

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Java Like Scanner 0.1 documentation

Welcome to Java Like Scanner’s documentation!

Contents:

API Documentation

	API

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Christoper Randall Wells.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Java Like Scanner 0.1 documentation

API

	
class javalikescanner.JavaLikeScanner(contents)[source]

	A class which allows a given string to be scanned through and broken up into various tokens.

	
has_next()[source]

	Return whether or not there is a valid next token in the scanner or not.

	Returns:	Whether or not there is a next token in the scanner as a boolean.

	
has_next_int()[source]

	Return whether the next token in the scanner is an integer or not.

	Returns:	Whether or not the next token in the scanner is an integer as a boolean.

	
has_next_line()[source]

	Return whether or not there is a next line in the scanner.

	Returns:	Whether or not there is a next line in the scanner as a boolean.

	
next()[source]

	Return the next token in the scanner and remove that token from the scanner.

Returns None if there is no next token in the scanner.

	Returns:	The next token in the scanner as a string.

	
next_int()[source]

	Return the next integer in the scanner and remove that integer from the scanner.

Returns None if there is not a next token in the scanner, or if the next token in the scanner is
not an integer.

	Returns:	The next integer in the scanner as an integer.

	
next_line()[source]

	Return the next line in the scanner and remove that line from the scanner.

Returns None if there is not a next line in the scanner.

	Returns:	The next line in the scanner as a string.

 Copyright 2015, Christoper Randall Wells.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Java Like Scanner 0.1 documentation

 Python Module Index

 j

 			

 		
 j	

 	
 	
 javalikescanner	

 Copyright 2015, Christoper Randall Wells.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Java Like Scanner 0.1 documentation

Index

 H
 | J
 | N

H

 	

 	has_next() (javalikescanner.JavaLikeScanner method)

 	has_next_int() (javalikescanner.JavaLikeScanner method)

 	

 	has_next_line() (javalikescanner.JavaLikeScanner method)

J

 	

 	JavaLikeScanner (class in javalikescanner)

 	

 	javalikescanner (module)

N

 	

 	next() (javalikescanner.JavaLikeScanner method)

 	next_int() (javalikescanner.JavaLikeScanner method)

 	

 	next_line() (javalikescanner.JavaLikeScanner method)

 Copyright 2015, Christoper Randall Wells.
 Created using Sphinx 1.3.1.

 _static/file.png

_static/up.png

_static/comment-bright.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Java Like Scanner 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Christoper Randall Wells.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/down.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Java Like Scanner 0.1 documentation »

 All modules for which code is available

		javalikescanner.javalikescanner

 © Copyright 2015, Christoper Randall Wells.
 Created using Sphinx 1.3.1.

_modules/javalikescanner/javalikescanner.html

 Navigation

 		
 index

 		
 modules |

 		Java Like Scanner 0.1 documentation »

 		Module code »

 Source code for javalikescanner.javalikescanner

"""A module containg the JavaLikeScanner class."""

[docs]class JavaLikeScanner(object):
	"""
	A class which allows a given string to be scanned through and broken up into various tokens.
	"""

	def __init__(self, contents):
		"""
		Create the scanner and initalize its contents.

		:param str contents: The contents of the scanner.
		"""
		self.contents = contents

	def __get_token(self):
		"""
		Find and return the next token and its pre-delimiters if it has any. If there is no next token,
		then return None.

		:returns: The next token and its pre-delimiters as a dictionary.
		"""
		token_info = {'token': "", 'pre-delimiter': ""}

		# If the scanner has contents, then look for the next token
		if len(self.contents) > 0:
			# Check over each character in the scanner until a token is found, or the end of the scanner is
			# reached
			for character in self.contents:
				if character != " " and character != "\n" and character != "\t":
					# If the character is not a delimiter, then add it to the token
					token_info['token'] = token_info['token'] + character
				else:
					if len(token_info['token']) == 0:
						# If a token character hasn't been found yet, then the delimiter must be a pre-delimiter
						token_info['pre-delimiter'] = token_info['pre-delimiter'] + character
					else:
						# Since the next delimiter has been reached after the token, then break to return the token
						break
		# If a token was found, then return the token and pre-delimiters
		if token_info['token'] != "":
			return token_info
		else:
			# Since no token was found, return None
			return None

[docs]	def has_next(self):
		"""
		Return whether or not there is a valid next token in the scanner or not.

		:returns: Whether or not there is a next token in the scanner as a boolean.
		"""
		token = self.__get_token()
		if token is not None:
			return True
		else:
			return False

[docs]	def next(self):
		"""
		Return the next token in the scanner and remove that token from the scanner.

		Returns None if there is no next token in the scanner.

		:returns: The next token in the scanner as a string.
		"""
		if self.has_next():
			# Since there is a next token, remove the token and its pre-delimiters from the scanner, and
			# return the token
			token = self.__get_token()
			size = len(token['pre-delimiter']) + len(token['token'])
			self.contents = self.contents[size:]
			return token['token']
		else:
			# Since there is no next token in the scanner, return None
			return None

[docs]	def has_next_line(self):
		"""
		Return whether or not there is a next line in the scanner.

		:returns: Whether or not there is a next line in the scanner as a boolean.
		"""
		if self.contents != "":
			return True
		else:
			return False

[docs]	def next_line(self):
		"""
		Return the next line in the scanner and remove that line from the scanner.

		Returns None if there is not a next line in the scanner.

		:returns: The next line in the scanner as a string.
		"""
		if self.has_next_line():
			line = ""
			has_delimiter = False
			for character in self.contents:
				if character != "\n":
					line = line + character
				else:
					has_delimiter = True
					break
			size = len(line)
			# Account for the delimiter
			if has_delimiter:
				size = size + 1
			self.contents = self.contents[size:]
			return line
		else:
			return None

[docs]	def has_next_int(self):
		"""
		Return whether the next token in the scanner is an integer or not.

		:returns: Whether or not the next token in the scanner is an integer as a boolean.
		"""
		token = self.__get_token()

		# Handle the possiblity of an empty token
		if token is None:
			return False

		# Attempt to convert the token into an integer in order to tell if it is an integer or not
		try:
			int(token['token'])
			return True
		except ValueError:
			return False

[docs]	def next_int(self):
		"""
		Return the next integer in the scanner and remove that integer from the scanner.

		Returns None if there is not a next token in the scanner, or if the next token in the scanner is
		not an integer.

		:returns: The next integer in the scanner as an integer.
		"""
		if self.has_next_int():
			token = self.__get_token()
			token_integer = int(token['token'])

			# Remove the token and its pre-delimiters from the scanner and return it
			size = len(token['pre-delimiter']) + len(token['token'])
			self.contents = self.contents[size:]
			return token_integer
		else:
			return None

 © Copyright 2015, Christoper Randall Wells.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

