

 Navigation

 	
 index

 	
 next |

 	Juicer documentation

 [image: https://api.travis-ci.org/abutcher/juicer.png]
 [https://travis-ci.org/abutcher/juicer/][image: https://coveralls.io/repos/abutcher/juicer/badge.png?branch=master]
 [https://coveralls.io/r/abutcher/juicer?branch=master]
Juicer

Juicer is a command-line interface to the Pulp REST API [https://pulp.readthedocs.org/en/2.6-release/dev-guide/integration/rest-api/index.html]
which provides a shopping cart style approach to uploading and
promoting groups of packages, files, or docker images through multiple
environments.

	1. Getting Started
	1.1. Installation

	1.2. Configuration

	1.3. Usage

	2. Plugins
	2.1. An Example Plugin

	3. Contributing
	3.1. Running the Tests

	3.2. Running Juicer Locally

	3.3. Code Style and Formatting

	3.4. Argument and Command Style

	3.5. Documentation

 Copyright 2015, Andrew Butcher.
 Last updated on 2015-07-28 - 16:39:41 CDT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Juicer documentation

1. Getting Started

1.1. Installation

Juicer was built to work with Pulp version 2.6.0. We assume that you
have a server up and running which Juicer can talk to. Installation
instructions for Pulp are available here [https://pulp.readthedocs.org/en/2.6-release/user-guide/installation.html].

1.1.1. RPM Install

RPM packages are available for RHEL/Centos 7 and Fedora 21 & 22.

dnf copr enable abutcher/juicer
dnf install -y juicer

1.1.2. Source Install

sudo python ./setup.py install

1.2. Configuration

Juicer is configured through a ~/.config/juicer/config file. The
config is broken into sections by environment and may also contain an
optional DEFAULT section, from which the defaults for all following
sections are supplied.

The standard flow of this sample infrastructure goes from devel to
prod; meaning that we upload our packages to devel and test them
accordingly in our development environment before we promote them to
prod.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	[DEFAULT]
username: testuser
password: testpass
port: 443
verify_ssl: False
ca_path: /home/testuser/certs/pulp.crt
cert_filename: /home/testuser/certs/client.crt
cart_seeds: testhost.re.example.com:27017
start_in: re

[re]
hostname: testhost.re.example.com
promotes_to: qa

[qa]
hostname: testhost.qa.example.com

1.3. Usage

usage: juicer [-h] [-v] [-V] {cart,rpm,repo,role,user,hello} ...

manage pulp and release carts

optional arguments:
-h, --help show this help message and exit
-v, --verbose show verbose output
-V, --version show program's version number and exit

commands:
'juicer COMMAND -h' for individual help topics

{cart,rpm,repo,role,user,hello}
cart cart operations
rpm rpm operations
repo repo operations
role role operations
user user operations
hello test your connection to the pulp server

1.3.1. Create a repository

Creating a repository without specifying --in will automatically
create the repository in every configured environment.

juicer repo create my-repository

Or, a repository can be created in specific environments.

juicer repo create my-repository --in devel

Note

Repositories created by juicer have a relative path which includes
the environments they were created in. If a repository was created
in devel, it would be available at
https://<pulp-host>/pulp/repos/devel/.

The Pulp repo_id of a repository created by juicer will be
display_name-environment. A repository named test-repo
created in the devel environment would have a repo_id of
test-repo-devel.

This was done so that multiple environments can co-exist on a
single Pulp node.

1.3.2. Create a cart

A cart is composed of repositories and packages.

juicer cart create my-cart -r my-repository ~/rpmbuild/RPMS/noarch/*.rpm

Multiple packages and repositories can be specified.

juicer cart create my-cart -r my-repository ~/rpmbuild/RPMS/noarch/*.rpm \
 -r my-other-repository ./awesome.rpm /tmp/woah.rpm

Packages don’t have to be local.

juicer cart create my-cart -r my-repository http://dang.com/rpms/omg.rpm

You can even provide an apache directory index (example:
http://lnx.cx/~tbielawa/rpms/) as a
source. The directory listing will be searched for links ending in
.rpm. All matches will be added to the cart!

juicer cart create my-dir-cart -r my-repository http://son.com/rpms/
juicer cart show my-dir-cart

{
 "_id": "my-dir-cart",
 "repos_items": {
 "my-repository": [
 "http://son.com/rpms/megafrobber-1.0.3-2.noarch.rpm",
 "http://son.com/rpms/defrobnicate-ng-3.2.1-0.noarch.rpm",
]
 }
}

If you need to get more specific you can use fnmatch.fnmatch [https://docs.python.org/2/library/fnmatch.html] wildcard matching
with apache directory indexes.

juicer cart create my-dir-cart -r my-repository http://son.com/rpms/mega*rpm
juicer cart show my-dir-cart

{
 "_id": "my-dir-cart",
 "repos_items": {
 "my-repository": [
 "http://son.com/rpms/megafrobber-1.0.3-2.noarch.rpm",
]
 }
}

1.3.3. Push a cart to an environment

Pushing a cart will upload all of its items to the specified
environment.

juicer cart push my-cart --in qa

Note

A cart can be saved remotely once it has been pushed. This can be
useful if the release engineer needs to swap mid-release. Add
cart_seeds (insecure mongo endpoint) to juicer configuration to
enable remote saves. Remote carts can be pulled with juicer cart
pull.

To further illustrate remote cart saving, we can delete our local
cart and pull it down again.

juicer cart delete my-cart --local
juicer cart pull my-cart
juicer cart show my-cart

juicer cart pull will overwrite a local cart file if it exists.

 Copyright 2015, Andrew Butcher.
 Last updated on 2015-07-28 - 16:39:41 CDT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Juicer documentation

2. Plugins

Juicer will execute pre and post upload plugins if they exist. Example
use cases include signing packages, kicking off builds, or anything
that you’d want to do with a cart’s files before and after uploading.

	Plugins are read from /usr/share/juicer/plugins/pre and
/usr/share/juicer/plugins/post.

	Plugins must be named after the class they contain.

	Plugins classes will be initialized with item_type (rpm, docker,
or iso), the environment, and a list of items that have
already been synced to the local filesystem.

	Plugin classes must contain a run member function in which all
of the work will be done.

2.1. An Example Plugin

Here is an example plugin stored in
/usr/share/juicer/plugins/pre/myplugin.py that displays each item
and its size.

import os

class myplugin:
 def __init__(self, item_type, environment, items):
 self.item_type = item_type
 self.environment = environment
 self.items = items

 def run(self):
 print("Item type: {}".format(self.item_type))
 print("Environment: {}".format(self.environment))
 for item in self.items:
 print("File: {}, Size: {}".format(item, os.path.getsize(item.path)))

 Copyright 2015, Andrew Butcher.
 Last updated on 2015-07-28 - 16:39:41 CDT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Juicer documentation

3. Contributing

	Running the Tests

	Running Juicer Locally

	Code Style and Formatting

	Argument and Command Style

	Documentation
	Section Headers

	Word Wrapping

	Building The Docs

3.1. Running the Tests

The Juicer test suite is invoked via the Makefile. The following is an
example of how to run the ci target manually.

This will install dependencies within an isolated Python virtualenv [https://virtualenv.pypa.io/en/latest/]. In addition to running our
tests, PEP8 [http://www.python.org/dev/peps/pep-0008] style
formatting is also checked.

Once the command make ci exits and returns control to the shell we
can scroll up a few lines and review the results of our unit tests and
code-coverage report (move your cursor over the window above and
scroll up/down to see for yourself).

3.2. Running Juicer Locally

Once the ci Makefile target has been ran, we can enter the python
virtual environment and run juicer by running the highlighted
commands in the following block.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	[~/juicer] 23:30:27 (master)
$. juicerenv/bin/activate

[~/juicer] 23:30:41 (master)
$ juicer -h
usage: juicer [-h] [-q] [-v] [-V] {cart,rpm,repo,role,user,hello} ...

manage pulp and release carts

optional arguments:
 -h, --help show this help message and exit
 -q, --quiet show no output
 -v, --verbose show verbose output
 -V, --version show program's version number and exit

commands:
 'juicer COMMAND -h' for individual help topics

 {cart,rpm,repo,role,user,hello}
 cart cart operations
 rpm rpm operations
 repo repo operations
 role role operations
 user user operations
 hello test your connection to the pulp server

3.3. Code Style and Formatting

Please conform to PEP 0008 [https://www.python.org/dev/peps/pep-0008] for code formatting. This specification
outlines the style that is required for patches.

Your code must follow this (or note why it can’t) before patches will
be accepted. There is one consistent exception to this rule:

	E501

	Line too long

The pep8 tests for juicer include a --ignore option to
automatically exclude E501 errors from the tests.

3.4. Argument and Command Style

Arguments should be expressed as they are in the following
example. Usage strings are all lower case except for argument metavars
which are in caps. Description strings are all lower case.

$ juicer cart create -h
usage: juicer cart create CARTNAME [-r REPONAME ITEM ... [-r REPONAME ITEM ...]] [-h]

positional arguments:
CARTNAME cart name

optional arguments:
 -h, --help show this help message and exit
 -r REPONAME [ITEM ...]
 destination repo name, items

Output should read as a garden variety sentence.

$ juicer cart create test -r test-repo ~/rpmbuild/RPMS/noarch/*
Saved cart 'test'

3.5. Documentation

I assume you came here to learn how to update the project
documentation?

Hello, you have just become my new best friend. I think we’re going to
get along really well together.

3.5.1. Section Headers

When marking up section headers please refer to the HEADERS [https://github.com/abutcher/juicer/blob/master/docsite/HEADERS]
file in the docsite directory. This file shows the order we apply
section header markup. Please follow it exactly, doing so will help us
avoid silly rendering errors.

Start at the top and work your way down as you nest deeper and deeper

with overline, for parts
* with overline, for chapters
= for sections
- for subsections
^ for subsubsections
" for paragraphs
| for anything smaller

3.5.2. Word Wrapping

Please do word-wrap your documentation contributions! In emacs
this is as simple as pressing M-q in a paragraph you want to
auto-word-wrap (the emacs function is called fill-paragraph. You
can run it manually with M-x fill-paragraph <RET> if you prefer.

If you use vi(m), then I’m sorry. I cannot assist you with your
word-wrapping needs a this time. Please feel free to submit a pull
request to update these docs with vi(m) automatic word-wrapping
instructions!

Fear not – pull-requests won’t be rejected just because they aren’t
word-wrapped. You just earn major karma with us if you word-wrap your
contributions :-). Thanks!

3.5.3. Building The Docs

So you want to build the documentation locally? Aren’t you in luck, I
think that’s a surpurb idea as well. Building the docs is a fairly
straight-forward process. All you may have to do is install some
requirements first:

From yum:

	python-sphinx

	python-sphinx_rtd_theme

Optionally, you may install these requirements from pip:

	Sphinx

	sphinx_rtd_theme

Once you have the requirements installed you can attempt to build the
documentation from source

	Switch into the docsite directory and run make html:

$ cd ./docsite
$ make html
sphinx-build -b html -d build/doctrees source build/html
Making output directory...
Running Sphinx v1.1.3
loading pickled environment... not yet created
building [html]: targets for 3 source files that are out of date
updating environment: 3 added, 0 changed, 0 removed
reading sources... [100%] index
looking for now-outdated files... none found
pickling environment... done
checking consistency... done
preparing documents... done
writing output... [100%] index
writing additional files... genindex search
copying static files... done
dumping search index... done
dumping object inventory... done
build succeeded.

Build finished. The HTML pages are in build/html.

	If the docs built correctly then you can open them in your default
browser with this command (while still in the docsite
directory):

$ xdg-open ./build/html/index.html

 Copyright 2015, Andrew Butcher.
 Last updated on 2015-07-28 - 16:39:41 CDT.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Juicer documentation

Index

 P

P

 	

 	
 Python Enhancement Proposals

 	

 	PEP 0008

 Copyright 2015, Andrew Butcher.
 Last updated on 2015-07-28 - 16:39:41 CDT.
 Created using Sphinx 1.3.1.

 _static/up-pressed.png

search.html

 Navigation

 		
 index

 		Juicer documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Andrew Butcher.
 Last updated on 2015-07-28 - 16:39:41 CDT.
 Created using Sphinx 1.3.1.

_static/up.png

_static/comment-bright.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

