JamDB Documentation
Release 0.3.0

Center for Open Science

Oct 22, 2018

Contents

Prerequisites 3
Installing JamDB 5
2.0 PSS . e e e e e e e 5
Namespaces 7
3.1 Creating a NAMESPACE . .+« « ¢ v v v v e 7
3.2 Authorizing againSt a NAMESPACE . . « . v v v v v v v e e e e e e e e e e e e e e e e e e 7
3.3 Investigating @ NAmMEeSPACE « + « « & v v v v v e 8
3.4 Namespace Permissions L e e 8
Collections 11
4.1 Creatingacollection o i it e e e e e e e e e e e 11
4.2 Adding collection permisSsions oo e e e e e e 12
Documents 17
5.1 Creating Documents o i i e e e e e e e e e e e e e e e 17
5.2 Filtering, Pagination, and Sorting L e 18

52.1 Filtering e e e e e e 18

522 Pagesize e e 18

523 Sorting e e e e 19
5.3 Searching o L e e e e e e e e 20
Authentication 21
6.1 Authenticating e e e e e e e e e e 21

6.1.1 OSF . . e 22
6.2 Authorizing e e e e e e e 22
6.3 Userlds. o e e 23

6.3.1 Type . . . 23

6.3.2 Provider e e 23

6.3.3 Id ..o e 23
6.4 User Selectors e e e e e 23

6.4.1 UserSelectors o i i e e e e e e e e e 23
Data Modeling 25
Permissions 27

9 Contributing

10 Limitations

10.1

10.2 Elasticsearch

10.3

Imposed by JamDB

MongoDB

11 API Semantics

11.1
11.2
11.3

NOtES . . o e e e e e e e e e e e e e e e e e e
Routes list
EXtensions e e e e e e e e e e e e e e e
11.3.1 JSONPatch e

11.3.1.1 Deviations
1132 Bulk e e e e e

11.3.2.1 Deviations

12 Indices and tables

29

31
31
31
31

33
33
33
34
34
34
34
34

35

JamDB Documentation, Release 0.3.0

JamDB is a schema-less, immutable database that can optionally enforce a schema and stores provenance. It supports
efficient full-text search, filtering by nested keys, and is accessible a REST APIL.

It has pluggable storage backends. It defaults to using both MongoDB and Elasticsearch.

The full BDD test suite lives in the features directory and describes in human-readable prose how each endpoint works.
What it’s expecting for input and what it expects for output.

Contents:

Contents 1

http://mongodb.org
https://www.elastic.co/products/elasticsearch
https://github.com/CenterForOpenScience/jamdb/tree/master/features

JamDB Documentation, Release 0.3.0

2 Contents

CHAPTER 1

Prerequisites

This tutorial assumes that the JamDB server you’re interacting with will be at http://localhost:1212. It also
assumes access to a terminal shell on either OSX or Linux with the curl command installed and executable.

JamDB Documentation, Release 0.3.0

4 Chapter 1. Prerequisites

CHAPTER 2

Installing JamDB

JamDB is written in Python using the Tornado Web Framework.

It requires MongoDB version >= 3.2 and Elasticsearch version 1.7.

2.1

A A

Steps

. Clone the JamDB git repo

Create a new virtual environment for JamDB called jam
Setup your new virtual environment for JamDB

* Once in your virtual env, change into the directory you cloned JamDB into and execute python setup.
py develop

e Then execute pip install -r requirements.txt
Install MongoDB and Elasticsearch
Confirm they’re both running: ps aux | grep -i 'elasticsearch\ |mongod'
Run jam server

In another terminal, run curl http://localhost:1212/v1/namespaces/ to confirm you can
connect to the server. The response should be: {"data": [1, "links": {}, "meta":
{"perPage": 50, "total": 0}}

Next you should see the Namespaces section for instructions on creating your first namespace.

http://python.org
http://www.tornadoweb.org/en/stable/
http://mongodb.org
https://www.elastic.co/products/elasticsearch
https://virtualenv.readthedocs.org/en/latest/
https://docs.mongodb.org/manual/installation/
https://www.elastic.co/guide/en/elasticsearch/reference/current/_installation.html
namespaces.html

JamDB Documentation, Release 0.3.0

6 Chapter 2. Installing JamDB

CHAPTER 3

Namespaces

A namespace is the equivalent of a database in MongoDB or PostgreSQL.

It will act as a top-level container for any collections you make and store permissions that apply to itself and cascade
to anything inside of it.

Administrator privileges are required to make any modification to a namespace.

3.1 Creating a namespace

Currently, there is no way to create a namespace through the API. If you’re working with a remote
instance of JamDB, contact the server administrator to create a namespace. If you’re running a lo-
cal instance of JamDB, you can create a namespace by running jam create <namespace id> -u
'jam-ProgrammingLanguages:Programmers—Ash.

We’ll be using ProgrammingLanguages as the example namespace id for the rest of this document.
Namespace ids are case-sensitive.

Once your namespace is setup, you’ll need to send the proper Authorization header to access it.

3.2 Authorizing against a namespace

JamDB uses json web tokens, JWT for short, in the Authorization header or the t oken query string parameter.
There are three ways to acquire a JWT:

1. Contact the server administrator and request a temporary token.

2. Authenticate via the Auth Endpoint

3. If you are running a JamDB server locally you can generate a token by running jam token
'jam-ProgramminglLanguages:Programmers—Ash'

We’ll be using mycool jwt as the example JWT for the rest of this document.

https://jwt.io
authentication.html

JamDB Documentation, Release 0.3.0

3.3 Investigating a namespace

You can get information about your namespace by making an HTTP request using curl, Paw, or a similar program.

HTTP Request:

GET /vl/namespaces/ProgrammingLanguages HTTP/1.1
Authorization: mycooljwt

HTTP Response:

{
"data": {

"id": "ProgrammingLanguages",

"type": "namespaces",

"attributes": {
"name": "ProgrammingLanguages",
"permissions": {

"Jam-ProgrammingLanguages:Programmers—-Ash": "ADMIN"

}

}I

"meta": {/x...x/},

"relationships": {/#...#*/}

Permissions may be different depending on how you got your JWT.

3.4 Namespace Permissions

Giving other users permissions to a namespace is easy.
We can update our namespace in two ways.
We can use jsonpatch to add just the field we want.

HTTP Request:

PATCH /vl/namespaces/ProgramminglLanguages HTTP/1.1
Authorization: mycooljwt
Content-Type: Content-Type: application/vnd.api+json; ext=jsonpatch

[{"op": "add", "path": "/permissions/jam-ProgrammingLanguages:Programmers—x",
<™": "READ"}]

"value

HTTP Response:

{
"data": |
"id": "ProgrammingLanguages",
"type": "namespaces",
"attributes": {
"name": "ProgrammingLanguages",
"permissions": {
"Jam-ProgrammingLanguages:Programmers—x": "READ",
"Jam-ProgrammingLanguages:Programmers—Ash": "ADMIN"

(continues on next page)

8 Chapter 3. Namespaces

https://en.wikipedia.org/wiki/CURL
https://luckymarmot.com/paw
http://jsonpatch.com/

JamDB Documentation, Release 0.3.0

(continued from previous page)

}
}I
"meta": {/x...x/},
"relationships": {/*...%/}

Many jsonpatch objects may be sent at once.

HTTP Request:

PATCH /vl/namespaces/ProgramminglLanguages HTTP/1.1
Authorization: mycooljwt
Content-Type: Content-Type: application/vnd.api+json; ext=7jsonpatch

{"op": "add", "path": "/permissions/jam-ProgrammingLanguages:Programmers-x", "value
(_)" . "READ" }’
{"op": "add", "path": "/permissions/jam-ProgramminglLanguages:Programmers-Misty",
—"value": "ADMIN"},
{"op": "add", "path": "/permissions/jam-ProgrammingLanguages:Programmers-Brock",
—"value": "ADMIN"}
]
HTTP Response:
{
"data": {
"id": "ProgrammingLanguages",
"type": "namespaces",
"attributes": {
"name": "ProgrammingLanguages",
n 1 1 n
permissions": {
"jam-ProgrammingLanguages:Programmers—-x": "READ",
"jJam-ProgrammingLanguages:Programmers—-Ash": "ADMIN",
"jJam-ProgramminglLanguages:Programmers—-Misty": "ADMIN",
"Jam-ProgrammingLanguages:Programmers—-Brock": "ADMIN",

}
by
"meta": {/x...*/},
"relationships": {/#...#*/}

Or we can just PATCH up our updated data and let the JamDB server figure it out.

This is potentially a destructive action. Any existing permissions will be completely replaced. If you want to do a
partial update use the JSONPatch method above.

HTTP Request:

PATCH /vl/namespaces/ProgramminglLanguages HTTP/1.1
Authorization: mycooljwt

"data": {
"id": "ProgrammingLanguages",

(continues on next page)

3.4. Namespace Permissions 9

JamDB Documentation, Release 0.3.0

(continued from previous page)

"type": "namespaces",
"attributes": {
"permissions": {
"jam-ProgrammingLanguages:Programmers—x": "READ",
"Jam-ProgrammingLanguages:Programmers—-Ash": "ADMIN"

HTTP Response:

{
"data": {
"id": "ProgrammingLanguages",
"type": "namespaces",
"attributes": {

"permissions": {
"Jjam-ProgramminglLanguages:Programmers—x": "READ",
"Jam-ProgrammingLanguages:Programmers—-Ash": "ADMIN"

}

}y
"meta": {/x...x/},
"relationships": {/*...*/}

Collections are the next step in the documentation.

10 Chapter 3. Namespaces

collections.html

CHAPTER 4

Collections

A collection is a bucket for arbitrary data. It’s the equivalent of a table in a SQL or NoSQL database. It may enforce
a schema on its data. It also may extend the permissions of the namespace.

4.1 Creating a collection

To create a collection we just have to POST the data about our collection to our namespace’s collections endpoint.

HTTP Request:

POST /vl/namespaces/ProgrammingLanguages/collections HTTP/1.1
Authorization: mycooljwt

"data": {
"id": "Functional",
"type": "collections",

"attributes": {}

HTTP Response:

{
"data": {

"id": "ProgrammingLanguages.Functional",

"type": "collections",

"attributes": {
"permissions": {

"jam-ProgramminglLanguages:Programmers—-Ash": "ADMIN"

}

}y

"meta": {/x*...*/},

(continues on next page)

11

JamDB Documentation, Release 0.3.0

(continued from previous page)

"relationships": {/*...%/}

Please Note:
* We have been given ADMIN access to this collection because we created it.

e The id has been extended to ProgrammingLanguages.Functional because the
Functional collection belongs to the ProgrammingLanguages namespace.

e The full id (ProgrammingLanguages.Functional) or the truncated id (Functional) may
be used when sending update requests.

¢ The truncated id will be used for the rest of this document.

Now our fellow programmers are free to browse through the Functional collection, which we will add information into
later.

It’s a lot of work to load all this data into our collection by ourselves. Let’s get some help!

4.2 Adding collection permissions

We want to give a couple of our friends access to insert data into this collection but we don’t want to grant them access
to all of our collection.

Using collection-level permissions, we can do just that.
Collections can be updated the same way that namespace are, either POSTing or PATCHing data.
Please note:

* The JSONPatching format is a bit nicer to look at so we’ll be using that method for the rest of this
document.

* Keep in mind that you could just as easily PATCH the updated document instead.

PATCH /vl/namespaces/Programminglanguages/collections/Functional HTTP/1.1
Authorization: mycoolijwt

{"op": "add", "path": "/permissions/jam-ProgramminglLanguages:Programmers-Gary",
—"value": "CREATE, UPDATE"},
{"op": "add", "path": "/permissions/jam-ProgramminglLanguages:Programmers-
—ProfessorOak", "value": "CREATE, UPDATE"},
{"op": "add", "path": "/permissions/jam-ProgramminglLanguages:Programmers-—
—~ProfessorBirch", "value": "CREATE, UPDATE"}
1
{
"data": {
"id": "ProgrammingLanguages.Functional",
"type": "collections",
"attributes": {
"permissions": {
"Jam-ProgrammingLanguages:Programmers—-Ash": "ADMIN",
"jam-ProgramminglLanguages:Programmers—-Gary": "CU",

(continues on next page)

12 Chapter 4. Collections

JamDB Documentation, Release 0.3.0

(continued from previous page)

"Jam-ProgrammingLanguages:Programmers—-ProfessorOak": "CU",
"jam-ProgrammingLanguages:Programmers—-ProfessorBirch": "CU"
}
}I
"meta": {/x...x/},
"relationships": {/#*...x/}

Please note:

* Our permissions got compressed from CREATE, UPDATE to CU. This is the format JamDB stores
permissions. CREATE, UPDATE and CU are equivalent. We could have set Gary’s, Professor
Oak’s, and Professor Birch’s permissions to CU but CREATE, UPDATE is a bit easier to read.

* Remember that we gave jam-ProgrammingLanguages:Programmers—+ READ permis-
sions earlier.

* Whenever Gary, Professor Oak, or Professor Birch access the Functional collection they will have
that permission added to their CREATE, UPDATE permissions.

While we trust our friends, we may want to enforce data validation.
We are going to leverage the power of JSONSchema and JamDB’s schema validation for this.

Note: For the sake of length and readability we are going to use an abbreviated schema. The actual
Functional schema is much longer because we’re huge nerds.

HTTP Request:

PATCH /vl/namespaces/ProgramminglLanguages/collections/Functional HTTP/1.1
Authorization: mycoolijwt

"op": "add",
"path": "/schema",
"value": {
"type": "Jjsonschema",
"schema": {
"id". /",
"type": "object",
"properties": {
"name": {
"id": "name",
"type": "string"
}I
"type": {
"id": "type",
"type": "string"
}V
"Number": {
"id": "Number",
"type": "integer"
}I
"Interpreted": {
"id": "Interpreted",
"type": "boolean"

(continues on next page)

4.2. Adding collection permissions 13

http://json-schema.org

JamDB Documentation, Release 0.3.0

(continued from previous page)

by

"required": [
"name",
"type n ,
"Number",
"Interpreted"

Please Note:

e schema.type must be set to the type of the schema. The actual schema lives at schema.
schema. This is so that JamDB may support other forms of schema validation in the future.
Currently JSONSchema is the only supported validator.

e $ are illegal in JamDB key names.
¢ Make sure not to use $schema or $ref in your JSONSchema.

HTTP Response:

{
"data": |
"id": "ProgrammingLanguages.Functional",
"type": "collections",
"attributes": {

"permissions": {
"Jam-ProgrammingLanguages:Programmers—-Ash": "ADMIN",
"Jam-ProgrammingLanguages:Programmers-Gary": "CU",
"jJam-ProgrammingLanguages:Programmers—-ProfessorOak": "CU",
"Jam-ProgrammingLanguages:Programmers—-ProfessorBirch": "CU"

}I

"schema": {

"type": "Jjsonschema",
"schema": {
nigm". "/v,
"type": "object",
"properties": {
"type": {
"id": "type",
"type": "string"
}I
"Number": {
"id": "Number",
"type": "integer"
}I
"Interpreted": {
"id": "Interpreted",
"type": "boolean"
}
}I
"required": [
"name",
"type",
"Number",

(continues on next page)

14 Chapter 4. Collections

JamDB Documentation, Release 0.3.0

(continued from previous page)

"Interpreted"

}
}/
"meta": {/*...x%/},
"relationships": {/*...%/}

Documents would be a good place to continue on to.

4.2. Adding collection permissions 15

documents.html

JamDB Documentation, Release 0.3.0

16 Chapter 4. Collections

CHAPTER B

Documents

A document is any JSON object with a string identifier that lives in a collection.
Strings, numbers, and arrays are all valid JSON but the root of a document must be a JSON object.

Time for the fun part: Filling out the functional collection!

5.1 Creating Documents

Documents are created like anything else: by POSTing to functional collection’s documents endpoint.

HTTP Request:

POST /vl/namespaces/ProgrammingLanguages/collections/Functional/documents HTTP/1.1
Authorization: mycooljwt

"data": {
"id": "Clojure",
"type": "documents",

"attributes": {
"Number": 35,
"Interpreted": true,
n type n N " JVM n

HTTP Response:

{
"data": {
"id": "ProgrammingLanguages.Functional.Clojure",
"type": "documents",

(continues on next page)

17

JamDB Documentation, Release 0.3.0

(continued from previous page)

"attributes": {
"Number": 35,
"Interpreted": true,
"type": "JVM"

}I

"meta": {/x*...#/},

"relationships": {/*...%/}

For this next portion, we’re going to assume that our friends have filled out the rest of the Functional collection for us.
Such nice friends.

5.2 Filtering, Pagination, and Sorting

Now that we have all our data loaded up, let’s search it. We’ll start with finding all entries of the type JVM.

5.2.1 Filtering

* Filtering is available on the document s endpoint

* The query string parameteris filter[{key}]={value}
e {key} is the key that you want to filter on

e {value} is the value that you want to filter the key by

e .s are used to separate keys when referring to a nested object, filter[nested.keys.like.
this]=value

5.2.2 Page size

* To save space we’ll be using a page size of 2
 Page size may be anywhere between 0 and 100, inclusive, and defaults to 50
* The query string parameter is page [size]={value}

HTTP Request:

GET /vl/namespaces/ProgramminglLanguages/collections/Functional/documents?
—filter[type]=JVM&page[size]=2 HTTP/1.1
Authorization: mycooljwt

HTTP Response:
{
"data": [
{
"id": "ProgrammingLanguages.Functional.Clojure",
"type": "documents",

"attributes": {
"Number": 35,
"Interpreted": true,

(continues on next page)

18 Chapter 5. Documents

JamDB Documentation, Release 0.3.0

(continued from previous page)

1,

"type": "JVM"
b
"meta": {/*x...x%x/},
"relationships": {/#*...%/}

b A

"id": "ProgrammingLanguages.Functional.Haskell",
"type": "documents",
"attributes": {
"Number": 60,
"Interpreted": false,
"type": "native"
}I
"meta": {/x...%*/},
"relationships": {/*...*/}

by

"links": {/#...%/}

5.2.3 Sorting

Next let’s find the entry with the highest Number that is an JVM type.

This can be achieved by filtering on type and then sorting on Number.

Please note:

» Sorts may be done ascending or descending by prefixing the key you wish to sort on with + or —,
respectively

 Sort order defaults to ascending
* Sort defaults to id
* If you want to sort on id, descending use sort=-ref. This is subject to change

» The query string parameter is sort={order} {value}

HTTP Request:

GET /vl/namespaces/ProgramminglLanguages/collections/Functional/documents?
—filter[type] =JVMé&page [size]=1&sort=Number HTTP/1.1
Authorization: mycoolijwt

HTTP Response:
{
"data": [
{
"id": "ProgrammingLanguages.Functional.Elixir",
"type": "documents",

"attributes": {
"Number": 90,
"Interpreted": false,
"type": "erlang"

s

"meta": {/x...x/},

"relationships": {/#...%/}

(continues on next page)

5.2.

Filtering, Pagination, and Sorting 19

JamDB Documentation, Release 0.3.0

(continued from previous page)

}
1y
"links": {/#...x/}

5.3 Searching

Finally, Gary is trying to remember the id of a specific entry but only remembers that is ends with “oq”
What an excellent opportunity for us to tap into JamDB’s Elastic Search APIL
Please note:

* The power of elasticsearch’s query string syntax is exposed as the g query string parameter on the
_search endpoint.

* In accordance with the other query string parameters, to query the id of a document use the re f key
instead of id.

* The query string parameter is g={url_escaped_elasticsearch_query}

HTTP Request:

GET /vl/namespaces/ProgramminglLanguages/collections/Functional/documents?g=ref:*oq
—HTTP/1.1
Authorization: mycooljwt

HTTP Response:
{
"data": [
{
"id": "ProgramminglLanguages.Functional.Coqg",
"type": "documents",

"attributes": {
"Number": 106,
"Interpreted": true,
"type": "OCaml"
}I
"meta": {/x...%*/},
"relationships": {/*...*/}
}
]I
"links": {/#...x/}

20 Chapter 5. Documents

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html#query-string-syntax

CHAPTER O

Authentication

JamDB uses Json Web Tokens for authentication.

6.1 Authenticating

JamDB allows authentication through many providers. Currently osf and self are the only available providers.

A user may authenticate to JamDB by sending a properly formatted POST request to Jam’s auth endpoint, /v1/auth

POST /vl/auth HTTP/1.1

{
"data": {
"type": "users",
"attributes": {
"provider":

Note: The elements of att ributes have been left blank in this example as they vary per provider. The following
sections will cover what each provider needs to properly authenticate

A successful authentication request will return the following data

{
"data": {
"id": "<type>-<provider>-<id>",
"type": "users",
"attributes": {

(continues on next page)

21

https://jwt.io

JamDB Documentation, Release 0.3.0

(continued from previous page)

"id": "<id>",

"type": "<type>",
"provider": "<provider>",
"token": "<jwt>",

data.id is the user id it will be matched against user selectors to calculate it’s permissions.
data.attributes.id is the provider specific id for this user.
data.attributes.type is the fype of user for this user.
data.attributes.provider is the provider that was used to authenticate as this user.

data.attributes.token is the jwt used to authorize requests to JamDB

6.1.1 OSF

You will need an OSF account and an OAuth?2 access token to authenticate via the OSF provider.
You may sign up for an account at osf.io.

To acquire an access token you may either generate a personal access token in user settings or via an OAuth2 autho-
rization flow of an OSF app.

GET /v1/auth HTTP/1.1

"data": {
"type": "users",
"attributes": {
"provider": "osf",
"access_token": "<token>",

6.2 Authorizing

Authorization may be provided for an HTTP request in either the Authorization header or the token query
parameter.

Note: The Authorization header takes precedence over the t oken query parameter

GET /vl/namespaces/ProgrammingLanguages HTTP/1.1
Authorization: mycooljwt

PUT /vl/namespaces/ProgramminglLanguages?token=mycooljwt HTTP/1.1

22 Chapter 6. Authentication

https://tools.ietf.org/html/rfc6749
https://osf.io
https://osf.io/settings/tokens/
https://tools.ietf.org/html/rfc6749
https://osf.io/settings/applications/

JamDB Documentation, Release 0.3.0

6.3 User lds

User Ids are made of three parts separated by —s.
<type>-<provider>-<id>

Note: *, — and . are illegal characters in user ids

6.3.1 Type

Currently there are 3 types, user, anon, and jam.
user indicates that the user was authenticated via a 3rd party service, such as the OSF, Google, or even Facebook.
anon indicates that the user simply requested a token to access JamDB, anyone may be a anon user.

jam indicates that the user was authenticated via a collection existing in jam.

6.3.2 Provider

A provider is simply the service that was used to authenticate.
In the case of the user type this may be osf, google, facebook, etc.
anon users do not have a provider.

For the jam user type, provider is the namespace and collection that the user “logged into” separated by a :. ie
ProgrammingLanguages:Functional

6.3.3 Id

An id is any given string used by their provider to identify a user.

6.4 User Selectors

Selector Meaning

* Matches ALL users, authenticated or not

<type>—x* Matches all authenticated users with the type <t ype>
<type>—-<provide r>-x Matches all users of the given type that have authenticated via <provider>
<type>-<provide Matches an exact user

r>-<id>

6.4.1 User Selectors

Obijective Selector

Match everyone *

Match all users authenticated via OSF user-osf-x
Match all users authenticated via a 3rd party service | user—x

Match anonymous users anon-—x

Match a specific user user-osf-juwia

6.3. Userlds 23

JamDB Documentation, Release 0.3.0

24 Chapter 6. Authentication

CHAPTER /

Data Modeling

JamDB is non-relational. A document is any JSON object with a string identifier that lives in a collection.

Strings, numbers, and arrays are all valid JSON but the root of a document must be a JSON object.

Your data model is up to you. You can use IDs to create pseudo-relationships.

B e +
|AuthorizationNamespace

e +
\ \
\ e + |
\ |UserCollection |

\ o + |
\ | Id fom + \
\ | Name | \

| |[FavoriteColor |

\ |ShirtSize | \ \
\ |Gender | tom + \
| |[Email | | |UserGroupCollection| |
\ e + [— e + |
| | |[UserId | \
\ = +Groupld \
| |GroupCollection] | | \

\ o | o + |
| | Id ++ \
| | Name |

\ o + |
\ \

25

JamDB Documentation, Release 0.3.0

26 Chapter 7. Data Modeling

CHAPTER 8

Permissions

Please see:
* Namespace Permissions

¢ Collection Permissions

27

namespaces.html#namespace-permissions
collections.html#adding-collection-permissions

JamDB Documentation, Release 0.3.0

28 Chapter 8. Permissions

CHAPTER 9

Contributing

We welcome contributions via [GitHub](https://github.com/CenterForOpenScience/jamdb).

Before submitting your pull request, please make sure that all unit tests are passing, by running the command below:

behave

To preview changes to the documentation, install the requirements in dev-requirements.txt, then run the following:

cd docs
make html

29

https://github.com/CenterForOpenScience/jamdb

JamDB Documentation, Release 0.3.0

30 Chapter 9. Contributing

cHAaPTER 10

Limitations

Due to some of the underlying technologies, limits exist on the amount and types of data that may be stored.

10.1 Imposed by JamDB

* Namespace, collection, and document IDs may not excede 64 characters

10.2 Elasticsearch

* String values may not exceed 32766 bytes

e The string values Infinity and —~-Infinity may not be used where other documents would have a numeric
value

10.3 MongoDB

* Integer values may not exceed 8 bytes

* Floating point values may not exceed 8 bytes
* Object keys may not start with $s

* Object keys may not contain .s

* Documents may not exceed 16 megabytes

* Documents may not exceed 100 levels of nesting

31

https://en.wikipedia.org/wiki/Byte
http://bsonspec.org/spec.html
http://bsonspec.org/spec.html
https://docs.mongodb.org/manual/reference/limits/#Restriction-on-Collection-Names
https://docs.mongodb.org/manual/reference/limits/#Restriction-on-Collection-Names
https://docs.mongodb.org/manual/reference/limits/#BSON-Document-Size
https://docs.mongodb.org/manual/reference/limits/#Nested-Depth-for-BSON-Documents

JamDB Documentation, Release 0.3.0

32 Chapter 10. Limitations

cHAPTER 11

APl Semantics

11.1 Notes

* ids are must match the regex [\d\w-]{3,64}

11.2 Routes list

* /vl/namespaces

* /vl/namespaces/<namespace_id>

* /vl/namespaces/<namespace_id>/collections

e /vl/namespaces/<namespace_id>/collections/<collection_id>

* /vl/namespaces/<namespace_id>/collections/<collection_id>/_search

e /vl/namespaces/<namespace_id>/collections/<collection_id>/documents

e /vl/namespaces/<namespace_id>/collections/<collection_id>/documents/
<document_id>

* /vl/namespaces/<namespace_id>/collections/<collection_id>/documents/
<document_id>/history

e /vl/namespaces/<namespace_id>/collections/<collection_id>/documents/
<document_id>/history/<history_id>

e /vl/id/namespaces

e /vl/id/namespaces/<namespace_id>

e /vl/id/namespaces/<namespace_id>/collections

e /vl/id/collections/<namespace_id>.<collection_id>

e /vl/id/collections/<namespace_id>.<collection_id>/_search

33

JamDB Documentation, Release 0.3.0

e /vl/id/collections/<namespace_id>.<collection_id>/documents

/v1l/id/documents/<namespace_id>.<collection_id>.<document_id>

/vl/id/documents/<namespace_id>.<collection_id>.<document_id>/history

e /vl/id/history/<namespace_id>.<collection_id>.<document_id>.<history_id>

11.3 Extensions

11.3.1 JSONPatch

JamDB implements JSONAPI’s jsonpatch extension as described here.
Example payloads and responses may be seen here, here, or here.
11.3.1.1 Deviations

JSONPatch is not currently supported with bulk operations.

11.3.2 Bulk

JamDB implements JSONAPI’s bulk extension as described here.

Example payloads and responses may be seen here.

11.3.2.1 Deviations

Bulk deletes are not currently supported.

Bulk operations are not transactional. If a document creation fails for any reason it will not impede the creation of
other documents. The failure will be returned in the errors key of the response JSON corresponding to it’s index in
the POSTed data field. The behavior is demonstrated here.

34 Chapter 11. API Semantics

http://jsonapi.org/extensions/jsonpatch/
https://github.com/CenterForOpenScience/jamdb/blob/master/features/document/update.feature
https://github.com/CenterForOpenScience/jamdb/blob/master/features/namespace/update.feature
https://github.com/CenterForOpenScience/jamdb/blob/master/features/collection/update.feature
http://jsonapi.org/extensions/bulk/
https://github.com/CenterForOpenScience/jamdb/blob/master/features/document/create.feature#L167
https://github.com/CenterForOpenScience/jamdb/blob/master/features/document/create.feature#L244

cHAPTER 12

Indices and tables

* genindex
* modindex

e search

35

	Prerequisites
	Installing JamDB
	Steps

	Namespaces
	Creating a namespace
	Authorizing against a namespace
	Investigating a namespace
	Namespace Permissions

	Collections
	Creating a collection
	Adding collection permissions

	Documents
	Creating Documents
	Filtering, Pagination, and Sorting
	Filtering
	Page size
	Sorting

	Searching

	Authentication
	Authenticating
	OSF

	Authorizing
	User Ids
	Type
	Provider
	Id

	User Selectors
	User Selectors

	Data Modeling
	Permissions
	Contributing
	Limitations
	Imposed by JamDB
	Elasticsearch
	MongoDB

	API Semantics
	Notes
	Routes list
	Extensions
	JSONPatch
	Deviations

	Bulk
	Deviations

	Indices and tables

