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Python tools for perfoming Monte-Carlo studies of joint distribution functions that are built piecemeal from scipy.stats
distribution objects (or any objects that ‘quack’ like them).

Contents: 1



JMCtools Documentation, Release 1.0.0

2 Contents:



CHAPTER 1

Installation

This project is hosted on github. You can download and install it in the usual ways, for example:

git clone https://github.com/bjfar/JMCtools.git
pip install ./JMCtools

It is recommended to use pip to install the package since this is compatible with anaconda environments.

Once installed the package can be imported in python using the module name JMCtools.
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https://github.com/bjfar/JMCtools
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CHAPTER 2

Quick start

The principle pipeline which JMCtools is designed to streamline is the following:

1. Combine independent distribution functions into a joint distribution

2. Sample from the joint distribution

3. Build relationships between model parameters and distribution parameters

4. Find maximum likelihood estimators for these parameters (for many samples/trials, in parallel)

5. Construct test statistics

Getting more advanced, we can further combine joint distributions into experiments, define test statistics to compute
in analysis objects, and loop over the whole procedure to compute trial_corrections.

A fast introduction to the package, then, is to see an example of this in action. So let’s get to it!

2.1 Combine independent distribution functions into a joint distribu-
tion

Suppose we have several independent random variables, which can each be modelled by an object from scipy.stats.
JMCtools provides the JointModel class for the purpose of packaging these variables together into one single
distribution-function-like object, which has similar (although not identical) behaviour and function to the native
scipy.stats objects.

For example, we can create the joint PDF for two normal random variables as follows:

import JMCtools.distributions as jtd
import scipy.stats as sps
import numpy as np

joint = jtd.JointModel([sps.norm,sps.norm])

5

https://docs.scipy.org/doc/scipy/reference/stats.html
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2.2 Sample from the joint distribution

Now that we have an object describing our joint PDF, we can sample from it in a scipy.stats manner:

null_parameters = [{'loc': 3, 'scale': 1},
{'loc': 1, 'scale': 2}]

samples = joint.rvs((10000,),null_parameters)

We can also evaluate the joint PDF, and compare it to our samples to check that they seem reasonable:

# Compute 2D PDF over grid
nxbins=100
nybins=100
x = np.linspace(-2,8,nxbins)
y = np.linspace(-6,10,nybins)
X, Y = np.meshgrid(x, y)
dxdy = (x[1]-x[0]) * (y[1]-y[0])
PDF = joint.pdf([X,Y],null_parameters)

# Construct smallest intervals containing certain amount of probability
outarray = np.ones((nxbins,nybins))
sb = np.argsort(PDF.flat)[::-1]
outarray.flat[sb] = np.cumsum(PDF.flat[sb] * dxdy)

# Make plot!
import matplotlib.pyplot as plt
fig= plt.figure(figsize=(5,4))
ax = fig.add_subplot(111)
ax.contourf(X, Y, outarray, alpha=0.3, levels=[0,0.68,0.95,0.997])
ax.scatter(*samples,lw=0,s=1)
ax.set_xlabel("x")
ax.set_ylabel("y")
fig.savefig("example_2D_joint.svg")

Fig. 1: Contours of the PDF of the joint distribution, with samples overlayed.

2.3 Build relationships between model parameters and distribution
parameters

In JMCtools a model consists of two main components: a JointModel, and a list of functions which take
some abstract parameters and return the arguments needed to evaluate the distribution functions managed by the
JointModel. These are combined via the ParameterModel class.

For example, if we leave the variances of our two normal distributions fixed, and take the means as independent
parameters, we can construct a simple two parameter model as follows:

import JMCtools.models as jtm

def pars1(a):
return {'loc': a, 'scale':1}

def pars2(b):

(continues on next page)
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return {'loc': b, 'scale':2}

model = jtm.ParameterModel(joint,[pars1,pars2])

For the purposes of efficiently finding maximum likelihood estimators for these parameters, the ParameterModel
class automatically infers the block structure of the model. That is, it figures out which blocks of parameters are
needed to evaluate which distribution functions. In our example the two parameters independently fix the means of
each normal distribution, so our 2D model can be broken down into two independent 1D models. We can see that the
ParameterModel object has noticed this by inspecting its blocks attribute:

print(model.blocks)

which produces:

>>> {(deps=['a'], submodels=[0]), (deps=['b'], submodels=[1])}

Here the output is telling us that one parameter block depends on the parameter a, and fixes the arguments of the
0th component of the JointModel, and a second parameter block depends on b and fixes the 1th joint distribution
component.

As a quick aside, it is useful to see what happens if the model parameters correlate the arguments of the joint distribu-
tion components:

def pars3(a,b):
return {'loc': a+b, 'scale':1}

model2 = jtm.ParameterModel(joint,[pars3,pars2])
print(model2.blocks)

which produces:

>>> {(deps=['a', 'b'], submodels=[0, 1])}

So now, there is only one parameter block, that depends on both parameters and fixes the arguments of both joint
distribution components. The important difference is that now this block will require a 2D optimisation in order to
locate the maximum likelihood estimators for a and b, whereas previously they could be found by two independent
1D optimisations (which is much faster).

2.4 Find maximum likelihood estimators

Now that we have a ParameterModel, we can use it to find maximum likelihood estimators for all the parameters
that we have defined. This is made simple by the find_MLE_parallel() member function, which can find MLEs
for each simulated dataset, splitting the task over multiple processes if desired.

We simulated some data earlier using the JointModel class, but we can also simulate it directly from the
ParameterModel:

null_parameters = {'a':3, 'b':1}
Ntrials = 10000
Ndraws = 1
data = model.simulate((Ntrials,Ndraws),null_parameters)

Note that the shape of the simulated data is important. The length of the last dimension is interpreted as the number
of draws from the joint distribution per trial or pseudoexperiment. In this way, one can easily find the MLEs given

2.4. Find maximum likelihood estimators 7
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multiple independent draws. But for simplicity we here do just one draw per experiment. (For more complicated
scenarios where different components of the joint distribution require different numbers of “draws”, one must manually
construct the appropriate JointModel before wrapping it in a ParameterModel.)

Finding the MLEs requires setting some options for the chosen optimisation method and then simply calling
find_MLE_parallel()

# Set starting values and step sizes for Minuit search
options = {'a':3, 'error_a':1, 'b': 1, 'error_b': 2}
Lmax, pmax = model.find_MLE_parallel(options,data,method='minuit',Nprocesses=3)
# Note that Lmax are the log-likelihoods of the MLEs,
# and pmax are the parameter values.

2.5 Construct test statistics

The final step is to construct some test statistic of interest! Here we will compute a likelihood ratio test statistic:

Lnull = model.logpdf(null_parameters)
LLR = -2*(Lnull - Lmax) # log-likelihood ratio

# Plot!
n, bins = np.histogram(LLR, bins=100, normed=True)
q = np.arange(0,9,0.01)
fig = plt.figure(figsize=(5,4))
ax = fig.add_subplot(111)
ax.plot(bins[:-1],n,drawstyle='steps-post',label="Minuit",c='r')
ax.plot(q,sps.chi2.pdf(q, 2),c='k',label="Asymptotic")
ax.set_xlabel("LLR")
ax.set_ylabel("pdf(LLR)")
ax.set_ylim(0.001,2)
ax.set_xlim(0,9)
ax.set_yscale("log")
ax.legend(loc=1, frameon=False, framealpha=0,prop={'size':14})

fig.savefig('quickstart_LLR.svg')

Fig. 2: Simulated distribution of likelihood ratio test statistic (red), and expected distribution according to asymptotic
theory (black).

And that’s it! Everything this package is good for is just an application of the above pipeline to different problems.

The unadulterated code for the above examples can be viewed here.

2.6 Limitations

Please note the following:

• The grid optimisation method is very fast for low-dimensional problems, and very slow for dimensions larger
than about 2 due to the curse of dimensionality. Note also that results will be poor if the resolution of the grid is
not sufficiently below the variance of the MLEs.

8 Chapter 2. Quick start
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• The minuit optimisation method needs a little help from you in order to get reliable results. The starting guess
needs to put the minimiser in the correct global minima, and the step size needs to be small enough that Minuit
doesn’t jump out of this minima. For more tips on using Minuit see the iminuit documentation.

• There are currently no global optimisers implemented. Thus, if finding MLEs for your parameters requires
solving a difficult global optimisation problem then this package cannot help you, sorry!

2.6. Limitations 9
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CHAPTER 3

Examples from quick start

Return to Quick start guide.

# make_joint
import JMCtools.distributions as jtd
import scipy.stats as sps
import numpy as np

joint = jtd.JointModel([sps.norm,sps.norm])
# sample_pdf
null_parameters = [{'loc': 3, 'scale': 1},

{'loc': 1, 'scale': 2}]
samples = joint.rvs((10000,),null_parameters)
# check_pdf
# Compute 2D PDF over grid
nxbins=100
nybins=100
x = np.linspace(-2,8,nxbins)
y = np.linspace(-6,10,nybins)
X, Y = np.meshgrid(x, y)
dxdy = (x[1]-x[0]) * (y[1]-y[0])
PDF = joint.pdf([X,Y],null_parameters)

# Construct smallest intervals containing certain amount of probability
outarray = np.ones((nxbins,nybins))
sb = np.argsort(PDF.flat)[::-1]
outarray.flat[sb] = np.cumsum(PDF.flat[sb] * dxdy)

# Make plot!
import matplotlib.pyplot as plt
fig= plt.figure(figsize=(5,4))
ax = fig.add_subplot(111)
ax.contourf(X, Y, outarray, alpha=0.3, levels=[0,0.68,0.95,0.997])
ax.scatter(*samples,lw=0,s=1)
ax.set_xlabel("x")

(continues on next page)
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ax.set_ylabel("y")
fig.savefig("example_2D_joint.svg")
# build_model
import JMCtools.models as jtm

def pars1(a):
return {'loc': a, 'scale':1}

def pars2(b):
return {'loc': b, 'scale':2}

model = jtm.ParameterModel(joint,[pars1,pars2])
# block_structure
print(model.blocks)
# alt_model
def pars3(a,b):

return {'loc': a+b, 'scale':1}

model2 = jtm.ParameterModel(joint,[pars3,pars2])
print(model2.blocks)
# sim_data
null_parameters = {'a':3, 'b':1}
Ntrials = 10000
Ndraws = 1
data = model.simulate((Ntrials,Ndraws),null_parameters)
# find_MLEs
# Set starting values and step sizes for Minuit search
options = {'a':3, 'error_a':1, 'b': 1, 'error_b': 2}
Lmax, pmax = model.find_MLE_parallel(options,data,method='minuit',Nprocesses=3)
# Note that Lmax are the log-likelihoods of the MLEs,
# and pmax are the parameter values.
# compute_stats
Lnull = model.logpdf(null_parameters)
LLR = -2*(Lnull - Lmax) # log-likelihood ratio

# Plot!
n, bins = np.histogram(LLR, bins=100, normed=True)
q = np.arange(0,9,0.01)
fig = plt.figure(figsize=(5,4))
ax = fig.add_subplot(111)
ax.plot(bins[:-1],n,drawstyle='steps-post',label="Minuit",c='r')
ax.plot(q,sps.chi2.pdf(q, 2),c='k',label="Asymptotic")
ax.set_xlabel("LLR")
ax.set_ylabel("pdf(LLR)")
ax.set_ylim(0.001,2)
ax.set_xlim(0,9)
ax.set_yscale("log")
ax.legend(loc=1, frameon=False, framealpha=0,prop={'size':14})

fig.savefig('quickstart_LLR.svg')
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CHAPTER 4

JMCtools package

4.1 Submodules

4.2 JMCtools.common module

4.3 JMCtools.distributions module

4.4 JMCtools.models module

4.5 Module contents

These tools are fairly simple wrappers of scipy.stats objects, made for convenience rather than speed. Effort has been
taken to make them pretty efficient, but if you use them to construct and analyse monstrously large joint PDFs then
things will not be fast. For such intense usage you will need a more specialised (and more complicated!) toolkit, such
as ROOT.

13

https://root.cern.ch/
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CHAPTER 5

Indices and tables

• genindex

• modindex

• search
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Python Module Index
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