

Welcome to IXN Website, Events, SSIGs’ documentation!

Contents:

	Development Setup
	Cloning the repository

	Docker

	Vagrant

	Admin Interface

	Authentication

	Google Maps API Key

	Development Methodology
	Git Workflow

	API Setup
	UCL API OAuth Credentials

	Google Maps API Key

	Azure Deployment Manual
	PostgreSQL server

	Create Web App

	Configure Web App

	Create Deployment User

	Deploy Web App

	Create superuser

Development Setup

The recommended development environment is Docker, but a Vagrant environment is also provided.

Cloning the repository

Both environments require you to:

	Clone the repository: git clone https://github.com/UCLComputerScience/103P_2018_team51.git

	Enter the cloned repository: cd 103P_2018_team51

	Copy the env-dist file to .env: cp env-dist .env

Docker

Ensure you’ve installed Docker Compose by following the instructions here: https://docs.docker.com/compose/install/

Then, build the container with: docker-compose build.

Next, you’ll need to run the database migrations, to set up the database. To do this:

	Open a shell within the docker container: docker-compose run web sh

	Within the container, run: python3 manage.py migrate

Now, close the container shell with exit (or open a new terminal window) and run the container with: docker-compose up.

You should now be able to access the site at: http://localhost:8000

Stopping the container

To stop the running container, go to the terminal it’s running in and hit Ctrl + C. Docker will then gracefully bring the container down.

If the container is hanging, hit Ctrl + C again to kill it.

Updating the container

When pulling in new changes to the requirements.txt file from git, the container will need to be rebuilt.

To rebuild and bring the container up in one step run: docker-compose up --build.

Tips, tricks and oddities

Running Docker as root

If running docker-compose as root, as is recommended [https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface], then all files and directories created in the source directory within the container will be owned by root, and git will be unable to properly version control them. Run sudo chown -R $USER:$USER . outside the container to update their ownership to your user.

Vagrant

Download Vagrant and install it from here: https://www.vagrantup.com/downloads.html

You’ll also need to install VirtualBox from here: https://www.virtualbox.org/wiki/Downloads

Bring the machine up with: vagrant up.

After the machine has finished booting, open a shell within it with: vagrant ssh.

Next, you’ll want to navigate to the directory holding the project’s source code with: cd /vagrant.

Here, run the database migrations to set up the database with python3 manage.py migrate, and bring the server up with gulp.

You should now be able to access the site at: http://localhost:8000

Stopping the machine

To stop the running machine:

	Kill the server with: Ctrl + C

	Exit from the machine’s shell with: exit

	Stop the machine with: vagrant halt

Updating the machine

When pulling in changes to the requirements.txt file from git, those new requirements will need to be installed in the machine.

Do this by running pip3 install -r requirements.txt from the /vagrant path within the machine.

Tips, tricks and oddities

Using Windows as a host

It seems that on Windows, the up.sh provisioning script isn’t run on every vagrant up. This will usually be apparent if running gulp produces an error about it not being installed. This can be resolved by running ./up.sh from the /vagrant path within the machine, every time after you bring it up.

It also seems that the correct database configuration options aren’t set. Resolve this by updating your .env file to include:

DATABASE_HOST=localhost
DATABASE_USER=vagrant
DATABASE_PASSWORD=vagrant

Admin Interface

Create a superuser to access the admin interface at http://localhost:8000/admin.

Do this by running python3 manage.py createsuperuser within your development environment.

UPI stands for Unique Person Identifier, a unique id given to every member of UCL, set this to your own UPI (found on your UCL ID card) if you want to be able to log into the admin interface through UCL API OAuth.

Authentication

The project makes use of UCL API OAuth [https://uclapi.com/] for authentication.

Reverse Proxy

UCL API prohibits setting localhost as as callback URL, so you’ll need to set up a reverse proxy to access your local development server through a remote url.

One solution is localtunnel, which can be used by following the instructions here: https://localtunnel.github.io/www/.

OAuth Credentials

Generate your credentials by following the instructions here: UCL API OAuth Credentials.

Then update your .env file to include the Client ID and Client Secret from the UCL API dashboard, for example:

UCLAPI_CLIENT_ID=0123456789.0123456789
UCLAPI_CLIENT_SECRET=0123456789abcdef

Test you’ve setup your credentials correctly by attempting to log in by visiting /auth.

Google Maps API Key

Generate your credentials by following the instructions here: Google Maps API Key.

Then update your .env file to include the API key:

GOOGLE_MAPS_KEY=0123456789abcdef

Development Methodology

Git Workflow

Fetching the latest changes

The latest changes can be fetched with: git fetch origin.

Using git fetch is preferred over git pull as it means there’s no risk of modifying the branch you’re currently on - it gives you full control over what you want to do with the changes you’ve fetched.

Creating a feature branch

Create a new branch to work on your feature with the latest commits from the master branch with: git branch -b feature-name origin/master

Committing the feature

Once you’ve finished working on your feature, you’ll want to commit it to your branch. Do this by:

	Checking the current status of your files with: git status

	Staging all the changes to files you want to commit with: git add file_one file_two

	Committing the staged changes with a descriptive commit message: git commit -m "commit message"

If you’ve been working on a feature linked to an issue, which is usually the case, you’ll want to end the commit message with the issue number. For example, if I’d been working on issue 7, my commit command might look something like: git commit -m "commit message #7".

Updating the branch with the latest changes

While you’ve been working on your feature, there may have been updates to the master branch which you’ll want to include in your feature branch. Do this by:

	Fetching the latest changes with: git fetch origin

	Rebasing your branch with the changes with: git rebase origin/master

At this point the rebase may succeed, or it may fail. If it fails run git status and follow the instructions to resolve the merge conflicts.

Pushing the branch

After committing your feature and rebasing with master, push the branch to the origin remote with: git push origin feature-name.

Creating a pull request

Now that your feature branch is on the origin remote, go to https://github.com/UCLComputerScience/103P_2018_team51/compare/master…feature-name [https://github.com/UCLComputerScience/103P_2018_team51/compare/master...feature-name] and click Create pull request to create a pull request.

Your commit will be reviewed, and if approved, rebased into the master branch.

If changes were requested, you can make them in your local branch, commit and push to the remote branch as before.

API Setup

UCL API OAuth Credentials

Create a new app at: https://uclapi.com/dashboard/.

Then fill in the OAuth Callback URL to be the remote url of your server, followed by /auth/callback. If using a localtunnel development server, this will be something like:

https://abcdefghij.localtunnel.me/auth/callback

Test you’ve setup your credentials correctly by attempting to log in by visiting /auth.

Google Maps API Key

A Google Maps API key is necessary for displaying the maps on event pages.

To get your key:

	Visit https://console.developers.google.com/cloud-resource-manager and sign in

	Click “Create a Project”

	Give your project a name, perhaps “SSIG site dev”

	Click “Create”

	Click on your newly created project

	Visit https://console.developers.google.com/apis/api/maps-backend.googleapis.com/overview

	Click “Enable”, wait for the API to be enabled for your project

	Visit https://console.developers.google.com/apis/credentials/wizard?api=maps-backend.googleapis.com

	Click “What credentials do I need?”

	Your API key will be displayed

	Click “Restrict key” to restrict with what sites and APIs the key can be used (recommended in production)

Azure Deployment Manual

PostgreSQL server

	Create a new PostgreSQL server: https://portal.azure.com/#create/Microsoft.PostgreSQLServer

	Open the configuration page for the PostgreSQL server you’ve created

	Navigate to “Connection Security” under “Settings” in the sidebar

	Toggle “Allow access to Azure services” to “On”

	Click “Add My IP”

	Click “Save”

Create Web App

	Create a new Web App in the same resource group as your PostgreSQL server: https://portal.azure.com/#create/Microsoft.WebSite

	Open the configuration page for the Web App you’ve created

	Navigate to “Extensions” under “Development Tools in” the sidebar

	Click “Add”, and install “Python 3.6.4 x86”

Configure Web App

Now we need to provide the Web App with some settings to run:

	Navigate to “Application settings” under “Settings” on the sidebar.

	Scroll down to “Application settings” and click “Add new setting” for each of the following:

	Name

	Value

	DATABASE_NAME

	postgresql

	DATABASE_USER

	enter the postgresql username you previously created

	DATABASE_PASSWORD

	enter the postgresql password you previously created

	DATABASE_HOST

	enter the domain of the postgresql server you previously created

	SECRET_KEY

	randomly generate a string and enter it here

	ALLOWED_HOSTS

	enter the domain of the web app you’ve created

	UCLAPI_CLIENT_ID

	create UCL API OAuth Credentials and enter the client id here

	UCLAPI_CLIENT_SECRET

	create UCL API OAuth Credentials and enter the client secret here

	GOOGLE_MAPS_KEY

	create a Google Maps API Key and enter it here

Finally click “Save”.

Create Deployment User

Follow the documentation here: https://docs.microsoft.com/en-gb/azure/app-service/app-service-deployment-credentials

Deploy Web App

	Clone the repository: git clone https://github.com/UCLComputerScience/103P_2018_team51.git

	Enter the cloned repository: cd 103P_2018_team51

	Navigate to your Web App’s overview page

	Create a new remote from the “Git clone url” on the Web App Overview page: git remote add azure <paste "Git clone url" here>

	Deploy the app to azure with: git push azure master

	Enter the previously created deployment credentials when prompted

Create superuser

Run the python3 manage.py createsuperuser command locally by setting the database settings on the command line:

DATABASE_NAME=postgresql DATABASE_USER=<enter value> DATABASE_PASSWORD=<enter value> DATABASE_HOST=<enter value> python3 manage.py createsuperuser

UPI stands for Unique Person Identifier, a unique id given to every member of UCL, set this to your own UPI (found on your UCL ID card) if you want to be able to log into the admin interface through UCL API OAuth.

You can now log into the admin interface at: https://your-domain/admin/login

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to IXN Website, Events, SSIGs’ documentation!

 		
 Development Setup

 		
 Cloning the repository

 		
 Docker

 		
 Stopping the container

 		
 Updating the container

 		
 Tips, tricks and oddities

 		
 Vagrant

 		
 Stopping the machine

 		
 Updating the machine

 		
 Tips, tricks and oddities

 		
 Admin Interface

 		
 Authentication

 		
 Reverse Proxy

 		
 OAuth Credentials

 		
 Google Maps API Key

 		
 Development Methodology

 		
 Git Workflow

 		
 Fetching the latest changes

 		
 Creating a feature branch

 		
 Committing the feature

 		
 Updating the branch with the latest changes

 		
 Pushing the branch

 		
 Creating a pull request

 		
 API Setup

 		
 UCL API OAuth Credentials

 		
 Google Maps API Key

 		
 Azure Deployment Manual

 		
 PostgreSQL server

 		
 Create Web App

 		
 Configure Web App

 		
 Create Deployment User

 		
 Deploy Web App

 		
 Create superuser

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

