

Jok3r Documentation

[image: _images/logo.png]
 [https://github.com/koutto/jok3r]
Contents:

	What is Jok3r ?
	Network and Web Pentest Framework

	Overview

	Main features

	Why Jok3r ?
	About Toolbox Management

	About using Hacking Tools

	Combine Open-Source Hacking Tools

	Installation
	Docker

	Build your own Jok3r Docker Image

	Manual install

	Command info

	Command toolbox
	Show the Toolbox content

	Install the Tools

	Update the Tools

	Uninstall the Tools

	Misc

	Examples

	Command db
	Command mission

	Command hosts

	Command services

	Command creds

	Command nmap

	Command results

	Command attack
	Single Target Mode

	Multiple Targets Mode

	Miscellaneous Options

	Settings
	Toolbox Settings

	Services Settings

	Tags for Commands

	Context Syntax

	Smart Modules

	Wordlists

Indices and tables

	Index

	Module Index

	Search Page

What is Jok3r ?

[image: _images/logo.png]
 [https://github.com/koutto/jok3r]
Network and Web Pentest Framework

Jok3r is a Python3 CLI application which is aimed at helping penetration testers
for network infrastructure and web black-box security tests.

Overview

Its main goal is to save time on everything that can be automated during network/web
pentest in order to enjoy more time on more interesting and challenging stuff.

To achieve that, it combines open-source Hacking tools to run various security checks
against all common network services.

Main features

Toolbox management:

	Install automatically all the hacking tools used by Jok3r,

	Keep the toolbox up-to-date,

	Easily add new tools.

Attack automation:

	Target most common network services (including web),

	Run security checks by chaining hacking tools, following standard process (Reconaissance,
Vulnerability scanning, Exploitation, Account bruteforce, (Basic) Post-exploitation).

	Let Jok3r automatically choose the checks to run according to the context and knowledge about the target,

Mission management / Local database:

	Organize targets by missions in local database,

	Fully manage missions and targets (hosts/services) via interactive shell (like msfconsole db),

	Access results from security checks.

Note

Jok3r has been built with the ambition to be easily and quickly customizable:
Tools, security checks, supported network services… can be easily
added/edited/removed by editing settings files with an easy-to-understand syntax.

Why Jok3r ?

For pentesting, there are a lot of open-source tools/scripts available out there
on the Internet that might be useful. Some of them are just proofs of concept or
simple scripts aimed at achieving one single simple task, while others are much
more complex projects. Some of them are a bit outdated but still relevant in some
cases, while others are updated regularly with a very active community (e.g
Metasploit project).

Note

Most of the available open-source hacking tools are now available on
https://github.com. Moreover, some cool websites such as https://www.kitploit.com
or http://seclist.us are doing a great job referencing some new hacking tools
and their major updates.

As a pentester, it as appeared to me that there are some boring stuffs that might be
automated or at least semi-automated.

About Toolbox Management

	It is always boring to keep a complete toolbox for network/web pentests with
up-to-date tools, and with all required dependencies.

	Kali Linux is good but does not embed all the hacking tools I find useful.

	Big projects such as Metasploit are very great, but unfortunately they do not
provide all the features that might be useful during pentests: some modules are
outdated and/or buggy, some modules/exploits are missing, etc.

	There are lots of tools/scripts/proof-of-concepts that are released by security
enthusiasts in order to achieve some more or less specific tasks (e.g. vulnerability
scan against a specific technology/product, exploit for a given vulnerability,
fingerprinting…) but it is always hard to keep track of all those releases,
and most importantly to remember using them in the appropriate context during
pentests.

	There is no perfect tool, and everyone has its advantages and drawbacks. For
example, when pentesting a Wordpress websites, there are various tools for
vulnerability scanning in this CMS (WPScan, wpseku, CMSmap, etc.). All those
tools do not rely on the same vulnerability database, do not have the same update
status at the time of the use, might not use the same techniques, and so on.
By experience, it has appeared that it is often better to combine tools.
One can reports a vulnerability that has not been detected by the others, and
inversely.

Warning

The purpose of Jok3r is not to turn you into a Script-Kiddie. A good
pentester knows what his tools are doing. However, the reality is that he has
to rely on tools to save a lot of time, and to avoid to re-invent the wheel !

About using Hacking Tools

	
	Infrastructure/web pentests are always following the same process:

	
	Port scanning,

	Fingerprinting,

	Vulnerability scanning,

	Exploitation of detected vulnerabilities,

	Bruteforce attack if needed,

	Post-exploitation.

	During a pentest with a limited amount of time, a lot of these steps are actually
done by running some tools. The selection of tools and commands to run actually
depends on:

	Targeted services (result of port scanning),

	Technologies/products in use (result of fingerprinting),

	Credentials on the target (already known/compromised via bruteforce ? only
valid usernames ? nothing ?)

	Basically, doing all that automated stuff is usually boring and what we want is
to spend the least amount of time on everything that can be automated, in order to
be able to spend more time on manual testing and research of more tricky/unobvious
vulnerabilities on the targets.

	Note that we cannot only rely on commercial all-in-one vulnerability scanners such
as Nessus because - by experience - it does not detect some typical vulnerabilities
that might be easy to spot using some dedicated simple scripts.

Combine Open-Source Hacking Tools

Jok3r tries to solve the enumerated problems. It is useless to try to re-invent
the wheel: lots of hacking tools/scripts are already available out there, they should
be aggregated together in a smart way.

Installation

Docker

The recommended way to use Jok3r is inside a Docker container so you will not have
to worry about dependencies issues and installing the various hacking tools of the toolbox.

[image: _images/docker-logo.png]
A Docker image is available on Docker Hub and automatically re-built at each update:
https://hub.docker.com/r/koutto/jok3r/. It is initially based on official Kali
Linux Docker image (kalilinux/kali-linux-docker).

[image: Docker Image size]
 [https://microbadger.com/images/koutto/jok3r]Pull Jok3r Docker Image:

sudo docker pull koutto/jok3r

Run fresh Docker container:

sudo docker run -i -t --name jok3r-container -w /root/jok3r --net=host koutto/jok3r

Important: –net=host option is required to share host’s interface. It is needed for reverse
connections (e.g. Ping to container when testing for RCE, Get a reverse shell)
Jok3r and its toolbox is ready-to-use !

	To re-run a stopped container:

sudo docker start -i jok3r-container

	To open multiple shells inside the container:

sudo docker exec -it jok3r-container bash

Build your own Jok3r Docker Image

If you want to build your own Jok3r image from a fresh Kali image rather than use our pre-made one,
run the following commands:

wget https://raw.githubusercontent.com/koutto/jok3r/master/docker/Dockerfile
sudo docker build -t jok3r-image .

Note

For better convenience when editing files, Sublime-text editor is installed
inside Docker image. It is a GUI application, so you need to connect the container
to host’s X server to be able to run it:

	Use the following command to run the container:

sudo docker run -i -t --name jok3r-container -w /root/jok3r -e DISPLAY=$DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix --net=host koutto/jok3r

	On the host, execute the following command:

xhost +local:root

Manual install

TODO

Command info

The command info is useful to get a quick overview of Jok3r settings.

usage: python3 jok3r.py info <args>

optional arguments:
 -h, --help show this help message and exit

Info:
 --services List supported services
 --options List supported context-specific options
 --http-auth-types List the supported HTTP authentication types
 --checks <service> List all the checks for the given service

Supported subcommands are pretty straightforward:

	--services: Display the list of services that are supported (can be targeted).

Note

In Jok3r, there is a special service which is named multi. It is used
internally in order to group all the tools from toolbox that can be used
to target different services (and not only one single service). For example,
Nmap and Metasploit can both be used to perform tests against different
kinds of services - such as http, ftp, ssh… - thus they are classified under
this special service multi.

	--options: Display the list of supported context-specific options.

Note

A context-specific option TODO

	--http-auth-types: List the supported HTTP authentication types. Here are
some examples:

	wordpress

	drupal

	tomcat

	jboss

	weblogic

	--checks <service>: List the security checks that are implemented for the
given service.

Note

Security checks are defined into configuration files located into the
settings/ directory. For each service, there is a settings/<service>.conf
file that can be easily customized.

Command toolbox

The command toolbox allows to manage the hacking tools used by Jok3r.

usage: python3 jok3r.py toolbox <args>

optional arguments:
 -h, --help show this help message and exit

Toolbox management:
 Tools are classified by services they can target into the toolbox. Tools that may be used against various
 different services are grouped under the name "multi".

 --show <service> Show toolbox content for a given service
 --show-all Show full toolbox content
 --install <service> Install the tools for a given service
 --install-all Install all the tools in the toolbox
 --update <service> Update the installed tools for a given service
 --update-all Update all installed tools in the toolbox
 --uninstall <service> Uninstall the tools for a given service
 --uninstall-tool <tool-name> Uninstall a given tool
 --uninstall-all Uninstall all tools in the toolbox
 --fast Fast mode, disable prompts and post-install checks

Show the Toolbox content

	--show <service>: Display the list of tools that target the specified service.
Use multi as parameter to display the tools that target multiple services (e.g.
Nmap, Metasploit…)

	--show-all: Display all the tools in the toolbox.

Note

The toolbox is defined in the configuration file settings/toolbox.conf.
It can be easily customized in order to add new tools.

Install the Tools

	--install <service>: Install the tools that target a given service.

	--install-all: Install all the tools in the toolbox.

Note

For installing a tool, Jok3r runs the command(s) that is(are) defined as value
for the key install into the [toolname] section, in the
settings/toolbox.conf file.

Update the Tools

	--update <service>: Update the tools that target a given service.

	--update-all: Update all the tools in the toolbox.

Note

For updating a tool, Jok3r runs the command(s) that is(are) defined as value
for the key update into the [toolname] section, in the
settings/toolbox.conf file.

Uninstall the Tools

	--uninstall <service>: Uninstall the tools that target a given service.

	--uninstall-tool <tool-name>: Uninstall a given tool.

	--uninstall-all: Uninstall all the tools in the toolbox.

Misc

By default, when installing/updating/uninstalling tools in the toolbox, Jok3r will
ask for confirmation for each tool. And after installing or updating a tool, it will
also ask the user to check if it has been correctly installed. To do so, Jok3r runs
the command defined in check_command into the [toolname] in the
settings/toolbox.conf file, and then it asks the user whether everything seems ok
(i.e. no error is displayed) or not.

This has been designed this way essentially for debugging purpose, and human
interaction can be avoided by adding the option --fast

Examples

The commands you will run most of the time are:

	Install the whole toolbox, just after installing Jok3r:

sudo python3 jok3r.py toolbox --install-all --fast

	Update all the tools in the toolbox:

sudo python3 jok3r.py toolbox --update-all --fast

Command db

The command db spawns an interactive shell giving access to the Jok3r’s local database.
The local database stores the missions, targets info & attacks results. It is very
similar to the database that can be used in Metasploit.

The goal is to allow the pentester to create a new mission at the beginning of a
pentest, and to fill it with the targets (i.e. network services/URLs) that are in scope.
Most of the time, he will just import Nmap results from scans he has previously done,
but he can also add some targets manually by using the shell. He will be able to
visualize and organize target information (ip, hotsname, port, banner…).

After running some security checks against targets in the mission, results from the tools
- and potentially credentials that might be found - are stored in the database and can be
viewed from the shell.

Here are the supported commands in the jok3rdb interactive shell:

jok3rdb[default]> help

Documented commands (type help <topic>):

Attacks results
==
results Attacks results

Import
==
nmap Import Nmap results

Missions data
==
creds Credentials in the current mission scope
hosts Hosts in the current mission scope
mission Missions management
services Services in the current mission scope

Other
==
alias Define or display aliases
help Display this help message
history View, run, edit, and save previously entered commands.
quit Exits this application.
set Sets a settable parameter or shows current settings of parameters.
shell Execute a command as if at the OS prompt.
unalias Unsets aliases

Command mission

This command allows to create a new mission, rename or delete an existing one.
It also allow to change the current mission (the mission named default is selected by
default).

Here are the supported options:

jok3rdb[default]> mission -h
usage: mission [-h] [-a <name>] [-c <name> <comment>] [-d <name>] [-D]
 [-r <old> <new>] [-S <string>]
 [<name>]

Manage missions

positional arguments:
 <name> Switch mission

optional arguments:
 -h, --help show this help message and exit
 -a, --add <name> Add mission
 -c, --comment <name> <comment> Change the comment of a mission
 -d, --del <name> Delete mission
 -D, --reset Delete all missions
 -r, --rename <old> <new> Rename mission
 -S, --search <string> Search string to filter by

When creating a new mission, the following command must be issued:

jok3rdb[default]> mission -a missionname

[+] Mission "missionname" successfully added
[*] Selected mission is now missionname

jok3rdb[missionname]>

The newly created mission is automatically selected as the new current mission.

Command hosts

This command allows to view and to manage hosts in the current mission.

jok3rdb[default]> hosts -h
usage: hosts [-h] [-c <comment> | -d] [-o <column>] [-S <string>]
 [<addr1> <addr2> ... [<addr1> <addr2>]]

Hosts in the current mission scope

optional arguments:
 -h, --help show this help message and exit

Manage hosts:
 -c, --comment <comment> Change the comment of selected host(s)
 -d, --del Delete selected host(s) (instead of displaying)

Filter hosts:
 -o, --order <column> Order rows by specified column
 -S, --search <string> Search string to filter by
 <addr1> <addr2> ... IPs/CIDR ranges/hostnames to select

Command services

This command allows to view and to manage all services in the current mission. Running
this command without any option will display all services added into the current mission.

For better readability, there are a lot of supported filtering options in order to select
only a subset of services to display.

Those filtering options can also be used to add special comments, usernames, credentials
(couples username+password) manually to one particular service or a subset of services.

jok3rdb[default]> services -h
usage: services [-h]
 [-a <host> <port> <service> | -u <url> | -d | -c <comment> | --https]
 [--addcred <user> <pass> | --addcred-http <user> <pass> <auth-type> | --adduser <user> | --adduser-http <user> <auth-type>]
 [-H <hostname1,hostname2...>] [-I <ip1,ip2...>]
 [-p <port1,port2...>] [-r <protocol>] [-U] [-o <column>]
 [-S <string>]
 [<name1> <name2> ... [<name1> <name2>]]

Services in the current mission scope

optional arguments:
 -h, --help show this help message and exit

Manage services:
 -a, --add <host> <port> <service> Add a new service
 -u, --url <url> Add a new URL
 -d, --del Delete selected service(s) (instead of displaying)
 -c, --comment <comment> Change the comment of selected service(s)
 --https Switch between HTTPS and HTTP protocol for URL of selected service(s)

Manage services credentials:
 --addcred <user> <pass> Add new credentials (username+password) for selected service(s)
 --addcred-http <user> <pass> <auth-type> Add new credentials (username+password) for the specified authentication type on selected HTTP service(s)
 --adduser <user> Add new username (password unknown) for selected service(s)
 --adduser-http <user> <auth-type> Add new username (password unknown) for the specified authentication type on selected HTTP service(s)

Filter services:
 -H, --hostname <hostname1,hostname2...> Search for a list of hostnames (comma-separated)
 -I, --ip <ip1,ip2...> Search for a list of IPs (single IP/CIDR range comma-separated)
 -p, --port <port1,port2...> Search for a list of ports (single/range comma-separated)
 -r, --proto <protocol> Only show [tcp|udp] services
 -U, --up Only show services which are up
 -o, --order <column> Order rows by specified column
 -S, --search <string> Search string to filter by
 <name1> <name2> ... Services to select

Command creds

This command is used to manage the credentials store, i.e. credentials for targets in
the current mission. This store is filled by two means:

	When a security check run by Jok3r finds new valid credentials,

	When the user explicitly provides credentials.

Running this command without any options will display currently saved
credentials.

jok3rdb[default]> creds -h
usage: creds [-h]
 [--addcred <service-id> <user> <pass> | --addcred-http <service-id> <user> <pass> <auth-type> | --adduser <service-id> <user> | --adduser-http <service-id> <user> <auth-type> | -c <comment> | -d]
 [-U <string>] [-P <string>] [-b | -u]
 [-H <hostname1,hostname2...>] [-I <ip1,ip2...>]
 [-p <port1,port2...>] [-s <svc1,svc2...>] [-o <column>]
 [-S <string>]

Credentials in the current mission scope

optional arguments:
 -h, --help show this help message and exit

Manage credentials:
 --addcred <service-id> <user> <pass> Add new credentials (username+password) for the given service
 --addcred-http <service-id> <user> <pass> <auth-type>
 Add new credentials (username+password) for the specified authentication type on HTTP service
 --adduser <service-id> <user> Add new username (password unknown) for the given service
 --adduser-http <service-id> <user> <auth-type>
 Add new username (password unknown) for the specified authentication type on HTTP service
 -c, --comment <comment> Change the comment of selected cred(s)
 -d, --del Delete selected credential(s) (instead of displaying)

Filter credentials:
 -U, --username <string> Select creds with username matching this string
 -P, --password <string> Select creds with password matching this string
 -b, --both Select creds where username and password are both set (no single username)
 -u, --onlyuser Select creds where only username is set
 -H, --hostname <hostname1,hostname2...> Select creds for a list of hostnames (comma-separated)
 -I, --ip <ip1,ip2...> Select creds for a list of IPs (single IP/CIDR range comma-separated)
 -p, --port <port1,port2...> Select creds a list of ports (single/range comma-separated)
 -s, --service <svc1,svc2...> Select creds for a list of services (comma-separated)
 -o, --order <column> Order rows by specified column
 -S, --search <string> Search string to filter by

Note: you can also use "services --addcred/--addonlyuser" to add new creds

Command nmap

After creating a new mission into the database, it is necessary to add some targets
(services). It can be done either manually - using services --add <host> <port> <service>
or services --url <url> - or automatically from the results of a Nmap scan with the
nmap command.

jok3rdb[default]> nmap -h
usage: nmap [-h] [-n] <xml-results>

Import Nmap results

positional arguments:
 <xml-results> Nmap XML results file

optional arguments:
 -h, --help show this help message and exit
 -n, --no-http-recheck Do not recheck for HTTP services

Just issue the following command in order to import into the currently selected mission
all the services supported by Jok3r from results of a Nmap scan (in XML format):

jok3rdb[missionname]> nmap results.xml

Note

When importing Nmap results, services HTTPS/HTTP are both added as HTTP services,
and the distinction between cleartext and encrypted versions is done internally by using
Context-specific option (https). It is the same for SMTPS/SMTP, FTPS/FTP and so on.

When importing Nmap results, Jok3r will recheck - by default - for HTTP/HTTPS services
on all detected open ports that were not fingerprinted as such. This feature has been added
because - by experience - Nmap does not always detect all services serving web content when
they are on exotic ports.

Command results

This command allows to view the outputs from tools run during security checks against
the various targets in the currently selected mission.

jok3rdb[default]> results -h
usage: results [-h] [-s <check-id>] [<service-id>]

Attacks results

positional arguments:
 <service-id> Service id

optional arguments:
 -h, --help show this help message and exit
 -s, --show <check-id> Show results for specified check

For example, if you want to view the results for checks against the service with id 108
(refer to the column id in the output of the services command):

	First, issue the following command to get the list of checks that have been run against
this particular service:

jok3rdb[missionname]> results 108

[>] Attacks results:
[>] Target: host=192.168.1.53 | port=16000/tcp | service http
+----------+------------+------------------------------+------------+
| Check id | Category | Check | # Commands |
+----------+------------+------------------------------+------------+
211	recon	nmap-recon	1
212	recon	fingerprinting-app-server	1
213	recon	fingerprinting-cms-wig	1
214	recon	fingerprinting-cms-cmseek	1
215	recon	crawling-fast	1
216	recon	crawling-fast2	1
217	vulnscan	nmap-vuln-lookup	1
218	vulnscan	vulnscan-multi-nikto	1
219	vulnscan	default-creds-web-multi	1
220	vulnscan	http-put-check	1
221	vulnscan	shellshock-scan	1
222	vulnscan	jboss-vulnscan-multi	1
223	vulnscan	jboss-status-infoleak	1
224	exploit	jboss-deploy-shell	1
225	exploit	struts2-rce-cve2017-5638	1
226	exploit	struts2-rce-cve2017-9805	1
227	exploit	struts2-rce-cve2018-11776	1
235	bruteforce	web-path-bruteforce-targeted	1
236	bruteforce	web-path-bruteforce-opendoor	1
+----------+------------+------------------------------+------------+

	Then, you can display the outputs corresponding to a given check by specifying
the id of the check as follows:

jok3rdb[missionname]> results -s 235

[>] Results for check web-path-bruteforce-targeted:
[>] Target: host=192.168.1.53 | port=16000/tcp | service http

[>] cd /home/jbr/bitbucket/joker/toolbox/http/dirsearch; python3 dirsearch.py -u http://192.168.1.53:16000 -e jsp,java,do,txt,html,log -w /home/jbr/bitbucket/joker/wordlists/services/http/discovery/raft-large-directories.txt -f --exclude-status=400,404,500,000

 _|. _ _ _ _ _ _|_ v0.3.8
(_||| _) (/_(_|| (_|)

Extensions: jsp, java, do, txt, html, log | Threads: 10 | Wordlist size: 532797

Error Log: /home/jbr/bitbucket/joker/toolbox/http/dirsearch/logs/errors-18-10-02_14-17-17.log

Target: http://192.168.1.53:16000

[14:17:17] Starting:
[14:17:20] 200 - 3KB - /test/
[14:17:20] 200 - 474B - /download.html
[14:17:23] 200 - 7KB - /tools/
[14:17:27] 200 - 8KB - /index.html
[14:19:11] 200 - 26B - /robots.txt

Task Completed

Command attack

The command attack is where security checks against targets are started.

usage: python3 jok3r.py attack <args>

optional arguments:
 -h, --help show this help message and exit

Single target:
 Quickly define a target to run checks against it.

 -t, --target <ip[:port] | url> Target IP[:PORT] (default port if not specified) or URL
 -s, --service <service> Target service
 --add <mission> Add/update the target into a given mission scope
 --disable-banner-grab Disable banner grabbing with Nmap at start

Multiple targets from a mission scope:
 Select targets from the scope of an existing mission.

 -m, --mission <mission> Load targets from the specified mission
 -f, --filter <filter> Set of conditions to select a subset of targets
 (e.g "ip=192.168.1.0/24,10.0.0.4;port=80,8000-8100;service=http").
 Available filter options: ip, host, port, service, url, os
 Several sets can be combined (logical OR) by using the option multiple times

Selection of checks:
 Select only some categories/checks to run against the target(s).

 --cat-only <cat1,cat2...> Run only tools in specified category(ies) (comma-separated)
 --cat-exclude <cat1,cat2...> Do not run tools in specified category(ies) (comma-separated)
 --checks <check1,check2...> Run only the specified check(s) (comma-separated)

Running option:
 --fast Fast mode, disable prompts

Authentication:
 Define authentication option if some credentials or single usernames are known.
 Options can be used multiple times. For multiple targets, the service for which
 the creds/users will be used should be specified.

 --cred [<svc>[.<type>]] <user> <pass> Credentials (username + password)
 --user [<svc>[.<type>]] <user> Single username

Context-specific options:
 Define manually some known info about the target(s).

 <opt1=val1 opt2=val2 ...> Context-specific options, format name=value (space-separated)

There are 2 modes of attacks:

	Single target

	Multiple targets from a mission sccope in database

Single Target Mode

This mode is used to run security checks against only one target.

	Example to run checks against MSSQL service running on port 1433/tcp on 192.168.1.42:

python3 jok3r.py attack -t 192.168.1.42:1433 -s mssql

	Example to run checks against web application located at https://www.example.com/webapp/:

python3 jok3r.py attack -t https://www.example.com/webapp/

Note

By default, Jok3r is run in interactive mode and so, will stop before running each
check/command to ask for confirmation. It is usually useful when you want to have time
to examine each result in live and decide whether it is needed to run the next check or
if it can be skipped. However, you will often want to let Jok3r running all the checks
without any user interaction, for better productivity, and check for the results at the
end. To do so, add the option --fast to the command-line.

Run checks against web application located at https://www.example.com/webapp/ without
user interaction:

python3 jok3r.py attack -t https://www.example.com/webapp/ --fast

When doing a pentest, the proper way is to create a mission in the local database
(See Command db), and then if you run Jok3r against a single target that is in
the scope of this mission, you should use the --add <missionname> option in order
to push the target information and all the outputs from the security checks into the
database under the specified mission.

Multiple Targets Mode

This mode is designed to work with the local database: First you create a mission
to define the scope of the pentest in the database (see Command db), and then
you run security checks against all or a subset a targets from the scope:

	Example to run checks against all targets from the mission “MayhemProject”, using
fast mode (i.e. without asking for any confirmation before targets and checks):

python3 jok3r.py attack -m MayhemProject --fast

	Example to run checks against only FTP services running on ports 21/tcp and 2121/tcp
from the mission “MayhemProject”, using fast mode:

python3 jok3r.py attack -m MayhemProject -f "port=21,2121;service=ftp" --fast

	Example to run checks against only FTP services running on ports 2121/tcp and all
HTTP services on 192.168.1.42:

python3 jok3r.py attack -m MayhemProject -f "port=2121;service=ftp" -f "ip=192.168.1.42;service=http"

The local database is automatically updated with the results from the security checks
run by Jok3r.

Miscellaneous Options

Selection of Checks

When running the attack command, it is possible to make a selection of checks to run:

	--checks <check1,check2...>: Run only the given checks against targets. It might even be
a single check. Use python3 info --checks <service> in order to get the list of available
checks for the targeted service (see Command info).

	--cat-only <cat1,cat2...>: Run only checks that are classified under one or several
categories (e.g. “recon”).

	--cat-exclude <cat1,cat2...>: Run all categories of checks except the one(s) specified.

Authentication

It is also possible to define some authentication options if credentials - or only valid
usernames - are known on the targets.

Let’s take several examples:

	When you want to run attack against all targets in the scope of mission “MayhemProject” and you
already know credentials of all MSSQL instances in the scope:

python3 jok3r.py attack -m MayhemProject --cred mssql sa password --fast

	When you want to scan a web application running on a JBoss server (and add the target to
the mission “MayhemProject”), and you already know JBoss credentials:

python3 jok3r.py attack -t http://www.example.com --cred http.jboss manager password --add MayhemProject --fast

	When you want to scan a Wordpress website, and you know a valid admin username (but no
valid password):

python3 jok3r.py attack -t http://www.targetwordpress.com --user http.wordpress wordpressadmin --fast

Context-specific Options

In Jok3r, Context-specific options are options that give specifications about a
service.

Warning

Usually, you don’t have to bother specifying context-specific options manually
in Jok3r command-line because it does its best to set and update them using
SmartModules. However, you might still want to force the value of some of them
in some situations.

Available context-specific options depends on the service.

There are 3 supported types of context-specific options:

	Boolean,

	Value from a given list,

	Variable.

To better understand, here are some example of supported context-specific options
for HTTP:

	https (boolean): Set to true when SSL/TLS is used.

	webdav (boolean): Set to true when WebDav is supported.

	language: Allows to set the language of the targeted web application, can be
one of the value in the list defined in http.conf settings file (e.g. java, php,
asp, angularjs, coldfusion).

	cms: Allows to set the name of the CMS in use if relevant (wordpress, joomla,
drupal, mambo, silverstripe, vbulletin, magento…)

	server: Allows to set the name of the server (iis, glassfish, jboss, jenkins,
tomcat, weblogic…)

Settings

In Jok3r, settings are fully and easily customizable. This is one of
the goal of the tool: Make it evolve quickly. This page explains how settings
files stored in the settings/ directory work and can be edited.

Toolbox Settings

Toolbox settings are stored in the file settings/toolbox.conf. This is where all tools
used by Jok3r are referenced and configured.

As an example, here is a snippet from the file:

[...]

[patator]
name = patator
description = Multi-purpose brute-forcer, with a modular design and a flexible usage
target_service = multi
install = git clone https://github.com/lanjelot/patator.git .
update = git pull
check_command = python2.7 patator.py -h

[clusterd]
name = clusterd
description = Application server attack toolkit (JBoss, ColdFusion, Weblogic, Tomcat, Railo, Axis2, Glassfish)
target_service = http
install = git clone https://github.com/hatRiot/clusterd.git . && sudo pip2 install -r requirements.txt
update = git pull && sudo pip2 install -r requirements.txt
check_command = python2.7 ./clusterd.py -h

[...]

Format of this configuration file is pretty straightforward. For each tool,
a section is created using the syntax [toolname] and the following options
can/must be specified:

	name (mandatory): The name of the tool as it will be displayed. Authorized charset
is [a-z0-9_-].

	description (mandatory): A Short text describing the tool.

	target_service (mandatory): Service that can be targeted using this tool
(e.g. http for Nikto). For services such as Nmap, Metasploit and so on, that can
be used to target several kinds of service, use the special service name “multi”.

	install (optional): Command-line to use in order to install the tool. It supports
the use of some tags (See Tags for Commands). It is considered
as optional because Jok3r allows to insert in the toolbox some tools that are not
directly handled by it; it is for example the case for Nmap and Metasploit by default.
But note that if you don’t supply installation command, you will not be able to control
the installation of the tool from Jok3r and it is thus not advised to do so.

	update (optional): Command-line to use in order to update the tool. Basically,
take the same consideration as with the install option.

	check_command (optional): Command-line to use in order to check for a correct install.
Usually, it just consists in running the tool without any argument or with the standard
-h option to see if everything seems working well after a fresh install (no
dependencies errors or such). This option can be omitted.

Services Settings

For each service, settings are stored in file settings/<service>.conf.
There is one configuration file per service which contains global parameters and then
the settings related to all security checks (for this service).

Global settings for a Service

As an example, here is the beginning of the configuration file for HTTP, i.e.
settings/http.conf:

[config]
default_port = 80
protocol = tcp
categories = recon, vulnscan, exploit, bruteforce
auth_types = glassfish, jboss, jenkins, lotusdomino, tomcat, weblogic, websphere, wordpress, joomla, drupal, opencart, magento

[specific_options]
https = boolean
webdav = boolean
language = list
cms = list
server = list

[supported_list_options]
supported_language = java, php, asp, angularjs, coldfusion
supported_cms = wordpress, joomla, drupal, mambo, silverstripe, vbulletin, magento, prestashop, liferay, opencart, dotnetnuke, django-cms, concrete5, punbb, moodle, cms-made-simple
supported_server = iis, glassfish, jboss, jenkins, tomcat, weblogic, lotusdomino

Every <service>.conf file begins with special following sections:

	[config]: The basic configuration about the service. It contains the following options:

	default_port (mandatory): The default port number for the service.

	protocol (mandatory): The protocol (tcp or udp) for the service.

	categories (mandatory): List of different categories of checks supported for the service.
Authorized charset is [a-z0-9_-].

	auth_types (optional): List of authentication types that are supported for the service.
Actually, only relevant for HTTP (where there are different possible authentications: Tomcat,
JBoss, Wordpress, Joomla…). Authorized charset is [a-z0-9_-].

	[specific_options]: Contains the list of available context-specific options for the service.

	For each option, the name (authorized charset is [a-z0-9_-]) is used as key and
the type as value. Supported types are:

	boolean for boolean options. It is also possible to add the default value:
boolean:True means a boolean option which value is True if the option is not set.
Note that boolean:False is redundant with boolean because False is the default.

	list for options taking their value into a defined list (in [supported_list_options]
section, see below).

	var for option of type variable.

	[supported_list_options]: This section is used only if there is at least one context-specific
option with the type list.

	For each option of type list, a key named supported_<optionname> is created and it
takes as value the list of authorized/supported values for the option.

Note

For overall consistency, take care to use standard category names, among:

	recon

	vulnscan

	exploit

	bruteforce

	postexploit

Security Checks for a Service

For example, here are the settings of two checks as defined inside settings/http.conf:

[check_jboss-deploy-shell]
name = jboss-deploy-shell
category = exploit
description = Try to deploy shell on JBoss server (jmx-console, web-console, admin-console, JMXInvokerServlet)
tool = jexboss
command_1 = python2.7 jexboss.py --auto-exploit --jboss -u [URL] --cmd whoami
context_1 = { 'server': 'jboss', 'auth_status': NO_AUTH, 'auth_type': 'jboss' }
command_2 = python2.7 jexboss.py --auto-exploit --jboss -u [URL] --jboss-login '[USERNAME]:[PASSWORD]' --cmd whoami
context_2 = { 'server': 'jboss', 'auth_status': POST_AUTH, 'auth_type': 'jboss' }

[check_web-path-bruteforce-targeted]
name = web-path-bruteforce-targeted
category = bruteforce
description = Bruteforce web paths when language is known (extensions adapted) (use raft wordlist)
tool = dirsearch
command_1 = python3 dirsearch.py -u [URL] -e jsp,java,do,txt,html,log -w [WORDLISTSDIR]/services/http/discovery/raft-large-directories.txt -f --exclude-status=400,404,500,000
context_1 = { 'language': 'java' }
command_2 = python3 dirsearch.py -u [URL] -e php,txt,html,log -w [WORDLISTSDIR]/services/http/discovery/raft-large-directories.txt -f --exclude-status=400,404,500,000
context_2 = { 'language': 'php' }
command_3 = python3 dirsearch.py -u [URL] -e asp,aspx,txt,html,log -w [WORDLISTSDIR]/services/http/discovery/raft-large-directories.txt -f --exclude-status=400,404,500,000
context_3 = { 'language': 'asp' }
command_4 = python3 dirsearch.py -u [URL] -e js,txt,html,log -w [WORDLISTSDIR]/services/http/discovery/raft-large-directories.txt -f --exclude-status=400,404,500,000
context_4 = { 'language': 'angularjs' }
command_5 = python3 dirsearch.py -u [URL] -e cfm,txt,html,log -w [WORDLISTSDIR]/services/http/discovery/raft-large-directories.txt -f --exclude-status=400,404,500,000
context_5 = { 'language': 'coldfusion' }

Actually, each security check is defined under a section named [check_<check-name>]
(authorized charset is [a-z0-9_-]) by using the following options:

	name (mandatory): The name of the tool as it will be displayed. Authorized
charset is [a-z0-9_-].

	category (mandatory): Category inside which this check is classified. The name
of the category must be in the list given in the option categories under the
section [config] at the beginning of the configuration file.

	description (mandatory): Short text describing the check.

	tool (mandatory): Name of the tool to use in this check. It must correspond
exactly to the name which is given in toolbox.conf.

	Each check is defined by one or several commands to run. For each command, you
should consider:

	command_<number> (mandatory): Command-line to run. It supports the use of multiple
tags (See Tags for Commands)

	context_<number> (optional): Context that must be met to run the corresponding
command (See Context Syntax)

	postrun (optional): Name of a method from Smart Modules to run after each/the
command.

Tags for Commands

Commands in settings supports the use of several tags. At runtime, they are replaced
by the correct values.

For the commands in settings “install” and “update” in settings/toolbox.conf:

	[TOOLBOXDIR]: Absolute path of toolbox directory.

For the commands in setting “command_<number>” of security checks in settings/<service>.conf:

	[IP]: The target IP address.

	[URL]: The target URL (when target service is HTTP).

	[HOST]: The target host (if not provided or reverse DNS lookup does not returns anything,
IP address is used instead).

	[PORT]: Target port number.

	[PROTOCOL]: Protocol to use, either TCP or UDP.

	[SERVICE]: Target service name.

	[WEBSHELLSDIR]: Absolute path of directory storing webshells (useful for some exploits
against HTTP services).

	[WORDLISTSDIR]: Absolute path of directory storing wordlists.

	[USERNAME]: Username for target from credentials store. This tag is supported for Context
(See Context Syntax) with auth_status=USER_ONLY (only valid username is known),
or auth_status=POST_AUTH (valid username+password are known). If there are several
usernames for the target in credentials store, the command is run for every username.

	[PASSWORD]: Password for target from credentials store. This tag is supported for
Context with auth_status=POST_AUTH (valid username+password are known).

	[LOCALIP]: Local IP address (might be useful for some exploits that perform reverse
connection).

Specific tags depending on context-specific options are also supported by the service.

	For context-specific option of type boolean:
[OPTION_NAME true="text to use if option is True"]

	For context-specific option of type list:
[OPTION_NAME element1="val1" element2="val2" ... default="default val"]
If the option has the value “element1”,
- respectively “element2” - the tag will be replaced by “val1” - respectively “val2”.
If the value of the option does not match anything specified in the tag, the tag
will be replaced by “default val” (“default” parameter optional).

	For context-specific option of type var:
[OPTION_NAME set="text _VAR_ text" default="default text"]

	If variable is set, it is replaced by the text into “set” parameter
with “_VAR_” replaced by variable’s value.

	Otherwise, it is replaced by the text into “default” parameter if existing
(optional parameter).

Context Syntax

For each command in setting “command_<number>” of security checks in settings/<service>.conf,
it is possible to specify a context. A context defines the required conditions to run
the command.

For the setting “command_<number>”, a context can be defined in setting “context_<number>”
(<number> must match). The context is defined using a Python dictionary.

Here is an example for a command in a security check against HTTP:

command_2 = python2.7 jexboss.py --auto-exploit --jboss -u [URL] --jboss-login '[USERNAME]:[PASSWORD]' --cmd whoami
context_2 = { 'server': 'jboss', 'auth_status': POST_AUTH, 'auth_type': 'jboss' }

The value of “context_2” means that “command_2” must be run if and only if the following
conditions are met:

	The context-specific option server == 'jboss', i.e. the target HTTP service is using
JBoss server.

	Valid credentials for JBoss on the targeted service are present in the credentials store in
the database.

More generally, conditions that can be defined in context are:

	Values of context-specific options,

	Authentication status on the target via the key auth_status that can take either
of the following values:

	NO_AUTH: No credentials are known,

	USER_ONLY: At least one username is known,

	POST_AUTH: Valid credentials (username+password) are known,

	None: Any status.

Warning

For HTTP only, if auth_status is used to define a context, it is mandatory to
specify for which kind of authentication does that must apply via the key auth_type
(in the previous example, it was for “jboss”).

Smart Modules

TODO

Wordlists

TODO

Index

Internals

TODO

Tree structure

The project is structured in folders as such:

	[lib] - Contains the source code
* [controller] - The controller interface between the cli and the logic (based on MVC design)
* [core] - Contains the core classes of the project which handles the logic of the app
* [output] - Contains classes used for CLI output
* [utils] - Contains utility classes

	[output] - Default directory where results are stored

	[pictures] - Logo and images

	[settings] - Contains configuration files. One .conf file per service. Easily editable

	[toolbox] - Directory where the tools are installed.
* [service_name] - For each service, a sub-directory is created when installing toolbox

	[tool_01] -

	[tool_02]

	…

	[wordlists] - Default wordlists aimed at being used by some tools

	README.txt - This file

	requirements.txt - Pip requirements file (required Python libraries)

	jok3r.py - The main program. This is the script that the user needs to run.

 _images/docker-logo.png

_static/ajax-loader.gif

_images/logo.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Jok3r Documentation

 		
 What is Jok3r ?

 		
 Network and Web Pentest Framework

 		
 Overview

 		
 Main features

 		
 Why Jok3r ?

 		
 About Toolbox Management

 		
 About using Hacking Tools

 		
 Combine Open-Source Hacking Tools

 		
 Installation

 		
 Docker

 		
 Build your own Jok3r Docker Image

 		
 Manual install

 		
 Command info

 		
 Command toolbox

 		
 Show the Toolbox content

 		
 Install the Tools

 		
 Update the Tools

 		
 Uninstall the Tools

 		
 Misc

 		
 Examples

 		
 Command db

 		
 Command mission

 		
 Command hosts

 		
 Command services

 		
 Command creds

 		
 Command nmap

 		
 Command results

 		
 Command attack

 		
 Single Target Mode

 		
 Multiple Targets Mode

 		
 Miscellaneous Options

 		
 Selection of Checks

 		
 Authentication

 		
 Context-specific Options

 		
 Settings

 		
 Toolbox Settings

 		
 Services Settings

 		
 Global settings for a Service

 		
 Security Checks for a Service

 		
 Tags for Commands

 		
 Context Syntax

 		
 Smart Modules

 		
 Wordlists

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

