

Welcome to JSON Config’s documentation!

Contents:

	Welcome to JSON Config
	Installation

	What’s it Used For?

	Basic Example

	Easy Access

	Designed with Stability in Mind

	Consistency across Multiple Sources of Configuration Data

	JSON Config Examples
	Storing & Retrieving Database Server Settings

	Storing & Retrieving the Current State of a Game

	Making a Request from a Restful API Settings File

	Configuration File Basics
	Definition

	Most Interesting Programs Need Some Kind of Configuration

	Serialization
	Definition

	Python Data Type Conversions

	Configuration File Locations
	App Dir Options

	The Three (3) File Location Patterns

	Missing Directories

	Missing Files

	The JSON Sandwich

	Data Served in the Wrapper of Your Choice
	Shortcuts

	Data Conversion Helpers

	Advanced Usage

	Encryped Data
	Default Behavior

	How-to Set the Service Name

	Enabling and Disabling the Keyring

	Manually Setting the Keyring Backend

	How it Works

	References

	Environment Variables
	Attribute & Dictionary Key Style Access

	Getpass Helper Function

	JSON Helper Functions

	Exception Handling

	Pass-Through Keyword Arguments

Indices and tables

	Index

	Module Index

	Search Page

Welcome to JSON Config

Configuration doesn’t get any easier than this …

Installation

pip install jsonconfig-tool

What’s it Used For?

	Managing settings, configuration information, application data, etc.

	Managing secrets, tokens, keys, passwords, etc.

	Managing environment settings.

Basic Example

with Config('myapp') as cfg:
 cfg.data = 'Any JSON serializable object ...'
 cfg.pwd.a_secret = 'Encrypted data ...'
 cfg.env.a_variable = 'Environment variables.'

In the context manager above:

	The data is stored in the user’s local application directory.

	The pwd data is encrypted and stored in a keyring vault.

	The env data is stored in environment variables.

Easy Access

With Python-Box [http://github.com/cdgriffith/Box] 3 as a data access wrapper you can reference Mapping data as
either dictionary-keys or attribute-style notation. For example,

with BoxConfig('myapp') as cfg:
 cfg.data.key1 = 'Some configuration data ...'
 cfg.data.key2 = 'Some more data ...'

Designed with Stability in Mind

	JSON Config is just a pass-through to mature, stable 3rd party packages,
and built-in Python modules: Click [http://github.com/pallets/click] 1, Keyring [https://github.com/jaraco/keyring] 2, Python-Box [http://github.com/cdgriffith/Box] 3, open, json.load,
json.dump, and os.environ.

	JSON Config takes extra care to stay out of your way as a Python
programmer, it does NOT introduce magic. And any keyword arguments that you
would normally be able to pass to the above functions are still available
through the context manager.

	You could import each of the above packages independently rather than
using JSON Config but then you’d be responsible for writing a lot more
code, tracking what all needs to be imported, writing a lot more tests,
and dealing with error handling from different sources. The more custom
code you write, the greater the chance of introducing bugs.

Consistency across Multiple Sources of Configuration Data

	JSON Config aims to create consistency across different types of
configuration data. For example, bringing both dictionary key and
attribute-style access to data, encrypted data, and environment
variables.

	JSON Config provides consistent error handling around the entire
configuration process; this allows you to employ sane exception
management and logging at the granularity-level most suitable to your
project.

	JSON Config also simplifies the process of cross-checking configuration
settings across multiple sources. An example might be first checking to
see if an environment variable is set. If not set, then checking to see
if the setting has been recorded in the configuration file, and if not
prompting the user for the required setting and then writing it back to
the configuration. In JSON Config this can all be done in one simple line
of code.

References

	1

	http://github.com/pallets/click

	2

	https://github.com/jaraco/keyring

	3(1,2)

	http://github.com/cdgriffith/Box

JSON Config Examples

Storing & Retrieving Database Server Settings

from jsonconfig import Config

Save the settings.

with Conf('Mongo DB') as mongo:
 mongo.data = {"domain": "www.example.com",
 "mongodb": {"host": "localhost", "port": 27017}}

Retrieve the settings.

with Conf('Mongo DB') as mongo:
 data = mongo.data

Retrieve the hostname & port from environments variables if they exist,
otherwise pull the information from the configuration file if it exists,
otherwise use default values.

from jsonconfig import Config

with Conf('Mongo DB') as db:
 host = db.env['M_HOST'] or db.data['mongodb']['host'] or 'localhost'
 port = int(db.env['M_PORT'] or db.data['mongodb']['port'] or 27017)

Storing & Retrieving the Current State of a Game

from jsonconfig import BoxConfig, Config

with Config('Chess Tournaments') as chess_match:
 chess_match.data = [
 {
 "Event": "Kramnik - Leko World Championship Match",
 "Site": "Brissago SUI",
 "Date": "2004.10.03",
 "EventDate": None,
 "Round": 6,
 "Result": None,
 "White": {"Name": "Vladimir Kramnik", "Elo": None},
 "Black": {"Name": "Peter Leko", "Elo": None},
 "ECO": "C88",
 "PlyCount": 40,
 "Moves": [
 'e4 e5', 'Nf3 Nc6', 'Bb5 a6', 'Ba4 Nf6', 'O-O Be7',
 'Re1 b5', 'Bb3 O-O', 'h3 Bb7', 'd3 d6', 'a3 Na5'
]
 }
]

Pick the game up where it left off and add new moves.

with BoxConfig('Chess Tournaments') as chess_matches:
 match = chess_matches[0].data
 match.Moves.append([
 'Ba2 c5', 'Nbd2 Nc6', 'c3 Qd7', 'Nf1 d5', 'Bg5 dxe4',
 'dxe4 c4', 'Ne3 Rfd8', 'Nf5 Qe6', 'Qe2 Bf8', 'Bb1 h6'
])
 match.Result = '1/2-1/2'

Retrieve the data for all matches.

with Config('Chess Tournaments') as chess_matches:
 match = chess_matches.data

Making a Request from a Restful API Settings File

from jsonconfig import Config

api_info = {
 "headers": {"Authorization: Bearer {access_token}"}
 "parameters": {"includeAll": True}
 "resources": {"sheet": {"endpoint": "sheets/{sheetId}"}}
)

example of saving both standard and enrypted data

with Config('Sample API') as api:

 # save standard data
 api.data = api_info

 # save encyrpted data
 api.pwd.access_token = 'll352u9jujauoqz4gstvsae05'

example of updating an existing configuration

with Config('Sample API') as api:
 api.data['url'] = "https://api.smartsheet.com/2.0/"

Pull access token from environment variable if it exists, otherwise pull
it from the Keyring vault, it it doesn’t exist there either prompt the
user for the password and mask the characters as they’re typed in.

import requests
from jsonconfig import getpass, BoxConfig

with BoxConfig('API Example') as api:
 endpoint = api.data.resources.sheet.endpoint
 access_token = api.env.ACCESS_TOKEN or api.pwd.access_token or getpass
 response = requests.get(
 api.data.url + endpoint.format(sheetId=4583173393803140),
 headers = api.data.headers.format(access_token),
 parameters = api.data.parameters
)

Configuration File Basics

Definition

A configuration file is used for the persistent storage of data, like
when a user shuts down a program, turns the power off, etc. the information
is loaded again the next time they open it so that they can continue where
they left off.

Rather than being hard-coded in the program, the information is user-
configurable and typically stored in a plain text format, in this case JSON.

Source: Configuration file [https://en.wikipedia.org/wiki/Configuration_file] 1

Tip

For the most part, you don’t even need to worry about JSON, you just
assign your data to the context manager’s attributes and JSON Config
takes care of the rest.

Most Interesting Programs Need Some Kind of Configuration

There’s no defined standard on how config files should work, what goes
into a configuration file is entirely up to the whim of the developer, but
here are some examples:

	Content Management Systems

	That need store information about where the database server is (the
hostname) and how to login (username and password.)

	Proprietary Software

	That need to record whether the software was already registered
(the serial key.)

	Scientific Software

	That need to store the path to BLAS libraries.

And the list goes on, and on ….

Source: Configuration files in Python [https://martin-thoma.com/configuration-files-in-python] 2

Author’s Notes

What is the author storing in the JSON config file? Training set data,
information about RESTful API’s (authentication information, endpoints,
parameters, data extraction & transformation rules, etc.), and much more.
It’s part of the JSON Transformations project which is the tip of the
iceberg for a research project he’s working on.

References

	1

	https://en.wikipedia.org/wiki/Configuration_file

	2

	https://martin-thoma.com/configuration-files-in-python

Serialization

Definition

A number of general-purpose serialization formats exist that can represent
complex data structures in an easily stored format, and these are often used
as a basis for configuration files, particularly in open-source and
platform-neutral software applications and libraries. The specifications
describing these formats are routinely made available to the public, thus
increasing the availability of parsers and emitters across programming
languages. Examples include: XML, YAML and JSON.

This project is ultra-lite, and is focused solely on JSON; this was a
deliberate design decision. For anyone interested in working with the other
formats check out the dynaconf project.

Python Data Type Conversions

The JSON decoder performs the following translations:

	Python

	JSON

	dict

	object

	list

	array

	str

	string

	int

	number (int)

	float

	number (real)

	True

	true

	False

	false

	None

	null

Want to Learn More about Serialization?

Here are some additional resources:

	`How to write a JSON configuration file`_

	Serialization and deserialization

References

	JSON decoder performs the following translations:

	https://docs.python.org/3.6/library/json.html

	Serialization and deserialization:

	https://code.tutsplus.com/tutorials/serialization-and-deserialization-of-python-objects-part-1–cms-26183 [https://code.tutsplus.com/tutorials/serialization-and-deserialization-of-python-objects-part-1--cms-26183]

	dynaconf project:

	https://github.com/rochacbruno/dynaconf

Configuration File Locations

Click [http://click.pocoo.org/5/utils/] 1 is the package used to determine the default application directory.

The default behavior is to return whatever is most appropriate for the
operating system. To give you an idea, an app called Foo Bar would
likely return the following:

Mac OS X:
~/Library/Application Support/Foo Bar

Mac OS X (POSIX):
~/.foo-bar

Unix:
~/.config/foo-bar

Unix (POSIX):
~/.foo-bar

Win XP (roaming):
C:\Documents and Settings\<user>\Local Settings\Application Data\Foo Bar

Win XP (not roaming):
C:\Documents and Settings\<user>\Application Data\Foo Bar

Win 7 (roaming):
C:\Users\<user>\AppData\Roaming\Foo Bar

Win 7 (not roaming):
C:\Users\<user>\AppData\Local\Foo Bar

	For additional information visit:

	

App Dir Options

	app_name (required)

	The app_name should be properly capitalized and can contain
whitespace. See file location patterns below.

	roaming (default: True)

	Controls if the folder should be roaming or not on Windows; has no
effect otherwise.

	force_posix (default: False)

	If this is set to True then on any POSIX system the folder will be
stored in the home folder with a leading dot instead of the XDG config
home or darwin’s application support folder.

The Three (3) File Location Patterns

	app_name

	app_name is a required argument

with Config('app_name') as data:
 cfg.data = 'Any JSON serializable object ...'

The default configuration filename is `config.json`.

The destination would be:
{click.get_app_dir()}/app_name/config.json

app_name + cfg_name

with Config('app_name', cfg_name='example.json') as data:
 cfg.data = 'Any JSON serializable object ...'

The destination would be:

{click.get_app_dir()}/app_name/example.json

app_name w/ path separator (i.e. an explicit filename)

with Config('../example.json') as data:
 cfg.data = 'Any JSON serializable object ...'

The destination would literally be:

../example.json

Missing Directories

If any directories in the path are missing JsonConfig will automatically
attempt to create them.

Missing Files

If a configuration file is missing it will automatically create it.

References

	1

	http://click.pocoo.org/5/utils/

The JSON Sandwich

[image: ../_images/data.png]
from jsonconfig import Config

with Config('myapp') as cfg:
 cfg.data = {'debug': True}

Configuration data is stored in the context manager’s `data` attribute.

cfgfile is the filename; see the Configuration File Locations section to
learn how it’s constructed:

Your data is in the middle of the sandwich …

	ENTER: .data = json.load(cfgfile)

	your code is here

	EXIT: json.dump(cfgfile, .data)

That’s really all there is to it.

The Config context manager’s mode parameter determines whether the
sandwich bread on the top, bottom, neither or both top & bottom.

	None

	No access. Skip step 1 & 3. Do not read or write the data and do not
expose the data attributed. This is useful is you are only interested
in encrypted data and/or environment variables.

with Config('myapp', None) as cfg:
 pass

	r

	Read-only mode. Skip step 1, set data = {}. Of course you can
overwrite the data with any JSON serializable object, or apply one
of Boxes data access wrappers, but by default it is a standard Python
dict.

with Config('myapp', 'r') as cfg:
 configuration_data = cfg.data

	w

	Write-only mode. Skip step 3. You update the data and it will
serialize it as JSON and save it to the config file.

with Config('myapp', 'w') as cfg:
 cfg.data = {'debug': True}

	+

	Read & write mode. This is the default. JsonConfig reads in your
data and takes a snapshot (deepcopy) of it. You then update the
data and then when it exits in step 3 (the context manager’s __exit__
method) it will compare the current data contents to the snapshot;
if the data changed it will serialize the contents of the data
attribute and save it to the configuration file.

with Config('myapp') as cfg:
 cfg.data.update({'width': 80})

Note

The above rules and automatic JSON encoding and decoding only apply to
the data attribute.

The pwd (encrypted data) and env (environment variables) are updated
as soon as you set them and retrieved on demand; they are strings by
default. If needed, they can optionally be serialized as JSON using the
to_json and from_json helper functions.

All about Python context managers …

	https://dbader.org/blog/python-context-managers-and-with-statement

	https://pymotw.com/3/contextlib/

	https://jeffknupp.com/blog/2016/03/07/python-with-context-managers

	http://book.pythontips.com/en/latest/context_managers.html

Data Served in the Wrapper of Your Choice

Box_ is the package used to handle data access.

Data wrappers are purely optional, and are designed solely for the purpose
of making Mapping/dictionary keys easier to access and improving the
readability of your code. If you are not storing Mappings/Dictionaries then
you can skip this section.

Shortcuts

	BoxConfig

	A shortcut for Config(‘myapp’, box=True). It converts the config data
attribute into a dictionary that allows both dictionary key and
attribute-style access.

with BoxConfig('myapp') as cfg:
 cfg.data.widget = {}
 cfg.data.widget.window = {}
 cfg.data.widget.debug = True
 cfg.data.widget.window.title = 'Sample Konfabulator Widget'
 cfg.data.widget.window.width = 500

with BoxConfig('myapp') as cfg:
 assert cfg.data.widget.debug is True
 assert cfg.data.widget.window.title == 'Sample Konfabulator Widget'
 assert cfg.data.widget.window.width == 500

	FrozenBox

	A shortcut for Config(‘myapp’, frozen_box=True). Same as BoxConfig
except that it is read-only. It will not allow updates to the data and
will not write back to the configuration file when exitting the context
manager.

with FrozenBox('myapp') as cfg:
 cfg.debug = True

	DefaultBox

	A shortcut for Config(‘myapp’, default_box=True). Acts like a
recursive default dict. It automatically creates missing keys.

with DefaultBox('myapp') as cfg:
 cfg.data['widget']['debug'] = True
 cfg.data['widget']['window']['title'] = 'Sample Konfabulator Widget'
 cfg.data['widget']['window']['width'] = 800

with DefaultBox('myapp') as cfg:
 assert cfg.data['widget']['debug'] is True
 title = cfg.data['widget']['window']['title']
 assert title == 'Sample Konfabulator Widget'
 assert cfg.data['widget']['window']['width'] == 800

Data Conversion Helpers

The following conversion functions are provided as shortcuts:

	BOXED

	A shorcut for box.Box(self.data). Converts data attribute to a Box
object.

	FROZEN

	A shorcut for box.Box(self.data, frozen_box=True). Converts data
attribute to a Frozen-Box object.

	NESTED

	A shorcut for box.Box(self.data, default_box=True). Converts data
attribute to a Default-Box object.

	DATA CONVERSION

	BOXED, FROZEN and NESTED are all subclasses of dicts or
defaultdicts. You can convert back-and-forth between any of them at any
time.

	OTHER TYPES

	To return to a standard dict just use dict(cfg.data) where cfg is
your context manager instance. It’s just plain Python, just about
anything you can do to Python objects you can do to the data attrribute.

Advanced Usage

JSON Config will pass any valid keyword arguments that box.Box accepts

with Config('myapp', camel_killer_box=True) as cfg:
 result = cfg.data

See Box’s documentation for additional information.

References

All about Python context managers …

	https://dbader.org/blog/python-context-managers-and-with-statement

	https://pymotw.com/3/contextlib/

	https://jeffknupp.com/blog/2016/03/07/python-with-context-managers

	http://book.pythontips.com/en/latest/context_managers.html

Encryped Data

Keyring [https://github.com/jaraco/keyring] 1 is the package used to manage encryption.

To save a secret …

from jsonconfig import Config

with Config('myapp') as cfg:
 cfg.pwd.some_user = 'some value'

To retrieve the secret …

with Config('myapp') as cfg:
 password = cfg.pwd.some_user

Default Behavior

The default behavior is to select the most secure backend supported
by the user’s platform. To give you an idea, the following Keyring
backends would likely be returned:

	Mac OS X:

	Keychain [https://en.wikipedia.org/wiki/Keychain_%28software%29] 2

	Unix (with secretstorage installed):

	Freedesktop Secret Service [http://standards.freedesktop.org/secret-service] 3

	Unix (with dbus installed):

	kwallet [https://en.wikipedia.org/wiki/KWallet] 4

	Windows:

	Windows Credential Locker [https://technet.microsoft.com/en-us/library/jj554668.aspx] 5

How-to Set the Service Name

You can think of the service name as the folder where Keyring stores the
key/value pair. By default the service name is set the current logged in
username + ‘_’ + app_name. You can override this behavior by explicitly
setting the service_name in the context manager.

with Config('my_app_name', service_name='my_service_name') as cfg:
 cfg.pwd.secret = 'Open Seasame!'

Enabling and Disabling the Keyring

The keyring keyword argument controls this.

	True

	This is the default. Enable Keyring and use the default backend.

	False

	Disable the Keyring. The Keyring will not be initalized and the pwd
attribute will not be available.

with Config('myapp', keyring=False) as cfg:
 cfg.data = 'Some value'

	KeyringConfig

	This shortcut will enable Keyring and disable data configurations. The
data attributed will not be available.

from jsonconfig import Keyring

	with Keyring(‘myapp’) as vault:

	vault.pwd.key1 = ‘a secret’
vault.pwd.key2 = ‘another secret’

Manually Setting the Keyring Backend

Of course, you or the user are free to override the defaults. The user can
also change their Keyring backend preferences system-wide from the
command-line or via configuration files. JSON Config will then use the
user’s preferred Keyring backend unless told otherwise.

From the Command Line

$ keyring set system username
<enter hidden password for 'username' in 'system'>

$ keyring get system username
password

From inside JSON Config

	keyring.backends

	The keyring option accepts a keyring.backends class.

import keyring.backends

from jsonconfig import Config

backend = keyring.backends.Windows.WinVaultKeyring
with Config('myapp', keyring=backend) as cfg:
 cfg.pwd.some_key = 'a secret'

	Keyring Backend Name

	The keyring option accepts a keyring backend name.

import keyring.backends

from jsonconfig import Config

with Config('myapp', keyring='WinVaultKeyring') as cfg:
 cfg.pwd.some_key = 'a secret'

	Valid Keyring names are:

	
	OS_X

	WIndows

	kwallet

	SecretService

How it Works

Keyring describes setting a password as follows:
set_password(service, username, password). Username and password do
not have to contain user names and password, they are not special; JSON
Config treats username and password as key and value.

When you set a pwd key to a value it calls
set_password(service_name, key, value).

When you get a value from a pwd key it calls
get_password(service_name, key).

References

	1

	https://github.com/jaraco/keyring

	2

	https://en.wikipedia.org/wiki/Keychain_%28software%29

	3

	http://standards.freedesktop.org/secret-service

	4

	https://en.wikipedia.org/wiki/KWallet

	5

	https://technet.microsoft.com/en-us/library/jj554668.aspx

Environment Variables

JSON Config provides both dictionary-key and attribute-style access to
environment variables via os.environ [https://docs.python.org/3/library/os.html#os.environment].

from jsonconfig import Environ

with Environ('myapp') as cfg:
 cfg.env.a_variable = 'some value'

Environ is a shortcut to Config(mode=None, keyring=False). When mode is
None it disables reading & writing to the configuration file and the
data attribute is not available. When keyring is False it bypasses the
Keyring service and the pwd attribute is not available.

Note

The app_name for Environ is a required argument, but it doesn’t doesn’t
do anything.

Attribute & Dictionary Key Style Access

Nested keys are not permitted with environment variables.

Environment variables are accessible through dict style keys and attribute-
style notation. When you assign a value to a attribute or a key it will
update the environment variable in real-time.

When getting a value if a key is not found it will return None.

with Environ('myapp') as cfg:
 var = cfg.env.a_variable

– or –

with Environ('myapp') as cfg:
 var = cfg.env['a_variable']

The env attribute has most of the attributes and methods associated with
dictionaries. For example:

with Environ('myapp') as cfg:
 print(cfg.env.keys())

Getpass Helper Function

There is a helper function called getpass() that will allow you to
prompt the user for a passowrd.

For example to prompt for a password in an environment variable is not
set …

with Environ('myapp') as cfg:
 password = cfg.env.mypassword or getpass

Or to check the keyring vault first, if it’s not set there then check
the environment variables, if it is not set there then prompt for
a password.

with Config('myapp', mode=None) as cfg:
 password = cfg.pwd.mypassword or cfg.env.mypassword or getpass

You can also set it if it’s not set:

with Config('myapp', mode=None) as cfg:
 cfg.env.mypassword = cfg.pwd.mypassword or cfg.env.mypassword or getpass

JSON Helper Functions

It’s not usually used with environment variables, but it is possible to
store JSON serialized objects in environment variables.

with Environ('myapp', mode=None) as cfg:
 cfg.env.settings = to_json({'debug': True, 'width': 80})

To retrieve it …

with Environ('myapp', mode=None) as cfg:
 settings = from_json(cfg.env.settings)

Exception Handling

The exceptions are designed so that you can wrap the whole Config with a
single try, or choose your level or granularity.

try:
 with Config('myapp') as cfg:
 cfg.data = {"mongodb": {"host": "localhost", "port": 27017}}
except JsonConfigError as e:
 e.show()

	JsonConfigError(Exception)

	Base Exception. Use the function show(exitstatus=1) to display the
error. If exitstatus is not equal to zero then exit the program after
displaying the error.

	FileError(JsonConfigError, EnvironmentError)

	File I/O error or O.S. related issue.

	FileEncodeError(JsonConfigError, ValueError)

	When reading/writing to config file with errors=’strict’.

	JsonEncodeError(JsonConfigError, TypeError)

	Not JSON seriable.

	JsonDecodeError(JsonConfigError, ValueError)

	Not valid JSON.

	SetEnvironVarError(JsonConfigError, TypeError)

	Unable to set environment variable.

	DeleteEnvironVarError(JsonConfigError, KeyError)

	Unable to delete environment variable.

	SetPasswordError(JsonConfigError, keyring.errors.PasswordSetError)

	Unable to set password.

	DeletePasswordError(JsonConfigError, keyring.errors.PasswordDeleteError)

	Unable to delete password.

	KeyringNameError(JsonConfigError)

	Invalid Keyring Backend Name.

Pass-Through Keyword Arguments

JSON Config stays out of your way as a Python developer. There’s no magic,
you can use Config context manager to pass any valid keyword arguments to
the functions below.

	if readable or writable:

	
	click.get_app_dir

	if readable:

	
	io.open if PY2 else open

	json.load

	if box:

	
	box.Box

	if writable:

	
	io.open if PY2 else open

	json.dump

The only limitation is when there is when there is a name collision,
currently the only known collision is the cls argument, which is used in
both json.load and json.dump.

Index

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment.png

_static/data.png
Configuration Data

save data
With Config(‘myapp’) as cfg:
cfg.data = {‘foo’: {‘k1’:1, ‘k2’:2}}
The JSON
Sandwich

retrieve data

With Config(‘myapp’) as cfg:
data = cfg.data

Decode
.data

JSON}F-O
Encode -

I
[
.data !
I
I
I

ConfigError

_static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to JSON Config’s documentation!

 		
 Welcome to JSON Config

 		
 Installation

 		
 What’s it Used For?

 		
 Basic Example

 		
 Easy Access

 		
 Designed with Stability in Mind

 		
 Consistency across Multiple Sources of Configuration Data

 		
 References

 		
 JSON Config Examples

 		
 Storing & Retrieving Database Server Settings

 		
 Storing & Retrieving the Current State of a Game

 		
 Making a Request from a Restful API Settings File

 		
 Configuration File Basics

 		
 Definition

 		
 Most Interesting Programs Need Some Kind of Configuration

 		
 Author’s Notes

 		
 References

 		
 Serialization

 		
 Definition

 		
 Python Data Type Conversions

 		
 Want to Learn More about Serialization?

 		
 References

 		
 Configuration File Locations

 		
 App Dir Options

 		
 The Three (3) File Location Patterns

 		
 Missing Directories

 		
 Missing Files

 		
 References

 		
 The JSON Sandwich

 		
 Data Served in the Wrapper of Your Choice

 		
 Shortcuts

 		
 Data Conversion Helpers

 		
 Advanced Usage

 		
 References

 		
 Encryped Data

 		
 Default Behavior

 		
 How-to Set the Service Name

 		
 Enabling and Disabling the Keyring

 		
 Manually Setting the Keyring Backend

 		
 From the Command Line

 		
 From inside JSON Config

 		
 How it Works

 		
 References

 		
 Environment Variables

 		
 Attribute & Dictionary Key Style Access

 		
 Getpass Helper Function

 		
 JSON Helper Functions

 		
 Exception Handling

 		
 Pass-Through Keyword Arguments

_static/ajax-loader.gif

_images/data.png
Configuration Data

save data
With Config(‘myapp’) as cfg:
cfg.data = {‘foo’: {‘k1’:1, ‘k2’:2}}
The JSON
Sandwich

retrieve data

With Config(‘myapp’) as cfg:
data = cfg.data

Decode
.data

JSON}F-O
Encode -

I
[
.data !
I
I
I

ConfigError

