
jsontransform Documentation
Release 1.0.1-stable

Peter Morawski

Sep 15, 2018

Contents

1 Contents 3
1.1 Installation . 3
1.2 Getting Started . 3
1.3 Fields . 6
1.4 API . 7

2 Indices and tables 11

Python Module Index 13

i

ii

jsontransform Documentation, Release 1.0.1-stable

json-transform is a small library to help you convert your python objects into JSON documents and vice versa. The
source code of json-transform is hosted on Bitbucket.

New? Here is some help:

• Installation

• Getting Started

Contents 1

https://bitbucket.org/Peter-Morawski/json-transform/

jsontransform Documentation, Release 1.0.1-stable

2 Contents

CHAPTER 1

Contents

1.1 Installation

1.1.1 PyPI

To install json-transform from PyPI you simply have to type the following command into the console

$ pip install json-transform

1.1.2 Git

To install the json-transform directly from the source which is hosted on Bitbucket you have to type the following
commands into the console

$ git clone git@bitbucket.org:Peter-Morawski/json-transform.git
$ cd json-transform
$ python setup.py install

1.2 Getting Started

This guide will show you how you can start using json-transform in order to simplify your JSON object parsing.

1.2.1 What you’ll learn

You’ll learn how to define a JSON object in python using json-transform and how to encode your object instance into
a JSON file as well as deserialize it from one.

3

https://bitbucket.org/Peter-Morawski/json-transform/

jsontransform Documentation, Release 1.0.1-stable

1.2.2 Installing json-transform

Before you can start testing the following examples, you first need to install json-transform. To do this simply visit the
Installation Page and follow the PyPI guide there.

1.2.3 Defining our first JSONObject using json-transform

Now that you have successfully installed json-transform we can finally start defining your first JSONObject. To do
that you have to create a Plain Old Python Object. It can have any amount of methods, properties, etc. . . The important
part is

1. it needs to extend the JSONObject class so that json-transform will recognize that this object is intended to be a
encodable and decodable to a JSON document.

2. it needs to have at least one property decorated with the field() decorator.

So let’s define a simple entity.

from jsontransform import JSONObject, field

class Person(JSONObject):
def __init__(self):

self._first_name = ""
self._last_name = ""

@property
@field("firstName", required=True)
def first_name(self):

return self._first_name

@first_name.setter
def first_name(self, value):

self._first_name = value

@property
@field("lastName")
def last_name(self):

return self._last_name

@last_name.setter
def last_name(self, value):

self._last_name = value

In this example we have given the first_name and the last_name property a custom field_name so when we encode our
JSONObject the fields in the resulting JSON document will be called firstName and lastName. The same applies
for the decoding. The decoder will search for fields called firstName and lastName. We will see this later in action.

Besides a field_name the first_name property has the required parameter set to True. This means that this field()
is mandatory when we want to decode a JSON document into our JSONObject.

Now that we have defined our entity let’s create an instance of it.

peter = Person()
peter.first_name = "Peter"
peter.last_name = "Parker"

4 Chapter 1. Contents

jsontransform Documentation, Release 1.0.1-stable

1.2.4 Encoding

When we want to encode our JSONObject we can use the following functions

• dump() to encode it into a write() supporting file-like object

• dumps() to encode it into an str or

• dumpd() to encode it into a dict

It is also possible to encode our JSONObject using the JSONEncoder but to keep it simple we will use the
dumpd() function to encode our JSONObject into a dict.

To keep things simple we will use the dumpd() function to encode our JSONObject into a dict which is JSON
conform.

from jsontransform import dumpd

dumpd(peter)
result: {'age': 56, 'birthday': '1962-09-23', 'firstName': 'Peter', 'lastName':
→˓'Parker'}

1.2.5 Decoding

When we want to decode a file, dict or an str into our JSONObject we can use the following functions

• load() to decode a JSONObject from a read() supporting file-like object

• loads() to decode a JSONObject from an str or

• loadd() to decode a JSONObject from a dict

We also have a JSONDecoder which can be instantiated and provides the same functionality like the previously
mentioned functions but to keep it simple we’ll use the loadd() function to decode a dict into our JSONObject.

from jsontransform import loadd

peter = loadd({'age': 56, 'birthday': '1962-09-23', 'firstName': 'Peter', 'lastName':
→˓'Parker'})

print(type(peter))
result <class 'Person'>

print(peter.first_name)
result: Peter

print(peter.last_name)
result: Parker

Note: When decoding into a JSONObject we can specify the target type / the JSONObject into which the JSON
document should be decoded OR we can let json-transform find the most matching JSONObject by itself (like in
the example above).

After the decoding our fields/properties will be casted into their appropriate type. To see which types are supported
check the Fields page.

1.2. Getting Started 5

jsontransform Documentation, Release 1.0.1-stable

1.3 Fields

1.3.1 Encoding

Supported field types

• None

• str

• unicode

• int

• float

• list

• tuple

• dict

• set

• datetime.date

• datetime.datetime (with timezone or without)

• JSONObject

Note: Types like set, tuple will be converted into a list during the serialization process and can’t be decoded into their
original types.

1.3.2 Decoding

Python Type JSON
Type

JSON Example Value

None null
str string
unicode string
int number 12
float number 12.24
list array
set array
tuple array
dict object {“firstName”: “”}
datetime.date str “2018-08-06” (ISO 8601 formatted date)
datetime.
datetime

str “2018-08-06T18:00:00Z” / “2018-08-06T18:00:00+0100” (ISO 8601 for-
matted datetime)

6 Chapter 1. Contents

jsontransform Documentation, Release 1.0.1-stable

1.4 API

exception jsontransform.ConfigurationError
The passed JSONObject was not configured correctly.

exception jsontransform.ConstraintViolationError
A constraint which has been defined on a field() has been violated.

class jsontransform.FieldMode
The FieldMode describes the behavior of the field() during the encoding/decoding process. It marks that
the field() should not be in the JSON document when the JSONObject is encoded but it should be decoded
and vice versa.

DECODE = 'd'
Indicates that the field() can ONLY be decoded.

ENCODE = 'e'
Indicates that the field() can ONLY be encoded.

ENCODE_DECODE = 'ed'
Indicates that the field() can be encoded AND decoded.

class jsontransform.JSONDecoder
This class offers methods to decode a JSON document into a JSONObject. A JSONObject can be decoded
from

• an str

• a dict

• a write() supporting file-like object

from_json_dict(json_dict, target=None)
Decode a python dict into a JSONObject. The dict MUST be JSON conform so it cannot contain other
object instances.

Parameters

• json_dict – The dict which should be decoded

• target – (optional) The type of the target JSONObject into which this dict should be
decoded. When this is empty then the target JSONObject will be searched automatically

Raises

• ConfigurationError – When the target JSONObject does NOT define any JSON
fields

• TypeError – When the signature of the passed target did NOT match the signature of
the passed dict i.e. they had no fields in common

• MissingObjectError – When no target JSONObject was specified AND no match-
ing JSONObject could be found

• ConstraintViolationError – When a field inside the dict violated a constraint
which is defined on the target JSONObject e.g. a required field is missing

Returns A JSONObject which matched the signature of the dict and with the values of it

from_json_file(json_file, target=None)
Decode a read() supporting file-like object into a JSONObject. The file-like object MUST contain a
valid JSON document.

Parameters

1.4. API 7

jsontransform Documentation, Release 1.0.1-stable

• json_file – The read() supporting file-like object which should be decoded into a
JSONObject

• target – (optional) The type of the target JSONObject into which this file-like object
should be decoded. When this is empty then the target JSONObject will be searched
automatically

Raises

• ConfigurationError – When the target JSONObject does NOT define any JSON
fields

• TypeError – When the signature of the passed target did NOT match the signature of
the JSON document which was read from the passed file-like object i.e. they had no fields
in common

• MissingObjectError – When no target JSONObject was specified AND no match-
ing JSONObject could be found

• ConstraintViolationError – When a field of the JSON document which was read
from the file-like object violated a constraint which is defined on the target JSONObject
e.g. a required field is missing

Returns A JSONObject which matched the signature of the JSON document which the read()
supporting file-like object returned and with the values of it

from_json_str(json_str, target=None)
Decode an str into a JSONObject. The str MUST contain a JSON document.

Parameters

• json_str – The str which should be decoded

• target – (optional) The type of the target JSONObject into which this str should be
decoded. When this is empty then the target JSONObject will be searched automatically

Raises

• ConfigurationError – When the target JSONObject does NOT define any JSON
fields

• TypeError – When the signature of the passed target did NOT match the signature of
the JSON document which was inside the passed str i.e. they had no fields in common

• MissingObjectError – When no target JSONObject was specified AND no match-
ing JSONObject could be found

• ConstraintViolationError – When a field of the JSON document which was in-
side the str violated a constraint which is defined on the target JSONObject e.g. a required
field is missing

Returns A JSONObject which matched the signature of the JSON document from the str and
with the values of it

static validate_required_fields(json_object, json_dict)
Validate if a dict which will be decoded satisfied all required fields of the JSONObject into which it will
be decoded.

Parameters

• json_object – The instance of the JSONObject into which the dict will be decoded

• json_dict – The dict which should be validated

Raises ConstraintValidationError – When a required field is missing

8 Chapter 1. Contents

jsontransform Documentation, Release 1.0.1-stable

class jsontransform.JSONEncoder
This class offers methods to encode a JSONObject into JSON document. A JSONObject can be encoded
to

• an str

• a dict

• a write() supporting file-like object

to_json_dict(json_object)
Encode an instance of a JSONObject into a python dict.

Parameters json_object – The instance of the JSONObject which should be encoded

Raises

• ConfigurationError – When the JSONObject of which an instance was passed does
NOT define any JSON fields

• TypeError – When the type of a field in the JSONObject is not encodable

Returns A dict which represents the passed JSONObject and is JSON conform

to_json_file(json_object, json_file)
Encode an instance of a JSONObject and write the result into a write() supporting file-like object.

Parameters

• json_object – The instance of the JSONObject which should be encoded

• json_file – A write() supporting file-like object

Raises

• ConfigurationError – When the JSONObject of which an instance was passed does
NOT define any JSON fields

• TypeError – When the type of a field in the JSONObject is not encodable

to_json_str(json_object)
Encode an instance of a JSONObject into an str which contains a JSON document.

Parameters json_object – The instance of the JSONObject which should be encoded

Raises

• ConfigurationError – When the JSONObject of which an instance was passed does
NOT define any JSON fields

• TypeError – When the type of a field in the JSONObject is not encodable

Returns An str which contains the JSON representation of the passed JSONObject

class jsontransform.JSONObject
Every entity/class which is intended to be encodable and decodable to a JSON document MUST inherit/extend
this class.

exception jsontransform.MissingObjectError
No JSONObject which matches the signature of the passed JSON document could be found.

jsontransform.dump(json_object, json_file)
Shortcut for instantiating a new JSONEncoder and calling the to_json_file() function.

See also:

For more information you can look at the doc of JSONEncoder.to_json_file().

1.4. API 9

jsontransform Documentation, Release 1.0.1-stable

jsontransform.dumpd(json_object)
Shortcut for instantiating a new JSONEncoder and calling the to_json_dict() function.

See also:

For more information you can look at the doc of JSONEncoder.to_json_dict().

jsontransform.dumps(json_object)
Shortcut for instantiating a new JSONEncoder and calling the to_json_str() function.

See also:

For more information you can look at the doc of JSONEncoder.to_json_str().

jsontransform.field(field_name=None, required=False, mode=’ed’, func=None)
The field() decorator is used to mark that a property inside a JSONObject is a JSON field so it will
appear in the JSON document when the JSONObject is encoded or decoded.

Note:

• The brackets () after the @field decorator are important even when no additional arguments are given

• The property decorator must be at the top or else the function won’t be recognized as a property

Parameters

• func – The method which is decorated with @property decorator.

• field_name – (optional) A name/alias for the field (how it should appear in the JSON
document) since by default the name of the property will be used.

• required – (optional) A bool which indicates if this field is mandatory for the decoding
process. When a field which is marked as required does NOT exist in the JSON document
from which the JSONObject is decoded from, a ConstraintViolationError will be raised.
(False by default)

• mode – (optional) The FieldMode of the field. (ENCODE_DECODE by default)

jsontransform.load(json_file, target=None)
Shortcut for instantiating a new JSONDecoder and calling the from_json_file() function.

See also:

For more information you can look at the doc of JSONDecoder.from_json_file().

jsontransform.loadd(json_dict, target=None)
Shortcut for instantiating a new JSONDecoder and calling the from_json_dict() function.

See also:

For more information you can look at the doc of JSONDecoder.from_json_dict().

jsontransform.loads(json_str, target=None)
Shortcut for instantiating a new JSONDecoder and calling the from_json_str() function.

See also:

For more information you can look at the doc of JSONDecoder.from_json_str().

10 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

11

jsontransform Documentation, Release 1.0.1-stable

12 Chapter 2. Indices and tables

Python Module Index

j
jsontransform, 3

13

jsontransform Documentation, Release 1.0.1-stable

14 Python Module Index

Index

C
ConfigurationError, 7
ConstraintViolationError, 7

D
DECODE (jsontransform.FieldMode attribute), 7
dump() (in module jsontransform), 9
dumpd() (in module jsontransform), 9
dumps() (in module jsontransform), 10

E
ENCODE (jsontransform.FieldMode attribute), 7
ENCODE_DECODE (jsontransform.FieldMode at-

tribute), 7

F
field() (in module jsontransform), 10
FieldMode (class in jsontransform), 7
from_json_dict() (jsontransform.JSONDecoder method),

7
from_json_file() (jsontransform.JSONDecoder method),

7
from_json_str() (jsontransform.JSONDecoder method), 8

J
JSONDecoder (class in jsontransform), 7
JSONEncoder (class in jsontransform), 8
JSONObject (class in jsontransform), 9
jsontransform (module), 3, 7

L
load() (in module jsontransform), 10
loadd() (in module jsontransform), 10
loads() (in module jsontransform), 10

M
MissingObjectError, 9

T
to_json_dict() (jsontransform.JSONEncoder method), 9
to_json_file() (jsontransform.JSONEncoder method), 9
to_json_str() (jsontransform.JSONEncoder method), 9

V
validate_required_fields() (jsontransform.JSONDecoder

static method), 8

15

	Contents
	Installation
	Getting Started
	Fields
	API

	Indices and tables
	Python Module Index

