the package
(hosted on your own personal GitHub account).

Let’s assume you already have the Foo package installed. In the description below, anything
starting with Pkg. or PkgDev. is meant to be typed at the Julia prompt; anything starting
with git is meant to be typed in [julia’s shell mode](@ref man-shell-mode) (or using the shell that comes with
your operating system). Within Julia, you can combine these two modes:

julia> cd(Pkg.dir("Foo"))          # go to Foo's folder

shell> git command arguments...    # command will apply to Foo





Now suppose you’re ready to make some changes to Foo. While there are several possible approaches,
here is one that is widely used:


	From the Julia prompt, type Pkg.checkout("Foo"). This ensures you’re running the latest
code (the master branch), rather than just whatever “official release” version you have installed.
(If you’re planning to fix a bug, at this point it’s a good idea to check again whether the bug
has already been fixed by someone else. If it has, you can request that a new official release
be tagged so that the fix gets distributed to the rest of the community.) If you receive an error
Foo is dirty, bailing, see Dirty packages below.


	Create a branch for your changes: navigate to the package folder (the one that Julia reports from
Pkg.dir("Foo")) and (in shell mode) create a new branch using git checkout -b <newbranch>,
where <newbranch> might be some descriptive name (e.g., fixbar). By creating a branch, you
ensure that you can easily go back and forth between your new work and the current master branch
(see https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell).

If you forget to do this step until after you’ve already made some changes, don’t worry: see
[more detail about branching](@ref man-branch-post-hoc) below.



	Make your changes. Whether it’s fixing a bug or adding new functionality, in most cases your change
should include updates to both the src/ and test/ folders. If you’re fixing a bug, add your
minimal example demonstrating the bug (on the current code) to the test suite; by contributing
a test for the bug, you ensure that the bug won’t accidentally reappear at some later time due
to other changes. If you’re adding new functionality, creating tests demonstrates to the package
owner that you’ve made sure your code works as intended.


	Run the package’s tests and make sure they pass. There are several ways to run the tests:


	From Julia, run Pkg.test("Foo"): this will run your tests in a separate (new) julia
process.


	From Julia, include("runtests.jl") from the package’s test/ folder (it’s possible the file
has a different name, look for one that runs all the tests): this allows you to run the tests
repeatedly in the same session without reloading all the package code; for packages that take
a while to load, this can be much faster. With this approach, you do have to do some extra work
to make [changes in the package code](@ref man-workflow-tips).


	From the shell, run julia ../test/runtests.jl from within the package’s src/ folder.






	Commit your changes: see https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository.


	Submit your changes: From the Julia prompt, type PkgDev.submit("Foo"). This will push your changes
to your GitHub fork, creating it if it doesn’t already exist. (If you encounter an error, [make sure you’ve set up your SSH keys](@ref man-initial-setup).)
Julia will then give you a hyperlink; open that link, edit the message, and then click “submit.”
At that point, the package owner will be notified of your changes and may initiate discussion.
(If you are comfortable with git, you can also do these steps manually from the shell.)


	The package owner may suggest additional improvements. To respond to those suggestions, you can
easily update the pull request (this only works for changes that have not already been merged;
for merged pull requests, make new changes by starting a new branch):


	If you’ve changed branches in the meantime, make sure you go back to the same branch with git checkout fixbar
(from shell mode) or Pkg.checkout("Foo", "fixbar") (from the Julia prompt).


	As above, make your changes, run the tests, and commit your changes.


	From the shell, type git push.  This will add your new commit(s) to the same pull request; you
should see them appear automatically on the page holding the discussion of your pull request.




One potential type of change the owner may request is that you squash your commits. See [Squashing](@ref man-squashing-and-rebasing)
below.










Dirty packages

If you can’t change branches because the package manager complains that your package is dirty,
it means you have some changes that have not been committed. From the shell, use git diff to
see what these changes are; you can either discard them (git checkout changedfile.jl) or commit
them before switching branches.  If you can’t easily resolve the problems manually, as a last
resort you can delete the entire "Foo" folder and reinstall a fresh copy with Pkg.add("Foo").
Naturally, this deletes any changes you’ve made.




[Making a branch post hoc](@id man-branch-post-hoc)

Especially for newcomers to git, one often forgets to create a new branch until after some changes
have already been made. If you haven’t yet staged or committed your changes, you can create a
new branch with git checkout -b <newbranch> just as usual–git will kindly show you that some
files have been modified and create the new branch for you. Your changes have not yet been committed to this new branch,
so the normal work rules still apply.

However, if you’ve already made a commit to master but wish to go back to the official master
(called origin/master), use the following procedure:


	Create a new branch. This branch will hold your changes.


	Make sure everything is committed to this branch.


	git checkout master. If this fails, do not proceed further until you have resolved the problems,
or you may lose your changes.


	Resetmaster (your current branch) back to an earlier state with git reset --hard origin/master
(see https://git-scm.com/blog/2011/07/11/reset.html).




This requires a bit more familiarity with git, so it’s much better to get in the habit of creating
a branch at the outset.




[Squashing and rebasing](@id man-squashing-and-rebasing)

Depending on the tastes of the package owner (s)he may ask you to “squash” your commits. This
is especially likely if your change is quite simple but your commit history looks like this:

WIP: add new 1-line whizbang function (currently breaks package)
Finish whizbang function
Fix typo in variable name
Oops, don't forget to supply default argument
Split into two 1-line functions
Rats, forgot to export the second function
...





This gets into the territory of more advanced git usage, and you’re encouraged to do some reading
(https://git-scm.com/book/en/v2/Git-Branching-Rebasing).
However, a brief summary of the procedure is as follows:


	To protect yourself from error, start from your fixbar branch and create a new branch with
git checkout -b fixbar_backup.  Since you started from fixbar, this will be a copy. Now go
back to the one you intend to modify with git checkout fixbar.


	From the shell, type git rebase -i origin/master.


	To combine commits, change pick to squash (for additional options, consult other sources).
Save the file and close the editor window.


	Edit the combined commit message.




If the rebase goes badly, you can go back to the beginning to try again like this:

git checkout fixbar
git reset --hard fixbar_backup





Now let’s assume you’ve rebased successfully. Since your fixbar repository has now diverged
from the one in your GitHub fork, you’re going to have to do a force push:


	To make it easy to refer to your GitHub fork, create a “handle” for it with git remote add myfork https://github.com/myaccount/Foo.jl.git,
where the URL comes from the “clone URL” on your GitHub fork’s page.


	Force-push to your fork with git push myfork +fixbar. The + indicates that this should replace
the fixbar branch found at myfork.









Creating a new Package


REQUIRE speaks for itself

You should have a REQUIRE file in your package repository, with a bare minimum directive of
what Julia version you expect your users to be running for the package to work. Putting a floor
on what Julia version your package supports is done by simply adding julia 0.x in this file.
While this line is partly informational, it also has the consequence of whether Pkg.update()
will update code found in .julia version directories. It will not update code found in version
directories beneath the floor of what’s specified in your REQUIRE.

As the development version 0.y matures, you may find yourself using it more frequently, and
wanting your package to support it. Be warned, the development branch of Julia is the land of
breakage, and you can expect things to break. When you go about fixing whatever broke your package
in the development 0.y branch, you will likely find that you just broke your package on the
stable version.

There is a mechanism found in the Compat [https://github.com/JuliaLang/Compat.jl] package that
will enable you to support both the stable version and breaking changes found in the development
version. Should you decide to use this solution, you will need to add Compat to your REQUIRE
file. In this case, you will still have julia 0.x in your REQUIRE. The x is the floor version
of what your package supports.

You might also have no interest in supporting the development version of Julia. Just as you can
add a floor to the version you expect your users to be on, you can set an upper bound. In this
case, you would put julia 0.x 0.y- in your REQUIRE file. The - at the end of the version
number means pre-release versions of that specific version from the very first commit. By setting
it as the ceiling, you mean the code supports everything up to but not including the ceiling version.

Another scenario is that you are writing the bulk of the code for your package with Julia 0.y
and do not want to support the current stable version of Julia. If you choose to do this, simply
add julia 0.y- to your REQUIRE. Just remember to change the julia 0.y- to julia 0.y in
your REQUIRE file once 0.y is officially released. If you don’t edit the dash cruft you are
suggesting that you support both the development and stable versions of the same version number!
That would be madness. See the Requirements Specification for the full format of REQUIRE.

Lastly, in many cases you may need extra packages for testing. Additional packages which
are only required for tests should be specified in the test/REQUIRE file. This REQUIRE
file has the same specification as the standard REQUIRE file.




Guidelines for naming a package

Package names should be sensible to most Julia users, even to those who are not domain experts.
When you submit your package to METADATA, you can expect a little back and forth about the package
name with collaborators, especially if it’s ambiguous or can be confused with something other
than what it is. During this bike-shedding, it’s not uncommon to get a range of different name
suggestions. These are only suggestions though, with the intent being to keep a tidy namespace
in the curated METADATA repository. Since this repository belongs to the entire community, there
will likely be a few collaborators who care about your package name. Here are some guidelines
to follow in naming your package:


	Avoid jargon. In particular, avoid acronyms unless there is minimal possibility of confusion.


	It’s ok to say USA if you’re talking about the USA.


	It’s not ok to say PMA, even if you’re talking about positive mental attitude.






	Avoid using Julia in your package name.


	It is usually clear from context and to your users that the package is a Julia package.


	Having Julia in the name can imply that the package is connected to, or endorsed by, contributors
to the Julia language itself.






	Packages that provide most of their functionality in association with a new type should have pluralized
names.


	DataFrames provides the DataFrame type.


	BloomFilters provides the BloomFilter type.


	In contrast, JuliaParser provides no new type, but instead new functionality in the JuliaParser.parse()
function.






	Err on the side of clarity, even if clarity seems long-winded to you.


	RandomMatrices is a less ambiguous name than RndMat or RMT, even though the latter are shorter.






	A less systematic name may suit a package that implements one of several possible approaches to
its domain.


	Julia does not have a single comprehensive plotting package. Instead, Gadfly, PyPlot, Winston
and other packages each implement a unique approach based on a particular design philosophy.


	In contrast, SortingAlgorithms provides a consistent interface to use many well-established
sorting algorithms.






	Packages that wrap external libraries or programs should be named after those libraries or programs.


	CPLEX.jl wraps the CPLEX library, which can be identified easily in a web search.


	MATLAB.jl provides an interface to call the MATLAB engine from within Julia.











Generating the package

Suppose you want to create a new Julia package called FooBar. To get started, do PkgDev.generate(pkg,license)
where pkg is the new package name and license is the name of a license that the package generator
knows about:

julia> PkgDev.generate("FooBar","MIT")
INFO: Initializing FooBar repo: /Users/stefan/.julia/v0.6/FooBar
INFO: Origin: git://github.com/StefanKarpinski/FooBar.jl.git
INFO: Generating LICENSE.md
INFO: Generating README.md
INFO: Generating src/FooBar.jl
INFO: Generating test/runtests.jl
INFO: Generating REQUIRE
INFO: Generating .travis.yml
INFO: Generating appveyor.yml
INFO: Generating .gitignore
INFO: Committing FooBar generated files





This creates the directory ~/.julia/v0.6/FooBar, initializes it as a git repository, generates
a bunch of files that all packages should have, and commits them to the repository:

$ cd ~/.julia/v0.6/FooBar && git show --stat

commit 84b8e266dae6de30ab9703150b3bf771ec7b6285
Author: Stefan Karpinski <stefan@karpinski.org>
Date:   Wed Oct 16 17:57:58 2013 -0400

    FooBar.jl generated files.

        license: MIT
        authors: Stefan Karpinski
        years:   2013
        user:    StefanKarpinski

    Julia Version 0.3.0-prerelease+3217 [5fcfb13*]

 .gitignore       |  2 ++
 .travis.yml      | 13 +++++++++++++
 LICENSE.md       | 22 +++++++++++++++++++++++
 README.md        |  3 +++
 REQUIRE          |  1 +
 appveyor.yml     | 34 ++++++++++++++++++++++++++++++++++
 src/FooBar.jl    |  5 +++++
 test/runtests.jl |  5 +++++
 8 files changed, 85 insertions(+)





At the moment, the package manager knows about the MIT “Expat” License, indicated by "MIT",
the Simplified BSD License, indicated by "BSD", and version 2.0 of the Apache Software License,
indicated by "ASL". If you want to use a different license, you can ask us to add it to the
package generator, or just pick one of these three and then modify the ~/.julia/v0.6/PACKAGE/LICENSE.md
file after it has been generated.

If you created a GitHub account and configured git to know about it, PkgDev.generate() will
set an appropriate origin URL for you. It will also automatically generate a .travis.yml file
for using the Travis [https://travis-ci.org] automated testing service, and an appveyor.yml
file for using AppVeyor [https://www.appveyor.com]. You will have to enable testing on the Travis
and AppVeyor websites for your package repository, but once you’ve done that, it will already
have working tests. Of course, all the default testing does is verify that using FooBar in Julia
works.




Loading Static Non-Julia Files

If your package code needs to load static files which are not Julia code, e.g. an external library
or data files, and are located within the package directory, use the @__DIR__ macro to determine
the directory of the current source file. For example if FooBar/src/FooBar.jl needs to load
FooBar/data/foo.csv, use the following code:

datapath = joinpath(@__DIR__, "..", "data")
foo = readcsv(joinpath(datapath, "foo.csv"))








Making Your Package Available

Once you’ve made some commits and you’re happy with how FooBar is working, you may want to get
some other people to try it out. First you’ll need to create the remote repository and push your
code to it; we don’t yet automatically do this for you, but we will in the future and it’s not
too hard to figure out [^3]. Once you’ve done this, letting people try out your code is as simple
as sending them the URL of the published repo – in this case:

git://github.com/StefanKarpinski/FooBar.jl.git





For your package, it will be your GitHub user name and the name of your package, but you get the
idea. People you send this URL to can use Pkg.clone() to install the package and try
it out:

julia> Pkg.clone("git://github.com/StefanKarpinski/FooBar.jl.git")
INFO: Cloning FooBar from git@github.com:StefanKarpinski/FooBar.jl.git





[^3]:
Installing and using GitHub’s “hub” tool [https://github.com/github/hub] is highly recommended.
It allows you to do things like run hub create in the package repo and have it automatically
created via GitHub’s API.




Tagging and Publishing Your Package

!!! tip
If you are hosting your package on GitHub, you can use the attobot integration [https://github.com/attobot/attobot]
to handle package registration, tagging and publishing.

Once you’ve decided that FooBar is ready to be registered as an official package, you can add
it to your local copy of METADATA using PkgDev.register():

julia> PkgDev.register("FooBar")
INFO: Registering FooBar at git://github.com/StefanKarpinski/FooBar.jl.git
INFO: Committing METADATA for FooBar





This creates a commit in the ~/.julia/v0.6/METADATA repo:

$ cd ~/.julia/v0.6/METADATA && git show

commit 9f71f4becb05cadacb983c54a72eed744e5c019d
Author: Stefan Karpinski <stefan@karpinski.org>
Date:   Wed Oct 16 18:46:02 2013 -0400

    Register FooBar

diff --git a/FooBar/url b/FooBar/url
new file mode 100644
index 0000000..30e525e
--- /dev/null
+++ b/FooBar/url
@@ -0,0 +1 @@
+git://github.com/StefanKarpinski/FooBar.jl.git





This commit is only locally visible, however. To make it visible to the Julia community, you
need to merge your local METADATA upstream into the official repo. The PkgDev.publish() command
will fork the METADATA repository on GitHub, push your changes to your fork, and open a pull
request:

julia> PkgDev.publish()
INFO: Validating METADATA
INFO: No new package versions to publish
INFO: Submitting METADATA changes
INFO: Forking JuliaLang/METADATA.jl to StefanKarpinski
INFO: Pushing changes as branch pull-request/ef45f54b
INFO: To create a pull-request open:

  https://github.com/StefanKarpinski/METADATA.jl/compare/pull-request/ef45f54b





!!! tip
If PkgDev.publish() fails with error:

```
ERROR: key not found: "token"
```

then you may have encountered an issue from using the GitHub API on multiple systems. The solution
is to delete the "Julia Package Manager" personal access token [from your Github account](https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2Fsettings%2Ftokens)
and try again.

Other failures may require you to circumvent `PkgDev.publish()` by [creating a pull request on GitHub](https://help.github.com/articles/creating-a-pull-request/).
See: [Publishing METADATA manually](@ref) below.





Once the package URL for FooBar is registered in the official METADATA repo, people know where
to clone the package from, but there still aren’t any registered versions available. You can tag
and register it with the PkgDev.tag() command:

julia> PkgDev.tag("FooBar")
INFO: Tagging FooBar v0.0.1
INFO: Committing METADATA for FooBar





This tags v0.0.1 in the FooBar repo:

$ cd ~/.julia/v0.6/FooBar && git tag
v0.0.1





It also creates a new version entry in your local METADATA repo for FooBar:

$ cd ~/.julia/v0.6/FooBar && git show
commit de77ee4dc0689b12c5e8b574aef7f70e8b311b0e
Author: Stefan Karpinski <stefan@karpinski.org>
Date:   Wed Oct 16 23:06:18 2013 -0400

    Tag FooBar v0.0.1

diff --git a/FooBar/versions/0.0.1/sha1 b/FooBar/versions/0.0.1/sha1
new file mode 100644
index 0000000..c1cb1c1
--- /dev/null
+++ b/FooBar/versions/0.0.1/sha1
@@ -0,0 +1 @@
+84b8e266dae6de30ab9703150b3bf771ec7b6285





The PkgDev.tag() command takes an optional second argument that is either an explicit version
number object like v"0.0.1" or one of the symbols :patch, :minor or :major. These increment
the patch, minor or major version number of your package intelligently.

Adding a tagged version of your package will expedite the official registration into METADATA.jl
by collaborators. It is strongly recommended that you complete this process, regardless if your
package is completely ready for an official release.

As a general rule, packages should be tagged 0.0.1 first. Since Julia itself hasn’t achieved
1.0 status, it’s best to be conservative in your package’s tagged versions.

As with PkgDev.register(), these changes to METADATA aren’t available to anyone else until
they’ve been included upstream. Again, use the PkgDev.publish() command, which first makes sure
that individual package repos have been tagged, pushes them if they haven’t already been, and
then opens a pull request to METADATA:

julia> PkgDev.publish()
INFO: Validating METADATA
INFO: Pushing FooBar permanent tags: v0.0.1
INFO: Submitting METADATA changes
INFO: Forking JuliaLang/METADATA.jl to StefanKarpinski
INFO: Pushing changes as branch pull-request/3ef4f5c4
INFO: To create a pull-request open:

  https://github.com/StefanKarpinski/METADATA.jl/compare/pull-request/3ef4f5c4






Publishing METADATA manually

If PkgDev.publish() fails you can follow these instructions to manually publish your package.

By “forking” the main METADATA repository, you can create a personal copy (of METADATA.jl) under
your GitHub account. Once that copy exists, you can push your local changes to your copy (just
like any other GitHub project).


	Create a fork of METADATA.jl [https://github.com/login?return_to=https%3A%2F%2Fgithub.com%2FJuliaLang%2FMETADATA.jl%2Ffork].


	Add your fork as a remote repository for the METADATA repository on your local computer (in
the terminal where USERNAME is your github username):

cd ~/.julia/v0.6/METADATA
git remote add USERNAME https://github.com/USERNAME/METADATA.jl.git







	Push your changes to your fork:

git push USERNAME metadata-v2







	If all of that works, then go back to the GitHub page for your fork, and click the “pull request”
link.











Fixing Package Requirements

If you need to fix the registered requirements of an already-published package version, you can
do so just by editing the metadata for that version, which will still have the same commit hash
– the hash associated with a version is permanent:

$ cd ~/.julia/v0.6/METADATA/FooBar/versions/0.0.1 && cat requires
julia 0.3-
$ vi requires





Since the commit hash stays the same, the contents of the REQUIRE file that will be checked
out in the repo will not match the requirements in METADATA after such a change; this is
unavoidable. When you fix the requirements in METADATA for a previous version of a package,
however, you should also fix the REQUIRE file in the current version of the package.




Requirements Specification

The ~/.julia/v0.6/REQUIRE file, the REQUIRE file inside packages, and the METADATA package
requires files use a simple line-based format to express the ranges of package versions which
need to be installed. Package REQUIRE and METADATA requires files should also include the
range of versions of julia the package is expected to work with. Additionally, packages can
include a test/REQUIRE file to specify additional packages which are only required for testing.

Here’s how these files are parsed and interpreted.


	Everything after a # mark is stripped from each line as a comment.


	If nothing but whitespace is left, the line is ignored.


	If there are non-whitespace characters remaining, the line is a requirement and the is split on
whitespace into words.




The simplest possible requirement is just the name of a package name on a line by itself:

Distributions





This requirement is satisfied by any version of the Distributions package. The package name
can be followed by zero or more version numbers in ascending order, indicating acceptable intervals
of versions of that package. One version opens an interval, while the next closes it, and the
next opens a new interval, and so on; if an odd number of version numbers are given, then arbitrarily
large versions will satisfy; if an even number of version numbers are given, the last one is an
upper limit on acceptable version numbers. For example, the line:

Distributions 0.1





is satisfied by any version of Distributions greater than or equal to 0.1.0. Suffixing a version
with - allows any pre-release versions as well. For example:

Distributions 0.1-





is satisfied by pre-release versions such as 0.1-dev or 0.1-rc1, or by any version greater
than or equal to 0.1.0.

This requirement entry:

Distributions 0.1 0.2.5





is satisfied by versions from 0.1.0 up to, but not including 0.2.5. If you want to indicate
that any 0.1.x version will do, you will want to write:

Distributions 0.1 0.2-





If you want to start accepting versions after 0.2.7, you can write:

Distributions 0.1 0.2- 0.2.7





If a requirement line has leading words that begin with @, it is a system-dependent requirement.
If your system matches these system conditionals, the requirement is included, if not, the requirement
is ignored. For example:

@osx Homebrew





will require the Homebrew package only on systems where the operating system is OS X. The system
conditions that are currently supported are (hierarchically):


	@unix


	@linux


	@bsd


	@osx










	@windows




The @unix condition is satisfied on all UNIX systems, including Linux and BSD. Negated system
conditionals are also supported by adding a ! after the leading @. Examples:

@!windows
@unix @!osx





The first condition applies to any system but Windows and the second condition applies to any
UNIX system besides OS X.

Runtime checks for the current version of Julia can be made using the built-in VERSION variable,
which is of type VersionNumber. Such code is occasionally necessary to keep track of new or
deprecated functionality between various releases of Julia. Examples of runtime checks:

VERSION < v"0.3-" #exclude all pre-release versions of 0.3

v"0.2-" <= VERSION < v"0.3-" #get all 0.2 versions, including pre-releases, up to the above

v"0.2" <= VERSION < v"0.3-" #To get only stable 0.2 versions (Note v"0.2" == v"0.2.0")

VERSION >= v"0.2.1" #get at least version 0.2.1





See the section on [version number literals](@ref man-version-number-literals) for a more complete description.
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Parallel Computing

Most modern computers possess more than one CPU, and several computers can be combined together
in a cluster. Harnessing the power of these multiple CPUs allows many computations to be completed
more quickly. There are two major factors that influence performance: the speed of the CPUs themselves,
and the speed of their access to memory. In a cluster, it’s fairly obvious that a given CPU will
have fastest access to the RAM within the same computer (node). Perhaps more surprisingly, similar
issues are relevant on a typical multicore laptop, due to differences in the speed of main memory
and the cache [https://www.akkadia.org/drepper/cpumemory.pdf]. Consequently, a good multiprocessing
environment should allow control over the “ownership” of a chunk of memory by a particular CPU.
Julia provides a multiprocessing environment based on message passing to allow programs to run
on multiple processes in separate memory domains at once.

Julia’s implementation of message passing is different from other environments such as MPI [^1].
Communication in Julia is generally “one-sided”, meaning that the programmer needs to explicitly
manage only one process in a two-process operation. Furthermore, these operations typically do
not look like “message send” and “message receive” but rather resemble higher-level operations
like calls to user functions.

Parallel programming in Julia is built on two primitives: remote references and remote calls.
A remote reference is an object that can be used from any process to refer to an object stored
on a particular process. A remote call is a request by one process to call a certain function
on certain arguments on another (possibly the same) process.

Remote references come in two flavors: Future and RemoteChannel.

A remote call returns a Future to its result. Remote calls return immediately; the process
that made the call proceeds to its next operation while the remote call happens somewhere else.
You can wait for a remote call to finish by calling wait() on the returned Future,
and you can obtain the full value of the result using fetch().

On the other hand, RemoteChannel s are rewritable. For example, multiple processes can
co-ordinate their processing by referencing the same remote Channel.

Each process has an associated identifier. The process providing the interactive Julia prompt
always has an id equal to 1. The processes used by default for parallel operations are referred
to as “workers”. When there is only one process, process 1 is considered a worker. Otherwise,
workers are considered to be all processes other than process 1.

Let’s try this out. Starting with julia -p n provides n worker processes on the local machine.
Generally it makes sense for n to equal the number of CPU cores on the machine.

$ ./julia -p 2

julia> r = remotecall(rand, 2, 2, 2)
Future(2, 1, 4, Nullable{Any}())

julia> s = @spawnat 2 1 .+ fetch(r)
Future(2, 1, 5, Nullable{Any}())

julia> fetch(s)
2×2 Array{Float64,2}:
 1.18526  1.50912
 1.16296  1.60607





The first argument to remotecall() is the function to call. Most parallel programming
in Julia does not reference specific processes or the number of processes available, but remotecall()
is considered a low-level interface providing finer control. The second argument to remotecall()
is the id of the process that will do the work, and the remaining arguments will be passed to
the function being called.

As you can see, in the first line we asked process 2 to construct a 2-by-2 random matrix, and
in the second line we asked it to add 1 to it. The result of both calculations is available in
the two futures, r and s. The @spawnat macro evaluates the expression in the second
argument on the process specified by the first argument.

Occasionally you might want a remotely-computed value immediately. This typically happens when
you read from a remote object to obtain data needed by the next local operation. The function
remotecall_fetch() exists for this purpose. It is equivalent to fetch(remotecall(...))
but is more efficient.

julia> remotecall_fetch(getindex, 2, r, 1, 1)
0.18526337335308085





Remember that getindex(r,1,1) is [equivalent](@ref man-array-indexing) to r[1,1], so this call fetches
the first element of the future r.

The syntax of remotecall() is not especially convenient. The macro @spawn
makes things easier. It operates on an expression rather than a function, and picks where to do
the operation for you:

julia> r = @spawn rand(2,2)
Future(2, 1, 4, Nullable{Any}())

julia> s = @spawn 1 .+ fetch(r)
Future(3, 1, 5, Nullable{Any}())

julia> fetch(s)
2×2 Array{Float64,2}:
 1.38854  1.9098
 1.20939  1.57158





Note that we used 1 .+ fetch(r) instead of 1 .+ r. This is because we do not know where the
code will run, so in general a fetch() might be required to move r to the process
doing the addition. In this case, @spawn is smart enough to perform the computation
on the process that owns r, so the fetch() will be a no-op (no work is done).

(It is worth noting that @spawn is not built-in but defined in Julia as a [macro](@ref man-macros).
It is possible to define your own such constructs.)

An important thing to remember is that, once fetched, a Future will cache its value
locally. Further fetch() calls do not entail a network hop. Once all referencing Futures
have fetched, the remote stored value is deleted.


Code Availability and Loading Packages

Your code must be available on any process that runs it. For example, type the following into
the Julia prompt:

julia> function rand2(dims...)
           return 2*rand(dims...)
       end

julia> rand2(2,2)
2×2 Array{Float64,2}:
 0.153756  0.368514
 1.15119   0.918912

julia> fetch(@spawn rand2(2,2))
ERROR: RemoteException(2, CapturedException(UndefVarError(Symbol("#rand2"))
[...]





Process 1 knew about the function rand2, but process 2 did not.

Most commonly you’ll be loading code from files or packages, and you have a considerable amount
of flexibility in controlling which processes load code. Consider a file, DummyModule.jl,
containing the following code:

module DummyModule

export MyType, f

mutable struct MyType
    a::Int
end

f(x) = x^2+1

println("loaded")

end





Starting Julia with julia -p 2, you can use this to verify the following:


	include("DummyModule.jl") loads the file on just a single process (whichever one executes
the statement).


	using DummyModule causes the module to be loaded on all processes; however, the module is brought
into scope only on the one executing the statement.


	As long as DummyModule is loaded on process 2, commands like

rr = RemoteChannel(2)
put!(rr, MyType(7))





allow you to store an object of type MyType on process 2 even if DummyModule is not in scope
on process 2.





You can force a command to run on all processes using the @everywhere macro. For example, @everywhere
can also be used to directly define a function on all processes:

julia> @everywhere id = myid()

julia> remotecall_fetch(()->id, 2)
2





A file can also be preloaded on multiple processes at startup, and a driver script can be used
to drive the computation:

julia -p <n> -L file1.jl -L file2.jl driver.jl





The Julia process running the driver script in the example above has an id equal to 1, just
like a process providing an interactive prompt.

The base Julia installation has in-built support for two types of clusters:


	A local cluster specified with the -p option as shown above.


	A cluster spanning machines using the --machinefile option. This uses a passwordless ssh login
to start Julia worker processes (from the same path as the current host) on the specified machines.




Functions addprocs(), rmprocs(), workers(), and others are available
as a programmatic means of adding, removing and querying the processes in a cluster.

Note that workers do not run a .juliarc.jl startup script, nor do they synchronize their global
state (such as global variables, new method definitions, and loaded modules) with any of the other
running processes.

Other types of clusters can be supported by writing your own custom ClusterManager, as described
below in the ClusterManagers section.




Data Movement

Sending messages and moving data constitute most of the overhead in a parallel program. Reducing
the number of messages and the amount of data sent is critical to achieving performance and scalability.
To this end, it is important to understand the data movement performed by Julia’s various parallel
programming constructs.

fetch() can be considered an explicit data movement operation, since it directly asks
that an object be moved to the local machine. @spawn (and a few related constructs)
also moves data, but this is not as obvious, hence it can be called an implicit data movement
operation. Consider these two approaches to constructing and squaring a random matrix:

Method 1:

julia> A = rand(1000,1000);

julia> Bref = @spawn A^2;

[...]

julia> fetch(Bref);





Method 2:

julia> Bref = @spawn rand(1000,1000)^2;

[...]

julia> fetch(Bref);





The difference seems trivial, but in fact is quite significant due to the behavior of @spawn.
In the first method, a random matrix is constructed locally, then sent to another process where
it is squared. In the second method, a random matrix is both constructed and squared on another
process. Therefore the second method sends much less data than the first.

In this toy example, the two methods are easy to distinguish and choose from. However, in a real
program designing data movement might require more thought and likely some measurement. For example,
if the first process needs matrix A then the first method might be better. Or, if computing
A is expensive and only the current process has it, then moving it to another process might
be unavoidable. Or, if the current process has very little to do between the @spawn
and fetch(Bref), it might be better to eliminate the parallelism altogether. Or imagine rand(1000,1000)
is replaced with a more expensive operation. Then it might make sense to add another @spawn
statement just for this step.






Global variables

Expressions executed remotely via @spawn, or closures specified for remote execution using
remotecall may refer to global variables. Global bindings under module Main are treated
a little differently compared to global bindings in other modules. Consider the following code
snippet:

A = rand(10,10)
remotecall_fetch(()->foo(A), 2)





Note that A is a global variable defined in the local workspace. Worker 2 does not have a variable called
A under Main. The act of shipping the closure ()->foo(A) to worker 2 results in Main.A being defined
on 2. Main.A continues to exist on worker 2 even after the call remotecall_fetch returns. Remote calls
with embedded global references (under Main module only) manage globals as follows:


	New global bindings are created on destination workers if they are referenced as part of a remote call.


	Global constants are declared as constants on remote nodes too.


	Globals are re-sent to a destination worker only in the context of a remote call, and then only
if its value has changed. Also, the cluster does not synchronize global bindings across nodes.
For example:

A = rand(10,10)
remotecall_fetch(()->foo(A), 2) # worker 2
A = rand(10,10)
remotecall_fetch(()->foo(A), 3) # worker 3
A = nothing





Executing the above snippet results in Main.A on worker 2 having a different value from
Main.A on worker 3, while the value of Main.A on node 1 is set to nothing.





As you may have realized, while memory associated with globals may be collected when they are reassigned
on the master, no such action is taken on the workers as the bindings continue to be valid.
clear! can be used to manually reassign specific globals on remote nodes to nothing once
they are no longer required. This will release any memory associated with them as part of a regular garbage
collection cycle.

Thus programs should be careful referencing globals in remote calls. In fact, it is preferable to avoid them
altogether if possible. If you must reference globals, consider using let blocks to localize global variables.

For example:

julia> A = rand(10,10);

julia> remotecall_fetch(()->A, 2);

julia> B = rand(10,10);

julia> let B = B
           remotecall_fetch(()->B, 2)
       end;

julia> @spawnat 2 whos();

julia>  From worker 2:                               A    800 bytes  10×10 Array{Float64,2}
        From worker 2:                            Base               Module
        From worker 2:                            Core               Module
        From worker 2:                            Main               Module





As can be seen, global variable A is defined on worker 2, but B is captured as a local variable
and hence a binding for B does not exist on worker 2.


Parallel Map and Loops

Fortunately, many useful parallel computations do not require data movement. A common example
is a Monte Carlo simulation, where multiple processes can handle independent simulation trials
simultaneously. We can use @spawn to flip coins on two processes. First, write the following
function in count_heads.jl:

function count_heads(n)
    c::Int = 0
    for i = 1:n
        c += rand(Bool)
    end
    c
end





The function count_heads simply adds together n random bits. Here is how we can perform some
trials on two machines, and add together the results:

julia> @everywhere include("count_heads.jl")

julia> a = @spawn count_heads(100000000)
Future(2, 1, 6, Nullable{Any}())

julia> b = @spawn count_heads(100000000)
Future(3, 1, 7, Nullable{Any}())

julia> fetch(a)+fetch(b)
100001564





This example demonstrates a powerful and often-used parallel programming pattern. Many iterations
run independently over several processes, and then their results are combined using some function.
The combination process is called a reduction, since it is generally tensor-rank-reducing: a
vector of numbers is reduced to a single number, or a matrix is reduced to a single row or column,
etc. In code, this typically looks like the pattern x = f(x,v[i]), where x is the accumulator,
f is the reduction function, and the v[i] are the elements being reduced. It is desirable
for f to be associative, so that it does not matter what order the operations are performed
in.

Notice that our use of this pattern with count_heads can be generalized. We used two explicit
@spawn statements, which limits the parallelism to two processes. To run on any number
of processes, we can use a parallel for loop, which can be written in Julia using @parallel
like this:

nheads = @parallel (+) for i = 1:200000000
    Int(rand(Bool))
end





This construct implements the pattern of assigning iterations to multiple processes, and combining
them with a specified reduction (in this case (+)). The result of each iteration is taken as
the value of the last expression inside the loop. The whole parallel loop expression itself evaluates
to the final answer.

Note that although parallel for loops look like serial for loops, their behavior is dramatically
different. In particular, the iterations do not happen in a specified order, and writes to variables
or arrays will not be globally visible since iterations run on different processes. Any variables
used inside the parallel loop will be copied and broadcast to each process.

For example, the following code will not work as intended:

a = zeros(100000)
@parallel for i = 1:100000
    a[i] = i
end





This code will not initialize all of a, since each process will have a separate copy of it.
Parallel for loops like these must be avoided. Fortunately, [Shared Arrays](@ref man-shared-arrays) can be used
to get around this limitation:

a = SharedArray{Float64}(10)
@parallel for i = 1:10
    a[i] = i
end





Using “outside” variables in parallel loops is perfectly reasonable if the variables are read-only:

a = randn(1000)
@parallel (+) for i = 1:100000
    f(a[rand(1:end)])
end





Here each iteration applies f to a randomly-chosen sample from a vector a shared by all processes.

As you could see, the reduction operator can be omitted if it is not needed. In that case, the
loop executes asynchronously, i.e. it spawns independent tasks on all available workers and returns
an array of Future immediately without waiting for completion. The caller can wait for
the Future completions at a later point by calling fetch() on them, or wait
for completion at the end of the loop by prefixing it with @sync, like @sync @parallel for.

In some cases no reduction operator is needed, and we merely wish to apply a function to all integers
in some range (or, more generally, to all elements in some collection). This is another useful
operation called parallel map, implemented in Julia as the pmap() function. For example,
we could compute the singular values of several large random matrices in parallel as follows:

julia> M = Matrix{Float64}[rand(1000,1000) for i = 1:10];

julia> pmap(svd, M);





Julia’s pmap() is designed for the case where each function call does a large amount
of work. In contrast, @parallel for can handle situations where each iteration is tiny, perhaps
merely summing two numbers. Only worker processes are used by both pmap() and @parallel for
for the parallel computation. In case of @parallel for, the final reduction is done on the calling
process.




Synchronization With Remote References




Scheduling

Julia’s parallel programming platform uses [Tasks (aka Coroutines)](@ref man-tasks) to switch among multiple
computations. Whenever code performs a communication operation like fetch() or wait(),
the current task is suspended and a scheduler picks another task to run. A task is restarted when
the event it is waiting for completes.

For many problems, it is not necessary to think about tasks directly. However, they can be used
to wait for multiple events at the same time, which provides for dynamic scheduling. In dynamic
scheduling, a program decides what to compute or where to compute it based on when other jobs
finish. This is needed for unpredictable or unbalanced workloads, where we want to assign more
work to processes only when they finish their current tasks.

As an example, consider computing the singular values of matrices of different sizes:

julia> M = Matrix{Float64}[rand(800,800), rand(600,600), rand(800,800), rand(600,600)];

julia> pmap(svd, M);





If one process handles both 800×800 matrices and another handles both 600×600 matrices, we will
not get as much scalability as we could. The solution is to make a local task to “feed” work to
each process when it completes its current task. For example, consider a simple pmap()
implementation:

function pmap(f, lst)
    np = nprocs()  # determine the number of processes available
    n = length(lst)
    results = Vector{Any}(n)
    i = 1
    # function to produce the next work item from the queue.
    # in this case it's just an index.
    nextidx() = (idx=i; i+=1; idx)
    @sync begin
        for p=1:np
            if p != myid() || np == 1
                @async begin
                    while true
                        idx = nextidx()
                        if idx > n
                            break
                        end
                        results[idx] = remotecall_fetch(f, p, lst[idx])
                    end
                end
            end
        end
    end
    results
end





@async is similar to @spawn, but only runs tasks on the local process. We
use it to create a “feeder” task for each process. Each task picks the next index that needs to
be computed, then waits for its process to finish, then repeats until we run out of indexes. Note
that the feeder tasks do not begin to execute until the main task reaches the end of the @sync
block, at which point it surrenders control and waits for all the local tasks to complete before
returning from the function. The feeder tasks are able to share state via nextidx() because
they all run on the same process. No locking is required, since the threads are scheduled cooperatively
and not preemptively. This means context switches only occur at well-defined points: in this case,
when remotecall_fetch() is called.




Channels

The section on Tasks in Control Flow discussed the execution of multiple functions in
a co-operative manner. Channels can be quite useful to pass data between running tasks, particularly
those involving I/O operations.

Examples of operations involving I/O include reading/writing to files, accessing web services,
executing external programs, etc. In all these cases, overall execution time can be improved if
other tasks can be run while a file is being read, or while waiting for an external service/program
to complete.

A channel can be visualized as a pipe, i.e., it has a write end and read end.


	Multiple writers in different tasks can write to the same channel concurrently via put!()
calls.


	Multiple readers in different tasks can read data concurrently via take!() calls.


	As an example:

# Given Channels c1 and c2,
c1 = Channel(32)
c2 = Channel(32)

# and a function `foo()` which reads items from from c1, processes the item read
# and writes a result to c2,
function foo()
    while true
        data = take!(c1)
        [...]               # process data
        put!(c2, result)    # write out result
    end
end

# we can schedule `n` instances of `foo()` to be active concurrently.
for _ in 1:n
    @schedule foo()
end







	Channels are created via the Channel{T}(sz) constructor. The channel will only hold objects
of type T. If the type is not specified, the channel can hold objects of any type. sz refers
to the maximum number of elements that can be held in the channel at any time. For example, Channel(32)
creates a channel that can hold a maximum of 32 objects of any type. A Channel{MyType}(64) can
hold up to 64 objects of MyType at any time.


	If a Channel is empty, readers (on a take!() call) will block until data is available.


	If a Channel is full, writers (on a put!() call) will block until space becomes available.


	isready() tests for the presence of any object in the channel, while wait()
waits for an object to become available.


	A Channel is in an open state initially. This means that it can be read from and written to
freely via take!() and put!() calls. close() closes a Channel.
On a closed Channel, put!() will fail. For example:




julia> c = Channel(2);

julia> put!(c, 1) # `put!` on an open channel succeeds
1

julia> close(c);

julia> put!(c, 2) # `put!` on a closed channel throws an exception.
ERROR: InvalidStateException("Channel is closed.",:closed)
[...]






	take!() and fetch() (which retrieves but does not remove the value) on a closed
channel successfully return any existing values until it is emptied. Continuing the above example:




julia> fetch(c) # Any number of `fetch` calls succeed.
1

julia> fetch(c)
1

julia> take!(c) # The first `take!` removes the value.
1

julia> take!(c) # No more data available on a closed channel.
ERROR: InvalidStateException("Channel is closed.",:closed)
[...]





A Channel can be used as an iterable object in a for loop, in which case the loop runs as
long as the Channel has data or is open. The loop variable takes on all values added to the
Channel. The for loop is terminated once the Channel is closed and emptied.

For example, the following would cause the for loop to wait for more data:

julia> c = Channel{Int}(10);

julia> foreach(i->put!(c, i), 1:3) # add a few entries

julia> data = [i for i in c]





while this will return after reading all data:

julia> c = Channel{Int}(10);

julia> foreach(i->put!(c, i), 1:3); # add a few entries

julia> close(c);                    # `for` loops can exit

julia> data = [i for i in c]
3-element Array{Int64,1}:
 1
 2
 3





Consider a simple example using channels for inter-task communication. We start 4 tasks to process
data from a single jobs channel. Jobs, identified by an id (job_id), are written to the channel.
Each task in this simulation reads a job_id, waits for a random amout of time and writes back
a tuple of job_id and the simulated time to the results channel. Finally all the results are
printed out.

julia> const jobs = Channel{Int}(32);

julia> const results = Channel{Tuple}(32);

julia> function do_work()
           for job_id in jobs
               exec_time = rand()
               sleep(exec_time)                # simulates elapsed time doing actual work
                                               # typically performed externally.
               put!(results, (job_id, exec_time))
           end
       end;

julia> function make_jobs(n)
           for i in 1:n
               put!(jobs, i)
           end
       end;

julia> n = 12;

julia> @schedule make_jobs(n); # feed the jobs channel with "n" jobs

julia> for i in 1:4 # start 4 tasks to process requests in parallel
           @schedule do_work()
       end

julia> @elapsed while n > 0 # print out results
           job_id, exec_time = take!(results)
           println("$job_id finished in $(round(exec_time,2)) seconds")
           n = n - 1
       end
4 finished in 0.22 seconds
3 finished in 0.45 seconds
1 finished in 0.5 seconds
7 finished in 0.14 seconds
2 finished in 0.78 seconds
5 finished in 0.9 seconds
9 finished in 0.36 seconds
6 finished in 0.87 seconds
8 finished in 0.79 seconds
10 finished in 0.64 seconds
12 finished in 0.5 seconds
11 finished in 0.97 seconds
0.029772311





The current version of Julia multiplexes all tasks onto a single OS thread. Thus, while tasks
involving I/O operations benefit from parallel execution, compute bound tasks are effectively
executed sequentially on a single OS thread. Future versions of Julia may support scheduling of
tasks on multiple threads, in which case compute bound tasks will see benefits of parallel execution
too.




Remote References and AbstractChannels

Remote references always refer to an implementation of an AbstractChannel.

A concrete implementation of an AbstractChannel (like Channel), is required to implement
put!(), take!(), fetch(), isready() and wait().
The remote object referred to by a Future is stored in a Channel{Any}(1), i.e., a
Channel of size 1 capable of holding objects of Any type.

RemoteChannel, which is rewritable, can point to any type and size of channels, or any
other implementation of an AbstractChannel.

The constructor RemoteChannel(f::Function, pid)() allows us to construct references to channels
holding more than one value of a specific type. f() is a function executed on pid and it must
return an AbstractChannel.

For example, RemoteChannel(()->Channel{Int}(10), pid), will return a reference to a channel
of type Int and size 10. The channel exists on worker pid.

Methods put!(), take!(), fetch(), isready() and wait()
on a RemoteChannel are proxied onto the backing store on the remote process.

RemoteChannel can thus be used to refer to user implemented AbstractChannel objects.
A simple example of this is provided in examples/dictchannel.jl which uses a dictionary as its
remote store.




Channels and RemoteChannels


	A Channel is local to a process. Worker 2 cannot directly refer to a Channel on worker 3 and
vice-versa. A RemoteChannel, however, can put and take values across workers.


	A RemoteChannel can be thought of as a handle to a Channel.


	The process id, pid, associated with a RemoteChannel identifies the process where
the backing store, i.e., the backing Channel exists.


	Any process with a reference to a RemoteChannel can put and take items from the channel.
Data is automatically sent to (or retrieved from) the process a RemoteChannel is associated
with.


	Serializing  a Channel also serializes any data present in the channel. Deserializing it therefore
effectively makes a copy of the original object.


	On the other hand, serializing a RemoteChannel only involves the serialization of an
identifier that identifies the location and instance of Channel referred to by the handle. A
deserialized RemoteChannel object (on any worker), therefore also points to the same
backing store as the original.




The channels example from above can be modified for interprocess communication,
as shown below.

We start 4 workers to process a single jobs remote channel. Jobs, identified by an id (job_id),
are written to the channel. Each remotely executing task in this simulation reads a job_id,
waits for a random amount of time and writes back a tuple of job_id, time taken and its own
pid to the results channel. Finally all the results are printed out on the master process.

julia> addprocs(4); # add worker processes

julia> const jobs = RemoteChannel(()->Channel{Int}(32));

julia> const results = RemoteChannel(()->Channel{Tuple}(32));

julia> @everywhere function do_work(jobs, results) # define work function everywhere
           while true
               job_id = take!(jobs)
               exec_time = rand()
               sleep(exec_time) # simulates elapsed time doing actual work
               put!(results, (job_id, exec_time, myid()))
           end
       end

julia> function make_jobs(n)
           for i in 1:n
               put!(jobs, i)
           end
       end;

julia> n = 12;

julia> @schedule make_jobs(n); # feed the jobs channel with "n" jobs

julia> for p in workers() # start tasks on the workers to process requests in parallel
           @async remote_do(do_work, p, jobs, results)
       end

julia> @elapsed while n > 0 # print out results
           job_id, exec_time, where = take!(results)
           println("$job_id finished in $(round(exec_time,2)) seconds on worker $where")
           n = n - 1
       end
1 finished in 0.18 seconds on worker 4
2 finished in 0.26 seconds on worker 5
6 finished in 0.12 seconds on worker 4
7 finished in 0.18 seconds on worker 4
5 finished in 0.35 seconds on worker 5
4 finished in 0.68 seconds on worker 2
3 finished in 0.73 seconds on worker 3
11 finished in 0.01 seconds on worker 3
12 finished in 0.02 seconds on worker 3
9 finished in 0.26 seconds on worker 5
8 finished in 0.57 seconds on worker 4
10 finished in 0.58 seconds on worker 2
0.055971741








Remote References and Distributed Garbage Collection

Objects referred to by remote references can be freed only when all held references in the cluster
are deleted.

The node where the value is stored keeps track of which of the workers have a reference to it.
Every time a RemoteChannel or a (unfetched) Future is serialized to a worker,
the node pointed to by the reference is notified. And every time a RemoteChannel or
a (unfetched) Future is garbage collected locally, the node owning the value is again
notified.

The notifications are done via sending of “tracking” messages–an “add reference” message when
a reference is serialized to a different process and a “delete reference” message when a reference
is locally garbage collected.

Since Futures are write-once and cached locally, the act of fetch()ing a
Future also updates reference tracking information on the node owning the value.

The node which owns the value frees it once all references to it are cleared.

With Futures, serializing an already fetched Future to a different node also
sends the value since the original remote store may have collected the value by this time.

It is important to note that when an object is locally garbage collected depends on the size
of the object and the current memory pressure in the system.

In case of remote references, the size of the local reference object is quite small, while the
value stored on the remote node may be quite large. Since the local object may not be collected
immediately, it is a good practice to explicitly call finalize() on local instances
of a RemoteChannel, or on unfetched Futures. Since calling fetch()
on a Future also removes its reference from the remote store, this is not required on
fetched Futures. Explicitly calling finalize() results in an immediate message
sent to the remote node to go ahead and remove its reference to the value.

Once finalized, a reference becomes invalid and cannot be used in any further calls.




[Shared Arrays](@id man-shared-arrays)

Shared Arrays use system shared memory to map the same array across many processes. While there
are some similarities to a DArray [https://github.com/JuliaParallel/DistributedArrays.jl], the
behavior of a SharedArray is quite different. In a DArray [https://github.com/JuliaParallel/DistributedArrays.jl],
each process has local access to just a chunk of the data, and no two processes share the same
chunk; in contrast, in a SharedArray each “participating” process has access to the
entire array.  A SharedArray is a good choice when you want to have a large amount of
data jointly accessible to two or more processes on the same machine.

SharedArray indexing (assignment and accessing values) works just as with regular arrays,
and is efficient because the underlying memory is available to the local process. Therefore,
most algorithms work naturally on SharedArrays, albeit in single-process mode. In cases
where an algorithm insists on an Array input, the underlying array can be retrieved
from a SharedArray by calling sdata(). For other AbstractArray types, sdata()
just returns the object itself, so it’s safe to use sdata() on any Array-type object.

The constructor for a shared array is of the form:

SharedArray{T,N}(dims::NTuple; init=false, pids=Int[])





which creates an N-dimensional shared array of a bits type T and size dims across the processes specified
by pids. Unlike distributed arrays, a shared array is accessible only from those participating
workers specified by the pids named argument (and the creating process too, if it is on the
same host).

If an init function, of signature initfn(S::SharedArray), is specified, it is called on all
the participating workers. You can specify that each worker runs the init function on a distinct
portion of the array, thereby parallelizing initialization.

Here’s a brief example:

julia> addprocs(3)
3-element Array{Int64,1}:
 2
 3
 4

julia> S = SharedArray{Int,2}((3,4), init = S -> S[Base.localindexes(S)] = myid())
3×4 SharedArray{Int64,2}:
 2  2  3  4
 2  3  3  4
 2  3  4  4

julia> S[3,2] = 7
7

julia> S
3×4 SharedArray{Int64,2}:
 2  2  3  4
 2  3  3  4
 2  7  4  4





Base.localindexes() provides disjoint one-dimensional ranges of indexes, and is sometimes
convenient for splitting up tasks among processes. You can, of course, divide the work any way
you wish:

julia> S = SharedArray{Int,2}((3,4), init = S -> S[indexpids(S):length(procs(S)):length(S)] = myid())
3×4 SharedArray{Int64,2}:
 2  2  2  2
 3  3  3  3
 4  4  4  4





Since all processes have access to the underlying data, you do have to be careful not to set up
conflicts. For example:

@sync begin
    for p in procs(S)
        @async begin
            remotecall_wait(fill!, p, S, p)
        end
    end
end





would result in undefined behavior. Because each process fills the entire array with its own
pid, whichever process is the last to execute (for any particular element of S) will have
its pid retained.

As a more extended and complex example, consider running the following “kernel” in parallel:

q[i,j,t+1] = q[i,j,t] + u[i,j,t]





In this case, if we try to split up the work using a one-dimensional index, we are likely to run
into trouble: if q[i,j,t] is near the end of the block assigned to one worker and q[i,j,t+1]
is near the beginning of the block assigned to another, it’s very likely that q[i,j,t] will
not be ready at the time it’s needed for computing q[i,j,t+1]. In such cases, one is better
off chunking the array manually. Let’s split along the second dimension.
Define a function that returns the (irange, jrange) indexes assigned to this worker:

julia> @everywhere function myrange(q::SharedArray)
           idx = indexpids(q)
           if idx == 0 # This worker is not assigned a piece
               return 1:0, 1:0
           end
           nchunks = length(procs(q))
           splits = [round(Int, s) for s in linspace(0,size(q,2),nchunks+1)]
           1:size(q,1), splits[idx]+1:splits[idx+1]
       end





Next, define the kernel:

julia> @everywhere function advection_chunk!(q, u, irange, jrange, trange)
           @show (irange, jrange, trange)  # display so we can see what's happening
           for t in trange, j in jrange, i in irange
               q[i,j,t+1] = q[i,j,t] + u[i,j,t]
           end
           q
       end





We also define a convenience wrapper for a SharedArray implementation

julia> @everywhere advection_shared_chunk!(q, u) =
           advection_chunk!(q, u, myrange(q)..., 1:size(q,3)-1)





Now let’s compare three different versions, one that runs in a single process:

julia> advection_serial!(q, u) = advection_chunk!(q, u, 1:size(q,1), 1:size(q,2), 1:size(q,3)-1);





one that uses @parallel:

julia> function advection_parallel!(q, u)
           for t = 1:size(q,3)-1
               @sync @parallel for j = 1:size(q,2)
                   for i = 1:size(q,1)
                       q[i,j,t+1]= q[i,j,t] + u[i,j,t]
                   end
               end
           end
           q
       end;





and one that delegates in chunks:

julia> function advection_shared!(q, u)
           @sync begin
               for p in procs(q)
                   @async remotecall_wait(advection_shared_chunk!, p, q, u)
               end
           end
           q
       end;





If we create SharedArrays and time these functions, we get the following results (with julia -p 4):

julia> q = SharedArray{Float64,3}((500,500,500));

julia> u = SharedArray{Float64,3}((500,500,500));





Run the functions once to JIT-compile and @time them on the second run:

julia> @time advection_serial!(q, u);
(irange,jrange,trange) = (1:500,1:500,1:499)
 830.220 milliseconds (216 allocations: 13820 bytes)

julia> @time advection_parallel!(q, u);
   2.495 seconds      (3999 k allocations: 289 MB, 2.09% gc time)

julia> @time advection_shared!(q,u);
        From worker 2:       (irange,jrange,trange) = (1:500,1:125,1:499)
        From worker 4:       (irange,jrange,trange) = (1:500,251:375,1:499)
        From worker 3:       (irange,jrange,trange) = (1:500,126:250,1:499)
        From worker 5:       (irange,jrange,trange) = (1:500,376:500,1:499)
 238.119 milliseconds (2264 allocations: 169 KB)





The biggest advantage of advection_shared! is that it minimizes traffic among the workers, allowing
each to compute for an extended time on the assigned piece.




Shared Arrays and Distributed Garbage Collection

Like remote references, shared arrays are also dependent on garbage collection on the creating
node to release references from all participating workers. Code which creates many short lived
shared array objects would benefit from explicitly finalizing these objects as soon as possible.
This results in both memory and file handles mapping the shared segment being released sooner.




ClusterManagers

The launching, management and networking of Julia processes into a logical cluster is done via
cluster managers. A ClusterManager is responsible for


	launching worker processes in a cluster environment


	managing events during the lifetime of each worker


	optionally, providing data transport




A Julia cluster has the following characteristics:


	The initial Julia process, also called the master, is special and has an id of 1.


	Only the master process can add or remove worker processes.


	All processes can directly communicate with each other.




Connections between workers (using the in-built TCP/IP transport) is established in the following
manner:


	addprocs() is called on the master process with a ClusterManager object.


	addprocs() calls the appropriate launch() method which spawns required number
of worker processes on appropriate machines.


	Each worker starts listening on a free port and writes out its host and port information to STDOUT.


	The cluster manager captures the STDOUT of each worker and makes it available to the
master process.


	The master process parses this information and sets up TCP/IP connections to each worker.


	Every worker is also notified of other workers in the cluster.


	Each worker connects to all workers whose id is less than the worker’s own id.


	In this way a mesh network is established, wherein every worker is directly connected with every
other worker.




While the default transport layer uses plain TCPSocket, it is possible for a Julia cluster to
provide its own transport.

Julia provides two in-built cluster managers:


	LocalManager, used when addprocs() or addprocs(np::Integer) are called


	SSHManager, used when addprocs(hostnames::Array) is called with a list of hostnames




LocalManager is used to launch additional workers on the same host, thereby leveraging multi-core
and multi-processor hardware.

Thus, a minimal cluster manager would need to:


	be a subtype of the abstract ClusterManager


	implement launch(), a method responsible for launching new workers


	implement manage(), which is called at various events during a worker’s lifetime (for
example, sending an interrupt signal)




[addprocs(manager::FooManager)](@ref addprocs) requires FooManager to implement:

function launch(manager::FooManager, params::Dict, launched::Array, c::Condition)
    [...]
end

function manage(manager::FooManager, id::Integer, config::WorkerConfig, op::Symbol)
    [...]
end





As an example let us see how the LocalManager, the manager responsible for starting workers
on the same host, is implemented:

struct LocalManager <: ClusterManager
    np::Integer
end

function launch(manager::LocalManager, params::Dict, launched::Array, c::Condition)
    [...]
end

function manage(manager::LocalManager, id::Integer, config::WorkerConfig, op::Symbol)
    [...]
end





The launch() method takes the following arguments:


	manager::ClusterManager: the cluster manager that addprocs() is called with


	params::Dict: all the keyword arguments passed to addprocs()


	launched::Array: the array to append one or more WorkerConfig objects to


	c::Condition: the condition variable to be notified as and when workers are launched




The launch() method is called asynchronously in a separate task. The termination of
this task signals that all requested workers have been launched. Hence the launch()
function MUST exit as soon as all the requested workers have been launched.

Newly launched workers are connected to each other, and the master process, in an all-to-all manner.
Specifying the command argument --worker <cookie> results in the launched processes initializing
themselves as workers and connections being set up via TCP/IP sockets. Optionally, --bind-to bind_addr[:port]
may also be specified to enable other workers to connect to it at the specified bind_addr and
port. This is useful for multi-homed hosts.

As an example of a non-TCP/IP transport, an implementation may choose to use MPI, in which case
--worker must NOT be specified. Instead, newly launched workers should call init_worker(cookie)
before using any of the parallel constructs.

For every worker launched, the launch() method must add a WorkerConfig object (with
appropriate fields initialized) to launched

mutable struct WorkerConfig
    # Common fields relevant to all cluster managers
    io::Nullable{IO}
    host::Nullable{AbstractString}
    port::Nullable{Integer}

    # Used when launching additional workers at a host
    count::Nullable{Union{Int, Symbol}}
    exename::Nullable{AbstractString}
    exeflags::Nullable{Cmd}

    # External cluster managers can use this to store information at a per-worker level
    # Can be a dict if multiple fields need to be stored.
    userdata::Nullable{Any}

    # SSHManager / SSH tunnel connections to workers
    tunnel::Nullable{Bool}
    bind_addr::Nullable{AbstractString}
    sshflags::Nullable{Cmd}
    max_parallel::Nullable{Integer}

    connect_at::Nullable{Any}

    [...]
end





Most of the fields in WorkerConfig are used by the inbuilt managers. Custom cluster managers
would typically specify only io or host / port:


	If io is specified, it is used to read host/port information. A Julia worker prints out its
bind address and port at startup. This allows Julia workers to listen on any free port available
instead of requiring worker ports to be configured manually.


	If io is not specified, host and port are used to connect.


	count, exename and exeflags are relevant for launching additional workers from a worker.
For example, a cluster manager may launch a single worker per node, and use that to launch additional
workers.


	count with an integer value n will launch a total of n workers.


	count with a value of :auto will launch as many workers as the number of cores on that machine.


	exename is the name of the julia executable including the full path.


	exeflags should be set to the required command line arguments for new workers.






	tunnel, bind_addr, sshflags and max_parallel are used when a ssh tunnel is required to
connect to the workers from the master process.


	userdata is provided for custom cluster managers to store their own worker-specific information.




manage(manager::FooManager, id::Integer, config::WorkerConfig, op::Symbol) is called at different
times during the worker’s lifetime with appropriate op values:


	with :register/:deregister when a worker is added / removed from the Julia worker pool.


	with :interrupt when interrupt(workers) is called. The ClusterManager should signal the
appropriate worker with an interrupt signal.


	with :finalize for cleanup purposes.







Cluster Managers with Custom Transports

Replacing the default TCP/IP all-to-all socket connections with a custom transport layer is a
little more involved. Each Julia process has as many communication tasks as the workers it is
connected to. For example, consider a Julia cluster of 32 processes in an all-to-all mesh network:


	Each Julia process thus has 31 communication tasks.


	Each task handles all incoming messages from a single remote worker in a message-processing loop.


	The message-processing loop waits on an IO object (for example, a TCPSocket in the default
implementation), reads an entire message, processes it and waits for the next one.


	Sending messages to a process is done directly from any Julia task–not just communication tasks–again,
via the appropriate IO object.




Replacing the default transport requires the new implementation to set up connections to remote
workers and to provide appropriate IO objects that the message-processing loops can wait on.
The manager-specific callbacks to be implemented are:

connect(manager::FooManager, pid::Integer, config::WorkerConfig)
kill(manager::FooManager, pid::Int, config::WorkerConfig)





The default implementation (which uses TCP/IP sockets) is implemented as connect(manager::ClusterManager, pid::Integer, config::WorkerConfig).

connect should return a pair of IO objects, one for reading data sent from worker pid, and
the other to write data that needs to be sent to worker pid. Custom cluster managers can use
an in-memory BufferStream as the plumbing to proxy data between the custom, possibly non-IO
transport and Julia’s in-built parallel infrastructure.

A BufferStream is an in-memory IOBuffer which behaves like an IO–it is a stream which can
be handled asynchronously.

Folder examples/clustermanager/0mq contains an example of using ZeroMQ to connect Julia workers
in a star topology with a 0MQ broker in the middle. Note: The Julia processes are still all logically
connected to each other–any worker can message any other worker directly without any awareness
of 0MQ being used as the transport layer.

When using custom transports:


	Julia workers must NOT be started with --worker. Starting with --worker will result in the
newly launched workers defaulting to the TCP/IP socket transport implementation.


	For every incoming logical connection with a worker, Base.process_messages(rd::IO, wr::IO)()
must be called. This launches a new task that handles reading and writing of messages from/to
the worker represented by the IO objects.


	init_worker(cookie, manager::FooManager) MUST be called as part of worker process initialization.


	Field connect_at::Any in WorkerConfig can be set by the cluster manager when launch()
is called. The value of this field is passed in in all connect() callbacks. Typically,
it carries information on how to connect to a worker. For example, the TCP/IP socket transport
uses this field to specify the (host, port) tuple at which to connect to a worker.




kill(manager, pid, config) is called to remove a worker from the cluster. On the master process,
the corresponding IO objects must be closed by the implementation to ensure proper cleanup.
The default implementation simply executes an exit() call on the specified remote worker.

examples/clustermanager/simple is an example that shows a simple implementation using UNIX domain
sockets for cluster setup.




Network Requirements for LocalManager and SSHManager

Julia clusters are designed to be executed on already secured environments on infrastructure such
as local laptops, departmental clusters, or even the cloud. This section covers network security
requirements for the inbuilt LocalManager and SSHManager:


	The master process does not listen on any port. It only connects out to the workers.


	Each worker binds to only one of the local interfaces and listens on the first free port starting
from 9009.


	LocalManager, used by addprocs(N), by default binds only to the loopback interface. This means
that workers started later on remote hosts (or by anyone with malicious intentions) are unable
to connect to the cluster. An addprocs(4) followed by an addprocs(["remote_host"]) will fail.
Some users may need to create a cluster comprising their local system and a few remote systems.
This can be done by explicitly requesting LocalManager to bind to an external network interface
via the restrict keyword argument: addprocs(4; restrict=false).


	SSHManager, used by addprocs(list_of_remote_hosts), launches workers on remote hosts via SSH.
By default SSH is only used to launch Julia workers. Subsequent master-worker and worker-worker
connections use plain, unencrypted TCP/IP sockets. The remote hosts must have passwordless login
enabled. Additional SSH flags or credentials may be specified via keyword argument sshflags.


	addprocs(list_of_remote_hosts; tunnel=true, sshflags=<ssh keys and other flags>) is useful when
we wish to use SSH connections for master-worker too. A typical scenario for this is a local laptop
running the Julia REPL (i.e., the master) with the rest of the cluster on the cloud, say on Amazon
EC2. In this case only port 22 needs to be opened at the remote cluster coupled with SSH client
authenticated via public key infrastructure (PKI). Authentication credentials can be supplied
via sshflags, for example sshflags=`-e <keyfile>`.

Note that worker-worker connections are still plain TCP and the local security policy on the remote
cluster must allow for free connections between worker nodes, at least for ports 9009 and above.

Securing and encrypting all worker-worker traffic (via SSH) or encrypting individual messages
can be done via a custom ClusterManager.








Cluster Cookie

All processes in a cluster share the same cookie which, by default, is a randomly generated string
on the master process:


	Base.cluster_cookie() returns the cookie, while Base.cluster_cookie(cookie)() sets
it and returns the new cookie.


	All connections are authenticated on both sides to ensure that only workers started by the master
are allowed to connect to each other.


	The cookie must be passed to the workers at startup via argument --worker <cookie>. Custom ClusterManagers
can retrieve the cookie on the master by calling Base.cluster_cookie(). Cluster managers
not using the default TCP/IP transport (and hence not specifying --worker) must call init_worker(cookie, manager)
with the same cookie as on the master.




Note that environments requiring higher levels of security can implement this via a custom ClusterManager.
For example, cookies can be pre-shared and hence not specified as a startup argument.




Specifying Network Topology (Experimental)

The keyword argument topology passed to addprocs is used to specify how the workers must be
connected to each other:


	:all_to_all, the default: all workers are connected to each other.


	:master_slave: only the driver process, i.e. pid 1, has connections to the workers.


	:custom: the launch method of the cluster manager specifies the connection topology via the
fields ident and connect_idents in WorkerConfig. A worker with a cluster-manager-provided
identity ident will connect to all workers specified in connect_idents.




Currently, sending a message between unconnected workers results in an error. This behaviour,
as with the functionality and interface, should be considered experimental in nature and may change
in future releases.




Multi-Threading (Experimental)

In addition to tasks, remote calls, and remote references, Julia from v0.5 forwards will natively
support multi-threading. Note that this section is experimental and the interfaces may change
in the future.


Setup

By default, Julia starts up with a single thread of execution. This can be verified by using the
command Threads.nthreads():

julia> Threads.nthreads()
1





The number of threads Julia starts up with is controlled by an environment variable called JULIA_NUM_THREADS.
Now, let’s start up Julia with 4 threads:

export JULIA_NUM_THREADS=4





(The above command works on bourne shells on Linux and OSX. Note that if you’re using a C shell
on these platforms, you should use the keyword set instead of export. If you’re on Windows,
start up the command line in the location of julia.exe and use set instead of export.)

Let’s verify there are 4 threads at our disposal.

julia> Threads.nthreads()
4





But we are currently on the master thread. To check, we use the command Threads.threadid()

julia> Threads.threadid()
1








The @threads Macro

Let’s work a simple example using our native threads. Let us create an array of zeros:

julia> a = zeros(10)
10-element Array{Float64,1}:
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0





Let us operate on this array simultaneously using 4 threads. We’ll have each thread write its
thread ID into each location.

Julia supports parallel loops using the Threads.@threads macro. This macro is affixed
in front of a for loop to indicate to Julia that the loop is a multi-threaded region:

julia> Threads.@threads for i = 1:10
           a[i] = Threads.threadid()
       end





The iteration space is split amongst the threads, after which each thread writes its thread ID
to its assigned locations:

julia> a
10-element Array{Float64,1}:
 1.0
 1.0
 1.0
 2.0
 2.0
 2.0
 3.0
 3.0
 4.0
 4.0





Note that Threads.@threads does not have an optional reduction parameter like @parallel.






@threadcall (Experimental)

All I/O tasks, timers, REPL commands, etc are multiplexed onto a single OS thread via an event
loop. A patched version of libuv (http://docs.libuv.org/en/v1.x/)
provides this functionality. Yield points provide for co-operatively scheduling multiple tasks
onto the same OS thread. I/O tasks and timers yield implicitly while waiting for the event to
occur. Calling yield() explicitly allows for other tasks to be scheduled.

Thus, a task executing a ccall effectively prevents the Julia scheduler from executing any other
tasks till the call returns. This is true for all calls into external libraries. Exceptions are
calls into custom C code that call back into Julia (which may then yield) or C code that calls
jl_yield() (C equivalent of yield()).

Note that while Julia code runs on a single thread (by default), libraries used by Julia may launch
their own internal threads. For example, the BLAS library may start as many threads as there are
cores on a machine.

The @threadcall macro addresses scenarios where we do not want a ccall to block the main Julia
event loop. It schedules a C function for execution in a separate thread. A threadpool with a
default size of 4 is used for this. The size of the threadpool is controlled via environment variable
UV_THREADPOOL_SIZE. While waiting for a free thread, and during function execution once a thread
is available, the requesting task (on the main Julia event loop) yields to other tasks. Note that
@threadcall does not return till the execution is complete. From a user point of view, it is
therefore a blocking call like other Julia APIs.

It is very important that the called function does not call back into Julia.

@threadcall may be removed/changed in future versions of Julia.

[^1]:
In this context, MPI refers to the MPI-1 standard. Beginning with MPI-2, the MPI standards committee
introduced a new set of communication mechanisms, collectively referred to as Remote Memory Access
(RMA). The motivation for adding RMA to the MPI standard was to facilitate one-sided communication
patterns. For additional information on the latest MPI standard, see http://mpi-forum.org/docs [http://mpi-forum.org/docs/].







          

      

      

    

  

  
    
    [Performance Tips](@id man-performance-tips)
    

    
 
  

    
      
          
            
  
[Performance Tips](@id man-performance-tips)

In the following sections, we briefly go through a few techniques that can help make your Julia
code run as fast as possible.


Avoid global variables

A global variable might have its value, and therefore its type, change at any point. This makes
it difficult for the compiler to optimize code using global variables. Variables should be local,
or passed as arguments to functions, whenever possible.

Any code that is performance critical or being benchmarked should be inside a function.

We find that global names are frequently constants, and declaring them as such greatly improves
performance:

const DEFAULT_VAL = 0





Uses of non-constant globals can be optimized by annotating their types at the point of use:

global x
y = f(x::Int + 1)





Writing functions is better style. It leads to more reusable code and clarifies what steps are
being done, and what their inputs and outputs are.

!!! note
All code in the REPL is evaluated in global scope, so a variable defined and assigned
at toplevel will be a global variable.

In the following REPL session:

julia> x = 1.0





is equivalent to:

julia> global x = 1.0





so all the performance issues discussed previously apply.




Measure performance with @time and pay attention to memory allocation

A useful tool for measuring performance is the @time macro. The following example
illustrates good working style:

julia> function f(n)
           s = 0
           for i = 1:n
               s += i/2
           end
           s
       end
f (generic function with 1 method)

julia> @time f(1)
  0.012686 seconds (2.09 k allocations: 103.421 KiB)
0.5

julia> @time f(10^6)
  0.021061 seconds (3.00 M allocations: 45.777 MiB, 11.69% gc time)
2.5000025e11





On the first call (@time f(1)), f gets compiled.  (If you’ve not yet used @time
in this session, it will also compile functions needed for timing.)  You should not take the results
of this run seriously. For the second run, note that in addition to reporting the time, it also
indicated that a large amount of memory was allocated. This is the single biggest advantage of
@time vs. functions like tic() and toc(), which only report time.

Unexpected memory allocation is almost always a sign of some problem with your code, usually a
problem with type-stability. Consequently, in addition to the allocation itself, it’s very likely
that the code generated for your function is far from optimal. Take such indications seriously
and follow the advice below.

For more serious benchmarking, consider the BenchmarkTools.jl [https://github.com/JuliaCI/BenchmarkTools.jl]
package which evaluates the function multiple times in order to reduce noise.

As a teaser, an improved version of this function allocates no memory
(the allocation reported below is due to running the @time macro in global scope)
and has an order of magnitude faster execution after the first call:

julia> @time f_improved(1)
  0.007008 seconds (1.32 k allocations: 63.640 KiB)
0.5

julia> @time f_improved(10^6)
  0.002997 seconds (6 allocations: 192 bytes)
2.5000025e11





Below you’ll learn how to spot the problem with f and how to fix it.

In some situations, your function may need to allocate memory as part of its operation, and this
can complicate the simple picture above. In such cases, consider using one of the [tools](@ref tools)
below to diagnose problems, or write a version of your function that separates allocation from
its algorithmic aspects (see Pre-allocating outputs).




[Tools](@id tools)

Julia and its package ecosystem includes tools that may help you diagnose problems and improve
the performance of your code:


	Profiling allows you to measure the performance of your running code and identify lines
that serve as bottlenecks.  For complex projects, the ProfileView [https://github.com/timholy/ProfileView.jl]
package can help you visualize your profiling results.


	Unexpectedly-large memory allocations–as reported by @time, @allocated, or
the profiler (through calls to the garbage-collection routines)–hint that there might be issues
with your code.  If you don’t see another reason for the allocations, suspect a type problem.
You can also start Julia with the --track-allocation=user option and examine the resulting
*.mem files to see information about where those allocations occur.  See Memory allocation analysis.


	@code_warntype generates a representation of your code that can be helpful in finding expressions
that result in type uncertainty. See @code_warntype below.


	The Lint [https://github.com/tonyhffong/Lint.jl]
package can also warn you of certain types of programming errors.







Avoid containers with abstract type parameters

When working with parameterized types, including arrays, it is best to avoid parameterizing with
abstract types where possible.

Consider the following:

a = Real[]    # typeof(a) = Array{Real,1}
if (f = rand()) < .8
    push!(a, f)
end





Because a is a an array of abstract type Real, it must be able to hold any
Real value.  Since Real objects can be of arbitrary size and structure, a must be
represented as an array of pointers to individually allocated Real objects. Because f
will always be a Float64, we should instead, use:

a = Float64[] # typeof(a) = Array{Float64,1}





which will create a contiguous block of 64-bit floating-point values that can be manipulated efficiently.

See also the discussion under Parametric Types.




Type declarations

In many languages with optional type declarations, adding declarations is the principal way to
make code run faster. This is not the case in Julia. In Julia, the compiler generally knows
the types of all function arguments, local variables, and expressions. However, there are a few
specific instances where declarations are helpful.


Avoid fields with abstract type

Types can be declared without specifying the types of their fields:

julia> struct MyAmbiguousType
           a
       end





This allows a to be of any type. This can often be useful, but it does have a downside: for
objects of type MyAmbiguousType, the compiler will not be able to generate high-performance
code.  The reason is that the compiler uses the types of objects, not their values, to determine
how to build code. Unfortunately, very little can be inferred about an object of type MyAmbiguousType:

julia> b = MyAmbiguousType("Hello")
MyAmbiguousType("Hello")

julia> c = MyAmbiguousType(17)
MyAmbiguousType(17)

julia> typeof(b)
MyAmbiguousType

julia> typeof(c)
MyAmbiguousType





b and c have the same type, yet their underlying representation of data in memory is very
different. Even if you stored just numeric values in field a, the fact that the memory representation
of a UInt8 differs from a Float64 also means that the CPU needs to handle
them using two different kinds of instructions. Since the required information is not available
in the type, such decisions have to be made at run-time. This slows performance.

You can do better by declaring the type of a. Here, we are focused on the case where a might
be any one of several types, in which case the natural solution is to use parameters. For example:

julia> mutable struct MyType{T<:AbstractFloat}
           a::T
       end





This is a better choice than

julia> mutable struct MyStillAmbiguousType
           a::AbstractFloat
       end





because the first version specifies the type of a from the type of the wrapper object.  For
example:

julia> m = MyType(3.2)
MyType{Float64}(3.2)

julia> t = MyStillAmbiguousType(3.2)
MyStillAmbiguousType(3.2)

julia> typeof(m)
MyType{Float64}

julia> typeof(t)
MyStillAmbiguousType





The type of field a can be readily determined from the type of m, but not from the type of
t.  Indeed, in t it’s possible to change the type of field a:

julia> typeof(t.a)
Float64

julia> t.a = 4.5f0
4.5f0

julia> typeof(t.a)
Float32





In contrast, once m is constructed, the type of m.a cannot change:

julia> m.a = 4.5f0
4.5f0

julia> typeof(m.a)
Float64





The fact that the type of m.a is known from m’s type–coupled with the fact that its type
cannot change mid-function–allows the compiler to generate highly-optimized code for objects
like m but not for objects like t.

Of course, all of this is true only if we construct m with a concrete type.  We can break this
by explicitly constructing it with an abstract type:

julia> m = MyType{AbstractFloat}(3.2)
MyType{AbstractFloat}(3.2)

julia> typeof(m.a)
Float64

julia> m.a = 4.5f0
4.5f0

julia> typeof(m.a)
Float32





For all practical purposes, such objects behave identically to those of MyStillAmbiguousType.

It’s quite instructive to compare the sheer amount code generated for a simple function

func(m::MyType) = m.a+1





using

code_llvm(func,Tuple{MyType{Float64}})
code_llvm(func,Tuple{MyType{AbstractFloat}})
code_llvm(func,Tuple{MyType})





For reasons of length the results are not shown here, but you may wish to try this yourself. Because
the type is fully-specified in the first case, the compiler doesn’t need to generate any code
to resolve the type at run-time. This results in shorter and faster code.




Avoid fields with abstract containers

The same best practices also work for container types:

julia> mutable struct MySimpleContainer{A<:AbstractVector}
           a::A
       end

julia> mutable struct MyAmbiguousContainer{T}
           a::AbstractVector{T}
       end





For example:

julia> c = MySimpleContainer(1:3);

julia> typeof(c)
MySimpleContainer{UnitRange{Int64}}

julia> c = MySimpleContainer([1:3;]);

julia> typeof(c)
MySimpleContainer{Array{Int64,1}}

julia> b = MyAmbiguousContainer(1:3);

julia> typeof(b)
MyAmbiguousContainer{Int64}

julia> b = MyAmbiguousContainer([1:3;]);

julia> typeof(b)
MyAmbiguousContainer{Int64}





For MySimpleContainer, the object is fully-specified by its type and parameters, so the compiler
can generate optimized functions. In most instances, this will probably suffice.

While the compiler can now do its job perfectly well, there are cases where you might wish that
your code could do different things depending on the element type of a.  Usually the best
way to achieve this is to wrap your specific operation (here, foo) in a separate function:

julia> function sumfoo(c::MySimpleContainer)
           s = 0
           for x in c.a
               s += foo(x)
           end
           s
       end
sumfoo (generic function with 1 method)

julia> foo(x::Integer) = x
foo (generic function with 1 method)

julia> foo(x::AbstractFloat) = round(x)
foo (generic function with 2 methods)





This keeps things simple, while allowing the compiler to generate optimized code in all cases.

However, there are cases where you may need to declare different versions of the outer function
for different element types of a. You could do it like this:

function myfun(c::MySimpleContainer{Vector{T}}) where T<:AbstractFloat
    ...
end
function myfun(c::MySimpleContainer{Vector{T}}) where T<:Integer
    ...
end





This works fine for Vector{T}, but we’d also have to write explicit versions for UnitRange{T}
or other abstract types. To prevent such tedium, you can use two parameters in the declaration
of MyContainer:

julia> mutable struct MyContainer{T, A<:AbstractVector}
           a::A
       end

julia> MyContainer(v::AbstractVector) = MyContainer{eltype(v), typeof(v)}(v)
MyContainer

julia> b = MyContainer(1:5);

julia> typeof(b)
MyContainer{Int64,UnitRange{Int64}}





Note the somewhat surprising fact that T doesn’t appear in the declaration of field a, a point
that we’ll return to in a moment. With this approach, one can write functions such as:

julia> function myfunc(c::MyContainer{<:Integer, <:AbstractArray})
           return c.a[1]+1
       end
myfunc (generic function with 1 method)

julia> function myfunc(c::MyContainer{<:AbstractFloat})
           return c.a[1]+2
       end
myfunc (generic function with 2 methods)

julia> function myfunc(c::MyContainer{T,Vector{T}}) where T<:Integer
           return c.a[1]+3
       end
myfunc (generic function with 3 methods)





!!! note
Because we can only define MyContainer for
A<:AbstractArray, and any unspecified parameters are arbitrary,
the first function above could have been written more succinctly as
function myfunc{T<:Integer}(c::MyContainer{T})

julia> myfunc(MyContainer(1:3))
2

julia> myfunc(MyContainer(1.0:3))
3.0

julia> myfunc(MyContainer([1:3;]))
4





As you can see, with this approach it’s possible to specialize on both the element type T and
the array type A.

However, there’s one remaining hole: we haven’t enforced that A has element type T, so it’s
perfectly possible to construct an object like this:

julia> b = MyContainer{Int64, UnitRange{Float64}}(UnitRange(1.3, 5.0));

julia> typeof(b)
MyContainer{Int64,UnitRange{Float64}}





To prevent this, we can add an inner constructor:

julia> mutable struct MyBetterContainer{T<:Real, A<:AbstractVector}
           a::A
           MyBetterContainer{T,A}(v::AbstractVector{T}) where {T,A} = new(v)
       end

julia> MyBetterContainer(v::AbstractVector) = MyBetterContainer{eltype(v),typeof(v)}(v)
MyBetterContainer

julia> b = MyBetterContainer(UnitRange(1.3, 5.0));

julia> typeof(b)
MyBetterContainer{Float64,UnitRange{Float64}}

julia> b = MyBetterContainer{Int64, UnitRange{Float64}}(UnitRange(1.3, 5.0));
ERROR: MethodError: Cannot `convert` an object of type UnitRange{Float64} to an object of type MyBetterContainer{Int64,UnitRange{Float64}}
[...]





The inner constructor requires that the element type of A be T.




Annotate values taken from untyped locations

It is often convenient to work with data structures that may contain values of any type (arrays
of type Array{Any}). But, if you’re using one of these structures and happen to know the type
of an element, it helps to share this knowledge with the compiler:

function foo(a::Array{Any,1})
    x = a[1]::Int32
    b = x+1
    ...
end





Here, we happened to know that the first element of a would be an Int32. Making
an annotation like this has the added benefit that it will raise a run-time error if the
value is not of the expected type, potentially catching certain bugs earlier.




Declare types of keyword arguments

Keyword arguments can have declared types:

function with_keyword(x; name::Int = 1)
    ...
end





Functions are specialized on the types of keyword arguments, so these declarations will not affect
performance of code inside the function. However, they will reduce the overhead of calls to the
function that include keyword arguments.

Functions with keyword arguments have near-zero overhead for call sites that pass only positional
arguments.

Passing dynamic lists of keyword arguments, as in f(x; keywords...), can be slow and should
be avoided in performance-sensitive code.






Break functions into multiple definitions

Writing a function as many small definitions allows the compiler to directly call the most applicable
code, or even inline it.

Here is an example of a “compound function” that should really be written as multiple definitions:

function norm(A)
    if isa(A, Vector)
        return sqrt(real(dot(A,A)))
    elseif isa(A, Matrix)
        return maximum(svd(A)[2])
    else
        error("norm: invalid argument")
    end
end





This can be written more concisely and efficiently as:

norm(x::Vector) = sqrt(real(dot(x,x)))
norm(A::Matrix) = maximum(svd(A)[2])








Write “type-stable” functions

When possible, it helps to ensure that a function always returns a value of the same type. Consider
the following definition:

pos(x) = x < 0 ? 0 : x





Although this seems innocent enough, the problem is that 0 is an integer (of type Int) and
x might be of any type. Thus, depending on the value of x, this function might return a value
of either of two types. This behavior is allowed, and may be desirable in some cases. But it can
easily be fixed as follows:

pos(x) = x < 0 ? zero(x) : x





There is also a one() function, and a more general oftype(x, y) function, which
returns y converted to the type of x.




Avoid changing the type of a variable

An analogous “type-stability” problem exists for variables used repeatedly within a function:

function foo()
    x = 1
    for i = 1:10
        x = x/bar()
    end
    return x
end





Local variable x starts as an integer, and after one loop iteration becomes a floating-point
number (the result of / operator). This makes it more difficult for the compiler to
optimize the body of the loop. There are several possible fixes:


	Initialize x with x = 1.0


	Declare the type of x: x::Float64 = 1


	Use an explicit conversion: x = oneunit(T)


	Initialize with the first loop iteration, to x = 1/bar(), then loop for i = 2:10







[Separate kernel functions (aka, function barriers)](@id kernal-functions)

Many functions follow a pattern of performing some set-up work, and then running many iterations
to perform a core computation. Where possible, it is a good idea to put these core computations
in separate functions. For example, the following contrived function returns an array of a randomly-chosen
type:

DocTestSetup = quote
    srand(1234)
end





julia> function strange_twos(n)
           a = Vector{rand(Bool) ? Int64 : Float64}(n)
           for i = 1:n
               a[i] = 2
           end
           return a
       end
strange_twos (generic function with 1 method)

julia> strange_twos(3)
3-element Array{Float64,1}:
 2.0
 2.0
 2.0





This should be written as:

julia> function fill_twos!(a)
           for i=1:length(a)
               a[i] = 2
           end
       end
fill_twos! (generic function with 1 method)

julia> function strange_twos(n)
           a = Array{rand(Bool) ? Int64 : Float64}(n)
           fill_twos!(a)
           return a
       end
strange_twos (generic function with 1 method)

julia> strange_twos(3)
3-element Array{Float64,1}:
 2.0
 2.0
 2.0





Julia’s compiler specializes code for argument types at function boundaries, so in the original
implementation it does not know the type of a during the loop (since it is chosen randomly).
Therefore the second version is generally faster since the inner loop can be recompiled as part
of fill_twos! for different types of a.

The second form is also often better style and can lead to more code reuse.

This pattern is used in several places in the standard library. For example, see hvcat_fill
in abstractarray.jl [https://github.com/JuliaLang/julia/blob/master/base/abstractarray.jl], or
the fill! function, which we could have used instead of writing our own fill_twos!.

Functions like strange_twos occur when dealing with data of uncertain type, for example data
loaded from an input file that might contain either integers, floats, strings, or something else.




Types with values-as-parameters

Let’s say you want to create an N-dimensional array that has size 3 along each axis.  Such arrays
can be created like this:

julia> A = fill(5.0, (3, 3))
3×3 Array{Float64,2}:
 5.0  5.0  5.0
 5.0  5.0  5.0
 5.0  5.0  5.0





This approach works very well: the compiler can figure out that A is an Array{Float64,2} because
it knows the type of the fill value (5.0::Float64) and the dimensionality ((3, 3)::NTuple{2,Int}).
This implies that the compiler can generate very efficient code for any future usage of A in
the same function.

But now let’s say you want to write a function that creates a 3×3×… array in arbitrary dimensions;
you might be tempted to write a function

julia> function array3(fillval, N)
           fill(fillval, ntuple(d->3, N))
       end
array3 (generic function with 1 method)

julia> array3(5.0, 2)
3×3 Array{Float64,2}:
 5.0  5.0  5.0
 5.0  5.0  5.0
 5.0  5.0  5.0





This works, but (as you can verify for yourself using @code_warntype array3(5.0, 2)) the problem
is that the output type cannot be inferred: the argument N is a value of type Int, and type-inference
does not (and cannot) predict its value in advance. This means that code using the output of this
function has to be conservative, checking the type on each access of A; such code will be very
slow.

Now, one very good way to solve such problems is by using the [function-barrier technique](@ref kernal-functions).
However, in some cases you might want to eliminate the type-instability altogether.  In such cases,
one approach is to pass the dimensionality as a parameter, for example through Val{T} (see
“Value types”):

julia> function array3(fillval, ::Type{Val{N}}) where N
           fill(fillval, ntuple(d->3, Val{N}))
       end
array3 (generic function with 1 method)

julia> array3(5.0, Val{2})
3×3 Array{Float64,2}:
 5.0  5.0  5.0
 5.0  5.0  5.0
 5.0  5.0  5.0





Julia has a specialized version of ntuple that accepts a Val{::Int} as the second parameter;
by passing N as a type-parameter, you make its “value” known to the compiler. Consequently,
this version of array3 allows the compiler to predict the return type.

However, making use of such techniques can be surprisingly subtle. For example, it would be of
no help if you called array3 from a function like this:

function call_array3(fillval, n)
    A = array3(fillval, Val{n})
end





Here, you’ve created the same problem all over again: the compiler can’t guess the type of n,
so it doesn’t know the type of Val{n}.  Attempting to use Val, but doing so incorrectly, can
easily make performance worse in many situations.  (Only in situations where you’re effectively
combining Val with the function-barrier trick, to make the kernel function more efficient, should
code like the above be used.)

An example of correct usage of Val would be:

function filter3(A::AbstractArray{T,N}) where {T,N}
    kernel = array3(1, Val{N})
    filter(A, kernel)
end





In this example, N is passed as a parameter, so its “value” is known to the compiler.  Essentially,
Val{T} works only when T is either hard-coded (Val{3}) or already specified in the type-domain.




The dangers of abusing multiple dispatch (aka, more on types with values-as-parameters)

Once one learns to appreciate multiple dispatch, there’s an understandable tendency to go crazy
and try to use it for everything. For example, you might imagine using it to store information,
e.g.

struct Car{Make,Model}
    year::Int
    ...more fields...
end





and then dispatch on objects like Car{:Honda,:Accord}(year, args...).

This might be worthwhile when the following are true:


	You require CPU-intensive processing on each Car, and it becomes vastly more efficient if you
know the Make and Model at compile time.


	You have homogenous lists of the same type of Car to process, so that you can store them all
in an Array{Car{:Honda,:Accord},N}.




When the latter holds, a function processing such a homogenous array can be productively specialized:
Julia knows the type of each element in advance (all objects in the container have the same concrete
type), so Julia can “look up” the correct method calls when the function is being compiled (obviating
the need to check at run-time) and thereby emit efficient code for processing the whole list.

When these do not hold, then it’s likely that you’ll get no benefit; worse, the resulting “combinatorial
explosion of types” will be counterproductive.  If items[i+1] has a different type than item[i],
Julia has to look up the type at run-time, search for the appropriate method in method tables,
decide (via type intersection) which one matches, determine whether it has been JIT-compiled yet
(and do so if not), and then make the call. In essence, you’re asking the full type- system and
JIT-compilation machinery to basically execute the equivalent of a switch statement or dictionary
lookup in your own code.

Some run-time benchmarks comparing (1) type dispatch, (2) dictionary lookup, and (3) a “switch”
statement can be found on the mailing list [https://groups.google.com/forum/#!msg/julia-users/jUMu9A3QKQQ/qjgVWr7vAwAJ].

Perhaps even worse than the run-time impact is the compile-time impact: Julia will compile specialized
functions for each different Car{Make, Model}; if you have hundreds or thousands of such types,
then every function that accepts such an object as a parameter (from a custom get_year function
you might write yourself, to the generic push! function in the standard library) will have hundreds
or thousands of variants compiled for it.  Each of these increases the size of the cache of compiled
code, the length of internal lists of methods, etc.  Excess enthusiasm for values-as-parameters
can easily waste enormous resources.




Access arrays in memory order, along columns

Multidimensional arrays in Julia are stored in column-major order. This means that arrays are
stacked one column at a time. This can be verified using the vec function or the syntax [:]
as shown below (notice that the array is ordered [1 3 2 4], not [1 2 3 4]):

julia> x = [1 2; 3 4]
2×2 Array{Int64,2}:
 1  2
 3  4

julia> x[:]
4-element Array{Int64,1}:
 1
 3
 2
 4





This convention for ordering arrays is common in many languages like Fortran, Matlab, and R (to
name a few). The alternative to column-major ordering is row-major ordering, which is the convention
adopted by C and Python (numpy) among other languages. Remembering the ordering of arrays can
have significant performance effects when looping over arrays. A rule of thumb to keep in mind
is that with column-major arrays, the first index changes most rapidly. Essentially this means
that looping will be faster if the inner-most loop index is the first to appear in a slice expression.

Consider the following contrived example. Imagine we wanted to write a function that accepts a
Vector and returns a square Matrix with either the rows or the columns filled with copies
of the input vector. Assume that it is not important whether rows or columns are filled with these
copies (perhaps the rest of the code can be easily adapted accordingly). We could conceivably
do this in at least four ways (in addition to the recommended call to the built-in repmat()):

function copy_cols(x::Vector{T}) where T
    n = size(x, 1)
    out = Array{T}(n, n)
    for i = 1:n
        out[:, i] = x
    end
    out
end

function copy_rows(x::Vector{T}) where T
    n = size(x, 1)
    out = Array{T}(n, n)
    for i = 1:n
        out[i, :] = x
    end
    out
end

function copy_col_row(x::Vector{T}) where T
    n = size(x, 1)
    out = Array{T}(n, n)
    for col = 1:n, row = 1:n
        out[row, col] = x[row]
    end
    out
end

function copy_row_col(x::Vector{T}) where T
    n = size(x, 1)
    out = Array{T}(n, n)
    for row = 1:n, col = 1:n
        out[row, col] = x[col]
    end
    out
end





Now we will time each of these functions using the same random 10000 by 1 input vector:

julia> x = randn(10000);

julia> fmt(f) = println(rpad(string(f)*": ", 14, ' '), @elapsed f(x))

julia> map(fmt, Any[copy_cols, copy_rows, copy_col_row, copy_row_col]);
copy_cols:    0.331706323
copy_rows:    1.799009911
copy_col_row: 0.415630047
copy_row_col: 1.721531501





Notice that copy_cols is much faster than copy_rows. This is expected because copy_cols
respects the column-based memory layout of the Matrix and fills it one column at a time. Additionally,
copy_col_row is much faster than copy_row_col because it follows our rule of thumb that the
first element to appear in a slice expression should be coupled with the inner-most loop.




Pre-allocating outputs

If your function returns an Array or some other complex type, it may have to allocate memory.
Unfortunately, oftentimes allocation and its converse, garbage collection, are substantial bottlenecks.

Sometimes you can circumvent the need to allocate memory on each function call by preallocating
the output.  As a trivial example, compare

function xinc(x)
    return [x, x+1, x+2]
end

function loopinc()
    y = 0
    for i = 1:10^7
        ret = xinc(i)
        y += ret[2]
    end
    y
end





with

function xinc!(ret::AbstractVector{T}, x::T) where T
    ret[1] = x
    ret[2] = x+1
    ret[3] = x+2
    nothing
end

function loopinc_prealloc()
    ret = Array{Int}(3)
    y = 0
    for i = 1:10^7
        xinc!(ret, i)
        y += ret[2]
    end
    y
end





Timing results:

julia> @time loopinc()
  0.529894 seconds (40.00 M allocations: 1.490 GiB, 12.14% gc time)
50000015000000

julia> @time loopinc_prealloc()
  0.030850 seconds (6 allocations: 288 bytes)
50000015000000





Preallocation has other advantages, for example by allowing the caller to control the “output”
type from an algorithm.  In the example above, we could have passed a SubArray rather than an
Array, had we so desired.

Taken to its extreme, pre-allocation can make your code uglier, so performance measurements and
some judgment may be required. However, for “vectorized” (element-wise) functions, the convenient
syntax x .= f.(y) can be used for in-place operations with fused loops and no temporary arrays
(see the [dot syntax for vectorizing functions](@ref man-vectorized)).




More dots: Fuse vectorized operations

Julia has a special [dot syntax](@ref man-vectorized) that converts
any scalar function into a “vectorized” function call, and any operator
into a “vectorized” operator, with the special property that nested
“dot calls” are fusing: they are combined at the syntax level into
a single loop, without allocating temporary arrays. If you use .= and
similar assignment operators, the result can also be stored in-place
in a pre-allocated array (see above).

In a linear-algebra context, this means that even though operations like
vector + vector and vector * scalar are defined, it can be advantageous
to instead use vector .+ vector and vector .* scalar because the
resulting loops can be fused with surrounding computations. For example,
consider the two functions:

f(x) = 3x.^2 + 4x + 7x.^3

fdot(x) = @. 3x^2 + 4x + 7x^3 # equivalent to 3 .* x.^2 .+ 4 .* x .+ 7 .* x.^3





Both f and fdot compute the same thing.  However, fdot
(defined with the help of the [@.](@ref @dot) macro) is
significantly faster when applied to an array:

julia> x = rand(10^6);

julia> @time f(x);
  0.010986 seconds (18 allocations: 53.406 MiB, 11.45% gc time)

julia> @time fdot(x);
  0.003470 seconds (6 allocations: 7.630 MiB)

julia> @time f.(x);
  0.003297 seconds (30 allocations: 7.631 MiB)





That is, fdot(x) is three times faster and allocates 1/7 the
memory of f(x), because each * and + operation in f(x) allocates
a new temporary array and executes in a separate loop. (Of course,
if you just do f.(x) then it is as fast as fdot(x) in this
example, but in many contexts it is more convenient to just sprinkle
some dots in your expressions rather than defining a separate function
for each vectorized operation.)




Consider using views for slices

In Julia, an array “slice” expression like array[1:5, :] creates
a copy of that data (except on the left-hand side of an assignment,
where array[1:5, :] = ... assigns in-place to that portion of array).
If you are doing many operations on the slice, this can be good for
performance because it is more efficient to work with a smaller
contiguous copy than it would be to index into the original array.
On the other hand, if you are just doing a few simple operations on
the slice, the cost of the allocation and copy operations can be
substantial.

An alternative is to create a “view” of the array, which is
an array object (a SubArray) that actually references the data
of the original array in-place, without making a copy.  (If you
write to a view, it modifies the original array’s data as well.)
This can be done for individual slices by calling view(),
or more simply for a whole expression or block of code by putting
@views in front of that expression.  For example:

julia> fcopy(x) = sum(x[2:end-1])

julia> @views fview(x) = sum(x[2:end-1])

julia> x = rand(10^6);

julia> @time fcopy(x);
  0.003051 seconds (7 allocations: 7.630 MB)

julia> @time fview(x);
  0.001020 seconds (6 allocations: 224 bytes)





Notice both the 3× speedup and the decreased memory allocation
of the fview version of the function.




Avoid string interpolation for I/O

When writing data to a file (or other I/O device), forming extra intermediate strings is a source
of overhead. Instead of:

println(file, "$a $b")





use:

println(file, a, " ", b)





The first version of the code forms a string, then writes it to the file, while the second version
writes values directly to the file. Also notice that in some cases string interpolation can be
harder to read. Consider:

println(file, "$(f(a))$(f(b))")





versus:

println(file, f(a), f(b))








Optimize network I/O during parallel execution

When executing a remote function in parallel:

responses = Vector{Any}(nworkers())
@sync begin
    for (idx, pid) in enumerate(workers())
        @async responses[idx] = remotecall_fetch(pid, foo, args...)
    end
end





is faster than:

refs = Vector{Any}(nworkers())
for (idx, pid) in enumerate(workers())
    refs[idx] = @spawnat pid foo(args...)
end
responses = [fetch(r) for r in refs]





The former results in a single network round-trip to every worker, while the latter results in
two network calls - first by the @spawnat and the second due to the fetch
(or even a wait).
The fetch/wait is also being executed serially resulting in an overall poorer performance.




Fix deprecation warnings

A deprecated function internally performs a lookup in order to print a relevant warning only once.
This extra lookup can cause a significant slowdown, so all uses of deprecated functions should
be modified as suggested by the warnings.




Tweaks

These are some minor points that might help in tight inner loops.


	Avoid unnecessary arrays. For example, instead of sum([x,y,z]) use x+y+z.


	Use abs2(z) instead of abs(z)^2 for complex z. In general, try to rewrite
code to use abs2() instead of abs() for complex arguments.


	Use div(x,y) for truncating division of integers instead of trunc(x/y), fld(x,y)
instead of floor(x/y), and cld(x,y) instead of ceil(x/y).







Performance Annotations

Sometimes you can enable better optimization by promising certain program properties.


	Use @inbounds to eliminate array bounds checking within expressions. Be certain before doing
this. If the subscripts are ever out of bounds, you may suffer crashes or silent corruption.


	Use @fastmath to allow floating point optimizations that are correct for real numbers, but lead
to differences for IEEE numbers. Be careful when doing this, as this may change numerical results.
This corresponds to the -ffast-math option of clang.


	Write @simd in front of for loops that are amenable to vectorization. This feature is experimental
and could change or disappear in future versions of Julia.




Note: While @simd needs to be placed directly in front of a loop, both @inbounds and @fastmath
can be applied to several statements at once, e.g. using begin … end, or even to a whole
function.

Here is an example with both @inbounds and @simd markup:

function inner(x, y)
    s = zero(eltype(x))
    for i=1:length(x)
        @inbounds s += x[i]*y[i]
    end
    s
end

function innersimd(x, y)
    s = zero(eltype(x))
    @simd for i=1:length(x)
        @inbounds s += x[i]*y[i]
    end
    s
end

function timeit(n, reps)
    x = rand(Float32,n)
    y = rand(Float32,n)
    s = zero(Float64)
    time = @elapsed for j in 1:reps
        s+=inner(x,y)
    end
    println("GFlop/sec        = ",2.0*n*reps/time*1E-9)
    time = @elapsed for j in 1:reps
        s+=innersimd(x,y)
    end
    println("GFlop/sec (SIMD) = ",2.0*n*reps/time*1E-9)
end

timeit(1000,1000)





On a computer with a 2.4GHz Intel Core i5 processor, this produces:

GFlop/sec        = 1.9467069505224963
GFlop/sec (SIMD) = 17.578554163920018





(GFlop/sec measures the performance, and larger numbers are better.) The range for a @simd for
loop should be a one-dimensional range. A variable used for accumulating, such as s in the example,
is called a reduction variable. By using @simd, you are asserting several properties of the
loop:


	It is safe to execute iterations in arbitrary or overlapping order, with special consideration
for reduction variables.


	Floating-point operations on reduction variables can be reordered, possibly causing different
results than without @simd.


	No iteration ever waits on another iteration to make forward progress.




A loop containing break, continue, or @goto will cause a compile-time error.

Using @simd merely gives the compiler license to vectorize. Whether it actually does so depends
on the compiler. To actually benefit from the current implementation, your loop should have the
following additional properties:


	The loop must be an innermost loop.


	The loop body must be straight-line code. This is why @inbounds is currently needed for all
array accesses. The compiler can sometimes turn short &&, ||, and ?: expressions into straight-line
code, if it is safe to evaluate all operands unconditionally. Consider using ifelse()
instead of ?: in the loop if it is safe to do so.


	Accesses must have a stride pattern and cannot be “gathers” (random-index reads) or “scatters”
(random-index writes).


	The stride should be unit stride.


	In some simple cases, for example with 2-3 arrays accessed in a loop, the LLVM auto-vectorization
may kick in automatically, leading to no further speedup with @simd.




Here is an example with all three kinds of markup. This program first calculates the finite difference
of a one-dimensional array, and then evaluates the L2-norm of the result:

function init!(u)
    n = length(u)
    dx = 1.0 / (n-1)
    @fastmath @inbounds @simd for i in 1:n
        u[i] = sin(2pi*dx*i)
    end
end

function deriv!(u, du)
    n = length(u)
    dx = 1.0 / (n-1)
    @fastmath @inbounds du[1] = (u[2] - u[1]) / dx
    @fastmath @inbounds @simd for i in 2:n-1
        du[i] = (u[i+1] - u[i-1]) / (2*dx)
    end
    @fastmath @inbounds du[n] = (u[n] - u[n-1]) / dx
end

function norm(u)
    n = length(u)
    T = eltype(u)
    s = zero(T)
    @fastmath @inbounds @simd for i in 1:n
        s += u[i]^2
    end
    @fastmath @inbounds return sqrt(s/n)
end

function main()
    n = 2000
    u = Array{Float64}(n)
    init!(u)
    du = similar(u)

    deriv!(u, du)
    nu = norm(du)

    @time for i in 1:10^6
        deriv!(u, du)
        nu = norm(du)
    end

    println(nu)
end

main()





On a computer with a 2.7 GHz Intel Core i7 processor, this produces:

$ julia wave.jl;
elapsed time: 1.207814709 seconds (0 bytes allocated)

$ julia --math-mode=ieee wave.jl;
elapsed time: 4.487083643 seconds (0 bytes allocated)





Here, the option --math-mode=ieee disables the @fastmath macro, so that we can compare results.

In this case, the speedup due to @fastmath is a factor of about 3.7. This is unusually large
– in general, the speedup will be smaller. (In this particular example, the working set of the
benchmark is small enough to fit into the L1 cache of the processor, so that memory access latency
does not play a role, and computing time is dominated by CPU usage. In many real world programs
this is not the case.) Also, in this case this optimization does not change the result – in
general, the result will be slightly different. In some cases, especially for numerically unstable
algorithms, the result can be very different.

The annotation @fastmath re-arranges floating point expressions, e.g. changing the order of
evaluation, or assuming that certain special cases (inf, nan) cannot occur. In this case (and
on this particular computer), the main difference is that the expression 1 / (2*dx) in the function
deriv is hoisted out of the loop (i.e. calculated outside the loop), as if one had written
idx = 1 / (2*dx). In the loop, the expression ... / (2*dx) then becomes ... * idx, which
is much faster to evaluate. Of course, both the actual optimization that is applied by the compiler
as well as the resulting speedup depend very much on the hardware. You can examine the change
in generated code by using Julia’s code_native() function.




Treat Subnormal Numbers as Zeros

Subnormal numbers, formerly called denormal numbers [https://en.wikipedia.org/wiki/Denormal_number],
are useful in many contexts, but incur a performance penalty on some hardware. A call set_zero_subnormals(true)
grants permission for floating-point operations to treat subnormal inputs or outputs as zeros,
which may improve performance on some hardware. A call set_zero_subnormals(false) enforces
strict IEEE behavior for subnormal numbers.

Below is an example where subnormals noticeably impact performance on some hardware:

function timestep(b::Vector{T}, a::Vector{T}, Δt::T) where T
    @assert length(a)==length(b)
    n = length(b)
    b[1] = 1                            # Boundary condition
    for i=2:n-1
        b[i] = a[i] + (a[i-1] - T(2)*a[i] + a[i+1]) * Δt
    end
    b[n] = 0                            # Boundary condition
end

function heatflow(a::Vector{T}, nstep::Integer) where T
    b = similar(a)
    for t=1:div(nstep,2)                # Assume nstep is even
        timestep(b,a,T(0.1))
        timestep(a,b,T(0.1))
    end
end

heatflow(zeros(Float32,10),2)           # Force compilation
for trial=1:6
    a = zeros(Float32,1000)
    set_zero_subnormals(iseven(trial))  # Odd trials use strict IEEE arithmetic
    @time heatflow(a,1000)
end





This example generates many subnormal numbers because the values in a become an exponentially
decreasing curve, which slowly flattens out over time.

Treating subnormals as zeros should be used with caution, because doing so breaks some identities,
such as x-y == 0 implies x == y:

julia> x = 3f-38; y = 2f-38;

julia> set_zero_subnormals(true); (x - y, x == y)
(0.0f0, false)

julia> set_zero_subnormals(false); (x - y, x == y)
(1.0000001f-38, false)





In some applications, an alternative to zeroing subnormal numbers is to inject a tiny bit of noise.
For example, instead of initializing a with zeros, initialize it with:

a = rand(Float32,1000) * 1.f-9








[@code_warntype](@id man-code-warntype)

The macro @code_warntype (or its function variant code_warntype()) can sometimes
be helpful in diagnosing type-related problems. Here’s an example:

pos(x) = x < 0 ? 0 : x

function f(x)
    y = pos(x)
    sin(y*x+1)
end

julia> @code_warntype f(3.2)
Variables:
  #self#::#f
  x::Float64
  y::UNION{FLOAT64,INT64}
  fy::Float64
  #temp#@_5::UNION{FLOAT64,INT64}
  #temp#@_6::Core.MethodInstance
  #temp#@_7::Float64

Body:
  begin
      $(Expr(:inbounds, false))
      # meta: location REPL[1] pos 1
      # meta: location float.jl < 487
      fy::Float64 = (Core.typeassert)((Base.sitofp)(Float64,0)::Float64,Float64)::Float64
      # meta: pop location
      unless (Base.or_int)((Base.lt_float)(x::Float64,fy::Float64)::Bool,(Base.and_int)((Base.and_int)((Base.eq_float)(x::Float64,fy::Float64)::Bool,(Base.lt_float)(fy::Float64,9.223372036854776e18)::Bool)::Bool,(Base.slt_int)((Base.fptosi)(Int64,fy::Float64)::Int64,0)::Bool)::Bool)::Bool goto 9
      #temp#@_5::UNION{FLOAT64,INT64} = 0
      goto 11
      9:
      #temp#@_5::UNION{FLOAT64,INT64} = x::Float64
      11:
      # meta: pop location
      $(Expr(:inbounds, :pop))
      y::UNION{FLOAT64,INT64} = #temp#@_5::UNION{FLOAT64,INT64} # line 3:
      unless (y::UNION{FLOAT64,INT64} isa Int64)::ANY goto 19
      #temp#@_6::Core.MethodInstance = MethodInstance for *(::Int64, ::Float64)
      goto 28
      19:
      unless (y::UNION{FLOAT64,INT64} isa Float64)::ANY goto 23
      #temp#@_6::Core.MethodInstance = MethodInstance for *(::Float64, ::Float64)
      goto 28
      23:
      goto 25
      25:
      #temp#@_7::Float64 = (y::UNION{FLOAT64,INT64} * x::Float64)::Float64
      goto 30
      28:
      #temp#@_7::Float64 = $(Expr(:invoke, :(#temp#@_6), :(Main.*), :(y), :(x)))
      30:
      return $(Expr(:invoke, MethodInstance for sin(::Float64), :(Main.sin), :((Base.add_float)(#temp#@_7,(Base.sitofp)(Float64,1)::Float64)::Float64)))
  end::Float64





Interpreting the output of @code_warntype, like that of its cousins @code_lowered,
@code_typed, @code_llvm, and @code_native, takes a little practice.
Your code is being presented in form that has been partially digested on its way to generating
compiled machine code.  Most of the expressions are annotated by a type, indicated by the ::T
(where T might be Float64, for example). The most important characteristic of @code_warntype
is that non-concrete types are displayed in red; in the above example, such output is shown in
all-caps.

The top part of the output summarizes the type information for the different variables internal
to the function. You can see that y, one of the variables you created, is a Union{Int64,Float64},
due to the type-instability of pos.  There is another variable, _var4, which you can see also
has the same type.

The next lines represent the body of f. The lines starting with a number followed by a colon
(1:, 2:) are labels, and represent targets for jumps (via goto) in your code.  Looking at
the body, you can see that pos has been inlined into f–everything before 2: comes from
code defined in pos.

Starting at 2:, the variable y is defined, and again annotated as a Union type.  Next, we
see that the compiler created the temporary variable _var1 to hold the result of y*x. Because
a Float64 times either an Int64 or Float64 yields a Float64,
all type-instability ends here. The net result is that f(x::Float64) will not be type-unstable
in its output, even if some of the intermediate computations are type-unstable.

How you use this information is up to you. Obviously, it would be far and away best to fix pos
to be type-stable: if you did so, all of the variables in f would be concrete, and its performance
would be optimal.  However, there are circumstances where this kind of ephemeral type instability
might not matter too much: for example, if pos is never used in isolation, the fact that f’s
output is type-stable (for Float64 inputs) will shield later code from the propagating
effects of type instability.  This is particularly relevant in cases where fixing the type instability
is difficult or impossible: for example, currently it’s not possible to infer the return type
of an anonymous function.  In such cases, the tips above (e.g., adding type annotations and/or
breaking up functions) are your best tools to contain the “damage” from type instability.

The following examples may help you interpret expressions marked as containing non-leaf types:


	Function body ending in end::Union{T1,T2})


	Interpretation: function with unstable return type


	Suggestion: make the return value type-stable, even if you have to annotate it






	f(x::T)::Union{T1,T2}


	Interpretation: call to a type-unstable function


	Suggestion: fix the function, or if necessary annotate the return value






	(top(arrayref))(A::Array{Any,1},1)::Any


	Interpretation: accessing elements of poorly-typed arrays


	Suggestion: use arrays with better-defined types, or if necessary annotate the type of individual
element accesses






	(top(getfield))(A::ArrayContainer{Float64},:data)::Array{Float64,N}


	Interpretation: getting a field that is of non-leaf type. In this case, ArrayContainer had a
field data::Array{T}. But Array needs the dimension N, too, to be a concrete type.


	Suggestion: use concrete types like Array{T,3} or Array{T,N}, where N is now a parameter
of ArrayContainer
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Profiling

The Profile module provides tools to help developers improve the performance of their
code. When used, it takes measurements on running code, and produces output that helps you understand
how much time is spent on individual line(s). The most common usage is to identify “bottlenecks”
as targets for optimization.

Profile implements what is known as a “sampling” or statistical profiler [https://en.wikipedia.org/wiki/Profiling_(computer_programming)].
It works by periodically taking a backtrace during the execution of any task. Each backtrace
captures the currently-running function and line number, plus the complete chain of function calls
that led to this line, and hence is a “snapshot” of the current state of execution.

If much of your run time is spent executing a particular line of code, this line will show up
frequently in the set of all backtraces. In other words, the “cost” of a given line–or really,
the cost of the sequence of function calls up to and including this line–is proportional to how
often it appears in the set of all backtraces.

A sampling profiler does not provide complete line-by-line coverage, because the backtraces occur
at intervals (by default, 1 ms on Unix systems and 10 ms on Windows, although the actual scheduling
is subject to operating system load). Moreover, as discussed further below, because samples are
collected at a sparse subset of all execution points, the data collected by a sampling profiler
is subject to statistical noise.

Despite these limitations, sampling profilers have substantial strengths:


	You do not have to make any modifications to your code to take timing measurements (in contrast
to the alternative instrumenting profiler [https://github.com/timholy/IProfile.jl]).


	It can profile into Julia’s core code and even (optionally) into C and Fortran libraries.


	By running “infrequently” there is very little performance overhead; while profiling, your code
can run at nearly native speed.




For these reasons, it’s recommended that you try using the built-in sampling profiler before considering
any alternatives.


Basic usage

Let’s work with a simple test case:

julia> function myfunc()
           A = rand(200, 200, 400)
           maximum(A)
       end





It’s a good idea to first run the code you intend to profile at least once (unless you want to
profile Julia’s JIT-compiler):

julia> myfunc() # run once to force compilation





Now we’re ready to profile this function:

julia> @profile myfunc()





To see the profiling results, there is a graphical browser [https://github.com/timholy/ProfileView.jl]
available, but here we’ll use the text-based display that comes with the standard library:

julia> Profile.print()
80 ./event.jl:73; (::Base.REPL.##1#2{Base.REPL.REPLBackend})()
 80 ./REPL.jl:97; macro expansion
  80 ./REPL.jl:66; eval_user_input(::Any, ::Base.REPL.REPLBackend)
   80 ./boot.jl:235; eval(::Module, ::Any)
    80 ./<missing>:?; anonymous
     80 ./profile.jl:23; macro expansion
      52 ./REPL[1]:2; myfunc()
       38 ./random.jl:431; rand!(::MersenneTwister, ::Array{Float64,3}, ::Int64, ::Type{B...
        38 ./dSFMT.jl:84; dsfmt_fill_array_close_open!(::Base.dSFMT.DSFMT_state, ::Ptr{F...
       14 ./random.jl:278; rand
        14 ./random.jl:277; rand
         14 ./random.jl:366; rand
          14 ./random.jl:369; rand
      28 ./REPL[1]:3; myfunc()
       28 ./reduce.jl:270; _mapreduce(::Base.#identity, ::Base.#scalarmax, ::IndexLinear,...
        3  ./reduce.jl:426; mapreduce_impl(::Base.#identity, ::Base.#scalarmax, ::Array{F...
        25 ./reduce.jl:428; mapreduce_impl(::Base.#identity, ::Base.#scalarmax, ::Array{F...





Each line of this display represents a particular spot (line number) in the code. Indentation
is used to indicate the nested sequence of function calls, with more-indented lines being deeper
in the sequence of calls. In each line, the first “field” is the number of backtraces
(samples) taken at this line or in any functions executed by this line.
The second field is the file name and line number and the third field is the function name.
Note that the specific line numbers may change as Julia’s
code changes; if you want to follow along, it’s best to run this example yourself.

In this example, we can see that the top level function called is in the file event.jl. This is the
function that runs the REPL when you launch Julia. If you examine line 97 of REPL.jl,
you’ll see this is where the function eval_user_input() is called. This is the function that evaluates
what you type at the REPL, and since we’re working interactively these functions were invoked
when we entered @profile myfunc(). The next line reflects actions taken in the @profile
macro.

The first line shows that 80 backtraces were taken at line 73 of event.jl, but it’s not that
this line was “expensive” on its own: the third line reveals that all 80 of these backtraces
were actually triggered inside its call to eval_user_input, and so on. To find out which operations
are actually taking the time, we need to look deeper in the call chain.

The first “important” line in this output is this one:

52 ./REPL[1]:2; myfunc()





REPL refers to the fact that we defined myfunc in the REPL, rather than putting it in a file;
if we had used a file, this would show the file name. The [1] shows that the function myfunc
was the first expression evaluated in this REPL session. Line 2 of myfunc() contains the call to
rand, and there were 52 (out of 80) backtraces that occurred at this line. Below that, you can
see a call to dsfmt_fill_array_close_open! inside dSFMT.jl.

A little further down, you see:

28 ./REPL[1]:3; myfunc()





Line 3 of myfunc contains the call to maximum, and there were 28 (out of 80) backtraces taken
here. Below that, you can see the specific places in base/reduce.jl that carry out the time-consuming
operations in the maximum function for this type of input data.

Overall, we can tentatively conclude that generating the random numbers is approximately twice as expensive
as finding the maximum element. We could increase our confidence in this result by
collecting more samples:

julia> @profile (for i = 1:100; myfunc(); end)

julia> Profile.print()
[....]
 3821 ./REPL[1]:2; myfunc()
  3511 ./random.jl:431; rand!(::MersenneTwister, ::Array{Float64,3}, ::Int64, ::Type...
   3511 ./dSFMT.jl:84; dsfmt_fill_array_close_open!(::Base.dSFMT.DSFMT_state, ::Ptr...
  310  ./random.jl:278; rand
   [....]
 2893 ./REPL[1]:3; myfunc()
  2893 ./reduce.jl:270; _mapreduce(::Base.#identity, ::Base.#scalarmax, ::IndexLinea...
   [....]





In general, if you have N samples collected at a line, you can expect an uncertainty on the
order of sqrt(N) (barring other sources of noise, like how busy the computer is with other tasks).
The major exception to this rule is garbage collection, which runs infrequently but tends to be
quite expensive. (Since Julia’s garbage collector is written in C, such events can be detected
using the C=true output mode described below, or by using ProfileView.jl [https://github.com/timholy/ProfileView.jl].)

This illustrates the default “tree” dump; an alternative is the “flat” dump, which accumulates
counts independent of their nesting:

julia> Profile.print(format=:flat)
 Count File          Line Function
  6714 ./<missing>     -1 anonymous
  6714 ./REPL.jl       66 eval_user_input(::Any, ::Base.REPL.REPLBackend)
  6714 ./REPL.jl       97 macro expansion
  3821 ./REPL[1]        2 myfunc()
  2893 ./REPL[1]        3 myfunc()
  6714 ./REPL[7]        1 macro expansion
  6714 ./boot.jl      235 eval(::Module, ::Any)
  3511 ./dSFMT.jl      84 dsfmt_fill_array_close_open!(::Base.dSFMT.DSFMT_s...
  6714 ./event.jl      73 (::Base.REPL.##1#2{Base.REPL.REPLBackend})()
  6714 ./profile.jl    23 macro expansion
  3511 ./random.jl    431 rand!(::MersenneTwister, ::Array{Float64,3}, ::In...
   310 ./random.jl    277 rand
   310 ./random.jl    278 rand
   310 ./random.jl    366 rand
   310 ./random.jl    369 rand
  2893 ./reduce.jl    270 _mapreduce(::Base.#identity, ::Base.#scalarmax, :...
     5 ./reduce.jl    420 mapreduce_impl(::Base.#identity, ::Base.#scalarma...
   253 ./reduce.jl    426 mapreduce_impl(::Base.#identity, ::Base.#scalarma...
  2592 ./reduce.jl    428 mapreduce_impl(::Base.#identity, ::Base.#scalarma...
    43 ./reduce.jl    429 mapreduce_impl(::Base.#identity, ::Base.#scalarma...





If your code has recursion, one potentially-confusing point is that a line in a “child” function
can accumulate more counts than there are total backtraces. Consider the following function definitions:

dumbsum(n::Integer) = n == 1 ? 1 : 1 + dumbsum(n-1)
dumbsum3() = dumbsum(3)





If you were to profile dumbsum3, and a backtrace was taken while it was executing dumbsum(1),
the backtrace would look like this:

dumbsum3
    dumbsum(3)
        dumbsum(2)
            dumbsum(1)





Consequently, this child function gets 3 counts, even though the parent only gets one. The “tree”
representation makes this much clearer, and for this reason (among others) is probably the most
useful way to view the results.




Accumulation and clearing

Results from @profile accumulate in a buffer; if you run multiple pieces of code under
@profile, then Profile.print() will show you the combined results. This can
be very useful, but sometimes you want to start fresh; you can do so with Profile.clear().




Options for controlling the display of profile results

Profile.print() has more options than we’ve described so far. Let’s see the full declaration:

function print(io::IO = STDOUT, data = fetch(); kwargs...)





Let’s first discuss the two positional arguments, and later the keyword arguments:


	io – Allows you to save the results to a buffer, e.g. a file, but the default is to print to STDOUT
(the console).


	data – Contains the data you want to analyze; by default that is obtained from Profile.fetch(),
which pulls out the backtraces from a pre-allocated buffer. For example, if you want to profile
the profiler, you could say:

data = copy(Profile.fetch())
Profile.clear()
@profile Profile.print(STDOUT, data) # Prints the previous results
Profile.print()                      # Prints results from Profile.print()









The keyword arguments can be any combination of:


	format – Introduced above, determines whether backtraces are printed
with (default, :tree) or without (:flat) indentation indicating tree
structure.


	C – If true, backtraces from C and Fortran code are shown (normally they are excluded). Try running the introductory
example with Profile.print(C = true). This can be extremely helpful in deciding whether it’s
Julia code or C code that is causing a bottleneck; setting C = true also improves the interpretability
of the nesting, at the cost of longer profile dumps.


	combine – Some lines of code contain multiple operations; for example, s += A[i] contains both an array
reference (A[i]) and a sum operation. These correspond to different lines in the generated
machine code, and hence there may be two or more different addresses captured during backtraces
on this line. combine = true lumps them together, and is probably what you typically want, but
you can generate an output separately for each unique instruction pointer with combine = false.


	maxdepth – Limits frames at a depth higher than maxdepth in the :tree format.


	sortedby – Controls the order in :flat format. :filefuncline (default) sorts by the source
line, whereas :count sorts in order of number of collected samples.


	noisefloor – Limits frames that are below the heuristic noise floor of the sample (only applies to format :tree).
A suggested value to try for this is 2.0 (the default is 0). This parameter hides samples for which n <= noisefloor * √N,
where n is the number of samples on this line, and N is the number of samples for the callee.


	mincount – Limits frames with less than mincount occurrences.




File/function names are sometimes truncated (with ...), and indentation is truncated with a
+n at the beginning, where n is the number of extra spaces that would have been inserted,
had there been room. If you want a complete profile of deeply-nested code, often a good idea is
to save to a file using a wide displaysize in an IOContext:

open("/tmp/prof.txt", "w") do s
    Profile.print(IOContext(s, :displaysize => (24, 500)))
end








Configuration

@profile just accumulates backtraces, and the analysis happens when you call Profile.print().
For a long-running computation, it’s entirely possible that the pre-allocated buffer for storing
backtraces will be filled. If that happens, the backtraces stop but your computation continues.
As a consequence, you may miss some important profiling data (you will get a warning when that
happens).

You can obtain and configure the relevant parameters this way:

Profile.init() # returns the current settings
Profile.init(n = 10^7, delay = 0.01)





n is the total number of instruction pointers you can store, with a default value of 10^6.
If your typical backtrace is 20 instruction pointers, then you can collect 50000 backtraces, which
suggests a statistical uncertainty of less than 1%. This may be good enough for most applications.

Consequently, you are more likely to need to modify delay, expressed in seconds, which sets
the amount of time that Julia gets between snapshots to perform the requested computations. A
very long-running job might not need frequent backtraces. The default setting is delay = 0.001.
Of course, you can decrease the delay as well as increase it; however, the overhead of profiling
grows once the delay becomes similar to the amount of time needed to take a backtrace (~30 microseconds
on the author’s laptop).






Memory allocation analysis

One of the most common techniques to improve performance is to reduce memory allocation. The
total amount of allocation can be measured with @time and @allocated, and
specific lines triggering allocation can often be inferred from profiling via the cost of garbage
collection that these lines incur. However, sometimes it is more efficient to directly measure
the amount of memory allocated by each line of code.

To measure allocation line-by-line, start Julia with the --track-allocation=<setting> command-line
option, for which you can choose none (the default, do not measure allocation), user (measure
memory allocation everywhere except Julia’s core code), or all (measure memory allocation at
each line of Julia code). Allocation gets measured for each line of compiled code. When you quit
Julia, the cumulative results are written to text files with .mem appended after the file name,
residing in the same directory as the source file. Each line lists the total number of bytes
allocated. The Coverage package [https://github.com/JuliaCI/Coverage.jl] contains some elementary
analysis tools, for example to sort the lines in order of number of bytes allocated.

In interpreting the results, there are a few important details. Under the user setting, the
first line of any function directly called from the REPL will exhibit allocation due to events
that happen in the REPL code itself. More significantly, JIT-compilation also adds to allocation
counts, because much of Julia’s compiler is written in Julia (and compilation usually requires
memory allocation). The recommended procedure is to force compilation by executing all the commands
you want to analyze, then call Profile.clear_malloc_data() to reset all allocation counters.
Finally, execute the desired commands and quit Julia to trigger the generation of the .mem
files.
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Running External Programs

Julia borrows backtick notation for commands from the shell, Perl, and Ruby. However, in Julia,
writing

julia> `echo hello`
`echo hello`





differs in several aspects from the behavior in various shells, Perl, or Ruby:


	Instead of immediately running the command, backticks create a Cmd object to represent the command.
You can use this object to connect the command to others via pipes, run it, and read or write
to it.


	When the command is run, Julia does not capture its output unless you specifically arrange for
it to. Instead, the output of the command by default goes to STDOUT as it would using
libc’s system call.


	The command is never run with a shell. Instead, Julia parses the command syntax directly, appropriately
interpolating variables and splitting on words as the shell would, respecting shell quoting syntax.
The command is run as julia’s immediate child process, using fork and exec calls.




Here’s a simple example of running an external program:

julia> mycommand = `echo hello`
`echo hello`

julia> typeof(mycommand)
Cmd

julia> run(mycommand)
hello





The hello is the output of the echo command, sent to STDOUT. The run method itself
returns nothing, and throws an ErrorException if the external command fails to run
successfully.

If you want to read the output of the external command, readstring() can be used instead:

julia> a = readstring(`echo hello`)
"hello\n"

julia> chomp(a) == "hello"
true





More generally, you can use open() to read from or write to an external command.

julia> open(`less`, "w", STDOUT) do io
           for i = 1:3
               println(io, i)
           end
       end
1
2
3






[Interpolation](@id command-interpolation)

Suppose you want to do something a bit more complicated and use the name of a file in the variable
file as an argument to a command. You can use $ for interpolation much as you would in a string
literal (see Strings):

julia> file = "/etc/passwd"
"/etc/passwd"

julia> `sort $file`
`sort /etc/passwd`





A common pitfall when running external programs via a shell is that if a file name contains characters
that are special to the shell, they may cause undesirable behavior. Suppose, for example, rather
than /etc/passwd, we wanted to sort the contents of the file /Volumes/External HD/data.csv.
Let’s try it:

julia> file = "/Volumes/External HD/data.csv"
"/Volumes/External HD/data.csv"

julia> `sort $file`
`sort '/Volumes/External HD/data.csv'`





How did the file name get quoted? Julia knows that file is meant to be interpolated as a single
argument, so it quotes the word for you. Actually, that is not quite accurate: the value of file
is never interpreted by a shell, so there’s no need for actual quoting; the quotes are inserted
only for presentation to the user. This will even work if you interpolate a value as part of a
shell word:

julia> path = "/Volumes/External HD"
"/Volumes/External HD"

julia> name = "data"
"data"

julia> ext = "csv"
"csv"

julia> `sort $path/$name.$ext`
`sort '/Volumes/External HD/data.csv'`





As you can see, the space in the path variable is appropriately escaped. But what if you want
to interpolate multiple words? In that case, just use an array (or any other iterable container):

julia> files = ["/etc/passwd","/Volumes/External HD/data.csv"]
2-element Array{String,1}:
 "/etc/passwd"
 "/Volumes/External HD/data.csv"

julia> `grep foo $files`
`grep foo /etc/passwd '/Volumes/External HD/data.csv'`





If you interpolate an array as part of a shell word, Julia emulates the shell’s {a,b,c} argument
generation:

julia> names = ["foo","bar","baz"]
3-element Array{String,1}:
 "foo"
 "bar"
 "baz"

julia> `grep xylophone $names.txt`
`grep xylophone foo.txt bar.txt baz.txt`





Moreover, if you interpolate multiple arrays into the same word, the shell’s Cartesian product
generation behavior is emulated:

julia> names = ["foo","bar","baz"]
3-element Array{String,1}:
 "foo"
 "bar"
 "baz"

julia> exts = ["aux","log"]
2-element Array{String,1}:
 "aux"
 "log"

julia> `rm -f $names.$exts`
`rm -f foo.aux foo.log bar.aux bar.log baz.aux baz.log`





Since you can interpolate literal arrays, you can use this generative functionality without needing
to create temporary array objects first:

julia> `rm -rf $["foo","bar","baz","qux"].$["aux","log","pdf"]`
`rm -rf foo.aux foo.log foo.pdf bar.aux bar.log bar.pdf baz.aux baz.log baz.pdf qux.aux qux.log qux.pdf`








Quoting

Inevitably, one wants to write commands that aren’t quite so simple, and it becomes necessary
to use quotes. Here’s a simple example of a Perl one-liner at a shell prompt:

sh$ perl -le '$|=1; for (0..3) { print }'
0
1
2
3





The Perl expression needs to be in single quotes for two reasons: so that spaces don’t break the
expression into multiple shell words, and so that uses of Perl variables like $| (yes, that’s
the name of a variable in Perl), don’t cause interpolation. In other instances, you may want to
use double quotes so that interpolation does occur:

sh$ first="A"
sh$ second="B"
sh$ perl -le '$|=1; print for @ARGV' "1: $first" "2: $second"
1: A
2: B





In general, the Julia backtick syntax is carefully designed so that you can just cut-and-paste
shell commands as is into backticks and they will work: the escaping, quoting, and interpolation
behaviors are the same as the shell’s. The only difference is that the interpolation is integrated
and aware of Julia’s notion of what is a single string value, and what is a container for multiple
values. Let’s try the above two examples in Julia:

julia> A = `perl -le '$|=1; for (0..3) { print }'`
`perl -le '$|=1; for (0..3) { print }'`

julia> run(A)
0
1
2
3

julia> first = "A"; second = "B";

julia> B = `perl -le 'print for @ARGV' "1: $first" "2: $second"`
`perl -le 'print for @ARGV' '1: A' '2: B'`

julia> run(B)
1: A
2: B





The results are identical, and Julia’s interpolation behavior mimics the shell’s with some improvements
due to the fact that Julia supports first-class iterable objects while most shells use strings
split on spaces for this, which introduces ambiguities. When trying to port shell commands to
Julia, try cut and pasting first. Since Julia shows commands to you before running them, you can
easily and safely just examine its interpretation without doing any damage.




Pipelines

Shell metacharacters, such as |, &, and >, need to be quoted (or escaped) inside of Julia’s backticks:

julia> run(`echo hello '|' sort`)
hello | sort

julia> run(`echo hello \| sort`)
hello | sort





This expression invokes the echo command with three words as arguments: hello, |, and sort.
The result is that a single line is printed: hello | sort. How, then, does one construct a
pipeline? Instead of using '|' inside of backticks, one uses pipeline():

julia> run(pipeline(`echo hello`, `sort`))
hello





This pipes the output of the echo command to the sort command. Of course, this isn’t terribly
interesting since there’s only one line to sort, but we can certainly do much more interesting
things:

julia> run(pipeline(`cut -d: -f3 /etc/passwd`, `sort -n`, `tail -n5`))
210
211
212
213
214





This prints the highest five user IDs on a UNIX system. The cut, sort and tail commands
are all spawned as immediate children of the current julia process, with no intervening shell
process. Julia itself does the work to setup pipes and connect file descriptors that is normally
done by the shell. Since Julia does this itself, it retains better control and can do some things
that shells cannot.

Julia can run multiple commands in parallel:

julia> run(`echo hello` & `echo world`)
world
hello





The order of the output here is non-deterministic because the two echo processes are started
nearly simultaneously, and race to make the first write to the STDOUT descriptor they
share with each other and the julia parent process. Julia lets you pipe the output from both
of these processes to another program:

julia> run(pipeline(`echo world` & `echo hello`, `sort`))
hello
world





In terms of UNIX plumbing, what’s happening here is that a single UNIX pipe object is created
and written to by both echo processes, and the other end of the pipe is read from by the sort
command.

IO redirection can be accomplished by passing keyword arguments stdin, stdout, and stderr to the
pipeline function:

pipeline(`do_work`, stdout=pipeline(`sort`, "out.txt"), stderr="errs.txt")






Avoiding Deadlock in Pipelines

When reading and writing to both ends of a pipeline from a single process, it is important to
avoid forcing the kernel to buffer all of the data.

For example, when reading all of the output from a command, call readstring(out), not wait(process),
since the former will actively consume all of the data written by the process, whereas the latter
will attempt to store the data in the kernel’s buffers while waiting for a reader to be connected.

Another common solution is to separate the reader and writer of the pipeline into separate Tasks:

writer = @async writeall(process, "data")
reader = @async do_compute(readstring(process))
wait(process)
fetch(reader)








Complex Example

The combination of a high-level programming language, a first-class command abstraction, and automatic
setup of pipes between processes is a powerful one. To give some sense of the complex pipelines
that can be created easily, here are some more sophisticated examples, with apologies for the
excessive use of Perl one-liners:

julia> prefixer(prefix, sleep) = `perl -nle '$|=1; print "'$prefix' ", $_; sleep '$sleep';'`;

julia> run(pipeline(`perl -le '$|=1; for(0..9){ print; sleep 1 }'`, prefixer("A",2) & prefixer("B",2)))
A 0
B 1
A 2
B 3
A 4
B 5
A 6
B 7
A 8
B 9





This is a classic example of a single producer feeding two concurrent consumers: one perl process
generates lines with the numbers 0 through 9 on them, while two parallel processes consume that
output, one prefixing lines with the letter “A”, the other with the letter “B”. Which consumer
gets the first line is non-deterministic, but once that race has been won, the lines are consumed
alternately by one process and then the other. (Setting $|=1 in Perl causes each print statement
to flush the STDOUT handle, which is necessary for this example to work. Otherwise all
the output is buffered and printed to the pipe at once, to be read by just one consumer process.)

Here is an even more complex multi-stage producer-consumer example:

julia> run(pipeline(`perl -le '$|=1; for(0..9){ print; sleep 1 }'`,
           prefixer("X",3) & prefixer("Y",3) & prefixer("Z",3),
           prefixer("A",2) & prefixer("B",2)))
A X 0
B Y 1
A Z 2
B X 3
A Y 4
B Z 5
A X 6
B Y 7
A Z 8
B X 9





This example is similar to the previous one, except there are two stages of consumers, and the
stages have different latency so they use a different number of parallel workers, to maintain
saturated throughput.

We strongly encourage you to try all these examples to see how they work.
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Stack Traces

The StackTraces module provides simple stack traces that are both human readable and
easy to use programmatically.


Viewing a stack trace

The primary function used to obtain a stack trace is stacktrace():

julia> stacktrace()
4-element Array{StackFrame,1}:
 eval(::Module, ::Any) at boot.jl:236
 eval_user_input(::Any, ::Base.REPL.REPLBackend) at REPL.jl:66
 macro expansion at REPL.jl:97 [inlined]
 (::Base.REPL.##1#2{Base.REPL.REPLBackend})() at event.jl:73





Calling stacktrace() returns a vector of StackFrame s. For ease of use, the
alias StackTrace can be used in place of Vector{StackFrame}. (Examples with [...]
indicate that output may vary depending on how the code is run.)

julia> example() = stacktrace()
example (generic function with 1 method)

julia> example()
5-element Array{StackFrame,1}:
 example() at REPL[1]:1
 eval(::Module, ::Any) at boot.jl:236
[...]

julia> @noinline child() = stacktrace()
child (generic function with 1 method)

julia> @noinline parent() = child()
parent (generic function with 1 method)

julia> grandparent() = parent()
grandparent (generic function with 1 method)

julia> grandparent()
7-element Array{StackFrame,1}:
 child() at REPL[3]:1
 parent() at REPL[4]:1
 grandparent() at REPL[5]:1
[...]





Note that when calling stacktrace() you’ll typically see a frame with eval(...) at boot.jl.
When calling stacktrace() from the REPL you’ll also have a few extra frames in the stack
from REPL.jl, usually looking something like this:

julia> example() = stacktrace()
example (generic function with 1 method)

julia> example()
5-element Array{StackFrame,1}:
 example() at REPL[1]:1
 eval(::Module, ::Any) at boot.jl:236
 eval_user_input(::Any, ::Base.REPL.REPLBackend) at REPL.jl:66
 macro expansion at REPL.jl:97 [inlined]
 (::Base.REPL.##1#2{Base.REPL.REPLBackend})() at event.jl:73








Extracting useful information

Each StackFrame contains the function name, file name, line number, lambda info, a flag
indicating whether the frame has been inlined, a flag indicating whether it is a C function (by
default C functions do not appear in the stack trace), and an integer representation of the pointer
returned by backtrace():

julia> top_frame = stacktrace()[1]
eval(::Module, ::Any) at boot.jl:236

julia> top_frame.func
:eval

julia> top_frame.file
Symbol("./boot.jl")

julia> top_frame.line
236

julia> top_frame.linfo
Nullable{Core.MethodInstance}(MethodInstance for eval(::Module, ::Any))

julia> top_frame.inlined
false

julia> top_frame.from_c
false





julia> top_frame.pointer
0x00007f390d152a59





This makes stack trace information available programmatically for logging, error handling, and
more.




Error handling

While having easy access to information about the current state of the callstack can be helpful
in many places, the most obvious application is in error handling and debugging.

julia> @noinline bad_function() = undeclared_variable
bad_function (generic function with 1 method)

julia> @noinline example() = try
           bad_function()
       catch
           stacktrace()
       end
example (generic function with 1 method)

julia> example()
5-element Array{StackFrame,1}:
 example() at REPL[2]:4
 eval(::Module, ::Any) at boot.jl:236
[...]





You may notice that in the example above the first stack frame points points at line 4, where
stacktrace() is called, rather than line 2, where bad_function is called, and bad_function’s
frame is missing entirely. This is understandable, given that stacktrace() is called
from the context of the catch. While in this example it’s fairly easy to find the actual source
of the error, in complex cases tracking down the source of the error becomes nontrivial.

This can be remedied by calling catch_stacktrace() instead of stacktrace().
Instead of returning callstack information for the current context, catch_stacktrace()
returns stack information for the context of the most recent exception:

julia> @noinline bad_function() = undeclared_variable
bad_function (generic function with 1 method)

julia> @noinline example() = try
           bad_function()
       catch
           catch_stacktrace()
       end
example (generic function with 1 method)

julia> example()
6-element Array{StackFrame,1}:
 bad_function() at REPL[1]:1
 example() at REPL[2]:2
[...]





Notice that the stack trace now indicates the appropriate line number and the missing frame.

julia> @noinline child() = error("Whoops!")
child (generic function with 1 method)

julia> @noinline parent() = child()
parent (generic function with 1 method)

julia> @noinline function grandparent()
           try
               parent()
           catch err
               println("ERROR: ", err.msg)
               catch_stacktrace()
           end
       end
grandparent (generic function with 1 method)

julia> grandparent()
ERROR: Whoops!
7-element Array{StackFrame,1}:
 child() at REPL[1]:1
 parent() at REPL[2]:1
 grandparent() at REPL[3]:3
[...]








Comparison with backtrace()

A call to backtrace() returns a vector of Ptr{Void}, which may then be passed into
stacktrace() for translation:

julia> trace = backtrace()
21-element Array{Ptr{Void},1}:
 Ptr{Void} @0x00007f10049d5b2f
 Ptr{Void} @0x00007f0ffeb4d29c
 Ptr{Void} @0x00007f0ffeb4d2a9
 Ptr{Void} @0x00007f1004993fe7
 Ptr{Void} @0x00007f10049a92be
 Ptr{Void} @0x00007f10049a823a
 Ptr{Void} @0x00007f10049a9fb0
 Ptr{Void} @0x00007f10049aa718
 Ptr{Void} @0x00007f10049c0d5e
 Ptr{Void} @0x00007f10049a3286
 Ptr{Void} @0x00007f0ffe9ba3ba
 Ptr{Void} @0x00007f0ffe9ba3d0
 Ptr{Void} @0x00007f1004993fe7
 Ptr{Void} @0x00007f0ded34583d
 Ptr{Void} @0x00007f0ded345a87
 Ptr{Void} @0x00007f1004993fe7
 Ptr{Void} @0x00007f0ded34308f
 Ptr{Void} @0x00007f0ded343320
 Ptr{Void} @0x00007f1004993fe7
 Ptr{Void} @0x00007f10049aeb67
 Ptr{Void} @0x0000000000000000

julia> stacktrace(trace)
5-element Array{StackFrame,1}:
 backtrace() at error.jl:46
 eval(::Module, ::Any) at boot.jl:236
 eval_user_input(::Any, ::Base.REPL.REPLBackend) at REPL.jl:66
 macro expansion at REPL.jl:97 [inlined]
 (::Base.REPL.##1#2{Base.REPL.REPLBackend})() at event.jl:73





Notice that the vector returned by backtrace() had 21 pointers, while the vector returned
by stacktrace() only has 5. This is because, by default, stacktrace() removes
any lower-level C functions from the stack. If you want to include stack frames from C calls,
you can do it like this:

julia> stacktrace(trace, true)
27-element Array{StackFrame,1}:
 jl_backtrace_from_here at stackwalk.c:103
 backtrace() at error.jl:46
 backtrace() at sys.so:?
 jl_call_method_internal at julia_internal.h:248 [inlined]
 jl_apply_generic at gf.c:2215
 do_call at interpreter.c:75
 eval at interpreter.c:215
 eval_body at interpreter.c:519
 jl_interpret_toplevel_thunk at interpreter.c:664
 jl_toplevel_eval_flex at toplevel.c:592
 jl_toplevel_eval_in at builtins.c:614
 eval(::Module, ::Any) at boot.jl:236
 eval(::Module, ::Any) at sys.so:?
 jl_call_method_internal at julia_internal.h:248 [inlined]
 jl_apply_generic at gf.c:2215
 eval_user_input(::Any, ::Base.REPL.REPLBackend) at REPL.jl:66
 ip:0x7f1c707f1846
 jl_call_method_internal at julia_internal.h:248 [inlined]
 jl_apply_generic at gf.c:2215
 macro expansion at REPL.jl:97 [inlined]
 (::Base.REPL.##1#2{Base.REPL.REPLBackend})() at event.jl:73
 ip:0x7f1c707ea1ef
 jl_call_method_internal at julia_internal.h:248 [inlined]
 jl_apply_generic at gf.c:2215
 jl_apply at julia.h:1411 [inlined]
 start_task at task.c:261
 ip:0xffffffffffffffff





Individual pointers returned by backtrace() can be translated into StackFrame
s by passing them into StackTraces.lookup():

julia> pointer = backtrace()[1];

julia> frame = StackTraces.lookup(pointer)
1-element Array{StackFrame,1}:
 jl_backtrace_from_here at stackwalk.c:103

julia> println("The top frame is from $(frame[1].func)!")
The top frame is from jl_backtrace_from_here!
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[Strings](@id man-strings)

Strings are finite sequences of characters. Of course, the real trouble comes when one asks what
a character is. The characters that English speakers are familiar with are the letters A, B,
C, etc., together with numerals and common punctuation symbols. These characters are standardized
together with a mapping to integer values between 0 and 127 by the ASCII [https://en.wikipedia.org/wiki/ASCII]
standard. There are, of course, many other characters used in non-English languages, including
variants of the ASCII characters with accents and other modifications, related scripts such as
Cyrillic and Greek, and scripts completely unrelated to ASCII and English, including Arabic, Chinese,
Hebrew, Hindi, Japanese, and Korean. The Unicode [https://en.wikipedia.org/wiki/Unicode] standard
tackles the complexities of what exactly a character is, and is generally accepted as the definitive
standard addressing this problem. Depending on your needs, you can either ignore these complexities
entirely and just pretend that only ASCII characters exist, or you can write code that can handle
any of the characters or encodings that one may encounter when handling non-ASCII text. Julia
makes dealing with plain ASCII text simple and efficient, and handling Unicode is as simple and
efficient as possible. In particular, you can write C-style string code to process ASCII strings,
and they will work as expected, both in terms of performance and semantics. If such code encounters
non-ASCII text, it will gracefully fail with a clear error message, rather than silently introducing
corrupt results. When this happens, modifying the code to handle non-ASCII data is straightforward.

There are a few noteworthy high-level features about Julia’s strings:


	The built-in concrete type used for strings (and string literals) in Julia is String.
This supports the full range of Unicode [https://en.wikipedia.org/wiki/Unicode] characters via
the UTF-8 [https://en.wikipedia.org/wiki/UTF-8] encoding. (A transcode() function is
provided to convert to/from other Unicode encodings.)


	All string types are subtypes of the abstract type AbstractString, and external packages define
additional AbstractString subtypes (e.g. for other encodings).  If you define a function expecting
a string argument, you should declare the type as AbstractString in order to accept any string
type.


	Like C and Java, but unlike most dynamic languages, Julia has a first-class type representing
a single character, called Char. This is just a special kind of 32-bit primitive type whose numeric
value represents a Unicode code point.


	As in Java, strings are immutable: the value of an AbstractString object cannot be changed.
To construct a different string value, you construct a new string from parts of other strings.


	Conceptually, a string is a partial function from indices to characters: for some index values,
no character value is returned, and instead an exception is thrown. This allows for efficient
indexing into strings by the byte index of an encoded representation rather than by a character
index, which cannot be implemented both efficiently and simply for variable-width encodings of
Unicode strings.





[Characters](@id man-characters)

A Char value represents a single character: it is just a 32-bit primitive type with a special literal
representation and appropriate arithmetic behaviors, whose numeric value is interpreted as a
Unicode code point [https://en.wikipedia.org/wiki/Code_point]. Here is how Char values are
input and shown:

julia> 'x'
'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> typeof(ans)
Char





You can convert a Char to its integer value, i.e. code point, easily:

julia> Int('x')
120

julia> typeof(ans)
Int64





On 32-bit architectures, typeof(ans) will be Int32. You can convert an
integer value back to a Char just as easily:

julia> Char(120)
'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)





Not all integer values are valid Unicode code points, but for performance, the Char() conversion
does not check that every character value is valid. If you want to check that each converted value
is a valid code point, use the isvalid() function:

julia> Char(0x110000)
'\U110000': Unicode U+110000 (category Cn: Other, not assigned)

julia> isvalid(Char, 0x110000)
false





As of this writing, the valid Unicode code points are U+00 through U+d7ff and U+e000 through
U+10ffff. These have not all been assigned intelligible meanings yet, nor are they necessarily
interpretable by applications, but all of these values are considered to be valid Unicode characters.

You can input any Unicode character in single quotes using \u followed by up to four hexadecimal
digits or \U followed by up to eight hexadecimal digits (the longest valid value only requires
six):

julia> '\u0'
'\0': ASCII/Unicode U+0000 (category Cc: Other, control)

julia> '\u78'
'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> '\u2200'
'∀': Unicode U+2200 (category Sm: Symbol, math)

julia> '\U10ffff'
'\U10ffff': Unicode U+10ffff (category Cn: Other, not assigned)





Julia uses your system’s locale and language settings to determine which characters can be printed
as-is and which must be output using the generic, escaped \u or \U input forms. In addition
to these Unicode escape forms, all of C’s traditional escaped input forms [https://en.wikipedia.org/wiki/C_syntax#Backslash_escapes]
can also be used:

julia> Int('\0')
0

julia> Int('\t')
9

julia> Int('\n')
10

julia> Int('\e')
27

julia> Int('\x7f')
127

julia> Int('\177')
127

julia> Int('\xff')
255





You can do comparisons and a limited amount of arithmetic with Char values:

julia> 'A' < 'a'
true

julia> 'A' <= 'a' <= 'Z'
false

julia> 'A' <= 'X' <= 'Z'
true

julia> 'x' - 'a'
23

julia> 'A' + 1
'B': ASCII/Unicode U+0042 (category Lu: Letter, uppercase)








String Basics

String literals are delimited by double quotes or triple double quotes:

julia> str = "Hello, world.\n"
"Hello, world.\n"

julia> """Contains "quote" characters"""
"Contains \"quote\" characters"





If you want to extract a character from a string, you index into it:

julia> str[1]
'H': ASCII/Unicode U+0048 (category Lu: Letter, uppercase)

julia> str[6]
',': ASCII/Unicode U+002c (category Po: Punctuation, other)

julia> str[end]
'\n': ASCII/Unicode U+000a (category Cc: Other, control)





All indexing in Julia is 1-based: the first element of any integer-indexed object is found at
index 1. (As we will see below, this does not necessarily mean that the last element is found
at index n, where n is the length of the string.)

In any indexing expression, the keyword end can be used as a shorthand for the last index (computed
by endof(str)). You can perform arithmetic and other operations with end, just like
a normal value:

julia> str[end-1]
'.': ASCII/Unicode U+002e (category Po: Punctuation, other)

julia> str[end÷2]
' ': ASCII/Unicode U+0020 (category Zs: Separator, space)





Using an index less than 1 or greater than end raises an error:

julia> str[0]
ERROR: BoundsError: attempt to access "Hello, world.\n"
  at index [0]
[...]

julia> str[end+1]
ERROR: BoundsError: attempt to access "Hello, world.\n"
  at index [15]
[...]





You can also extract a substring using range indexing:

julia> str[4:9]
"lo, wo"





Notice that the expressions str[k] and str[k:k] do not give the same result:

julia> str[6]
',': ASCII/Unicode U+002c (category Po: Punctuation, other)

julia> str[6:6]
","





The former is a single character value of type Char, while the latter is a string value that
happens to contain only a single character. In Julia these are very different things.




Unicode and UTF-8

Julia fully supports Unicode characters and strings. As [discussed above](@ref man-characters), in character
literals, Unicode code points can be represented using Unicode \u and \U escape sequences,
as well as all the standard C escape sequences. These can likewise be used to write string literals:

julia> s = "\u2200 x \u2203 y"
"∀ x ∃ y"





Whether these Unicode characters are displayed as escapes or shown as special characters depends
on your terminal’s locale settings and its support for Unicode. String literals are encoded using
the UTF-8 encoding. UTF-8 is a variable-width encoding, meaning that not all characters are encoded
in the same number of bytes. In UTF-8, ASCII characters – i.e. those with code points less than
0x80 (128) – are encoded as they are in ASCII, using a single byte, while code points 0x80 and
above are encoded using multiple bytes – up to four per character. This means that not every
byte index into a UTF-8 string is necessarily a valid index for a character. If you index into
a string at such an invalid byte index, an error is thrown:

julia> s[1]
'∀': Unicode U+2200 (category Sm: Symbol, math)

julia> s[2]
ERROR: UnicodeError: invalid character index
[...]

julia> s[3]
ERROR: UnicodeError: invalid character index
[...]

julia> s[4]
' ': ASCII/Unicode U+0020 (category Zs: Separator, space)





In this case, the character ∀ is a three-byte character, so the indices 2 and 3 are invalid
and the next character’s index is 4; this next valid index can be computed by nextind(s,1),
and the next index after that by nextind(s,4) and so on.

Because of variable-length encodings, the number of characters in a string (given by length(s))
is not always the same as the last index. If you iterate through the indices 1 through endof(s)
and index into s, the sequence of characters returned when errors aren’t thrown is the sequence
of characters comprising the string s. Thus we have the identity that length(s) <= endof(s),
since each character in a string must have its own index. The following is an inefficient and
verbose way to iterate through the characters of s:

julia> for i = 1:endof(s)
           try
               println(s[i])
           catch
               # ignore the index error
           end
       end
∀

x

∃

y





The blank lines actually have spaces on them. Fortunately, the above awkward idiom is unnecessary
for iterating through the characters in a string, since you can just use the string as an iterable
object, no exception handling required:

julia> for c in s
           println(c)
       end
∀

x

∃

y





Julia uses the UTF-8 encoding by default, and support for new encodings can be added by packages.
For example, the LegacyStrings.jl [https://github.com/JuliaArchive/LegacyStrings.jl] package
implements UTF16String and UTF32String types. Additional discussion of other encodings and
how to implement support for them is beyond the scope of this document for the time being. For
further discussion of UTF-8 encoding issues, see the section below on [byte array literals](@ref man-byte-array-literals).
The transcode() function is provided to convert data between the various UTF-xx encodings,
primarily for working with external data and libraries.




Concatenation

One of the most common and useful string operations is concatenation:

julia> greet = "Hello"
"Hello"

julia> whom = "world"
"world"

julia> string(greet, ", ", whom, ".\n")
"Hello, world.\n"





Julia also provides * for string concatenation:

julia> greet * ", " * whom * ".\n"
"Hello, world.\n"





While * may seem like a surprising choice to users of languages that provide + for string
concatenation, this use of * has precedent in mathematics, particularly in abstract algebra.

In mathematics, + usually denotes a commutative operation, where the order of the operands does
not matter. An example of this is matrix addition, where A + B == B + A for any matrices A and B
that have the same shape. In contrast, * typically denotes a noncommutative operation, where the
order of the operands does matter. An example of this is matrix multiplication, where in general
A * B != B * A. As with matrix multiplication, string concatenation is noncommutative:
greet * whom != whom * greet. As such, * is a more natural choice for an infix string concatenation
operator, consistent with common mathematical use.

More precisely, the set of all finite-length strings S together with the string concatenation operator
* forms a free monoid [https://en.wikipedia.org/wiki/Free_monoid] (S, *). The identity element
of this set is the empty string, "". Whenever a free monoid is not commutative, the operation is
typically represented as \cdot, *, or a similar symbol, rather than +, which as stated usually
implies commutativity.




[Interpolation](@id string-interpolation)

Constructing strings using concatenation can become a bit cumbersome, however. To reduce the need for these
verbose calls to string() or repeated multiplications, Julia allows interpolation into string literals
using $, as in Perl:

julia> "$greet, $whom.\n"
"Hello, world.\n"





This is more readable and convenient and equivalent to the above string concatenation – the system
rewrites this apparent single string literal into a concatenation of string literals with variables.

The shortest complete expression after the $ is taken as the expression whose value is to be
interpolated into the string. Thus, you can interpolate any expression into a string using parentheses:

julia> "1 + 2 = $(1 + 2)"
"1 + 2 = 3"





Both concatenation and string interpolation call string() to convert objects into string
form. Most non-AbstractString objects are converted to strings closely corresponding to how
they are entered as literal expressions:

julia> v = [1,2,3]
3-element Array{Int64,1}:
 1
 2
 3

julia> "v: $v"
"v: [1, 2, 3]"





string() is the identity for AbstractString and Char values, so these are interpolated
into strings as themselves, unquoted and unescaped:

julia> c = 'x'
'x': ASCII/Unicode U+0078 (category Ll: Letter, lowercase)

julia> "hi, $c"
"hi, x"





To include a literal $ in a string literal, escape it with a backslash:

julia> print("I have \$100 in my account.\n")
I have $100 in my account.








Triple-Quoted String Literals

When strings are created using triple-quotes ("""...""") they have some special behavior that
can be useful for creating longer blocks of text. First, if the opening """ is followed by a
newline, the newline is stripped from the resulting string.

"""hello"""





is equivalent to

"""
hello"""





but

"""

hello"""





will contain a literal newline at the beginning. Trailing whitespace is left unaltered. They can
contain " symbols without escaping. Triple-quoted strings are also dedented to the level of
the least-indented line. This is useful for defining strings within code that is indented. For
example:

julia> str = """
           Hello,
           world.
         """
"  Hello,\n  world.\n"





In this case the final (empty) line before the closing """ sets the indentation level.

Note that line breaks in literal strings, whether single- or triple-quoted, result in a newline
(LF) character \n in the string, even if your editor uses a carriage return \r (CR) or CRLF
combination to end lines. To include a CR in a string, use an explicit escape \r; for example,
you can enter the literal string "a CRLF line ending\r\n".




Common Operations

You can lexicographically compare strings using the standard comparison operators:

julia> "abracadabra" < "xylophone"
true

julia> "abracadabra" == "xylophone"
false

julia> "Hello, world." != "Goodbye, world."
true

julia> "1 + 2 = 3" == "1 + 2 = $(1 + 2)"
true





You can search for the index of a particular character using the search() function:

julia> search("xylophone", 'x')
1

julia> search("xylophone", 'p')
5

julia> search("xylophone", 'z')
0





You can start the search for a character at a given offset by providing a third argument:

julia> search("xylophone", 'o')
4

julia> search("xylophone", 'o', 5)
7

julia> search("xylophone", 'o', 8)
0





You can use the contains() function to check if a substring is contained in a string:

julia> contains("Hello, world.", "world")
true

julia> contains("Xylophon", "o")
true

julia> contains("Xylophon", "a")
false

julia> contains("Xylophon", 'o')
ERROR: MethodError: no method matching contains(::String, ::Char)
Closest candidates are:
  contains(!Matched::Function, ::Any, !Matched::Any) at reduce.jl:664
  contains(::AbstractString, !Matched::AbstractString) at strings/search.jl:378





The last error is because 'o' is a character literal, and contains() is a generic
function that looks for subsequences. To look for an element in a sequence, you must use in()
instead.

Two other handy string functions are repeat() and join():

julia> repeat(".:Z:.", 10)
".:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:..:Z:."

julia> join(["apples", "bananas", "pineapples"], ", ", " and ")
"apples, bananas and pineapples"





Some other useful functions include:


	endof(str) gives the maximal (byte) index that can be used to index into str.


	length(str) the number of characters in str.


	[i = start(str)](@ref start) gives the first valid index at which a character can be found in str
(typically 1).


	[c, j = next(str,i)](@ref next) returns next character at or after the index i and the next valid
character index following that. With start() and endof(), can be used to iterate
through the characters in str.


	ind2chr(str,i) gives the number of characters in str up to and including any at index
i.


	chr2ind(str,j) gives the index at which the jth character in str occurs.







[Non-Standard String Literals](@id non-standard-string-literals)

There are situations when you want to construct a string or use string semantics, but the behavior
of the standard string construct is not quite what is needed. For these kinds of situations, Julia
provides non-standard string literals. A non-standard string literal looks like a regular
double-quoted string literal, but is immediately prefixed by an identifier, and doesn’t behave
quite like a normal string literal.  Regular expressions, byte array literals and version number
literals, as described below, are some examples of non-standard string literals. Other examples
are given in the Metaprogramming section.




Regular Expressions

Julia has Perl-compatible regular expressions (regexes), as provided by the PCRE [http://www.pcre.org/]
library. Regular expressions are related to strings in two ways: the obvious connection is that
regular expressions are used to find regular patterns in strings; the other connection is that
regular expressions are themselves input as strings, which are parsed into a state machine that
can be used to efficiently search for patterns in strings. In Julia, regular expressions are input
using non-standard string literals prefixed with various identifiers beginning with r. The most
basic regular expression literal without any options turned on just uses r"...":

julia> r"^\s*(?:#|$)"
r"^\s*(?:#|$)"

julia> typeof(ans)
Regex





To check if a regex matches a string, use ismatch():

julia> ismatch(r"^\s*(?:#|$)", "not a comment")
false

julia> ismatch(r"^\s*(?:#|$)", "# a comment")
true





As one can see here, ismatch() simply returns true or false, indicating whether the
given regex matches the string or not. Commonly, however, one wants to know not just whether a
string matched, but also how it matched. To capture this information about a match, use the
match() function instead:

julia> match(r"^\s*(?:#|$)", "not a comment")

julia> match(r"^\s*(?:#|$)", "# a comment")
RegexMatch("#")





If the regular expression does not match the given string, match() returns nothing
– a special value that does not print anything at the interactive prompt. Other than not printing,
it is a completely normal value and you can test for it programmatically:

m = match(r"^\s*(?:#|$)", line)
if m === nothing
    println("not a comment")
else
    println("blank or comment")
end





If a regular expression does match, the value returned by match() is a RegexMatch
object. These objects record how the expression matches, including the substring that the pattern
matches and any captured substrings, if there are any. This example only captures the portion
of the substring that matches, but perhaps we want to capture any non-blank text after the comment
character. We could do the following:

julia> m = match(r"^\s*(?:#\s*(.*?)\s*$|$)", "# a comment ")
RegexMatch("# a comment ", 1="a comment")





When calling match(), you have the option to specify an index at which to start the
search. For example:

julia> m = match(r"[0-9]","aaaa1aaaa2aaaa3",1)
RegexMatch("1")

julia> m = match(r"[0-9]","aaaa1aaaa2aaaa3",6)
RegexMatch("2")

julia> m = match(r"[0-9]","aaaa1aaaa2aaaa3",11)
RegexMatch("3")





You can extract the following info from a RegexMatch object:


	the entire substring matched: m.match


	the captured substrings as an array of strings: m.captures


	the offset at which the whole match begins: m.offset


	the offsets of the captured substrings as a vector: m.offsets




For when a capture doesn’t match, instead of a substring, m.captures contains nothing in that
position, and m.offsets has a zero offset (recall that indices in Julia are 1-based, so a zero
offset into a string is invalid). Here is a pair of somewhat contrived examples:

julia> m = match(r"(a|b)(c)?(d)", "acd")
RegexMatch("acd", 1="a", 2="c", 3="d")

julia> m.match
"acd"

julia> m.captures
3-element Array{Union{SubString{String}, Void},1}:
 "a"
 "c"
 "d"

julia> m.offset
1

julia> m.offsets
3-element Array{Int64,1}:
 1
 2
 3

julia> m = match(r"(a|b)(c)?(d)", "ad")
RegexMatch("ad", 1="a", 2=nothing, 3="d")

julia> m.match
"ad"

julia> m.captures
3-element Array{Union{SubString{String}, Void},1}:
 "a"
 nothing
 "d"

julia> m.offset
1

julia> m.offsets
3-element Array{Int64,1}:
 1
 0
 2





It is convenient to have captures returned as an array so that one can use destructuring syntax
to bind them to local variables:

julia> first, second, third = m.captures; first
"a"





Captures can also be accessed by indexing the RegexMatch object with the number or name of the
capture group:

julia> m=match(r"(?<hour>\d+):(?<minute>\d+)","12:45")
RegexMatch("12:45", hour="12", minute="45")

julia> m[:minute]
"45"

julia> m[2]
"45"





Captures can be referenced in a substitution string when using replace() by using \n
to refer to the nth capture group and prefixing the substitution string with s. Capture group
0 refers to the entire match object. Named capture groups can be referenced in the substitution
with g<groupname>. For example:

julia> replace("first second", r"(\w+) (?<agroup>\w+)", s"\g<agroup> \1")
"second first"





Numbered capture groups can also be referenced as \g<n> for disambiguation, as in:

julia> replace("a", r".", s"\g<0>1")
"a1"





You can modify the behavior of regular expressions by some combination of the flags i, m,
s, and x after the closing double quote mark. These flags have the same meaning as they do
in Perl, as explained in this excerpt from the perlre manpage [http://perldoc.perl.org/perlre.html#Modifiers]:

i   Do case-insensitive pattern matching.

    If locale matching rules are in effect, the case map is taken
    from the current locale for code points less than 255, and
    from Unicode rules for larger code points. However, matches
    that would cross the Unicode rules/non-Unicode rules boundary
    (ords 255/256) will not succeed.

m   Treat string as multiple lines.  That is, change "^" and "$"
    from matching the start or end of the string to matching the
    start or end of any line anywhere within the string.

s   Treat string as single line.  That is, change "." to match any
    character whatsoever, even a newline, which normally it would
    not match.

    Used together, as r""ms, they let the "." match any character
    whatsoever, while still allowing "^" and "$" to match,
    respectively, just after and just before newlines within the
    string.

x   Tells the regular expression parser to ignore most whitespace
    that is neither backslashed nor within a character class. You
    can use this to break up your regular expression into
    (slightly) more readable parts. The '#' character is also
    treated as a metacharacter introducing a comment, just as in
    ordinary code.





For example, the following regex has all three flags turned on:

julia> r"a+.*b+.*?d$"ism
r"a+.*b+.*?d$"ims

julia> match(r"a+.*b+.*?d$"ism, "Goodbye,\nOh, angry,\nBad world\n")
RegexMatch("angry,\nBad world")





Triple-quoted regex strings, of the form r"""...""", are also supported (and may be convenient
for regular expressions containing quotation marks or newlines).




[Byte Array Literals](@id man-byte-array-literals)

Another useful non-standard string literal is the byte-array string literal: b"...". This form
lets you use string notation to express literal byte arrays – i.e. arrays of
UInt8 values. The rules for byte array literals are the following:


	ASCII characters and ASCII escapes produce a single byte.


	\x and octal escape sequences produce the byte corresponding to the escape value.


	Unicode escape sequences produce a sequence of bytes encoding that code point in UTF-8.




There is some overlap between these rules since the behavior of \x and octal escapes less than
0x80 (128) are covered by both of the first two rules, but here these rules agree. Together, these
rules allow one to easily use ASCII characters, arbitrary byte values, and UTF-8 sequences to
produce arrays of bytes. Here is an example using all three:

julia> b"DATA\xff\u2200"
8-element Array{UInt8,1}:
 0x44
 0x41
 0x54
 0x41
 0xff
 0xe2
 0x88
 0x80





The ASCII string “DATA” corresponds to the bytes 68, 65, 84, 65. \xff produces the single byte 255.
The Unicode escape \u2200 is encoded in UTF-8 as the three bytes 226, 136, 128. Note that the
resulting byte array does not correspond to a valid UTF-8 string – if you try to use this as
a regular string literal, you will get a syntax error:

julia> "DATA\xff\u2200"
ERROR: syntax: invalid UTF-8 sequence





Also observe the significant distinction between \xff and \uff: the former escape sequence
encodes the byte 255, whereas the latter escape sequence represents the code point 255, which
is encoded as two bytes in UTF-8:

julia> b"\xff"
1-element Array{UInt8,1}:
 0xff

julia> b"\uff"
2-element Array{UInt8,1}:
 0xc3
 0xbf





In character literals, this distinction is glossed over and \xff is allowed to represent the
code point 255, because characters always represent code points. In strings, however, \x escapes
always represent bytes, not code points, whereas \u and \U escapes always represent code points,
which are encoded in one or more bytes. For code points less than \u80, it happens that the
UTF-8 encoding of each code point is just the single byte produced by the corresponding \x escape,
so the distinction can safely be ignored. For the escapes \x80 through \xff as compared to
\u80 through \uff, however, there is a major difference: the former escapes all encode single
bytes, which – unless followed by very specific continuation bytes – do not form valid UTF-8
data, whereas the latter escapes all represent Unicode code points with two-byte encodings.

If this is all extremely confusing, try reading “The Absolute Minimum Every
Software Developer Absolutely, Positively Must Know About Unicode and Character
Sets” [https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/].
It’s an excellent introduction to Unicode and UTF-8, and may help alleviate
some confusion regarding the matter.




[Version Number Literals](@id man-version-number-literals)

Version numbers can easily be expressed with non-standard string literals of the form v"...".
Version number literals create VersionNumber objects which follow the specifications of semantic versioning [http://semver.org],
and therefore are composed of major, minor and patch numeric values, followed by pre-release and
build alpha-numeric annotations. For example, v"0.2.1-rc1+win64" is broken into major version
0, minor version 2, patch version 1, pre-release rc1 and build win64. When entering
a version literal, everything except the major version number is optional, therefore e.g.  v"0.2"
is equivalent to v"0.2.0" (with empty pre-release/build annotations), v"2" is equivalent to
v"2.0.0", and so on.

VersionNumber objects are mostly useful to easily and correctly compare two (or more) versions.
For example, the constant VERSION holds Julia version number as a VersionNumber object, and
therefore one can define some version-specific behavior using simple statements as:

if v"0.2" <= VERSION < v"0.3-"
    # do something specific to 0.2 release series
end





Note that in the above example the non-standard version number v"0.3-" is used, with a trailing
-: this notation is a Julia extension of the standard, and it’s used to indicate a version which
is lower than any 0.3 release, including all of its pre-releases. So in the above example the
code would only run with stable 0.2 versions, and exclude such versions as v"0.3.0-rc1". In
order to also allow for unstable (i.e. pre-release) 0.2 versions, the lower bound check should
be modified like this: v"0.2-" <= VERSION.

Another non-standard version specification extension allows one to use a trailing + to express
an upper limit on build versions, e.g.  VERSION > v"0.2-rc1+" can be used to mean any version
above 0.2-rc1 and any of its builds: it will return false for version v"0.2-rc1+win64" and
true for v"0.2-rc2".

It is good practice to use such special versions in comparisons (particularly, the trailing -
should always be used on upper bounds unless there’s a good reason not to), but they must not
be used as the actual version number of anything, as they are invalid in the semantic versioning
scheme.

Besides being used for the VERSION constant, VersionNumber objects are widely used
in the Pkg module, to specify packages versions and their dependencies.




[Raw String Literals](@id man-raw-string-literals)

Raw strings without interpolation or unescaping can be expressed with
non-standard string literals of the form raw"...". Raw string literals create
ordinary String objects which contain the enclosed contents exactly as
entered with no interpolation or unescaping. This is useful for strings which
contain code or markup in other languages which use $ or \ as special
characters. The exception is quotation marks that still must be
escaped, e.g. raw"\"" is equivalent to "\"".







          

      

      

    

  

  
    
    Style Guide
    

    
 
  

    
      
          
            
  
Style Guide

The following sections explain a few aspects of idiomatic Julia coding style. None of these rules
are absolute; they are only suggestions to help familiarize you with the language and to help
you choose among alternative designs.


Write functions, not just scripts

Writing code as a series of steps at the top level is a quick way to get started solving a problem,
but you should try to divide a program into functions as soon as possible. Functions are more
reusable and testable, and clarify what steps are being done and what their inputs and outputs
are. Furthermore, code inside functions tends to run much faster than top level code, due to how
Julia’s compiler works.

It is also worth emphasizing that functions should take arguments, instead of operating directly
on global variables (aside from constants like pi).




Avoid writing overly-specific types

Code should be as generic as possible. Instead of writing:

convert(Complex{Float64}, x)





it’s better to use available generic functions:

complex(float(x))





The second version will convert x to an appropriate type, instead of always the same type.

This style point is especially relevant to function arguments. For example, don’t declare an argument
to be of type Int or Int32 if it really could be any integer, expressed with the abstract
type Integer. In fact, in many cases you can omit the argument type altogether,
unless it is needed to disambiguate from other method definitions, since a
MethodError will be thrown anyway if a type is passed that does not support any
of the requisite operations. (This is known as
duck typing [https://en.wikipedia.org/wiki/Duck_typing].)

For example, consider the following definitions of a function addone that returns one plus its
argument:

addone(x::Int) = x + 1                 # works only for Int
addone(x::Integer) = x + oneunit(x)    # any integer type
addone(x::Number) = x + oneunit(x)     # any numeric type
addone(x) = x + oneunit(x)             # any type supporting + and oneunit





The last definition of addone handles any type supporting oneunit (which returns 1 in
the same type as x, which avoids unwanted type promotion) and the + function with
those arguments. The key thing to realize is that there is no performance penalty to defining
only the general addone(x) = x + oneunit(x), because Julia will automatically compile specialized
versions as needed. For example, the first time you call addone(12), Julia will automatically
compile a specialized addone function for x::Int arguments, with the call to oneunit
replaced by its inlined value 1. Therefore, the first three definitions of addone above are
completely redundant with the fourth definition.




Handle excess argument diversity in the caller

Instead of:

function foo(x, y)
    x = Int(x); y = Int(y)
    ...
end
foo(x, y)





use:

function foo(x::Int, y::Int)
    ...
end
foo(Int(x), Int(y))





This is better style because foo does not really accept numbers of all types; it really needs
Int s.

One issue here is that if a function inherently requires integers, it might be better to force
the caller to decide how non-integers should be converted (e.g. floor or ceiling). Another issue
is that declaring more specific types leaves more “space” for future method definitions.




Append ! to names of functions that modify their arguments

Instead of:

function double(a::AbstractArray{<:Number})
    for i = 1:endof(a)
        a[i] *= 2
    end
    return a
end





use:

function double!(a::AbstractArray{<:Number})
    for i = 1:endof(a)
        a[i] *= 2
    end
    return a
end





The Julia standard library uses this convention throughout and contains examples of functions
with both copying and modifying forms (e.g., sort() and sort!()), and others
which are just modifying (e.g., push!(), pop!(), splice!()).  It
is typical for such functions to also return the modified array for convenience.




Avoid strange type Unions

Types such as Union{Function,AbstractString} are often a sign that some design could be cleaner.




Avoid type Unions in fields

When creating a type such as:

mutable struct MyType
    ...
    x::Union{Void,T}
end





ask whether the option for x to be nothing (of type Void) is really necessary. Here are
some alternatives to consider:


	Find a safe default value to initialize x with


	Introduce another type that lacks x


	If there are many fields like x, store them in a dictionary


	Determine whether there is a simple rule for when x is nothing. For example, often the field
will start as nothing but get initialized at some well-defined point. In that case, consider
leaving it undefined at first.


	If x really needs to hold no value at some times, define it as ::Nullable{T} instead, as this
guarantees type-stability in the code accessing this field (see [Nullable types](@ref man-nullable-types)).







Avoid elaborate container types

It is usually not much help to construct arrays like the following:

a = Array{Union{Int,AbstractString,Tuple,Array}}(n)





In this case Array{Any}(n) is better. It is also more helpful to the compiler to annotate specific
uses (e.g. a[i]::Int) than to try to pack many alternatives into one type.




Use naming conventions consistent with Julia’s base/


	modules and type names use capitalization and camel case: module SparseArrays, struct UnitRange.


	functions are lowercase (maximum(), convert()) and, when readable, with multiple
words squashed together (isequal(), haskey()). When necessary, use underscores
as word separators. Underscores are also used to indicate a combination of concepts (remotecall_fetch()
as a more efficient implementation of fetch(remotecall(...))) or as modifiers (sum_kbn()).


	conciseness is valued, but avoid abbreviation (indexin() rather than indxin()) as
it becomes difficult to remember whether and how particular words are abbreviated.




If a function name requires multiple words, consider whether it might represent more than one
concept and might be better split into pieces.




Don’t overuse try-catch

It is better to avoid errors than to rely on catching them.




Don’t parenthesize conditions

Julia doesn’t require parens around conditions in if and while. Write:

if a == b





instead of:

if (a == b)








Don’t overuse ...

Splicing function arguments can be addictive. Instead of [a..., b...], use simply [a; b],
which already concatenates arrays. collect(a) is better than [a...], but since a
is already iterable it is often even better to leave it alone, and not convert it to an array.




Don’t use unnecessary static parameters

A function signature:

foo(x::T) where {T<:Real} = ...





should be written as:

foo(x::Real) = ...





instead, especially if T is not used in the function body. Even if T is used, it can be replaced
with typeof(x) if convenient. There is no performance difference. Note that this is
not a general caution against static parameters, just against uses where they are not needed.

Note also that container types, specifically may need type parameters in function calls. See the
FAQ Avoid fields with abstract containers for more information.




Avoid confusion about whether something is an instance or a type

Sets of definitions like the following are confusing:

foo(::Type{MyType}) = ...
foo(::MyType) = foo(MyType)





Decide whether the concept in question will be written as MyType or MyType(), and stick to
it.

The preferred style is to use instances by default, and only add methods involving Type{MyType}
later if they become necessary to solve some problem.

If a type is effectively an enumeration, it should be defined as a single (ideally immutable struct or primitive)
type, with the enumeration values being instances of it. Constructors and conversions can check
whether values are valid. This design is preferred over making the enumeration an abstract type,
with the “values” as subtypes.




Don’t overuse macros

Be aware of when a macro could really be a function instead.

Calling eval() inside a macro is a particularly dangerous warning sign; it means the
macro will only work when called at the top level. If such a macro is written as a function instead,
it will naturally have access to the run-time values it needs.




Don’t expose unsafe operations at the interface level

If you have a type that uses a native pointer:

mutable struct NativeType
    p::Ptr{UInt8}
    ...
end





don’t write definitions like the following:

getindex(x::NativeType, i) = unsafe_load(x.p, i)





The problem is that users of this type can write x[i] without realizing that the operation is
unsafe, and then be susceptible to memory bugs.

Such a function should either check the operation to ensure it is safe, or have unsafe somewhere
in its name to alert callers.




Don’t overload methods of base container types

It is possible to write definitions like the following:

show(io::IO, v::Vector{MyType}) = ...





This would provide custom showing of vectors with a specific new element type. While tempting,
this should be avoided. The trouble is that users will expect a well-known type like Vector()
to behave in a certain way, and overly customizing its behavior can make it harder to work with.




Avoid type piracy

“Type piracy” refers to the practice of extending or redefining methods in Base
or other packages on types that you have not defined. In some cases, you can get away with
type piracy with little ill effect. In extreme cases, however, you can even crash Julia
(e.g. if your method extension or redefinition causes invalid input to be passed to a
ccall). Type piracy can complicate reasoning about code, and may introduce
incompatibilities that are hard to predict and diagnose.

As an example, suppose you wanted to define multiplication on symbols in a module:

module A
import Base.*
*(x::Symbol, y::Symbol) = Symbol(x,y)
end





The problem is that now any other module that uses Base.* will also see this definition.
Since Symbol is defined in Base and is used by other modules, this can change the
behavior of unrelated code unexpectedly. There are several alternatives here, including
using a different function name, or wrapping the Symbols in another type that you define.

Sometimes, coupled packages may engage in type piracy to separate features from definitions,
especially when the packages were designed by collaborating authors, and when the
definitions are reusable. For example, one package might provide some types useful for
working with colors; another package could define methods for those types that enable
conversions between color spaces. Another example might be a package that acts as a thin
wrapper for some C code, which another package might then pirate to implement a
higher-level, Julia-friendly API.




Be careful with type equality

You generally want to use isa() and <: (issubtype()) for testing types,
not ==. Checking types for exact equality typically only makes sense when comparing to a known
concrete type (e.g. T == Float64), or if you really, really know what you’re doing.




Do not write x->f(x)

Since higher-order functions are often called with anonymous functions, it is easy to conclude
that this is desirable or even necessary. But any function can be passed directly, without being
“wrapped” in an anonymous function. Instead of writing map(x->f(x), a), write map(f, a).




Avoid using floats for numeric literals in generic code when possible

If you write generic code which handles numbers, and which can be expected to run with many different
numeric type arguments, try using literals of a numeric type that will affect the arguments as
little as possible through promotion.

For example,

julia> f(x) = 2.0 * x
f (generic function with 1 method)

julia> f(1//2)
1.0

julia> f(1/2)
1.0

julia> f(1)
2.0





while

julia> g(x) = 2 * x
g (generic function with 1 method)

julia> g(1//2)
1//1

julia> g(1/2)
1.0

julia> g(1)
2





As you can see, the second version, where we used an Int literal, preserved the type of the
input argument, while the first didn’t. This is because e.g. promote_type(Int, Float64) == Float64,
and promotion happens with the multiplication. Similarly, Rational literals are less type disruptive
than Float64 literals, but more disruptive than Ints:

julia> h(x) = 2//1 * x
h (generic function with 1 method)

julia> h(1//2)
1//1

julia> h(1/2)
1.0

julia> h(1)
2//1





Thus, use Int literals when possible, with Rational{Int} for literal non-integer numbers,
in order to make it easier to use your code.
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Type systems have traditionally fallen into two quite different camps: static type systems, where
every program expression must have a type computable before the execution of the program, and
dynamic type systems, where nothing is known about types until run time, when the actual values
manipulated by the program are available. Object orientation allows some flexibility in statically
typed languages by letting code be written without the precise types of values being known at
compile time. The ability to write code that can operate on different types is called polymorphism.
All code in classic dynamically typed languages is polymorphic: only by explicitly checking types,
or when objects fail to support operations at run-time, are the types of any values ever restricted.

Julia’s type system is dynamic, but gains some of the advantages of static type systems by making
it possible to indicate that certain values are of specific types. This can be of great assistance
in generating efficient code, but even more significantly, it allows method dispatch on the types
of function arguments to be deeply integrated with the language. Method dispatch is explored in
detail in Methods, but is rooted in the type system presented here.

The default behavior in Julia when types are omitted is to allow values to be of any type. Thus,
one can write many useful Julia programs without ever explicitly using types. When additional
expressiveness is needed, however, it is easy to gradually introduce explicit type annotations
into previously “untyped” code. Doing so will typically increase both the performance and robustness
of these systems, and perhaps somewhat counterintuitively, often significantly simplify them.

Describing Julia in the lingo of type systems [https://en.wikipedia.org/wiki/Type_system], it
is: dynamic, nominative and parametric. Generic types can be parameterized, and the hierarchical
relationships between types are explicitly declared [https://en.wikipedia.org/wiki/Nominal_type_system],
rather than implied by compatible structure [https://en.wikipedia.org/wiki/Structural_type_system].
One particularly distinctive feature of Julia’s type system is that concrete types may not subtype
each other: all concrete types are final and may only have abstract types as their supertypes.
While this might at first seem unduly restrictive, it has many beneficial consequences with surprisingly
few drawbacks. It turns out that being able to inherit behavior is much more important than being
able to inherit structure, and inheriting both causes significant difficulties in traditional
object-oriented languages. Other high-level aspects of Julia’s type system that should be mentioned
up front are:


	There is no division between object and non-object values: all values in Julia are true objects
having a type that belongs to a single, fully connected type graph, all nodes of which are equally
first-class as types.


	There is no meaningful concept of a “compile-time type”: the only type a value has is its actual
type when the program is running. This is called a “run-time type” in object-oriented languages
where the combination of static compilation with polymorphism makes this distinction significant.


	Only values, not variables, have types – variables are simply names bound to values.


	Both abstract and concrete types can be parameterized by other types. They can also be parameterized
by symbols, by values of any type for which isbits() returns true (essentially, things
like numbers and bools that are stored like C types or structs with no pointers to other objects),
and also by tuples thereof. Type parameters may be omitted when they do not need to be referenced
or restricted.




Julia’s type system is designed to be powerful and expressive, yet clear, intuitive and unobtrusive.
Many Julia programmers may never feel the need to write code that explicitly uses types. Some
kinds of programming, however, become clearer, simpler, faster and more robust with declared types.


Type Declarations

The :: operator can be used to attach type annotations to expressions and variables in programs.
There are two primary reasons to do this:


	As an assertion to help confirm that your program works the way you expect,


	To provide extra type information to the compiler, which can then improve performance in some
cases




When appended to an expression computing a value, the :: operator is read as “is an instance
of”. It can be used anywhere to assert that the value of the expression on the left is an instance
of the type on the right. When the type on the right is concrete, the value on the left must have
that type as its implementation – recall that all concrete types are final, so no implementation
is a subtype of any other. When the type is abstract, it suffices for the value to be implemented
by a concrete type that is a subtype of the abstract type. If the type assertion is not true,
an exception is thrown, otherwise, the left-hand value is returned:

julia> (1+2)::AbstractFloat
ERROR: TypeError: typeassert: expected AbstractFloat, got Int64

julia> (1+2)::Int
3





This allows a type assertion to be attached to any expression in-place.

When appended to a variable on the left-hand side of an assignment, or as part of a local declaration,
the :: operator means something a bit different: it declares the variable to always have the
specified type, like a type declaration in a statically-typed language such as C. Every value
assigned to the variable will be converted to the declared type using convert():

julia> function foo()
           x::Int8 = 100
           x
       end
foo (generic function with 1 method)

julia> foo()
100

julia> typeof(ans)
Int8





This feature is useful for avoiding performance “gotchas” that could occur if one of the assignments
to a variable changed its type unexpectedly.

This “declaration” behavior only occurs in specific contexts:

local x::Int8  # in a local declaration
x::Int8 = 10   # as the left-hand side of an assignment





and applies to the whole current scope, even before the declaration. Currently, type declarations
cannot be used in global scope, e.g. in the REPL, since Julia does not yet have constant-type
globals.

Declarations can also be attached to function definitions:

function sinc(x)::Float64
    if x == 0
        return 1
    end
    return sin(pi*x)/(pi*x)
end





Returning from this function behaves just like an assignment to a variable with a declared type:
the value is always converted to Float64.




Abstract Types

Abstract types cannot be instantiated, and serve only as nodes in the type graph, thereby describing
sets of related concrete types: those concrete types which are their descendants. We begin with
abstract types even though they have no instantiation because they are the backbone of the type
system: they form the conceptual hierarchy which makes Julia’s type system more than just a collection
of object implementations.

Recall that in Integers and Floating-Point Numbers, we introduced a variety of concrete
types of numeric values: Int8, UInt8, Int16, UInt16,
Int32, UInt32, Int64, UInt64, Int128,
UInt128, Float16, Float32, and Float64. Although
they have different representation sizes, Int8, Int16, Int32, Int64 and Int128
all have in common that they are signed integer types. Likewise UInt8, UInt16, UInt32,
UInt64 and UInt128 are all unsigned integer types, while Float16, Float32 and
Float64 are distinct in being floating-point types rather than integers. It is common for
a piece of code to make sense, for example, only if its arguments are some kind of integer,
but not really depend on what particular kind of integer. For example, the greatest common
denominator algorithm works for all kinds of integers, but will not work for floating-point
numbers. Abstract types allow the construction of a hierarchy of types, providing a context
into which concrete types can fit. This allows you, for example, to easily program to any type
that is an integer, without restricting an algorithm to a specific type of integer.

Abstract types are declared using the abstract type keyword. The general syntaxes for declaring an
abstract type are:

abstract type «name» end
abstract type «name» <: «supertype» end





The abstract type keyword introduces a new abstract type, whose name is given by «name». This
name can be optionally followed by <: and an already-existing type, indicating that the newly
declared abstract type is a subtype of this “parent” type.

When no supertype is given, the default supertype is Any – a predefined abstract type that
all objects are instances of and all types are subtypes of. In type theory, Any is commonly
called “top” because it is at the apex of the type graph. Julia also has a predefined abstract
“bottom” type, at the nadir of the type graph, which is written as Union{}. It is the exact
opposite of Any: no object is an instance of Union{} and all types are supertypes of Union{}.

Let’s consider some of the abstract types that make up Julia’s numerical hierarchy:

abstract type Number end
abstract type Real     <: Number end
abstract type AbstractFloat <: Real end
abstract type Integer  <: Real end
abstract type Signed   <: Integer end
abstract type Unsigned <: Integer end





The Number type is a direct child type of Any, and Real is its child.
In turn, Real has two children (it has more, but only two are shown here; we’ll get to
the others later): Integer and AbstractFloat, separating the world into
representations of integers and representations of real numbers. Representations of real
numbers include, of course, floating-point types, but also include other types, such as
rationals. Hence, AbstractFloat is a proper subtype of Real, including only
floating-point representations of real numbers. Integers are further subdivided into
Signed and Unsigned varieties.

The <: operator in general means “is a subtype of”, and, used in declarations like this, declares
the right-hand type to be an immediate supertype of the newly declared type. It can also be used
in expressions as a subtype operator which returns true when its left operand is a subtype of
its right operand:

julia> Integer <: Number
true

julia> Integer <: AbstractFloat
false





An important use of abstract types is to provide default implementations for concrete types. To
give a simple example, consider:

function myplus(x,y)
    x+y
end





The first thing to note is that the above argument declarations are equivalent to x::Any and
y::Any. When this function is invoked, say as myplus(2,5), the dispatcher chooses the most
specific method named myplus that matches the given arguments. (See Methods for more
information on multiple dispatch.)

Assuming no method more specific than the above is found, Julia next internally defines and compiles
a method called myplus specifically for two Int arguments based on the generic function given
above, i.e., it implicitly defines and compiles:

function myplus(x::Int,y::Int)
    x+y
end





and finally, it invokes this specific method.

Thus, abstract types allow programmers to write generic functions that can later be used as the
default method by many combinations of concrete types. Thanks to multiple dispatch, the programmer
has full control over whether the default or more specific method is used.

An important point to note is that there is no loss in performance if the programmer relies on
a function whose arguments are abstract types, because it is recompiled for each tuple of argument
concrete types with which it is invoked. (There may be a performance issue, however, in the case
of function arguments that are containers of abstract types; see [Performance Tips](@ref man-performance-tips).)




Primitive Types

A primitive type is a concrete type whose data consists of plain old bits. Classic examples of primitive
types are integers and floating-point values. Unlike most languages, Julia lets you declare your
own primitive types, rather than providing only a fixed set of built-in ones. In fact, the standard
primitive types are all defined in the language itself:

primitive type Float16 <: AbstractFloat 16 end
primitive type Float32 <: AbstractFloat 32 end
primitive type Float64 <: AbstractFloat 64 end

primitive type Bool <: Integer 8 end
primitive type Char 32 end

primitive type Int8    <: Signed   8 end
primitive type UInt8   <: Unsigned 8 end
primitive type Int16   <: Signed   16 end
primitive type UInt16  <: Unsigned 16 end
primitive type Int32   <: Signed   32 end
primitive type UInt32  <: Unsigned 32 end
primitive type Int64   <: Signed   64 end
primitive type UInt64  <: Unsigned 64 end
primitive type Int128  <: Signed   128 end
primitive type UInt128 <: Unsigned 128 end





The general syntaxes for declaring a primitive type are:

primitive type «name» «bits» end
primitive type «name» <: «supertype» «bits» end





The number of bits indicates how much storage the type requires and the name gives the new type
a name. A primitive type can optionally be declared to be a subtype of some supertype. If a supertype
is omitted, then the type defaults to having Any as its immediate supertype. The declaration
of Bool above therefore means that a boolean value takes eight bits to store, and has
Integer as its immediate supertype. Currently, only sizes that are multiples of
8 bits are supported. Therefore, boolean values, although they really need just a single bit,
cannot be declared to be any smaller than eight bits.

The types Bool, Int8 and UInt8 all have identical representations:
they are eight-bit chunks of memory. Since Julia’s type system is nominative, however, they
are not interchangeable despite having identical structure. A fundamental difference between
them is that they have different supertypes: Bool’s direct supertype is Integer,
Int8’s is Signed, and UInt8’s is Unsigned. All other
differences between Bool, Int8, and UInt8 are matters of
behavior – the way functions are defined to act when given objects of these types as
arguments. This is why a nominative type system is necessary: if structure determined type,
which in turn dictates behavior, then it would be impossible to make Bool behave
any differently than Int8 or UInt8.




Composite Types

Composite types [https://en.wikipedia.org/wiki/Composite_data_type] are called records, structs,
or objects in various languages. A composite type is a collection of named fields,
an instance of which can be treated as a single value. In many languages, composite types are
the only kind of user-definable type, and they are by far the most commonly used user-defined
type in Julia as well.

In mainstream object oriented languages, such as C++, Java, Python and Ruby, composite types also
have named functions associated with them, and the combination is called an “object”. In purer
object-oriented languages, such as Ruby or Smalltalk, all values are objects whether they are
composites or not. In less pure object oriented languages, including C++ and Java, some values,
such as integers and floating-point values, are not objects, while instances of user-defined composite
types are true objects with associated methods. In Julia, all values are objects, but functions
are not bundled with the objects they operate on. This is necessary since Julia chooses which
method of a function to use by multiple dispatch, meaning that the types of all of a function’s
arguments are considered when selecting a method, rather than just the first one (see Methods
for more information on methods and dispatch). Thus, it would be inappropriate for functions to
“belong” to only their first argument. Organizing methods into function objects rather than having
named bags of methods “inside” each object ends up being a highly beneficial aspect of the language
design.

Composite types are introduced with the struct keyword followed by a block of field names, optionally
annotated with types using the :: operator:

julia> struct Foo
           bar
           baz::Int
           qux::Float64
       end





Fields with no type annotation default to Any, and can accordingly hold any type of value.

New objects of type Foo are created by applying the Foo type object like a function
to values for its fields:

julia> foo = Foo("Hello, world.", 23, 1.5)
Foo("Hello, world.", 23, 1.5)

julia> typeof(foo)
Foo





When a type is applied like a function it is called a constructor. Two constructors are generated
automatically (these are called default constructors). One accepts any arguments and calls
convert() to convert them to the types of the fields, and the other accepts arguments
that match the field types exactly. The reason both of these are generated is that this makes
it easier to add new definitions without inadvertently replacing a default constructor.

Since the bar field is unconstrained in type, any value will do. However, the value for baz
must be convertible to Int:

julia> Foo((), 23.5, 1)
ERROR: InexactError()
Stacktrace:
 [1] convert(::Type{Int64}, ::Float64) at ./float.jl:679
 [2] Foo(::Tuple{}, ::Float64, ::Int64) at ./none:2





You may find a list of field names using the fieldnames function.

julia> fieldnames(foo)
3-element Array{Symbol,1}:
 :bar
 :baz
 :qux





You can access the field values of a composite object using the traditional foo.bar notation:

julia> foo.bar
"Hello, world."

julia> foo.baz
23

julia> foo.qux
1.5





Composite objects declared with struct are immutable; they cannot be modified
after construction. This may seem odd at first, but it has several advantages:


	It can be more efficient. Some structs can be packed efficiently into arrays, and in some cases the
compiler is able to avoid allocating immutable objects entirely.


	It is not possible to violate the invariants provided by the type’s constructors.


	Code using immutable objects can be easier to reason about.




An immutable object might contain mutable objects, such as arrays, as fields. Those contained
objects will remain mutable; only the fields of the immutable object itself cannot be changed
to point to different objects.

Where required, mutable composite objects can be declared with the keyword mutable struct, to be
discussed in the next section.

Composite types with no fields are singletons; there can be only one instance of such types:

julia> struct NoFields
       end

julia> NoFields() === NoFields()
true





The === function confirms that the “two” constructed instances of NoFields are actually one
and the same. Singleton types are described in further detail [below](@ref man-singleton-types).

There is much more to say about how instances of composite types are created, but that discussion
depends on both Parametric Types and on Methods, and is sufficiently important
to be addressed in its own section: [Constructors](@ref man-constructors).




Mutable Composite Types

If a composite type is declared with mutable struct instead of struct, then instances of
it can be modified:

julia> mutable struct Bar
           baz
           qux::Float64
       end

julia> bar = Bar("Hello", 1.5);

julia> bar.qux = 2.0
2.0

julia> bar.baz = 1//2
1//2





In order to support mutation, such objects are generally allocated on the heap, and have
stable memory addresses.
A mutable object is like a little container that might hold different values over time,
and so can only be reliably identified with its address.
In contrast, an instance of an immutable type is associated with specific field values —
the field values alone tell you everything about the object.
In deciding whether to make a type mutable, ask whether two instances
with the same field values would be considered identical, or if they might need to change independently
over time. If they would be considered identical, the type should probably be immutable.

To recap, two essential properties define immutability in Julia:


	An object with an immutable type is passed around (both in assignment statements and in function
calls) by copying, whereas a mutable type is passed around by reference.


	It is not permitted to modify the fields of a composite immutable type.




It is instructive, particularly for readers whose background is C/C++, to consider why these two
properties go hand in hand.  If they were separated, i.e., if the fields of objects passed around
by copying could be modified, then it would become more difficult to reason about certain instances
of generic code.  For example, suppose x is a function argument of an abstract type, and suppose
that the function changes a field: x.isprocessed = true.  Depending on whether x is passed
by copying or by reference, this statement may or may not alter the actual argument in the calling
routine.  Julia sidesteps the possibility of creating functions with unknown effects in this scenario
by forbidding modification of fields of objects passed around by copying.




Declared Types

The three kinds of types discussed in the previous three sections are actually all closely related.
They share the same key properties:


	They are explicitly declared.


	They have names.


	They have explicitly declared supertypes.


	They may have parameters.




Because of these shared properties, these types are internally represented as instances of the
same concept, DataType, which is the type of any of these types:

julia> typeof(Real)
DataType

julia> typeof(Int)
DataType





A DataType may be abstract or concrete. If it is concrete, it has a specified size, storage
layout, and (optionally) field names. Thus a bits type is a DataType with nonzero size, but
no field names. A composite type is a DataType that has field names or is empty (zero size).

Every concrete value in the system is an instance of some DataType.




Type Unions

A type union is a special abstract type which includes as objects all instances of any of its
argument types, constructed using the special Union function:

julia> IntOrString = Union{Int,AbstractString}
Union{AbstractString, Int64}

julia> 1 :: IntOrString
1

julia> "Hello!" :: IntOrString
"Hello!"

julia> 1.0 :: IntOrString
ERROR: TypeError: typeassert: expected Union{AbstractString, Int64}, got Float64





The compilers for many languages have an internal union construct for reasoning about types; Julia
simply exposes it to the programmer.




Parametric Types

An important and powerful feature of Julia’s type system is that it is parametric: types can take
parameters, so that type declarations actually introduce a whole family of new types – one for
each possible combination of parameter values. There are many languages that support some version
of generic programming [https://en.wikipedia.org/wiki/Generic_programming], wherein data structures
and algorithms to manipulate them may be specified without specifying the exact types involved.
For example, some form of generic programming exists in ML, Haskell, Ada, Eiffel, C++, Java, C#,
F#, and Scala, just to name a few. Some of these languages support true parametric polymorphism
(e.g. ML, Haskell, Scala), while others support ad-hoc, template-based styles of generic programming
(e.g. C++, Java). With so many different varieties of generic programming and parametric types
in various languages, we won’t even attempt to compare Julia’s parametric types to other languages,
but will instead focus on explaining Julia’s system in its own right. We will note, however, that
because Julia is a dynamically typed language and doesn’t need to make all type decisions at compile
time, many traditional difficulties encountered in static parametric type systems can be relatively
easily handled.

All declared types (the DataType variety) can be parameterized, with the same syntax in each
case. We will discuss them in the following order: first, parametric composite types, then parametric
abstract types, and finally parametric bits types.


Parametric Composite Types

Type parameters are introduced immediately after the type name, surrounded by curly braces:

julia> struct Point{T}
           x::T
           y::T
       end





This declaration defines a new parametric type, Point{T}, holding two “coordinates” of type
T. What, one may ask, is T? Well, that’s precisely the point of parametric types: it can be
any type at all (or a value of any bits type, actually, although here it’s clearly used as a type).
Point{Float64} is a concrete type equivalent to the type defined by replacing T in the definition
of Point with Float64. Thus, this single declaration actually declares an unlimited
number of types: Point{Float64}, Point{AbstractString}, Point{Int64}, etc. Each of these
is now a usable concrete type:

julia> Point{Float64}
Point{Float64}

julia> Point{AbstractString}
Point{AbstractString}





The type Point{Float64} is a point whose coordinates are 64-bit floating-point values, while
the type Point{AbstractString} is a “point” whose “coordinates” are string objects (see Strings).

Point itself is also a valid type object, containing all instances Point{Float64}, Point{AbstractString},
etc. as subtypes:

julia> Point{Float64} <: Point
true

julia> Point{AbstractString} <: Point
true





Other types, of course, are not subtypes of it:

julia> Float64 <: Point
false

julia> AbstractString <: Point
false





Concrete Point types with different values of T are never subtypes of each other:

julia> Point{Float64} <: Point{Int64}
false

julia> Point{Float64} <: Point{Real}
false





!!! warning
This last point is very important: even though Float64 <: Real we DO NOT have Point{Float64} <: Point{Real}.

In other words, in the parlance of type theory, Julia’s type parameters are invariant, rather
than being covariant (or even contravariant) [https://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29]. This is for practical reasons: while any instance
of Point{Float64} may conceptually be like an instance of Point{Real} as well, the two types
have different representations in memory:


	An instance of Point{Float64} can be represented compactly and efficiently as an immediate pair
of 64-bit values;


	An instance of Point{Real} must be able to hold any pair of instances of Real.
Since objects that are instances of Real can be of arbitrary size and structure, in
practice an instance of Point{Real} must be represented as a pair of pointers to
individually allocated Real objects.




The efficiency gained by being able to store Point{Float64} objects with immediate values is
magnified enormously in the case of arrays: an Array{Float64} can be stored as a contiguous
memory block of 64-bit floating-point values, whereas an Array{Real} must be an array of pointers
to individually allocated Real objects – which may well be
boxed [https://en.wikipedia.org/wiki/Object_type_%28object-oriented_programming%29#Boxing]
64-bit floating-point values, but also might be arbitrarily large, complex objects, which are
declared to be implementations of the Real abstract type.

Since Point{Float64} is not a subtype of Point{Real}, the following method can’t be applied
to arguments of type Point{Float64}:

function norm(p::Point{Real})
    sqrt(p.x^2 + p.y^2)
end





A correct way to define a method that accepts all arguments of type Point{T} where T is
a subtype of Real is:

function norm(p::Point{<:Real})
    sqrt(p.x^2 + p.y^2)
end





(Equivalently, one could define function norm{T<:Real}(p::Point{T}) or
function norm(p::Point{T} where T<:Real); see UnionAll Types.)

More examples will be discussed later in Methods.

How does one construct a Point object? It is possible to define custom constructors for composite
types, which will be discussed in detail in [Constructors](@ref man-constructors), but in the absence of any special
constructor declarations, there are two default ways of creating new composite objects, one in
which the type parameters are explicitly given and the other in which they are implied by the
arguments to the object constructor.

Since the type Point{Float64} is a concrete type equivalent to Point declared with Float64
in place of T, it can be applied as a constructor accordingly:

julia> Point{Float64}(1.0, 2.0)
Point{Float64}(1.0, 2.0)

julia> typeof(ans)
Point{Float64}





For the default constructor, exactly one argument must be supplied for each field:

julia> Point{Float64}(1.0)
ERROR: MethodError: Cannot `convert` an object of type Float64 to an object of type Point{Float64}
This may have arisen from a call to the constructor Point{Float64}(...),
since type constructors fall back to convert methods.
Stacktrace:
 [1] Point{Float64}(::Float64) at ./sysimg.jl:77

julia> Point{Float64}(1.0,2.0,3.0)
ERROR: MethodError: no method matching Point{Float64}(::Float64, ::Float64, ::Float64)





Only one default constructor is generated for parametric types, since overriding it is not possible.
This constructor accepts any arguments and converts them to the field types.

In many cases, it is redundant to provide the type of Point object one wants to construct, since
the types of arguments to the constructor call already implicitly provide type information. For
that reason, you can also apply Point itself as a constructor, provided that the implied value
of the parameter type T is unambiguous:

julia> Point(1.0,2.0)
Point{Float64}(1.0, 2.0)

julia> typeof(ans)
Point{Float64}

julia> Point(1,2)
Point{Int64}(1, 2)

julia> typeof(ans)
Point{Int64}





In the case of Point, the type of T is unambiguously implied if and only if the two arguments
to Point have the same type. When this isn’t the case, the constructor will fail with a MethodError:

julia> Point(1,2.5)
ERROR: MethodError: no method matching Point(::Int64, ::Float64)
Closest candidates are:
  Point(::T, !Matched::T) where T at none:2





Constructor methods to appropriately handle such mixed cases can be defined, but that will not
be discussed until later on in [Constructors](@ref man-constructors).




Parametric Abstract Types

Parametric abstract type declarations declare a collection of abstract types, in much the same
way:

julia> abstract type Pointy{T} end





With this declaration, Pointy{T} is a distinct abstract type for each type or integer value
of T. As with parametric composite types, each such instance is a subtype of Pointy:

julia> Pointy{Int64} <: Pointy
true

julia> Pointy{1} <: Pointy
true





Parametric abstract types are invariant, much as parametric composite types are:

julia> Pointy{Float64} <: Pointy{Real}
false

julia> Pointy{Real} <: Pointy{Float64}
false





The notation Pointy{<:Real} can be used to express the Julia analogue of a
covariant type, while Pointy{>:Int} the analogue of a contravariant type,
but technically these represent sets of types (see UnionAll Types).

julia> Pointy{Float64} <: Pointy{<:Real}
true

julia> Pointy{Real} <: Pointy{>:Int}
true





Much as plain old abstract types serve to create a useful hierarchy of types over concrete types,
parametric abstract types serve the same purpose with respect to parametric composite types. We
could, for example, have declared Point{T} to be a subtype of Pointy{T} as follows:

julia> struct Point{T} <: Pointy{T}
           x::T
           y::T
       end





Given such a declaration, for each choice of T, we have Point{T} as a subtype of Pointy{T}:

julia> Point{Float64} <: Pointy{Float64}
true

julia> Point{Real} <: Pointy{Real}
true

julia> Point{AbstractString} <: Pointy{AbstractString}
true





This relationship is also invariant:

julia> Point{Float64} <: Pointy{Real}
false

julia> Point{Float64} <: Pointy{<:Real}
true





What purpose do parametric abstract types like Pointy serve? Consider if we create a point-like
implementation that only requires a single coordinate because the point is on the diagonal line
x = y:

julia> struct DiagPoint{T} <: Pointy{T}
           x::T
       end





Now both Point{Float64} and DiagPoint{Float64} are implementations of the Pointy{Float64}
abstraction, and similarly for every other possible choice of type T. This allows programming
to a common interface shared by all Pointy objects, implemented for both Point and DiagPoint.
This cannot be fully demonstrated, however, until we have introduced methods and dispatch in the
next section, Methods.

There are situations where it may not make sense for type parameters to range freely over all
possible types. In such situations, one can constrain the range of T like so:

julia> abstract type Pointy{T<:Real} end





With such a declaration, it is acceptable to use any type that is a subtype of
Real in place of T, but not types that are not subtypes of Real:

julia> Pointy{Float64}
Pointy{Float64}

julia> Pointy{Real}
Pointy{Real}

julia> Pointy{AbstractString}
ERROR: TypeError: Pointy: in T, expected T<:Real, got Type{AbstractString}

julia> Pointy{1}
ERROR: TypeError: Pointy: in T, expected T<:Real, got Int64





Type parameters for parametric composite types can be restricted in the same manner:

struct Point{T<:Real} <: Pointy{T}
    x::T
    y::T
end





To give a real-world example of how all this parametric type machinery can be useful, here is
the actual definition of Julia’s Rational immutable type (except that we omit the
constructor here for simplicity), representing an exact ratio of integers:

struct Rational{T<:Integer} <: Real
    num::T
    den::T
end





It only makes sense to take ratios of integer values, so the parameter type T is restricted
to being a subtype of Integer, and a ratio of integers represents a value on the
real number line, so any Rational is an instance of the Real abstraction.




Tuple Types

Tuples are an abstraction of the arguments of a function – without the function itself. The salient
aspects of a function’s arguments are their order and their types. Therefore a tuple type is similar
to a parameterized immutable type where each parameter is the type of one field. For example,
a 2-element tuple type resembles the following immutable type:

struct Tuple2{A,B}
    a::A
    b::B
end





However, there are three key differences:


	Tuple types may have any number of parameters.


	Tuple types are covariant in their parameters: Tuple{Int} is a subtype of Tuple{Any}. Therefore
Tuple{Any} is considered an abstract type, and tuple types are only concrete if their parameters
are.


	Tuples do not have field names; fields are only accessed by index.




Tuple values are written with parentheses and commas. When a tuple is constructed, an appropriate
tuple type is generated on demand:

julia> typeof((1,"foo",2.5))
Tuple{Int64,String,Float64}





Note the implications of covariance:

julia> Tuple{Int,AbstractString} <: Tuple{Real,Any}
true

julia> Tuple{Int,AbstractString} <: Tuple{Real,Real}
false

julia> Tuple{Int,AbstractString} <: Tuple{Real,}
false





Intuitively, this corresponds to the type of a function’s arguments being a subtype of the function’s
signature (when the signature matches).




Vararg Tuple Types

The last parameter of a tuple type can be the special type Vararg, which denotes any number
of trailing elements:

julia> mytupletype = Tuple{AbstractString,Vararg{Int}}
Tuple{AbstractString,Vararg{Int64,N} where N}

julia> isa(("1",), mytupletype)
true

julia> isa(("1",1), mytupletype)
true

julia> isa(("1",1,2), mytupletype)
true

julia> isa(("1",1,2,3.0), mytupletype)
false





Notice that Vararg{T} corresponds to zero or more elements of type T. Vararg tuple types are
used to represent the arguments accepted by varargs methods (see Varargs Functions).

The type Vararg{T,N} corresponds to exactly N elements of type T.  NTuple{N,T} is a convenient
alias for Tuple{Vararg{T,N}}, i.e. a tuple type containing exactly N elements of type T.


[Singleton Types](@id man-singleton-types)

There is a special kind of abstract parametric type that must be mentioned here: singleton types.
For each type, T, the “singleton type” Type{T} is an abstract type whose only instance is
the object T. Since the definition is a little difficult to parse, let’s look at some examples:

julia> isa(Float64, Type{Float64})
true

julia> isa(Real, Type{Float64})
false

julia> isa(Real, Type{Real})
true

julia> isa(Float64, Type{Real})
false





In other words, isa(A,Type{B}) is true if and only if A and B are the same object
and that object is a type. Without the parameter, Type is simply an abstract type which has
all type objects as its instances, including, of course, singleton types:

julia> isa(Type{Float64}, Type)
true

julia> isa(Float64, Type)
true

julia> isa(Real, Type)
true





Any object that is not a type is not an instance of Type:

julia> isa(1, Type)
false

julia> isa("foo", Type)
false





Until we discuss Parametric Methods and [conversions](@ref conversion-and-promotion), it is difficult to explain
the utility of the singleton type construct, but in short, it allows one to specialize function
behavior on specific type values. This is useful for writing methods (especially parametric
ones) whose behavior depends on a type that is given as an explicit argument rather than implied
by the type of one of its arguments.

A few popular languages have singleton types, including Haskell, Scala and Ruby. In general usage,
the term “singleton type” refers to a type whose only instance is a single value. This meaning
applies to Julia’s singleton types, but with that caveat that only type objects have singleton
types.






Parametric Primitive Types

Primitive types can also be declared parametrically. For example, pointers are represented as
primitive types which would be declared in Julia like this:

# 32-bit system:
primitive type Ptr{T} 32 end

# 64-bit system:
primitive type Ptr{T} 64 end





The slightly odd feature of these declarations as compared to typical parametric composite types,
is that the type parameter T is not used in the definition of the type itself – it is just
an abstract tag, essentially defining an entire family of types with identical structure, differentiated
only by their type parameter. Thus, Ptr{Float64} and Ptr{Int64} are distinct types, even though
they have identical representations. And of course, all specific pointer types are subtypes of
the umbrella Ptr type:

julia> Ptr{Float64} <: Ptr
true

julia> Ptr{Int64} <: Ptr
true










UnionAll Types

We have said that a parametric type like Ptr acts as a supertype of all its instances
(Ptr{Int64} etc.). How does this work? Ptr itself cannot be a normal data type, since without
knowing the type of the referenced data the type clearly cannot be used for memory operations.
The answer is that Ptr (or other parametric types like Array) is a different kind of type called a
UnionAll type. Such a type expresses the iterated union of types for all values of some parameter.

UnionAll types are usually written using the keyword where. For example Ptr could be more
accurately written as Ptr{T} where T, meaning all values whose type is Ptr{T} for some value
of T. In this context, the parameter T is also often called a “type variable” since it is
like a variable that ranges over types.
Each where introduces a single type variable, so these expressions are nested for types with
multiple parameters, for example Array{T,N} where N where T.

The type application syntax A{B,C} requires A to be a UnionAll type, and first substitutes B
for the outermost type variable in A.
The result is expected to be another UnionAll type, into which C is then substituted.
So A{B,C} is equivalent to A{B}{C}.
This explains why it is possible to partially instantiate a type, as in Array{Float64}: the first
parameter value has been fixed, but the second still ranges over all possible values.
Using explicit where syntax, any subset of parameters can be fixed. For example, the type of all
1-dimensional arrays can be written as Array{T,1} where T.

Type variables can be restricted with subtype relations.
Array{T} where T<:Integer refers to all arrays whose element type is some kind of
Integer.
The syntax Array{<:Integer} is a convenient shorthand for Array{T} where T<:Integer.
Type variables can have both lower and upper bounds.
Array{T} where Int<:T<:Number refers to all arrays of Numbers that are able to
contain Ints (since T must be at least as big as Int).
The syntax where T>:Int also works to specify only the lower bound of a type variable,
and Array{>:Int} is equivalent to Array{T} where T>:Int.

Since where expressions nest, type variable bounds can refer to outer type variables.
For example Tuple{T,Array{S}} where S<:AbstractArray{T} where T<:Real refers to 2-tuples
whose first element is some Real, and whose second element is an Array of any
kind of array whose element type contains the type of the first tuple element.

The where keyword itself can be nested inside a more complex declaration. For example,
consider the two types created by the following declarations:

julia> const T1 = Array{Array{T,1} where T, 1}
Array{Array{T,1} where T,1}

julia> const T2 = Array{Array{T,1}, 1} where T
Array{Array{T,1},1} where T





Type T1 defines a 1-dimensional array of 1-dimensional arrays; each
of the inner arrays consists of objects of the same type, but this type may vary from one inner array to the next.
On the other hand, type T2 defines a 1-dimensional array of 1-dimensional arrays all of whose inner arrays must have the
same type.  Note that T2 is an abstract type, e.g., Array{Array{Int,1},1} <: T2, whereas T1 is a concrete type. As a consequence, T1 can be constructed with a zero-argument constructor a=T1() but T2 cannot.

There is a convenient syntax for naming such types, similar to the short form of function
definition syntax:

Vector{T} = Array{T,1}





This is equivalent to const Vector = Array{T,1} where T.
Writing Vector{Float64} is equivalent to writing Array{Float64,1}, and the umbrella type
Vector has as instances all Array objects where the second parameter – the number of array
dimensions – is 1, regardless of what the element type is. In languages where parametric types
must always be specified in full, this is not especially helpful, but in Julia, this allows one
to write just Vector for the abstract type including all one-dimensional dense arrays of any
element type.




Type Aliases

Sometimes it is convenient to introduce a new name for an already expressible type.
This can be done with a simple assignment statement.
For example, UInt is aliased to either UInt32 or UInt64 as is
appropriate for the size of pointers on the system:

# 32-bit system:
julia> UInt
UInt32

# 64-bit system:
julia> UInt
UInt64





This is accomplished via the following code in base/boot.jl:

if Int === Int64
    const UInt = UInt64
else
    const UInt = UInt32
end





Of course, this depends on what Int is aliased to – but that is predefined to be the correct
type – either Int32 or Int64.

(Note that unlike Int, Float does not exist as a type alias for a specific sized
AbstractFloat. Unlike with integer registers, the floating point register sizes
are specified by the IEEE-754 standard. Whereas the size of Int reflects the size of a
native pointer on that machine.)




Operations on Types

Since types in Julia are themselves objects, ordinary functions can operate on them. Some functions
that are particularly useful for working with or exploring types have already been introduced,
such as the <: operator, which indicates whether its left hand operand is a subtype of its right
hand operand.

The isa function tests if an object is of a given type and returns true or false:

julia> isa(1, Int)
true

julia> isa(1, AbstractFloat)
false





The typeof() function, already used throughout the manual in examples, returns the type
of its argument. Since, as noted above, types are objects, they also have types, and we can ask
what their types are:

julia> typeof(Rational{Int})
DataType

julia> typeof(Union{Real,Float64,Rational})
DataType

julia> typeof(Union{Real,String})
Union





What if we repeat the process? What is the type of a type of a type? As it happens, types are
all composite values and thus all have a type of DataType:

julia> typeof(DataType)
DataType

julia> typeof(Union)
DataType





DataType is its own type.

Another operation that applies to some types is supertype(), which reveals a type’s
supertype. Only declared types (DataType) have unambiguous supertypes:

julia> supertype(Float64)
AbstractFloat

julia> supertype(Number)
Any

julia> supertype(AbstractString)
Any

julia> supertype(Any)
Any





If you apply supertype() to other type objects (or non-type objects), a MethodError
is raised:

julia> supertype(Union{Float64,Int64})
ERROR: MethodError: no method matching supertype(::Type{Union{Float64, Int64}})
Closest candidates are:
  supertype(!Matched::DataType) at operators.jl:41
  supertype(!Matched::UnionAll) at operators.jl:46








Custom pretty-printing

Often, one wants to customize how instances of a type are displayed.  This is accomplished by
overloading the show() function.  For example, suppose we define a type to represent
complex numbers in polar form:

julia> struct Polar{T<:Real} <: Number
           r::T
           Θ::T
       end

julia> Polar(r::Real,Θ::Real) = Polar(promote(r,Θ)...)
Polar





Here, we’ve added a custom constructor function so that it can take arguments of different
Real types and promote them to a common type (see [Constructors](@ref man-constructors)
and [Conversion and Promotion](@ref conversion-and-promotion)).
(Of course, we would have to define lots of other methods, too, to make it act like a
Number, e.g. +, *, one, zero, promotion rules and so on.) By default,
instances of this type display rather simply, with information about the type name and
the field values, as e.g. Polar{Float64}(3.0,4.0).

If we want it to display instead as 3.0 * exp(4.0im), we would define the following method to
print the object to a given output object io (representing a file, terminal, buffer, etcetera;
see Networking and Streams):

julia> Base.show(io::IO, z::Polar) = print(io, z.r, " * exp(", z.Θ, "im)")





More fine-grained control over display of Polar objects is possible. In particular, sometimes
one wants both a verbose multi-line printing format, used for displaying a single object in the
REPL and other interactive environments, and also a more compact single-line format used for
print() or for displaying the object as part of another object (e.g. in an array). Although
by default the show(io, z) function is called in both cases, you can define a different multi-line
format for displaying an object by overloading a three-argument form of show that takes the
text/plain MIME type as its second argument (see Multimedia I/O), for example:

julia> Base.show{T}(io::IO, ::MIME"text/plain", z::Polar{T}) =
           print(io, "Polar{$T} complex number:\n   ", z)





(Note that print(..., z) here will call the 2-argument show(io, z) method.) This results in:

julia> Polar(3, 4.0)
Polar{Float64} complex number:
   3.0 * exp(4.0im)

julia> [Polar(3, 4.0), Polar(4.0,5.3)]
2-element Array{Polar{Float64},1}:
 3.0 * exp(4.0im)
 4.0 * exp(5.3im)





where the single-line show(io, z) form is still used for an array of Polar values.   Technically,
the REPL calls display(z) to display the result of executing a line, which defaults to show(STDOUT, MIME("text/plain"), z),
which in turn defaults to show(STDOUT, z), but you should not define new display()
methods unless you are defining a new multimedia display handler (see Multimedia I/O).

Moreover, you can also define show methods for other MIME types in order to enable richer display
(HTML, images, etcetera) of objects in environments that support this (e.g. IJulia).   For example,
we can define formatted HTML display of Polar objects, with superscripts and italics, via:

julia> Base.show{T}(io::IO, ::MIME"text/html", z::Polar{T}) =
           println(io, "<code>Polar{$T}</code> complex number: ",
                   z.r, " <i>e</i><sup>", z.Θ, " <i>i</i></sup>")





A Polar object will then display automatically using HTML in an environment that supports HTML
display, but you can call show manually to get HTML output if you want:

julia> show(STDOUT, "text/html", Polar(3.0,4.0))
<code>Polar{Float64}</code> complex number: 3.0 <i>e</i><sup>4.0 <i>i</i></sup>





<p>An HTML renderer would display this as: <code>Polar{Float64}</code> complex number: 3.0 <i>e</i><sup>4.0 <i>i</i></sup></p>








“Value types”

In Julia, you can’t dispatch on a value such as true or false. However, you can dispatch
on parametric types, and Julia allows you to include “plain bits” values (Types, Symbols, Integers,
floating-point numbers, tuples, etc.) as type parameters.  A common example is the dimensionality
parameter in Array{T,N}, where T is a type (e.g., Float64) but N is just an Int.

You can create your own custom types that take values as parameters, and use them to control dispatch
of custom types. By way of illustration of this idea, let’s introduce a parametric type, Val{T},
which serves as a customary way to exploit this technique for cases where you don’t need a more
elaborate hierarchy.

Val is defined as:

julia> struct Val{T}
       end





There is no more to the implementation of Val than this.  Some functions in Julia’s standard
library accept Val types as arguments, and you can also use it to write your own functions.
For example:

julia> firstlast(::Type{Val{true}}) = "First"
firstlast (generic function with 1 method)

julia> firstlast(::Type{Val{false}}) = "Last"
firstlast (generic function with 2 methods)

julia> firstlast(Val{true})
"First"

julia> firstlast(Val{false})
"Last"





For consistency across Julia, the call site should always pass a Valtype rather than creating
an instance, i.e., use foo(Val{:bar}) rather than foo(Val{:bar}()).

It’s worth noting that it’s extremely easy to mis-use parametric “value” types, including Val;
in unfavorable cases, you can easily end up making the performance of your code much worse.
In particular, you would never want to write actual code as illustrated above.  For more information
about the proper (and improper) uses of Val, please read the more extensive discussion in [the performance tips](@ref man-performance-tips).




[Nullable Types: Representing Missing Values](@id man-nullable-types)

In many settings, you need to interact with a value of type T that may or may not exist. To
handle these settings, Julia provides a parametric type called Nullable{T}, which can be thought
of as a specialized container type that can contain either zero or one values. Nullable{T} provides
a minimal interface designed to ensure that interactions with missing values are safe. At present,
the interface consists of several possible interactions:


	Construct a Nullable object.


	Check if a Nullable object has a missing value.


	Access the value of a Nullable object with a guarantee that a NullException
will be thrown if the object’s value is missing.


	Access the value of a Nullable object with a guarantee that a default value of type
T will be returned if the object’s value is missing.


	Perform an operation on the value (if it exists) of a Nullable object, getting a
Nullable result. The result will be missing if the original value was missing.


	Performing a test on the value (if it exists) of a Nullable
object, getting a result that is missing if either the Nullable
itself was missing, or the test failed.


	Perform general operations on single Nullable objects, propagating the missing data.





Constructing Nullable objects

To construct an object representing a missing value of type T, use the Nullable{T}() function:

julia> x1 = Nullable{Int64}()
Nullable{Int64}()

julia> x2 = Nullable{Float64}()
Nullable{Float64}()

julia> x3 = Nullable{Vector{Int64}}()
Nullable{Array{Int64,1}}()





To construct an object representing a non-missing value of type T, use the Nullable(x::T)
function:

julia> x1 = Nullable(1)
Nullable{Int64}(1)

julia> x2 = Nullable(1.0)
Nullable{Float64}(1.0)

julia> x3 = Nullable([1, 2, 3])
Nullable{Array{Int64,1}}([1, 2, 3])





Note the core distinction between these two ways of constructing a Nullable object:
in one style, you provide a type, T, as a function parameter; in the other style, you provide
a single value of type T as an argument.




Checking if a Nullable object has a value

You can check if a Nullable object has any value using isnull():

julia> isnull(Nullable{Float64}())
true

julia> isnull(Nullable(0.0))
false








Safely accessing the value of a Nullable object

You can safely access the value of a Nullable object using get():

julia> get(Nullable{Float64}())
ERROR: NullException()
Stacktrace:
 [1] get(::Nullable{Float64}) at ./nullable.jl:92

julia> get(Nullable(1.0))
1.0





If the value is not present, as it would be for Nullable{Float64}, a NullException
error will be thrown. The error-throwing nature of the get() function ensures that any
attempt to access a missing value immediately fails.

In cases for which a reasonable default value exists that could be used when a Nullable
object’s value turns out to be missing, you can provide this default value as a second argument
to get():

julia> get(Nullable{Float64}(), 0.0)
0.0

julia> get(Nullable(1.0), 0.0)
1.0





!!! tip
Make sure the type of the default value passed to get() and that of the Nullable
object match to avoid type instability, which could hurt performance. Use convert()
manually if needed.




Performing operations on Nullable objects

Nullable objects represent values that are possibly missing, and it
is possible to write all code using these objects by first testing to see if
the value is missing with isnull(), and then doing an appropriate
action. However, there are some common use cases where the code could be more
concise or clear by using a higher-order function.

The map function takes as arguments a function f and a Nullable value
x. It produces a Nullable:


	If x is a missing value, then it produces a missing value;


	If x has a value, then it produces a Nullable containing
f(get(x)) as value.




This is useful for performing simple operations on values that might be missing
if the desired behaviour is to simply propagate the missing values forward.

The filter function takes as arguments a predicate function p
(that is, a function returning a boolean) and a Nullable value x.
It produces a Nullable value:


	If x is a missing value, then it produces a missing value;


	If p(get(x)) is true, then it produces the original value x;


	If p(get(x)) is false, then it produces a missing value.




In this way, filter can be thought of as selecting only allowable
values, and converting non-allowable values to missing values.

While map and filter are useful in specific cases, by far the most useful
higher-order function is broadcast, which can handle a wide variety of cases,
including making existing operations work and propagate Nullables. An example
will motivate the need for broadcast. Suppose we have a function that computes the
greater of two real roots of a quadratic equation, using the quadratic formula:

julia> root(a::Real, b::Real, c::Real) = (-b + √(b^2 - 4a*c)) / 2a
root (generic function with 1 method)





We may verify that the result of root(1, -9, 20) is 5.0, as we expect,
since 5.0 is the greater of two real roots of the quadratic equation.

Suppose now that we want to find the greatest real root of a quadratic
equations where the coefficients might be missing values. Having missing values
in datasets is a common occurrence in real-world data, and so it is important
to be able to deal with them. But we cannot find the roots of an equation if we
do not know all the coefficients. The best solution to this will depend on the
particular use case; perhaps we should throw an error. However, for this
example, we will assume that the best solution is to propagate the missing
values forward; that is, if any input is missing, we simply produce a missing
output.

The broadcast() function makes this task easy; we can simply pass the
root function we wrote to broadcast:

julia> broadcast(root, Nullable(1), Nullable(-9), Nullable(20))
Nullable{Float64}(5.0)

julia> broadcast(root, Nullable(1), Nullable{Int}(), Nullable{Int}())
Nullable{Float64}()

julia> broadcast(root, Nullable{Int}(), Nullable(-9), Nullable(20))
Nullable{Float64}()





If one or more of the inputs is missing, then the output of
broadcast() will be missing.

There exists special syntactic sugar for the broadcast() function
using a dot notation:

julia> root.(Nullable(1), Nullable(-9), Nullable(20))
Nullable{Float64}(5.0)





In particular, the regular arithmetic operators can be broadcast()
conveniently using .-prefixed operators:

julia> Nullable(2) ./ Nullable(3) .+ Nullable(1.0)
Nullable{Float64}(1.66667)
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Unicode Input

The following table lists Unicode characters that can be entered via
tab completion of LaTeX-like abbreviations in the Julia REPL (and
in various other editing environments).  You can also get information on how to
type a symbol by entering it in the REPL help, i.e. by typing ? and then
entering the symbol in the REPL (e.g., by copy-paste from somewhere you saw
the symbol).

!!! warning

This table may appear to contain missing characters in the second column, or even
show characters that are inconsistent with the characters as they are rendered in
the Julia REPL. In these cases, users are strongly advised to check their choice
of fonts in their browser and REPL environment, as there are known issues with
glyphs in many fonts.





#
# Generate a table containing all LaTeX and Emoji tab completions available in the REPL.
#

function tab_completions(symbols...)
    completions = Dict{String, Vector{String}}()
    for each in symbols, (k, v) in each
        completions[v] = push!(get!(completions, v, String[]), k)
    end
    return completions
end

function unicode_data()
    file = normpath(JULIA_HOME, "..", "..", "doc", "UnicodeData.txt")
    names = Dict{UInt32, String}()
    open(file) do unidata
        for line in readlines(unidata)
            id, name, desc = split(line, ";")[[1, 2, 11]]
            codepoint = parse(UInt32, "0x$id")
            names[codepoint] = titlecase(lowercase(name == "" ? desc : desc == "" ? name : "$name / $desc"))
        end
    end
    return names
end

# Prepend a dotted circle ('◌' i.e. '\u25CC') to combining characters
function fix_combining_chars(char)
    cat = Base.UTF8proc.category_code(char)
    return string(cat == 6 || cat == 8 ? "◌" : "", char)
end


function table_entries(completions, unicode_dict)
    entries = [[
        "Code point(s)", "Character(s)",
        "Tab completion sequence(s)", "Unicode name(s)"
    ]]
    for (chars, inputs) in sort!(collect(completions), by = first)
        code_points, unicode_names, characters = String[], String[], String[]
        for char in chars
            push!(code_points, "U+$(uppercase(hex(char, 5)))")
            push!(unicode_names, get(unicode_dict, UInt32(char), "(No Unicode name)"))
            push!(characters, isempty(characters) ? fix_combining_chars(char) : "$char")
        end
        push!(entries, [
            join(code_points, " + "), join(characters),
            join(inputs, ", "), join(unicode_names, " + ")
        ])
    end
    return Markdown.Table(entries, [:l, :l, :l, :l])
end

table_entries(
    tab_completions(
        Base.REPLCompletions.latex_symbols,
        Base.REPLCompletions.emoji_symbols
    ),
    unicode_data()
)
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[Scope of Variables](@id scope-of-variables)

The scope of a variable is the region of code within which a variable is visible. Variable scoping
helps avoid variable naming conflicts. The concept is intuitive: two functions can both have arguments
called x without the two x’s referring to the same thing. Similarly there are many other cases
where different blocks of code can use the same name without referring to the same thing. The
rules for when the same variable name does or doesn’t refer to the same thing are called scope
rules; this section spells them out in detail.

Certain constructs in the language introduce scope blocks, which are regions of code that are
eligible to be the scope of some set of variables. The scope of a variable cannot be an arbitrary
set of source lines; instead, it will always line up with one of these blocks. There are two
main types of scopes in Julia, global scope and local scope, the latter can be nested. The
constructs introducing scope blocks are:

| Scope name           | block/construct introducing this kind of scope                                                           |
|:——————– |:——————————————————————————————————– |
| Global Scope | module, baremodule, at interactive prompt (REPL)                                                     |
| Local Scope  | Soft Local Scope: for, while, comprehensions, try-catch-finally, let                       |
| Local Scope  | Hard Local Scope: functions (either syntax, anonymous & do-blocks), struct, macro            |

Notably missing from this table are [begin blocks](@ref man-compound-expressions) and [if blocks](@ref man-conditional-evaluation), which do not
introduce new scope blocks. All three types of scopes follow somewhat different rules which will
be explained below as well as some extra rules for certain blocks.

Julia uses lexical scoping [https://en.wikipedia.org/wiki/Scope_%28computer_science%29#Lexical_scoping_vs._dynamic_scoping],
meaning that a function’s scope does not inherit from its caller’s scope, but from the scope in
which the function was defined. For example, in the following code the x inside foo refers
to the x in the global scope of its module Bar:

julia> module Bar
           x = 1
           foo() = x
       end;





and not a x in the scope where foo is used:

julia> import .Bar

julia> x = -1;

julia> Bar.foo()
1





Thus lexical scope means that the scope of variables can be inferred from the source code alone.


Global Scope

Each module introduces a new global scope, separate from the global scope of all other modules;
there is no all-encompassing global scope. Modules can introduce variables of other modules into
their scope through the [using or import](@ref modules) statements or through qualified access using the
dot-notation, i.e. each module is a so-called namespace. Note that variable bindings can only
be changed within their global scope and not from an outside module.

julia> module A
           a = 1 # a global in A's scope
       end;

julia> module B
           module C
               c = 2
           end
           b = C.c    # can access the namespace of a nested global scope
                      # through a qualified access
           import ..A # makes module A available
           d = A.a
       end;

julia> module D
           b = a # errors as D's global scope is separate from A's
       end;
ERROR: UndefVarError: a not defined

julia> module E
           import ..A # make module A available
           A.a = 2    # throws below error
       end;
ERROR: cannot assign variables in other modules





Note that the interactive prompt (aka REPL) is in the global scope of the module Main.




Local Scope

A new local scope is introduced by most code-blocks, see above table for a complete list.
A local scope usually inherits all the variables from its parent scope, both for reading and
writing. There are two subtypes of local scopes, hard and soft, with slightly different rules
concerning what variables are inherited. Unlike global scopes, local scopes are not namespaces,
thus variables in an inner scope cannot be retrieved from the parent scope through some sort of
qualified access.

The following rules and examples pertain to both hard and soft local scopes. A newly introduced
variable in a local scope does not back-propagate to its parent scope. For example, here the
z is not introduced into the top-level scope:

julia> for i = 1:10
           z = i
       end

julia> z
ERROR: UndefVarError: z not defined





(Note, in this and all following examples it is assumed that their top-level is a global scope
with a clean workspace, for instance a newly started REPL.)

Inside a local scope a variable can be forced to be a local variable using the local keyword:

julia> x = 0;

julia> for i = 1:10
           local x
           x = i + 1
       end

julia> x
0





Inside a local scope a new global variable can be defined using the keyword global:

julia> for i = 1:10
           global z
           z = i
       end

julia> z
10





The location of both the local and global keywords within the scope block is irrelevant.
The following is equivalent to the last example (although stylistically worse):

julia> for i = 1:10
           z = i
           global z
       end

julia> z
10






Soft Local Scope


In a soft local scope, all variables are inherited from its parent scope unless a variable is
specifically marked with the keyword local.




Soft local scopes are introduced by for-loops, while-loops, comprehensions, try-catch-finally-blocks,
and let-blocks. There are some extra rules for Let Blocks and for For Loops and Comprehensions.

In the following example the x and y refer always to the same variables as the soft local
scope inherits both read and write variables:

julia> x, y = 0, 1;

julia> for i = 1:10
           x = i + y + 1
       end

julia> x
12





Within soft scopes, the global keyword is never necessary, although allowed. The only case
when it would change the semantics is (currently) a syntax error:

julia> let
           local j = 2
           let
               global j = 3
           end
       end
ERROR: syntax: `global j`: j is local variable in the enclosing scope








Hard Local Scope

Hard local scopes are introduced by function definitions (in all their forms), struct type definition blocks,
and macro-definitions.


In a hard local scope, all variables are inherited from its parent scope unless:


	an assignment would result in a modified global variable, or


	a variable is specifically marked with the keyword local.







Thus global variables are only inherited for reading but not for writing:

julia> x, y = 1, 2;

julia> function foo()
           x = 2        # assignment introduces a new local
           return x + y # y refers to the global
       end;

julia> foo()
4

julia> x
1





An explicit global is needed to assign to a global variable:

julia> x = 1;

julia> function foobar()
           global x = 2
       end;

julia> foobar();

julia> x
2





Note that nested functions can behave differently to functions defined in the global scope as
they can modify their parent scope’s local variables:

julia> x, y = 1, 2;

julia> function baz()
           x = 2 # introduces a new local
           function bar()
               x = 10       # modifies the parent's x
               return x + y # y is global
           end
           return bar() + x # 12 + 10 (x is modified in call of bar())
       end;

julia> baz()
22

julia> x, y
(1, 2)





The distinction between inheriting global and local variables for assignment can lead to some
slight differences between functions defined in local vs. global scopes. Consider the modification
of the last example by moving bar to the global scope:

julia> x, y = 1, 2;

julia> function bar()
           x = 10 # local
           return x + y
       end;

julia> function quz()
           x = 2 # local
           return bar() + x # 12 + 2 (x is not modified)
       end;

julia> quz()
14

julia> x, y
(1, 2)





Note that above subtlety does not pertain to type and macro definitions as they can only appear
at the global scope. There are special scoping rules concerning the evaluation of default and
keyword function arguments which are described in the [Function section](@ref man-functions).

An assignment introducing a variable used inside a function, type or macro definition need not
come before its inner usage:

julia> f = y -> y + a
(::#1) (generic function with 1 method)

julia> f(3)
ERROR: UndefVarError: a not defined
Stacktrace:
 [1] (::##1#2)(::Int64) at ./none:1

julia> a = 1
1

julia> f(3)
4





This behavior may seem slightly odd for a normal variable, but allows for named functions – which
are just normal variables holding function objects – to be used before they are defined. This
allows functions to be defined in whatever order is intuitive and convenient, rather than forcing
bottom up ordering or requiring forward declarations, as long as they are defined by the time
they are actually called. As an example, here is an inefficient, mutually recursive way to test
if positive integers are even or odd:

julia> even(n) = n == 0 ? true : odd(n-1);

julia> odd(n) = n == 0 ? false : even(n-1);

julia> even(3)
false

julia> odd(3)
true





Julia provides built-in, efficient functions to test for oddness and evenness called iseven()
and isodd() so the above definitions should only be taken as examples.




Hard vs. Soft Local Scope

Blocks which introduce a soft local scope, such as loops, are generally used to manipulate the
variables in their parent scope. Thus their default is to fully access all variables in their
parent scope.

Conversely, the code inside blocks which introduce a hard local scope (function, type, and macro
definitions) can be executed at any place in a program. Remotely changing the state of global
variables in other modules should be done with care and thus this is an opt-in feature requiring
the global keyword.

The reason to allow modifying local variables of parent scopes in nested functions is to allow
constructing closures [https://en.wikipedia.org/wiki/Closure_%28computer_programming%29] which
have a private state, for instance the state variable in the following example:

julia> let
           state = 0
           global counter
           counter() = state += 1
       end;

julia> counter()
1

julia> counter()
2





See also the closures in the examples in the next two sections.




Let Blocks

Unlike assignments to local variables, let statements allocate new variable bindings each time
they run. An assignment modifies an existing value location, and let creates new locations.
This difference is usually not important, and is only detectable in the case of variables that
outlive their scope via closures. The let syntax accepts a comma-separated series of assignments
and variable names:

julia> x, y, z = -1, -1, -1;

julia> let x = 1, z
           println("x: $x, y: $y") # x is local variable, y the global
           println("z: $z") # errors as z has not been assigned yet but is local
       end
x: 1, y: -1
ERROR: UndefVarError: z not defined





The assignments are evaluated in order, with each right-hand side evaluated in the scope before
the new variable on the left-hand side has been introduced. Therefore it makes sense to write
something like let x = x since the two x variables are distinct and have separate storage.
Here is an example where the behavior of let is needed:

julia> Fs = Array{Any}(2); i = 1;

julia> while i <= 2
           Fs[i] = ()->i
           i += 1
       end

julia> Fs[1]()
3

julia> Fs[2]()
3





Here we create and store two closures that return variable i. However, it is always the same
variable i, so the two closures behave identically. We can use let to create a new binding
for i:

julia> Fs = Array{Any}(2); i = 1;

julia> while i <= 2
           let i = i
               Fs[i] = ()->i
           end
           i += 1
       end

julia> Fs[1]()
1

julia> Fs[2]()
2





Since the begin construct does not introduce a new scope, it can be useful to use a zero-argument
let to just introduce a new scope block without creating any new bindings:

julia> let
           local x = 1
           let
               local x = 2
           end
           x
       end
1





Since let introduces a new scope block, the inner local x is a different variable than the
outer local x.




For Loops and Comprehensions

for loops and Comprehensions have the following behavior: any new variables introduced
in their body scopes are freshly allocated for each loop iteration. This is in contrast to while
loops which reuse the variables for all iterations. Therefore these constructs are similar to
while loops with let blocks inside:

julia> Fs = Array{Any}(2);

julia> for j = 1:2
           Fs[j] = ()->j
       end

julia> Fs[1]()
1

julia> Fs[2]()
2





for loops will reuse existing variables for its iteration variable:

julia> i = 0;

julia> for i = 1:3
       end

julia> i
3





However, comprehensions do not do this, and always freshly allocate their iteration variables:

julia> x = 0;

julia> [ x for x = 1:3 ];

julia> x
0










Constants

A common use of variables is giving names to specific, unchanging values. Such variables are only
assigned once. This intent can be conveyed to the compiler using the const keyword:

julia> const e  = 2.71828182845904523536;

julia> const pi = 3.14159265358979323846;





The const declaration is allowed on both global and local variables, but is especially useful
for globals. It is difficult for the compiler to optimize code involving global variables, since
their values (or even their types) might change at almost any time. If a global variable will
not change, adding a const declaration solves this performance problem.

Local constants are quite different. The compiler is able to determine automatically when a local
variable is constant, so local constant declarations are not necessary for performance purposes.

Special top-level assignments, such as those performed by the function and struct keywords,
are constant by default.

Note that const only affects the variable binding; the variable may be bound to a mutable object
(such as an array), and that object may still be modified.
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Variables

A variable, in Julia, is a name associated (or bound) to a value. It’s useful when you want to
store a value (that you obtained after some math, for example) for later use. For example:

# Assign the value 10 to the variable x
julia> x = 10
10

# Doing math with x's value
julia> x + 1
11

# Reassign x's value
julia> x = 1 + 1
2

# You can assign values of other types, like strings of text
julia> x = "Hello World!"
"Hello World!"





Julia provides an extremely flexible system for naming variables. Variable names are case-sensitive,
and have no semantic meaning (that is, the language will not treat variables differently based
on their names).

julia> x = 1.0
1.0

julia> y = -3
-3

julia> Z = "My string"
"My string"

julia> customary_phrase = "Hello world!"
"Hello world!"

julia> UniversalDeclarationOfHumanRightsStart = "人人生而自由，在尊严和权利上一律平等。"
"人人生而自由，在尊严和权利上一律平等。"





Unicode names (in UTF-8 encoding) are allowed:

julia> δ = 0.00001
1.0e-5

julia> 안녕하세요 = "Hello"
"Hello"





In the Julia REPL and several other Julia editing environments, you can type many Unicode math
symbols by typing the backslashed LaTeX symbol name followed by tab. For example, the variable
name δ can be entered by typing \delta-tab, or even α̂₂ by \alpha-tab-\hat-
tab-\_2-tab. (If you find a symbol somewhere, e.g. in someone else’s code,
that you don’t know how to type, the REPL help will tell you: just type ? and
then paste the symbol.)

Julia will even let you redefine built-in constants and functions if needed:

julia> pi
π = 3.1415926535897...

julia> pi = 3
WARNING: imported binding for pi overwritten in module Main
3

julia> pi
3

julia> sqrt(100)
10.0

julia> sqrt = 4
WARNING: imported binding for sqrt overwritten in module Main
4





However, this is obviously not recommended to avoid potential confusion.


Allowed Variable Names

Variable names must begin with a letter (A-Z or a-z), underscore, or a subset of Unicode code
points greater than 00A0; in particular, Unicode character categories [http://www.fileformat.info/info/unicode/category/index.htm]
Lu/Ll/Lt/Lm/Lo/Nl (letters), Sc/So (currency and other symbols), and a few other letter-like characters
(e.g. a subset of the Sm math symbols) are allowed. Subsequent characters may also include ! and
digits (0-9 and other characters in categories Nd/No), as well as other Unicode code points: diacritics
and other modifying marks (categories Mn/Mc/Me/Sk), some punctuation connectors (category Pc),
primes, and a few other characters.

Operators like + are also valid identifiers, but are parsed specially. In some contexts, operators
can be used just like variables; for example (+) refers to the addition function, and (+) = f
will reassign it. Most of the Unicode infix operators (in category Sm), such as ⊕, are parsed
as infix operators and are available for user-defined methods (e.g. you can use const ⊗ = kron
to define ⊗ as an infix Kronecker product).

The only explicitly disallowed names for variables are the names of built-in statements:

julia> else = false
ERROR: syntax: unexpected "else"

julia> try = "No"
ERROR: syntax: unexpected "="





Some Unicode characters are considered to be equivalent in identifiers.
Different ways of entering Unicode combining characters (e.g., accents)
are treated as equivalent (specifically, Julia identifiers are NFC-normalized).
The Unicode characters ɛ (U+025B: Latin small letter open e)
and µ (U+00B5: micro sign) are treated as equivalent to the corresponding
Greek letters, because the former are easily accessible via some input methods.




Stylistic Conventions

While Julia imposes few restrictions on valid names, it has become useful to adopt the following
conventions:


	Names of variables are in lower case.


	Word separation can be indicated by underscores ('_'), but use of underscores is discouraged
unless the name would be hard to read otherwise.


	Names of Types and Modules begin with a capital letter and word separation is shown with upper
camel case instead of underscores.


	Names of functions and macros are in lower case, without underscores.


	Functions that write to their arguments have names that end in !. These are sometimes called
“mutating” or “in-place” functions because they are intended to produce changes in their arguments
after the function is called, not just return a value.




For more information about stylistic conventions, see the Style Guide.
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[Workflow Tips](@id man-workflow-tips)

Here are some tips for working with Julia efficiently.


REPL-based workflow

As already elaborated in Interacting With Julia, Julia’s REPL provides rich functionality
that facilitates an efficient interactive workflow. Here are some tips that might further enhance
your experience at the command line.


A basic editor/REPL workflow

The most basic Julia workflows involve using a text editor in conjunction with the julia command
line. A common pattern includes the following elements:


	Put code under development in a temporary module. Create a file, say Tmp.jl, and include
within it

module Tmp

<your definitions here>

end







	Put your test code in another file. Create another file, say tst.jl, which begins with

import Tmp





and includes tests for the contents of Tmp. The value of using import versus using is that
you can call reload("Tmp") instead of having to restart the REPL when your definitions change.
Of course, the cost is the need to prepend Tmp. to uses of names defined in your module. (You
can lower that cost by keeping your module name short.)

Alternatively, you can wrap the contents of your test file in a module, as

module Tst
    using Tmp

    <scratch work>

end





The advantage is that you can now do using Tmp in your test code and can therefore avoid prepending
Tmp. everywhere. The disadvantage is that code can no longer be selectively copied to the REPL
without some tweaking.



	Lather. Rinse. Repeat. Explore ideas at the julia command prompt. Save good ideas in tst.jl.
Occasionally restart the REPL, issuing

reload("Tmp")
include("tst.jl")












Simplify initialization

To simplify restarting the REPL, put project-specific initialization code in a file, say _init.jl,
which you can run on startup by issuing the command:

julia -L _init.jl





If you further add the following to your .juliarc.jl file

isfile("_init.jl") && include(joinpath(pwd(), "_init.jl"))





then calling julia from that directory will run the initialization code without the additional
command line argument.






Browser-based workflow

It is also possible to interact with a Julia REPL in the browser via IJulia [https://github.com/JuliaLang/IJulia.jl].
See the package home for details.
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[Arrays](@id lib-arrays)


Constructors and Types

Core.AbstractArray
Core.Array
Base.getindex(::Type, ::Any...)
Base.zeros
Base.ones
Base.BitArray
Base.trues
Base.falses
Base.fill
Base.fill!
Base.similar(::AbstractArray)
Base.similar(::Any, ::Tuple)
Base.eye
Base.linspace
Base.logspace
Base.Random.randsubseq
Base.Random.randsubseq!








Basic functions

Base.ndims
Base.size
Base.indices(::Any)
Base.indices(::AbstractArray, ::Any)
Base.length(::AbstractArray)
Base.eachindex
Base.linearindices
Base.IndexStyle
Base.countnz
Base.conj!
Base.stride
Base.strides
Base.ind2sub
Base.sub2ind
Base.LinAlg.checksquare








Broadcast and vectorization

See also the [dot syntax for vectorizing functions](@ref man-vectorized);
for example, f.(args...) implicitly calls broadcast(f, args...).
Rather than relying on “vectorized” methods of functions like sin
to operate on arrays, you should use sin.(a) to vectorize via broadcast.

Base.broadcast
Base.Broadcast.broadcast!
Base.@__dot__
Base.Broadcast.broadcast_getindex
Base.Broadcast.broadcast_setindex!








Indexing and assignment

Base.getindex(::AbstractArray, ::Any...)
Base.setindex!(::AbstractArray, ::Any, ::Any...)
Base.copy!(::AbstractArray, ::CartesianRange, ::AbstractArray, ::CartesianRange)
Base.isassigned
Base.Colon
Base.CartesianIndex
Base.CartesianRange
Base.to_indices
Base.checkbounds
Base.checkindex








Views (SubArrays and other view types)

Base.view
Base.@view
Base.@views
Base.parent
Base.parentindexes
Base.slicedim
Base.reinterpret
Base.reshape
Base.squeeze
Base.vec








Concatenation and permutation

Base.cat
Base.vcat
Base.hcat
Base.hvcat
Base.flipdim
Base.circshift
Base.circshift!
Base.circcopy!
Base.contains(::Function, ::Any, ::Any)
Base.find(::Any)
Base.find(::Function, ::Any)
Base.findn
Base.findnz
Base.findfirst(::Any)
Base.findfirst(::Any, ::Any)
Base.findfirst(::Function, ::Any)
Base.findlast(::Any)
Base.findlast(::Any, ::Any)
Base.findlast(::Function, ::Any)
Base.findnext(::Any, ::Integer)
Base.findnext(::Function, ::Any, ::Integer)
Base.findnext(::Any, ::Any, ::Integer)
Base.findprev(::Any, ::Integer)
Base.findprev(::Function, ::Any, ::Integer)
Base.findprev(::Any, ::Any, ::Integer)
Base.permutedims
Base.permutedims!
Base.PermutedDimsArray
Base.promote_shape








Array functions

Base.accumulate(::Any, ::Any, ::Integer)
Base.accumulate!
Base.cumprod
Base.cumprod!
Base.cumsum
Base.cumsum!
Base.cumsum_kbn
Base.LinAlg.diff
Base.LinAlg.gradient
Base.rot180
Base.rotl90
Base.rotr90
Base.reducedim
Base.mapreducedim
Base.mapslices
Base.sum_kbn








Combinatorics

Base.Random.randperm
Base.invperm
Base.isperm
Base.permute!(::Any, ::AbstractVector)
Base.ipermute!
Base.Random.randcycle
Base.Random.shuffle
Base.Random.shuffle!
Base.reverse
Base.reverseind
Base.reverse!








BitArrays

BitArrays are space-efficient “packed” boolean arrays, which store one bit per boolean value.
They can be used similarly to Array{Bool} arrays (which store one byte per boolean value),
and can be converted to/from the latter via Array(bitarray) and BitArray(array), respectively.

Base.flipbits!
Base.rol!
Base.rol
Base.ror!
Base.ror








[Sparse Vectors and Matrices](@id stdlib-sparse-arrays)

Sparse vectors and matrices largely support the same set of operations as their dense counterparts.
The following functions are specific to sparse arrays.

Base.SparseArrays.SparseVector
Base.SparseArrays.SparseMatrixCSC
Base.SparseArrays.sparse
Base.SparseArrays.sparsevec
Base.SparseArrays.issparse
Base.full
Base.SparseArrays.nnz
Base.SparseArrays.spzeros
Base.SparseArrays.spones
Base.SparseArrays.speye(::Type, ::Integer, ::Integer)
Base.SparseArrays.speye(::SparseMatrixCSC)
Base.SparseArrays.spdiagm
Base.SparseArrays.sprand
Base.SparseArrays.sprandn
Base.SparseArrays.nonzeros
Base.SparseArrays.rowvals
Base.SparseArrays.nzrange
Base.SparseArrays.dropzeros!(::SparseMatrixCSC, ::Bool)
Base.SparseArrays.dropzeros(::SparseMatrixCSC, ::Bool)
Base.SparseArrays.dropzeros!(::SparseVector, ::Bool)
Base.SparseArrays.dropzeros(::SparseVector, ::Bool)
Base.SparseArrays.permute
Base.permute!{Tv, Ti, Tp <: Integer, Tq <: Integer}(::SparseMatrixCSC{Tv,Ti}, ::SparseMatrixCSC{Tv,Ti}, ::AbstractArray{Tp,1}, ::AbstractArray{Tq,1})
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Essentials


Introduction

The Julia standard library contains a range of functions and macros appropriate for performing
scientific and numerical computing, but is also as broad as those of many general purpose programming
languages.  Additional functionality is available from a growing collection of available packages.
Functions are grouped by topic below.

Some general notes:


	Except for functions in built-in modules (Pkg, Collections, Test
and Profile), all functions documented here are directly available for use in programs.


	To use module functions, use import Module to import the module, and Module.fn(x) to use the
functions.


	Alternatively, using Module will import all exported Module functions into the current namespace.


	By convention, function names ending with an exclamation point (!) modify their arguments.
Some functions have both modifying (e.g., sort!) and non-modifying (sort) versions.







Getting Around

Base.exit
Base.quit
Base.atexit
Base.atreplinit
Base.isinteractive
Base.whos
Base.summarysize
Base.edit(::AbstractString, ::Integer)
Base.edit(::Any)
Base.@edit
Base.less(::AbstractString)
Base.less(::Any)
Base.@less
Base.clipboard(::Any)
Base.clipboard()
Base.reload
Base.require
Base.compilecache
Base.__precompile__
Base.include
Base.include_string
Base.include_dependency
Base.Docs.apropos
Base.which(::Any, ::Any)
Base.which(::Symbol)
Base.@which
Base.methods
Base.methodswith
Base.@show
Base.versioninfo
Base.workspace
ans








All Objects

Core.:(===)
Core.isa
Base.isequal(::Any, ::Any)
Base.isequal(::Nullable, ::Nullable)
Base.isless
Base.isless(::Nullable, ::Nullable)
Base.ifelse
Base.lexcmp
Base.lexless
Core.typeof
Core.tuple
Base.ntuple
Base.object_id
Base.hash
Base.finalizer
Base.finalize
Base.copy
Base.deepcopy
Core.isdefined
Base.convert
Base.promote
Base.oftype
Base.widen
Base.identity








Types

Base.supertype
Core.issubtype
Base.:(<:)
Base.:(>:)
Base.subtypes
Base.typemin
Base.typemax
Base.realmin
Base.realmax
Base.maxintfloat
Base.sizeof(::Type)
Base.eps(::Type{<:AbstractFloat})
Base.eps(::AbstractFloat)
Base.promote_type
Base.promote_rule
Core.getfield
Core.setfield!
Base.fieldoffset
Core.fieldtype
Base.isimmutable
Base.isbits
Base.isleaftype
Base.typejoin
Base.typeintersect
Base.Val
Base.Enums.@enum
Base.instances








Generic Functions

Core.Function
Base.method_exists
Core.applicable
Core.invoke
Base.invokelatest
Base.:(|>)
Base.:(∘)








Syntax

Core.eval
Base.@eval
Base.evalfile
Base.esc
Base.@inbounds
Base.@inline
Base.@noinline
Base.gensym
Base.@gensym
Base.@polly
Base.parse(::Any, ::Any)
Base.parse(::Any)








Nullables

Base.Nullable
Base.get(::Nullable, ::Any)
Base.isnull
Base.unsafe_get








System

Base.run
Base.spawn
Base.DevNull
Base.success
Base.process_running
Base.process_exited
Base.kill(::Base.Process, ::Integer)
Base.Sys.set_process_title
Base.Sys.get_process_title
Base.readandwrite
Base.ignorestatus
Base.detach
Base.Cmd
Base.setenv
Base.withenv
Base.pipeline(::Any, ::Any, ::Any, ::Any...)
Base.pipeline(::Base.AbstractCmd)
Base.Libc.gethostname
Base.getipaddr
Base.Libc.getpid
Base.Libc.time()
Base.time_ns
Base.tic
Base.toc
Base.toq
Base.@time
Base.@timev
Base.@timed
Base.@elapsed
Base.@allocated
Base.EnvHash
Base.ENV
Base.is_unix
Base.is_apple
Base.is_linux
Base.is_bsd
Base.is_windows
Base.Sys.windows_version
Base.@static








Errors

Base.error
Core.throw
Base.rethrow
Base.backtrace
Base.catch_backtrace
Base.assert
Base.@assert
Base.ArgumentError
Base.AssertionError
Core.BoundsError
Base.DimensionMismatch
Core.DivideError
Core.DomainError
Base.EOFError
Core.ErrorException
Core.InexactError
Core.InterruptException
Base.KeyError
Base.LoadError
Base.MethodError
Base.NullException
Core.OutOfMemoryError
Core.ReadOnlyMemoryError
Core.OverflowError
Base.ParseError
Base.ProcessExitedException
Core.StackOverflowError
Base.SystemError
Core.TypeError
Core.UndefRefError
Core.UndefVarError
Base.InitError
Base.retry
Base.ExponentialBackOff








Events

Base.Timer(::Function, ::Real, ::Real)
Base.Timer
Base.AsyncCondition
Base.AsyncCondition(::Function)








Reflection

Base.module_name
Base.module_parent
Base.current_module
Base.fullname
Base.names
Core.nfields
Base.fieldnames
Base.fieldname
Base.datatype_module
Base.datatype_name
Base.isconst
Base.function_name
Base.function_module(::Function)
Base.function_module(::Any, ::Any)
Base.functionloc(::Any, ::Any)
Base.functionloc(::Method)
Base.@functionloc








Internals

Base.gc
Base.gc_enable
Base.macroexpand
Base.@macroexpand
Base.expand
Base.code_lowered
Base.@code_lowered
Base.code_typed
Base.@code_typed
Base.code_warntype
Base.@code_warntype
Base.code_llvm
Base.@code_llvm
Base.code_native
Base.@code_native
Base.precompile
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C Interface

ccall
Core.Intrinsics.cglobal
Base.cfunction
Base.unsafe_convert
Base.cconvert
Base.unsafe_load
Base.unsafe_store!
Base.unsafe_copy!{T}(::Ptr{T}, ::Ptr{T}, ::Any)
Base.unsafe_copy!(::Array, ::Any, ::Array, ::Any, ::Any)
Base.copy!(::Any, ::Any)
Base.copy!(::Any, ::Any, ::Any, ::Any, ::Any)
Base.pointer
Base.unsafe_wrap{T,N}(::Union{Type{Array},Type{Array{T}},Type{Array{T,N}}}, ::Ptr{T}, ::NTuple{N,Int})
Base.pointer_from_objref
Base.unsafe_pointer_to_objref
Base.disable_sigint
Base.reenable_sigint
Base.systemerror
Core.Ptr
Core.Ref
Base.Cchar
Base.Cuchar
Base.Cshort
Base.Cushort
Base.Cint
Base.Cuint
Base.Clong
Base.Culong
Base.Clonglong
Base.Culonglong
Base.Cintmax_t
Base.Cuintmax_t
Base.Csize_t
Base.Cssize_t
Base.Cptrdiff_t
Base.Cwchar_t
Base.Cfloat
Base.Cdouble








LLVM Interface

Core.Intrinsics.llvmcall
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Collections and Data Structures


[Iteration](@id lib-collections-iteration)

Sequential iteration is implemented by the methods start(), done(), and next().
The general for loop:

for i = I   # or  "for i in I"
    # body
end





is translated into:

state = start(I)
while !done(I, state)
    (i, state) = next(I, state)
    # body
end





The state object may be anything, and should be chosen appropriately for each iterable type.
See the [manual section on the iteration interface](@ref man-interface-iteration) for more details about defining a custom
iterable type.

Base.start
Base.done
Base.next
Base.iteratorsize
Base.iteratoreltype





Fully implemented by:


	Range


	UnitRange


	Tuple


	Number


	AbstractArray


	IntSet


	ObjectIdDict


	Dict


	WeakKeyDict


	EachLine


	AbstractString


	Set







General Collections

Base.isempty
Base.empty!
Base.length(::Any)
Base.endof





Fully implemented by:


	Range


	UnitRange


	Tuple


	Number


	AbstractArray


	IntSet


	ObjectIdDict


	Dict


	WeakKeyDict


	AbstractString


	Set







Iterable Collections

Base.in
Base.eltype
Base.indexin
Base.findin
Base.unique
Base.allunique
Base.reduce(::Any, ::Any, ::Any)
Base.reduce(::Any, ::Any)
Base.foldl(::Any, ::Any, ::Any)
Base.foldl(::Any, ::Any)
Base.foldr(::Any, ::Any, ::Any)
Base.foldr(::Any, ::Any)
Base.maximum(::Any)
Base.maximum(::Any, ::Any)
Base.maximum!
Base.minimum(::Any)
Base.minimum(::Any, ::Any)
Base.minimum!
Base.extrema(::Any)
Base.extrema(::AbstractArray, ::Any)
Base.indmax
Base.indmin
Base.findmax(::Any)
Base.findmax(::AbstractArray, ::Any)
Base.findmin(::Any)
Base.findmin(::AbstractArray, ::Any)
Base.findmax!
Base.findmin!
Base.sum
Base.sum!
Base.prod
Base.prod!
Base.any(::Any)
Base.any(::AbstractArray, ::Any)
Base.any!
Base.all(::Any)
Base.all(::AbstractArray, ::Any)
Base.all!
Base.count
Base.any(::Any, ::Any)
Base.all(::Any, ::Any)
Base.foreach
Base.map
Base.map!
Base.mapreduce(::Any, ::Any, ::Any, ::Any)
Base.mapreduce(::Any, ::Any, ::Any)
Base.mapfoldl(::Any, ::Any, ::Any, ::Any)
Base.mapfoldl(::Any, ::Any, ::Any)
Base.mapfoldr(::Any, ::Any, ::Any, ::Any)
Base.mapfoldr(::Any, ::Any, ::Any)
Base.first
Base.last
Base.step
Base.collect(::Any)
Base.collect(::Type, ::Any)
Base.issubset(::Any, ::Any)
Base.filter
Base.filter!








Indexable Collections

Base.getindex(::Any, ::Any...)
Base.setindex!(::Any, ::Any, ::Any...)





Fully implemented by:


	Array


	BitArray


	AbstractArray


	SubArray


	ObjectIdDict


	Dict


	WeakKeyDict


	AbstractString




Partially implemented by:


	Range


	UnitRange


	Tuple







Associative Collections

Dict is the standard associative collection. Its implementation uses hash()
as the hashing function for the key, and isequal() to determine equality. Define these
two functions for custom types to override how they are stored in a hash table.

ObjectIdDict is a special hash table where the keys are always object identities.

WeakKeyDict is a hash table implementation where the keys are weak references to objects, and
thus may be garbage collected even when referenced in a hash table.

Dicts can be created by passing pair objects constructed with =>() to a Dict
constructor: Dict("A"=>1, "B"=>2). This call will attempt to infer type information from the
keys and values (i.e. this example creates a Dict{String, Int64}). To explicitly specify types
use the syntax Dict{KeyType,ValueType}(...). For example, Dict{String,Int32}("A"=>1, "B"=>2).

Associative collections may also be created with generators. For example, Dict(i => f(i) for i = 1:10).

Given a dictionary D, the syntax D[x] returns the value of key x (if it exists) or throws
an error, and D[x] = y stores the key-value pair x => y in D (replacing any existing value
for the key x).  Multiple arguments to D[...] are converted to tuples; for example, the syntax
D[x,y]  is equivalent to D[(x,y)], i.e. it refers to the value keyed by the tuple (x,y).

Base.Dict
Base.ObjectIdDict
Base.WeakKeyDict
Base.haskey
Base.get(::Any, ::Any, ::Any)
Base.get
Base.get!(::Any, ::Any, ::Any)
Base.get!(::Function, ::Any, ::Any)
Base.getkey
Base.delete!
Base.pop!(::Any, ::Any, ::Any)
Base.keys
Base.values
Base.merge
Base.merge!
Base.sizehint!
Base.keytype
Base.valtype





Fully implemented by:


	ObjectIdDict


	Dict


	WeakKeyDict




Partially implemented by:


	IntSet


	Set


	[EnvHash](@ref Base.EnvHash)


	Array


	BitArray







Set-Like Collections

Base.Set
Base.IntSet
Base.union
Base.union!
Base.intersect
Base.setdiff
Base.setdiff!
Base.symdiff
Base.symdiff!(::IntSet, ::Integer)
Base.symdiff!(::IntSet, ::Any)
Base.symdiff!(::IntSet, ::IntSet)
Base.intersect!
Base.issubset





Fully implemented by:


	IntSet


	Set




Partially implemented by:


	Array







Dequeues

Base.push!
Base.pop!(::Any)
Base.unshift!
Base.shift!
Base.insert!
Base.deleteat!
Base.splice!
Base.resize!
Base.append!
Base.prepend!





Fully implemented by:


	Vector (a.k.a. 1-dimensional Array)


	BitVector (a.k.a. 1-dimensional BitArray)
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[Constants](@id lib-constants)

Core.nothing
Base.PROGRAM_FILE
Base.ARGS
Base.C_NULL
Base.VERSION
Base.LOAD_PATH
Base.JULIA_HOME
Core.ANY
Base.Sys.CPU_CORES
Base.Sys.WORD_SIZE
Base.Sys.KERNEL
Base.Sys.ARCH
Base.Sys.MACHINE





See also:


	STDIN


	STDOUT


	STDERR


	ENV


	ENDIAN_BOM


	Libc.MS_ASYNC


	Libc.MS_INVALIDATE


	Libc.MS_SYNC


	Libdl.DL_LOAD_PATH


	[Libdl.RTLD_DEEPBIND](@ref Base.Libdl.RTLD_NOW)


	[Libdl.RTLD_LOCAL](@ref Base.Libdl.RTLD_NOW)


	[Libdl.RTLD_NOLOAD](@ref Base.Libdl.RTLD_NOW)


	[Libdl.RTLD_LAZY](@ref Base.Libdl.RTLD_NOW)


	Libdl.RTLD_NOW


	[Libdl.RTLD_GLOBAL](@ref Base.Libdl.RTLD_NOW)


	[Libdl.RTLD_NODELETE](@ref Base.Libdl.RTLD_NOW)


	[Libdl.RTLD_FIRST](@ref Base.Libdl.RTLD_NOW)
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[Dates and Time](@id stdlib-dates)


Dates and Time Types

Base.Dates.Period
Base.Dates.CompoundPeriod
Base.Dates.Instant
Base.Dates.UTInstant
Base.Dates.TimeType
Base.Dates.DateTime
Base.Dates.Date
Base.Dates.Time








Dates Functions

All Dates functions are defined in the Dates module; note that only the Date, DateTime,
and now functions are exported; to use all other Dates functions, you’ll need to prefix each
function call with an explicit Dates., e.g. Dates.dayofweek(dt). Alternatively, you can write
using Base.Dates to bring all exported functions into Main to be used without the Dates.
prefix.

Base.Dates.DateTime(::Int64, ::Int64, ::Int64, ::Int64, ::Int64, ::Int64, ::Int64)
Base.Dates.DateTime(::Base.Dates.Period...)
Base.Dates.DateTime(::Function, ::Any...)
Base.Dates.DateTime(::Base.Dates.TimeType)
Base.Dates.DateTime(::AbstractString, ::AbstractString)
Base.Dates.format(::Base.Dates.TimeType, ::AbstractString)
Base.Dates.DateFormat
Base.Dates.@dateformat_str
Base.Dates.DateTime(::AbstractString, ::Base.Dates.DateFormat)
Base.Dates.Date(::Int64, ::Int64, ::Int64)
Base.Dates.Date(::Base.Dates.Period...)
Base.Dates.Date(::Function, ::Any, ::Any, ::Any)
Base.Dates.Date(::Base.Dates.TimeType)
Base.Dates.Date(::AbstractString, ::AbstractString)
Base.Dates.Date(::AbstractString, ::Base.Dates.DateFormat)
Base.Dates.Time(::Int64::Int64, ::Int64, ::Int64, ::Int64, ::Int64)
Base.Dates.Time(::Base.Dates.TimePeriod...)
Base.Dates.Time(::Function, ::Any...)
Base.Dates.Time(::Base.Dates.DateTime)
Base.Dates.now()
Base.Dates.now(::Type{Base.Dates.UTC})
Base.eps






Accessor Functions

Base.Dates.year
Base.Dates.month
Base.Dates.week
Base.Dates.day
Base.Dates.hour
Base.Dates.minute
Base.Dates.second
Base.Dates.millisecond
Base.Dates.microsecond
Base.Dates.nanosecond
Base.Dates.Year(::Base.Dates.TimeType)
Base.Dates.Month(::Base.Dates.TimeType)
Base.Dates.Week(::Base.Dates.TimeType)
Base.Dates.Day(::Base.Dates.TimeType)
Base.Dates.Hour(::DateTime)
Base.Dates.Minute(::DateTime)
Base.Dates.Second(::DateTime)
Base.Dates.Millisecond(::DateTime)
Base.Dates.Microsecond(::Dates.Time)
Base.Dates.Nanosecond(::Dates.Time)
Base.Dates.yearmonth
Base.Dates.monthday
Base.Dates.yearmonthday








Query Functions

Base.Dates.dayname
Base.Dates.dayabbr
Base.Dates.dayofweek
Base.Dates.dayofmonth
Base.Dates.dayofweekofmonth
Base.Dates.daysofweekinmonth
Base.Dates.monthname
Base.Dates.monthabbr
Base.Dates.daysinmonth
Base.Dates.isleapyear
Base.Dates.dayofyear
Base.Dates.daysinyear
Base.Dates.quarterofyear
Base.Dates.dayofquarter








Adjuster Functions

Base.trunc(::Base.Dates.TimeType, ::Type{Base.Dates.Period})
Base.Dates.firstdayofweek
Base.Dates.lastdayofweek
Base.Dates.firstdayofmonth
Base.Dates.lastdayofmonth
Base.Dates.firstdayofyear
Base.Dates.lastdayofyear
Base.Dates.firstdayofquarter
Base.Dates.lastdayofquarter
Base.Dates.tonext(::Base.Dates.TimeType, ::Int)
Base.Dates.toprev(::Base.Dates.TimeType, ::Int)
Base.Dates.tofirst
Base.Dates.tolast
Base.Dates.tonext(::Function, ::Base.Dates.TimeType)
Base.Dates.toprev(::Function, ::Base.Dates.TimeType)








Periods

Base.Dates.Period(::Any)
Base.Dates.CompoundPeriod(::Vector{<:Base.Dates.Period})
Base.Dates.default








Rounding Functions

Date and DateTime values can be rounded to a specified resolution (e.g., 1 month or 15 minutes)
with floor, ceil, or round.

Base.floor(::Base.Dates.TimeType, ::Base.Dates.Period)
Base.ceil(::Base.Dates.TimeType, ::Base.Dates.Period)
Base.round(::Base.Dates.TimeType, ::Base.Dates.Period, ::RoundingMode{:NearestTiesUp})





The following functions are not exported:

Base.Dates.floorceil
Base.Dates.epochdays2date
Base.Dates.epochms2datetime
Base.Dates.date2epochdays
Base.Dates.datetime2epochms








Conversion Functions

Base.Dates.today
Base.Dates.unix2datetime
Base.Dates.datetime2unix
Base.Dates.julian2datetime
Base.Dates.datetime2julian
Base.Dates.rata2datetime
Base.Dates.datetime2rata








Constants

Days of the Week:

| Variable    | Abbr. | Value (Int) |
|:———– |:—– |:———– |
| Monday    | Mon | 1           |
| Tuesday   | Tue | 2           |
| Wednesday | Wed | 3           |
| Thursday  | Thu | 4           |
| Friday    | Fri | 5           |
| Saturday  | Sat | 6           |
| Sunday    | Sun | 7           |

Months of the Year:

| Variable    | Abbr. | Value (Int) |
|:———– |:—– |:———– |
| January   | Jan | 1           |
| February  | Feb | 2           |
| March     | Mar | 3           |
| April     | Apr | 4           |
| May       | May | 5           |
| June      | Jun | 6           |
| July      | Jul | 7           |
| August    | Aug | 8           |
| September | Sep | 9           |
| October   | Oct | 10          |
| November  | Nov | 11          |
| December  | Dec | 12          |
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Filesystem

Base.Filesystem.pwd
Base.Filesystem.cd(::AbstractString)
Base.Filesystem.cd(::Function)
Base.Filesystem.readdir
Base.Filesystem.walkdir
Base.Filesystem.mkdir
Base.Filesystem.mkpath
Base.Filesystem.symlink
Base.Filesystem.readlink
Base.Filesystem.chmod
Base.Filesystem.chown
Base.stat
Base.Filesystem.lstat
Base.Filesystem.ctime
Base.Filesystem.mtime
Base.Filesystem.filemode
Base.Filesystem.filesize
Base.Filesystem.uperm
Base.Filesystem.gperm
Base.Filesystem.operm
Base.Filesystem.cp
Base.download
Base.Filesystem.mv
Base.Filesystem.rm
Base.Filesystem.touch
Base.Filesystem.tempname
Base.Filesystem.tempdir
Base.Filesystem.mktemp(::Any)
Base.Filesystem.mktemp(::Function, ::Any)
Base.Filesystem.mktempdir(::Any)
Base.Filesystem.mktempdir(::Function, ::Any)
Base.Filesystem.isblockdev
Base.Filesystem.ischardev
Base.Filesystem.isdir
Base.Filesystem.isfifo
Base.Filesystem.isfile
Base.Filesystem.islink
Base.Filesystem.ismount
Base.Filesystem.ispath
Base.Filesystem.issetgid
Base.Filesystem.issetuid
Base.Filesystem.issocket
Base.Filesystem.issticky
Base.Filesystem.homedir
Base.Filesystem.dirname
Base.Filesystem.basename
Base.@__FILE__
Base.@__DIR__
@__LINE__
Base.Filesystem.isabspath
Base.Filesystem.isdirpath
Base.Filesystem.joinpath
Base.Filesystem.abspath
Base.Filesystem.normpath
Base.Filesystem.realpath
Base.Filesystem.relpath
Base.Filesystem.expanduser
Base.Filesystem.splitdir
Base.Filesystem.splitdrive
Base.Filesystem.splitext
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The Julia Standard Library


	Essentials


	Collections and Data Structures


	Mathematics


	[Numbers](@ref lib-numbers)


	[Strings](@ref lib-strings)


	[Arrays](@ref lib-arrays)


	Tasks and Parallel Computing


	Linear Algebra


	[Constants](@ref lib-constants)


	Filesystem


	I/O and Network


	Punctuation


	Sorting and Related Functions


	Package Manager Functions


	[Dates and Time](@ref stdlib-dates)


	Iteration utilities


	Unit Testing


	C Interface


	LLVM Interface


	C Standard Library


	Dynamic Linker


	[Profiling](@ref lib-profiling)


	SIMD Support
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I/O and Network


General I/O

Base.STDOUT
Base.STDERR
Base.STDIN
Base.open
Base.IOBuffer
Base.take!(::Base.AbstractIOBuffer)
Base.fdio
Base.flush
Base.close
Base.write
Base.read
Base.read!
Base.readbytes!
Base.unsafe_read
Base.unsafe_write
Base.position
Base.seek
Base.seekstart
Base.seekend
Base.skip
Base.mark
Base.unmark
Base.reset
Base.ismarked
Base.eof
Base.isreadonly
Base.iswritable
Base.isreadable
Base.isopen
Base.Serializer.serialize
Base.Serializer.deserialize
Base.Grisu.print_shortest
Base.fd
Base.redirect_stdout
Base.redirect_stdout(::Function, ::Any)
Base.redirect_stderr
Base.redirect_stderr(::Function, ::Any)
Base.redirect_stdin
Base.redirect_stdin(::Function, ::Any)
Base.readchomp
Base.truncate
Base.skipchars
Base.DataFmt.countlines
Base.PipeBuffer
Base.readavailable
Base.IOContext
Base.IOContext(::IO, ::Pair)
Base.IOContext(::IO, ::IOContext)








Text I/O

Base.show(::Any)
Base.showcompact
Base.showall
Base.summary
Base.print
Base.println
Base.print_with_color
Base.info
Base.warn
Base.logging
Base.Printf.@printf
Base.Printf.@sprintf
Base.sprint
Base.showerror
Base.dump
Base.readstring
Base.readline
Base.readuntil
Base.readlines
Base.eachline
Base.DataFmt.readdlm(::Any, ::Char, ::Type, ::Char)
Base.DataFmt.readdlm(::Any, ::Char, ::Char)
Base.DataFmt.readdlm(::Any, ::Char, ::Type)
Base.DataFmt.readdlm(::Any, ::Char)
Base.DataFmt.readdlm(::Any, ::Type)
Base.DataFmt.readdlm(::Any)
Base.DataFmt.writedlm
Base.DataFmt.readcsv
Base.DataFmt.writecsv
Base.Base64.Base64EncodePipe
Base.Base64.Base64DecodePipe
Base.Base64.base64encode
Base.Base64.base64decode
Base.displaysize








Multimedia I/O

Just as text output is performed by print and user-defined types can indicate their textual
representation by overloading show, Julia provides a standardized mechanism for rich multimedia
output (such as images, formatted text, or even audio and video), consisting of three parts:


	A function display(x) to request the richest available multimedia display of a Julia object
x (with a plain-text fallback).


	Overloading show allows one to indicate arbitrary multimedia representations (keyed by standard
MIME types) of user-defined types.


	Multimedia-capable display backends may be registered by subclassing a generic Display type
and pushing them onto a stack of display backends via pushdisplay.




The base Julia runtime provides only plain-text display, but richer displays may be enabled by
loading external modules or by using graphical Julia environments (such as the IPython-based IJulia
notebook).

Base.Multimedia.display
Base.Multimedia.redisplay
Base.Multimedia.displayable
Base.show(::Any, ::Any, ::Any)
Base.Multimedia.mimewritable
Base.Multimedia.reprmime
Base.Multimedia.stringmime





As mentioned above, one can also define new display backends. For example, a module that can display
PNG images in a window can register this capability with Julia, so that calling display(x) on
types with PNG representations will automatically display the image using the module’s window.

In order to define a new display backend, one should first create a subtype D of the abstract
class Display.  Then, for each MIME type (mime string) that can be displayed on D, one should
define a function display(d::D, ::MIME"mime", x) = ... that displays x as that MIME type,
usually by calling reprmime(mime, x).  A MethodError should be thrown if x cannot be displayed
as that MIME type; this is automatic if one calls reprmime. Finally, one should define a function
display(d::D, x) that queries mimewritable(mime, x) for the mime types supported by D
and displays the “best” one; a MethodError should be thrown if no supported MIME types are found
for x.  Similarly, some subtypes may wish to override [redisplay(d::D, ...)](@ref Base.Multimedia.redisplay). (Again, one should
import Base.display to add new methods to display.) The return values of these functions are
up to the implementation (since in some cases it may be useful to return a display “handle” of
some type).  The display functions for D can then be called directly, but they can also be invoked
automatically from display(x) simply by pushing a new display onto the display-backend stack
with:

Base.Multimedia.pushdisplay
Base.Multimedia.popdisplay
Base.Multimedia.TextDisplay
Base.Multimedia.istextmime








Memory-mapped I/O

Base.Mmap.Anonymous
Base.Mmap.mmap(::Any, ::Type, ::Any, ::Any)
Base.Mmap.mmap(::Any, ::BitArray, ::Any, ::Any)
Base.Mmap.sync!








Network I/O

Base.connect(::TCPSocket, ::Integer)
Base.connect(::AbstractString)
Base.listen(::Any)
Base.listen(::AbstractString)
Base.getaddrinfo
Base.getsockname
Base.IPv4
Base.IPv6
Base.nb_available
Base.accept
Base.listenany
Base.Filesystem.poll_fd
Base.Filesystem.poll_file
Base.Filesystem.watch_file
Base.bind
Base.send
Base.recv
Base.recvfrom
Base.setopt
Base.ntoh
Base.hton
Base.ltoh
Base.htol
Base.ENDIAN_BOM
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Iteration utilities

Base.Iterators.zip
Base.Iterators.enumerate
Base.Iterators.rest
Base.Iterators.countfrom
Base.Iterators.take
Base.Iterators.drop
Base.Iterators.cycle
Base.Iterators.repeated
Base.Iterators.product
Base.Iterators.flatten
Base.Iterators.partition
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C Standard Library

Base.Libc.malloc
Base.Libc.calloc
Base.Libc.realloc
Base.Libc.free
Base.Libc.errno
Base.Libc.strerror
Base.Libc.GetLastError
Base.Libc.FormatMessage
Base.Libc.time(::Base.Libc.TmStruct)
Base.Libc.strftime
Base.Libc.strptime
Base.Libc.TmStruct
Base.Libc.flush_cstdio
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Dynamic Linker

The names in Base.Libdl are not exported and need to be called e.g. as Libdl.dlopen().

Base.Libdl.dlopen
Base.Libdl.dlopen_e
Base.Libdl.RTLD_NOW
Base.Libdl.dlsym
Base.Libdl.dlsym_e
Base.Libdl.dlclose
Base.Libdl.dlext
Base.Libdl.find_library
Base.Libdl.DL_LOAD_PATH
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Linear Algebra


Standard Functions

Linear algebra functions in Julia are largely implemented by calling functions from LAPACK [http://www.netlib.org/lapack/].
Sparse factorizations call functions from SuiteSparse [http://faculty.cse.tamu.edu/davis/suitesparse.html].

Base.:*(::AbstractArray, ::AbstractArray)
Base.:\(::AbstractArray, ::Any)
Base.LinAlg.dot
Base.LinAlg.vecdot
Base.LinAlg.cross
Base.LinAlg.factorize
Base.LinAlg.Diagonal
Base.LinAlg.Bidiagonal
Base.LinAlg.SymTridiagonal
Base.LinAlg.Tridiagonal
Base.LinAlg.Symmetric
Base.LinAlg.Hermitian
Base.LinAlg.LowerTriangular
Base.LinAlg.UpperTriangular
Base.LinAlg.lu
Base.LinAlg.lufact
Base.LinAlg.lufact!
Base.LinAlg.chol
Base.LinAlg.cholfact
Base.LinAlg.cholfact!
Base.LinAlg.lowrankupdate
Base.LinAlg.lowrankdowndate
Base.LinAlg.lowrankupdate!
Base.LinAlg.lowrankdowndate!
Base.LinAlg.ldltfact
Base.LinAlg.ldltfact!
Base.LinAlg.qr
Base.LinAlg.qr!
Base.LinAlg.qrfact
Base.LinAlg.qrfact!
Base.LinAlg.QR
Base.LinAlg.QRCompactWY
Base.LinAlg.QRPivoted
Base.LinAlg.lqfact!
Base.LinAlg.lqfact
Base.LinAlg.lq
Base.LinAlg.bkfact
Base.LinAlg.bkfact!
Base.LinAlg.eig
Base.LinAlg.eigvals
Base.LinAlg.eigvals!
Base.LinAlg.eigmax
Base.LinAlg.eigmin
Base.LinAlg.eigvecs
Base.LinAlg.eigfact
Base.LinAlg.eigfact!
Base.LinAlg.hessfact
Base.LinAlg.hessfact!
Base.LinAlg.schurfact
Base.LinAlg.schurfact!
Base.LinAlg.schur
Base.LinAlg.ordschur
Base.LinAlg.ordschur!
Base.LinAlg.svdfact
Base.LinAlg.svdfact!
Base.LinAlg.svd
Base.LinAlg.svdvals
Base.LinAlg.Givens
Base.LinAlg.givens
Base.LinAlg.triu
Base.LinAlg.triu!
Base.LinAlg.tril
Base.LinAlg.tril!
Base.LinAlg.diagind
Base.LinAlg.diag
Base.LinAlg.diagm
Base.LinAlg.scale!
Base.LinAlg.rank
Base.LinAlg.norm
Base.LinAlg.vecnorm
Base.LinAlg.normalize!
Base.LinAlg.normalize
Base.LinAlg.cond
Base.LinAlg.condskeel
Base.LinAlg.trace
Base.LinAlg.det
Base.LinAlg.logdet
Base.LinAlg.logabsdet
Base.inv
Base.LinAlg.pinv
Base.LinAlg.nullspace
Base.repmat
Base.repeat
Base.kron
Base.SparseArrays.blkdiag
Base.LinAlg.linreg
Base.LinAlg.expm
Base.LinAlg.logm
Base.LinAlg.sqrtm
Base.LinAlg.lyap
Base.LinAlg.sylvester
Base.LinAlg.issymmetric
Base.LinAlg.isposdef
Base.LinAlg.isposdef!
Base.LinAlg.istril
Base.LinAlg.istriu
Base.LinAlg.isdiag
Base.LinAlg.ishermitian
Base.LinAlg.RowVector
Base.LinAlg.ConjArray
Base.transpose
Base.transpose!
Base.ctranspose
Base.ctranspose!
Base.LinAlg.eigs(::Any)
Base.LinAlg.eigs(::Any, ::Any)
Base.LinAlg.svds
Base.LinAlg.peakflops








Low-level matrix operations

Matrix operations involving transpositions operations like A' \ B are converted by the Julia
parser into calls to specially named functions like Ac_ldiv_B. If you want to overload these
operations for your own types, then it is useful to know the names of these functions.

Also, in many cases there are in-place versions of matrix operations that allow you to supply
a pre-allocated output vector or matrix.  This is useful when optimizing critical code in order
to avoid the overhead of repeated allocations. These in-place operations are suffixed with !
below (e.g. A_mul_B!) according to the usual Julia convention.

Base.LinAlg.A_ldiv_B!
Base.A_ldiv_Bc
Base.A_ldiv_Bt
Base.LinAlg.A_mul_B!
Base.A_mul_Bc
Base.A_mul_Bt
Base.A_rdiv_Bc
Base.A_rdiv_Bt
Base.Ac_ldiv_B
Base.LinAlg.Ac_ldiv_B!
Base.Ac_ldiv_Bc
Base.Ac_mul_B
Base.Ac_mul_Bc
Base.Ac_rdiv_B
Base.Ac_rdiv_Bc
Base.At_ldiv_B
Base.LinAlg.At_ldiv_B!
Base.At_ldiv_Bt
Base.At_mul_B
Base.At_mul_Bt
Base.At_rdiv_B
Base.At_rdiv_Bt








BLAS Functions

In Julia (as in much of scientific computation), dense linear-algebra operations are based on
the LAPACK library [http://www.netlib.org/lapack/], which in turn is built on top of basic linear-algebra
building-blocks known as the BLAS [http://www.netlib.org/blas/]. There are highly optimized
implementations of BLAS available for every computer architecture, and sometimes in high-performance
linear algebra routines it is useful to call the BLAS functions directly.

Base.LinAlg.BLAS provides wrappers for some of the BLAS functions. Those BLAS functions
that overwrite one of the input arrays have names ending in '!'.  Usually, a BLAS function has
four methods defined, for Float64, Float32, Complex128, and Complex64 arrays.


[BLAS Character Arguments](@id stdlib-blas-chars)

Many BLAS functions accept arguments that determine whether to transpose an argument (trans),
which triangle of a matrix to reference (uplo or ul),
whether the diagonal of a triangular matrix can be assumed to
be all ones (dA) or which side of a matrix multiplication
the input argument belongs on (side). The possiblities are:


[Multplication Order](@id stdlib-blas-side)

| side | Meaning                                                             |
|:——-|:——————————————————————–|
| 'L'  | The argument goes on the left side of a matrix-matrix operation.  |
| 'R'  | The argument goes on the right side of a matrix-matrix operation. |




[Triangle Referencing](@id stdlib-blas-uplo)

| uplo/ul | Meaning                                               |
|:————|:——————————————————|
| 'U'       | Only the upper triangle of the matrix will be used. |
| 'L'       | Only the lower triangle of the matrix will be used. |




[Transposition Operation](@id stdlib-blas-trans)

| trans/tX | Meaning                                                 |
|:————-|:——————————————————–|
| 'N'        | The input matrix X is not transposed or conjugated.   |
| 'T'        | The input matrix X will be transposed.                |
| 'C'        | The input matrix X will be conjugated and transposed. |




[Unit Diagonal](@id stdlib-blas-diag)

| diag/dX | Meaning                                                   |
|:————|:———————————————————-|
| 'N'       | The diagonal values of the matrix X will be read.       |
| 'U'       | The diagonal of the matrix X is assumed to be all ones. |

Base.LinAlg.BLAS.dotu
Base.LinAlg.BLAS.dotc
Base.LinAlg.BLAS.blascopy!
Base.LinAlg.BLAS.nrm2
Base.LinAlg.BLAS.asum
Base.LinAlg.axpy!
Base.LinAlg.BLAS.scal!
Base.LinAlg.BLAS.scal
Base.LinAlg.BLAS.ger!
Base.LinAlg.BLAS.syr!
Base.LinAlg.BLAS.syrk!
Base.LinAlg.BLAS.syrk
Base.LinAlg.BLAS.her!
Base.LinAlg.BLAS.herk!
Base.LinAlg.BLAS.herk
Base.LinAlg.BLAS.gbmv!
Base.LinAlg.BLAS.gbmv
Base.LinAlg.BLAS.sbmv!
Base.LinAlg.BLAS.sbmv(::Any, ::Any, ::Any, ::Any, ::Any)
Base.LinAlg.BLAS.sbmv(::Any, ::Any, ::Any, ::Any)
Base.LinAlg.BLAS.gemm!
Base.LinAlg.BLAS.gemm(::Any, ::Any, ::Any, ::Any, ::Any)
Base.LinAlg.BLAS.gemm(::Any, ::Any, ::Any, ::Any)
Base.LinAlg.BLAS.gemv!
Base.LinAlg.BLAS.gemv(::Any, ::Any, ::Any, ::Any)
Base.LinAlg.BLAS.gemv(::Any, ::Any, ::Any)
Base.LinAlg.BLAS.symm!
Base.LinAlg.BLAS.symm(::Any, ::Any, ::Any, ::Any, ::Any)
Base.LinAlg.BLAS.symm(::Any, ::Any, ::Any, ::Any)
Base.LinAlg.BLAS.symv!
Base.LinAlg.BLAS.symv(::Any, ::Any, ::Any, ::Any)
Base.LinAlg.BLAS.symv(::Any, ::Any, ::Any)
Base.LinAlg.BLAS.trmm!
Base.LinAlg.BLAS.trmm
Base.LinAlg.BLAS.trsm!
Base.LinAlg.BLAS.trsm
Base.LinAlg.BLAS.trmv!
Base.LinAlg.BLAS.trmv
Base.LinAlg.BLAS.trsv!
Base.LinAlg.BLAS.trsv
Base.LinAlg.BLAS.set_num_threads
Base.LinAlg.I












LAPACK Functions

Base.LinAlg.LAPACK provides wrappers for some of the LAPACK functions for linear algebra.
Those functions that overwrite one of the input arrays have names ending in '!'.

Usually a function has 4 methods defined, one each for Float64, Float32,
Complex128 and Complex64 arrays.

Note that the LAPACK API provided by Julia can and will change in the future. Since this API is
not user-facing, there is no commitment to support/deprecate this specific set of functions in
future releases.

Base.LinAlg.LAPACK.gbtrf!
Base.LinAlg.LAPACK.gbtrs!
Base.LinAlg.LAPACK.gebal!
Base.LinAlg.LAPACK.gebak!
Base.LinAlg.LAPACK.gebrd!
Base.LinAlg.LAPACK.gelqf!
Base.LinAlg.LAPACK.geqlf!
Base.LinAlg.LAPACK.geqrf!
Base.LinAlg.LAPACK.geqp3!
Base.LinAlg.LAPACK.gerqf!
Base.LinAlg.LAPACK.geqrt!
Base.LinAlg.LAPACK.geqrt3!
Base.LinAlg.LAPACK.getrf!
Base.LinAlg.LAPACK.tzrzf!
Base.LinAlg.LAPACK.ormrz!
Base.LinAlg.LAPACK.gels!
Base.LinAlg.LAPACK.gesv!
Base.LinAlg.LAPACK.getrs!
Base.LinAlg.LAPACK.getri!
Base.LinAlg.LAPACK.gesvx!
Base.LinAlg.LAPACK.gelsd!
Base.LinAlg.LAPACK.gelsy!
Base.LinAlg.LAPACK.gglse!
Base.LinAlg.LAPACK.geev!
Base.LinAlg.LAPACK.gesdd!
Base.LinAlg.LAPACK.gesvd!
Base.LinAlg.LAPACK.ggsvd!
Base.LinAlg.LAPACK.ggsvd3!
Base.LinAlg.LAPACK.geevx!
Base.LinAlg.LAPACK.ggev!
Base.LinAlg.LAPACK.gtsv!
Base.LinAlg.LAPACK.gttrf!
Base.LinAlg.LAPACK.gttrs!
Base.LinAlg.LAPACK.orglq!
Base.LinAlg.LAPACK.orgqr!
Base.LinAlg.LAPACK.orgql!
Base.LinAlg.LAPACK.orgrq!
Base.LinAlg.LAPACK.ormlq!
Base.LinAlg.LAPACK.ormqr!
Base.LinAlg.LAPACK.ormql!
Base.LinAlg.LAPACK.ormrq!
Base.LinAlg.LAPACK.gemqrt!
Base.LinAlg.LAPACK.posv!
Base.LinAlg.LAPACK.potrf!
Base.LinAlg.LAPACK.potri!
Base.LinAlg.LAPACK.potrs!
Base.LinAlg.LAPACK.pstrf!
Base.LinAlg.LAPACK.ptsv!
Base.LinAlg.LAPACK.pttrf!
Base.LinAlg.LAPACK.pttrs!
Base.LinAlg.LAPACK.trtri!
Base.LinAlg.LAPACK.trtrs!
Base.LinAlg.LAPACK.trcon!
Base.LinAlg.LAPACK.trevc!
Base.LinAlg.LAPACK.trrfs!
Base.LinAlg.LAPACK.stev!
Base.LinAlg.LAPACK.stebz!
Base.LinAlg.LAPACK.stegr!
Base.LinAlg.LAPACK.stein!
Base.LinAlg.LAPACK.syconv!
Base.LinAlg.LAPACK.sysv!
Base.LinAlg.LAPACK.sytrf!
Base.LinAlg.LAPACK.sytri!
Base.LinAlg.LAPACK.sytrs!
Base.LinAlg.LAPACK.hesv!
Base.LinAlg.LAPACK.hetrf!
Base.LinAlg.LAPACK.hetri!
Base.LinAlg.LAPACK.hetrs!
Base.LinAlg.LAPACK.syev!
Base.LinAlg.LAPACK.syevr!
Base.LinAlg.LAPACK.sygvd!
Base.LinAlg.LAPACK.bdsqr!
Base.LinAlg.LAPACK.bdsdc!
Base.LinAlg.LAPACK.gecon!
Base.LinAlg.LAPACK.gehrd!
Base.LinAlg.LAPACK.orghr!
Base.LinAlg.LAPACK.gees!
Base.LinAlg.LAPACK.gges!
Base.LinAlg.LAPACK.trexc!
Base.LinAlg.LAPACK.trsen!
Base.LinAlg.LAPACK.tgsen!
Base.LinAlg.LAPACK.trsyl!
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Mathematics


[Mathematical Operators](@id math-ops)

Base.:-(::Any)
Base.:(+)
Base.:-(::Any, ::Any)
Base.:*(::Any, ::Any...)
Base.:(/)
Base.:\(::Any, ::Any)
Base.:^(::Number, ::Number)
Base.fma
Base.muladd
Base.div
Base.fld
Base.cld
Base.mod
Base.rem
Base.rem2pi
Base.Math.mod2pi
Base.divrem
Base.fldmod
Base.fld1
Base.mod1
Base.fldmod1
Base.:(//)
Base.rationalize
Base.numerator
Base.denominator
Base.:(<<)
Base.:(>>)
Base.:(>>>)
Base.colon
Base.range
Base.OneTo
Base.StepRangeLen
Base.:(==)
Base.:(!=)
Base.:(!==)
Base.:(<)
Base.:(<=)
Base.:(>)
Base.:(>=)
Base.cmp
Base.:(~)
Base.:(&)
Base.:(|)
Base.xor
Base.:(!)
&&
||








Mathematical Functions

Base.isapprox
Base.sin
Base.cos
Base.tan
Base.Math.sind
Base.Math.cosd
Base.Math.tand
Base.Math.sinpi
Base.Math.cospi
Base.sinh
Base.cosh
Base.tanh
Base.asin
Base.acos
Base.atan
Base.Math.atan2
Base.Math.asind
Base.Math.acosd
Base.Math.atand
Base.Math.sec
Base.Math.csc
Base.Math.cot
Base.Math.secd
Base.Math.cscd
Base.Math.cotd
Base.Math.asec
Base.Math.acsc
Base.Math.acot
Base.Math.asecd
Base.Math.acscd
Base.Math.acotd
Base.Math.sech
Base.Math.csch
Base.Math.coth
Base.asinh
Base.acosh
Base.atanh
Base.Math.asech
Base.Math.acsch
Base.Math.acoth
Base.Math.sinc
Base.Math.cosc
Base.Math.deg2rad
Base.Math.rad2deg
Base.Math.hypot
Base.log(::Any)
Base.log(::Number, ::Number)
Base.log2
Base.log10
Base.log1p
Base.Math.frexp
Base.exp
Base.exp2
Base.exp10
Base.Math.ldexp
Base.Math.modf
Base.expm1
Base.round(::Type, ::Any)
Base.Rounding.RoundingMode
Base.Rounding.RoundNearest
Base.Rounding.RoundNearestTiesAway
Base.Rounding.RoundNearestTiesUp
Base.Rounding.RoundToZero
Base.Rounding.RoundUp
Base.Rounding.RoundDown
Base.round{T <: AbstractFloat, MR, MI}(::Complex{T}, ::RoundingMode{MR}, ::RoundingMode{MI})
Base.ceil
Base.floor
Base.trunc
Base.unsafe_trunc
Base.signif
Base.min
Base.max
Base.minmax
Base.Math.clamp
Base.Math.clamp!
Base.abs
Base.Checked.checked_abs
Base.Checked.checked_neg
Base.Checked.checked_add
Base.Checked.checked_sub
Base.Checked.checked_mul
Base.Checked.checked_div
Base.Checked.checked_rem
Base.Checked.checked_fld
Base.Checked.checked_mod
Base.Checked.checked_cld
Base.Checked.add_with_overflow
Base.Checked.sub_with_overflow
Base.Checked.mul_with_overflow
Base.abs2
Base.copysign
Base.sign
Base.signbit
Base.flipsign
Base.sqrt
Base.isqrt
Base.Math.cbrt
Base.real(::Complex)
Base.imag
Base.reim
Base.conj
Base.angle
Base.cis
Base.binomial
Base.factorial
Base.gcd
Base.lcm
Base.gcdx
Base.ispow2
Base.nextpow2
Base.prevpow2
Base.nextpow
Base.prevpow
Base.nextprod
Base.invmod
Base.powermod
Base.Math.gamma
Base.Math.lgamma
Base.Math.lfact
Base.Math.beta
Base.Math.lbeta
Base.ndigits
Base.widemul
Base.Math.@evalpoly








Statistics

Base.mean
Base.mean!
Base.std
Base.stdm
Base.var
Base.varm
Base.middle
Base.median
Base.median!
Base.quantile
Base.quantile!
Base.cov
Base.cor








Signal Processing

Fast Fourier transform (FFT) functions in Julia are implemented by calling functions from FFTW [http://www.fftw.org].

Base.DFT.fft
Base.DFT.fft!
Base.DFT.ifft
Base.DFT.ifft!
Base.DFT.bfft
Base.DFT.bfft!
Base.DFT.plan_fft
Base.DFT.plan_ifft
Base.DFT.plan_bfft
Base.DFT.plan_fft!
Base.DFT.plan_ifft!
Base.DFT.plan_bfft!
Base.DFT.rfft
Base.DFT.irfft
Base.DFT.brfft
Base.DFT.plan_rfft
Base.DFT.plan_brfft
Base.DFT.plan_irfft
Base.DFT.FFTW.dct
Base.DFT.FFTW.dct!
Base.DFT.FFTW.idct
Base.DFT.FFTW.idct!
Base.DFT.FFTW.plan_dct
Base.DFT.FFTW.plan_dct!
Base.DFT.FFTW.plan_idct
Base.DFT.FFTW.plan_idct!
Base.DFT.fftshift(::Any)
Base.DFT.fftshift(::Any, ::Any)
Base.DFT.ifftshift
Base.DSP.filt
Base.DSP.filt!
Base.DSP.deconv
Base.DSP.conv
Base.DSP.conv2
Base.DSP.xcorr





The following functions are defined within the Base.FFTW module.

Base.DFT.FFTW.r2r
Base.DFT.FFTW.r2r!
Base.DFT.FFTW.plan_r2r
Base.DFT.FFTW.plan_r2r!
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[Numbers](@id lib-numbers)


Standard Numeric Types


Abstract number types

Core.Number
Core.Real
Core.AbstractFloat
Core.Integer
Core.Signed
Core.Unsigned








Concrete number types

Core.Float16
Core.Float32
Core.Float64
Base.BigFloat
Core.Bool
Core.Int8
Core.UInt8
Core.Int16
Core.UInt16
Core.Int32
Core.UInt32
Core.Int64
Core.UInt64
Core.Int128
Core.UInt128
Base.BigInt
Base.Complex
Base.Rational
Base.Irrational










Data Formats

Base.bin
Base.hex
Base.dec
Base.oct
Base.base
Base.digits
Base.digits!
Base.bits
Base.parse(::Type, ::Any, ::Any)
Base.tryparse
Base.big
Base.signed
Base.unsigned
Base.float(::Any)
Base.Math.significand
Base.Math.exponent
Base.complex(::Complex)
Base.bswap
Base.num2hex
Base.hex2num
Base.hex2bytes
Base.bytes2hex








General Number Functions and Constants

Base.one
Base.oneunit
Base.zero
Base.pi
Base.im
Base.eu
Base.catalan
Base.eulergamma
Base.golden
Base.Inf
Base.Inf32
Base.Inf16
Base.NaN
Base.NaN32
Base.NaN16
Base.issubnormal
Base.isfinite
Base.isinf
Base.isnan
Base.iszero
Base.nextfloat
Base.prevfloat
Base.isinteger
Base.isreal
Core.Float32(::Any)
Core.Float64(::Any)
Base.GMP.BigInt(::Any)
Base.MPFR.BigFloat(::Any)
Base.Rounding.rounding
Base.Rounding.setrounding(::Type, ::Any)
Base.Rounding.setrounding(::Function, ::Type, ::RoundingMode)
Base.Rounding.get_zero_subnormals
Base.Rounding.set_zero_subnormals






Integers

Base.count_ones
Base.count_zeros
Base.leading_zeros
Base.leading_ones
Base.trailing_zeros
Base.trailing_ones
Base.isodd
Base.iseven










BigFloats

The BigFloat type implements arbitrary-precision floating-point arithmetic using
the GNU MPFR library [http://www.mpfr.org/].

Base.precision
Base.MPFR.precision(::Type{BigFloat})
Base.MPFR.setprecision
Base.MPFR.BigFloat(x, prec::Int)
BigFloat(x::Union{Integer, AbstractFloat, String}, rounding::RoundingMode)
Base.MPFR.BigFloat(x, prec::Int, rounding::RoundingMode)
Base.MPFR.BigFloat(x::String)








Random Numbers

Random number generation in Julia uses the Mersenne Twister library [http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/#dSFMT]
via MersenneTwister objects. Julia has a global RNG, which is used by default. Other RNG types
can be plugged in by inheriting the AbstractRNG type; they can then be used to have multiple
streams of random numbers. Besides MersenneTwister, Julia also provides the RandomDevice RNG
type, which is a wrapper over the OS provided entropy.

Most functions related to random generation accept an optional AbstractRNG as the first argument,
rng , which defaults to the global one if not provided. Morever, some of them accept optionally
dimension specifications dims... (which can be given as a tuple) to generate arrays of random
values.

A MersenneTwister or RandomDevice RNG can generate random numbers of the following types:
Float16, Float32, Float64, Bool, Int8,
UInt8, Int16, UInt16, Int32, UInt32,
Int64, UInt64, Int128, UInt128, BigInt
(or complex numbers of those types). Random floating point numbers are generated uniformly
in [0, 1). As BigInt represents unbounded integers, the interval must be specified
(e.g. rand(big(1:6))).

Base.Random.srand
Base.Random.MersenneTwister
Base.Random.RandomDevice
Base.Random.rand
Base.Random.rand!
Base.Random.bitrand
Base.Random.randn
Base.Random.randn!
Base.Random.randexp
Base.Random.randexp!
Base.Random.randjump
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Tasks and Parallel Computing


Tasks

Core.Task
Base.current_task
Base.istaskdone
Base.istaskstarted
Base.yield
Base.yieldto
Base.task_local_storage(::Any)
Base.task_local_storage(::Any, ::Any)
Base.task_local_storage(::Function, ::Any, ::Any)
Base.Condition
Base.notify
Base.schedule
Base.@schedule
Base.@task
Base.sleep
Base.Channel
Base.put!(::Channel, ::Any)
Base.take!(::Channel)
Base.isready(::Channel)
Base.fetch(::Channel)
Base.close(::Channel)
Base.bind(c::Channel, task::Task)
Base.asyncmap
Base.asyncmap!








General Parallel Computing Support

Base.addprocs
Base.nprocs
Base.nworkers
Base.procs()
Base.procs(::Integer)
Base.workers
Base.rmprocs
Base.interrupt
Base.myid
Base.pmap
Base.RemoteException
Base.Future
Base.RemoteChannel(::Integer)
Base.RemoteChannel(::Function, ::Integer)
Base.wait
Base.fetch(::Any)
Base.remotecall(::Any, ::Integer, ::Any...)
Base.remotecall_wait(::Any, ::Integer, ::Any...)
Base.remotecall_fetch(::Any, ::Integer, ::Any...)
Base.remote_do(::Any, ::Integer, ::Any...)
Base.put!(::RemoteChannel, ::Any...)
Base.put!(::Future, ::Any)
Base.take!(::RemoteChannel, ::Any...)
Base.isready(::RemoteChannel, ::Any...)
Base.isready(::Future)
Base.WorkerPool
Base.CachingPool
Base.default_worker_pool
Base.clear!(::CachingPool)
Base.remote
Base.remotecall(::Any, ::Base.Distributed.AbstractWorkerPool, ::Any...)
Base.remotecall_wait(::Any, ::Base.Distributed.AbstractWorkerPool, ::Any...)
Base.remotecall_fetch(::Any, ::Base.Distributed.AbstractWorkerPool, ::Any...)
Base.remote_do(::Any, ::Base.Distributed.AbstractWorkerPool, ::Any...)
Base.timedwait
Base.@spawn
Base.@spawnat
Base.@fetch
Base.@fetchfrom
Base.@async
Base.@sync
Base.@parallel
Base.@everywhere
Base.clear!(::Any, ::Any; ::Any)
Base.remoteref_id
Base.channel_from_id
Base.worker_id_from_socket
Base.cluster_cookie()
Base.cluster_cookie(::Any)








Shared Arrays

Base.SharedArray
Base.procs(::SharedArray)
Base.sdata
Base.indexpids
Base.localindexes








Multi-Threading

This experimental interface supports Julia’s multi-threading capabilities. Types and functions
described here might (and likely will) change in the future.

Base.Threads.threadid
Base.Threads.nthreads
Base.Threads.@threads
Base.Threads.Atomic
Base.Threads.atomic_cas!
Base.Threads.atomic_xchg!
Base.Threads.atomic_add!
Base.Threads.atomic_sub!
Base.Threads.atomic_and!
Base.Threads.atomic_nand!
Base.Threads.atomic_or!
Base.Threads.atomic_xor!
Base.Threads.atomic_max!
Base.Threads.atomic_min!
Base.Threads.atomic_fence








ccall using a threadpool (Experimental)

Base.@threadcall








Synchronization Primitives

Base.Threads.AbstractLock
Base.lock
Base.unlock
Base.trylock
Base.islocked
Base.ReentrantLock
Base.Threads.Mutex
Base.Threads.SpinLock
Base.Threads.RecursiveSpinLock
Base.Semaphore
Base.acquire
Base.release








Cluster Manager Interface

This interface provides a mechanism to launch and manage Julia workers on different cluster environments.
There are two types of managers present in Base: LocalManager, for launching additional workers on the
same host, and SSHManager, for launching on remote hosts via ssh. TCP/IP sockets are used to connect
and transport messages between processes. It is possible for Cluster Managers to provide a different transport.

Base.launch
Base.manage
Base.kill(::ClusterManager, ::Int, ::WorkerConfig)
Base.init_worker
Base.connect(::ClusterManager, ::Int, ::WorkerConfig)
Base.process_messages
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Package Manager Functions

All package manager functions are defined in the Pkg module. None of the Pkg module’s functions
are exported; to use them, you’ll need to prefix each function call with an explicit Pkg., e.g.
Pkg.status() or Pkg.dir().

Functions for package development (e.g. tag, publish, etc.) have been moved to the PkgDev [https://github.com/JuliaLang/PkgDev.jl]
package. See PkgDev README [https://github.com/JuliaLang/PkgDev.jl/blob/master/README.md] for
the documentation of those functions.

Base.Pkg.dir
Base.Pkg.init
Base.Pkg.resolve
Base.Pkg.edit
Base.Pkg.add
Base.Pkg.rm
Base.Pkg.clone
Base.Pkg.setprotocol!
Base.Pkg.available
Base.Pkg.installed
Base.Pkg.status
Base.Pkg.update
Base.Pkg.checkout
Base.Pkg.pin
Base.Pkg.free
Base.Pkg.build
Base.Pkg.test
Base.Pkg.dependents
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[Profiling](@id lib-profiling)

Base.Profile.@profile





The methods in Base.Profile are not exported and need to be called e.g. as Profile.print().

Base.Profile.clear
Base.Profile.print
Base.Profile.init
Base.Profile.fetch
Base.Profile.retrieve
Base.Profile.callers
Base.Profile.clear_malloc_data
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Punctuation

Extended documentation for mathematical symbols & functions is [here](@ref math-ops).

| symbol      | meaning                                                                                     |
|:———– |:——————————————————————————————- |
| @m        | invoke macro m; followed by space-separated expressions                                   |
| !         | prefix “not” operator                                                                       |
| a!( )     | at the end of a function name, ! indicates that a function modifies its argument(s)       |
| #         | begin single line comment                                                                   |
| #=        | begin multi-line comment (these are nestable)                                               |
| =#        | end multi-line comment                                                                      |
| $         | string and expression interpolation                                                         |
| %         | remainder operator                                                                          |
| ^         | exponent operator                                                                           |
| &         | bitwise and                                                                                 |
| &&        | short-circuiting boolean and                                                                |
| \|        | bitwise or                                                                                  |
| \|\|      | short-circuiting boolean or                                                                 |
| ⊻         | bitwise xor operator                                                                        |
| *         | multiply, or matrix multiply                                                                |
| ()        | the empty tuple                                                                             |
| ~         | bitwise not operator                                                                        |
| \         | backslash operator                                                                          |
| '         | complex transpose operator Aᴴ                                                               |
| a[]       | array indexing                                                                              |
| [,]       | vertical concatenation                                                                      |
| [;]       | also vertical concatenation                                                                 |
| [   ]    | with space-separated expressions, horizontal concatenation                                  |
| T{ }      | parametric type instantiation                                                               |
| ;         | statement separator                                                                         |
| ,         | separate function arguments or tuple components                                             |
| ?         | 3-argument conditional operator (conditional ? if_true : if_false)                          |
| ""        | delimit string literals                                                                     |
| ''        | delimit character literals                                                                  |
| ` ` | delimit external process (command) specifications                                           |
| ...       | splice arguments into a function call or declare a varargs function or type                 |
| .         | access named fields in objects/modules, also prefixes elementwise operator/function calls   |
| a:b       | range a, a+1, a+2, …, b                                                                   |
| a:s:b     | range a, a+s, a+2s, …, b                                                                  |
| :         | index an entire dimension (1:end)                                                           |
| ::        | type annotation, depending on context                                                       |
| :( )      | quoted expression                                                                           |
| :a        | symbol a                                                                                    |
| <:        | [subtype operator](@ref <:)                                                               |
| >:        | [supertype operator](@ref >:) (reverse of subtype operator)                               |
| ===       | [egal comparison operator](@ref ===)                                                      |
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SIMD Support

Type VecElement{T} is intended for building libraries of SIMD operations. Practical use of it
requires using llvmcall. The type is defined as:

struct VecElement{T}
    value::T
end





It has a special compilation rule: a homogeneous tuple of VecElement{T} maps to an LLVM vector
type when T is a primitive bits type and the tuple length is in the set {2-6,8-10,16}.

At -O3, the compiler might automatically vectorize operations on such tuples. For example,
the following program, when compiled with julia -O3 generates two SIMD addition instructions
(addps) on x86 systems:

const m128 = NTuple{4,VecElement{Float32}}

function add(a::m128, b::m128)
    (VecElement(a[1].value+b[1].value),
     VecElement(a[2].value+b[2].value),
     VecElement(a[3].value+b[3].value),
     VecElement(a[4].value+b[4].value))
end

triple(c::m128) = add(add(c,c),c)

code_native(triple,(m128,))





However, since the automatic vectorization cannot be relied upon, future use will mostly be via
libraries that use llvmcall.
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Sorting and Related Functions

Julia has an extensive, flexible API for sorting and interacting with already-sorted arrays of
values. By default, Julia picks reasonable algorithms and sorts in standard ascending order:

julia> sort([2,3,1])
3-element Array{Int64,1}:
 1
 2
 3





You can easily sort in reverse order as well:

julia> sort([2,3,1], rev=true)
3-element Array{Int64,1}:
 3
 2
 1





To sort an array in-place, use the “bang” version of the sort function:

julia> a = [2,3,1];

julia> sort!(a);

julia> a
3-element Array{Int64,1}:
 1
 2
 3





Instead of directly sorting an array, you can compute a permutation of the array’s indices that
puts the array into sorted order:

julia> v = randn(5)
5-element Array{Float64,1}:
  0.297288
  0.382396
 -0.597634
 -0.0104452
 -0.839027

julia> p = sortperm(v)
5-element Array{Int64,1}:
 5
 3
 4
 1
 2

julia> v[p]
5-element Array{Float64,1}:
 -0.839027
 -0.597634
 -0.0104452
  0.297288
  0.382396





Arrays can easily be sorted according to an arbitrary transformation of their values:

julia> sort(v, by=abs)
5-element Array{Float64,1}:
 -0.0104452
  0.297288
  0.382396
 -0.597634
 -0.839027





Or in reverse order by a transformation:

julia> sort(v, by=abs, rev=true)
5-element Array{Float64,1}:
 -0.839027
 -0.597634
  0.382396
  0.297288
 -0.0104452





If needed, the sorting algorithm can be chosen:

julia> sort(v, alg=InsertionSort)
5-element Array{Float64,1}:
 -0.839027
 -0.597634
 -0.0104452
  0.297288
  0.382396





All the sorting and order related functions rely on a “less than” relation defining a total order
on the values to be manipulated. The isless function is invoked by default, but the relation
can be specified via the lt keyword.


Sorting Functions

Base.sort!
Base.sort
Base.sortperm
Base.Sort.sortperm!
Base.Sort.sortrows
Base.Sort.sortcols








Order-Related Functions

Base.issorted
Base.Sort.searchsorted
Base.Sort.searchsortedfirst
Base.Sort.searchsortedlast
Base.Sort.select!
Base.Sort.select
Base.Sort.selectperm
Base.Sort.selectperm!








Sorting Algorithms

There are currently four sorting algorithms available in base Julia:


	InsertionSort


	QuickSort


	PartialQuickSort(k)


	MergeSort




InsertionSort is an O(n^2) stable sorting algorithm. It is efficient for very small n, and
is used internally by QuickSort.

QuickSort is an O(n log n) sorting algorithm which is in-place, very fast, but not stable –
i.e. elements which are considered equal will not remain in the same order in which they originally
appeared in the array to be sorted. QuickSort is the default algorithm for numeric values, including
integers and floats.

PartialQuickSort(k) is similar to QuickSort, but the output array is only sorted up to index
k if k is an integer, or in the range of k if k is an OrdinalRange. For example:

x = rand(1:500, 100)
k = 50
k2 = 50:100
s = sort(x; alg=QuickSort)
ps = sort(x; alg=PartialQuickSort(k))
qs = sort(x; alg=PartialQuickSort(k2))
map(issorted, (s, ps, qs))             # => (true, false, false)
map(x->issorted(x[1:k]), (s, ps, qs))  # => (true, true, false)
map(x->issorted(x[k2]), (s, ps, qs))   # => (true, false, true)
s[1:k] == ps[1:k]                      # => true
s[k2] == qs[k2]                        # => true





MergeSort is an O(n log n) stable sorting algorithm but is not in-place – it requires a temporary
array of half the size of the input array – and is typically not quite as fast as QuickSort.
It is the default algorithm for non-numeric data.

The default sorting algorithms are chosen on the basis that they are fast and stable, or appear
to be so. For numeric types indeed, QuickSort is selected as it is faster and indistinguishable
in this case from a stable sort (unless the array records its mutations in some way). The stability
property comes at a non-negligible cost, so if you don’t need it, you may want to explicitly specify
your preferred algorithm, e.g. sort!(v, alg=QuickSort).

The mechanism by which Julia picks default sorting algorithms is implemented via the Base.Sort.defalg
function. It allows a particular algorithm to be registered as the default in all sorting functions
for specific arrays. For example, here are the two default methods from sort.jl [https://github.com/JuliaLang/julia/blob/master/base/sort.jl]:

defalg(v::AbstractArray) = MergeSort
defalg{T<:Number}(v::AbstractArray{T}) = QuickSort





As for numeric arrays, choosing a non-stable default algorithm for array types for which the notion
of a stable sort is meaningless (i.e. when two values comparing equal can not be distinguished)
may make sense.
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StackTraces

Base.StackTraces.StackFrame
Base.StackTraces.StackTrace
Base.StackTraces.stacktrace
Base.StackTraces.catch_stacktrace





The following methods and types in Base.StackTraces are not exported and need to be called e.g.
as StackTraces.lookup(ptr).

Base.StackTraces.lookup
Base.StackTraces.remove_frames!
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[Strings](@id lib-strings)

Base.length(::AbstractString)
Base.sizeof(::AbstractString)
Base.:*(::AbstractString, ::Any...)
Base.:^(::AbstractString, ::Integer)
Base.string
Base.repr
Core.String(::AbstractString)
Base.transcode
Base.unsafe_string
Base.codeunit(::AbstractString, ::Integer)
Base.ascii
Base.@r_str
Base.Docs.@html_str
Base.Docs.@text_str
Base.UTF8proc.normalize_string
Base.UTF8proc.graphemes
Base.isvalid(::Any)
Base.isvalid(::Any, ::Any)
Base.isvalid(::AbstractString, ::Integer)
Base.UTF8proc.is_assigned_char
Base.ismatch
Base.match
Base.eachmatch
Base.matchall
Base.lpad
Base.rpad
Base.search
Base.rsearch
Base.searchindex
Base.rsearchindex
Base.contains(::AbstractString, ::AbstractString)
Base.reverse(::AbstractString)
Base.replace
Base.split
Base.rsplit
Base.strip
Base.lstrip
Base.rstrip
Base.startswith
Base.endswith
Base.uppercase
Base.lowercase
Base.titlecase
Base.ucfirst
Base.lcfirst
Base.join
Base.chop
Base.chomp
Base.ind2chr
Base.chr2ind
Base.nextind
Base.prevind
Base.Random.randstring
Base.UTF8proc.charwidth
Base.strwidth
Base.UTF8proc.isalnum
Base.UTF8proc.isalpha
Base.isascii
Base.UTF8proc.iscntrl
Base.UTF8proc.isdigit
Base.UTF8proc.isgraph
Base.UTF8proc.islower
Base.UTF8proc.isnumber
Base.UTF8proc.isprint
Base.UTF8proc.ispunct
Base.UTF8proc.isspace
Base.UTF8proc.isupper
Base.isxdigit
Core.Symbol
Base.escape_string
Base.unescape_string
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Unit Testing

DocTestSetup = quote
    using Base.Test
end






Testing Base Julia

Julia is under rapid development and has an extensive test suite to verify functionality across
multiple platforms. If you build Julia from source, you can run this test suite with make test.
In a binary install, you can run the test suite using Base.runtests().

Base.runtests








Basic Unit Tests

The Base.Test module provides simple unit testing functionality. Unit testing is a way to
see if your code is correct by checking that the results are what you expect. It can be helpful
to ensure your code still works after you make changes, and can be used when developing as a way
of specifying the behaviors your code should have when complete.

Simple unit testing can be performed with the @test() and @test_throws() macros:

Base.Test.@test
Base.Test.@test_throws





For example, suppose we want to check our new function foo(x) works as expected:

julia> using Base.Test

julia> foo(x) = length(x)^2
foo (generic function with 1 method)





If the condition is true, a Pass is returned:

julia> @test foo("bar") == 9
Test Passed

julia> @test foo("fizz") >= 10
Test Passed





If the condition is false, then a Fail is returned and an exception is thrown:

julia> @test foo("f") == 20
Test Failed
  Expression: foo("f") == 20
   Evaluated: 1 == 20
ERROR: There was an error during testing





If the condition could not be evaluated because an exception was thrown, which occurs in this
case because length() is not defined for symbols, an Error object is returned and an exception
is thrown:

julia> @test foo(:cat) == 1
Error During Test
  Test threw an exception of type MethodError
  Expression: foo(:cat) == 1
  MethodError: no method matching length(::Symbol)
  Closest candidates are:
    length(::SimpleVector) at essentials.jl:256
    length(::Base.MethodList) at reflection.jl:521
    length(::MethodTable) at reflection.jl:597
    ...
  Stacktrace:
   [...]
ERROR: There was an error during testing





If we expect that evaluating an expression should throw an exception, then we can use @test_throws()
to check that this occurs:

julia> @test_throws MethodError foo(:cat)
Test Passed
      Thrown: MethodError








Working with Test Sets

Typically a large number of tests are used to make sure functions work correctly over a range
of inputs. In the event a test fails, the default behavior is to throw an exception immediately.
However, it is normally preferable to run the rest of the tests first to get a better picture
of how many errors there are in the code being tested.

The @testset() macro can be used to group tests into sets. All the tests in a test set will
be run, and at the end of the test set a summary will be printed. If any of the tests failed,
or could not be evaluated due to an error, the test set will then throw a TestSetException.

Base.Test.@testset





We can put our tests for the foo(x) function in a test set:

julia> @testset "Foo Tests" begin
           @test foo("a")   == 1
           @test foo("ab")  == 4
           @test foo("abc") == 9
       end;
Test Summary: | Pass  Total
Foo Tests     |    3      3





Test sets can also be nested:

julia> @testset "Foo Tests" begin
           @testset "Animals" begin
               @test foo("cat") == 9
               @test foo("dog") == foo("cat")
           end
           @testset "Arrays $i" for i in 1:3
               @test foo(zeros(i)) == i^2
               @test foo(ones(i)) == i^2
           end
       end;
Test Summary: | Pass  Total
Foo Tests     |    8      8





In the event that a nested test set has no failures, as happened here, it will be hidden in the
summary. If we do have a test failure, only the details for the failed test sets will be shown:

julia> @testset "Foo Tests" begin
           @testset "Animals" begin
               @testset "Felines" begin
                   @test foo("cat") == 9
               end
               @testset "Canines" begin
                   @test foo("dog") == 9
               end
           end
           @testset "Arrays" begin
               @test foo(zeros(2)) == 4
               @test foo(ones(4)) == 15
           end
       end

Arrays: Test Failed
  Expression: foo(ones(4)) == 15
   Evaluated: 16 == 15
Stacktrace:
    [...]
Test Summary: | Pass  Fail  Total
Foo Tests     |    3     1      4
  Animals     |    2            2
  Arrays      |    1     1      2
ERROR: Some tests did not pass: 3 passed, 1 failed, 0 errored, 0 broken.








Other Test Macros

As calculations on floating-point values can be imprecise, you can perform approximate equality
checks using either @test a ≈ b (where ≈, typed via tab completion of \approx, is the
isapprox() function) or use isapprox() directly.

julia> @test 1 ≈ 0.999999999
Test Passed

julia> @test 1 ≈ 0.999999
Test Failed
  Expression: 1 ≈ 0.999999
   Evaluated: 1 ≈ 0.999999
ERROR: There was an error during testing





Base.Test.@inferred
Base.Test.@test_warn
Base.Test.@test_nowarn








Broken Tests

If a test fails consistently it can be changed to use the @test_broken() macro. This will denote
the test as Broken if the test continues to fail and alerts the user via an Error if the test
succeeds.

Base.Test.@test_broken





@test_skip() is also available to skip a test without evaluation, but counting the skipped test
in the test set reporting. The test will not run but gives a Broken Result.

Base.Test.@test_skip








Creating Custom AbstractTestSet Types

Packages can create their own AbstractTestSet subtypes by implementing the record and finish
methods. The subtype should have a one-argument constructor taking a description string, with
any options passed in as keyword arguments.

Base.Test.record
Base.Test.finish





Base.Test takes responsibility for maintaining a stack of nested testsets as they are executed,
but any result accumulation is the responsibility of the AbstractTestSet subtype. You can access
this stack with the get_testset and get_testset_depth methods. Note that these functions are
not exported.

Base.Test.get_testset
Base.Test.get_testset_depth





Base.Test also makes sure that nested @testset invocations use the same AbstractTestSet
subtype as their parent unless it is set explicitly. It does not propagate any properties of the
testset. Option inheritance behavior can be implemented by packages using the stack infrastructure
that Base.Test provides.

Defining a basic AbstractTestSet subtype might look like:

import Base.Test: record, finish
using Base.Test: AbstractTestSet, Result, Pass, Fail, Error
using Base.Test: get_testset_depth, get_testset
struct CustomTestSet <: Base.Test.AbstractTestSet
    description::AbstractString
    foo::Int
    results::Vector
    # constructor takes a description string and options keyword arguments
    CustomTestSet(desc; foo=1) = new(desc, foo, [])
end

record(ts::CustomTestSet, child::AbstractTestSet) = push!(ts.results, child)
record(ts::CustomTestSet, res::Result) = push!(ts.results, res)
function finish(ts::CustomTestSet)
    # just record if we're not the top-level parent
    if get_testset_depth() > 0
        record(get_testset(), ts)
    end
    ts
end





And using that testset looks like:

@testset CustomTestSet foo=4 "custom testset inner 2" begin
    # this testset should inherit the type, but not the argument.
    @testset "custom testset inner" begin
        @test true
    end
end





DocTestSetup = nothing
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