

Welcome to JMCtools!

Python tools for perfoming Monte-Carlo studies of joint distribution
functions that are built piecemeal from scipy.stats distribution objects
(or any objects that ‘quack’ like them).

[image: _images/mixture_MLLR.svg]
Contents:

	Installation

	Quick start
	Combine independent distribution functions into a joint distribution

	Sample from the joint distribution

	Build relationships between model parameters and distribution parameters

	Find maximum likelihood estimators

	Construct test statistics

	Limitations

	Examples from quick start

	JMCtools package
	Submodules

	JMCtools.common module

	JMCtools.distributions module

	JMCtools.models module

	Module contents

These tools are fairly simple wrappers of scipy.stats objects, made
for convenience rather than speed. Effort has been taken to make them
pretty efficient, but if you use them to construct and analyse monstrously large
joint PDFs then things will not be fast. For such intense usage you
will need a more specialised (and more complicated!) toolkit, such as
ROOT [https://root.cern.ch/].

Indices and tables

	Index

	Module Index

	Search Page

Installation

This project is hosted on github [https://github.com/bjfar/JMCtools]. You can download and install it in the usual ways, for example:

git clone https://github.com/bjfar/JMCtools.git
pip install ./JMCtools

It is recommended to use pip [https://pip.pypa.io/en/stable/installing/] to install the package since this is compatible with anaconda [https://conda.io/docs/user-guide/install/download.html] environments.

Once installed the package can be imported in python using the module name JMCtools.

Quick start

The principle pipeline which JMCtools is designed to streamline is
the following:

	Combine independent distribution functions into a joint distribution

	Sample from the joint distribution

	Build relationships between model parameters and distribution parameters

	Find maximum likelihood estimators for these parameters (for many
samples/trials, in parallel)

	Construct test statistics

Getting more advanced, we can further combine joint distributions into experiments,
define test statistics to compute in analysis objects, and loop
over the whole procedure to compute trial_corrections.

A fast introduction to the package, then, is to see an example of this in action. So let’s get to it!

Combine independent distribution functions into a joint distribution

Suppose we have several independent random variables, which can each
be modelled by an object from scipy.stats [https://docs.scipy.org/doc/scipy/reference/stats.html]. JMCtools provides the
JointModel class for the purpose of packaging these
variables together into one single distribution-function-like object,
which has similar (although not identical) behaviour and function to
the native scipy.stats objects.

For example, we can create the joint PDF for two normal random variables
as follows:

import JMCtools.distributions as jtd
import scipy.stats as sps
import numpy as np

joint = jtd.JointModel([sps.norm,sps.norm])

Sample from the joint distribution

Now that we have an object describing our joint PDF, we can sample
from it in a scipy.stats manner:

null_parameters = [{'loc': 3, 'scale': 1},
 {'loc': 1, 'scale': 2}]
samples = joint.rvs((10000,),null_parameters)

We can also evaluate the joint PDF, and compare it to our samples to
check that they seem reasonable:

Compute 2D PDF over grid
nxbins=100
nybins=100
x = np.linspace(-2,8,nxbins)
y = np.linspace(-6,10,nybins)
X, Y = np.meshgrid(x, y)
dxdy = (x[1]-x[0]) * (y[1]-y[0])
PDF = joint.pdf([X,Y],null_parameters)

Construct smallest intervals containing certain amount of probability
outarray = np.ones((nxbins,nybins))
sb = np.argsort(PDF.flat)[::-1]
outarray.flat[sb] = np.cumsum(PDF.flat[sb] * dxdy)

Make plot!
import matplotlib.pyplot as plt
fig= plt.figure(figsize=(5,4))
ax = fig.add_subplot(111)
ax.contourf(X, Y, outarray, alpha=0.3, levels=[0,0.68,0.95,0.997])
ax.scatter(*samples,lw=0,s=1)
ax.set_xlabel("x")
ax.set_ylabel("y")
fig.savefig("example_2D_joint.svg")

[image: pdf_VS_samples]Contours of the PDF of the joint distribution, with samples overlayed.

Build relationships between model parameters and distribution parameters

In JMCtools a model consists of two main components: a
JointModel, and a list of functions which take some
abstract parameters and return the arguments needed to evaluate the
distribution functions managed by the JointModel. These
are combined via the ParameterModel class.

For example, if we leave the variances of our two normal distributions
fixed, and take the means as independent parameters, we can construct
a simple two parameter model as follows:

import JMCtools.models as jtm

def pars1(a):
 return {'loc': a, 'scale':1}

def pars2(b):
 return {'loc': b, 'scale':2}

model = jtm.ParameterModel(joint,[pars1,pars2])

For the purposes of efficiently finding maximum likelihood estimators
for these parameters, the ParameterModel class
automatically infers the block structure of the model. That is, it
figures out which blocks of parameters are needed to evaluate which
distribution functions. In our example the two parameters
independently fix the means of each normal distribution, so our
2D model can be broken down into two independent 1D models. We can
see that the ParameterModel object has noticed this
by inspecting its blocks attribute:

print(model.blocks)

which produces:

>>> {(deps=['a'], submodels=[0]), (deps=['b'], submodels=[1])}

Here the output is telling us that one parameter block depends on the
parameter a, and fixes the arguments of the 0th component of the
JointModel, and a second parameter block depends on b
and fixes the 1th joint distribution component.

As a quick aside, it is useful to see what happens if the model
parameters correlate the arguments of the joint distribution
components:

def pars3(a,b):
 return {'loc': a+b, 'scale':1}

model2 = jtm.ParameterModel(joint,[pars3,pars2])
print(model2.blocks)

which produces:

>>> {(deps=['a', 'b'], submodels=[0, 1])}

So now, there is only one parameter block, that depends on both
parameters and fixes the arguments of both joint distribution
components. The important difference is that now this block will
require a 2D optimisation in order to locate the maximum
likelihood estimators for a and b, whereas previously they
could be found by two independent 1D optimisations (which is
much faster).

Find maximum likelihood estimators

Now that we have a ParameterModel, we can use it
to find maximum likelihood estimators for all the parameters
that we have defined. This is made simple by the
find_MLE_parallel() member function, which can
find MLEs for each simulated dataset, splitting the task
over multiple processes if desired.

We simulated some data earlier using the JointModel
class, but we can also simulate it directly
from the ParameterModel:

null_parameters = {'a':3, 'b':1}
Ntrials = 10000
Ndraws = 1
data = model.simulate((Ntrials,Ndraws),null_parameters)

Note that the shape of the simulated data is important. The
length of the last dimension is interpreted as the number of
draws from the joint distribution per trial or pseudoexperiment.
In this way, one can easily find the MLEs given multiple independent
draws. But for simplicity we here do just one draw per experiment.
(For more complicated scenarios where different components of the
joint distribution require different numbers of “draws”, one must
manually construct the appropriate JointModel before
wrapping it in a ParameterModel.)

Finding the MLEs requires setting some options for the chosen
optimisation method and then simply calling
find_MLE_parallel()

Set starting values and step sizes for Minuit search
options = {'a':3, 'error_a':1, 'b': 1, 'error_b': 2}
Lmax, pmax = model.find_MLE_parallel(options,data,method='minuit',Nprocesses=3)
Note that Lmax are the log-likelihoods of the MLEs,
and pmax are the parameter values.

Construct test statistics

The final step is to construct some test statistic of interest!
Here we will compute a likelihood ratio [https://en.wikipedia.org/wiki/Likelihood-ratio_test] test statistic:

Lnull = model.logpdf(null_parameters)
LLR = -2*(Lnull - Lmax) # log-likelihood ratio

Plot!
n, bins = np.histogram(LLR, bins=100, normed=True)
q = np.arange(0,9,0.01)
fig = plt.figure(figsize=(5,4))
ax = fig.add_subplot(111)
ax.plot(bins[:-1],n,drawstyle='steps-post',label="Minuit",c='r')
ax.plot(q,sps.chi2.pdf(q, 2),c='k',label="Asymptotic")
ax.set_xlabel("LLR")
ax.set_ylabel("pdf(LLR)")
ax.set_ylim(0.001,2)
ax.set_xlim(0,9)
ax.set_yscale("log")
ax.legend(loc=1, frameon=False, framealpha=0,prop={'size':14})

fig.savefig('quickstart_LLR.svg')

[image: pdf_LLR]Simulated distribution of likelihood ratio test statistic (red), and
expected distribution according to asymptotic theory (black).

And that’s it! Everything this package is good for is just an application
of the above pipeline to different problems.

The unadulterated code for the above examples can be viewed here.

Limitations

Please note the following:

	The grid optimisation method is very fast for low-dimensional
problems, and very slow for dimensions larger than about 2 due to
the curse of dimensionality [https://en.wikipedia.org/wiki/Curse_of_dimensionality]. Note
also that results will be poor if the resolution of the grid is not
sufficiently below the variance of the MLEs.

	The minuit optimisation method needs a little help from you in
order to get reliable results. The starting guess needs to put
the minimiser in the correct global minima, and the step size needs
to be small enough that Minuit doesn’t jump out of this minima.
For more tips on using Minuit see the iminuit [https://iminuit.readthedocs.io/en/latest/] documentation.

	There are currently no global optimisers implemented. Thus, if
finding MLEs for your parameters requires solving a difficult
global optimisation problem then this package cannot help you,
sorry!

Examples from quick start

Return to Quick start guide.

make_joint
import JMCtools.distributions as jtd
import scipy.stats as sps
import numpy as np

joint = jtd.JointModel([sps.norm,sps.norm])
sample_pdf
null_parameters = [{'loc': 3, 'scale': 1},
 {'loc': 1, 'scale': 2}]
samples = joint.rvs((10000,),null_parameters)
check_pdf
Compute 2D PDF over grid
nxbins=100
nybins=100
x = np.linspace(-2,8,nxbins)
y = np.linspace(-6,10,nybins)
X, Y = np.meshgrid(x, y)
dxdy = (x[1]-x[0]) * (y[1]-y[0])
PDF = joint.pdf([X,Y],null_parameters)

Construct smallest intervals containing certain amount of probability
outarray = np.ones((nxbins,nybins))
sb = np.argsort(PDF.flat)[::-1]
outarray.flat[sb] = np.cumsum(PDF.flat[sb] * dxdy)

Make plot!
import matplotlib.pyplot as plt
fig= plt.figure(figsize=(5,4))
ax = fig.add_subplot(111)
ax.contourf(X, Y, outarray, alpha=0.3, levels=[0,0.68,0.95,0.997])
ax.scatter(*samples,lw=0,s=1)
ax.set_xlabel("x")
ax.set_ylabel("y")
fig.savefig("example_2D_joint.svg")
build_model
import JMCtools.models as jtm

def pars1(a):
 return {'loc': a, 'scale':1}

def pars2(b):
 return {'loc': b, 'scale':2}

model = jtm.ParameterModel(joint,[pars1,pars2])
block_structure
print(model.blocks)
alt_model
def pars3(a,b):
 return {'loc': a+b, 'scale':1}

model2 = jtm.ParameterModel(joint,[pars3,pars2])
print(model2.blocks)
sim_data
null_parameters = {'a':3, 'b':1}
Ntrials = 10000
Ndraws = 1
data = model.simulate((Ntrials,Ndraws),null_parameters)
find_MLEs
Set starting values and step sizes for Minuit search
options = {'a':3, 'error_a':1, 'b': 1, 'error_b': 2}
Lmax, pmax = model.find_MLE_parallel(options,data,method='minuit',Nprocesses=3)
Note that Lmax are the log-likelihoods of the MLEs,
and pmax are the parameter values.
compute_stats
Lnull = model.logpdf(null_parameters)
LLR = -2*(Lnull - Lmax) # log-likelihood ratio

Plot!
n, bins = np.histogram(LLR, bins=100, normed=True)
q = np.arange(0,9,0.01)
fig = plt.figure(figsize=(5,4))
ax = fig.add_subplot(111)
ax.plot(bins[:-1],n,drawstyle='steps-post',label="Minuit",c='r')
ax.plot(q,sps.chi2.pdf(q, 2),c='k',label="Asymptotic")
ax.set_xlabel("LLR")
ax.set_ylabel("pdf(LLR)")
ax.set_ylim(0.001,2)
ax.set_xlim(0,9)
ax.set_yscale("log")
ax.legend(loc=1, frameon=False, framealpha=0,prop={'size':14})

fig.savefig('quickstart_LLR.svg')

JMCtools package

Submodules

JMCtools.common module

JMCtools.distributions module

JMCtools.models module

Module contents

 Python Module Index

 j

 		 	

 		
 j	

 	
 	
 JMCtools	

Index

 J

J

 	
 	JMCtools (module)

JMCtools

	JMCtools package
	Submodules

	JMCtools.common module

	JMCtools.distributions module

	JMCtools.models module

	Module contents

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to JMCtools!

 		
 Installation

 		
 Quick start

 		
 Combine independent distribution functions into a joint distribution

 		
 Sample from the joint distribution

 		
 Build relationships between model parameters and distribution parameters

 		
 Find maximum likelihood estimators

 		
 Construct test statistics

 		
 Limitations

 		
 Examples from quick start

 		
 JMCtools package

 		
 Submodules

 		
 JMCtools.common module

 		
 JMCtools.distributions module

 		
 JMCtools.models module

 		
 Module contents

_static/up-pressed.png

_static/up.png

