
Java 8 tips Documentation
Release 1.0

Sanit

Aug 27, 2017

Contents

1 Quick Introduction 3

2 Behavior Parameterization 5

3 Lambdas 7
3.1 Type Inferencing . 8
3.2 Accessing outer scope variables . 10
3.3 Restrictions in Lambdas . 10
3.4 Where to use Lambdas . 11

4 Functional Interfaces 13
4.1 @FunctionalInterface rules . 13
4.2 Predicate<T> . 14
4.3 Consumer<T> . 15
4.4 Function<T, R> . 16
4.5 Supplier<T> . 17
4.6 Primitive Functional Interfaces . 18
4.7 Method References . 19
4.8 Constructor as method reference . 20

5 Introduction to Streams 21
5.1 Stream vs Collection . 22
5.2 Stream sources . 22
5.3 Stream Operations . 23

6 Stream API 25
6.1 Filtering . 25
6.2 Truncating Stream . 25
6.3 Consuming Stream . 26
6.4 Mapping . 26
6.5 Matching . 28
6.6 Finding element . 29
6.7 Stream Reduction . 29
6.8 To Array . 32
6.9 Infinite Streams . 32

7 Comparator 35

i

7.1 Comparators . 35
7.2 Updates in Comparator . 36

8 Collectors 39
8.1 How Collector works? . 39
8.2 Implementing collectors . 40

9 Predefined Collectors 43
9.1 Collecting as collections . 43
9.2 Strings joining . 44
9.3 Grouping elements . 45
9.4 Partitioning elements . 46
9.5 Reducing collectors . 47
9.6 Arithmetic & Summerizing . 47
9.7 Miscellaneous . 48

10 Handling nulls with Optional 51
10.1 Optional Construction . 53
10.2 Operating on Optionals . 53
10.3 Retrieving from Optionals . 55
10.4 Miscellaneous . 56

11 Default and Static methods 59
11.1 Default methods . 60
11.2 Multiple inheritance . 60
11.3 Static methods . 63

12 ForkJoinPool 65
12.1 ForkJoinPool creation . 65
12.2 ForkJoinTask . 66
12.3 How fork-join works? . 67

13 Parallel Data Processing 69
13.1 Parallel Streams . 69
13.2 Spliterator . 70
13.3 Conclusion . 72

14 Evolution of date time API 75
14.1 java.time package . 76
14.2 Common methods . 77
14.3 LoalDate, Time, Instant . 77
14.4 Duration & Period . 79
14.5 TemporalAdjusters . 80
14.6 Formatting & parsing . 82
14.7 Working with time zones . 83

15 Indices and tables 85

ii

Java 8 tips Documentation, Release 1.0

Contents:

Contents 1

Java 8 tips Documentation, Release 1.0

2 Contents

CHAPTER 1

Quick Introduction

Java 8 launched on 18th March 2014 and it was a next major release after jdk5. It came up with large set of scintillating
features that has won the attention of most of the java programmers. It has enhanced various java components like
runtime environment, compiler, lexical parser, memory management, command line tools and many more. Java 8 will
improve programmer’s coding experience with its enticed features of declarative programming, passing code as an
argument, method reference, optional for handling null etc. It will assure you to write codes that will be more precise,
objective driven and highly readable.

Passing methods as parameter removes verbosity from the code and in fact increases reusability, Streams helps in
writing SQL like syntaxes, parallelization that is almost free:- speed of the execution with efficient use of modern
computers having multicore processors, handling nullable values using Optional and many more. Initially stuffs will
be little confusing but once you used to it, you will be reluctant to write code with out using it. Let’s look into the
below usecase and understand why java 8 is different then all the releases.

Suppose we are trying to find the highest salary paid in each technology of a XYZ company. Before Java 8 the typical
implementation could be

public Map<String, Double> method2(List<Employee> list) {
Map<String, List<Employee>> temp = new HashMap<>();
for (Employee e : list) {

temp.putIfAbsent(e.getTechnology(), new ArrayList<>());
temp.get(e.getTechnology()).add(e);

}

Map<String, Double> map = new HashMap<>();
for (Entry<String, List<Employee>> ent : temp.entrySet()) {

double max = 0;
for (Employee e2 : ent.getValue()) {

max = Double.max(max, e2.getSalary());
}
map.put(ent.getKey(), max);

}
return map;

}

Let’s rewrite this code snippet in Java 8 way.

3

Java 8 tips Documentation, Release 1.0

Map<String, Double> map = list.stream().collect(
groupingBy(Employee::getTechnology, -- Grouping on

→˓technology
mapping(Employee::getSalary, -- Scale to salary

→˓from Employee object
collectingAndThen(maxBy(Comparator.naturalOrder()), -- Find the maximum

→˓among them
Optional::get))));

Isn’t it great. I just said “group on technologies” then extract salary from the employee object and finally get me
the highest value from each group. Here my code is objective oriented and easy understandable. If you look into
the first approch we are using a temporary intermediate map just to keep grouped data and then process it to find the
desired result. Every time you implement this kind of funtionality, you will write these boilerplate codes, but now java
does these extra coding and returns result to you. You still might be thinking older approach is good because of the
confusions and we are not ready to think in functional programming way.

Below are the topics we will investgate in this tutorial. I am excited to walk you through these features, so let’s get
started.

• What is a functional programming and Functinal interface?

• java.util.stream.Stream and its operations

• Collector and Collectors

• Forkjoin Pool and Spliterators

• How to use parallel streams?

• Nullable values with Optional

• java.util.time package

4 Chapter 1. Quick Introduction

CHAPTER 2

Behavior Parameterization

Behavior parameterization is the ability of a method to receive multiple different behavior as its parameter and use
them internally to accomplish the task. It let you to make your code more adaptive to changing requirements and saves
the engineering effort from writing similar piece of code here and there.

If you have come across some of the behavioral design patterns like Strategy Pattern then you know we create set of
similar algorithms and choose required one at run time to deal with a certain problem scenario. This type of techniques
facilitate to add new behaviors in future. Let’s look into a problem statement to understand better.

Suppose a company XYZ is trying to group its employees based on certain criterias like proficiency level, technology
type, gender etc or new criterias can be added in future. So to solve this problem we will create family of grouping
algorithms as described below.

1 interface Groupable {
2 public String findGroup(Employee e);
3 }
4

5 class GroupByExperience implements Groupable {
6

7 @Override
8 public String findGroup(Employee e) {
9 return e.yearsOfExpr >= 7 ? "Expert" :

10 e.yearsOfExpr >= 3 ? "Intermediet" : "Fresher";
11 }
12 }
13

14 class GroupByTechnology implements Groupable {
15

16 @Override
17 public String findGroup(Employee e) {
18 Map<String, List<String>> mapping = new HashMap<String, List<String>>() {
19 {
20 put("Front-end", Arrays.asList("AngularJS", "ExtJS"));
21 put("Middleware", Arrays.asList("Java", ".Net"));
22 put("Back-end", Arrays.asList("Oracle", "MySQL", "PostgreSQL"));
23 }

5

Java 8 tips Documentation, Release 1.0

24 };
25

26 for (Entry<String, List<String>> entry : mapping.entrySet()) {
27 if (entry.getValue().contains(e.technology)) {
28 return entry.getKey();
29 }
30 }
31 return "Others";
32 }
33 }

Based on our purpose we are passing the required behaviors to the grouping function which is just creating groups.

public Map<String, List<String>> group(List<Employee> list, Groupable behavior) {
Map<String, List<String>> map = new HashMap<>();
for (Employee e : list) {

String group = behavior.findGroup(e);
map.putIfAbsent(group, new ArrayList<>());
map.get(group).add(e.name);

}
return map;

}

Great... We solved the problem, as and when new requirements comes we just need to provide some other implemen-
tation classes. But from begining we are talking, one of our main objective is to remove verbosity from the code as
well as maintain the understandability. If you look into the GroupByExperience class, the behaviour is of one
liner but still complete class has been written. Another way can be writting Anonymous classes which some what
reduces these boilerplate codes but not to the great extent.

Just think, if the interface Groupable was given by java SDK itself and we were written only the method and passed
to the grouping function, then the code will be clearer and more flexible. Some of the interpreted langauges like
python, JavaScript etc support passing of method as parameter to the calling function, similarly Java 8 has also started
supporting it with the help of Functional Interfaces and Lambdas. Most of us already aware of Lambdas which is a
very well-known concept that exist from the begining of languages like python. Don’t worry about them now, we will
slowly have deep drive into it.

6 Chapter 2. Behavior Parameterization

CHAPTER 3

Lambdas

In previous chapter we thought of removing GroupByExperience class, only the method body should be given
to our group() function and Lambdas are the best examples of implementing them. Lambdas give us the ability
to encapsulate a single unit of code block and pass on to another code. It can also be considered as anonymous
function which doesn’t have any function name but has list of parameters, function body, returns result and even throws
exceptions. Below is the code statement if we convert our GroupByExperience class to a lambda expression.

(Employee e) -> { return e.yearsOfExpr >= 7 ?
"Expert" : e.yearsOfExpr >= 3 ? "Intermediet" : "Fresher"; }

Basically Lambda has 3 parts.

1. A list of parameters : In above example “Employee e”

2. Function body : The behavior (right hand side of arrow)

3. An arrow : Separator between parameter list and function body

Note: Lambda syntax follows some of the below rules.

• Parameter types are optional.

• If you have single parameter then both parameter type and parenthesis are optional.

• If you have multiple parameters, then they should be enclosed with in parenthesis.

• For multiple statements in function body should be enclosed with in courly braces.

• If lambda body exnclosed inside courly braces then return keyward is required in case your behavior returns
value.

With applying above rules our GroupByExperience class can be writtten in following ways.

e -> { return e.yearsOfExpr >= 7 ?
"Expert" : e.yearsOfExpr >= 3 ?

"Intermediet" : "Fresher"; }

7

Java 8 tips Documentation, Release 1.0

e -> e.yearsOfExpr >= 7 ?
"Expert" : e.yearsOfExpr >= 3 ?

"Intermediet" : "Fresher"

Below are some more examples of lambda expressions.

1. BiConsumer<List, Integer> addIntoList = (List list, Integer element) -> list.add(element); Adding an ele-
ment to a given list.

2. Predicate<Employee> isJavaEmp = e -> “Java”.equals(e.technology); Checking an employee is is from Java
technology.

3. Supplier<Integer> uniqueKey = () -> new Random().nextInt(); Generate a unique number with the help of
generator.

We saw couple of more lambda expressions above but what are these left hand side classes (BiConsumer, Predicate
etc). If you remember in behavior parameterization chapter I mentioned, what if Groupable interface were given by
java it self then we don’t have to write our own interfaces or abstract classes to give different different implementations.
Java 8 has already came up with bundle of general purpose functional interfaces which are included as part of JDK
and we are going to visit them soon.

Now we have some ideas on how lambdas look like and their syntaxes. Just look into the below two lambda expres-
sions.

1. Runnable runnable = () -> "I love Lambdas".length();
2. Callable<Integer> ca = () -> "I love Lambdas".length();

Both of expressions look similar except the left hand side target types. You would be thinking how does it possible to
assign same object to two different types of references. Is the Callable extends Runnble or vice-versa? The answer is
a big NO, this is possible due to the type inference feature which decides the target type depending upon the context
where it is used.

Type Inferencing

There has been much more improvent in compiler intelligence level that it takes advantage of target typing to infer
the type parameters of a generic method invocation. When inially Generics introduced in JDK 1.5, the type of generic
was mandatory in both side of the expression. For example:

List<String> list = new ArrayList<String>();

But in JDK 1.7 right hand side generic type become optional by changing it to the diamond(<>) operator where type is
evaluated from it’s left hand side target type declaration. Still there were some limitations in generic type evaluation.

1. List<String> l = Arrays.asList();

2. List<String> list = new ArrayList<>();
list.addAll(Arrays.asList());

If you compile above code in JDK 1.7, then the statement-1 will be compiled successfully but not
statement-2 and it will generate The method addAll(Collection<? extends String>) in the
type List<String> is not applicable for the arguments (List<Object>) error message.

8 Chapter 3. Lambdas

Java 8 tips Documentation, Release 1.0

So what really happened in statement-2 where as both of the statements looks similar. Just look into the signature of
above used methods.

Method Signatures
public static <T> List<T> asList(T... a)
public boolean addAll(Collection<? extends E> c)

The asList() is a type safe method which is able to infer its return type based on the given direct target type but in
addAll() case, compiler didn’t have idea to deduce the type when applied on method parameter as target type and
asList() method returned List<Object> that is incompatible with List<String> reference. Java 8 has enhanced this
type inferencing technique to deal with such wiered scenarios. Now let’s see how type inferencing works in lambda
expressions.

The type of lambda is deduced from the context where it is used. If we take our earlier example of Runnable and
Callable, the signature of lambda expression matches with the singature of run() and call() methods. Runnable
class run() method neither accept any argument nor return anything. Our lambda expression () -> "I love
Lambdas".length() also doesn’t supply any parameter.

For run() method fully described lambda expression is
() -> {

I love Lambdas".length();
}

and for call() it is
() -> {

return I love Lambdas".length();
}

Java compiler always looks for a matching functional interface to associate with the lambda expression from it’s
surrounding context or target type. Compiler expects you to use lambda expresssion in following places such that it
can determine the target type.

• Variable declarations

• Assignment statements

• Return statements

• Method or constructor arguments

• Lambda expression bodies

• Ternary expressions, ?: etc

For method or constructor arguments, the compiler determines the target type with two other language features: over-
load resolution and type argument inference. Look into the below code snippet.

public static void main(String[] args) throws Exception {
execute(() -> "done"); // Line-1

}

static void execute(Runnable runnable) {
System.out.println("Executing Runnable...");

}

static void execute(Callable<String> callable) throws Exception {
System.out.println("Executing Callable...");
callable.call();

}

3.1. Type Inferencing 9

Java 8 tips Documentation, Release 1.0

/* static void execute(PrivilegedAction<String> action) {
System.out.println("Executing PrivilegedAction...");
action.run();

} */

Output: Executing Callable...

Here we have two overloaded methods: Runnable and Callable. When you call the execute method with the mentioned
lambda, the execute(Callable)will be called because call() method can return something. Now just uncomment
execute(PrivilegedAction) method and try to reexecute and this time you will get compilation error: The method
execute(Callable<String>) is ambiguous for the type Lambdas. The reason is both the last two execute() methods are
capable to return and compiler found the ambiguous methods. So to resolve this you have to explicitly type cast the
lambda expression as below.

execute((Callable<String>) (() -> “done”));

Accessing outer scope variables

Some of the rules applicable for anonymous classes are also applicable to Lambdas:

• Lambda has access to members of its enclosing scope. (see line-1)

• Like nested class or anonymous class, it can also shadows any other declarations in the enlosing scope that
is of same name. (see line-2)

public class LambdaFeatures {
private int x = 10;

public void example() {
Consumer<String> funcInterface = str -> {

System.out.println("x= " + x); // Line-1

int x = 50; // Line-2
System.out.println("x= " + x);

};
}

}

Output: x= 10
x= 50

Restrictions in Lambdas

Lambda has some restrictions:

• You can’t declare any static or non-static initializers.

• It cann’t access local variables in its enclosing scope that are not defined final or effectively final. This restriction
exists with anonymous class also. Let’s discuss why is this limitation with following code snippet.

public class LambdaFeatures {
int y = 50;

10 Chapter 3. Lambdas

Java 8 tips Documentation, Release 1.0

public static void main(String[] args) throws Exception {
int x = 50;

Thread tt = new Thread() {
public void run() {

System.out.println("MyThread start.");

Thread.sleep(1000L);

System.out.println("MyThread end. x=" + x);
}

};

t.start();

x++;
System.out.println("main end");

}
}

Local variables stored in the stack where as instance variables stored in heap. In the above code snippet main thread
declares variable “x” and also creates a Thread which is trying to use this x variable. As we know local variables will
be stored in the local stack (here stack of main) and when thread “tt” will be created it will executed separate to main
thread. There might be chances that main will be completed first and the stack will be released before thread tt trying
to use it. So if variable is declared final, them lambda will a copy of it and use whenever require.

Where to use Lambdas

We have discussed enough on lambdas and anonybmous classes. Let’s discuss the scenarios where should we use
them.

• Anonymous class: Use it whenever you want to declare some additional fields or methods which lambda cann’t
do.

• Lambda:

– Use it if you want to encapsulate a single unit of behavior and pass to some other code. For example:
performing certain operation on each element of collection.

– Use it if you need a simple instance of a functional interface and none of the preceding criteria apply
(for example, you do not need a constructor, a named type, fields, or additional methods).

3.4. Where to use Lambdas 11

Java 8 tips Documentation, Release 1.0

12 Chapter 3. Lambdas

CHAPTER 4

Functional Interfaces

In java 8 context, functional interface is an interface having exactly one abstract method called functional method to
which the lambda expression’s parameter and return types are matched. Functional interface provides target types for
lambda expressions and method references.

The java.util.function contains general purpose functional interfaces used by JDK and also available for end users like
us. While they are not the complete set of funtional interfaces to which lambda expressions might be applicable, but
they provide enough to cover common requirements. You are free to create your own functional interfaces whenever
existing set are not enough.

The interfaces defined in the this package are annotated with FunctionalInterface. This annotation is not the require-
ment for the java compiler to determine the interface is an functional interface but it helps the compiler to identify the
accidental violation of the design intent. Basically I would say this annotation will be very much useful for us while
creating our custom functional interfaces.

@FunctionalInterface rules

As discussed @FunctionalInterface is a runtime annotation that is used to verify the interface follows all of the rules
that can make this interface as functional interface. Below are some of the rules from them:

• Interface must have exactly one abstract method.

• It can have any number of default methods because they are not abstract and implementation is already provided
by same.

• Interface can declares an abstract method overriding one of the public method from java.lang.Object,
that still can be considered as functional interface. The reason is any implementation class to this interface will
have implementation for this abstract method either from super class (bare minimum java.lang.Object) class or
defined by implementation class it self. In the below example toString() method declared as abstract which
will be implemented in its concrete implementation class or at last derived from java.lang.Object class.

Below code snippet is a simple example of functinal interface.

13

http://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html
http://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html
http://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html
http://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Method.html#isDefault--

Java 8 tips Documentation, Release 1.0

@FunctionalInterface
public interface MyFunctionalInterface {

public abstract void execute();

@Override
String toString();

default void beforeTask() {
System.out.println("beforeTask... ");

}

default void afterTask() {
System.out.println("afterTask... ");

}
}

Enough prose here, now see some of the basic functional interfaces defined in this package.

Predicate<T>

java.util.function.Predicate has a boolean-valued function that takes an argument and returns boolean value.

Class definition
public interface Predicate<T> {

boolean test(T t); // functional descriptor
}

Simple usecase of Predicate can be identifying all odd numbers from a given set or finding java employees from list
of employees etc.

Example:

public class PredicateTest {

public static void main(String[] args) {
Predicate<Integer> oddNums = (num -> num % 2 == 0);
Predicate<Integer> positiveNums = (num -> num > 0);

Integer[] array = IntStream.rangeClosed(-10, 10).boxed().
→˓toArray(Integer[]::new);

filter(array, oddNums);
filter(array, positiveNums);

}

public static <T> List<T> filter(T[] array, Predicate<T> predicate) {
List<T> result = new ArrayList<>();
for (T t : array) {

if (predicate.test(t))
result.add(t);

}
return result;

14 Chapter 4. Functional Interfaces

http://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html

Java 8 tips Documentation, Release 1.0

}
}

Here if you see filter method accepts a Predicate which is calling its test() method to extract the desired result. Later
if you want find all primary numbers then you prepare another predicate and pass it to filter method.

It has couple of default methods which you can use it:

Method Description Example
and(Predicate<?
super T> other)

Returns a composite predicate that represents
logical AND of two predicates (P1 AND P2)

Predicate<Integer> positiveOdd =
positiveNums.and(oddNums)

or(Predicate<?
super T> other)

Returns a composite predicate that represents
logical OR of two predicates (P1 OR P2)

Predicate<Integer> positiveOrOdd =
positiveNums.or(oddNums)

negate() Returns a predicate that represents the logical
negation of this predicate.

Predicate<Integer> negative =
positiveNums.negate();

Consumer<T>

java.util.function.Consumer accepts an argument and returns no result.

Class definition
public interface Consumer<T> {

void accept(T t);
}

Simple usecase can be persisting elements of a collection into DB or serializing them or printing on the console.

public class ConsumerTest {

public static void main(String[] args) {
Consumer<Employee> printOnConsole = (e -> System.out.print(e));
Consumer<Employee> storeInDB = (e -> DaoUtil.save(e));

forEach(empList, printOnConsole);
forEach(empList, storeInDB);
forEach(empList, printOnConsole.andThen(storeInDB));

}

static <T> void forEach(List<T> list, Consumer<T> consumer) {
int nullCount = 0;
for (T t : list) {

if (t != null) {
consumer.accept(t);

} else {
nullCount++;

}
}
System.out.printf("%d null entries found in the list.\n", nullCount);

}
}

Consumer has also one default method called andThen(Consumer<? super T> after) which returns a composite
consumer where second consumer will be executed after execution of first one. If the first consumer throws any

4.3. Consumer<T> 15

http://docs.oracle.com/javase/8/docs/api/java/util/function/Consumer.html

Java 8 tips Documentation, Release 1.0

exception then the second consumer will not be executed because non of the functional interfaces provided by JDK
handles any exception.

Function<T, R>

java.util.function.Function accepts an argument and returns result.

Class definition
public interface Function<T, R> {

R apply(T t);
}

A usecase of Function can be extracting employee name from Employee class or deriving primary ids from given
object etc.

public class FunctionTest {

public static void main(String[] args) {
Function<Employee, String> empPrimaryId = (emp -> emp.getEmployeeId());
Function<Department, String> deptPrimaryId = (dept -> dept.getLocationCode()

→˓+ dept.getName());

toMap(employeeList, empPrimaryId);
toMap(deptList, deptPrimaryId);

}

static <T, R> Map<T, R> toMap(List<T> list, Function<T, R> func) {
Map<T, R> result = new HashMap<>();
for (T t : list) {

result.put(t, func.apply(t));
}
return result;

}
}

Function has couple of default and static methods:

Method Description
compose(Function<? super
V, ? extends T> before)

Returns a composed function that first applies the before function to its input, and
then applies this function to the result.

andThen(Function<? super
R, ? extends V> after)

Returns a composed function that first applies this function to its input, and then
applies the after function to the result.

static <T> Function<T, T>
identity()

Returns a function that always returns its input argument. Basically it is a helper
method that used in Collector implementation that we will look later.

Below code snippet shows an example of composed function andThen().

public class ComposedFunctionExample {

/**
* Find the Addrees of given employee from database and return pincode

*/
public static void main(String[] args) {

Function<String, Address> first = empid -> EmployeeService.getEmployeesData().
→˓get(empid);

Function<Address, Integer> second = addr -> addr.pincode;
extract("E101", first, second);

16 Chapter 4. Functional Interfaces

http://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

Java 8 tips Documentation, Release 1.0

}

static <T, R, U> U extract(T input, Function<T, R> first, Function<R, U> second) {
return first.andThen(second).apply(input);

}
}

It has two subclasses whose type of operand and return types are of same type.

• UnaryOperator<T>: This represents an operation on a single operand that produces a result of the same type
as its operand. The simple usecase could be calculating square of a number.

Function descriptor signature: T apply(T t)

Example: UnaryOperator<Integer> square = (Integer in) -> in * in;

• BinaryOperator<T>: This represents an operation upon two operands of the same type, producing a result of
the same type as the operands. The simple usecase could be calculating sum of two numbers.

Function descriptor signature: T apply(T t1, T t2)

Example: BinaryOperator<Integer> sum = (i1, i2) -> i1 + i2;

Supplier<T>

java.util.function.Supplier doesn’t accept any argument but returns a result.

Class definition
public interface Supplier<R> {

R get();
}

A simple usecase of Supplier can be generating unique numbers using various algorithms.

public class SupplierTest {

public static void main(String[] args) {
Supplier<Long> randomId = () -> new Random().nextLong();
Supplier<UUID> uuid = () -> UUID.randomUUID();

Trade trade = new Trade();
populate(trade, randomId);
populate(trade, uuid);

}

static <R> void populate(Trade t, Supplier<R> supplier) {
t.tradeDate = new Date();
t.tradeId = (String) supplier.get();
t.location = "XYZ Hub";

}

static class Trade {
String tradeId;
Date tradeDate;
String location;

}
}

4.5. Supplier<T> 17

http://docs.oracle.com/javase/8/docs/api/java/util/function/Supplier.html

Java 8 tips Documentation, Release 1.0

There is another variant of functional interfaces that starts with Bi: BiConsumer, BiFunction, BiPredicate etc which
accept two input arguments of same or different reference types. These are helper interfaces used when working with
tasks expecting two input arguments as an example list.add(element). There is no functional interfaces which
accepts more than two input parameters, but still you can deal with such problems by wrapping all inputs to a single
container.

Hint: Suppose you want to replace a CharSequence with another CharSequence within a string. Here you have three
input parameters: original string, search string, replace string. So you can write them in following ways.

• Function<String[], String> f1 = arr -> arr[0].replaceAll(arr[1], arr[2]);

• BiFunction<String, String[], String> f2 = (str, arr) -> str.replaceAll(arr[0], arr[1]);

Primitive Functional Interfaces

We visited couple of functional interfaces which are defined as generic types. Generic types are always reference type
which has extra cost associated with it called Boxing and Unboxing. Reference types are generally a wrapper around
primitive types and stored in heap. Therefore, takes extra space. You might not bother about more space taking though
cost of hardware is decreased a lot in last decade, but what about the execution time. When you operate on primitive
types, your input and expected return type both are primitives but internally due to generics it boxes your input, does
the operation then unboxes the result and returns it. So here the boxing and unboxing is an extra effort that takes
phenomenon time which is useless for your purpose. Let’s see an example.

public class PrimitiveFunc {

public static void main(String[] args) {
int[] arr = IntStream.range(1, 50000).toArray();
BinaryOperator<Integer> f1 = (i1, i2) -> i1 + i2;
IntBinaryOperator f2 = (i1, i2) -> i1 + i2;

RunningTime.calculate((Consumer<Void>) v -> reduce1(arr, f1));
RunningTime.calculate((Consumer<Void>) v -> reduce2(arr, f2));

}

static int reduce1(int[] arr, BinaryOperator<Integer> operator) {
int result = arr[0];
for (int i = 1; i < arr.length; i++) {

result = operator.apply(result, arr[i]); // Boxing and Unboxing here
}
return result;

}

static int reduce2(int[] arr, IntBinaryOperator operator) {
int result = arr[0];
for (int i = 1; i < arr.length; i++) {

result = operator.applyAsInt(result, arr[i]);
}
return result;

}
}

Output:
reduce1() execution time: 0.006 secs
reduce2() execution time: 0.002 secs

18 Chapter 4. Functional Interfaces

Java 8 tips Documentation, Release 1.0

In the above example reduce methods calculating sum of a given array of numbers and output section shows their
running times. reduce2() is 3 times faster than reduce1() method because it uses IntBinaryOperator
which avoids unnecessary boxing and unboxing operations.

Java8 brings a bundle of primitive functional interfaces that deals with only three primitive types i.e. int, long and
double. Basically it follows a naming conventions to identify as them:

• XXX: Examples are IntPredicate, IntFunction, DoubleFunction, LongFunction etc. They accept primitive inputs
and returns reference type results.

• ToXXX: Examples are ToLongFunction, ToIntFunction etc. They accept reference type as input and returns
primitive types.

• XXXToYYY: IntToDoubleFunction, DoubleToLongFunction are some examples of this. They accept primitive
type and also return primitive types.

Note: There are little caveats in above rules:

• In case of Supplier, XXX type returns primitive type because Supplier doesn’t accept any input.

• ToXXX and XXXToYYY are only applicable to them who returns something. Functional interfaces like
Predicate doesn’t have flavours of ToIntPredicate or LongToDoublePredicate because its return type is always
boolean.

Method References

We have learnt enough to build lambda expressions to create anonymous methods. You might come across the sce-
narios where your lambda expression can contain just one line of code that calls an existing method. In such scenario
lambda expressions will look like:

• Function<String, Integer> func = str -> str.length();

• Supplier<Address> sup = () -> emp.getAddress();

Though java8 talks about removing boiler-plate codes, there is an efficient way called method references to build these
lambdas which will be more clear and readable. If we rewrite above two lambda expressions using method refer-
ence technique then the representations will be String::length and emp::getAddress. These representation
clearly says we are trying to call length method of a string in first case and getAddess in the second.

Syntax: <target reference> :: <method name>

Above is the syntax for creating method references where the target reference will be placed before the delimeter ::
and then the name of method. There are three kinds of method references exists.

• Reference to static method: Consumer<List<Integer>> c = Collections::sort; is an exam-
ple of method reference for static methods. Compiler will automatically consider it as (list) ->
Collections.sort(list). Here the target type will be the class name that contains the static
method.

• Reference to an instance method of a particular object: If you have an object reference then you can call its
method like list::add which is very similar to (list, ele) -> list.add(ele). Here the
target type will be object reference.

• Reference to an instance method of an arbitrary object of a particular type: This type of method refer-
ences are little confusing. If you look into the previous example String::length, usually length()
method is called on a string reference but we have written class name “String” as like it is a static method.
When we use method references they also go through similar checks as lambda expression goes. Compiler

4.7. Method References 19

Java 8 tips Documentation, Release 1.0

will try to match the method reference with any of functional descriptor syntax and if matches then passes
on.

Below table shows some of method references and equal lambda expressions.

Method Reference Equivalent lambda expression
Integer::parseInt ToIntFunction<String> f = (str) -> Integer.parseInt(str)
Collections::sort BiConsumer<List, Comparator<Trade>> f = (list, comp) -> Collections.sort(list, comp)
String::toUpperCase UnaryOperator<String> f = (str) -> str.toUpperCase()
UUID::randomUUID Supplier<UUID> f = () -> UUID.randomUUID()
empDao::getEmployee Function<String, Employee> f = (empid) -> empDao.getEmployee(empid)

Important: There are two things you should be aware of before writing method references.

1. Method reference should not contain paranthesis after method name otherwise it will represent a method invo-
cation that will lead to compilation error.

2. It is difficult to write lambdas or method references until and unless you know the signature of the method you
are looking for.

Constructor as method reference

As you know constructors are kind of special methods, method reference will also applicable to constructors. Syntax
of method reference for constructor is same as static method. Below are some of examples of method references for
constructors.

Constructor Type Lambda Representation
Zero-argument Supplier<Employee> s = () -> new Employee()
One-argument Function<String,Employee> f = (id) -> new Employee(id)
Two-argument BiFunction<String, String> f = (id, name) -> new Employee(id, name)

In the above examples you can clearly see, lambda expression of invoking zero argument constructor matches with
functional descriptor of Supplier, similarly one-argument constructors matches to Function and two argument is with
BiFunction.

Syntax: ClassName :: new

Examples: Employee :: new, ArrayList :: new

The constructor reference for all the above lambdas are Employee::new and type of the constructor invocation will
be decided based on the target type. To understand it better we will see a usecase whose goal is to return a collection
of unique ids but the collection type will be supplied as method argument.

public class ConstructorReference {

public static void main(String[] args) {
ArrayList<String> a = method(ArrayList::new);
TreeSet<String> t = method(TreeSet::new);

}

static Collection<String> method(Supplier<Collection<String>> container) {
Collection<String> c = container.get();
for (int i = 0; i < 5; i++)

c.add("ID:" + UUID.randomUUID().toString());
return c;

}
}

20 Chapter 4. Functional Interfaces

CHAPTER 5

Introduction to Streams

Streams are one of the bigwig among java8’s released features that let you write codes in declarative style rather than
typical imperative programming technique. Declarative programming expect you to mention what you want not how
to achieve them. Many of the technologies like unix, database etc are already working on this fashion. In database we
write SELECT technology, max(salary) from employee group by salary and it returns highest
salary paid in each technology. In case of unix we just combine group of commands (ls -l | grep “search string” | sort)
and ask unix to execute the operations.

Just look into the below example.

public static void main(String[] args) {
List<Trade> trades = TradeData.allTrades();
Comparator<Trade> comparator = Comparator.comparing(Trade::getNotional);
List<String> naTrades = trades.stream()

.filter(trade -> Region.NA.equals(trade.getRegion()))

.sorted(comparator)

.map(Trade::getTradeId)

.collect(toList());
System.out.println(naTrades);

}

In the above code snippet we just created a pipeline of tasks and java 8 will prepare the execution strategy internally
to process it. Here we didn’t write any external foreach loop to traverse through all the elements and it will be
internally taken care. If you wish to process trades parallely no need to write any extra milti-threaded code to do it,
just replacing the stream() method with parallelStream() will handle the whole parallelism process. Don’t wory about
parallelism now, we will look into it later.

Note: Technically stream is a sequence of elements from a source. Source can be anything like collections, arrays,
generator functions or I/O resources etc.

21

Java 8 tips Documentation, Release 1.0

Stream vs Collection

Most of the time collections are one of the main source for stream to act on. Stream and collection are used togather,
they don’t replace each other. Streams differ from collection in several ways:

• No storage: Collections are typically physical set of data where as streams are a logial view that will be supplied
to a pipeline of operations. Collections are about data and streams are about computations.

• Functional in nature: An operation on a stream produces a result, but does not modify its source. For example,
if we call filtering on a stream it will return a new stream rather than removing them from the original collection.

• Lazyness execution: Many of stream operation like filtering, mapping etc are chained togather and executed in
one shot using a terminal operation. This technique helps to create optimized execution strategy to process the
operations. For example, to find first three odd numbers from a stream it doesn’t go through the complete data
set and halts the execution once three values found.

• Possibly unbounded: While collections have a finite size, streams need not. Short-circuiting operations such
as limit(n) or findFirst() can allow computations on infinite streams to complete in finite time.

• Consumable: The elements of a stream are only visited once during the life of a stream. Like an Iterator, a new
stream must be generated to revisit the same elements of the source. If the source is FileInputStream etc, then
you are out of luck because inputstream will be closed once consumed and you cann’t regenerate the stream.

Stream sources

In above section we saw collections and InputStream are two sources for streams. There are numerous other sources
as well from where you can generate the stream.

• From a Collection via the stream() and parallelStream() methods;

• From an array via Arrays.stream(T[]);

• From static factory methods on the stream classes, such as Stream.of(T[]), IntStream.range(int, int) or
Stream.iterate(T, UnaryOperator);

• The lines of a file can be obtained from BufferedReader.lines();

• Streams of file paths can be obtained from methods in Files;

• Streams of random numbers can be obtained from Random.ints();

Apart from all of these predefined sources, you can also generate stream from your custom source using StreamSupport
class. Example:

public class TradePool {
List<Trade> list;

public Stream<Trade> stream() {
return StreamSupport.stream(list.spliterator(), false);

}
}

StreamSupport has some low-level methods which expects you to provide a spliterator that will generate stream. As
of now don’t worry about this spliterator, just think it is an iterator we will cover this spliterator once we are ready to
go for parallelization because you need to understand ForkJoinPool better to know about it.

22 Chapter 5. Introduction to Streams

Java 8 tips Documentation, Release 1.0

Stream Operations

Stream operations are broadly divided into intermediate and terminal operations that are combined to form pipeline.
A stream pipeline consists of a source (such as a Collection, an array, a generator function, or an I/O channel);
followed by zero or more intermediate operations such as Stream.filter or Stream.map; and a terminal operation such
as Stream.forEach or Stream.reduce.

• Intermediate Operations: Intermediate operations helps the stream pipeline to build the execution strategy.
These are lazy in nature, they don’t execute until any terminal operations are invoked. They don’t modify the
original stream, everytime they return a new stream. Intermediate operations can again divided into stateless
and stateful operations.

– Stateless operations such as filter, map are processed independently of operations on other elements

– Stateful operations such as sorted, distinct require to rememeber the result of operations on already seen
elements to calculate the result for next element. They execute the entire input before producing the final
result.

• Terminal Operation: Terminal operation traverse the stream and execute the pipeline of intermediate opera-
tions to produce the result. They are eager in nature. After the terminal operation is performed, the stream
pipeline is considered consumed, and can no longer be used. A stream implementation may throw IllegalState-
Exception if it detects that the stream is being reused.

Streams are also generated from infinite dataset. Some of the stream operations can be tagged as short-circuting
operations which acts on these infinite stream or data. An intermediate operation is said to be short-circuting if
applying on infinite stream should produce finite stream. As an example new Random().ints().limit(5)
will return only 5 random numbers. A terminal operation is short-circuting if, when applying on infinite set of input
should produce result in finite time. As an example new Random().ints().filter(no -> no % 10 ==
0).findAny() will return any one random number divisible by 10.

5.3. Stream Operations 23

Java 8 tips Documentation, Release 1.0

24 Chapter 5. Introduction to Streams

CHAPTER 6

Stream API

In the previous chapter you saw how streams are related to collections, various stream sources and kind of
stream operations. In this chapter we will have an extensive look at various operations supported by stream API.
java.util.stream.Stream contains numerous methods that let you deal with complex data processing queries such as
filtering, slicing, mapping, finding, matching and reducing both in sequential and parallel manner. There are also
primitive specialization of streams used for primitive elements and contains additional operations min, max, sum etc.

Filtering

Stream interface provides a method filter which accepts a Predicate as argument and return a stream that matches
the given predicate. The predicate will be applied to each element to determine if it should be included to new stream.

Signature Stream<T> filter(Predicate<? super T> p)

// Finding words starts with vowel
List<String> words = Stream.of("apple", "mango", "orange")

.filter(s -> s.matches("^[aeiou].*"))

.collect(toList());

:Output: [apple, orange]

Truncating Stream

Stream supports the limit(n) method accepts a numeric value and returns a new stream consisting of the elements
of this stream, truncated to be no longer than maxSize in length. If the stream length is less than the given size then
complete stream will be returned.

limit will truncate the stream from end where as there is another method called skip(n) will discard elements
from begining.

Signature Stream<T> limit(long maxSize)

25

http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

Java 8 tips Documentation, Release 1.0

Stream<T> skip(long n)

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5);
stream.filter(i -> i%2 == 0).limit(2).collect(toList());
stream.filter(i -> i%2 == 0).skip(1).collect(toList());

Consuming Stream

Stream provides two methods peek and forEach which accepts a Consumer as argument and performs the action
on each element.

Signature Stream<T> peek(Consumer<? super T> action)

void forEach(Consumer<? super T> action)

The peek is an intermediate operation which returns the new stream where as forEach is the terminal operation
returns void.

Stream<Integer> stream = Stream.of(1, 2, -3, 4, 5);
stream.filter(i -> i%2 == 0).peek(System.out::println).toArray();
stream.filter(i -> i%2 == 0).forEach(System.out::println);

See also:

forEachOrdered, performs action on encontered order.

Mapping

A very common data processing idiom is to select information from a certain object. For example selecting trade id
from an Trade object. Stream supports map method which accepts a Function as argument and returns a new stream
consisting of the results of applying the given function to the elements of this stream.

Signature <R> Stream<R> map(Function<? super T, ? extends R> mapper)

List<Trade> trades = new ArrayList<>();
trades.add(new Trade("T101", "Paul", 5000, "USD", APAC));
trades.add(new Trade("T102", "Mr Bean", 3580, "SGD", NA));
trades.add(new Trade("T103", "Simond", 2300, "CAD", EMEA))

trades.stream().map(Trade::getTradeId).collect(Collectors.toList());

Output: [T101, T102, T103]

26 Chapter 6. Stream API

http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#forEachOrdered-java.util.function.Consumer-

Java 8 tips Documentation, Release 1.0

There are primitive variants of map methods mapToInt, mapToDouble and mapToLong that we will see later.
Stream interface has method flatMap which returns a stream consisting of the results of replacing each element
of this stream with the contents of a mapped stream produced by applying the provided mapping function to each
element. Sometime each element of a stream will produce individual streams that will be amalgamated into single
stream and flatMap will be used there. It might be confusing you now so let see an example where you need to find
distinct words contained in a file. Here we will use File.lines() which will return Stream<String> where each
element will represent to a single line of the file.

List<String> words =
Files.lines(Paths.get("flatmap.txt")) // Stream<String>
.map(line -> line.split(" ")) // Stream<String[]>
.map(Arrays::stream) // Stream<Stream<String>>
.distinct()
.collect(Collectors.toList());

System.out.println(words);

In the above code snippet each line will be splitted to array of words. Each array of words then passed to
Arrays.stream() which will return Stream<String> for every line. map(Arrays::stream) will return
Stream<Stream<String>> so our final output will be List<Stream<String>> where as our requirement
is List<String>.

Now if you replace map(Arrays::stream) with flatMap(Arrays::stream) then all the elements from
the each inner stream will be merged to a single outer stream.

6.4. Mapping 27

Java 8 tips Documentation, Release 1.0

List<String> words =
Files.lines(Paths.get("flatmap.txt")) // Stream<String>
.map(line -> line.split(" ")) // Stream<String[]>
.flatMap(Arrays::stream) // Stream<String>
.distinct()
.collect(Collectors.toList());

System.out.println(words);

Matching

Stream API provides anyMatch, allMatch and noneMatch short-circuiting terminal operations which takes a
Predicate as argument and returns a boolean result by applying the Predicate to the elements of the stream. Predicate
might not be applied to all the elements if further execution is not require.

• anyMatch: Returns true if any element found matching with the predicate.Predicate will not be applied to other
elements if any matching found.

• allMatch: Returns true if all elements are matching to the given predicate.

• noneMatch: Returns true if none of the elements are matching to the predicate.

Stream.of(5, 10, 15, 20).anyMatch(i -> i % 10 == 0);
Stream.of(5, 10, 15, 20).allMatch(i -> i % 5 == 0);
Stream.of(5, 10, 15, 20).noneMatch(i -> i % 3 == 0);

28 Chapter 6. Stream API

Java 8 tips Documentation, Release 1.0

Finding element

Stream interface has findAny method which returns an arbitrary element from the stream. The behaviour of this
operation is nondeterministic; it is free to select any element in the stream because in case of parallelization stream
source will be divided into multiple chunks where any element can be returned. It has findFirst method also
which returns the first element of the stream.

Signature Optional<T> findFirst()

Optional<T> findAny()

If you see the signature of above two methods, they return an Optional object which is a wrapper describing absence
or presence of the element because there might be chance that these operations were called on empty stream. Don’t
worry about Optional now, use get() or orElse() methods to get value from the optional.

Stream.of(5, 10, 15).filter(i -> i % 20 == 0).findAny().orElse(0);
Stream.of(5, 10, 15).map(i -> i * 2).findFirst().get();

Stream Reduction

Stream interface supports overloaded reduction operations that contineously combines elements of the stream until
reduced to single output value.

Suppose I asked you to calculate sum of array of numbers, then if i am not wrong your answer would be something
like below.

int[] arr = { 1, 2, 3, 4, 5, 6 };
int result = 0;
for (int num : arr) {

result += num;
}

Now, I changed my requirement to calculate multiplication of elements of the array. So you will update your code to
result=0 and then result *= num. So if you notice here all the time you will have an initialization logic, an
iteration and an operation on the two elements, only your intialized value and the operation varies.

To generalize these kind of tasks Stream API has provided overloaded reduce methods that does the same operation
what we saw. If we re-write above codes then they will be

Arrays.stream(arr).reduce(0, Integer::sum)

Arrays.stream(arr).reduce(1, (i1, i2) -> i1 * i2)

• T reduce(T identity, BinaryOperator<T> accumulator) The reduce operation here takes two arguments:

– identity: The identity element is both the initial value of the reduction and the default result if there are no
elements in the stream. In the reduce(0, Integer::sum) example, the identity element is 0; this
is the initial value of the sum of the numbers and the default value if no members exist in the array.

– accumulator: The accumulator function takes two parameters: a partial result of the reduction (in this
example, the sum of all processed integers so far) and the next element of the stream (in this example, an
integer). It returns a new partial result. In this example, the accumulator function is a lambda expression
that adds two Integer values and returns an Integer value:

• Optional<T> reduce(BinaryOperator<T> accumulator)

This is almost equivalent to first reduction method except there is no initial value. Sometime you might be
interested to perform some task in case stream has no elements rather than getting a default value. As an

6.6. Finding element 29

Java 8 tips Documentation, Release 1.0

example if the reduce returns zero, then we are not sure that the sume is zero or it is the default value. Though
there is no default value, its return type is an Optional object indicating result might be missing. You can use
Optional.isPresent() to check presense of result.

Fig. 6.1: Sequential reduction

• U reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner) In first
two reduction operations your stream element type and return type were same means before using the reduce
method you should convert your elements of type T to type U. But there is an 3 arguments reduce method which
facilitates to pass elements of any type. So here accumulator accepts previous partial calculated result and
element of type T and return type U result. Below example shows the usage of all three reduction operations.

// Find the number of characters in a string.
List<String> words = Arrays

.asList("This is stream reduction example learn well".split(" "));
int result = words.stream().map(String::length).reduce(0, Integer::sum);
Optional<Integer> opt = words.stream().map(String::length).reduce(Integer::sum);
result = words.stream().reduce(0, (i, str) -> i + str.length(), Integer::sum);

We saw the sample use of these reduction methods so let’s explore more on this 3-argument reduction operation.

public static void reduceThreeArgs(List<String> words) {
int result = words.stream().reduce(0, (p, str) -> {

System.out.println("BiFunc: " + p + " " + str);
return p + str.length();

}, (i, j) -> {
System.out.println("BiOpr: " + i + " " + j);
return i + j;

});
}

output:
BiFunc: 0 This
BiFunc: 4 is
BiFunc: 6 stream
BiFunc: 12 reduction
BiFunc: 21 example
BiFunc: 28 learn
BiFunc: 33 well

30 Chapter 6. Stream API

Java 8 tips Documentation, Release 1.0

If you have noticed accumulator function itself calculated the final result and it didn’t even use the last parameter
BinaryOperator combiner at all then what the combiner is doing here. So the answer here is parallelization. In
the begining of the tutorial I told you parallelization is almost free, there will be very minimal modification (use
parallelStream method) require to run your code in parallel. This is not the right time to learn parallelization but
i will give you some overal idea just to get the visibility of combiner in this reduction operation.

In parallelization the whole input data set is splitted to multiple chunks, each chunk process individually and
combine all the results at the end. So in the above example, complete word set are splitted to groups then they
will calculate total number of characters in each group finally sum all these partial results.

Fig. 6.2: Parallel reduction

Now re-run the code in parallel (words.parallelStream()...) and look into the output. Combiner calculate the
sum of two partial results.

BiFunc: 0 This
BiFunc: 0 stream
BiFunc: 0 well
BiFunc: 0 learn
BiOpr: 5 4
BiFunc: 0 reduction
BiFunc: 0 example
BiOpr: 9 7
BiOpr: 16 9
BiFunc: 0 is
BiOpr: 2 6
BiOpr: 4 8
BiOpr: 12 25

6.7. Stream Reduction 31

Java 8 tips Documentation, Release 1.0

To Array

Stream interface supports two overloaded toArray methods that will collect stream elements as an array.

• Object[] toArray(): This is the simplest form of toArray operation which returns an Object array of length
equal to Stream length.

Example: Integer[] arr = Stream.<Integer>of(10, 20, 30, 40, 50).toArray();

• T[] toArray(IntFunction<T[]> generator): You saw the first toArray method always returns array of Object
type, but this overloaded method will return array of desired type. It accepts an IntFunction as argument
that describes the behaviour of taking array length as input and returns the array of generic type.

Employee[] arr = employees.stream().filter(e -> e.getGender() == MALE)
.toArray(Employee[]::new);

OR

employees.stream().filter(e -> e.getGender() == MALE)
.toArray(len -> new Employee[]);

Infinite Streams

We already discussed, Streams can be derived from different sources:

• From array - Arrays.stream(T[])

• From known elements - Stream<String>.of(“Stream”, “is”, “great”)

• From file - Files.lines(Paths.get(“myfile.txt”))

Please visit the Stream sources section for basics of stream sources. The streams generated from above sources are
bounded streams where elements size is known. Stream interface supports two static methods Stream.iterate()
and Stream.generate which returns infinitite streams that will produce unbounded stream. As generated stream
will be unbounded , it’s necessary to call limit(n) to convert stream into bounded.

Note: You can use findAny or findFirst terminal operations to terminate the stream if you assure required result
is exist in the stream. Example: Stream.<Integer>iterate(1, v -> v + 3).filter(i -> i % 5
== 0).findAny().get()) Here we are sure that there will be an element which will be divisible by 5 so you
can use findAny to terminate the stream.

• Stream.iterate: : Signature: Stream<T> iterate(T seed, UnaryOperator<T> f)

It returns an infinite sequential ordered Stream produced by iterative application of the given function. The
function here is a UnaryOperator which uses the previous calculated result to produce next result. It also
accepts a seed value that will be supplied to the UnaryOperator as initial value.

// Generating fibonacci numbers of a given length
Stream.iterate(new int[] { 0, 1 }, a -> {

int next = a[0] + a[1];
a[0] = a[1];
a[1] = next;
return a;

}).limit(10).map(a -> a[0]).forEach(System.out::println);

Output: [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

32 Chapter 6. Stream API

Java 8 tips Documentation, Release 1.0

• Stream.generate: : Signature: Stream<T> generate(Supplier<T> s)

It returns an infinite sequential unordered stream where each element is generated by the provided Supplier.
As we know Supplier doesn’t accept any argument so the generator doesn’t depend on previously
calculated value. Below example generates UUID values of a given length.

Stream.generate(UUID::randomUUID).limit(5).forEach(System.
out::println)

6.9. Infinite Streams 33

Java 8 tips Documentation, Release 1.0

34 Chapter 6. Stream API

CHAPTER 7

Comparator

Comparator is there since jdk 1.2 and almost all of us know its usage and importance. Java-8 came up with couple of
updates to the Comparator as given below.

• Additionl default and static methods added into Comparator interface to support pipeline of stream opera-
tions.

• String class added with CaseInsensitiveComparator to sort by ignoring the case.

• A new utility class Comparators is bundled with jdk-8 to support natural ordered sorting and handling null
values while sorting.

Comparators

Comparators is a helper class that provides new Comparator implmentations in the following cases.

• To impose natural ordrered sorting on elements of Comparable types

• Sorting on the collections that mixed with null values.

Natural ordering:

NaturalOrderComparator implements Comparator<Comparable<Object>> {

@Override
public int compare(Comparable<Object> c1, Comparable<Object> c2) {

return c1.compareTo(c2);
}

}

Comparator interface contains a static method called naturalOrder which returns a
NaturalOrderComparator that imposes sorting on elements implementing Comparable. As you know
all wrapper classes for primitive types implements Comparable interface so this natural ordered sorting can be
applicable to all of them.

Handling null elements:

35

Java 8 tips Documentation, Release 1.0

Usually comparators throws NullPointerException if null elements found while performing sorting operation.
Comparator contains two methods nullsFirst and nullsLast that takes a comparator as an argument and returns
another null-friendly comparator by wrapping the given comparator. It will arrange null elements at the begining
or end depending on the operation you called. For non-null elements it will sort them using the comparator passed
initially.

Updates in Comparator

Comparator interface contains some of static methods that returns another comparator implementations described
below.

• comparing(Function<T,U> keyExtractor) This method uses the given key extracting function that applies on
T type elements to generate U type comparable sort keys. To compare two elements of type T, it first
applies the key extracting function to both the elements and then performs the sorting operation on the
resulted keys.

// Sorting words based on word lengths
Function<String, Integer> keyExtractor = str -> str.length();
Stream.of("grapes", "milk", "pineapple", "water-melon")

.sorted(Comparator.comparing(keyExtractor))

.forEach(System.out::println);

In the above code snippet a Function<String, Integer> keyExtractor object is passed to the
comparing method that in turn will return a Comparator object. It first applied the function to string elements
and generated string lengths then returned a comparator definition as given below.

Comparator<Integer> c = (s1, s2) -> keyExtractor.apply(s1).
compareTo(keyExtractor.apply(s2))

• comparing(Function<T,U> keyExtractor, Comparator<U> keyComparator) In the first comparing
method, key extracting function returns sorting keys of Comparable type so it doesn’t need additional
Comparator object to perform sorting. But in this comparing function it first uses the key extracting
function to generate key and then performs sorting based on the given comparator.

Stream.of("grapes", "milk", "pineapple", "water-melon")
.sorted(Comparator.comparing(String::length, Comparator.reverseOrder()))

.forEach(System.out::println);

• comparingXXX(ToXXXFunction<T> keyExtractor) Comparator interface provides three primitive compar-
ing functions: comparingInt, comparingDouble and comparingLong to sort the elements based on the
primitive keys. It accepts ToXXXFunction functional interface which returns primitive values that avoid
unnecessary boxing-unboxing costs while doing sorting.

// Natural order sorting by ignoring the sign.
Stream.of(-10, 31, 16, -5, 2)

.sorted(Comparator.comparingInt(i -> Math.abs(i)))

.forEach(System.out::println);

• thenComparing(Comparator<T> other) It is very much possible that two elements will be equal according
to the given comparator. In such cases the other comprator decides the sorting order. Below code snippet
shows example of sorting employee objects based on employee’s salary and then uses name if two salaries
are equal.

List<Employee> employees = Application.getEmployees();
employees.stream()

36 Chapter 7. Comparator

Java 8 tips Documentation, Release 1.0

.sorted(Comparator.comparing(Employee::getSalary).
→˓thenComparing(Employee::getName))

.forEach(System.out::println);

7.2. Updates in Comparator 37

Java 8 tips Documentation, Release 1.0

38 Chapter 7. Comparator

CHAPTER 8

Collectors

In the Stream API section we saw some of the terminal operations: toArray, reduce, forEach etc used to calculate
the end result from the pipeline of intermediate operations. Stream interface contains a most frequently used terminal
operation collect that performs the reduction operation on the elements of the stream using Collector interface.

Collector is nothing but a mutable reduction operation that accumulates elements from the stream into a mutable con-
tainer and finally it returns either the same result container or a different representation of the container dependening
on the characteristics given. Reduction operations can be performed either sequentially or in parallel.

Examples of mutable reduction operations include: accumulating elements into a Collection; concatenating strings
using a StringBuilder; computing summary information about elements such as sum, min, max, or average; collecting
elements as groups etc.

How Collector works?

Collector divides the complete reduction process to four sub-tasks that best fits to any type of reduction operation.
They are:

1. supplying a new empty result container at the begining

2. accumulating new data element into the result container

3. combining two result containers into one in case of parallelization

4. performing an optional final transform on the container

All of these sub-tasks may or may not be needed for every operation but these are the generalized form of the complete
process. Collectors also have a set of characteristics, such as Characteristics.CONCURRENT, that provide hints
to the reduction process to provide better performance. Collector.Characteristics enum contains three characteristics
as:

• UNORDERED: Indicates that the collection operation does not commit to preserving the encounter order of
input elements. This might be true if the result container has no intrinsic order, such as a Set.

• CONCURRENT: Indicates that this collector is concurrent, meaning that the result container can support the
accumulator function being called concurrently with the same result container from multiple threads. Remember

39

Java 8 tips Documentation, Release 1.0

marking CONCURRENT doesn’t always execute concurrently, if not marked as UNORDERED or applied to
an unordered data source like Set etc.

• IDENTITY_FINISH: Setting on this property returns the result container as the final result with out calling
Collector.finish().

Collector interface contains below five methods to support all of the above subtasks.

interface Collector<T, A, R> {
Supplier<A> supplier();
BiConsumer<A, T> accumulator();
BinaryOperator<A> combiner();
Function<A, R> finisher();
Set<Characteristics> characteristics();

}

In this listing the following definitions apply:

• T denotes the generic type of the stream elements

• A represents the type of the supplier or type of the accumulator where the partial results will be accumulated

• R is the type of result to be returned at the end. If the IDENTITY_FINISH characteristic is given then both A
and R will be of the same type.

Let’s discuss the methods declared by the collctor interface:

• Supplier<A> supplier() The supplier method will return an empty result container whenever invoked. Re-
member, this method will be called only once if reduction operation is requested for sequential execution
and multiple times if parallel execution.

• BiConsumer<A, T> accumulator() Accumulator will define the behaviour of the accumulation process. You
might be already noticed that, though it is BiConsumer it takes partial result container and a new element
as inputs and performs the configured task.

• BinaryOperator<A> combiner() Combiner defines what to be done if two partial results are provided. As we
know in the parallelization case, the complete dataset will be splitted to multiple chunks and performed
separately, so combiner will merge the two partial results into one. The BinaryOperator's functional
decsriptor is exactly matching with this task: (partial1, partial2) -> partial1.merge(partial2)

• Function<A, R> finisher() This defines the final transformation to be done to the result container after all the
elements are processed.

• Set<Characteristics> characteristics() Returns the immutable set of Characteristics, defining the behavior of
the collector.

Implementing collectors

Now we have enough idea on what are the methods collector interface provides and how does they work. So let’s
implement our own collector that takes a set of Employee objects and generates a XML content.

public class Employee {
public String name;
public String empid;
public String technology;
public double salary;

}

public class ToXMLCollector implements Collector<Employee, StringBuffer, String> {

40 Chapter 8. Collectors

Java 8 tips Documentation, Release 1.0

final String xmlstr = "\n <employee eid='%s'>\n\t" + "<name>%s</name>\n\t"
+ "<tech>%s</tech>\n\t<salary>%s</salary>\n </employee>";

public Supplier<StringBuffer> supplier() {
return StringBuffer::new;

}

public BiConsumer<StringBuffer, Employee> accumulator() {
return (sb, e) -> sb.append(String.format(xmlstr, e.empid, e.name, e.

→˓technology, e.salary));
}

public BinaryOperator<StringBuffer> combiner() {
return (sb1, sb2) -> sb1.append(sb2.toString());

}

public Function<StringBuffer, String> finisher() {
return sb -> String.format("<employees> %s \n</employees>", sb.toString());

}

public Set<Characteristics> characteristics() {
return EnumSet.of(CONCURRENT);

}

public static void main(String[] args) {
Set<Employee> emps = Database.employees();
String xmlstr = emps.parallelStream().collect(new ToXMLCollector());
System.out.println(xmlstr);

}
}

Output:

<employees>

<employee eid='E1001'>
<name>Mr Bean</name>
<tech>Cloud Computing</tech>

</employee>
<employee eid='E1002'>

<name>J Smith</name>
<tech>Java</tech>

</employee>
</employees>

In this example we created a separate ToXMLCollector class by overriding all of the collector methods but
Collector interface also has Collector.of static methods that accepts the collector behaviors and returns a
anonymous Collector instance.

• Collector<T, A, R> of(Supplier<A> supplier, BiConsumer<A, T> accumulator, BinaryOperator<A> com-
biner, Function<A, R> finisher, Characteristics... characteristics)

• Collector<T, A, R> of(Supplier<A> supplier, BiConsumer<A, T> accumulator, BinaryOperator<A> com-
biner, Characteristics... characteristics)

Using these helper method our ToXMLCollector can also be implemented as:

8.2. Implementing collectors 41

Java 8 tips Documentation, Release 1.0

Collector.<Employee, StringBuffer, String>of(StringBuffer::new,
(sb, e) -> sb.append(String.format(xmlstr, e.empid, e.name, e.technology)),

(sb1, sb2) -> sb1.append(sb2.toString()),
sb -> sb.insert(0, "<employees>").append("\n</employees>").toString(),

Collections.emptySet());

42 Chapter 8. Collectors

CHAPTER 9

Predefined Collectors

In the previous chapter you got an overal idea on how does collector works and how to implement custom collectors.
Java-8 has introduced java.util.stream.Collectors class containing many factory methods that provides
most commonly used Collector implementations. Collectors mainly offers following functionalities:

• Collecting elements to a java.util.Collection

• Joining String elements to a single String

• Grouping elements by custom grouping key

• Partitioning elements into TRUE FALSE group

• Reducing operations

• Summerizing elements

These factory methods can also be combined to generate nested Collector that we will see while moving deeper.

Collecting as collections

Collecting stream elements to a java.util.Collection is the most widely used operation. Collectors class provide couple
of methods that returns a collector which will then collect stream elements to a specific collection container.

Collector<T, ?, List<T>> toList()
Collector<T, ?, Set<T>> toSet()
Collector<T, ?, C> toCollection(Supplier<C> collectionFactory)
Collector<T, ?, Map<K,U>> toMap(Function<T, K> keyMapper, Function<T, U> valueMapper)

• toList(): Returns a Collector that will accumulate stream elements into ArrayList in the encountered order.

List<String> list = Stream.of("java", ".net", "python")
.map(String::toUpperCase).collect(Collectors.toList());

• toSet(): Returns a Collector that will accumulate stream elements into HashSet object.

43

Java 8 tips Documentation, Release 1.0

Set<String> set = Stream.of("java", ".net", "python")
.map(String::toUpperCase).collect(Collectors.toSet());

• toCollection(Supplier<C> collectionFactory): The first two methods returns collectors using ArrayList and
HashSet as the container, but in case you need some other Collection implementations then toCollection
method can be helpful which accept a supplier representing the type of the container to be used for the
accumulation process.

TreeSet<String> set = Stream.of("java", ".net", "python").
→˓map(String::toUpperCase)

.collect(Collectors.toCollection(TreeSet::new));

• toMap(Function<T, K> keyMapper, Function<T, U> valueMapper): Returns a Collector that accumulates
elements into a Map whose keys are derived from keyMapper function and values are from valueMapper
function.

Map<String, Integer> result = Stream.of("java", ".net", "python")
.collect(Collectors.toMap(String::toUpperCase, String::length));

Output: {JAVA=4, .NET=4, PYTHON=6}

Sometime it is very obvious that the keyMapper function will derive duplicate key either by same element
in the stream or the mapper function is responsible for that. In such situtaion toMap will throw java.
lang.IllegalStateException: Duplicate key. Collectors class has another overloaded
method that takes a merge function to decide the action to be taken if duplicate key is found.

toMap(Function<T, K> keyMapper, Function<T, U> valueMapper,
BinaryOperator<U> mergeFunction)

Map<String, Integer> result = Stream.of("java", ".net", "python", "jAvA")
.collect(Collectors.toMap(String::toUpperCase, String::length, (key1,

→˓key2) -> key1));

Output: {JAVA=4, .NET=4, PYTHON=6}

Here we are passing a merge function that says “consider the first key if two keys are duplicates”. You can
also provide some other merge function that will generate a composite key using both keys. The first two
toMap methods will use HashMap as the accumulator container. Collectors has also a 4-arg overloaded
toMap method that takes a supplier to define the Map type will be used for accumulation.

toMap(Function<T, K> km, Function<T, U> vm, BinaryOperator<U> mf,
Supplier<M> mapSupplier)

Strings joining

Collectors utility class provides some of overloaded methods that concatenates stream elements into a single string
either by separating them with a delimiter if provided.

Collector<CharSequence, ?, String> joining()
joining(CharSequence delimiter)
joining(CharSequence delimiter, CharSequence prefix, CharSequence suffix)

The default delimiter for the no argument joining method is an empty string. The three argument joining method
takes prefix and suffix which will be joined in the front and rear end of the final concatenated string result.

44 Chapter 9. Predefined Collectors

Java 8 tips Documentation, Release 1.0

Stream.of("java", ".net", "python").collect(joining(", ", "Joined String[", "]"));

Output: Joined String[java, .net, python]

Grouping elements

A common database operation is to group records based on one or multiple columns similarly Collectors also provide
factory method that accepts a classification function and returns a Collector implementing a “group by” operation on
stream elements T.

The classification function derives grouping keys of type K from stream elements. The collector produces a Map<K,
List<T>> whose keys are the values resulting from applying the classification function to the input elements, and
values are Lists containing the input elements which map to the associated key under the classification function.

Below is the entity class definition and the data we will be using through out the collector examples.

public class Trade {

private String tradeId;
private String trader;
private double notional;
private String currency;
private String region;

// getters and setters
}

Table 9.1: Trade deals

Trade Id Trader Notional Currency Region
T1001 John 540000 USD NA
T1002 Mark 10000 SGD APAC
T1003 David 120000 USD NA
T1004 Peter 4000 USD NA
T1005 Mark 300000 SGD APAC
T1006 Mark 25000 CAD NA
T1007 Lizza 285000 EUR EMEA
T1008 Maria 89000 JPY EMEA
T1009 Sanit 1000000 INR APAC

Now let’s group the trade deals according to country region.

Map<String, List<Trade>> map = trades.stream()
.collect(Collectors.groupingBy(Trade::getRegion));

Output:
{

APAC: [T1002, T1005, T1009],
EMEA: [T1007, T1008],
NA: [T1001, T1003, T1004, T1006]

}

In the above example we passed Trade.getRegion() as the classification function. grouping method will

9.3. Grouping elements 45

Java 8 tips Documentation, Release 1.0

apply the given classification function to every element T to derive key K and then it will place the stream element
into the corresponding map bucket. The grouping operation we just perfomed is very simple and straight-forward
example but Collectors also support overloaded factory methods for multi-level grouping such as grouping trade detals
according to region and currency.

groupingBy(Function<T, K> classifier, Collector<T, A, D> downstream): This overloaded method accepts an
additional downstream collector to which value associated with a key will be supplied for further reduction. The
classification function maps elements T to some key type K and generates groups of List<T>. The downstream
collector will then operates on each group of elements of type T and produces a result of type D, at last collector will
produces a result of Map<K, D>.

Below example is grouping trade deals according to region and currency. The end result from this example will be
Map<Region, Map<Currency, List<Trade>>>.

Map<String, Map<String, List<Trade>>> map2 = trades.stream()
.collect(Collectors.groupingBy(Trade::getRegion,

Collectors.groupingBy(Trade::getCurrency)));
System.out.println(map2);

Output:
{

NA={CAD=[T1006], USD=[T1001, T1003, T1004]},
EMEA={EUR=[T1007], JPY=[T1008]},
APAC={SGD=[T1002, T1005], INR=[T1009]}

}

There is no limit on grouping, you can call nested grouping any times you want. Now let’s look into the groupingBy
method signature once again. Does this method only meant for multi-level grouping? No. The method accepts a
Collector as a second argument and we can do much more by passing different Collector implementations. Below
example demonstrates counting number of deals in each region.

Map<String, Long> map2 = trades.stream()
.collect(Collectors.groupingBy(Trade::getRegion, Collectors.counting()));

Output:
{NA=4, EMEA=2, APAC=3}

groupingBy(Function<T,K> f, Supplier<M> mapFactory, Collector<T, A, D> dc): Just like toCollection method
we saw in the begining, this method also facilitates to pass a map factory to decide the group container type. The
default map object type is Hashmap so you can use this method if some other map type required.

See also:

All these grouping collectors doesn’t no guarantee on the thread-safety of the Map returned, so check Collectors.
groupingByConcurrent methods for thread-safety operations.

Partitioning elements

Partitioning a special type of grouping but it will always contain two groups: FALSE and TRUE. It returns a Collec-
tor which partitions the input elements according to a Predicate supplied, and organizes them into a Map<Boolean,
List<T>>. Following example shows partitioning deals to USD and no USD deals.

Map<Boolean, List<Trade>> map2 = trades.stream()
.collect(Collectors.partitioningBy(t -> "USD".equals(t.getCurrency())));

System.out.println(map2);

46 Chapter 9. Predefined Collectors

Java 8 tips Documentation, Release 1.0

Output:
{

false=[T1002, T1005, T1006, T1007, T1008, T1009],
true=[T1001, T1003, T1004]

}

Reducing collectors

Like java.util.stream.Stream, Collectors class also provides some overloaded reducing methods. To per-
form simple reduction operation on a stream, Stream.reduce(Object, BinaryOperator) methods can be
used. The purpose of reducing() collectors are mostly for multi-level reduction operations. Following are list of
overloaded reducing collectors given by Collectors class.

reducing(T identity, BinaryOperator<T> op)
reducing(BinaryOperator<T> op)
reducing(U identity, Function<T,U> mapper, BinaryOperator<U> op)

Collectors reducing methods are similar to Stream.reduce operation. If you haven’t checked them, then see the Stream
API section.

Arithmetic & Summerizing

Collectors also has some of methods that returns collector to perform arithmetic operations like finding max, min, sum
and average. Below are the method defined in Collectors utility class.

Collector<T, ?, Optional<T>> minBy(Comparator<T> comparator)
Collector<T, ?, Optional<T>> maxBy(Comparator<T> comparator)
Collector<T, ?, XXX> summingXXX(ToXXXFunction<T> mapper)
Collector<T, ?, XXX> averagingXXX(ToXXXFunction<T> mapper)

I don’t have to explain what these method do, they are self explanatory. Collectors has individual summing and
averaging methods for these three primitive types: int, double and long. As like reduction operations, arithmetic
fuctions are also available in IntStream, DoubleStream and LongStream interfaces that can be used for simple stream
reduction. These arithmetic collectors will be helpful for nested reduction operations through other collectors.

Apart from individual arithmetic operations, Collectors has also summarizingXXX factory methods that will per-
form all of these arithmetic operations all togather. The collector produced by summerizing function will return
XXXSummaryStatistics class which is a container for holding results calculated for these arithmetic operations.

Method signature

Collector<T, ?, DoubleSummaryStatistics> summarizingDouble(ToDoubleFunction<T> mapper)

The summarizingDouble method accepts a ToDoubleFunction that will apply on the stream elements of type T
to generate double type values on which summarization functionality will be executed. Below example demonstrates
the usage of summarizingDouble method.

Map<String, DoubleSummaryStatistics> map = trades.stream()
.collect(Collectors.groupingBy(Trade::getRegion,

Collectors.summarizingDouble(Trade::getNotional)));

DoubleSummaryStatistics naData = map.get("NA");

9.5. Reducing collectors 47

Java 8 tips Documentation, Release 1.0

System.out.printf("No of deals: %d\nLargest deal: %f\nAverage deal cost: %f\nTotal
→˓traded amt: %f",

naData.getCount(), naData.getMax(), naData.getAverage(), naData.getSum());

Output:
No of deals: 4
Largest deal: 540000
Average deal cost: 172250
Total traded amt: 689000

Miscellaneous

We saw grouping and partitioning functions that accepts another downstream collector used for nesting operations.
Collectors class also provides two additional methods mostly used for such nested complex situations.

Collector<T,A,RR> collectingAndThen(Collector<T,A,R> c, Function<R,RR> f)
Collector<T, ?, R> mapping(Function<T,U> mapper, Collector<U, A, R> c)

1. collectingAndThen(Collector<T,A,R> downstream, Function<R,RR> finisher)

It will return a collector that will additionally perform a finishing transformation after the downstream
collector collected elements. We will see few examples with explanation to get more clarity on the usage.

Set<Trade> set = trades.stream().collect(collectingAndThen(toSet(),
Collections::unmodifiableSet))

In this example toSet collector will first collect elements to a set and then the resulting set will be applied
to the finisher function to return a unmodifiable set. This is the simplest usage of collectingAndThen
method and it has more meaning when used with nested collectors. Below code snippet demonstrates an
advanced usage of the method that is finding maximum valued deal in each region.

Map<String, Optional<Trade>> map1 = trades.stream() // Solution-1
.collect(groupingBy(Trade::getRegion,

→˓maxBy(comparing(Trade::getNotional))));

Map<String, Trade> map2 = trades.stream() // Solution-2
.collect(groupingBy(Trade::getRegion,

collectingAndThen(maxBy(comparing(Trade::getNotional)),
→˓Optional::get)));

We already know that Collectors.maxBy produces values of Optional types but actually we were
expecting for Trade typed values. The collectingAndThen is first calculating the maximum valued
deal wrapped with java.util.Optional and then passes to the finisher function to call Optional.get()
which will then extract Trade object out of it.

2. mapping(Function<T,U> mapper, Collector<U, A, R> downstream)

collectingAndThen() resulting collector first collect elements and then applies the transformation
function but the mapping collector applies the function before collecting elements. It returns a collector
which applies the mapping function to the input elements and provides the mapped results to the down-
stream collector. As like collectingAndThen, the mapping() collectors are most useful when used in a

48 Chapter 9. Predefined Collectors

Java 8 tips Documentation, Release 1.0

Fig. 9.1: Solution-2 flow diagram

multi-level reduction, such as downstream of a groupingBy or partitioningBy. For example, accumulate
the set of trade ids in each region.

Map<String, Set<String>> map = trades.stream()
.collect(groupingBy(Trade::getRegion, mapping(Trade::getTradeId,

→˓toSet())));
System.out.println(map);

9.7. Miscellaneous 49

Java 8 tips Documentation, Release 1.0

50 Chapter 9. Predefined Collectors

CHAPTER 10

Handling nulls with Optional

Tony Hoare-one of the giants of computer science once told, “I call it my billion-dollar mistake. It was the invention
of the null reference in 1965. I couldn’t resist the temptation to put in a null reference, simply because it was so easy
to implement.” The null reference is the source of many problems because it is often used to denote the absence of
a value. As a java developer you would have felt the pain of getting NullPointerException. Millions of projects are
running using Java and guess the total amount of dollars spent on fixing those issues.

Imagine a job portal maintaining candidate database with the following nested object structure.

class Candidate{
String name;
String spouse;

jobProfile: class Job{
int yearsOfExpr;

uiExperience: class Framework{
String name;
String proficiency;

certification: class Certification{
String type;
double score;

}
}

}
}

The structure looks pretty reasonable, but a candidate can be a recent college passout for whom job-profile could be
missing, or for a candidate doing job might not have worked on any UI (User Interface) frameworks or even worked
on might not be certified. All of these scenarios are proven to generate NullPointerException if not carefully handled
in the code.

The simplest solutions depelopers are adopting is the defensive approach of having null checks.

51

Java 8 tips Documentation, Release 1.0

String uiProficiency(Candidate candidate){
String proficiency = null;
Job job = candidate.getJobProfile();
if(job != null){

if(job.getUiExperience() != null){
String expr = job.getUiExperience().proficiency;
proficiency = min(expr, "Intermediet");
Certification cert = ui.certification;
if(cert != null && cert.score >= 60){

proficiency = "Expert";
}

}
}
return proficiency;

}

No doubt that code will run without any issues but it still has following problems:

• It looks wierd and looses the readability.

• Repeated low levels codes such as if conditions.

• Maintainability will be difficult as nesting levels goes on.

Java8 has introduced java.util.Optional singleton class to deal with such problems and additionally provides
some utility methods that can be used in certain common scnearios. Optional is a container or a wrapper class that
represents value might or might not exist for a variable. When value present you can use getmethod to fetch the value
or on absent it just behaves as an empty container. We get exception when we directly operate on the null instances so
Optional promotes to use its utility methods to perform operations. With keeping things in mind we can reimplement
the original ‘Candidate’ model class given below.

class Candidate {
String name;
Optional<String> spouce;
Optional<Job> jobProfile;

}

class Job {
int yearsOfExpr;
Optional<Framework> ui;

}

class Framework {
String name;
String proficiency;
Optional<Certification> certification;

}

class Certification {
String type;
double score;

}

The benifits over using Optional are:

• No need to document separetely to represent nullable members, model class Optional types are self documentary.
As an example spouse and jobProfile clearly mentions that they can be null.

• No need to write null checks explicitely, operations will be performed only if value is present.

52 Chapter 10. Handling nulls with Optional

Java 8 tips Documentation, Release 1.0

Optional Construction

Creating optional objects are damn easy, it provides following factory methods to create Optionals.

• Empty Optional:

Optional.empty() gets you an hold of empty optional object. The default values for the nullable
members of an object can be of this type which passed to some other code won’t through NullPoint-
erException and will supress any operation performed on it. Even though Option.empty() ==
Option.empty() returns true, Optional promotos to use isPresent method to perform the equi-
lity operation.

Optional<Job> optJob = Optional.empty();

• Optional from nullable value:

You can create an optional object from a nullable value using the static factoy method Optional.
ofNullable. The advantage over using this method is if the given value is null then it returns an empty
optional and rest of the operations performed on it will be supressed.

Optional<Job> optJob = Optional.ofNullable(candidate.
getJobProfile());

• Optional from non-null value:

You can also create an optional object from a non-null value using the static factoy method Optional.
of. Use this method if you are sure given value is not null otherwise it will immidietely throw NullPoint-
erException.

Optional<Job> optJob = Optional.of(candidate.getJobProfile());

There is no other difference in using Optional.of or Optional.ofNullable except of() methods
creates the perception that given value is mandatory field and passing null is the unaccepted criteria.

Note: Most of languages has concept of missing values and they handle it in different ways. Scala has a
safe way to navigate through values, Google’s Guava library and Groovy language has same construct as
Java Optional, so we can say java Optional can be inspired from them.

Operating on Optionals

Optional provides three basic methods: map, flatMap and filter to perform any kind of common task. Like Streams
these operations can also be chained togather to perform composite tasks.

• map(Function<T, U> mapper):

If a value is present, apply the provided mapping function to it, and return an Optional describing the
result, otherwise return an empty Optional. Similar to Stream.map method, this is also commonly used as
transformation function.

This method supports post-processing on optional values, without the need to explicitly check for a return
status. For example, the following code snippet traverses a stream of trades, selects first APAC trade
encountered, and then returns the trade id, returning an Optional<String>:

Optional<String> opt = trades.stream()
.filter(trade -> "APAC".equals(trade.getRegion()))
.findFirst()
.map(Trade:::getTradeId);

10.1. Optional Construction 53

Java 8 tips Documentation, Release 1.0

• flatMap(Function<T, Optional<U>> mapper):

Before getting through flatMap method let’s try an example to find the UI certification done by a candidate
who is having a job.

String certificationName = candidate.getJobProfile()
.map(Job::getFramework)
.map(Framework::getCertification)
.orElse(null);

Yeah pretty easy, but unfortunately this code will not compile at all. The reason is Job.
getFramework() returns Optional<Framework> type so the first map method will produce Op-
tional<Optional<Framework>>. This return value will again input for the second map method and we
know that getCertification method exist in ‘Framework’ class not in ‘Optional<Framework>’.

The solution here is to replace the map methods with flatMap method. This method is similar to map
method but flatMap expects the mapper function return type already to be Optional which will be directly
returned as the final result. If you notice map & flatMap methods internal implementations, map method
will wrap mapper calculated result inside a Optional object where as flatMap method will not.

Below snippet is the correct solution for our earlier example.

String certificationName = candidate.getJobProfile()
.flatMap(Job::getFramework)
.flatMap(Framework::getCertification)
.orElse(null);

We saw map and flatMap methods in details, now I will show you a nice usage by combining both methods
that will be used often. Imagine there is a external service which calculates the reimbursement amount.

54 Chapter 10. Handling nulls with Optional

Java 8 tips Documentation, Release 1.0

double calculate(Optional<Framework> optFrm, Optional<Certification>
→˓optCert) {

return optFrm.flatMap(framwork ->
optCert.map(certification -> reimburse(framwork, certification)))
.get();

}

Here the map method is called inside flatMap just for the availability of framework value to invoke reim-
burse. Originally reimbursement will be executed by map method and flatMap will just return calculated
result.

• filter(Predicate<T> predicate):

If the value matches the given predicate, then the Optional containing the value will be returned, otherwise
an empty Optional.

boolean isCertified = candidate.getJobProfile()
.flatMap(Job::getFramework)
.flatMap(Framework::getCertification)
.filter(certification -> certification.score >= 60)
.isPresent();

Retrieving from Optionals

Optional provides following methods to retrive values from optional object.

10.3. Retrieving from Optionals 55

Java 8 tips Documentation, Release 1.0

Method Description
get() Returns the value wrapped by the Optional or throws

NoSuchElementException if doesn’t contain data. Use
this method if you are sure optinal holding data.
int years = Optional.of(job).
map(Job::getYearsOfExpr).get()

orElse(default_value) Return the value if present, otherwise default_value.
This method is the safest way to get the value.
String spouse = Optional.
of(candidate).map(Candidate::getSpouse).
orElse(null)

orElseGet(Supplier<T> other) Return the value if present, otherwise retrived from sup-
plier. This is the lazy way to retrive value. As an exam-
ple call an external service in case value not exist in op-
tional. If you use orElse(external_service) then the ser-
vice will be executed irrespective of the original value
exist which can impose additional cost.
Optional.of(trade).map(Trade::getId).
orElseGet(UUID::randomUUID)

orElseThrow(Supplier<Throwable> exception) Return the value if present, otherwise throw supplied
exception. Using get method will always return No-
SuchElementException but custom exceptions could be
returned using this.
String spouse = Optional.
of(candidate).orElse(YourException::new)

isPresent() Returns true if value present Otherwise false.
boolean cond = Optional.of(job).
isPresent()

ifPresent(Consumer<T> consumer) If a value is present, invoke the specified consumer with
the value, otherwise do nothing.
Optional.of(job).ifPresent(System.
out::println)

Miscellaneous

Primitive Optionals:

As like streams, Optionals also have primitive flavours- OptionalInt, OptionalLong and OptionalDouble. These prim-
itives should be used when operating on streams otherwise its usage is discouraged. Stream can contain huge number
of elements where using primitives can save time as well as space but an Optional can have at most single value and
primitive optional will not employ much difference in fact it will stop you to use common methods like map, filter etc.

Optionals can’t be serialized:

Optionals were designed to handle missing values. These were not intended for use as a field type so it doesn’t
implement Serializable. In case you need to have a serializable domain model, implement getter methods returning
optionals given below.

class Candidate {
String name;
String spouce;

public Optional<String> getSpouse(){
return Optional.ofNullable(spouse);

56 Chapter 10. Handling nulls with Optional

Java 8 tips Documentation, Release 1.0

}
}

10.4. Miscellaneous 57

Java 8 tips Documentation, Release 1.0

58 Chapter 10. Handling nulls with Optional

CHAPTER 11

Default and Static methods

Prior to java8 interfaces were containing only abstract methods but this time you will be able to provide concrete
implementations inside interface. Usually interfaces are contracts that defines the set of operations to be supported for
a usecase and all of its implementing classes should provide implementations to those abstract methods. When there
is a need to provide some basic common functionalities to all implementating classes, the general approach was taken
to introduce an abstract class which was inherited by them rather than directly implementing interface. Just to take an
example think about Servlet case.

Servlet defines the contract and GenericServlet were introduced just to provide common functionalties to implementing
classes like HttpServlet. This was not the bug but an approach taken in older days. Now java has been evolved a lot to
remove this intermedite classes and common operations could be reside inside interfaces.

Java8 has introduced many new methods on existing interfaces such as the sort method in List interface, stream
method in Collection etc. Java had always argued that its implementing classes must provide concrete implementation
to all non-concrete methods of interface. There are millions of libraries and applications running on java and imagine
the problem would have happened with directly adding methods inside interface. Java people had tough time to resolve
this issue and finally came up with the solutions to add methods using default keyword.

59

Java 8 tips Documentation, Release 1.0

Default methods

Default methods enable you to add new functionality to the interfaces of your libraries and ensure binary compatibility
with code written for older versions of those interfaces. They provide a default implementation for methods. As a
result, existing classes implementing an interface will automatically inherit the default implementations. You specify
that a method definition in an interface is a default method with the default keyword at the beginning of the method
signature. All method declarations in an interface, including default methods, are implicitly public, so you can omit
the public modifier.

To get more clear picture let’s discuss the stream method added in Collection interface.

The stream method is required in all List and Set implementations so added in their super interface i.e. Collection.
Doing this, stream method will now be directly available to all their implementing classes ArrayList, TreeSet. The
default method is not only restricted to java people but you can also add default methods to your own interfaces.

interface Vehicle {

default void applyBreak() {
System.out.println("Applying break.");

}

void transport();
}

class GoodsVehicle implements Vehicle {

@Override
public void transport() {

System.out.println("Transporting goods.");
applyBreak();

}
}

class PublicTransport implements Vehicle {

@Override
public void transport() {

System.out.println("Transporting people.");
applyBreak();

}

}

Multiple inheritance

You might have heard of the diamond problem in C++ where a class can inherit two methods of the same signature from
two different classes. This is the reason that java adopted multiple inheritance from very begining. But introducing
default methods it again opened the gate for the same issue. A class is able to implement multiple interfaces even if
they contain abstract method with the same name.

60 Chapter 11. Default and Static methods

Java 8 tips Documentation, Release 1.0

public class SampleClass implements A, B {

@Override
public void print() {

System.out.println("SampleClass");
}

public static void main(String[] args) {
A a = new SampleClass();
a.print();

B b = new SampleClass();
b.print();

}
}

interface A {
void print();

}

interface B {
void print();

}

This was possible because the method is called on a single interface reference and both the interfaces are not interfering
each other, they are just contracts. But now though interfaces can contain concrete methods, there is the possibility of
a class inheriting more than one method with the same signature. Java 8 acknowledges this conflict with three basic
principles.

1. A method declaration in the class or a superclass wins the priority over any default method declared in the
interface.

interface A {
default String print() {

return "A";
}

}

class MyClass {
public String print() {

return "MyClass";
}

}

public class DefaultTest extends MyClass implements A {

public static void main(String[] args) {
System.out.println(new DefaultTest().print());

}
}

Output: MyClass

Here print method is ingerited by both MyClass and interface A, but MyClass print method has taken into
consideration.

2. The method with the same signature in the most specific default-providing interface will take the priority.

11.2. Multiple inheritance 61

Java 8 tips Documentation, Release 1.0

interface A {
default String print() {

return "A";
}

}

interface B extends A {
default String print() {

return "B";
}

}

public class DefaultTest implements A, B {

public static void main(String[] args) {
System.out.println(new DefaultTest().print());

}
}

Output: B

Here print method is inherited by both interfaces but interface A extending B so B will be consider most
specific or closer and will be considered.

3. In case choices are still ambiguous, the class inheriting from multiple interfaces has to override the default
method and then it can provide its own implementation or can inherit any one. To call the super interface
method super keyward is used.

interface A {
default String print() {

return "A";
}

}

interface B {
default String print() {

return "B";
}

}

public class DefaultTest implements A, B {

public String print() {
return A.super.print();

}

public static void main(String[] args) {
System.out.println(new DefaultTest().print());

}
}

Output: A

Here the DefaultTest class is choosing interface A prividing method with the help of super keyword.

62 Chapter 11. Default and Static methods

Java 8 tips Documentation, Release 1.0

Static methods

In addition to default methods, you can define static methods in interfaces. (A static method is a method that is
associated with the class in which it is defined rather than with any object. Every instance of the class shares its static
methods.) This makes it easier for you to organize helper methods in your libraries; you can keep static methods
specific to an interface in the same interface rather than in a separate class.

Like static methods in classes, you specify that a method definition in an interface is a static method with the static
keyword at the beginning of the method signature. All method declarations in an interface, including static methods,
are implicitly public, so you can omit the public modifier. Through out the tutorial you have seen lot of example of
interface static method like Stream.of, Comparator.naturalOrder, Comparator.comparing etc.

11.3. Static methods 63

Java 8 tips Documentation, Release 1.0

64 Chapter 11. Default and Static methods

CHAPTER 12

ForkJoinPool

In the begining of the tutorial we said- parallelization is almost free, with a small change you can enjoy the benifit of
parallel stream processing. The complete parallel stream processing is based on ForkJoinPool concept. ForkJoinPool
was delivered with jdk7 which provides a highly specialized ExecutorService. If you can recall, we submit
multiple indepenedent tasks to ExecutorService which are then executed by thread-pool threads. In case of parallel
stream we don’t have multiple tasks where as we have a single complex task of larger size. To execute this big task we
have to perform following actions explicitly.

• Divide the big task into smaller sub tasks

• Process all sub tasks independently

• Join the partial results from each sub task

ForkJoinPool internally does all these steps for you. We will typically submit a single task to ForkJoinPool and awaits
its completion. The ForkJoinPool and the task itself work togather to divide and conquer the problem. Any problems
that can be recursively divided can be a candidature for Fork-Join.

ForkJoinPool creation

Creating ForkJoinPool is simple, call its no-arg constructor to create an instance that will internally use Runtime.
availableProcessors() method to determine number of worker threads (ForkJoinWorkerThread) to be used
by the pool. It also provides an overloaded ForkJoinPool(int parallelism) constructor that allows user to override the
number of threads to be created. Usually you shouldn’t override the number of threads unless you have a strong reason
to do it.

Though it internally uses the number of processors (cores) available to create the worker threads, we should always
create a single instance of ForkJoinPool through out the application and different kinds of tasks should be submitted
to the same pool. Its implementation restricts the maximum number of running threads to 32767 and attempting to
create pools with greater than this size will result to IllegalArgumentException.

Note: The level of parallelism can also be controlled globally by setting java.util.concurrent.
ForkJoinPool.common.parallelism system property which will affect every ForkJoinPool creation in your

65

Java 8 tips Documentation, Release 1.0

application.

ForkJoinTask

As like Callable and Runnable in ThreadPoolExecutor, fork-join accepts a type of ForkJoinTask instance for the
execution. The abstract base class ForkJoinTask is an implementation of java.util.concurrecnt.Future
that provides common functionalities to its subclasses. It again offers two more abstract subclasses: RecursiveAction
and RecursiveTask which has only one abstract method called “compute()”. There is no difference between these
two classes except RecursiveTask can return result where as RecursiveAction can not. You can assume
RecursiveTask is an example of finding largest number from an array where as RecursiveAction is to sort an array
which doesn’t require to return any result.

ForkJoinTask has large set of methods but the methods we will be using most of the time are: fork(), compute(),
join(). The compute method will contain the original task to be performed by the worker threads. The following is the
pseudo code of the compute method.

if(Task is small) {
Execute the task

} else {
//Split the task into smaller chunks
ForkJoinTask first = getFirstHalfTask();
first.fork();
ForkJoinTask second = getSecondHalfTask();
second.compute();
first.join();

}

The idea behind the fork-join is to divide the task into multiple smaller chunks and execute them independently. The
compute method is responsible to split the task if it is not small enough to execute. In the pseudo code we have split
the task into two but it can be split into more also. When you call fork on the first task it will be pushed into the
queue and may be executed by some other thread, then you call compute method on second. After the competion of
second task we will call join on the first task to wait for its completion. We will quickly see a complete example which
demonstrates finding the largest element in an array.

1 public class ForkJoinPoolTest {
2

3 public static void main(String[] args) {
4 int[] array = yourMethodToGetData();
5

6 ForkJoinPool pool = new ForkJoinPool();
7 Integer max = pool.invoke(new FindMaxTask(array, 0, array.length));
8 System.out.println(max);
9 }

10

11 static class FindMaxTask extends RecursiveTask<Integer> {
12

13 private int[] array;
14 private int start, end;
15

16 public FindMaxTask(int[] array, int start, int end) {
17 this.array = array;
18 this.start = start;
19 this.end = end;
20 }

66 Chapter 12. ForkJoinPool

Java 8 tips Documentation, Release 1.0

21

22 @Override
23 protected Integer compute() {
24 if (end - start <= 3000) {
25 int max = -99;
26 for (int i = start; i < end; i++) {
27 max = Integer.max(max, array[i]);
28 }
29 return max;
30

31 } else {
32 int mid = (end - start) / 2 + start;
33 FindMaxTask left = new FindMaxTask(array, start, mid);
34 FindMaxTask right = new FindMaxTask(array, mid + 1, end);
35

36 ForkJoinTask.invokeAll(right, left);
37 int leftRes = left.getRawResult();
38 int rightRes = right.getRawResult();
39

40 return Integer.max(leftRes, rightRes);
41 }
42 } //end of compute
43

44 }
45 }

Here rather than calling fork, compute and join separately, we used invokeAll method which internally performs
the same. There is no rule to define what is the size of the smaller chunk task, but the task should not be very small
that it will loose the benifit of parallelism.

How fork-join works?

ForkJoinPool has array of DEqueues (WorkerQueue) which will be shared by all the worker threads. You can assume
it is a single shared task queue that is usually used in normal ExecutorServices. Each DEQueue is belongs to one
worker thread who will be the owner for that queue. Every time fork is called on a task will be pushed into its own
queue. Each thread repeatedly removes a task from its own DEQueue and runs it. DEQueue support three functions:
push, pop and poll where push and pop methods will be called by owner thread only and poll will be called by other
threads. If a thread discovers its queue is empty then it becomes a theaf: it chooses a victive thread at random and calls
that queue’s poll method to steal a task for itself. This process is called work stealing.

Initially , only a single thread in a ForkJoinPool will be busy when you submit a task. The thread will begin to
subdivide the larger task into smaller tasks. Each time a task is divided into two or more tasks, we fork the every new
subtask except the last one we compute. After the computation we invoke join to wait for the forked tasks to complete.
This divide-and-conquer process continues untill all the tasks are executed, and all the queues become empty. Mote
generally this work stealing algorithm is used to redistribute and balance the tasks among the worker threads in the
pool. Below figure shows how this process occurs.

12.3. How fork-join works? 67

Java 8 tips Documentation, Release 1.0

Fig. 12.1: Internals of ForkJoinPool

Fig. 12.2: Splitting of tasks

68 Chapter 12. ForkJoinPool

CHAPTER 13

Parallel Data Processing

Compare to earlier days, cost of the hardwares have been reduced and the number of processors (cores) in modern
computers are also increased. Each core has ability to perform operations independently. Before Java 7, processing a
collection of data in parallel was extreamly cumbersome. First you have to split the complete data set into sub parts
and asks the threads to execute them parallelly. In the last chapter we saw how ForkJoinPool perform these operations
more consistently and in less error-prone way. To gain better understanding of prallel processing it is important to
know how parallel stream works internally. I will strongly recommend you to go through fork-join-pool chapter if you
have missed it.

Parallel Streams

A parallel Stream is a stream that splits its elements into multiple chunks, process each chunk with different thread.
Thus you can automatically partition the workload of a given operation on all the cores of your multicore processor
and keep all of them equally busy. Getting parallel stream is very easy, calling parallelStream() method on
collection classes or parallel() method on sequential stream returns a parallel stream as demonstrated below.

List<String> list = getDataSet();
list.parallelStream().forEach(System.out::println);

int[] array = {1, 2, 3, 4, 5};
int sum = Arrays.stream(arr).parallel().sum();

Similarly stream also has sequential() method that converts parallel stream into sequential stream. In reality
stream class maintains an internal boolean state to identify the stream is a parallel stream. Due to this calling parallel()
and sequential() methods multiple times on a stream will not throw any exception. In the below example the last call
parallel() will win the priority.

stream.parallel()
.filter(...)
.sequential()
.map(...)
.parallel()
.sum();

69

Java 8 tips Documentation, Release 1.0

By now you already have idea that tasks are divided and processed individually in parallel stream. Now let’s see how
parallel stream internally works. To understand it better we will see following example to find largest element in an
array.

int max = numbers.parallelStream().reduce(0, Integer::max, Integer::max);
System.out.println("Parallel: " + max);

Here to the reduce method we are passing a BiFunction (2nd argument) which denominates the task to be performed
when the task become too small and can be executed without splitting again. The last argument is a BinaryOper-
ator shows the action should taken on the two partial results collected from sub tasks. If you want to know about
Stream.reduce method please refer the Stream chapter. Below is the call stack of parallelStream() method.

parallelStream()
StreamSupport.stream(spliterator(), true);

ArrayList.spliterator()
ArrayListSpliterator<>();

Parallelstream() calls spliterator() on the collection object which returns a Spliterator implementation that
provides the logic of splitting a task. Every source or collection has their own spliterator implementations. Using
these spliterators, parallel stream splits the task as long as possible and finally when the task becomes too small it
executes it sequentially and merges partial results from all the sub tasks.

Spliterator

Spliterator is the new interface introduced in jdk8 that traverses and partitions elements of a source. The name itself
suggests that, these are the iterators that can be splitted as and when require. As like Iterator, Spliterator is also used
for traversing elements but meant to be used within stream only. Spliterator has defined some important methods that
drives both sequential and parallel stream processing.

public interface Spliterator<T> {

boolean tryAdvance(Consumer<T> action);
default void forEachRemaining(Consumer<T> action);
Spliterator<T> trySplit();
long estimateSize();
int characteristics();

}

• tryAdvance method is used to consume an element of the spliterator. This method returns either true indicating
still more elements exist for processing otherwise false to signify all the elements of the spliterator is processed
and can be exited.

• forEachRemaining is a default method available in Spliterator interface that indicates the spliterator to take
certain action when no more splitting require. Basically this performs the given action for each remaining
element, sequentially in the current thread, until all elements have been processed.

default void forEachRemaining(Consumer<T> action) {
do {

70 Chapter 13. Parallel Data Processing

Java 8 tips Documentation, Release 1.0

} while (tryAdvance(action));
}

If you see the forEachRemainingmethod default implementation, it repeatedly calls the tryAdvance method
to process the spliterator elements sequentially. While splitting task when a spliterator finds itself to be small
enough that it can be executed sequentially then it calls forEachRemaining method on its elements.

• trySplit is used to partition off some of its elements to second spliterator allowing both of them to process
parallelly. The idea behind this splitting is to allow balanced parallel computation on a data structure. These
spliterators repeatedly calls trySplit method unless spliterator returns null indiacating end of splitting process.

• estimateSize returns an estimate of the number of elements available in spliterator. Usually this method is called
by some forkjoin tasks like AbstractTask to check size before calling trySplit.

• characteristics method reports a set of characteristics of its structure, source, and elements from among OR-
DERED, DISTINCT, SORTED, SIZED, NONNULL, IMMUTABLE, CONCURRENT, and SUBSIZED. These
helps the Spliterator clients to control, specialize or simplify computation. For example, a Spliterator for a Col-
lection would report SIZED, a Spliterator for a Set would report DISTINCT, and a Spliterator for a SortedSet
would also report SORTED.

You saw detailed descriptions on spliterator defined methods, now we will see a complete example that will deliver
more context on how does they work.

1 public class SpliteratorTest {
2

3 public static void main(String[] args) {
4 Random random = new Random(100);
5 int[] array = IntStream.rangeClosed(1, 1_000_000).map(random::nextInt)
6 .map(i -> i * i + i).skip(20).toArray();
7 int max = StreamSupport.stream(new FindMaxSpliterator(array, 0, array.length -

→˓1), true)
8 .reduce(0, Integer::max, Integer::max);
9 System.out.println(max);

10 }
11

12 private static class FindMaxSpliterator implements Spliterator<Integer> {
13 int start, end;
14 int[] arr;
15

16 public FindMaxSpliterator(int[] arr, int start, int end) {
17 this.arr = arr;
18 this.start = start;
19 this.end = end;
20 }
21

22 @Override
23 public boolean tryAdvance(Consumer<? super Integer> action) {
24 if (start <= end) {
25 action.accept(arr[start]);
26 start++;
27 return true;
28 }
29 return false;
30 }
31

32 @Override
33 public Spliterator<Integer> trySplit() {
34 if (end - start < 1000) {

13.2. Spliterator 71

Java 8 tips Documentation, Release 1.0

35 return null;
36 }
37

38 int mid = (start + end) / 2;
39 int oldstart = start;
40 start = mid + 1;
41 return new FindMaxSpliterator(arr, oldstart, mid);
42 }
43

44 @Override
45 public long estimateSize() {
46 return end - start;
47 }
48

49 @Override
50 public int characteristics() {
51 return ORDERED | SIZED | IMMUTABLE | SUBSIZED;
52 }
53 }
54 }

The FindMaxSpliterator is trying to find out the largest element in an array. Every time trySplit method checks the
remaining size of the elements in current spliterator and creates a second spliterator if size is more than 100. Once the
elements size reaches under 1000, it calls tryAdvance method repeatedly on those 1000 (may be less) elements.

Fig. 13.1: Spliterator Workflow

Conclusion

Parallel stream make use of both ForkJoinPool and Spliterator to process elements parallelly. It is not the wise decision
to use parallel stream all the time without comparing running time between sequential and parallel processing. In
the above example we have considered 1_000_000 number of elements which is quite huge and can make sense if

72 Chapter 13. Parallel Data Processing

Java 8 tips Documentation, Release 1.0

executing in parallel, but suppose there were only 5000 elements then parallel stream will give you higher running
time compared to sequential because it also includes the time taken for spitting and merging the partial results.

13.3. Conclusion 73

Java 8 tips Documentation, Release 1.0

74 Chapter 13. Parallel Data Processing

CHAPTER 14

Evolution of date time API

Working with dates in Java was challenging tasks from the day one. Java 1.0 started with java.util.Date class
to support date functionality but it had several problems and limitations. Despite its name, this class doesn’t represent
a date but a specific instant in time with millisecond precision. Its hazy design decision of using offsets: the year starts
from 1900 and months are zero index based were misleading to the users. As an example if you want to represent
March 18, 2014, we have to create instance of Date as follows.

Date date = new Date(114, 2, 18);

Here in the year field we have to pass year as 114 (2014-1900) and 2 as 3rd month which are quite confusing. Date
had some of getXXX, setXXX methods to interpret dates as year, month, day, hour, minute, and second values and
a Date(String) for parsing of date strings. Unfortunately, the API for these functions were not easy for interna-
tionalization. Another problem could be the arguments given to the Date API methods don’t fall within any specific
ranges; for example, a date may be specified as January 32 and is interpreted as meaning February 1. There is no
explicit control over it.

To overcome all these limitations many of Date class methods were deprecated and java.util.Calendar class
was introduced in Java 1.1, but it still couldn’t meet the expectations. It solved some of Date class issues; internally
handling offset values: passing 2014 as year rather than passing 114, daling with localization etc, but it has introduced
some other problems. Calendar has similar problems and design flaws given below that lead to the error prone code.

• Constants were added in Calendar class but still month is zero index based.

• Calendar class is mutable so thread safety is always a question for it.

• It is very complicated to do date calculations. In fact, there is no simple, efficient way to calculate the days
between two dates.

• java.text.DateFormat were introduced for the purpose of parsing of date strings but it isn’t thread-safe.
Following example shows the serious problem can occure when DateFormat is used in multi threaded scenarios.

SimpleDateFormat sdf = new SimpleDateFormat("ddMMyyyy");
ExecutorService es = Executors.newFixedThreadPool(5);
for (int i = 0; i < 10; i++) {

es.submit(() -> {
try {

System.out.println(sdf.parse("15081947"));

75

Java 8 tips Documentation, Release 1.0

} catch (ParseException e) {
e.printStackTrace();

}
});

}
es.shutdown();

Output:

Fri Aug 15 00:00:00 IST 1947
Mon Aug 11 00:00:00 IST 1947
Fri Aug 15 00:00:00 IST 1947
Fri Aug 15 00:00:00 IST 1947

If you run the above code multiple times then you will see unexpected behaviors. The existing Java date and time
classes are poor, mutable, and have unpredictable performance. Some of the third-party libraries, such as Joda-Time
showed his interest to overcome the issues with both Date and Calendar classes and it become so popular that it won
the attention of Java core development team to include similar features to the Java core API.

JSR 310 defines the specifications for new Date and Time API to tackle the problem of a complete date and time
model, including dates and times (with and without time zones), durations and time periods, intervals, formatting and
parsing. Project ThreeTen was created to integrate JSR 310 into JDK 8. The goals of new Date Time API are:

• Support standard time concepts including date, time, instant, and time-zone.

• Immutable implementations for thread-safety.

• Provide an effective API suitable for developer usability.

• Provide a limited set of calendar systems and be extensible to others in future.

Java 8 introduced a new package java.time to provide a high quality date and time support in the native Java API.

java.time package

java.time package contains many classes to represent basic date-time concepts: instants, durations, dates, times, time-
zones and periods based on ISO calendar system. All the classes are immutable and thread-safe. Following are nested
packages available in java.time package.

Package Description
java.time.temporalEach date time instance is composed of fields. This package contains lower level access to those

fields.
java.time.formatProvides classes to print and parse dates and times. Instances are generally obtained from

DateTimeFormatter, however DateTimeFormatterBuilder can be used if more power is needed.
java.time.chronoThis is intended for use by applications that need to use localized calendars. It contains the calendar

neutral API ChronoLocalDate, ChronoLocalDateTime, ChronoZonedDateTime and Era. Actually
the main API is build on ISO-8601 calendar system. However, there are other calendar systems:
Hijrah Calendar, Japanese Calendar, Minguo Calendar, Thai Buddhist Calendar also exist for which
this package provide support.

java.time.zoneThis package provides support for time-zones, their rules and the resulting gaps and overlaps in the
local time-line typically caused by Daylight Saving Time.

76 Chapter 14. Evolution of date time API

https://jcp.org/en/jsr/detail?id=310
http://www.threeten.org/
http://openjdk.java.net/projects/jdk8/
https://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/time/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/time/temporal/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/time/chrono/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/time/zone/package-summary.html

Java 8 tips Documentation, Release 1.0

Common methods

Java 8 includes a large number of classes representing different aspects of dates like LocalDate, LocalTime, Local-
DateTime, Instant, Duration and Period. These classes provides wide set of methods that will serve most of date time
usecases. You will find many similar method prefixes to maintain the consistency and easy to remember. For example:

Method Description Example
of It is a static factory method to create

instance using the required individ-
ual field values.

LocalDate.of(year, month, day)

from Static factory method to create
instance from another date-
time aspect. It will throw
DateTimeException if un-
able to create instance.

LocalDate.from(LocalDateTime.now())

to converts this object to another type LocalDateTime.toLocalDate()
Instant.toEpochMilli()

parse Static factory method to create in-
stance from string.

LocalDate.parse(“2016-07-12”)

get gets the value of something. Period.get(ChronoUnit.YEARS)
with the immutable equivalent of a setter.

LocalDateTime.now()
.withYear(2016) .with-
DayOfMonth(20);

plus adds an amount to an object duration.plusHours(5);
minus subtracts an amount from an object localdate.minusDays(2) in-

stant.minusMillis(1000)

LoalDate, Time, Instant

Following diagram represents the class heirerchy for LocalDate, Time, Instant classes. TemporalAccesssor is the base
interface defines the read-only access to a temporal object, such as a date, time, offset or some combination of these.
Temporal interface defines the write access that will manipulate objects using plus and minus operations. We will
gradually explore different temporal implementations individually.

LocalDate LocalDate is an immutable object that represents a plain date with out time of day. It doesn’t carry any
information about the offset or time zone. It stores the date in YYYY-MM-DD format, for example ‘2014-03-
18’. As I mentioned in the Common methods section, LocalDate instance can be created in many ways.

14.2. Common methods 77

Java 8 tips Documentation, Release 1.0

LocalDate.of(2015, 03, 18); -- When individual values know
LocalDate.parse("2015-03-18"); -- Creating from date string

LocalDate.now(); -- To get the current date.
LocalDate.now(ZoneId.of("America/Chicago"));

It also provides additional methods to retrieve its field informations such as Day, Month, Year, Era etc as shown
in below example.

1. LocalDate date = LocalDate.now();
2. date.getMonth();
3. date.getDayOfYear();
4. date.get(ChronoField.YEAR);

If you see into line #4, it contains a generic get method that accepts TemporalField type and returns the field
value. TemporalField is an interface and java 8 has ChronoField enum class to hold available temporal field
types.

LocalTime Similar to LocalDate class, LocalTime represents only time of the day. It also doesn’t hold time zone
details. It stores the time in HH:mm:ss.nano_seconds format, for example ‘04:30:15.123456789’. This class
also contain similar set of methods including accessing field values such as getHour, getMinute.

LocalTime.of(4, 30, 15);
LocalTime.parse("04:30:15.12345");

LocalTime.now();
LocalTime.now(ZoneId.of("America/Chicago"));

date.getMinute();
date.getNano();
date.get(ChronoField.HOUR_OF_DAY);

LocalDateTime LocalDateTime is the combination of LocalDate and LocalTime that holds both date and time parts
with out time zone details. The format of stored data is 2007-12-03T10:15:30 whete ‘T’ is the delimiter between
date and time values. Most of the LocalDate and LocalTime methods are applicable to LocalDateTime class. It
also contains methods to get LocalDate and LocalTime instances.

LocalDateTime.now();
LocalDateTime.getDayOfWeek();
LocalDateTime.parse("2007-12-03T10:15:30");

date.toLocalDate();
date.toLocalTime();

Instant Instant is a point on a continuous time line or scale. Basically this represents the number of seconds passed
since the Epoch time 1970-01-01T00:00:00Z. Internally Instant stores two values, one long value representing
epoch-seconds and an int representing nanosecond-of-second, which will always be between 0 and 999,999,999.
Any date-time after 1970-01-01T00:00:00Z will return positive value and before will be negative value.

1. Instant.now();
2. Instant.now().getEpochSecond();

3. Instant.parse("1969-01-01T00:00:00.00Z").getEpochSecond(); --> -31,536,000
4. Instant.parse("1971-01-01T00:00:00.00Z").getEpochSecond(); --> 31,536,000

Here in line #3 we have supplied one year before epoch time so it is returning a negative long value
(1*365*24*60*60 = 31,536,000 secs). Similarly in line #4, given date-time is next year of the epoch time

78 Chapter 14. Evolution of date time API

Java 8 tips Documentation, Release 1.0

so the result is a positive long value.

Duration & Period

In the previous section you saw, LocalDate, LocalTime used to work with date and time aspects. Beyond dates
and times, the API also allows the storage of periods and durations of time. With the Date and Calendar class it is
complicated to do date calculation like days between two dates so duration and period provide solutions for these kind
of usecases.

Both Duration and Period class implements TemporalAmount. It is the base interface to represent amount of time.
This is different from a date or time-of-day in that it is not tied with any point on time-line or scale, it is as simple
as amount of time, such as “6 hours”, “8 days” or “2 years and 3 months”. As like TemporalField, Java API also
provides TemporalUnit interface to measure time in units of years, months, days, hours, minutes and seconds.
ChronoUnit is the enum that implements TemporalUnit interface which will be used by the end users.

Duration Duration holds quantity or amount of time in terms of seconds and nanoseconds. Along with these two,
it provides some toXXX methods to access other fields: hours, minutes, millis, days. It also provides a highly
used utility method between to calculate duration among two temporal objects.

1 LocalDateTime d1 = LocalDateTime.parse("2014-12-03T10:15:30");
2 LocalDateTime d2 = LocalDateTime.parse("2016-03-05T23:15:00");
3 Duration duration = Duration.between(d1, d2);
4 duration.toHours();
5 duration.toDays();
6

7 Duration.between(d1.toLocalTime(), d2).toHours(); -> 12
8 Duration.between(d1, d2.toLocalTime()).toHours(); -> DateTimeException
9

10 Duration.between(d1.toLocalDate(), d2.toLocalDate()); -> DateTimeException

If you have marked line #8 is throwing DateTimeException. The reason is when two different temporal objects
are passed then the duration is calculated based on the first temporal object. Here the socond argument Local-
Time tries to be coverted into LocalDateTime and the convertion failed. One another characteristic of between
method is to accept temporal object that supports seconds or nanoseconds due to which line #10 will also throw
DateTimeException.

Period Period represents amount of time in terms of years, months and days. It provides some getXXX methods to
access these fields. Along with field accessing methods it also provides similar methods contained in Duration
class.

LocalDate date1 = LocalDate.parse("2010-01-15");
LocalDate date2 = LocalDate.parse("2011-03-18");

Period period = Period.between(date1, date2);
period.getYears(); -> 1
period.getMonths(); -> 2
period.getDays(); -> 3

Important point to notice here is getMonths and getDays method doesn’t return the number of months or days
between these two dates, it is just the numeric value difference between two months and two days. If you want
total number of days or months between these dates then use LocalDate.until(temporal, unit).

Example: date1.until(date2, ChronoUnit.DAYS)

14.4. Duration & Period 79

Java 8 tips Documentation, Release 1.0

TemporalAdjusters

New Date Time API provides numerous methods: plusHour, minusWeek, withYear, withDays to manipulate temporal
objects. Sometime we need to perform advanced operations such as finding next working day for a software firm con-
sidering its holiday calendar. One solution is to write temporal object modification logic wherever require in your code
but this will cause code repeatation. To help with these scenarios Java 8 provides an interface TemporalAdjuster
to externalize temporal adjustment logic. It has only one abstract method Temporal adjustInto(Temporal)
that takes an existing temporal object and returns a manipulated temporal. Java recommends not to alter the original
input temporal object for the thread safety.

The framework interface Temporal defines an overloaded version of with(TemporalAdjuster) method that
takes TemporalAdjuster as input and returns a new temporal object.

default Temporal with(TemporalAdjuster adjuster) {
return adjuster.adjustInto(this);

}

Remember we can directly call adjuster.adjustInto(temporal) but is recommended by Java core devel-
opment team to use the first approach for the sake of maintaining code readability. Java 8 also provides a utility class
TemporalAdjusters that defines most of common adjustment implementations. Suppose to find out the next
sunday after the java 8 release date.

LocalDate date = LocalDate.parse("2014-03-18");
TemporalAdjuster adjuster = TemporalAdjusters.nextOrSame(DayOfWeek.SUNDAY);
System.out.println(date.with(adjuster));

Below table shows the API provided temporal adjusters. For all these adjusters we will use LocalDate.
parse("2014-03-18") for demonstrating examples.

80 Chapter 14. Evolution of date time API

Java 8 tips Documentation, Release 1.0

Method Description & Example
dayOfWeekInMonth Returns an adjuster representing temporal instance of

the given dayOfWeek that is the nth occurance in the
month.
// 4th monday in the month (2014-03-
24) date.with(dayOfWeekInMonth(4, Day-
OfWeek.MONDAY));
// 2nd Sunday in the month (2014-03-
09) date.with(dayOfWeekInMonth(2, Day-
OfWeek.SUNDAY));
// 8th Friday in the month (2014-04-
25) date.with(dayOfWeekInMonth(8, Day-
OfWeek.FRIDAY));
It is not possible to have 8th Friday in any of the month,
so here next subsequent months will also be considered.

firstDayOfMonth Returns the adjuster that in turn returns temporal object
representing first day of the month.
date.with(firstDayOfMonth()); => 2014-03-01

firstDayOfNextMonth Returns the adjuster that in turn returns temporal object
representing first day of the next month.
LocalDate date = LocalDate.parse(“2014-12-03”);
date.with(firstDayOfNextMonth()); => 2015-01-01

firstDayOfNextYear Adjuster to return temporal object representing first day
of the next year.
date.with(firstDayOfNextYear()) => 2015-01-01

firstDayOfYear Adjuster to return temporal object representing first day
of the given date year.
date.with(firstDayOfYear()) => 2014-01-01

firstInMonth Adjuster to return temporal object representing first oc-
curance of given day in the month.
date.with(firstInMonth(DayOfWeek.MONDAY)) =>
2014-08-04

lastDayOfMonth Returns the adjuster that in turn returns temporal object
representing last day of the month.
date.with(lastDayOfMonth()) => 2014-08-31

lastDayOfYear Adjuster to return temporal object representing last day
of the given date year.
date.with(lastDayOfYear()) => 2014-12-31

lastInMonth Adjuster to return temporal object representing last oc-
curance of given day in the month.
date.with(lastInMonth(DayOfWeek.MONDAY)) =>
2014-08-25

next Adjuster to return next occurance of given day.
date.with(next(DayOfWeek.FRIDAY)) => 2014-08-08

nextOrSame Returns the next-or-same day-of-week adjuster, which
adjusts the date to the first occurrence of the specified
day-of-week after the date being adjusted unless it is
already on that day in which case the same object is re-
turned.
date.with(lastInMonth(DayOfWeek.SUNDAY)) =>
2014-08-03
“2014-08-03” is a SUNDAY, so returned the same date.

previous Adjuster to return previous occurance of given day.
date.with(previous(DayOfWeek.MONDAY)) => 2014-
07-28

previousOrSame Same as previous method but considers current given
date also.
date.with(previousOrSame(DayOfWeek.SUNDAY))
=> 2014-08-25

14.5. TemporalAdjusters 81

Java 8 tips Documentation, Release 1.0

Apart from above methods, TemporalAdjusters also contains a generic method
ofDateAdjuster(UnaryOperator<LocalDate> adjuster) to hold the custom logic. User can
pass a lambda by wrapping their own date manipulation logic. Below example shows a custom TemporalAdjuster
implementation for finding next working day.

1 TemporalAdjuster nextWorkingday = temporal -> {
2 LocalDate date = (LocalDate) temporal;
3 DayOfWeek day = date.getDayOfWeek();
4 if (DayOfWeek.FRIDAY.equals(day) || DayOfWeek.SATURDAY.equals(day)) {
5 return date.with(next(DayOfWeek.MONDAY));
6 } else {
7 return date.plusDays(1);
8 }
9 };

10

11 System.out.println(LocalDate.now().with(nextWorkingday));

Formatting & parsing

Formatting and parsing are must required features of date time API that does the convertion between string and date.
In the begining we saw one of the major issue with the old DateFormat class is the thread safety. The Date Time API
has introduced a new package java.time to support parsing and formatting with new thread safe date time classes. This
package has two basic classes DateTimeFormatter and DateTimeFormatterBuilder where most of the time we will be
using DateTimeFormatter class.

DateTimeFormatter: This class is the replacement for java.text.DateFormat which provides two main methods;
format(temporal) to convert temporal object to string and parse(string) to create a temporal object from the given
date string. Creating DateTimeFormatter instance is easy, it provides overloaded ofPatttern methods to create it
instances.

DateTimeFormatter f1 = DateTimeFormatter.ofPattern("dd-MMM-yyyy");
LocalDate date = f1.parse("18-Mar-2014");
f1.format(LocalDate.of(2014, 3, 18)); => 18-Mar-2014

//For localization
DateTimeFormatter f2 = DateTimeFormatter.ofPattern("dd-MMM-yyyy", Locale.FRENCH);
f2.format(LocalDate.of(2014, 3, 18)); => 18-mars-2014

DateTimeFormatter class also contains many of its own instances like ISO_LOCAL_DATE,
ISO_LOCAL_DATE_TIME, BASIC_ISO_DATE etc that can be used for our general usecases.

DateTimeFormatterBuilder: This class is used to create DateTimeFormatters. If you hook into DateTimeFormatter
source code you will see ultimately they are created using the builder class. This class will be rarely used in case of
complex needs so we will not focus much on this. Below code snippet taken from the java source code to show the
implementation of ISO_LOCAL_DATE instance.

ISO_LOCAL_DATE = new DateTimeFormatterBuilder()
.appendValue(YEAR, 4, 10, SignStyle.EXCEEDS_PAD)
.appendLiteral('-')
.appendValue(MONTH_OF_YEAR, 2)
.appendLiteral('-')
.appendValue(DAY_OF_MONTH, 2)
.toFormatter(ResolverStyle.STRICT, IsoChronology.INSTANCE);

82 Chapter 14. Evolution of date time API

https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatterBuilder.html

Java 8 tips Documentation, Release 1.0

Working with time zones

One of the confusing aspects of date time is working with time zones. Till Java 7 java.util.TimeZone can be used
togather with Calendar class but JDK 8 now introduced quite few classes to simplify the usage and gives better
options.

Class Description
ZoneID Defines a unique id for a region and city combination. For example Asia/Kolkata
ZoneOffset Represents timezone with an offset from Greenwich/UTC, such as +05:30.
ZonedDate-
Time

Represents a date time in the ISO-8601 calendar system with time zone such as
2007-12-03T10:15:30+01:00 Europe/Paris

OffsetDate-
Time

A date-time with an offset from UTC/Greenwich in the ISO-8601 calendar system, such as
2007-12-03T10:15:30+01:00.

OffsetTime A time with an offset from UTC/Greenwich in the ISO-8601 calendar system, such as
10:15:30+01:00.

ZoneRule-
sProvider

Provides time zone rules.

Time zones and Offsets:

Java uses the Internet Assigned Numbers Authority (IANA) public domain database of time zones, which
keeps a record of all known time zones around the world and is updated periodically to reflect changes
made by political bodies to time zone boundaries, UTC offsets, and daylight-saving rules. You can find a
nice video on DayLight Saving here. java.time.ZoneId represents a time zone with a unique id identified
by continent or ocean and then by the name of the location, which is typically the largest city within the
region. For example, America/New_York represents most of the US eastern time zone.

There are basically three types of zone ids.

• The first type is the offset from UTC/GMT time. They are represented by the class ZoneOffset and
they consist of digits starting with + or -, for example, +05:30 giving hints that perticular time zone
is 5:30 hours ahead of GMT.

• The next type ids are also offsets but they started with some recognised prefixes: ‘UTC’, ‘GMT’ and
‘UT’. Same with first one they also represented by ZoneOffset class.

• The third type is region based. These are in the format area/city, for example, Asia/Kolkata.

You can create a ZoneId instance using ZoneId.of(String zoneId) factory method. Usually this
returns its subclass instance ZoneOffset or ZoneRegion depending upon the input given. ZoneOffset class
has factory method that can directly create its instance from the offset value.

ZoneId zone = ZoneId.of("Asia/Kolkata");
ZoneOffset zone2 = ZoneOffset.of("+05:30");

ZoneId consists of ZoneRules that defines rules for that time zoneIt is not recommended to use ZoneOffset
as they don’t contain daylight saving details if a country or city supporting it. ZoneId class also provides a
method ZoneId.getAvailableZoneIds() that returns all available time zones. These time zones
are usually supplied by ZoneRulesProvider class. You can register your own time zones by registering a
custom provider.

public class MyZoneRulesProvider extends ZoneRulesProvider {

@Override
protected Set<String> provideZoneIds() {

Set<String> set = new HashSet<>();
set.add("India/Delhi");
set.add("India/Mumbai");

14.7. Working with time zones 83

http://www.daylight-savings-time.info/

Java 8 tips Documentation, Release 1.0

set.add("India/Chennai");
return set;

}

public static void main(String[] args) {
ZoneRulesProvider.registerProvider(new MyZoneRulesProvider());
ZoneId.getAvailableZoneIds().stream().forEach(System.out::println);

}
}

Each ZoneId consists of ZoneRules that defines rules for that time zone. ZoneId.getRules() will returns
the rules.

ZonedDateTime: As like LocalDateTime, ZonedDateTime stores date and time fields, but additionally contains time
zone information. You can combine ZoneId with temporal objects to transform it into ZonedDateTime or can
use overloaded of methods to create its instance.

1 ZoneId zone = ZoneId.of("Asia/Kolkata");
2

3 LocalDateTime dateTime = LocalDateTime.parse("2014-12-03T10:15:30");
4 ZonedDateTime z11 = dateTime.atZone(zone);
5 ZonedDateTime z12 = ZonedDateTime.of(dateTime, zone);
6

7 LocalDate date = LocalDate.of(2014, 3, 18);
8 ZonedDateTime z21 = date.atStartOfDay(zone);
9 ZonedDateTime z22 = ZonedDateTime.of(date, LocalTime.now(), zone);

10

11 Instant instant = Instant.now();
12 ZonedDateTime z31 = instant.atZone(zone);
13 ZonedDateTime z32 = ZonedDateTime.ofInstant(instant, zone);

OffsetDateTime As we saw time zones are also represented by an offset value from UTC, OffsetDateTime represents
an object with date/time information and an offset, for example, 2014-12-03T11:30-06:00. Instant, OffsetDate-
Time and ZonedDateTime are very much looks similar but there are key differences exists. Instance represents a
point in time in UTC on a continuous time line, OffsetDateTime maintains time zone with an offset compared to
UTC and ZonedDateTime contains time zone information along with Day-Light-saving rules. It is always better
to use ZonedDateTime or Instant for simple usages. As like other temporal instances, this also has standard
method patterns to create its instances.

ZoneOffset offset = ZoneOffset.of("-2");

OffsetDateTime.now(offset);
OffsetDateTime.of(LocalDateTime.now(), offset);
OffsetDateTime.of(LocalDate.now(), LocalTime.now(), offset);
OffsetDateTime.ofInstant(Instant.now(), offset);

Similar to OffsetDateTime, Java 8 also provides an OffsetTime class that contains time with an offset from
UTC/Greenwich, such as 10:15:30+01:00.

84 Chapter 14. Evolution of date time API

CHAPTER 15

Indices and tables

• genindex

• modindex

• search

85

	Quick Introduction
	Behavior Parameterization
	Lambdas
	Type Inferencing
	Accessing outer scope variables
	Restrictions in Lambdas
	Where to use Lambdas

	Functional Interfaces
	@FunctionalInterface rules
	Predicate<T>
	Consumer<T>
	Function<T, R>
	Supplier<T>
	Primitive Functional Interfaces
	Method References
	Constructor as method reference

	Introduction to Streams
	Stream vs Collection
	Stream sources
	Stream Operations

	Stream API
	Filtering
	Truncating Stream
	Consuming Stream
	Mapping
	Matching
	Finding element
	Stream Reduction
	To Array
	Infinite Streams

	Comparator
	Comparators
	Updates in Comparator

	Collectors
	How Collector works?
	Implementing collectors

	Predefined Collectors
	Collecting as collections
	Strings joining
	Grouping elements
	Partitioning elements
	Reducing collectors
	Arithmetic & Summerizing
	Miscellaneous

	Handling nulls with Optional
	Optional Construction
	Operating on Optionals
	Retrieving from Optionals
	Miscellaneous

	Default and Static methods
	Default methods
	Multiple inheritance
	Static methods

	ForkJoinPool
	ForkJoinPool creation
	ForkJoinTask
	How fork-join works?

	Parallel Data Processing
	Parallel Streams
	Spliterator
	Conclusion

	Evolution of date time API
	java.time package
	Common methods
	LoalDate, Time, Instant
	Duration & Period
	TemporalAdjusters
	Formatting & parsing
	Working with time zones

	Indices and tables

