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Janggu - Deep learning for Genomics
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Janggu is a python package that facilitates deep learning in the context of
genomics. The package is freely available under a GPL-3.0 license.

[image: Janggu visual abstract]
In particular, the package allows for easy access to
typical Genomics data formats
and out-of-the-box evaluation so that you can concentrate
on designing the neural network architecture for the purpose
of quickly testing biological hypothesis.
A comprehensive documentation is available here [https://janggu.readthedocs.io/en/latest].


Hallmarks of Janggu:


	Janggu provides special Genomics datasets that allow you to access raw data in FASTA, BAM, BIGWIG, BED and GFF file format.


	Various normalization procedures are supported for dealing with of the genomics dataset, including ‘TPM’, ‘zscore’ or custom normalizers.


	The dataset are directly consumable with neural networks implemented in  keras [https://keras.io].


	Numpy format output of a keras model can be converted to represent genomic coverage tracks, which allows exporting the predictions as BIGWIG files and visualization of genome browser-like plots.


	Genomic datasets can be stored in various ways, including as numpy array, sparse dataset or in hdf5 format.


	Caching of Genomic datasets avoids time consuming preprocessing steps and facilitates fast reloading.


	Janggu provides a wrapper for keras [https://keras.io] models with built-in logging functionality and automatized result evaluation.


	Janggu provides a special keras layer for scanning both DNA strands for motif occurrences.


	Janggu provides  keras [https://keras.io] models constructors that automatically infer input and output layer shapes to reduce code redundancy.


	Janggu provides a web application that allows to browse through the results.







Why the name Janggu?

Janggu [https://en.wikipedia.org/wiki/Janggu] is a Korean percussion
instrument that looks like an hourglass.

Like the two ends of the instrument, the philosophy of the
Janggu package is to help with the two ends of a
deep learning application in genomics,
namely data acquisition and evaluation.


Installation

The simplest way to install janggu is via the conda package management system.
Assuming you have already installed conda, create a new environment
and type

pip install janggu





The janggu neural network model depends on tensorflow which
you have to install depending on whether you want to use GPU
support or CPU only. To install tensorflow type

conda install tensorflow  # or tensorflow-gpu





Further information regarding the installation of tensorflow can be found on
the official tensorflow webpage [https://www.tensorflow.org]

To verify that the installation works try to run the example contained in the
janggu package as follows

git clone https://github.com/BIMSBbioinfo/janggu
cd janggu
python ./src/examples/classify_fasta.py single













          

      

      

    

  

    
      
          
            
  
Tutorial

This tutorial is split in two parts. Part I treats the Genomic Dataset
that are available through Janggu which can be directly consumed
by your keras model.
The tutorial illustates how to access genomics
data from various widely used file formats, including FASTA, BAM, BIGWIG, BED
and GFF for the purpose of using them as input to a deep learning application.
It illustrates a range of parameters to adapt the read out of genomics data
and it shows how the predictions or feature activities of a neural network
in numpy format can be converted to a genomic coverage representation
that can in turn be exported to BIGWIG file format
or visualized directly via a genome browser-like plot.

Part II treats utilities that are directed against defining a neural network,
based on keras and how to automatically produce summary figures or statistics
using callback functions.


Part I) Introduction to Genomic Datasets


Genomic Datasets

Most of the parameters are consistent across
Bioseq and Cover.



janggu.data provides Dataset classes
that can be used for
training and evaluating neural networks.
Of particular importance are the Genomics-specific dataset,
Bioseq and Cover which
allow easy access to genomics data,
including DNA sequences or coverage information.
Apart from accessing raw genomics data, Janggu
also facilitates a method for converting an ordinary
numpy array (e.g. predictions obtained from a neural net)
to a Cover object. This enables the user to export the predictions
as BIGWIG format or interactively plot genome browser tracks.
In this tutorial, we demonstrate some of the key functionality of
Janggu. Further details are available in Genomic Datasets
and API.


Bioseq

The Bioseq can be used to load nucleotide
or protein sequence data from
fasta files or from a reference genome
along with a set of genomic coordinates defining the region of interest (ROI).
The class facilitates access the
one-hot encoding representation of the sequences.
Specifically,
the one-hot encoding is represented as a
4D array with dimensions corresponding
to (region, region_length, 1, alphabet_size).
The Bioseq offers a number of features:


	Strand-specific sequence extraction (if DNA sequences are extracted from the reference genome)


	Higher-order one-hot encoding, e.g. di-nucleotide based




Sequences can be loaded in two ways: using
Bioseq.create_from_seq or
Bioseq.create_from_refgenome.
The former constructor method can be used to load
DNA or protein sequences from fasta files directly
or from as list of Bio.SeqRecord.SeqRecord entries.
An example is shown below:

from pkg_resources import resource_filename
from janggu.data import Bioseq

fasta_file = resource_filename('janggu',
                               'resources/sample.fa')

dna = Bioseq.create_from_seq(name='dna',
                             fastafile=fasta_file)

# there are 3897 sequences in the in sample.fa
len(dna)

# Each sequence is 200 bp of length
dna.shape  # is (3897, 200, 1, 4)

# One-hot encoding for the first 10 bases of the first region
dna[0][0, :10, 0, :]





Furthermore, it is possible to trim variable sequence length using
the fixedlen option. If specfied, all sequences will be truncated
or zero-padded to length fixedlen. For example,

dna = Bioseq.create_from_seq(name='dna',
                             fastafile=fasta_file,
                             fixedlen=205)

# Each sequence is 205 bp of length
dna.shape  # is (3897, 205, 1, 4)

# the last 5 position were zero padded
dna[0][0, -6:, 0, :]





Alternatively, nucleotide sequences can be
obtained from a reference genome directly along with
a BED or GFF file that indicates the region of interest (ROI).

If each interval in the BED-file already corresponds
to a ‘datapoint’ that shall be consumed during training, like it
is the case for ‘sample_equalsize.bed’, the associated DNA sequences
can be loaded according to

roi = resource_filename('janggu',
                        'resources/sample_equalsize.bed')
refgenome = resource_filename('janggu',
                              'resources/sample_genome.fa')

dna = Bioseq.create_from_refgenome(name='dna',
                                   refgenome=refgenome,
                                   roi=roi)

dna.shape  # is (4, 200, 1, 4)
# One-hot encoding of the first 10 nucleotides in region 0
dna[0][0, :10, 0, :]





Sometimes it is more convenient to provide the ROI
as a set of variable-sized broad intervals
(e.g. chr1:10000-50000 and chr3:4000-8000)
which should be divided into sub-intervals
of equal length (e.g. of length 200 bp).
This can be achieved
by explicitly specifying a desired binsize
and stepsize as shown below:

roi = resource_filename('janggu',
                        'resources/sample.bed')

# loading non-overlapping intervals
dna = Bioseq.create_from_refgenome(name='dna',
                                   refgenome=refgenome,
                                   roi=roi,
                                   binsize=200,
                                   stepsize=200)

dna.shape  # is (100, 200, 1, 4)

# loading mutually overlapping intervals
dna = Bioseq.create_from_refgenome(name='dna',
                                   refgenome=refgenome,
                                   roi=roi,
                                   binsize=200,
                                   stepsize=50)

dna.shape  # is (394, 200, 1, 4)





The argument flank can be used to extend
the intervals up and downstream by a given length

dna = Bioseq.create_from_refgenome(name='dna',
                                   refgenome=refgenome,
                                   roi=roi,
                                   binsize=200,
                                   stepsize=200,
                                   flank=100)

dna.shape  # is (100, 400, 1, 4)





Finally, sequences can be represented using higher-order
one-hot representation using the order argument. An example
of a di-nucleotide-based one-hot representation is shown below

dna = Bioseq.create_from_refgenome(name='dna',
                                   refgenome=refgenome,
                                   roi=roi,
                                   binsize=200,
                                   stepsize=200,
                                   order=2)

# is (100, 199, 1, 16)
# that is the last dimension represents di-nucleotides
dna.shape








Cover

Cover can be utilized to fetch different kinds of
coverage data from commonly used data formats,
including BAM, BIGWIG, BED and GFF.
Coverage data is stored as a 4D array with dimensions corresponding
to (region, region_length, strand, condition).

The following examples illustrate some use cases for Cover,
including loading, normalizing coverage data.
Additional features are described in the API.

Loading read count coverage from BAM files is supported for
single-end and paired-end alignments. For the single-end case
reads are counted on the 5’-end and and for paired-end alignments,
reads are optionally counted at the mid-points or 5’ ends of the first mate.
The following example illustrate how to extract base-pair resolution coverage
with and without strandedness.

from janggu.data import Cover

bam_file = resource_filename('janggu',
                             'resources/sample.bam')

roi = resource_filename('janggu',
                        'resources/sample.bed')

cover = Cover.create_from_bam('read_count_coverage',
                              bamfiles=bam_file,
                              binsize=200,
                              stepsize=200,
                              roi=roi)

cover.shape  # is (100, 200, 2, 1)
cover[0]  # coverage of the first region

# Coverage regardless of read strandedness
# sums reads from both strand.
cover = Cover.create_from_bam('read_coverage',
                              bamfiles=bam_file,
                              binsize=200,
                              stepsize=200,
                              stranded=False,
                              roi=roi)

cover.shape  # is (100, 200, 1, 1)





Sometimes it is desirable to determine the read
count coverage in say 50 bp bins which can be
controlled by the resolution argument.
Consequently, note that the second dimension amounts
to length 4 using binsize=200 and resolution=50 in the following example

# example with resolution=200 bp
cover = Cover.create_from_bam('read_coverage',
                              bamfiles=bam_file,
                              binsize=200,
                              resolution=50,
                              roi=roi)

cover.shape  # is (100, 4, 2, 1)





It might be desired to aggregate reads across entire interval
rather than binning the genome to equally sized bins of
length resolution. An example application for this would
be to count reads per possibly variable-size regions (e.g. genes).
This can be achived by resolution=None which results
in the second dimension being collapsed to a length of one.

# example with resolution=None
cover = Cover.create_from_bam('read_coverage',
                              bamfiles=bam_file,
                              binsize=200,
                              resolution=None,
                              roi=roi)

cover.shape  # is (100, 1, 2, 1)





Similarly, if strandedness is not relevant we may use

# example with resolution=None without strandedness
cover = Cover.create_from_bam('read_coverage',
                              bamfiles=bam_file,
                              binsize=200,
                              resolution=None,
                              stranded=False,
                              roi=roi)

cover.shape  # is (100, 1, 1, 1)





Finally, it is possible to normalize the coverage profile, e.g.
to account for differences in sequencing depth across experiments
using the normalizer argument

# example with resolution=None without strandedness
cover = Cover.create_from_bam('read_coverage',
                              bamfiles=bam_file,
                              binsize=200,
                              resolution=None,
                              stranded=False,
                              normalizer='tpm',
                              roi=roi)

cover.shape  # is (100, 1, 1, 1)





More details on alternative normalization
options are discussed in Genomic Datasets.

Loading signal coverage from BIGWIG files
can be achieved analogously:

roi = resource_filename('janggu',
                        'resources/sample.bed')
bw_file = resource_filename('janggu',
                            'resources/sample.bw')

cover = Cover.create_from_bigwig('bigwig_coverage',
                                 bigwigfiles=bw_file,
                                 roi=roi,
                                 binsize=200,
                                 stepsize=200)

cover.shape  # is (100, 200, 1, 1)





When applying signal aggregation using e.g resolution=50 or resolution=None,
additionally, the aggregation method can be specified using
the collapser argument.
For example, in order to represent the resolution sized
bin by its mean signal the following snippet may be used:

cover = Cover.create_from_bigwig('bigwig_coverage',
                                 bigwigfiles=bw_file,
                                 roi=roi,
                                 binsize=200,
                                 resolution=None,
                                 collapser='mean')

cover.shape  # is (100, 1, 1, 1)





More details on alternative collapse
options are discussed in Genomic Datasets.

Coverage from a BED files is largely analogous to extracting coverage
information from BAM or BIGWIG files, but in addition it is possible to interpret
BED files in various ways:


	Binary or Presence/Absence mode interprets the ROI as the union of positive and negative cases in a binary classification setting and regions contained in bedfiles as positive examples.


	Score mode reads out the real-valued score field value from the associated regions.


	Categorical mode transforms integer-valued scores into one-hot representation. For that option, each of the nclasses corresponds to an integer ranging from zero to nclasses - 1.




Examples of loading data from a BED file are shown below

roi = resource_filename('janggu',
                        'resources/sample.bed')
score_file = resource_filename('janggu',
                               'resources/scored_sample.bed')

# binary mode (default)
cover = Cover.create_from_bed('binary_coverage',
                              bedfiles=score_file,
                              roi=roi,
                              binsize=200,
                              stepsize=200,
                              collapser='max',
                              resolution=None)

cover.shape  # is (100, 1, 1, 1)
cover[4]  # contains [[[[1.]]]]

# score mode
cover = Cover.create_from_bed('score_coverage',
                              bedfiles=score_file,
                              roi=roi,
                              binsize=200,
                              stepsize=200,
                              resolution=None,
                              collapser='max',
                              mode='score')

cover.shape  # is (100, 1, 1, 1)
cover[4]  # contains the score [[[[5.]]]]

# categorical mode
cover = Cover.create_from_bed('cat_coverage',
                              bedfiles=score_file,
                              roi=roi,
                              binsize=200,
                              stepsize=200,
                              resolution=None,
                              collapser='max',
                              mode='categorical')

cover.shape  # is (100, 1, 1, 6)
cover[4]  # contains [[[[0., 0., 0., 0., 0., 1.]]]]








Dataset wrappers

In addition to the core datset Bioseq and Cover, Janggu offers convenience wrappers
to transform them in various ways.
For instance, ReduceDim can be used to convert a 4D coverage dataset into 2D table like object.
That is it may be used to transform the dimensions
(region, region_length, strand, condition) to (region, condition) by
aggregating over the middel two dimensions.

from janggu.data import ReduceDim

data = ReduceDim(cover, aggregator='sum')





Other dataset wrappers can be used in order to perform data augmentation, including
RandomSignalScale and RandomOrientation which can be used
to randomly alter the signal intensity during model fitting and randomly flipping
the 5’ to 3’ orientations of the coverage signal.

For more specialized cases, these wrappers might also be a good starting point
to derive or adapt from.




Using the Genomic Datasets with keras models

The above mentioned datasets Bioseq and Cover
can be directly used with keras. An illustration of this
is shown in the example notebook [https://github.com/BIMSBbioinfo/janggu/blob/master/src/examples/bedfile_examples.ipynb].




Converting a Numpy array to Cover

After having trained and performed predictions with a model, the data
is represented as numpy array. A convenient way to reassociate the
predictions with the genomic coordinates they correspond to is achieved
using create_from_array.

import numpy as np

# True labels may be obtained from a BED file
cover = Cover.create_from_bigwig('cov',
                                  bigwigfiles=bw_file,
                                  roi=roi,
                                  binsize=200,
                                  resolution=50)


# Let's pretend to have derived predictions from a NN
# of the same shape
predictions = np.random.randn(*cover.shape)*.1 + cover[:]

# We can reassociate the predictions with the genomic coordinates
# of a :code:`GenomicIndexer` (in this case, cover.gindexer).
predictions = Cover.create_from_array('predictions',
                                      predictions, cover.gindexer)








Exporting and visualizing Cover

After having converted the predictions or feature activities of a neural
network to a Cover object, it is possible to export the results
as BIGWIG format for further investigation in a genome browser of your choice

# writes the predictions to a specified folder
predictions.export_to_bigwig(output_dir = './')





which should result in a file ‘predictions.Cond_0.bigwig’.

Furthermore, it is possible to visualize the tracks interactively

from janggu.data import LineTrack
from janggu.data import plotGenomeTrack

fig = plotGenomeTrack([LineTrack(cover), LineTrack(predictions)], 'chr1', 16000, 18000).figsave('coverage.png')





[image: Coverage tracks]





Part II) Building a neural network with Janggu

While the Genomic Dataset may be used directly with keras,
this part of the tutorial discusses the Janggu wrapper class
for a keras model.
It offers the following features:


	Building models using automatic input and output layer shape inference


	Built-in logging functionality


	Automatic evaluation through the attachment of Scorer callbacks


	Dash-app for browsing the evaluation statistics and figures




A example scripts illustrating the material covered in this part
can be found at Example 1 [https://github.com/BIMSBbioinfo/janggu/blob/master/src/examples/classify_bedregions.py]
and Example 2 [https://github.com/BIMSBbioinfo/janggu/blob/master/src/examples/classify_fasta.py].


Datasets are named

Dataset names must match with the Input and Output layers of the neural
network.



A neural network can be created by
instantiating a Janggu object.
There are two ways of achieving this:


	Similar as with keras.models.Model, a Janggu object can be created from a set of native keras Input and Output layers, respectively.


	Janggu offers a Janggu.create constructor method which helps to reduce redundant code when defining many rather similar models.





Example 1: Instantiate Janggu similar to keras.models.Model


Model name

Model results,
e.g. trained parameters, are automatically stored with the associated model name. To simplify the determination of a unique name for the model, Janggu automatically derives the model name based on a md5-hash of the network configuration. However, you can also specify a name yourself.



from keras.layers import Input
from keras.layers import Dense

from janggu import Janggu

# Define neural network layers using keras
in_ = Input(shape=(10,), name='ip')
layer = Dense(3)(in_)
output = Dense(1, activation='sigmoid',
               name='out')(layer)

# Instantiate model name.
model = Janggu(inputs=in_, outputs=output)
model.summary()








Example 2: Specify a model using a model template function

As an alternative to the above stated variant, it is also possible to specify
a network via a python function as in the following example

def model_template(inputs, inp, oup, params):
    inputs = Input(shape=(10,), name='ip')
    layer = Dense(params)(inputs)
    output = Dense(1, activation='sigmoid',
                   name='out')(layer)
    return inputs, output

# Defines the same model by invoking the definition function
# and the create constructor.
model = Janggu.create(template=model_template,
                      modelparams=3)





The model template function must adhere to the
signature template(inputs, inp, oup, params).
Notice, that modelparams=3 gets passed on to params
upon model creation. This allows to parametrize the network
and reduces code redundancy.

From the model template it is also possible to obtain
a keras model directly, rather than the Janggu model wrapper if this is perfered

from janggu import create_model

# This will construct a keras model directly
model = create_model(template=model_template,
                     modelparams=3)








Example 3: Automatic Input and Output layer extension

A second benefit to invoke Janggu.create is that it can automatically
determine and append appropriate Input and Output layers to the network.
This means, only the network body remains to be defined.

import numpy as np
from janggu import inputlayer, outputdense
from janggu.data import Array

# Some random data
DATA = Array('ip', np.random.random((1000, 10)))
LABELS = Array('out', np.random.randint(2, size=(1000, 1)))

# inputlayer and outputdense automatically
# extract dataset shapes and extend the
# Input and Output layers appropriately.
# That is, only the model body needs to be specified.
@inputlayer
@outputdense('sigmoid')
def model_body_template(inputs, inp, oup, params):
    with inputs.use('ip') as layer:
        # the with block allows
        # for easy access of a specific named input.
        output = Dense(params)(layer)
    return inputs, output

# create the model.
model = Janggu.create(template=model_body_template,
                      modelparams=3,
                      inputs=DATA, outputs=LABELS)
model.summary()





As is illustrated by the example, automatic Input and Output layer determination
can be achieved by using the decorators inputlayer and/or
outputdense which extract the layer dimensions from the
provided input and output Datasets in the create constructor.




Fit a neural network on DNA sequences

In the previous sections, we learned how to acquire data and
how to instantiate neural networks. Now let’s
create and fit a simple convolutional neural network that learns
to discriminate between two classes of sequences. In the following example
the sample sequences are of length 200 bp each. sample.fa contains Oct4 CHip-seq
peaks and sample2.fa contains Mafk CHip-seq peaks. We shall use a simple
convolutional neural network with 30 filters of length 21 bp to learn
the sequence features that discriminate the two sets of sequences.

The example makes use of two more janggu utilities: First,
DnaConv2D constitutes a keras layer wrapper that facilitates scanning
of both DNA strands with the same kernels. That is it simulataneously applies
a convolution and a cross-correlation and aggregates the resulting activities.
Second, the example illustrates the dataset wrapper ReduceDim which
allows to collapse 4D the signal contained in the Cover object
across the sequence length and strand dimension. The result is yields a 2D
table-like dataset which is used in the subsequent model fitting example.

from keras.layers import Conv2D
from keras.layers import AveragePooling2D
from janggu import inputlayer
from janggu import outputconv
from janggu import DnaConv2D
from janggu.data import ReduceDim


# load the dataset which consists of
# 1) a reference genome
REFGENOME = resource_filename('janggu', 'resources/pseudo_genome.fa')
# 2) ROI contains regions spanning positive and negative examples
ROI_FILE = resource_filename('janggu', 'resources/roi_train.bed')
# 3) PEAK_FILE only contains positive examples
PEAK_FILE = resource_filename('janggu', 'resources/scores.bed')

# DNA sequences are loaded directly from the reference genome
DNA = Bioseq.create_from_refgenome('dna', refgenome=REFGENOME,
                                   roi=ROI_FILE,
                                   binsize=200)

# Classification labels over the same regions are loaded
# into the Coverage dataset.
# It is important that both DNA and LABELS load with the same
# binsize, stepsize to ensure
# the correct correspondence between both datasets.
# Finally, the ReduceDim dataset wrapper transforms the 4D Coverage
# object into a 2D table like object (regions by conditions)
LABELS = ReduceDim(Cover.create_from_bed('peaks', roi=ROI_FILE,
                               bedfiles=PEAK_FILE,
                               binsize=200,
                               resolution=None), aggregator='mean')


# 2. define a simple conv net with 30 filters of length 15 bp
# and relu activation.
# outputconv as opposed to outputdense will put a conv layer as output
@inputlayer
@outputdense('sigmoid')
def double_stranded_model(inputs, inp, oup, params):
    with inputs.use('dna') as layer:
        # The DnaConv2D wrapper can be used with Conv2D
        # to scan both DNA strands with the weight matrices.
        layer = DnaConv2D(Conv2D(params[0], (params[1], 1),
                                 activation=params[2]))(layer)

    output = GlobalAveragePooling2D(name='motif')(layer)
    return inputs, output


# 3. instantiate and compile the model
model = Janggu.create(template=double_stranded_model,
                      modelparams=(30, 15, 'relu'),
                      inputs=DNA, outputs=LABELS)
model.compile(optimizer='adadelta', loss='binary_crossentropy',
              metrics=['acc'])

# 4. fit the model
model.fit(DNA, ReduceDim(LABELS, epochs=100)





An illustration of the network architecture is depicted below.
Upon creation of the model a network depiction is
automatically produced in <results_root>/models which is illustrated
below

[image: Prediction from DNA to peaks]
After the model has been trained, the model parameters and the
illustration of the architecture are stored in <results_root>/models.
Furthermore, information about the model fitting, model and dataset dimensions
are written to <results_root>/logs.

Note that in the example above the output dimensionality of the network is 4D.
However, it might be more convenient at times to remove the single dimensional
elements of the array.
This can be achieved by wrapping the LABELS dataset using ReduceDim.
In this case the example becomes

@inputlayer
@outputdense('sigmoid')
def double_stranded_model(inputs, inp, oup, params):
    with inputs.use('dna') as layer:
        # The DnaConv2D wrapper can be used with Conv2D
        # to scan both DNA strands with the weight matrices.
        layer = DnaConv2D(Conv2D(params[0], (params[1], 1),
                                 activation=params[2]))(layer)

    output = GlobalAveragePooling2D(name='motif')(layer)
    return inputs, output


# 3. instantiate and compile the model
model = Janggu.create(template=double_stranded_model,
                      modelparams=(30, 15, 'relu'),
                      inputs=DNA, outputs=ReduceDim(LABELS))
model.compile(optimizer='adadelta', loss='binary_crossentropy',
              metrics=['acc'])

# 4. fit the model
model.fit(DNA, ReduceDim(LABELS), epochs=100)










Part III) Evaluation and interpretation of the model

Janggu supports various methods to evaluate and interprete a trained model,
including evaluating summary scores, inspecting the results in
the built-in genome browser (see Part I), evaluating the integrated gradients
which allows to visualized input feature importance and by
offering support for variant effect predictions.
In this last part we will illustrate these aspects.


Evaluation of summary scores

After the model has been trained, the quality of the predictions
is usually summarized by its agreement with the ground truth, e.g. by
evaluating the area under the ROC curve in a binary classification application
or by computing the correlation between predictions and targets in a regression
setting.

For some commonly used evaluation criteria, the evaluate method directly allows
to determine and export the given metric results.
For example, for a classification task the following line
evaluates the ROC and PRC and exports a figure and a tsv file, respectively,
for each measure.

model.evaluate(DNA_TEST, LABELS_TEST, callbacks=['roc', 'prc', 'auprc', 'auroc'])





The results are stored in <results_root>/evaluation/{roc,prc}.png
as well as <results_root>/evaluation/{auroc,auprc}.tsv.

Furthermore, for a regression setting it is possible to invoke

model.evaluate(DNA_TEST, LABELS_TEST, callbacks=['cor', 'mae', 'mse', 'var_explained'])





which evaluates the Pearson’s correlation, the mean absolute error, the mean squared error
and the explained variance into tsv files.

It is also possible to customize the scoring callbacks by instantiating a
Scorer objects which can be passed to
model.evaluate and model.predict. Further details about
customizing the scoring callbacks are given in Customize Evaluation.




Input feature importance

In order to inspect what the model has learned,
it is possible to identify the most important features in the input space
using the integrated gradients method.

This is illustrated on a toy example for discriminating Oct4 and Mafk binding sites.
influence attribution example [https://github.com/BIMSBbioinfo/janggu/blob/master/src/examples/variant_effect_prediction.ipynb].




Variant effect prediction

In order to measure the effect of single nucleotide variant on the predict
network output can be tested via the Janggu.predict_variant_effect
based on a Bioseq object and single nucleotide variants in VCF format.
This method evaluates the network for each variant (using its sequence context)
as well as its respective reference sequence.
As a result, an hdf5 file and a bed file will be produced which
contain the network predictions for each variant and the associated genomic
loci.
An illustration of the variant effect prediction is given in
influence attribution and variant effect prediction [https://github.com/BIMSBbioinfo/janggu/blob/master/src/examples/variant_effect_prediction.ipynb].




Browse through the results

Finally, after you have fitted and evaluated your results
you can browse through the results in an web browser of your choice.

To this end, first start the web application server

janggu -path <results-root>





Then you can inspect the outputs in a browser of your choice
(default: localhost:8050)

[image: Prediction from DNA to peaks]








          

      

      

    

  

    
      
          
            
  
Genomic Datasets

One of the central features of Janggu are the genomic datasets Cover and
Bioseq. On the one hand, they allow
quick and flexible access to genomics data, including FASTA,
BAM, BIGWIG, BED and GFF file formats, which bridges the gap
between the data being present in raw file formats
and the numpy inputs required for python-based deep learning models (e.g. keras).
On the other hand, predictions from a deep learning library again are in numpy
format. Janggu facilitates a convertion between numpy arrays and Cover objects
in order to associate the predictions with the respective genomic coordinates.
Finally, coverage information may be exported to BIGWIG or inspected directly
via  genome browser-like plots.


General principle of the Genomics Datasets

Internally, the genomics datasets maintains coverage or
sequence type of information along with the associated genomic intervals.
Externally, the datasets behave similar to a numpy array. This
makes it possible to directly consume the datasets using keras, for instance.

In this section we briefly describe the internal organisation of these datasets.
The classes Cover and Bioseq maintain a
GenomicArray and a GenomicIndexer object.
GenomicArray is a general data structure that holds numeric
information about the genome. For instance, read count coverage.
It can be accessed via
genomic coordinates (e.g. chromosome name, start and end) and returns
the respective data as numpy array.
The GenomicIndexer maintains a list of genomic coordinates,
which should be traversed during training/evaluation.
The GenomicIndexer can be accessed by an integer-valued
index which returns the associated genomic coordinates.

When querying the ‘i’-th region from Cover or Bioseq, the index is passed
to the  GenomicIndexer which yields a genomic coordinates
that is passed on to the GenomicArray.
The result is returned in numpy format.
Similarly, the dataset objects
also support slicing and indexing via a list of indices, which is usually relevant
when using mini-batch learning.




Normalization

Upon creation of a Cover object, normalization of the raw data might be require.
For instance, to make coverage tracks comparable across replicates or experiments.
To this end, create_from_bam, create_from_bigwig
and create_from_bed expose a normalizer option.
Janggu already implements various normalization methods which can be called by name,
TPM (transcript per million) normalization. For instance, using

Cover.create_from_bam('track', bamfiles=samplefile, roi=roi, normalizer='tpm')





Other preprocessing and normalization options are:  zscore, zscorelog, binsizenorm and perctrim.
The latter two apply normalization for read depth and trimming the signal intensities at the 99%-ile.

Normalizers can also be applied via callables and/or in combination with other transformations.
For instance, suppose we want to trim the outliers at the 95%-tile instead and
subsequently apply the z-score transformation then we could use

from janggu.data import PercentileTrimming
from janggu.data import ZScore

Cover.create_from_bam('track', bamfiles=samplefile, roi=roi,
                      normalizer=[PercentileTrimming(95), ZScore()])





It might be necessary to evaluate the normalization parameter on one dataset and apply the same
transformation on other datasets. For instance, in the case of the ZScore, we might want to keep
the mean and standard deviation that was obtained from, say the training set, and reuse the
to normalize the test set.
This is possible by just creating a zscore object that is used multiple times.
At the first invokation the mean and standard deviation are determine and the transformation
is applied. Subsequently, the zscore is determined using the predetermined mean and standard deviation.
For example:

from janggu.data import ZScore

zscore = ZScore()

# First, mean and std will be determined.
# Then zscore transformation is applied.
Cover.create_from_bam('track_train', bamfiles=samplefile, roi=roitrain,
                      normalizer=[zscore])

# Subsequently, zscore transformation is applied with
# the same mean and std determined from the training set.
Cover.create_from_bam('track_test', bamfiles=samplefile, roi=roitest,
                      normalizer=[zscore])





In case a different normalization procedure is required that is not contained in janggu,
it is possible to define a custom_normalizer as follows:

def custom_normalizer(genomicarray):

   # perform normalization genomicarray

   return genomicarray





The currently implemented normalizers may be a good starting point
for this purpose.




Granularity of the coverage

Depending on the applications, different granularity of the
coverage data might be required. For instance, one might be interested in reading out
nucleotide-resolution coverage for one purpose or 50 base-pair resolution bins for another.
Furthermore, in some cases the signal of variable size regions might be of interest. For
example, the read counts across the gene bodies, to measure gene expression levels.

These adjustments can be made when invoking create_from_bam,
create_from_bigwig and create_from_bed
using an appropriate region of interest ROI file in conjunction
with specifying the resolution and  collapser parameter.

First, we the resolution parameter allows to the coverage granularity.
For example, base-pair and 50-base-pair resolution would be possible using

Cover.create_from_bam('track', bamfiles=samplefile, roi=roi,
                      resolution=1)

Cover.create_from_bam('track', bamfiles=samplefile, roi=roi,
                      resolution=50)






janggu-trim

When using N-based pair resolution with n>1 in conjunction with the
option store_whole_genome=True, then the region of interest starts
and ends must be divisible by the resolution. Otherwise, undesired rounding
effect might occur. This can be achieved by using janggu-trim.
See Section command line tools.



In case the signal intensity should be summarized across the entire interval,
specify resolution=None.
For instance, if the region of interest contains a set of variable length
gene bodies, the total read count per gene can be obtained using

Cover.create_from_bam('genes',
                      bamfiles=samplefile,
                      roi=geneannot,
                      resolution=None)





It is also possible to use resolution=None in conjunction with e.g. binsize=200
which would have the same effect as chosing binsize=resolution=200.

Whenever we deal with resolution>1, an aggregation operation needs to be performed
to summarize the signal intensity across the region. For instance, for
create_from_bam the reads are summed within each interval.

For create_from_bigwig and create_from_bed,
it is possible to adjust the collapser. For example, ‘mean’ or ‘sum’ aggregation
can be applied by name or by handing over a callable according to

import numpy as np

Cover.create_from_bigwig('bwtrack',
                         bigwigfiles=samplefile,
                         roi=roi,
                         resolution=50,
                         collapser='mean')

Cover.create_from_bigwig('bwtrack',
                         bigwigfiles=samplefile,
                         roi=roi,
                         resolution=50,
                         collapser=np.sum)





Moreover, more specialized aggregations may
require a custom collaper function. In that case,
it is important to note that the function expects a 3D numpy array and
the aggragation should be performed across the second dimension.
For example

def custom_collapser(numpyarray):

   # Initially, the dimensions of numpyarray correspond to
   # (intervallength // resolution, resolution, strand)

   numpyarray = numpyarray.sum(axis=1)

   # Subsequently, we return the array of shape
   # (intervallength // resolution, strand)

   return numpyarray








Caching

The construction, including loading and preprocessing,
of a genomic dataset might require a significant amount of time.
In order to avoid having to create the coverage profiles each time you want
to use them, they can be cached and quickly reloaded
later.
Caching can be activated via the options cache=True.
When caching is required, janggu will check for changes in the
file content, file composition and various dataset specific argument
(e.g. binsize, resolution) by constructing a SHA256. The dataset will
be loaded or reloaded from scratch if the determined hash does not exist.

Example:

# load hg19 if the cache file does not exist yet, otherwise
# reload it.
Bioseq.create_from_refgenome('dna', refgenome, order=1, cache=True)








Dataset storage


Storage option

Depending on the structure of the dataset, the required memory to store the data
and the available memory on your machine, different storage options are available
for the genomic datasets, including numpy array, as sparse array or as hdf5 dataset.
To this end, create_from_bam, create_from_bigwig,
create_from_bed, create_from_seq
and create_from_refgenome expose the storage option, which may be ‘ndarray’,
‘sparse’ or ‘hdf5’, respectively.

‘ndarray’ amounts to perhaps the fastest access time,
but also most memory demanding option for storing the data.
It might be useful for dense datasets, and relatively small datasets that conveniently
fit into memory.

If the data is sparse, the option sparse yields a good compromise between access time
and speed. In that case, the data is stored in its compressed sparse form and converted
to a dense representation when querying mini-batches.
This option may be used to store e.g. genome wide ChIP-seq peaks profiles, if peaks
occur relatively rarely.

Finally, if the data is too large to be kept in memory, the option
hdf5 allows to consume the data directly from disk. While,
the access time for processing data from hdf5 files may be higher,
it allows to processing huge datasets with a small amount of RAM in your machine.




Whole and partial genome storage

Cover and Bioseq further allow to maintain coverage and sequence information
from the entire genome or only the part that is actively consumed during training.
This option can be configured by store_whole_genome=True/False.

In most situations, the user may find it convenient to set store_whole_genome=False.
In that case, when loading Cover and Bioseq only information overlapping
the region of interest will be gathered. The advantage of this would be not to have
to store an overhead of information when only a small part of the genome is of interest
for consumption.

On the other hand, store_whole_genome=True might be an advantage
for the following purposes:


	If a large part of the genome is consumed for training/evaluation


	If in addition the stepsize for traversing the genome is smaller than binsize, in which case mutually overlapping intervals do not have to be stored redundantly.


	It simplifies sharing of the same genomic array for different tasks. For example, during training and testing different parts of the same genomic array may be consumed.









Converting Numpy to Cover

When performing predictions, e.g. with a keras model,
the output corresponds to an ordinary numpy array.
In order to reestablish the association of the predicted values
with the genomic coordinates Cover exposes the constructor: create_from_array.
Upon invocation, a new Cover object is composed that holds the predicted values.
These predictions may subsequently be illustrated via plotGenomeTrack or exported to a BIGWIG file.




Evaluation features

Cover objects may be exported as BIGWIG files. Accordingly,
for each condition in the Cover a file will be created.

It is also possible to illustrate predictions in terms of
a genome browser-like plot using plotGenomeTrack, allowing to interactively explore
prediction scores (perhaps in comparison with the true labels) or
feature activities of the internal layers of a neural net.
plotGenomeTrack return a matplotlib figure that can be stored into a file
using native matplotlib functionality.




Rearranging channel dimensions

Depending on the deep learning library that is used, the dimensionality
of the tensors need to be set up in a specific order.
For example, tensorflow expects the channel to be represented by the last
dimension, while theano or pytorch expect the channel at the first dimension.
With the option channel_last=True/False it is possible to configure the output
dimensionality of Cover and Bioseq.




Wrapper Datasets

A Cover object is represents a 4D object. However, sometimes one or more
dimensions of Cover might be single dimensional (e.g. containing only one element).
These dimensions can be dropped using ReduceDim.
For example ReduceDim(cover).




Different views datasets

Suppose you already have loaded DNA sequence from a reference genome
and you want to use a different parts of it
for training and validating the model performance.
This is achieved by the view mechanism, which allows to
reuse the same dataset by instantiating views that reading out different subsets.

For example, a view constituting the training and test set, respectively.

# union ROI for training and test set.
ROI_FILE = resource_filename('janggu', 'resources/roi.bed')
ROI_TRAIN_FILE = resource_filename('janggu', 'resources/roi_train.bed')
ROI_TEST_FILE = resource_filename('janggu', 'resources/roi_test.bed')

DNA = Bioseq.create_from_refgenome('dna', refgenome=REFGENOME,
                                   roi=ROI_FILE,
                                   binsize=200,
                                   store_whole_genome=True)

DNA_TRAIN = view(DNA, ROI_TRAIN_FILE)
DNA_TEST = view(DNA, ROI_TEST_FILE)





Since underneath the actual dataset is just referenced rather than copied,
the memory footprint won’t increase. It just allows to read out different parts
of the genome.

An example is illustrated in the jupyter notebook [https://github.com/BIMSBbioinfo/janggu/blob/master/src/examples/bedfile_examples.ipynb].




Randomized dataset

In order to achieve good predictive performances,
it is recommended to randomize the mini-batches  during model fitting.
This is usually achieved by specifying shuffle=True in the fit method.

However, when using HDF5 dataset, this approach may be prohibitively slow due
to the limitations that data from HDF5 files need to be accessed in chunks
rather than in random access fashion.

In order to overcome this issue, it is possible to randomize the dataset
already during loading time such that the data can be consumed later
by reading coherent chunks by setting  shuffle=False.

For example, randomization is induced by specifying an integer-valued
random_state as in the example below

DNA = Bioseq.create_from_refgenome('dna', refgenome=REFGENOME,
                                   roi=ROI_TRAIN_FILE,
                                   binsize=200,
                                   storage='hdf5',
                                   cache=True,
                                   store_whole_genome=False,
                                   random_state=43)





For this option to be effective and correct, all datasets consumed during
e.g. training need to be provided with the same random_state value.
Furthermore, the HDF5 file needs to be stored with store_whole_genome=False,
since data storage is not affected by the random_state when the entire genome
is stored.
An example is illustrated in the jupyter notebook [https://github.com/BIMSBbioinfo/janggu/blob/master/src/examples/bedfile_examples.ipynb].






Output directory configuration

Optionally, janggu produces various kinds of output files, including cache files
for the datasets, log files for monitoring the training / evaluation procedure,
stored model parameters or summary output files about the evaluation performance.

The root directory specifying the janggu output location can be configured
via setting the environment variable JANGGU_OUTPUT.
This might be done in the following ways:

Setting the directory globally:

export JANGGU_OUTPUT='/output/dir'





on startup of the script:

JANGGU_OUTPUT='/output/dir' python classify.py





or inside your model script using

import os
os.environ['JANGGU_OUTPUT']='/output/dir'





If  JANGGU_OUTPUT is not set, root directory will be set
to /home/user/janggu_results.





          

      

      

    

  

    
      
          
            
  
Customize Evaluation

Janggu facilitates automatic evaluation and scoring using the Scorer callbacks
for model.predict and model.evaluate.

A number of export methods are readily available in the package.
In this section, we describe how to define custom
scoring and export functionality to serve specialized use cases.
If you intend to implement a custom scorer or a custom exporter, some of the
unit test might also serve as useful examples / starting points.


Score callable

The scoring function should be a python callable with the following
signature:

def custom_score(ytrue, ypred):
   """Custom score to be used with model.evaluate"""
   # do some evaluation
   return score

def custom_score(ypred):
   """Custom score to be used with model.predict"""
   # do some evaluation
   return score





If additional parameters are required for the evaluation, you might want to use
the following construct

class CustomScore(object):
    def __init__(self, extra_parameter):
        self.extra_parameter

    def __call__(self, ytrue, ypred):
        # do some evaluation using self.extra_parameter
        return score





The results returned by the custom scorer may be of variable types,
e.g. list or a scalar value, depending on the use case.
Therefore, it is important to choose or designe an exporter that can understand
and process the score subsequently.




Exporter callable

A custom exporter can be defined as a python callable
using the following construct

class CustomExport(object):
    def __init__(self, extra_parameter):
        self.extra_parameter

    def __call__(self, output_dir, name, results):
        # run export
        pass





Of course, if no extra parameters are required, a plain function may also
be specified to export the results.

Upon invocation of the exporter, output_dir, name and
results are passed.
The first two arguments dictate the output location and file name to store the results
in.
On the other hand, results holds the scoring results as a python
dictionary of the form: {'date': <currenttime>, 'value': score_values, 'tags': datatags}
score_value denotes another dictionary whose keys are given by
a tuple (modelname, layername, conditionname) and whose values are the returned
score values from the scoring function (see above).
Example exporters can be found in API or in the source code of
the package.




Custom example scorers

A Scorer maintains a name, a scoring function and
an exporter function. The latter two dictate the scoring method
and how the results should be stored.

An example of using Scorer to
evaluate the ROC curve and the area under the ROC curve (auROC)
and export it as plot and into a tsv file, respectively, is shown below

from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from janggu import Scorer
from janggu.utils import ExportTsv
from janggu.utils import ExportScorePlot

# create a scorer
score_auroc = Scorer('auROC',
                     roc_auc_score,
                     exporter=ExportTsv())
score_roc = Scorer('ROC',
                   roc_curve,
                   exporter=ExportScorePlot(xlabel='FPR', ylabel='TPR'))
# determine the auROC
model.evaluate(DNA, LABELS, callbacks=[score_auroc, score_roc])





After the evaluation, you will find auROC.tsv and ROC.png
in <results-root>/evaluation/<modelname>/.

Similarly, you can use Scorer to export the predictions
of the model. Below, the output predictions are exported in json format.

from janggu import Scorer
from janggu import ExportJson

# create scorer
pred_scorer = Scorer('predict', exporter=ExportJson())

# Evaluate predictions
model.predict(DNA, callbacks=[pred_scorer])





Using the Scorer callback objects, a number of evaluations can
be run out of the box. For example, with different sklearn.metrics
and different exporter options. A list of available exporters
can be found in API.

Alternatively, you can also plug in custom functions

# computes the per-data point loss
score_loss = Scorer('loss', lambda t, p: -t * numpy.log(p),
                         exporter=ExportJson())











          

      

      

    

  

    
      
          
            
  
Command line tools


janggu

The janggu app can be used to browse
through the results of one or more models using
webbrowser of your choice.

Example usage:

janggu -path <results-root> -port <PORT>








janggu-trim

janggu-trim can be used to trim the interval starts
and ends of a given BED/GFF file which is intended
for creating the ROI by a specified factor.

Trimming might circumvent undesired round effects when
using resolution>1 and store_whole_genome=True
to handle covarage data with Cover.
Therefore, we suggest to trim the ROIs that are used during
training and evaluation beforehand. For the sake of convenience,
we added the tool janggu-trim to do that.

Example usage:

janggu-trim input.bed trimmed.bed -divby 50











          

      

      

    

  

    
      
          
            
  
API



	janggu.data - Genomics datasets for deep learning
	Main Dataset classes

	Dataset wrappers

	Normalization and transformation

	Visualization utilitites





	janggu - Utilities for creating, fitting and evaluating models
	Janggu Model

	Input feature attribution

	Performance evaluation





	Performance score utilities

	Decorators for network construction

	Genomics-specific keras layers









          

      

      

    

  

    
      
          
            
  
janggu.data - Genomics datasets for deep learning







	Bioseq.create_from_seq(name, fastafile[, …])

	Create a Bioseq class from a biological sequences.



	Bioseq.create_from_refgenome(name, refgenome)

	Create a Bioseq class from a reference genome.



	Cover.create_from_bam(name, bamfiles[, roi, …])

	Create a Cover class from a bam-file (or files).



	Cover.create_from_bigwig(name, bigwigfiles)

	Create a Cover class from a bigwig-file (or files).



	Cover.create_from_bed(name, bedfiles[, roi, …])

	Create a Cover class from a bed-file (or files).



	Cover.create_from_array(name, array, gindexer)

	Create a Cover class from a numpy.array.



	plotGenomeTrack(tracks, chrom, start, end[, …])

	plotGenomeTrack shows plots of a specific interval from cover objects data.



	Track(data, height)

	General track



	HeatTrack(data[, height])

	Heatmap Track



	LineTrack(data[, height, linestyle, marker, …])

	Line track



	SeqTrack(data[, height])

	Sequence Track







Main Dataset classes







	Dataset(name)

	Dataset interface.



	Cover(name, garray, gindexer, channel_last)

	Cover class.



	Bioseq(name, garray, gindexer, alphabet, …)

	Bioseq class.



	Array(name, array[, conditions])

	Array class.



	GenomicIndexer(binsize, stepsize[, flank, …])

	GenomicIndexer maps a set of integer indices to respective genomic intervals.







	
class janggu.data.Dataset(name)

	Dataset interface.

All dataset classes in janggu inherit from
the Dataset class which mimics a numpy array
and can be used directly with keras.


	Parameters

	name (str) – Name of the dataset



	Variables

	
	name (str) – Name of the dataset


	shape (tuple) – numpy-style shape of the dataset









	
name

	Dataset name






	
shape

	Shape of the dataset










	
class janggu.data.Cover(name, garray, gindexer, channel_last)

	Cover class.

This datastructure holds coverage information across the genome.
The coverage can conveniently fetched from a list of bam-files,
bigwig-file, bed-files or gff-files.


	Parameters

	
	name (str) – Name of the dataset


	garray (GenomicArray) – A genomic array that holds the coverage data


	gindexer (GenomicIndexer or None) – A genomic indexer translates an integer index to a
corresponding genomic coordinate.
It can be None the genomic indexer is supplied later.









	
classmethod create_from_array(name, array, gindexer, genomesize=None, conditions=None, storage='ndarray', overwrite=False, cache=False, datatags=None, channel_last=True, padding_value=0.0, store_whole_genome=False)

	Create a Cover class from a numpy.array.

The purpose of this function is to convert output prediction from
keras which are in numpy.array format into a Cover object.


	Parameters

	
	name (str) – Name of the dataset


	array (numpy.array) – A 4D numpy array that will be re-interpreted as genomic array.


	gindexer (GenomicIndexer) – Genomic indices associated with the values contained in array.


	genomesize (dict or None) – Dictionary containing the genome size to fetch the coverage from.
If genomesize=None, the genome size is automatically determined
from the GenomicIndexer. If store_whole_genome=False this
option does not have an effect.


	conditions (list(str) or None) – List of conditions.
If conditions=None,
the conditions are obtained from
the filenames (without the directories
and file-ending).


	storage (str) – Storage mode for storing the coverage data can be
‘ndarray’, ‘hdf5’ or ‘sparse’. Default: ‘ndarray’.


	overwrite (boolean) – Overwrite cachefiles. Default: False.


	datatags (list(str) or None) – List of datatags. Together with the dataset name,
the datatags are used to construct a cache file.
If cache=False, this option does not have an effect.
Default: None.


	store_whole_genome (boolean) – Indicates whether the whole genome or only ROI
should be loaded. Default: False.


	padding_value (float) – Padding value. Default: 0.


	channel_last (boolean) – This tells the constructor how to interpret the array dimensions.
It indicates whether the condition axis is the last dimension
or the first. For example, tensorflow expects the channel at the
last position. Default: True.













	
classmethod create_from_bam(name, bamfiles, roi=None, genomesize=None, conditions=None, min_mapq=None, binsize=None, stepsize=None, flank=0, resolution=1, storage='ndarray', dtype='float32', stranded=True, overwrite=False, pairedend='5prime', template_extension=0, datatags=None, cache=False, channel_last=True, normalizer=None, zero_padding=True, random_state=None, store_whole_genome=False)

	Create a Cover class from a bam-file (or files).

This constructor can be used to obtain coverage from BAM files.
For single-end reads the read will be counted at the 5 prime end.
Paired-end reads can be counted relative to the 5 prime ends of the read
(default) or with respect to the midpoint.


	Parameters

	
	name (str) – Name of the dataset


	bamfiles (str or list) – bam-file or list of bam files.


	roi (str or None) – Bed-file defining the region of interest.
If set to None, the coverage will be
fetched from the entire genome and a
genomic indexer must be attached later.


	genomesize (dict or None) – Dictionary containing the genome size.
If genomesize=None, the genome size
is determined from the bam header.
If store_whole_genome=False, this option does not have an effect.


	conditions (list(str) or None) – List of conditions.
If conditions=None,
the conditions are obtained from
the filenames (without the directories
and file-ending).


	min_mapq (int) – Minimal mapping quality.
Reads with lower mapping quality are
filtered out. If None, all reads are used.


	binsize (int or None) – Binsize in basepairs. For binsize=None,
the binsize will be determined from the bed-file.
If resolution is of type integer, this
requires that all intervals in the bed-file are of equal
length. If resolution is None, the intervals in the bed-file
may be of variable size.
Default: None.


	stepsize (int or None) – stepsize in basepairs for traversing the genome.
If stepsize is None, it will be set equal to binsize.
Default: None.


	flank (int) – Flanking size increases the interval size at both ends by
flank base pairs. Default: 0


	resolution (int or None) – If resolution represents an interger, it determines
the base pairs resolution by which an interval should be divided.
This requires equally sized bins or zero padding and
effectively reduces the storage for coverage data.
If resolution=None, the intervals will be represented by
a collapsed summary score.
For example, gene expression may be expressed by TPM in that manner.
In the latter case, variable size intervals are permitted
and zero padding does not have an effect.
Default: 1.


	storage (str) – Storage mode for storing the coverage data can be
‘ndarray’, ‘hdf5’ or ‘sparse’. Default: ‘ndarray’.


	dtype (str) – Typecode to be used for storage the data.
Default: ‘int’.


	stranded (boolean) – Indicates whether to extract stranded or
unstranded coverage. For unstranded
coverage, reads aligning to both strands will be aggregated.


	overwrite (boolean) – Overwrite cachefiles. Default: False.


	datatags (list(str) or None) – List of datatags. Together with the dataset name,
the datatags are used to construct a cache file.
If cache=False, this option does not have an effect.
Default: None.


	pairedend (str) – Indicates whether to count reads at the ‘5prime’ end or at
the ‘midpoint’ for paired-end reads. Default: ‘5prime’.


	template_extension (int) – Elongates intervals by template_extension which allows to properly count
template mid-points whose reads lie outside of the interval.
This option is only relevant for paired-end reads counted at the
‘midpoint’ and if the coverage is not obtained from the
whole genome, e.g. roi is not None.


	cache (boolean) – Indicates whether to cache the dataset. Default: False.


	channel_last (boolean) – Indicates whether the condition axis should be the last dimension
or the first. For example, tensorflow expects the channel at the
last position. Default: True.


	zero_padding (boolean) – Indicates if variable size intervals should be zero padded.
Zero padding is only supported with a specified
binsize. If zero padding is false, intervals shorter than binsize will
be skipped.
Default: True.


	normalizer (None, str or callable) – This option specifies the normalization that can be applied.
If None, no normalization is applied. If ‘zscore’, ‘zscorelog’, ‘rpkm’
then zscore transformation, zscore transformation on log transformed data
and rpkm normalization are performed, respectively.
If callable, a function with signature norm(garray) should be
provided that performs the normalization on the genomic array.
Default: None.


	random_state (None or int) – random_state used to internally randomize the dataset.
This option is best used when consuming data for training
from an HDF5 file. Since random data access from HDF5
may be probibitively slow, this option allows to randomize
the dataset during loading.
In case an integer-valued random_state seed is supplied,
make sure that all training datasets
(e.g. input and output datasets) use the same random_state
value so that the datasets are synchronized.
Default: None means that no randomization is used.


	store_whole_genome (boolean) – Indicates whether the whole genome or only ROI
should be loaded. If False, a bed-file with regions of interest
must be specified. Default: False













	
classmethod create_from_bed(name, bedfiles, roi=None, genomesize=None, conditions=None, binsize=None, stepsize=None, resolution=1, flank=0, storage='ndarray', dtype='float32', mode='binary', store_whole_genome=False, overwrite=False, channel_last=True, zero_padding=True, normalizer=None, collapser=None, minoverlap=None, random_state=None, datatags=None, cache=False)

	Create a Cover class from a bed-file (or files).


	Parameters

	
	name (str) – Name of the dataset


	bedfiles (str or list) – bed-file or list of bed files.


	roi (str or None) – Bed-file defining the region of interest.
If set to None a genomesize must be supplied and
a genomic indexer must be attached later.


	genomesize (dict or None) – Dictionary containing the genome size to fetch the coverage from.
If genomesize=None, the genome size
is fetched from the region of interest.


	conditions (list(str) or None) – List of conditions.
If conditions=None,
the conditions are obtained from
the filenames (without the directories
and file-ending).


	binsize (int or None) – Binsize in basepairs. For binsize=None,
the binsize will be determined from the bed-file.
If resolution is of type integer, this
requires that all intervals in the bed-file are of equal
length. If resolution is None, the intervals in the bed-file
may be of variable size.
Default: None.


	stepsize (int or None) – stepsize in basepairs for traversing the genome.
If stepsize is None, it will be set equal to binsize.
Default: None.


	resolution (int or None) – If resolution represents an interger, it determines
the base pairs resolution by which an interval should be divided.
This requires equally sized bins or zero padding and
effectively reduces the storage for coverage data.
If resolution=None, the intervals will be represented by
a collapsed summary score.
For example, gene expression may be expressed by TPM in that manner.
In the latter case, variable size intervals are permitted
and zero padding does not have an effect.
Default: 1.


	flank (int) – Flanking size increases the interval size at both ends by
flank bins. Note that the binsize is defined by the resolution parameter.
Default: 0.


	storage (str) – Storage mode for storing the coverage data can be
‘ndarray’, ‘hdf5’ or ‘sparse’. Default: ‘ndarray’.


	dtype (str) – Typecode to define the datatype to be used for storage.
Default: ‘int’.


	mode (str) – Mode of the dataset may be ‘binary’, ‘score’ or ‘categorical’.
Default: ‘binary’.


	overwrite (boolean) – Overwrite cachefiles. Default: False.


	datatags (list(str) or None) – List of datatags. Together with the dataset name,
the datatags are used to construct a cache file.
If cache=False, this option does not have an effect.
Default: None.


	store_whole_genome (boolean) – Indicates whether the whole genome or only ROI
should be loaded. If False, a bed-file with regions of interest
must be specified. Default: False.


	channel_last (boolean) – Indicates whether the condition axis should be the last dimension
or the first. For example, tensorflow expects the channel at the
last position. Default: True.


	zero_padding (boolean) – Indicates if variable size intervals should be zero padded.
Zero padding is only supported with a specified
binsize. If zero padding is false, intervals shorter than binsize will
be skipped.
Default: True.


	normalizer (None, str or callable) – This option specifies the normalization that can be applied.
If None, no normalization is applied. If ‘zscore’, ‘zscorelog’, ‘tpm’
then zscore transformation, zscore transformation on log transformed data
and rpkm normalization are performed, respectively.
If callable, a function with signature norm(garray) should be
provided that performs the normalization on the genomic array.
Default: None.


	collapser (None, str or callable) – This option defines how the genomic signal should be summarized when resolution
is None or greater than one. It is possible to choose a number of options by
name, including ‘sum’, ‘mean’, ‘max’. In addtion, a function may be supplied
that defines a custom aggregation method. If collapser is None,
‘max’ aggregation will be used.
Default: None.


	minoverlap (float or None) – Minimum fraction of overlap of a given feature with a ROI bin.
If None, any overlap (e.g. a single base-pair overlap) is
considered as overlap.
Default: None


	cache (boolean) – Indicates whether to cache the dataset. Default: False.


	random_state (None or int) – random_state used to internally randomize the dataset.
This option is best used when consuming data for training
from an HDF5 file. Since random data access from HDF5
may be probibitively slow, this option allows to randomize
the dataset during loading.
In case an integer-valued random_state seed is supplied,
make sure that all training datasets
(e.g. input and output datasets) use the same random_state
value so that the datasets are synchronized.
Default: None means that no randomization is used.













	
classmethod create_from_bigwig(name, bigwigfiles, roi=None, genomesize=None, conditions=None, binsize=None, stepsize=None, resolution=1, flank=0, storage='ndarray', dtype='float32', overwrite=False, datatags=None, cache=False, store_whole_genome=False, channel_last=True, zero_padding=True, normalizer=None, collapser=None, random_state=None, nan_to_num=True)

	Create a Cover class from a bigwig-file (or files).


	Parameters

	
	name (str) – Name of the dataset


	bigwigfiles (str or list) – bigwig-file or list of bigwig files.


	roi (str or None) – Bed-file defining the region of interest.
If set to None, the coverage will be
fetched from the entire genome and a
genomic indexer must be attached later.
Otherwise, the coverage is only determined
for the region of interest.


	genomesize (dict or None) – Dictionary containing the genome size.
If genomesize=None, the genome size
is determined from the bigwig file.
If store_whole_genome=False, this option does not have an effect.


	conditions (list(str) or None) – List of conditions.
If conditions=None,
the conditions are obtained from
the filenames (without the directories
and file-ending).


	binsize (int or None) – Binsize in basepairs. For binsize=None,
the binsize will be determined from the bed-file.
If resolution is of type integer, this
requires that all intervals in the bed-file are of equal
length. If resolution is None, the intervals in the bed-file
may be of variable size.
Default: None.


	stepsize (int or None) – stepsize in basepairs for traversing the genome.
If stepsize is None, it will be set equal to binsize.
Default: None.


	resolution (int or None) – If resolution represents an interger, it determines
the base pairs resolution by which an interval should be divided.
This requires equally sized bins or zero padding and
effectively reduces the storage for coverage data.
If resolution=None, the intervals will be represented by
a collapsed summary score.
For example, gene expression may be expressed by TPM in that manner.
In the latter case, variable size intervals are permitted
and zero padding does not have an effect.
Default: 1.


	flank (int) – Flanking size increases the interval size at both ends by
flank bins. Note that the binsize is defined by the resolution parameter.
Default: 0.


	storage (str) – Storage mode for storing the coverage data can be
‘ndarray’, ‘hdf5’ or ‘sparse’. Default: ‘ndarray’.


	dtype (str) – Typecode to define the datatype to be used for storage.
Default: ‘float32’.


	overwrite (boolean) – Overwrite cachefiles. Default: False.


	datatags (list(str) or None) – List of datatags. Together with the dataset name,
the datatags are used to construct a cache file.
If cache=False, this option does not have an effect.
Default: None.


	cache (boolean) – Indicates whether to cache the dataset. Default: False.


	store_whole_genome (boolean) – Indicates whether the whole genome or only ROI
should be loaded. If False, a bed-file with regions of interest
must be specified. Default: False.


	channel_last (boolean) – Indicates whether the condition axis should be the last dimension
or the first. For example, tensorflow expects the channel at the
last position. Default: True.


	zero_padding (boolean) – Indicates if variable size intervals should be zero padded.
Zero padding is only supported with a specified
binsize. If zero padding is false, intervals shorter than binsize will
be skipped.
Default: True.


	normalizer (None, str or callable) – This option specifies the normalization that can be applied.
If None, no normalization is applied. If ‘zscore’, ‘zscorelog’, ‘rpkm’
then zscore transformation, zscore transformation on log transformed data
and rpkm normalization are performed, respectively.
If callable, a function with signature norm(garray) should be
provided that performs the normalization on the genomic array.
Default: None.


	collapser (None, str or callable) – This option defines how the genomic signal should be summarized when resolution
is None or greater than one. It is possible to choose a number of options by
name, including ‘sum’, ‘mean’, ‘max’. In addtion, a function may be supplied
that defines a custom aggregation method. If collapser is None,
‘mean’ aggregation will be used.
Default: None.


	nan_to_num (boolean) – Indicates whether NaN values contained in the bigwig files should
be interpreted as zeros. Default: True


	random_state (None or int) – random_state used to internally randomize the dataset.
This option is best used when consuming data for training
from an HDF5 file. Since random data access from HDF5
may be probibitively slow, this option allows to randomize
the dataset during loading.
In case an integer-valued random_state seed is supplied,
make sure that all training datasets
(e.g. input and output datasets) use the same random_state
value so that the datasets are synchronized.
Default: None means that no randomization is used.

















	
class janggu.data.Bioseq(name, garray, gindexer, alphabet, channel_last)

	Bioseq class.

This class maintains a set of biological sequences,
e.g. nucleotide or amino acid sequences,
and determines its one-hot encoding.


	Parameters

	
	name (str) – Name of the dataset


	garray (GenomicArray) – A genomic array that holds the sequence data.


	gindexer (GenomicIndexer or None) – A genomic index mapper that translates an integer index to a
genomic coordinate. Can be None, if the Dataset is only loaded.


	alphabet (str) – String of sequence alphabet. For example, ‘ACGT’.









	
classmethod create_from_refgenome(name, refgenome, roi=None, binsize=None, stepsize=None, flank=0, order=1, storage='ndarray', datatags=None, cache=False, overwrite=False, channel_last=True, random_state=None, store_whole_genome=False)

	Create a Bioseq class from a reference genome.

This constructor loads nucleotide sequences from a reference genome.
If regions of interest (ROI) is supplied, only the respective sequences
are loaded, otherwise the entire genome is fetched.


	Parameters

	
	name (str) – Name of the dataset


	refgenome (str or Bio.SeqRecord.SeqRecord) – Reference genome location pointing to a fasta file
or a SeqRecord object from Biopython that contains the sequences.


	roi (str or None) – Bed-file defining the region of interest.
If set to None, the sequence will be
fetched from the entire genome and a
genomic indexer must be attached later.
Otherwise, the coverage is only determined
for the region of interest.


	binsize (int or None) – Binsize in basepairs. For binsize=None,
the binsize will be determined from the bed-file directly
which requires that all intervals in the bed-file are of equal
length. Otherwise, the intervals in the bed-file will be
split to subintervals of length binsize in conjunction with
stepsize. Default: None.


	stepsize (int or None) – stepsize in basepairs for traversing the genome.
If stepsize is None, it will be set equal to binsize.
Default: None.


	flank (int) – Flanking region in basepairs to be extended up and downstream of each interval.
Default: 0.


	order (int) – Order for the one-hot representation. Default: 1.


	storage (str) – Storage mode for storing the sequence may be ‘ndarray’ or ‘hdf5’.
Default: ‘ndarray’.


	datatags (list(str) or None) – List of datatags. Together with the dataset name,
the datatags are used to construct a cache file.
If cache=False, this option does not have an effect.
Default: None.


	cache (boolean) – Indicates whether to cache the dataset. Default: False.


	overwrite (boolean) – Overwrite the cachefiles. Default: False.


	store_whole_genome (boolean) – Indicates whether the whole genome or only ROI
should be loaded. If False, a bed-file with regions of interest
must be specified. Default: False.


	random_state (None or int) – random_state used to internally randomize the dataset.
This option is best used when consuming data for training
from an HDF5 file. Since random data access from HDF5
may be probibitively slow, this option allows to randomize
the dataset during loading.
In case an integer-valued random_state seed is supplied,
make sure that all training datasets
(e.g. input and output datasets) use the same random_state
value so that the datasets are synchronized.
Default: None means that no randomization is used.













	
classmethod create_from_seq(name, fastafile, storage='ndarray', seqtype='dna', order=1, fixedlen=None, datatags=None, cache=False, channel_last=True, overwrite=False)

	Create a Bioseq class from a biological sequences.

This constructor loads a set of nucleotide or amino acid sequences.
By default, the sequence are assumed to be of equal length.
Alternatively, sequences can be truncated and padded to a fixed length.


	Parameters

	
	name (str) – Name of the dataset


	fastafile (str or list(str) or list(Bio.SeqRecord)) – Fasta file or list of fasta files from which the sequences
are loaded or a list of Bio.SeqRecord.SeqRecord.


	seqtype (str) – Indicates whether a nucleotide or peptide sequence is loaded
using ‘dna’ or ‘protein’ respectively. Default: ‘dna’.


	order (int) – Order for the one-hot representation. Default: 1.


	fixedlen (int or None) – Forces the sequences to be of equal length by truncation or
zero-padding. If set to None, it will be assumed that the sequences
are already of equal length. An exception is raised if this is
not the case. Default: None.


	storage (str) – Storage mode for storing the sequence may be ‘ndarray’ or ‘hdf5’.
Default: ‘ndarray’.


	datatags (list(str) or None) – List of datatags. Together with the dataset name,
the datatags are used to construct a cache file.
If cache=False, this option does not have an effect.
Default: None.


	cache (boolean) – Indicates whether to cache the dataset. Default: False.


	overwrite (boolean) – Overwrite the cachefiles. Default: False.

















	
class janggu.data.Array(name, array, conditions=None)

	Array class.

This datastructure wraps arbitrary numpy.arrays for a
deep learning application with Janggu.
The main difference to an ordinary numpy.array is that
Array has a name attribute.


	Parameters

	
	name (str) – Name of the dataset


	array (numpy.array) – Numpy array.


	conditions (list(str) or None) – Conditions or label names of the dataset.













	
class janggu.data.GenomicIndexer(binsize, stepsize, flank=0, zero_padding=True, collapse=False, random_state=None)

	GenomicIndexer maps a set of integer indices to respective
genomic intervals.

The genomic intervals can be directly used to obtain data from a genomic
array.


	
classmethod create_from_file(regions, binsize, stepsize, flank=0, zero_padding=True, collapse=False, random_state=None)

	Creates a GenomicIndexer object.

This method constructs a GenomicIndexer from
a given BED or GFF file.


	Parameters

	
	regions (str or list(Interval)) – Path to a BED or GFF file.


	binsize (int or None) – Binsize in base pairs. If None, the binsize is obtained from
the interval lengths in the bed file, which requires intervals
to be of equal length.


	stepsize (int or None) – Stepsize in base pairs. If stepsize is None,
stepsize is set to equal to binsize.


	flank (int) – flank size in bp to be attached to
both ends of a region. Default: 0.


	zero_padding (boolean) – zero_padding indicate if variable sequence
lengths are used in conjunction with zero-padding.
If zero_padding is True, a binsize must be specified.
Default: True.


	collapse (boolean) – collapse indicates that the genomic interval will be represented by a
scalar summary value. For example, the gene expression value in TPM.
In this case, zero_padding does not have an effect. Intervals
may be of fixed or variable lengths.
Default: False.


	random_state (None or int) – random_state for shuffling intervals. Default: None



















Dataset wrappers

Utilities for reshaping, data augmentation, NaN removal.







	ReduceDim(array[, aggregator, axis])

	ReduceDim class.



	NanToNumConverter(array)

	NanToNumConverter class.



	RandomOrientation(array)

	RandomOrientation class.



	RandomSignalScale(array, deviance)

	RandomSignalScale class.







	
class janggu.data.ReduceDim(array, aggregator=None, axis=None)

	ReduceDim class.

This class wraps an 4D coverage object and reduces
the middle two dimensions by applying the aggregate function.
Therefore, it transforms the 4D object into a table-like 2D representation

Example

# given some dataset, e.g. a Cover object
# originally, the cover object is a 4D-object.
cover.shape
cover = ReduceDim(cover, aggregator='mean')
cover.shape
# Afterwards, the cover object is 2D, where the second and
# third dimension have been averaged out.






	Parameters

	
	array (Dataset) – Dataset


	aggregator (str or callable) – Aggregator used for reducing the intermediate dimensions.
Available aggregators are ‘sum’, ‘mean’, ‘max’ for performing
summation, averaging or obtaining the maximum value.
It is also possible to supply a callable directly that performs the
operation.
Default: ‘sum’


	axis (None or tuple(ints)) – Dimensions over which to perform aggregation. Default: None
aggregates with axis=(1, 2)













	
class janggu.data.NanToNumConverter(array)

	NanToNumConverter class.

This wrapper dataset converts NAN’s in the dataset to
zeros.

Example

# given some dataset, e.g. a Cover object
cover
cover = NanToNumConverter(cover)

# now all remaining NaNs will be converted to zeros.






	Parameters

	array (Dataset) – Dataset










	
class janggu.data.RandomOrientation(array)

	RandomOrientation class.

This wrapper randomly inverts the directionality of
the signal tracks.
For example a signal track is randomely presented in 5’ to 3’ and 3’ to 5’
orientation. Furthermore, if the dataset is stranded, the strand is switched
as well.


	Parameters

	array (Dataset) – Dataset object must be 4D.










	
class janggu.data.RandomSignalScale(array, deviance)

	RandomSignalScale class.

This wrapper performs
performs random uniform scaling of the original input.
For example, this can be used to randomly change the peak or signal
heights during training.


	Parameters

	
	array (Dataset) – Dataset object


	deviance (float) – The signal is rescaled using (1 + uniform(-deviance, deviance)) x original signal.















Normalization and transformation







	LogTransform()

	Log transformation of intput signal.



	PercentileTrimming(percentile)

	Percentile trimming normalization.



	RegionLengthNormalization([regionmask])

	Normalization for variable-region length.



	ZScore([mean, std])

	ZScore normalization.



	ZScoreLog([mean, std])

	ZScore normalization after log transformation.



	normalize_garray_tpm(garray)

	This function performs TPM normalization for a given GenomicArray.







	
class janggu.data.LogTransform

	Log transformation of intput signal.

This class performs log-transformation
of a GenomicArray using log(x + 1.) to avoid NAN’s from zeros.






	
class janggu.data.PercentileTrimming(percentile)

	Percentile trimming normalization.

This class performs percentile trimming of a GenomicArray to aleviate
the effect of outliers.
All values that exceed the value associated with the given percentile
are set to be equal to the percentile.


	Parameters

	percentile (float) – Percentile at which to perform chromosome-level trimming.










	
class janggu.data.RegionLengthNormalization(regionmask=None)

	Normalization for variable-region length.

This class performs region length normalization of a GenomicArray.
This is relevant when genomic features are of variable size, e.g.
enhancer regions of different width or when using variable length genes.


	Parameters

	regionmask (str or GenomicIndexer, None) – A bed file or a genomic indexer that contains the masking region
that is considered for the signal. For instance, when normalizing
gene expression to TPM, the mask contains exons. Otherwise, the
TPM would normalize for the full length gene annotation.
If None, no mask is included.










	
class janggu.data.ZScore(mean=None, std=None)

	ZScore normalization.

This class performs ZScore normalization of a GenomicArray.
It automatically adjusts for variable interval lenths.


	Parameters

	
	means (float or None) – Provided means will be applied for zero-centering.
If None, the means will be determined
from the GenomicArray and then applied.
Default: None.


	stds (float or None) – Provided standard deviations will be applied for scaling.
If None, the stds will be determined
from the GenomicArray and then applied.
Default: None.













	
class janggu.data.ZScoreLog(mean=None, std=None)

	ZScore normalization after log transformation.

This class performs ZScore normalization after log-transformation
of a GenomicArray using log(x + 1.) to avoid NAN’s from zeros.
It automatically adjusts for variable interval lenths.


	Parameters

	
	means (float or None) – Provided means will be applied for zero-centering.
If None, the means will be determined
from the GenomicArray and then applied.
Default: None.


	stds (float or None) – Provided standard deviations will be applied for scaling.
If None, the stds will be determined
from the GenomicArray and then applied.
Default: None.













	
janggu.data.normalize_garray_tpm(garray)

	This function performs TPM normalization
for a given GenomicArray.








Visualization utilitites


	
janggu.data.plotGenomeTrack(tracks, chrom, start, end, figsize=(10, 5), plottypes=None)

	plotGenomeTrack shows plots of a specific interval from cover objects data.

It takes one or more cover objects as well as a genomic interval consisting
of chromosome name, start and end and creates
a genome browser-like plot.


	Parameters

	
	tracks (janggu.data.Cover, list(Cover), janggu.data.Track or list(Track)) – One or more track objects.


	chrom (str) – chromosome name.


	start (int) – The start of the required interval.


	end (int) – The end of the required interval.


	figsize (tuple(int, int)) – Figure size passed on to matplotlib.


	plottype (None or list(str)) – Plot type indicates whether to plot coverage tracks as line plots,
heatmap, or seqplot using ‘line’ or ‘heatmap’, respectively.
By default, all coverage objects are depicted as line plots if plottype=None.
Otherwise, a list of types must be supplied containing the plot types for each
coverage object explicitly. For example, [‘line’, ‘heatmap’, ‘seqplot’].
While, ‘line’ and ‘heatmap’ can be used for any type of coverage data,
‘seqplot’ is reserved to plot sequence influence on the output. It is
intended to be used in conjunction with ‘input_attribution’ method which
determines the importance of paricular sequence letters for the output prediction.






	Returns

	matplotlib Figure – A matplotlib figure illustrating the genome browser-view of the coverage
objects for the given interval.
To depict and save the figure the native matplotlib functions show()
and savefig() can be used.










	
class janggu.data.Track(data, height)

	General track


	Parameters

	
	data (Cover object) – Coverage object


	height (int) – Track height.













	
class janggu.data.HeatTrack(data, height=3)

	Heatmap Track

Visualizes genomic data as heatmap.


	Parameters

	
	data (Cover object) – Coverage object


	height (int) – Track height. Default=3













	
class janggu.data.LineTrack(data, height=3, linestyle='-', marker='o', color='b', linewidth=2)

	Line track

Visualizes genomic data as line plot.


	Parameters

	
	data (Cover object) – Coverage object


	height (int) – Track height. Default=3













	
class janggu.data.SeqTrack(data, height=3)

	Sequence Track

Visualizes sequence importance.


	Parameters

	
	data (Cover object) – Coverage object


	height (int) – Track height. Default=3


















          

      

      

    

  

    
      
          
            
  
janggu - Utilities for creating, fitting and evaluating models

This section describes the interface and utilities to build
build and evaluate deep learning applications with janggu.

Janggu model and utilities for deep learning in genomics.







	Janggu(inputs, outputs[, name])

	Janggu class



	Janggu.create(template[, modelparams, …])

	Janggu constructor method.



	Janggu.create_by_name(name[, custom_objects])

	Creates a Janggu object by name.



	Janggu.fit([inputs, outputs, batch_size, …])

	Model fitting.



	Janggu.predict(inputs[, batch_size, …])

	Performs a prediction.



	Janggu.evaluate([inputs, outputs, …])

	Evaluates the performance.



	input_attribution(model, inputs[, chrom, …])

	Evaluates the integrated gradients method on the input coverage tracks.







Janggu Model


	
class janggu.Janggu(inputs, outputs, name=None)

	Janggu class

The class Janggu maintains a keras.models.Model
object, that is an instance of a neural network.
Furthermore, to the outside, Janggu behaves similarly to
keras.models.Model which allows you to create,
fit, and evaluate the model.


	Parameters

	
	inputs (Input or list(Input)) – Input layer or list of Inputs as defined by keras.
See https://keras.io/.


	outputs (Layer or list(Layer)) – Output layer or list of outputs. See https://keras.io/.


	name (str) – Name of the model.








Examples

Define a Janggu object similar to keras.models.Model
using Input and Output layers.

from keras.layers import Input
from keras.layers import Dense

from janggu import Janggu

# Define neural network layers using keras
in_ = Input(shape=(10,), name='ip')
layer = Dense(3)(in_)
output = Dense(1, activation='sigmoid', name='out')(layer)

# Instantiate a model.
model = Janggu(inputs=in_, outputs=output, name='test_model')
model.summary()






	
compile(optimizer, loss, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None)

	Model compilation.

This method delegates the compilation to
keras.models.Model.compile. See also https://keras.io/models/model/

Examples

model.compile(optimizer='adadelta', loss='binary_crossentropy')










	
classmethod create(template, modelparams=None, inputs=None, outputs=None, name=None)

	Janggu constructor method.

This method instantiates a Janggu model with
model template and parameters. It also allows to
automatically infer and extend the correct
input and output layers for the network.


	Parameters

	
	template (function) – Python function that defines a model template of a neural network.
The function signature must adhere to the signature
template(inputs, inputs, outputs, modelparams)
and is expected to return
(input_tensor, output_tensor) of the neural network.


	modelparams (list or tuple or None) – Additional model parameters that are passed along to template
upon creation of the neural network. For instance,
this could contain number of neurons at each layer.
Default: None.


	inputs (Dataset, list(Dataset) or None) – Input datasets from which the input layer shapes should be derived.
Use this option together with the inputlayer decorator (see Example below).


	outputs (Dataset, list(Dataset) or None) – Output datasets from which the output layer shapes should be derived.
Use this option toghether with outputdense or outputconv
decorators (see Example below).


	name (str or None) – Model name. If None, a unique model name is generated
based on the model configuration and network architecture.








Examples

Specify a model using a model template and parameters:

def test_manual_model(inputs, inp, oup, params):
    in_ = Input(shape=(10,), name='ip')
    layer = Dense(params)(in_)
    output = Dense(1, activation='sigmoid', name='out')(in_)
    return in_, output

# Defines the same model by invoking the definition function
# and the create constructor.
model = Janggu.create(template=test_manual_model, modelparams=3)
model.summary()





Specify a model using automatic input and output layer determination.
That is, only the model body needs to be specified:

import numpy as np
from janggu import Janggu
from janggu import inputlayer, outputdense
from janggu.data import Array

# Some random data which you would like to use as input for the
# model.
DATA = Array('ip', np.random.random((1000, 10)))
LABELS = Array('out', np.random.randint(2, size=(1000, 1)))

# The decorators inputlayer and outputdense
# extract the layer shapes and append the respective layers
# to the network
# so that only the model body remains to be specified.
# Note that the the decorator order matters.
# inputlayer must be specified before outputdense.
@inputlayer
@outputdense(activation='sigmoid')
def test_inferred_model(inputs, inp, oup, params):
    with inputs.use('ip') as in_:
        # the with block allows for easy
        # access of a specific named input.
        output = Dense(params)(in_)
    return in_, output

# create a model.
model = Janggu.create(template=test_inferred_model, modelparams=3,
                      name='test_model',
                      inputs=DATA,
                      outputs=LABELS)










	
classmethod create_by_name(name, custom_objects=None)

	Creates a Janggu object by name.

This option is used to load a pre-trained model.


	Parameters

	
	name (str) – Name of the model.


	custom_objects (dict or None) – This allows loading of custom layers using load_model.
All janggu specific layers are automatically included as custom_objects.
Default: None








Examples

in_ = Input(shape=(10,), name='ip')
layer = Dense(3)(in_)
output = Dense(1, activation='sigmoid', name='out')(layer)

# Instantiate a model.
model = Janggu(inputs=in_, outputs=output, name='test_model')

# saves the model to <janggu_results>/models
model.save()

# remove the original model
del model

# reload the model
model = Janggu.create_by_name('test_model')










	
evaluate(inputs=None, outputs=None, batch_size=None, sample_weight=None, steps=None, datatags=None, callbacks=None, use_multiprocessing=False, workers=1)

	Evaluates the performance.

This method is used to evaluate a given model.
All of the parameters are directly delegated the
evalute_generator of the keras model.
See https://keras.io/models/model/#methods.


	Parameters

	
	inputs (Dataset, list(Dataset) or Sequence (keras.utils.Sequence)) – Input Dataset or Sequence to use for evaluating the model.


	outputs (Dataset, list(Dataset) or None) – Output Dataset containing the training targets. If a Sequence
is used for inputs, outputs will have no effect.


	batch_size (int or None) – Batch size. If set to None a batch size of 32 is used.


	sample_weight (np.array or None) – Sample weights. See https://keras.io.


	steps (int, None.) – Number of predict steps. If None, this value is determined from
the dataset size and the batch_size.


	datatags (list(str) or None) – Tags to annotate the evaluation results. Default: None.


	callbacks (List(Scorer or str)) – Scorer instances to be applied on the predictions. Furthermore,
commonly used scoring metrics can be added by name, including
‘roc’, ‘auroc’, ‘prc’, ‘auprc’ for evaluating binary classification
applications and ‘cor’ (for Pearson’s correlation), ‘mae’, ‘mse’
and ‘var_explained’ for regression applications.


	use_multiprocessing (boolean) – Whether to use multiprocessing for the prediction. Default: False.


	workers (int) – Number of workers to use. Default: 1.








Examples

model.evaluate(DATA, LABELS)

# binary classification evaluation with callbacks
model.evaluate(DATA, LABELS, callcacks=['auprc', 'auroc'])










	
fit(inputs=None, outputs=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, use_multiprocessing=False, workers=1)

	Model fitting.

This method is used to fit a given model.
Most of parameters are directly delegated the
fit_generator of the keras model.


	Parameters

	
	inputs (Dataset, list(Dataset) or Sequence (keras.utils.Sequence)) – Input Dataset or Sequence to use for fitting the model.


	outputs (Dataset, list(Dataset) or None) – Output Dataset containing the training targets. If a Sequence
is used for inputs, outputs will have no effect.


	batch_size (int or None) – Batch size. If set to None a batch size of 32 is used.


	epochs (int) – Number of epochs. Default: 1.


	verbose (int) – Verbosity level. See https://keras.io.


	callbacks (List(keras.callbacks.Callback)) – Callbacks to be applied during training. See https://keras.io/callbacks


	validation_data (tuple, Sequence or None) – Validation data can be a tuple (input_dataset, output_dataset),
or (input_dataset, output_dataset, sample_weights) or
a keras.utils.Sequence instance or a list of validation chromsomoes.
The latter choice only works with when using Cover and Bioseq dataset.
This allows you to train on a dedicated set of chromosomes
and to validate the performance on respective heldout chromosomes.
If None, validation is not applied.


	shuffle (boolean) – shuffle batches. Default: True.


	class_weight (dict) – Class weights. See https://keras.io.


	sample_weight (np.array or None) – Sample weights. See https://keras.io.


	initial_epoch (int) – Initial epoch at which to start training.


	steps_per_epoch (int, None.) – Number of steps per epoch. If None, this value is determined from
the dataset size and the batch_size.


	use_multiprocessing (boolean) – Whether to use multiprocessing. See https://keras.io. Default: False.


	workers (int) – Number of workers to use in multiprocessing mode. Default: 1.








Examples

model.fit(DATA, LABELS)










	
get_config()

	Get model config.






	
name

	Model name






	
predict(inputs, batch_size=None, verbose=0, steps=None, layername=None, datatags=None, callbacks=None, use_multiprocessing=False, workers=1)

	Performs a prediction.

This method predicts the targets.
All of the parameters are directly delegated the
predict_generator of the keras model.
See https://keras.io/models/model/#methods.


	Parameters

	
	inputs (Dataset, list(Dataset) or Sequence (keras.utils.Sequence)) – Input Dataset or Sequence to use for fitting the model.


	batch_size (int or None) – Batch size. If set to None a batch size of 32 is used.


	verbose (int) – Verbosity level. See https://keras.io.


	steps (int, None.) – Number of predict steps. If None, this value is determined from
the dataset size and the batch_size.


	layername (str or None) – Layername for which the prediction should be performed. If None,
the output layer will be used automatically.


	datatags (list(str) or None) – Tags to annotate the evaluation results. Default: None.


	callbacks (List(Scorer)) – Scorer instances to be applied on the predictions.


	use_multiprocessing (boolean) – Whether to use multiprocessing for the prediction. Default: False.


	workers (int) – Number of workers to use. Default: 1.








Examples

model.predict(DATA)










	
predict_variant_effect(bioseq, variants, conditions, output_folder, condition_filter=None, batch_size=None)

	Evaluates the performance.


	Parameters

	
	bioseq (Bioseq) – Input sequence containing the reference genome.


	variants (str) – File name of a VCF file containg the variants under study.


	conditions (list(str)) – Condition labels for each output prediction.


	output_folder (str) – The method produces an hdf5 and a bed file as output.
The bed-file contains the variant positions while the
hdf5 file contains the reference and alternative variant scores
for each output feature.


	condition_filter (str or None) – Regular expression filter on which conditions should be evaluated.
If None, all output conditions will be returned.


	batch_size (int, None.) – Batch size. If None, a batch_size of 128 is used.






	Returns

	tuple – Tuple containing the output filenames: an hdf5 and a bed file.





Examples

# Evaluate all variants and all conditions (outputs)
model.predict_variant_effect(DATA, VARIANTS, CONDITIONS,
                             'vcfoutput')

# Evaluate all variants and a subset of conditions (Ctcf output labels)
model.predict_variant_effect(DATA, LABELS, CONDITIONS,
                             'vcfoutput_subset',
                             contition_filter='Cfcf')










	
save(filename=None, overwrite=True, show_shapes=True)

	Saves the model.


	Parameters

	
	filename (str) – Filename of the stored model. Default: None.


	overwrite (bool) – Overwrite a stored model. Default: True.













	
summary()

	Prints the model definition.












Input feature attribution


	
janggu.input_attribution(model, inputs, chrom=None, start=None, end=None)

	Evaluates the integrated gradients method on the input coverage tracks.

This allows to attribute feature importance values to the prediction scores.
Integrated gradients have been introduced in
Sundararajan, Taly and Yan, Axiomatic Attribution for Deep Networks.
PMLR 70, 2017.

The method can either be called, by specifying the region of interest directly
by setting chrom, start and end. Alternatively, it is possible to specify the
region index. For example, the n^th region of the dataset.


	Parameters

	
	model (Janggu) – Janggu model wrapper


	inputs (Dataset, list(Dataset)) – Input Dataset.


	chrom (str or None) – Chromosome name.


	start (int or None) – Region start.


	end (int or None) – Region end.








Examples

# Suppose DATA is a Bioseq or Cover object
# To query the input feature importance of a specific genomic region
# use
input_attribution(model, DATA, chrom='chr1', start=start, end=end)












Performance evaluation







	Scorer.score(model, predicted[, outputs, …])

	Scoring of the predictions relative to true outputs.



	Scorer.export(path, collection_name[, datatags])

	Exporting of the results.







	
class janggu.Scorer(name, score_fct=None, conditions=None, exporter=<janggu.utils.ExportJson object>, immediate_export=True, percondition=True, subdir=None)

	Scorer class.

This class implements the callback interface that is used
with Janggu.evaluate and Janggu.predict.
The scorer maintains a scoring callable and an exporter callable
which take care of determining the desired score and writing
the result into a desired file, e.g. json, tsv or a figure, respectively.


	Parameters

	
	name (str) – Name of the score to be performed.


	score_fct (None or callable) – Callable that is invoked for scoring.
This callable must satisfy the signature
fct(y_true, y_pred) if used with
Janggu.evaluate and fct(y_pred) if
used with Janggu.predict. The returned score should be
compatible with the exporter.


	conditions (list(str) or None) – List of strings describing the conditions dimension of the dataset
that is processed. If None, conditions are extracted from the
y_true Dataset, if available. Otherwise, the conditions are integers
ranging from zero to len(conditions) - 1.


	exporter (callable) – Exporter function is used to export the scoring results
in the desired manner,
e.g. as json or tsv file. This function must satisfy the signature
fct(output_path, filename_prefix, results).


	immediate_export (boolean) – If set to True, the exporter function will be invoked immediately
after the evaluation of the dataset. If set to False, the results
are maintained in memory which allows to export the results as a
collection rather than individually.


	percondition (boolean) – Indicates whether the evaluation should be performed per condition
or across all conditions. The former determines a score for each
output condition, while the latter first flattens the array and then
scores across conditions. Default: percondition=True.


	subdir (str) – Name of the subdir to store the output in. Default: None
means the results are stored in the ‘evaluation’ subdir.









	
export(path, collection_name, datatags=None)

	Exporting of the results.

When calling export, the results which have been collected
in self.results by using the score method are
written to disk by invoking the supplied exporter function.


	Parameters

	
	path (str) – Output directory.


	collection_name (str) – Subdirectory in which the results should be stored. E.g. Modelname.


	datatags (list(str) or None) – Optional tags describing the dataset. E.g. ‘training_set’.
Default: None













	
score(model, predicted, outputs=None, datatags=None)

	Scoring of the predictions relative to true outputs.

When calling score, the provided
score_fct is applied
for each layer and condition separately.
The result scores are maintained in a dict that uses
(modelname, layername, conditionname) as key
and as values another dict of the form:
{'date':<currenttime>, 'value': derived_score, 'tags':datatags}.


	Parameters

	
	model (Janggu) – a Janggu object representing the current model.


	predicted (dict{name: np.array}) – Predicted outputs.


	outputs (dict{name: Dataset} or None) – True output labels. The Scorer is used with Janggu.evaluate
this argument will be present. With Janggu.evaluate it is
absent.


	datatags (list(str) or None) – Optional tags describing the dataset, e.g. ‘test_set’.





















Performance score utilities


	
class janggu.ExportJson(filesuffix='json', annot=None, row_names=None)

	Method that dumps the results in a json file.


	Parameters

	
	filesuffix (str) – Target file ending. Default: ‘json’.


	annot (None, dict) – Annotation data. If encoded as dict the key indicates the name,
while the values holds a list of annotation labels. Default: None.


	row_names (None or list) – List of row names. Default: None.













	
class janggu.ExportTsv(filesuffix='tsv', annot=None, row_names=None)

	Method that dumps the results as tsv file.

This class can be used to export general table summaries.


	Parameters

	
	filesuffix (str) – File ending. Default: ‘tsv’.


	annot (None, dict) – Annotation data. If encoded as dict the key indicates the name,
while the values holds a list of annotation labels. For example,
this can be used to store the true output labels.
Default: None.


	row_names (None, list) – List of row names. For example, chromosomal loci. Default: None.













	
class janggu.ExportBed(gindexer, resolution)

	Export predictions to bed.

This function exports the predictions to bed format which allows you to
inspect the predictions in a genome browser.


	Parameters

	
	gindexer (GenomicIndexer) – GenomicIndexer that links the prediction for a certain region to
its associated genomic coordinates.


	resolution (int) – Used to output the results.













	
class janggu.ExportBigwig(gindexer)

	Export predictions to bigwig.

This function exports the predictions to bigwig format which allows you to
inspect the predictions in a genome browser.
Importantly, gindexer must contain non-overlapping windows!


	Parameters

	gindexer (GenomicIndexer) – GenomicIndexer that links the prediction for a certain region to
its associated genomic coordinates.










	
class janggu.ExportScorePlot(figsize=None, xlabel=None, ylabel=None, fform=None)

	Exporting score plot.

This class can be used for producing an AUC or PRC plot.


	Parameters

	
	figsize (tuple(int, int)) – Used to specify the figure size for matplotlib.


	xlabel (str or None) – xlabel used for the plot.


	ylabel (str or None) – ylabel used for the plot.


	fform (str or None) – Output file format. E.g. ‘png’, ‘eps’, etc. Default: ‘png’.















Decorators for network construction


	
janggu.inputlayer(func)

	Input layer decorator

This decorator appends an input layer to the
network with the correct shape and name.






	
janggu.outputdense(activation)

	Output layer decorator

This decorator appends an output layer to the
network with the correct shape, activation and layer name.






	
janggu.outputconv(activation)

	Output layer decorator

This decorator appends an output convolution layer to the
network with the correct shape, activation and layer name.








Genomics-specific keras layers


	
class janggu.DnaConv2D(layer, merge_mode='max', **kwargs)

	DnaConv2D layer.

This layer wraps a normal keras Conv2D layer for scanning DNA
sequences on both strands using the same weight matrices.


	Parameters

	merge_mode (str or None) – Specifies how to merge information from both strands. Options:
{“max”, “ave”, “concat”, None}
Default: “max”.





Examples

To scan both DNA strands for motif matches use

xin = Input((200, 1, 4))
dnalayer = DnaConv2D(Conv2D(nfilters, filter_shape))(xin)










	
class janggu.Complement(*args, **kwargs)

	Complement layer.

This layer can be used with keras to determine
the complementary DNA sequence in one-hot encoding
from a given DNA sequences.
It supports higher-order nucleotide representation,
e.g. dinucleotides, trinucleotides.
The order of the nucleotide representation is automatically
determined from the previous layer. To this end,
the input layer is assumed to hold the nucleotide representation
dimension 3.
The layer uses a permutation matrix that is multiplied
with the original input dataset in order to evaluate
the complementary sequence’s one hot representation.

forwardstrand_dna = Input((200, 1, 4))
reversestrand_dna = Complement()(forwardstrand_dna)
# this also works for higher-order one-hot encoding.










	
class janggu.Reverse(axis=1, **kwargs)

	Reverse layer.

This layer can be used with keras to reverse
a tensor for a given axis.


	Parameters

	axis (int) – Axis which needs to be reversed. Default: 1.










	
class janggu.LocalAveragePooling2D(window_size=1, **kwargs)

	LocalAveragePooling2D layer.

This layer performs window averaging along the lead
axis of an input tensor using a given window_size.
At the moment, it assumes data_format=’channels_last’.
This is similar to applying GlobalAveragePooling2D,
but where the average is determined in a window of length
‘window_size’, rather than along the entire sequence length.


	Parameters

	window_size (int) – Averaging window size. Default: 1.













          

      

      

    

  

    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.


Bug reports

When reporting a bug [https://github.com/BIMSBbioinfo/janggu/issues] please include:



	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.










Documentation improvements

Janggu could always use more documentation, whether as part of the
official Janggu docs, in docstrings, or even on the web in blog posts,
articles, and such.




Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/BIMSBbioinfo/janggu/issues.

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that code contributions are welcome :)







Development

To set up janggu for local development:


	Fork janggu [https://github.com/BIMSBbioinfo/janggu]
(look for the “Fork” button).


	Clone your fork locally:

git clone git@github.com:your_name_here/janggu.git







	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.



	When you’re done making changes, run all the checks, doc builder and spell checker with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox







	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature







	Submit a pull request through the GitHub website.





Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:


	Include passing tests (run tox) 1.


	Update documentation when there’s new API, functionality etc.


	Add a note to CHANGELOG.rst about the changes.


	Add yourself to AUTHORS.rst.





	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/BIMSBbioinfo/janggu/pull_requests] for each change you add in the pull request.

It will be slower though …








Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature





To run all the test environments in parallel (you need to pip install detox):

detox
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Changelog


0.9.3 (2019-07-08)


	View mechanism added which allows to reuse the same dataset for different purposes, e.g. training set and test set.


	Added a dataset randomization which allows to internally randomize the data in order to avoid having to use shuffle=True with the fit method. This allows fetch randomized data in coherent chunks from hdf5 format files which improves access time.


	Added lazy loading mechanism for DNA and BED files, which defer the determination of the genome size to the dataset creation phase, but does not perform it when loading cached files to improve reload time.


	Caching logic improved in order to maximize the amount of reusability of dataset. For example, when the whole genome is loaded, the data can later be reloaded with different binsizes.


	Variant effect prediction functionality added.


	Improved efficiency for loading coverage from an array.


	Added axis option to ReduceDim


	Added Track classes to improve flexibility on plotGenomeTrack







0.9.2 (2019-05-04)


	Bugfix: Bioseq caching mechanism fixed.







0.9.1 (2019-05-03)


	Removed HTSeq dependence in favour of pybedtools for parsing BED, GFF, etc. This also introduces the requirement to have bedtools installed on the system, but it allows to parse BED-like files faster and more conveniently.


	Internal rearrangements for GenomicArray store_whole_genome=False. Now the data is stored as one array in a dict-like handle with the dummy key ‘data’ rather than storing the data in a fragmented fashion using as key-values the genomic interval and the respective coverages associated with them. This makes storage and processing more efficient.


	Bugfix: added conditions property to wrapper datasets.







0.9.0 (2019-03-20)

Added various features and bug fixes:

Changes in janggu.data


	Added new dataset wrapper to remove NaNs: NanToNumConverter


	Added new dataset wrappers for data augmentation: RandomOrientation, RandomSignalScale


	Adapted ReduceDim wrapper: added aggregator argument


	plotGenomeTrack added figsize option


	plotGenomeTrack added other plot types, including heatmap and seqplot.


	plotGenomeTrack refactoring of internal code


	Bioseq bugfix: Fixed issue for reverse complementing N’s in the sequence.


	GenomicArray: condition, order, resolution are not read from the cache anymore, but from the arguments to avoid inconsistencies


	Normalization of Cover can handle a list of normalizer callables which are applied in turn


	Normaliation and Transformation: Added PercentileTrimming, RegionLengthNormalization, LogTransform


	ZScore and ZScoreLog do not apply RegionLengthNormalization by default anymore.


	janggu.data version-aware caching of datasets included


	Added copy method for janggu datasets.


	split_train_test refactored


	removed obsolete transformations attribute from the datasets


	Adapted the documentation


	Refactoring according to suggestions from isort and pylint




Changes in janggu


	Added input_attribution via integrated gradients for feature importance assignment


	Performance scoring by name for Janggu.evaluate for a number common metrices, including ROC, PRC, correlation, variance explained, etc.


	training.log is stored by default for each model


	Added model_from_json, model_from_yaml wrappers


	inputlayer decorator only instantiates Input layers if inputs == None, which makes the use of inputlayer less restrictive when using nested functions


	Added create_model method to create a keras model directly


	Adapted the documentation


	Refactoring according to suggestions from isort and pylint







0.8.6 (2019-03-03)


	Bugfix for ROIs that reach beyond the chromosome when loading Bioseq datasets. Now, zero-padding is performed for intervals that stretch over the sequence ends.







0.8.5 (2019-01-09)


	Updated abstract, added logo


	Utility: janggutrim command line tool for cutting bed file regions to avoid unwanted rounding effects. If rounding issues are detected an error is raised.


	Caching mechanism revisited. Caching of datasets is based on determining the sha256 hash of the dataset. If the data or some parameters change, the files are automatically reloaded. Consequently, the arguments overwrite and datatags become obsolete and have been marked for deprecation.


	Refactored access of GenomicArray


	Added ReduceDim wrapper to convert a 4D Cover object to a 2D table-like object.







0.8.4 (2018-12-11)


	Updated installation instructions in the readme







0.8.3 (2018-12-05)


	Fixed issues for loading SparseGenomicArray


	Made GenomicIndexer.filter_by_region aware of flank


	Fixed BedLoader of partially overlapping ROI and bedfiles issue using filter_by_region.


	Adapted classifier, license and keywords in setup.py


	Fixed hyperlinks







0.8.2 (2018-12-04)


	Bugfix for zero-padding functionality


	Added ndim for keras compatibility







0.8.1 (2018-12-03)


	Bugfix in GenomicIndexer.create_from_region







0.8.0 (2018-12-02)


	Improved test coverage


	Improved linter issues


	Bugs fixed


	Improved documentation for scorers


	Removed kwargs for scorers and exporters


	Adapted exporters to classes







0.7.0 (2018-12-01)


	First public version
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