

 Navigation

 	
 index

 	
 next |

 	Javatar 1.0.0 documentation

Welcome to Javatar

Javatar is a plugin for Sublime Text 3 and for Java development. The inspirations behind Javatar is Eclipse [http://eclipse.org], the open-source Java IDE.

New to Javatar?

Take a look at Getting Started and become a Javatar! [1]

Table of Contents

	Features

	Installation
	Package Control (Recommended)

	“git” Command

	Manual Install

	Release Changelog
	First release (20 December 2014)

	Screenshots
	Creating packages

	Creating classes

	Class operations

	Project settings

	Building and Running Java code

	Getting Started
	Startup

	Preparing Our New Project

	First Command

	Source Folder

	Menu is Everything

	First Class

	Package Path

	Coding Time!

	Build Our Project

	Running Our Code

	Final

	Commands List

	Commands Categories
	Builds

	Calls

	Create

	Operations

	Project Settings

	Javatar Settings

	Packages Manager

	Help and Support

	Builds
	Project

	Package

	Working

	Current Class

	Calls
	Package Name

	Subpackage Name

	Full Class Name

	Class Name

	Advanced Creations
	Relative Creations

	Classes with main method

	Customized Classes

	Inheritances Helper

	Operations
	Correct Class

	Organize Imports

	Projects Settings
	Set Program Arguments

	Dependencies

	Set Source Folder

	Set Default JDK

	Settings

	Default Package Detection

	JDK Detections

	Key Bindings
	Default Key Binding

	Build System

	Javatar Shell

	Javatar Snippets
	Snippet Tags
	Usage of snippet tags in action

	Snippet Parameters

	Javatar Packages

	Additional Packages

	Javatar Grammar

	Package Channels
	Stable Channel

	Development Channel

	Package Updates Notifications

	Statistics and Usages Policy

	Actions History

	Notifications

	Year Book
	15 June 2015...

	20 December 2014...

	15 June 2014...

	15 June 2013...

	License

	Donation

	[1]	Originally from Javapocalypse [http://www.youtube.com/watch?v=E3418SeWZfQ] video

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Features

Javatar is designed to be IDE-like plugin by providing many features that help develop Java applications faster and easier.

	Packages and Subpackages creation

	Class (also Abstract), Interface and Enumeration snippets with package/class name auto-complete and auto-import

	Project/Package/Class build and run with dependencies [2]

	Packages path in status bar

	External libraries packages

	Internal console with input supports

	Organize Imports [2]

For full feature list, please see Release Changelog

	[2]	(1, 2) Organize Imports will not support classes inside dependencies except provided by Javatar Packages

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Installation

Package Control (Recommended)

Open command palette and type Install Package then type Javatar and hit Enter or Return.
Package Control will automatically download, install and update for you.

“git” Command

Open your favourite Terminal application, browse to PACKAGES_PATH and run this command.

git clone git://github.com/spywhere/Javatar.git

Manual Install

Download .zip file from Javatar repository and browse to PACKAGES_PATH, extract .zip file and rename folder to Javatar, restart Sublime Text if you are currently open.

Note

PACKAGES_PATH is referred to a folder which can be accessed via the Preferences > Browse Packages...

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Release Changelog

First release (20 December 2014)

	Create packages

	Create classes, enumerators, interfaces

	Class corrections

	Build System

	Action History

	Organize imports

	Javatar packages

	Javatar stats and usages

	Project Settings

	Javatar shells and run class feature

	Compilation errors and StackTrace code highlighting (syntax files)

	Parallel build threads

	Dependency settings

	Installed JDKs settings and automatic detection

	Project data restoration

	Build notifications via SubNotify

	Program argument settings

	Build and Run outputs’ target group settings

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Screenshots

A picture is worth a thousand words. That is what they said...

Creating packages

[image: _images/CreatePackage.gif]

Creating classes

[image: _images/CreateClass.gif]

Class operations

[image: _images/Operations.gif]

Project settings

[image: _images/Projects.gif]
Notice! The location of new packages before and after source folder has been set

Building and Running Java code

[image: _images/BuildRun.gif]

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Getting Started

Welcome you, the new Javatar! I will take you through a simple project to help using Javatar faster and better suit your workflow.

This should take some time since I am going to explain everything you might need to know. But in a normal work, you would do all of this in a few minutes.

At the end of this chapter, we will see a simple application that takes our input and responds to us.

If you are ready, let’s begin!

Startup

Javatar is designed to be ready out of the box.
At startup, Javatar will load their snippets, packages and check for any available Additional Packages and later,
you might see a notification display some important update messages.

[image: _images/status_loading.png]
If you run Javatar for the first time, it also download and install necessary packages (Java SE) for you too.

[image: _images/status_installing.png]
Usually, you can use Javatar right away when you open Sublime Text since most users did not create a new class or organize imports at startup time.

Preparing Our New Project

To prepare our project, we need to create a folder to contain our files then open it in Sublime Text and do not forget to create src folder to store our Java source code.

[image: _images/sidebar_folder.png]

First Command

Let’s try working with a command. First, we need to create a new package to test some Java code.

We will pressing Key+Shift+K twice to open Javatar‘s menu and select Create... > Package to open up an input box.

[image: _images/package_empty.png]

Note

Key is Control on Windows, Linux and Command on OS X.

Then type javatar.simple.demo and hit Enter or Return.

[image: _images/package_enter.png]
And there it is! Our first package.

[image: _images/sidebar_wrong.png]
But unfortunately, our package is ends up in a wrong place.
We want our package to be created inside src folder.
Why is that? There is a reason...

Source Folder

The reason that our package is ending up in a wrong place because we did not set the source folder yet.
What is a source folder? Source folder is, obviously, a folder which contains source code files.
Since, we want our source code to be placed in src folder. Hence, the src folder should be set as source folder as the name stated.

To set a source folder, we will run a command Set Source Folder.
We will pressing Key+Shift+K twice again to open Javatar‘s menu and select Project Settings... > Set Source Folder

Then we will select src folder as we want.

[image: _images/panel_source_folder.png]

Warning

If project data restoration feature is disabled and you did not save your project, Source Folder and Dependencies settings might be reset when you restarted Sublime Text.

Menu is Everything

[image: _images/javatar_menu.png]
As you can see, Javatar use menus instead of Command Palette to help group commands to a single submenu.
This helps find commands easier when you do not know which command you are looking for.

And also Sublime Text did not support dynamic Command Palette since Javatar need to add or remove an action from snippets, packages or your project’s dependencies list.

First Class

After we set a source folder, it is time to recreate that package again (do not forget to remove an old one too!) but since we are going to create a class later,
we will try a faster command that lets us create both package and class at the same time.

Press Key+Shift+K twice and select Create... > Class and it will wait for us to enter a class name.

Enter javatar.simple.demo.Main and hit Enter or Return to create it.

And bam! A class is created inside a proper package path. Isn’t that great?

[image: _images/sidebar_correct.png]
So, Create Package command is useless? Well, not so much. Sometimes, you might need to creates a package before create a class to organize packages,
and later you will fill it up with a bunch of classes. And that is the time when Create Package comes in.

Package Path

Right now, if you look at a status bar at the bottom of the window, you will notice that there is a package path showing.
This will change when you switch to another tab that is Java file, indicated which package current file is in.

[image: _images/status_package_path.png]

Coding Time!

It is a fun time! Let’s code a simple application that takes our name and display “Hello, <Name>!”

package javatar.simple.demo;

import java.util.Scanner;

public class Main {
 public static void main(String[] args) {
 Scanner sc = new Scanner(System.in);
 System.out.print("Hey! What's your name: ");
 String name = sc.nextLine();
 System.out.println("Hello, " + name + "!");
 }
}

Build Our Project

We have just done our first Java coding. Let’s build and run it!

Select Builds... > Project from the menu and wait...

[image: _images/status_building.png]
If something is wrong, Javatar will show you in a new view.

Running Our Code

It is time to test our application. To run just select Builds... > Run Main Class and Javatar will launch our application on a new view.

[image: _images/running.png]
If application exit properly, Javatar will show return code in a tab. But if you want to force quit an application, just close the view and an application will be terminated.

[image: _images/terminated.png]

Final

And you just learn most parts of Javatar by now. Explore it! Try download some packages if you need!

And Happy Coding!

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Commands List

Here is the list of commands available via Javatar‘s menu.

	Reload Javatar [1]

	
	Builds...

	
	Project

	Package

	Working

	Current Class

	Run Main Class

	
	Calls...

	
	Package Name

	Subpackage Name

	Full Class Name

	Class Name

	
	Create...

	
	Package

	Class

	Enumerator

	Interface

	And your own Javatar‘s snippets

	
	Operations...

	
	Organize Imports

	Correct Class

	
	Project Settings...

	
	Set Program Arguments

	Set Source Folder

	
	Dependencies...

	
	Add External .jar

	Add Class Folder

	Set Default JDK

	
	Javatar Settings...

	
	
	Dependencies...

	
	Add External .jar

	Add Class Folder

	Set Default JDK

	
	Packages Manager...

	
	
	Install Packages...

	
	List of available packages

	
	Uninstall Packages...

	
	List of installed packages

	Reload and Update Packages

	
	Package Tools...

	
	Create new Javatar Packages

	Generate SHA-256 Hash

	Generate SHA-256 Hash from URL

	Convert Imports

	
	Development Section... [2]

	
	Parse Document

	Prettify JSON

	Testing

	
	Help and Support...

	
	Actions History

	Actions History (Custom)

	Javatar

	[1]	Available in debug mode

	[2]	Available in development channel

Note

Menu item ends with ellipsis (3 dots) indicated that menu has submenus.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Commands Categories

Javatar have a lot of commands to be used, show them all like Command Palette can confused and also hard to search.
So, in order to help organize and search for commands easier, Javatar group all similar commands into sections.

Builds

	Build classes within packages or project

	More details on Builds

Calls

	Insert class or package informations such as current class path, class name or package path

	More details on Calls

Create

	Create a new classes or packages

	More details on Advanced Creations

Operations

	Do class or package operations such as organize imports or correct class

	More details on Operations

Project Settings

	Adjust settings for current projects

	More details on Projects Settings

Javatar Settings

	Adjust settings for global projects (all projects)

	Most settings are the same as project settings

Packages Manager [1]

	Install or remove additional packages provided by Javatar and community

Help and Support

	Help and Support tools and Javatar‘s informations

	[1]	Accessed via menu only

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Builds

Javatar use its own Build System which based on default Sublime Text‘s JavaC build settings. Building classes in Javatar can be done in several ways...

Project

Building project will let Javatar build all Java files in your project.

Package

Building package will let Javatar build all Java files in current packages based on current file.

Working

Working is short for working Java files. This will let Javatar build all Java files currently open in current window.

Current Class

Building current class will let Javatar build, obviously, current Java file in current view.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Calls

Calls are used to insert class or package information at cursor point. Javatar supports 4 types of calls...

Package Name

Return current package path

Subpackage Name

Return subpackage name from current package path

Full Class Name

Return full class path

Class Name

Return current class name based on class definition or file name

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Advanced Creations

Relative Creations

In all create related commands, all packages and classes will be created relative to the current package unless specified by ~ (tilde) before package or class path.
See examples below...

	Input
	As Package
	As Class

	Alpha
	Package "Alpha" is created in current package
	Class "Alpha" is created in current pacakge

	~Beta
	Package "Beta" is created in default package
	Class "Beta" is created in default pacakge

	Alpha.Beta
	Package "Beta" is created in "(current package).Alpha" package
	Class "Beta" is created in "(current package).Alpha" package

	~Alpha.Beta
	Package "Beta" is created in "Alpha"
	Class "Beta" is created in "Alpha"

Classes with main method

To create a class with main method, just add AsMain at the end of your class name.
Javatar will automatically add main method when the class is created.

Customized Classes

You can create a class with custom visibility (default class visibility is public) by adding one of the keyword public, private, protected and default before your class name. If you want to create an abstract or final class just add abstract or final after the visibility.

	Examples:

	
	
	privateBattleShip

	
	Class “BattleShip” is created with “private” visiblity

	
	protectedAbstractBattleShip

	
	Class “BattleShip” is created with “protected” visibility and “abstract” modifier

	
	wargame.entity.defaultBattleShip

	
	Class “BattleShip” is created with “default” visibility in “wargame.entity” package

Note

The keyword is order-sensitive but not case-sensitive.

Inheritances Helper

You can create a class included with inheritances of classes and interfaces by using special characters.

To extends a class, add : (colon) followed by a class name (or a list of class names separated by commas if it is a enumerator).

To implements an interface, add < (left angle bracket) followed by a list of interface names separated by commas.

If you are on Development Channel, Javatar will also automatically organize imports when class is created.

	Examples:

	
	
	BattleShip:BattleUnit

	
	Class “BattleShip” is inherited from “BattleUnit” class (has “extends” in the code)

	
	BattleShip:BattleUnit<WaterUnit

	
	Class “BattleShip” is both inherited from “BattleUnit” class and “WaterUnit” interface

	
	BattleShip<Carrier,WaterUnit:BattleUnit

	
	Class “BattleUnit” is inherited from “BattleUnit” class, “Carrier” interface and “WaterUnit” interface

	
	wargame.entity.defaultAbstractBattleShip:BattleUnit<Carrier,WaterUnit

	
	Abstract class “BattleUnit” is created in “wargame.entity” package with “default” visibility and is inherited from “BattleUnit”, “Carrier” and “WaterUnit” class/interface

Inheritances is case-sensitive but not order-sensitive.

Note

Despite, Javatar allows you to create “private” or “protected” classes. It does not make sense to create a private or protected class since another class can not see a new class you created.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Operations

Operations help you do a class or package, obviously, operations such as organize imports or rename class easier.
Currently, Javatar has 2 operations...

Correct Class

Javatar will search for current package and your class name based on the file name and location of the current file and correct it on first class definition.

Organize Imports

Javatar will automatically import all necessary packages and remove unused packages for you. This is done within 7 sub-steps.

	Javatar gathering imports informations from current file

	Javatar lets you select a package that has the same class

	Javatar imports “default imports” and Java’s packages

	Javatar asks you to enter the package name for missing classes

	Javatar asks for package name that you want to enter manually

	Javatar clear all imports in the current file

	Javatar imports all packages that have been processed within step 1-4

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Projects Settings

The Project Settings section contains per-project settings.

Tip

All Javatar‘s settings can be set specifically for each project by setting it in project file instead of user preferences

Set Program Arguments

By default, Javatar will not pass parameters when running an application through the Run Main Class command (see Getting Started for an example).
Set Program Arguments allows you to specify what arguments should be passed on main execution.

Dependencies

Javatar supports build and run project that have dependencies .jar files both global and specific projects.
To add a dependency to global projects (all projects), go to Javatar Settings... > Dependencies... and select Add External .jar or Add Class Folder and Javatar will show a dialog to select a dependency you want to add.
To add a dependency to current project, same as for global projects, but using Project Settings... > Dependencies... menu instead.

Set Source Folder

As default, Javatar will specify a default package (mostly) based-on current working folder or folder contains current working files (more details in next section).
Many projects might use multiple folders and some of them are not source folder.
Set source folder helps solve this issue by letting you select which folder to specified as Source Folder (or default package as Javatar use).

Set Default JDK

As default, Javatar will use global JDK (more details on JDK Detections).
Set a default JDK for each project can be helpful since you might want some projects to use newer JDK version.

To set a default JDK for your project, go to Project Settings... > Set Default JDK and Javatar will show a list of JDK you have and available to use.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Settings

Settings can be accessed via the Preferences > Package Settings > Javatar from the menu bar or via command palette by type Preference Javatar.

Default settings should not be modified. However, you can copy the relevant settings in Javatar‘s user settings file.

Some settings contain parameters for special value such as Source Folder or Project Directory. The followings are all parameter supported by Javatar...

	
	Available anywhere

	
	
	$project_dir

	
	Project Directory

	
	$source_folder

	
	Source folder

	
	$packages_path

	
	Sublime Text‘s packages path

	
	$sep

	
	Path separator. Such as “/” on Unix and “\” on Windows

	
	Available when open a file

	
	
	$full_class_path

	
	Full class path. Such as “package.subpackage.classname”

	
	$package

	
	Current package. Such as “package.subpackage”

	
	$class_name

	
	Current class name. Such as “classname”

	
	Available when open a file on specific context (such as build or run)

	
	
	$file

	
	Full path to file. Such as “/Users/home/File.java”

	
	$file_parent

	
	Full path of parent directory. Such as “/Users/home/”

	
	$file_name

	
	File name. Such as “File.java”

	
	$sourcepath

	
	Source path flag for build command (-sourcepath)

	
	$classpath

	
	Class path flag for build and run command (-classpath)

	
	$d

	
	Output path flag for build command (-d)

Note

Make sure you quoted all path specific value to escape the spaces.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Default Package Detection

Javatar will specify the default package with these steps...

	Source Folder specified in the current project file (when open project)

	Project folder in current project file (when open project or folder)

	Folder contains the current file (when open file)

	Specify current package as (Unknown Package)

Javatar will refuse to create packages or classes within an unknown package. In this case, mostly because current file is not on the disk yet.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

JDK Detections

At startup time, Javatar will automatically detect installed JDK on your computer and select the best one.

Here are the steps it takes to select the best JDK for most projects...

	Run a checking command to see that Java has been setup as default

	Search all JDK directories in installation path (depends on your OS)

	If Java is already setup, use the default one. And set all available JDK version to settings (as your JDK settings)

	If Java is not setup yet, use the latest version that available

	If Java is not setup and there is no Java installed, Javatar will notify that you did not install Java yet

If you install Java anywhere else, you can set how Javatar search and detect JDK by setting it in Javatar‘s user preferences.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Key Bindings

Key bindings can be accessed via the preference menu or via command palette same as settings.

Default Key Binding

All commands start with Key+Shift+K then follows by their shortcut key.

	
	Browse Commands... : Key+Shift+K

	
	This will open quick panel, showing you all commands available to use.

	
	Help and Support... : Key+Shift+H

	
	This will open quick panel, showing you all utilities that help solve the issue (most requested to do by developer).

	
	Builds... : Key+Shift+B

	
	This will open quick panel to select which build you want to perform.

	
	Calls... : Key+Shift+J

	
	This will open quick panel to select which information you want to insert.

	
	Operations... : Key+Shift+O

	
	This will open quick panel to select which operation you want to perform.

	
	Create new... : Key+Shift+N

	
	This will open quick panel, showing you all possible types to create.

	
	Create new package : Key+Shift+P

	
	This will open input panel, just like when you create a new package.

	
	Organize Imports : Key+Shift+I

	
	This will organize imports on current file.

	
	Project Settings : Key+Shift+,

	
	This will open quick panel, showing you all settings you can adjust for current project.

	
	Javatar Settings : Key+Shift+.

	
	This will open quick panel, showing you all settings you can adjust for global projects.

Note

Key is Control on Windows, Linux and Command on OS X.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Build System

Javatar‘s build system using its internal shell to build your classes.
Javatar builds parameters are based on default Sublime Text‘s JavaC build settings.
You can change the build command via a Javatar settings file.

Javatar‘s build system support multi-threads building. By running multiple instance of build system to help build your class faster.
You can set how many threads you want to run in Javatar‘s user preferences.

While building, Javatar will show building progress in Sublime Text‘s status bar.
If it found any error, Javatar will show you a new view contains all errors and will keep on printing until building is complete.
To cancel building in progress, just close an error logs view and Javatar will stop building your classes immediately.

Note

Building cannot be stopped if there is no error occurred.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Javatar Shell

Javatar shell works like a normal shell terminal.
The difference between Javatar shell and others shells is that Javatar shell will accept your input by pressing the Enter/Return keys. This gives you the ability to read in your content on the current line.

While Javatar shell is running, you can close the view to force quit any application that is still running in the shell.

Warning

Javatar cannot guarantee that output or input will be correct when you type in the Javatar shell while it is still printing an output since Javatar shell did not set the view to read-only while printing.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Javatar Snippets

Javatar snippets is a dynamic snippet which will change part of the file to correspond with package path and class name. By using parameters, you can specify which part of the file you want to fill the data to.

You can make your own snippets to use within Javatar by create a new file ends with .javatar

Snippet class tags (for more informations about snippet tags, see below) will be used as a type of classes which show in input panel when create a new file (%type% Name:), on error dialog (%type% %name% already exists) and in status bar when file was created (%type% %name% is created within package %package%).

Example of Javatar‘s snippets is inside Javatar‘s snippets folder (PACKAGES_PATH/Javatar/snippets or inside .sublime-packages file)

Snippet Tags

The following tags are used inside Javatar snippet files (*.javatar) which will be used by Javatar to display proper command to the user

	%class:*TYPE OF CLASS*%

	%description:*DESCRIPTION TO SHOW UNDER CREATION COMMAND*%

Usage of snippet tags in action

[image: _images/CreateNewSS.png]

Snippet Parameters

The following parameters are used inside Javatar snippet files (*.javatar) which will be parsed by Javatar and Sublime Text.

	%package_path% = Package path

	%class% = Class name

	%file% = File path

	%file_name% = File name (equivalent to %class%.java)

	%package% = Package code (for example package java.utils; or same as package %packages_path%;)

	All Sublime Text‘s snippet parameters can be used within Javatar snippets. For example: ${1} or ${2://Comment}

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Javatar Packages

Javatar required packages file (*.javatar-packages) to correctly import necessary Java’s packages. These files contain all classes, fields, methods and packages to use with Javatar.

Javatar Packages file is a JSON file. You can read more details about each key and value in Proto.javatar-packages located within Javatar‘s Java folder (can be accessed via Preferences > Package Settings > Proto.javatar-packages or via command palette by type Javatar Proto).

However, their are 2 special keys that are not normally used within Javatar Packages which are...

	
	experiment

	
	Set this to true to exclude this package from Javatar‘s packages list.

	
	always_import

	
	Set this to true to always import this package even no class is used (this will import as package.*).

Both keys are boolean type and also optional to use.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Additional Packages

By default, Javatar is not include any additional packages inside its package.
This helps Javatar faster to install/update from Package Control but that not provides any support for some features (for example, Organize Imports).
To solve this problem, Javatar will automatically download and install necessary packages when startup.

For other packages, you can download and install using Packages Manager... > Install Packages... menu.

If you want to suggest or add Javatar Packages to the package repository. Please leave an issue in Javatar Packages repository [https://github.com/spywhere/JavatarPackages].

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Javatar Grammar

Javatar grammar (*.javatar-grammar) is used to assigned a name to Java elements such as keywords, strings or similar just like TextMate’s grammar [http://manual.macromates.com/en/language_grammars].
This allow Javatar to get informations about document more accurate.

Javatar have it own parser that will parse your document using this grammar. Since Javatar is using GrammarParser [https://github.com/spywhere/GrammarParser], its grammars are also a GrammarParser [https://github.com/spywhere/GrammarParser]‘s grammar.

More informations about how grammar works is on GrammarParser [https://github.com/spywhere/GrammarParser] readme.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Package Channels

Stable Channel

Stable channel is a default channel for every user who installed Javatar. This channel will release only fully working features and hide all incomplete features.

Development Channel

Development channel is a optional channel for user who want to try upcoming features which may not fully working or need improvements.
All upcoming features will appear in Development Section only.

Note

Stable channel update notes also apply on development channel as well.

Package Updates Notifications

In order to notice important notes to all users, in stable channel or development channel or both, Javatar use custom notification system which will notice you only once when Javatar is ready to use.
You can opt out this notification by settings message_id to -1 in Javatar‘s user settings file, note that you can see update notes in README file or you will miss further important update notes.

Note

From Javatar 1.0.0 and later, Package Channels has no effect on features except for Development Section. There will be no package channel on newer version of Javatar.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Statistics and Usages Policy

From 13 Apr 2014, Javatar will collect statistics and usages of Javatar to help improve the package features.
Data we have collected are your Javatar‘s settings and Sublime Text informations.
To disable automatic sending statistics and usages, set send_stats_and_usages to false and Javatar will not send any statistics and usages anymore.
However, additional packages statistics still collected for packages improvements and selections.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Actions History

Actions History tracks how you use Javatar and helps solve the problem. By provides useful informations as request by developer (only when you submit an issue).
A Javatar Action History Report will looks similar to this when using it properly...

Javatar Report
System Informations
* Javatar Version: `1.0.0`
* Sublime Version: `3059`
* Package Path: `/Users/USER_NAME/Library/Application Support/Sublime Text 3/Packages`
* Javatar Channel: `stable`
* Sublime Channel: `stable`
* Is Debug Mode: `False`
* Platform: `osx`
* As Packages: `True`
* Package Control: `True`
* Architecture: `x64`
* Javatar's Parent Folder: `Javatar`
* Is Project: `True`
* Is File: `True`
* Is Java: `True`

Action List
1. Startup
2. Reset all settings
3. Reset all snippets
4. Reset all default packages
5. Read settings
6. Load snippets
7. Check news
8. Ready
9. Javatar snippet AbstractClass.javatar loaded
10. Analyse snippet [file=Packages/Javatar/snippets/AbstractClass.javatar]
11. Javatar snippet Class.javatar loaded
12. Analyse snippet [file=Packages/Javatar/snippets/Class.javatar]
13. Javatar snippet Enumerator.javatar loaded
14. Analyse snippet [file=Packages/Javatar/snippets/Enumerator.javatar]
15. Javatar snippet Interface.javatar loaded
16. Analyse snippet [file=Packages/Javatar/snippets/Interface.javatar]
17. Load Java default packages
18. Javatar default package Proto.javatar-packages loaded
19. Analyse package [file=Packages/Javatar/Java/Proto.javatar-packages]
20. Javatar default package JavaSE8.javatar-packages loaded
21. Analyse package [file=Packages/User/JavaSE8.javatar-packages]
22. Check packages update

Javatar do not automatically send these informations. You have to reply an issue with these informations yourself.

Actions History can be disabled by settings enable_actions_history to false.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Notifications

Javatar will show a notification when the build is finished or failed via SubNotify plugin.

You can install SubNotify by follow these instructions on this page [https://github.com/facelessuser/SubNotify].

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

Year Book

A lookback of Javatar over years...

15 June 2015...

Stats: 16.4k installs

2nd year has passed. Although Javatar is not changed for a year to you, a new version of Javatar is still under development which focus mainly on stability and performance improvements.
And also no reported issue for a year! That’s mean Javatar v1.0.0 is working to most of Java developers around the world.

20 December 2014...

Javatar has reach its first release!

Stats: 10.0k installs

Take a look of full feature list here Release Changelog

15 June 2014...

Stats: 5.5k installs

It’s been a year since Javatar was released.
There’re so many things that Javatar has been added and improved over the year.
Started from a simple plugin that helps create a package and class easier, and becomes a more capable plugin to build and run Java projects.
1 year, many things changed, yet there’re more to come...

15 June 2013...

Javatar‘s first commit.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Javatar 1.0.0 documentation

License

::Javatar::

The MIT License (MIT)

Copyright (c) 2014 Sirisak Lueangsaksri

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Javatar 1.0.0 documentation

Donation

I spent months developing Javatar to make Sublime Text to be Java IDE-compatible as close as possible. If Javatar help your Java programming faster and easier, please consider making a donation [http://gittip.com/spywhere/] to help fund development and support. Thank you!

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Javatar 1.0.0 documentation

Index

 Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_images/status_loading.png
‘Une 1, Column 1. Checking Javatar packages ..

_static/ajax-loader.gif

_static/down.png

_static/comment-bright.png

_static/up.png

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		Javatar 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Sirisak Lueangsaksri.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

_static/plus.png

_images/sidebar_correct.png
Mainjava

_images/status_installing.png

_images/terminated.png
< Main java %\ Main Ended (Retwrn: 0) [17.355]

>
i Hey! What's your name: spywhere
2 Hello, spywhe:

3

_images/CreatePackage.gif
Demo.java *
package Alpha;

public class Demo {
public static void main(tringl] args) {
Systen.out. println("Hello, World!
bl

@uaumawNe y

Package: Alpha, Line 8, Column 1 Tab Size: 4

_images/package_empty.png
Line 1, Column 1

_images/javatar_menu.png
Builds...

Build system

Calls...

Insert class informations
Create...

Create a newclass or package
Operations...

Doa java operation

Project Settings...
Adjustproject settings
Packages Manager...
Javatar packages manager
Help and Support...
Utilities for Help and Support on Javatar

_images/sidebar_folder.png
(OPEN FILES

FOLDERS.

¥ Javatarbemo
Vs

_images/CreateClass.gif
a
v

Demo java x
Demo {

void main(stringl] args) {
Systen.out. println("Hello, World!

¥

@uamawN e

Package: (Default Package), Line 8, Column 1 TabSize 4

_images/status_building.png
Package: wrc javatar simphe demo, Line 12, Column 2. [1/1] Building Main.java...

_images/package_enter.png
[EZERNEN javatar. sinple. deno

Line 1, Column 1

_images/CreateNewSS.png
Demojava

¥ Demonstrations

Back

acktoprevious menu
Package
[S——
Abstract Class

[—
Class

R ———
Enumerator

Create a newempty enumerator
Interface

Create anewempy nterface

Package: (Default Package), Line 8, Column 1

Tab Size: 4

-

_images/Projects.gif
<> Demojava x

1

2
trations 3 0

1
5 Deno {
6 void main(stringl] args) {
7 circle circle circle(s);
8 int area - circle.getArea();
9 Systen.out.println()
10 Systen.out.println(area);
1 b
2}
15

Package: src, Line 13, Column 1 Tab Size: 4 Jva

_images/Operations.gif
Validator.java *
package Beta
public class ActionType {

public boolean isAction(Action action) {
return action. isAction();
b

@uaumawNe y

Package: Alpha.Delta, Line 8, Column 1 TabSize: 4

_images/panel_source_folder.png
|
JavatarDemo

/

javatar

Jjavatar

simple
Jjavatar/simple
demo

Jjavatar simplej demo
src

Isre

_images/sidebar_wrong.png
OPEN FILES
FOLDERS
¥ Javatarbemo,
¥ javatar
v simple
¥ demo
v s

_images/BuildRun.gif
<> pemojava x

a
2
trations H 5
a 5
ste 2
“ 6 Demo {
mach 7 void (String[])4
c 8 Scanner sc Scanner(Systen.in);
9 Systen.out. print(i
10 circle circle Circle(sc.nextInt());
1 float area - circle.getArea();
12 Systen.out.printIn();
13 Systen.out.println(area);
1 bl
15}
6|

Package: (Default Package), Line 16, Column 1 Tab Size: 4 Jva

_images/running.png
<> [ainjaa % Running Main ...
1 Hey! What's your name:

_images/status_package_path.png
‘Package: javatar.simple.demo, Line 4, Column 5 - Field 1 of 2

