
itucsdb1507 Documentation
Release 1.0

itucsdb1507

December 29, 2016

Contents

1 User Guide 3

2 Developer Guide 33

3 Installation Guide 71

i

ii

itucsdb1507 Documentation, Release 1.0

Team ITUCSDB1507

Members

• Alparslan Tozan

• İlay Köksal

• Kubilay Karpat

• Seda Yıldırım

• Sefa Eren Şahin

We designed a database to hold all the information that we need to know about American Football. Our database
contains Player & Team & Coach informations. Leagues, Matches and much more! This web application allows
users to change existing informations, add new data and see existing tables and statistics. You can see all tables
from navigation bar above and start to explore our databese and application.

Contents:

Contents 1

itucsdb1507 Documentation, Release 1.0

2 Contents

CHAPTER 1

User Guide

Our application works as a main website for American Football. Here, users can find various information about
the said sport. Users can add, view and edit all the data as they wish. The representation of the site map can be
found below.

The site opens up to the welcome page, with the names of the contributors. From here, users can navigate to
different pages via the navbar. The navigation bar is alphabetically ordered to ease the user experience.

Fig. 1.1: Figure: The welcome page

The site contains various information about American Football, and this user guide further explains the site as it
helps the users navigate seamlessly.

The user guides for the parts implemented by said team members can be found below.

1.1 Parts Implemented by Alparslan Tozan

Basic operations of there entities which are Officials, Matches and Transfers can be performed within user inter-
face. All these operations could be reached from related main menu item’s dropdown menu.

Fig. 1.2: Navbars of Officials, Matches and Transfers

3

itucsdb1507 Documentation, Release 1.0

1.1.1 Officials

Officials table is a core table, its only entries are name and age of the official.

Showing Officials

Officials can be listed by selecting “Show Officials” from dropdown menu.

Fig. 1.3: List of officials

Adding Official

Players can be added by selecting “Add Official” from dropdown menu or clicking “Add New Official” button
from Show Officials page.

Fig. 1.4: Official addition can be completed by clicking Save button after filling required fields.

All required fields must be filled otherwise there will occur an error message.

Fig. 1.5: Official addition error message

Updating and Deleting

At the “Show Officials” page after checking one of the check boxes user can select update/delete operations.

4 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

Fig. 1.6: List of officials

If delete button is clicked, selected official will be deleted and user will be redirected to “Show Officials” page
again. If update operation is selected, user will be redirected to Update page, which looks similar to Add page.

Fig. 1.7: Update page

After making the desired changes, clicking Update button will update the official.

Searching

Users can search officials either by official name or by official age or by both by using the search form in the
Players page.

Fig. 1.8: Search Page

1.1.2 Matches

Matches table is an entity that is connected to many other tables. It has connections with tables Teams, Seasons
and Officials. Also it has its own feature result.

Showing Matches

Matches can be listed by selecting “Show Matches” from dropdown menu.

1.1. Parts Implemented by Alparslan Tozan 5

itucsdb1507 Documentation, Release 1.0

Fig. 1.9: List of Matches

Adding Matches

Matches can be added by selecting “Add Match” from dropdown menu or clicking “Add New Match” button from
Show Matches page. As everything is fixed for Matches table its addition only consists of drop-down selections.

Fig. 1.10: Matches addition can be completed by clicking Save button after selecting required fields.

Updating and Deleting

At the “Show Matches” page after checking one of the check boxes user can select update/delete operations.

Fig. 1.11: List of Matches

6 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

If delete button is clicked, selected match will be deleted and user will be redirected to “Show Matches” page
again. If update operation is selected, user will be redirected to Update page, which looks similar to Add page.

Fig. 1.12: Update page

After making the desired changes, clicking Update button will update the match.

1.1.3 Transfers

Transfers table is an entity that is connected to many other tables. It has connections with tables Teams, Seasons
and Players. Also it has its own feature fee.

Showing Transfers

Transfers can be listed by selecting “Transfers” from navigation bar.

Fig. 1.13: List of Transfers

Adding Matches

Transfers can be added by clicking “Add New Transfer” button from “Transfers” page. As almost everything is
fixed for Transfers table its addition only consists of drop-down selections and one integer input for fee.

If fee field is filled with something different from integer value it will give an error message.

1.1. Parts Implemented by Alparslan Tozan 7

itucsdb1507 Documentation, Release 1.0

Fig. 1.14: Transfer addition can be completed by clicking Save button after filing and selecting required fields.

Fig. 1.15: Transfer addition error message

8 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

Updating and Deleting

At the “Transfers” page after checking one of the check boxes user can select update/delete operations.

Fig. 1.16: List of Transfers

If delete button is clicked, selected match will be deleted and user will be redirected to “Transfers” page again. If
update operation is selected, user will be redirected to Update page, which looks similar to Add page.

Fig. 1.17: Update page

After making the desired changes, clicking Update button will update the match.

1.2 Parts Implemented by İlay Köksal

Add, Search, Update and Delete operations of tables Coaches, Seasons and Coaching can be done within user
interface. Table that user wants to see or change can be choosen from navigation bar.

Fig. 1.18: Each operation for Coaches, Coaching and Seasons tables can be done in one single page.

1.2.1 Coaches

Coaches table is one of the core tables of our database. It has Name and BirthYear columns.

New coach can be add from textbox from top of the page.

1.2. Parts Implemented by İlay Köksal 9

itucsdb1507 Documentation, Release 1.0

Fig. 1.19: Add operation can be done by filling name and birthday field.

Under the add section, there is a textbox for searching coaches. When search button clicked, table below filled
with items that requires search condition.

Fig. 1.20: Search operation is a case sensitive operation.

Delete and Update buttons can be seen in table that shows coaches. Every row have Update text boxes to fill when
user wants to update related row. Delete button deletes the item in selected row.

1.2.2 Seasons

Seasons table is another core table in our database. It only keeps SeasonYear value for other tables usage. Seasons
operations are in one single page as well.

New seasons can be added by filling Season year box that is located at top the page.

Below adding field, user can search season by typing season year that he/she wants to find.

10 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

Fig. 1.21: To update an item, every update box must be filled.

Fig. 1.22: Season add field.

1.2. Parts Implemented by İlay Köksal 11

itucsdb1507 Documentation, Release 1.0

Delete and Update buttons are table elements as well to affect related row. Update text box filled when user wants
to update a season.

Fig. 1.23: Seasons table rows consists Delete and Update buttons.

1.2.3 Coaching

Coaching table shows when a coach choached a team. So every column in coaching table related another table.
Table consists Coach Name, Team Name and Season columns.

To add a coaching relation, user should select the values that he/she wants to add from dropdown lists.

Fig. 1.24: Coaching adding fields

Search field can be used to search both Coach name and Team name.

Update and Delete operations are located in table rows. To update user should select new values for item from
dropdown lists in selected row. Delete button deletes related row from table.

12 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

Fig. 1.25: Search field is case sensitive.

Fig. 1.26: Delete and Update buttons have their own columns.

1.2. Parts Implemented by İlay Köksal 13

itucsdb1507 Documentation, Release 1.0

1.3 Parts Implemented by Kubilay Karpat

Basic operations of there entities which are countries, leagues and stadiums could be performed within user inter-
face. All these operations could be reached from related main menu item’s dropdown menu.

Fig. 1.27: eg. Countries’ functions could be reached from main menu.

In the forms, leaving neccessary fields blank is not allowed so users prevented from making mistakes.

Fig. 1.28: eg. An error message displayed when the users leaves one of the neccessary fieds blank.

1.3.1 Countires

Country entity serves as a core data which only includes the country name and the abbrevation of it.

New countries can be added by selecting ‘Add Country’ from dropdown menu.

Another option in dropdown menu opens List Countries page where users can perform many operations related
with countries.

14 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

Fig. 1.29: Users can add new countries by filling two neccessary fields.

Fig. 1.30: List Countries page where users can list countries and also reach delete, update and search operations.

1.3. Parts Implemented by Kubilay Karpat 15

itucsdb1507 Documentation, Release 1.0

Users can delete a country with clicking the trash can icon. Also users can update the country with clicking
wrench icon next to it. This will led them to update page. In update page users can change the information about
the country with using fields which come prefilled with the current data.

Fig. 1.31: Edit Country page allow users to update information of the countries

Also users may search for countries by using the search field in the Countries List page. This options search for
the keyword in the names of Countries.

Fig. 1.32: Seaarch result page

1.3.2 Leagues

Leagues are the entities which belogns the countries. They have a league name and a abbrevation also they have
to connected with a country.

New leagues can be added by selecting ‘Add League’ option from dropdown menu. In this page there are two
form fields and also a dropdown selection. In this dropdown all the countries that recorded at database are shown.
User have to chose one of them. By applying this selection, connecting leagues with counties become easir and
errorless for users.

16 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

Fig. 1.33: Users can add new leagues by filling two fields (name is required) and selecting a country from
dropdown menu.

User can list leagues like listing countires and maintain basic operations from list page. Delete operation can be done by clicking trash can button.

When user clicks the wrench icon update page belonging to that entry will be opened.

Search function also works in a similar fashion and could done by using the search field in list page.

1.3.3 Stadiums

Stadium is an entity that represents stadiums all around the world and as in the real life it is a part of the matches.
A stadium must have a name, a country and a team. Also users can specify the capacity of stadium but it is not
neccessary.

Stadiums could be added by givin 3 neccessary and 1 optional information. In these informations team and the
country selection made by dropdown menu in order the prevent erros.

Stadiums have also a listing page with basic operations.

Edit page of stadiums is very similar to add page and it is come with the current entriy’s data.

Stadiums have also a listing page with basic operations.

Users can search the stadiums with their names

1.3. Parts Implemented by Kubilay Karpat 17

itucsdb1507 Documentation, Release 1.0

Fig. 1.34: List League page where users can list leagues and also reach delete, update and search operations.

Fig. 1.35: Edit League page allow users to update information of the leagues. The page comes with prefilled data
belonging to entry that going to be edited.

18 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

Fig. 1.36: League eaarch result page with the keyword in the header

Fig. 1.37: Stadium adding page

1.3. Parts Implemented by Kubilay Karpat 19

itucsdb1507 Documentation, Release 1.0

Fig. 1.38: Stadiums listed and the delete / update operation buttond related the entries

Fig. 1.39: Stadiums edit page

Fig. 1.40: Search results page with the given keyword shown in header

20 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

1.4 Parts Implemented by Seda Yıldırım

The following three tables were implemented: Fixtures, Player Statistics, and Team Statistics. The tabs Fixtures
and Statistics can be seen on the navigation bar above the site interface. The Player and Team Statistics pages
were grouped to one tab to provide better navigation since the navigation bar is in alphabetical order. Both pages
can be seen on the drop down menu.

Fig. 1.41: Figure 1: The drop down for the Statistics pages

All of the fields in the forms are necessary to fill except the search form. If the user does not enter a required data,
a warning is shown.

Fig. 1.42: Figure 2: The empty field warning

1.4.1 Fixtures

Fixtures page shows the seasonal scores of the teams in the database. From the main page, the user can navigate
to either the search page or the edit page.

Fig. 1.43: Figure 3: Overlay of the fixtures page

The search page features a form to search the database for a team name. The exact input of the team name is not
required, though the search function is case sensitive.

1.4. Parts Implemented by Seda Yıldırım 21

itucsdb1507 Documentation, Release 1.0

Fig. 1.44: Figure 4: Search page

Note: If the form is left blank, the page displays the complete fixtures table.

The edit page displays two features: add and delete. From the edit page, users can also navigate to the update
page, where they can change any fixture data. Users can enter new a fixture data with the add form. The form
requires the selection of season and team data from the respective drop down menus. The points of the team can
be entered manually.

Fig. 1.45: Figure 5: Add feature

Users can also delete any fixture data on the edit page. The delete feature is displayed right below the add feature.
The feature displays a checklist, from which the user selects the fixture they want to delete. Only one fixture can
be deleted at a time.

Fig. 1.46: Figure 6: Delete feature

The update page displays a checklist of all the fixtures. From here, the user can select the team they want to
update, and can enter the respective values. The page redirects to itself, showing the current list of fixtures.

22 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

Fig. 1.47: Figure 7: Update page

1.4.2 Player Statistics

Player statistics page displays the various seasonal statistics regarding the players in the database. Here, from the
main page, the user can navigate to either the search page or the edit page.

Fig. 1.48: Figure 8: Overlay of the Player Statistics page

The search page features a form to search the database for a player’s statistics, with the players name as the search
query. The whole input of the player’s name is not required, though the search function is case sensitive.

Fig. 1.49: Figure 9: Search page

Note: If the form is left blank, the page displays the current statistics of all the players.

The edit page displays two features: add and delete. From the edit page, users can also navigate to the update
page, where they can change any player’s statistics. Users can enter a new player’s statistics with the add form.
The form requires the selection of the season and the player data from the respective drop down menus. The
statistics values of the player is entered manually.

Users can also delete any statistics on the edit page as they wish. The delete feature is displayed right below the
add feature. The feature displays a checklist, from which the user selects the player whose statistics data they want

1.4. Parts Implemented by Seda Yıldırım 23

itucsdb1507 Documentation, Release 1.0

Fig. 1.50: Figure 10: Add page

to delete. Only one player statistics data can be deleted at a time.

Fig. 1.51: Figure 11: Delete feature

The update page displays a checklist of all the player statistics. From here, the user can select the player whose
statistics they want to update, and can enter the respective values. The page redirects to itself, showing the current
list of all players and their statistics.

Fig. 1.52: Figure 12: Update page

1.4.3 Team Statistics

Team statistics page displays the various seasonal statistics regarding the teams in the database. Here, from the
main page, the user can navigate to either the search page or the edit page.

The search page features a form to search the database for a team’s statistics, with the team name as the search
query. The whole input of the team’s name is not required, though the search function is case sensitive.

24 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

Fig. 1.53: Figure 13: Overlay of the Team Statistics page

Fig. 1.54: Figure 14: Search page

Note: If the form is left blank, the page displays the current statistics of all the teams.

The edit page displays two features: add and delete. From the edit page, users can also navigate to the update
page, where they can change any team’s statistics. Users can enter a new team’s statistics with the add form. The
form requires the selection of the season and the team data from the respective drop down menus. The statistics
values of the team is entered manually.

Fig. 1.55: Figure 15: Add feature

Users can also delete any statistics on the edit page as they wish. The delete feature is displayed right below the
add feature. The feature displays a checklist, from which the user selects the team whose statistics data they want
to delete. Only one team’s statistics data can be deleted at a time.

1.4. Parts Implemented by Seda Yıldırım 25

itucsdb1507 Documentation, Release 1.0

Fig. 1.56: Figure 16: Delete feature

The update page displays a checklist of all the team statistics. From here, the user can select the team whose
statistics they want to update, and can enter the respective values. The page redirects to itself, showing the current
list of all teams and their statistics.

Fig. 1.57: Figure 17: Update page

1.5 Parts Implemented by Sefa Eren Şahin

Basic operations of there entities which are Players, Teams and Squads can be performed within user interface.
All these operations could be reached from related main menu item’s dropdown menu.

1.5.1 Players

Players table is a core table, including player_id, name, birthday and position datas.

Inserting

Players can be added by selecting “Add Player” from dropdown menu.

All required fields must be filled otherwise there will occur an error message.

Listing and Deleting

Players can be listed by selecting “Show Player” from dropdown menu.

26 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

Fig. 1.58: Player addition can be completed by clicking Add Player button after filling and selecting required
fields.

Fig. 1.59: Player addition error message

Fig. 1.60: List of players

1.5. Parts Implemented by Sefa Eren Şahin 27

itucsdb1507 Documentation, Release 1.0

Players can be deleted by clicking Delete button related with the corresponding row. Clicking Update button
redirects user to player update page.

Updating

Fig. 1.61: Player data is prefilled into update form.

After making the desired changes, clicking Update button will update the player.

Searching

Users can search players by player name by using the search form in the Players page.

Fig. 1.62: Search results

1.5.2 Teams

Teams table contains team_id, name and league_id references to leagues table.

Inserting

Teams can be added by selecting “Add Team” from dropdown menu.

All required fields must be filled otherwise there will occur an error message.

28 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

Fig. 1.63: Team addition can be completed by clicking Add Team button after filling and selecting required fields.

Fig. 1.64: Team addition error message

Fig. 1.65: List of teams

1.5. Parts Implemented by Sefa Eren Şahin 29

itucsdb1507 Documentation, Release 1.0

Listing and Deleting

Teams can be listed by selecting “Show Teams” from dropdown menu.

Teams can be deleted by clicking Delete button related with the corresponding row. Clicking Update button
redirects user to team update page.

Updating

Fig. 1.66: Team data is prefilled into update form.

After making the desired changes, clicking Update button will update the team.

Searching

Users can search teams by team name by using the search form in the Teams page.

Fig. 1.67: Search results

1.5.3 Squads

Squads table contains squad_id, team_id references to Teams table, player_id references to Players table and
kit_no.

Inserting

Squads can be added by selecting “Add Squad” from dropdown menu.

All required fields must be filled otherwise there will occur an error message.

30 Chapter 1. User Guide

itucsdb1507 Documentation, Release 1.0

Fig. 1.68: Squad addition can be completed by clicking Add Squad button after filling and selecting required
fields.

Fig. 1.69: Squad addition error message

Listing and Deleting

Squads can be listed by selecting “Show Squads” from dropdown menu.

Fig. 1.70: List of squads

Squads can be deleted by clicking Delete button related with the corresponding row. Clicking Update button
redirects user to squad update page.

Updating

After making the desired changes, clicking Update button will update the squad.

1.5. Parts Implemented by Sefa Eren Şahin 31

itucsdb1507 Documentation, Release 1.0

Fig. 1.71: Squad data is prefilled into update form.

Searching

Users can filter squads by team name by selecting the team name from the search form in the Teams page.

Fig. 1.72: Squad filtering form

After filtering, squads related with selected team are listed.

Fig. 1.73: Search results

32 Chapter 1. User Guide

CHAPTER 2

Developer Guide

2.1 Database Design

Main purpose of this database is creating a web application to hold basic information about American Football.

Our database mainly contains information about Teams, Players, Coaches, Matches, Leagues etc.

Teams and Players tables are the most active tables. Tables like Player Statistics, Team Statistics, Transfers,
Fixture are designed to keep the relations between Teams and Players. Teams and Players tables are referenced by
other tables alot.

Countries, Players, Officials, and Seasons tables are core tables. These entities do not reference any other table.

PostgreSQL is the relational database management system used in Database Design.

Psycopg2 is used as database adapter.

Fig. 2.1: ER Relation Diagram of American Football Database

2.2 Code

Server file has been contributed by all group members.

We first connected our tables’ python classes to server:

33

itucsdb1507 Documentation, Release 1.0

if __name__ == '__main__':

'''Container objects'''

app.coaches = Coaches2(app)
app.coaching = Coaching2(app)
app.teams = Teams(app)
app.players = Players(app)
app.countries = Countries(app)
app.leagues = Leagues(app)
app.stadiums = Stadiums(app)
app.officials = Officials(app)
app.seasons = Seasons2(app)
app.matches = Matches(app)
app.statisticsTeam = StatisticsT(app)
app.statisticsPlayer = StatisticsP(app)
app.fixtures = Fixtures(app)
app.squads = Squads(app)
app.transfers = Transfers(app)

Initilization of all tables is controled by a function in the server.py. At the creation of tables we looked at the
relations of tables with each other and created them according to their priority. We first created core tables, then
other tables were created. As we did not wanted to make it reachable to every user we did not put a button that
goes to this address. To reach it user need to write “/init_db” to the end of the home page link. Here is the python
code of this function:

def create_tables():

'''Reference order in DB should be preserved'''
app.coaches.initialize_tables()
app.seasons.initialize_tables()
app.countries.initialize_tables()
app.players.initialize_tables()
app.leagues.initialize_tables()
app.teams.initialize_tables()
app.stadiums.initialize_tables()
app.coaching.initialize_tables()
app.squads.initialize_tables()

app.officials.initialize_tables()
app.matches.initialize_tables()
app.transfers.initialize_tables()

app.statisticsTeam.initialize_tables()
app.statisticsPlayer.initialize_tables()
app.fixtures.initialize_tables()

return redirect(url_for('home_page'))

To drop the tables we again write a function at server.py, but this time it does not call any other class. It just scans
the database and finds table names in out schema. Then it drops tables according to those names. Here is the
python code:

def drop_tables():
with dbapi2.connect(app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""SELECT table_schema,table_name FROM information_schema.tables

WHERE table_schema = 'public' ORDER BY table_schema,table_name""")
rows = cursor.fetchall()
for row in rows:

if row[1]!="pg_stat_statements":
cursor.execute("drop table " + row[1] + " cascade")

34 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

connection.commit()
return redirect(url_for('create_tables'))

Note: As ElephantSQL creates a table on its own and we do not have right to delete this table, we skip
“pg_stat_statements” table.

2.2.1 Parts Implemented by Alparslan Tozan

I implemented official, match and transfer entities and belonging operations. In order to do that I created officials,
matches and transfers classes to implement demanded operations.

All these classes contains same basic methods which listed below.

Operations

• Initialize table methods This operations basicly run a queary to create related table.

• Add methods This methods take variables that represent columns in table and perform a insert operation.

• Delete methods This method takes the entity’s primary key and delete it from database. Users reach delete
function from listing pages and they do not naturally interact with the primary keys, this information
kept but hidden.

• Update methods Similar with add methods this methods also take entitys fields as parameters but also an
entity ID which corresponds to the primary key in the table is given. Same as in the delete operation,
these keys are invisible to users.

• Get Entity Method 1 These methods take an entity ID an returns the entity’s all columns. These are
actually helper functions that used by another entities since some table have foreing keys and had to
reach related name or etc with these keys.

• Get Entities Methods Mostly used in list pages these methods simply returns all entries belong to a entity.
Also these functions used in to Add / Delete operations of entities that have foreing keys since they
need to list all options to the users as a dropdown etc. These methods do not take parameters.

• Search Method 2 Search method designed to search by name or age in official entity as case sensitive. It
basically takes a string or a number, which will later be changed into a string, that represents search
words and returns all related entities.

Delete and Update Operations and Their Form

I want to implement delete and update functions in list page in a such way that users can easily reach. In order to
archive this I placed delete and update buttons following the entries in list page.

Fig. 2.2: User need to select one of the check boxes.

1Only in Officials
2Only in Officials

2.2. Code 35

itucsdb1507 Documentation, Release 1.0

Fig. 2.3: After selecting one of the check boxes user can determine between update and delete operations

In check boxes I used a hidden form value to send the primary key with POST request. Forms action is posting
these values to a determination page, which will determine the process. After check boxes i putted another hidden
value. If none of the check boxes is selected but update/delete button is still selected, with this value we make
sure there will not be an error from web site. In this way I achieved the function that I want, users were able to
delete / update entries by just checking the corresponding check box without entering a key value or an attribute
like name etc.

HTML Part

<form action="{{ url_for('transfer_add') }}" method="post" role="form">
...

{% for key, transfer in transfers %}
...

<td><input type="checkbox" name="id" value="{{ key }}"/></td>
</tr>
{% endfor %}

</table>
<input type="hidden" value="0" name="id">
<div class="col-sm-10">

<input type="submit" value="Delete" name ="submit">
<input type="submit" value="Update" name ="submit">

</div>
</form>

Python Part

def transfer_determine():
if request.method=='GET':

return redirect(url_for('transfers'))
if request.form['id']=="0":

return redirect(url_for('transfers'))
if request.form['submit'] == "Delete":

id = request.form['id']
form = request.form
form_data={id: form['id']}
return redirect(url_for('transfer_delete'), code=307)

elif request.form['submit'] == "Update":
return render_template('transfer_update.html', id = request.form['id'],

teams=app.teams.select_teams(),
season=app.seasons.select_seasons(),
players=app.players.select_players())

else:
return redirect(url_for('transfers'))

Official Implementation

I designed officials class in order to perform operations in my officials table. Official is a core entity in our database
and used in matches tables as a foreing key. Also I designed a official class to represent a row data of a country
except for primary key.

Note: After implementing official entity and some of matches functions I realized that using a class for holding

36 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

entity information and using it as a parameter in functions is not a good way to maintain the operations. In other
entities I did not used classes for entities / methods instead I used column variables as seperate parameters.

Officials Table

In our database countries table has following columns

• OFFICIAL_ID as serial type and primary key This is the primary key of the table

• NAME as varchar(100) and not null This column holds the full name of the official and it can’t be null

• AGE as INT and not null This column holds the age of the official

As python/SQL code:

def initialize_tables(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

CREATE TABLE IF NOT EXISTS OFFICIALS (
OFFICIAL_ID SERIAL NOT NULL PRIMARY KEY,
NAME varchar(100) NOT NULL,
AGE INT NOT NULL

);""")

connection.commit()

Since this is a core entity, it does not has a foreing key.

add_official Method

This method takes a official object as a parameter and insert it into database.

Here is the code block that does the add operation in database using INSERT command:

def add_official(self, name, age):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

INSERT INTO OFFICIALS (NAME, AGE)
VALUES (%s, %s) """,
(name, age))

connection.commit()

delete_official Method

This method takes a official_id (which is a primary key of officials table) and deletes if from database. To match
the country on database WHERE statement used on official_id column.

Here is the code block that perform delete operation on officials table using DELETE command:

def delete_official(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

DELETE FROM OFFICIALS
WHERE OFFICIAL_ID = %s""",
id)

connection.commit()

2.2. Code 37

itucsdb1507 Documentation, Release 1.0

update_official Method

This method works in a similar fashion with add function, it takes one more argument which is the official_id.
The given Official object is parsed and the row that related with official_id argument is updated with this parsed
information.

Here is the code block that perform update operation on officials table using UPDATE command:

def update_official(self, id, official):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE OFFICIALS

SET NAME = %s, AGE = %s
WHERE OFFICIAL_ID = %s"""

cursor.execute(query, (official.name, official.age, id))
connection.commit()

get_official Method

This method is used by matches class. It is main function is the provide all columns related with a
foreing key which consists a official_id. It does simply run SELECT query with WHERE statement
to match official_id. It just returns the name of the matching id.

def get_official(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT * FROM OFFICIALS WHERE OFFICIAL_ID = %s"""
cursor.execute(query, [id])
key,name,age = cursor.fetchone();
return name

get_officials Method

Similiar to get_country methods runs a SELECT on countries table but this time without a specific ID. Simply it
returns all officials in database without taking a parameter.

def get_officials(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT * FROM OFFICIALS

ORDER BY OFFICIAL_ID ASC"""
cursor.execute(query)
connection.commit()

officials = [(key, Official(name, age))
for key, name, age in cursor]

return officials

search_officials Method

This method takes two string values to search in officials table by matching this strings which is the search pharase
acutally on the name and age columns and returns a list of matching officials.

def search_officials(self, name, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT * FROM OFFICIALS

WHERE NAME LIKE '%s' AND CAST(AGE as VARCHAR(30)) LIKE '%s'

38 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

ORDER BY OFFICIAL_ID ASC""" % (('%'+name+'%',id+'%'))
cursor.execute(query)
connection.commit()
print(name)

officials = [(key, Official(name, age))
for key, name, age in cursor]

return officials

Match Implementation

Match is an important entity in American Football Database project that stores all matches that had been played.

Matches Table

Matches table consists of following columns:

• MATCH_ID as serial type and primary key This is the primary key of the table

• SEASON_ID as integer type, not null and references to seasons table This is foreing key to seasons ta-
ble, represent the season that the match has been played at

• HOME_ID as integer type, not null and references to teams table This is foreing key to teams table,
represent the home team that played match

• VISITOR_ID as integer type, not null and references to countries table This is foreing key to teams ta-
ble, represent the away team that played match

• OFFICIAL_ID as integer type and references to officials table This is foreing key to officials table, rep-
resent the official that monitored the match

• RESULT as varchar(30) and not null This column holds the result of the match and it cannot be null

As python/SQL code:

def initialize_tables(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

CREATE TABLE IF NOT EXISTS MATCHES (
MATCH_ID SERIAL NOT NULL PRIMARY KEY,
SEASON_ID int NOT NULL REFERENCES SEASONS(SEASON_ID),
HOME_ID int NOT NULL REFERENCES TEAMS(TEAM_ID),
VISITOR_ID int NOT NULL REFERENCES TEAMS(TEAM_ID),
OFFICIAL_ID int REFERENCES OFFICIALS(OFFICIAL_ID),
RESULT VARCHAR(30) NOT NULL
);""")

connection.commit()

add_match Method

This method takes a match object and performs INSERT operation onto database.

def add_match(self, match):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

INSERT INTO MATCHES (SEASON_ID, HOME_ID,
VISITOR_ID, OFFICIAL_ID, RESULT)

2.2. Code 39

itucsdb1507 Documentation, Release 1.0

VALUES (%s, %s, %s, %s, %s) """,
(match.season_id, match.home_id, match.away_id,
match.official_id, match.result))

connection.commit()

delete_match Method

This method takes a match_id and deletes corresponding row from database using DELETE operation.

def delete_match(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

DELETE FROM MATCHES
WHERE MATCH_ID = %s""",
id)

connection.commit()

update_match Method

Takes an match_id and match the row in database then updates all columns with given parameters.

def update_match(self, id, match):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE MATCHES

SET SEASON_ID = %s, HOME_ID = %s,
VISITOR_ID = %s, OFFICIAL_ID = %s,
RESULT = %s
WHERE MATCH_ID = %s """

cursor.execute(query, (match.season_id, match.home_id,
match.away_id, match.official_id,
match.result, id))

connection.commit()

get_matches Method

This method used to fetch all matches from the database. It does not take a parameter and as a return value it
returns the list of matches information in the database.

def get_matches(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT * FROM MATCHES

ORDER BY MATCH_ID ASC"""
cursor.execute(query)
connection.commit()

matches = [(key, Match(season_id, official_id, home_id, away_id, result,
season=self.app.seasons.get_season(season_id),
official_name=self.app.officials.get_official(official_id),
home_team=self.app.teams.get_team_name(home_id),
away_team=self.app.teams.get_team_name(away_id)))

for key, season_id, home_id, away_id, official_id, result in cursor]

return matches

40 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

Note: MATCHES table holds various informations where these informations located by referencing other tables.
To make our listing more understandable we get names of these informations using basic get functions using ID’s
of these tables.

Transfer Implementation

Transfer is a small entity that used to store records of transfers.

Transfer Table

Transfer table consists of following columns:

• TRANSFER_ID as serial type and primary key This is the primary key of the table

• SEASON_ID as integer type, not null and references to seasons table This is foreing key to seasons ta-
ble, represent the season that the transfer has took place

• OLD_ID as integer type, not null and references to teams table This is foreing key to teams table, rep-
resent the team that player played before transfer

• NEW_ID as integer type, not null and references to countries table This is foreing key to teams table,
represent the team that player is played after transfer

• PLAYER_ID as integer type and references to players table This is foreing key to players table, repre-
sent the player that transfered

• FEE as varchar(30) and not null This column holds the fee of the transfer and it cannot be null

As python/SQL code:

def initialize_tables(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

CREATE TABLE IF NOT EXISTS TRANSFERS (
TRANSFER_ID SERIAL NOT NULL PRIMARY KEY,
SEASON_ID int NOT NULL REFERENCES SEASONS(SEASON_ID),
OLD_ID int NOT NULL REFERENCES TEAMS(TEAM_ID),
NEW_ID int NOT NULL REFERENCES TEAMS(TEAM_ID),
PLAYER_ID int REFERENCES PLAYERS(PLAYER_ID),
FEE VARCHAR(30) NOT NULL
);""")

connection.commit()

add_transfer Method

This method takes a transfer object and performs INSERT operation on TRANSFERS table.

def add_transfer(self, transfer):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

INSERT INTO TRANSFERS (SEASON_ID, OLD_ID,
NEW_ID, PLAYER_ID, FEE)
VALUES (%s, %s, %s, %s, %s) """,
(transfer.season_id, transfer.old_id, transfer.new_id,
transfer.player_id, transfer.fee))

connection.commit()

2.2. Code 41

itucsdb1507 Documentation, Release 1.0

delete_transfer Method

This method takes an transfer_id and deletes corresponding row from database.

def delete_transfer(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

DELETE FROM TRANSFERS
WHERE TRANSFER_ID = %s""",
id)

connection.commit()

update_transfer Method

This method takes an transfer_id and new information that belongs to this entry as transfer object.

def update_transfer(self, id, transfer):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE TRANSFERS

SET SEASON_ID = %s, OLD_ID = %s,
NEW_ID = %s, PLAYER_ID = %s,
FEE = %s
WHERE TRANSFER_ID = %s """

cursor.execute(query, (transfer.season_id, transfer.old_id,
transfer.new_id, transfer.player_id,
transfer.fee, id))

connection.commit()

get_transfers Method

This method returns all transfers and information belongs to that transfers by using fetchall function and JOIN
operations.

def get_transfers(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT T.TRANSFER_ID, T1.NAME, T2.NAME, S.YEAR, P.NAME, T.FEE

FROM TRANSFERS T
JOIN TEAMS T1 ON T1.TEAM_ID=T.OLD_ID
JOIN TEAMS T2 ON T2.TEAM_ID=T.NEW_ID
JOIN SEASONS S ON S.SEASON_ID=T.SEASON_ID
JOIN PLAYERS P ON P.PLAYER_ID=T.PLAYER_ID"""

cursor.execute(query)
connection.commit()

transfers = [(key, Transfer("1", "1", "1", "1", fee, season,
player_name, old_team, new_team))

for key, old_team, new_team, season, player_name, fee in cursor]

return transfers

Note: Even though get functions of MATCHES and TRANSFERS tables works same, one gets its entries names
from basic functions, other gets these values from join operations. As join operation returns only the result that
we want, we can say it is more effective.

42 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

2.2.2 Parts Implemented by İlay Köksal

I created coaches, seasons and coaching tables and their operations. All these tables contains same operations like
Add, Delete, Update and Search.

• Initialize Table Creation of the table.

• Select Returns all elements of table

• Get Makes inner join to select wanted colums from other tables. Basicly used in tables in which cocsists
foreign key.

• Add Adding new row to table

• Delete Deleting row from table

• Update Updating selected row

• Search Searching table with given condition and returning rows which verify search condition.

Coaches Table and Operations

First i created a coaches class to implement all related operations for Coaches table.

Coaches table has the fallowing columns

• COACH_ID as serial primary key This is the primary key of the table

• NAME as varchar(50) and not null Holds the name of the coach and can not be null

• BIRTHDAY as integer and not null Birthyear of coach.

Coaches table is a core table so it does not have any foreign key.

initialize_tables

First we create table with CREATE sql statement.

def initialize_tables(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""CREATE TABLE IF NOT EXISTS COACHES
(
COACH_ID SERIAL PRIMARY KEY,
NAME VARCHAR(50) NOT NULL,
BIRTHDAY INTEGER NOT NULL
) """)
connection.commit()

select_coaches

With this method, we can see every coach item in table in ascending order.

def select_coaches(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT * FROM COACHES ORDER BY COACH_ID ASC"""
cursor.execute(query)
result = cursor.fetchall()
return result

2.2. Code 43

itucsdb1507 Documentation, Release 1.0

add_coach

This function takes name and birthday and add them to database with INSERT satatement.

def add_coach(self, name, birthday):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ INSERT INTO COACHES (NAME, BIRTHDAY) VALUES (%s, %s) """
cursor.execute(query, (name, birthday))
connection.commit()

seach_coach

This method returns the matching coaches to given string with WHERE and SELECT statements.

def search_coach(self, name):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT * FROM COACHES c WHERE c.NAME LIKE '%s'"""% (('%'+name+'%'))
cursor.execute(query)
connection.commit()
result = [(key, name,birth)

for key, name,birth in cursor]
return result

delete_coach

Deleting done with taking the id of item that we want to delete and using it in DELETE and WHERE query.

def delete_coach(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ DELETE FROM COACHES WHERE COACH_ID =%s """
cursor.execute(query, [id])
connection.commit()

update_coach

Works similar to add function but in addition takes id argument of the item that we want to update.

def update_coach(self, coach_id, name, birthday):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE COACHES SET NAME = %s, BIRTHDAY= %s WHERE COACH_ID = %s """
cursor.execute(query, (name,birthday,coach_id))
connection.commit()

Seasons Table and Operations

Seasons table class created first to write its operations.

This table has columns below.

• SEASON_ID as serial primary key This is the primary key of the table

• YEAR as integer and not null Year value of season.

Seasons table is a core table as well so it does not have any foreign key too.

44 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

initialize_tables

First we create table with CREATE sql statement.

def initialize_tables(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""CREATE TABLE IF NOT EXISTS SEASONS
(
SEASON_ID SERIAL PRIMARY KEY,
YEAR INTEGER NOT NULL
) """)
connection.commit()

select_seasons

With this method, we can see every season value in ascending order.

def select_seasons(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT * FROM SEASONS ORDER BY SEASON_ID ASC"""
cursor.execute(query)
result = cursor.fetchall()
return result

get_season

This method used by other classes and tables. They use this to select season with season id.

def get_season(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT * FROM SEASONS

WHERE SEASON_ID = %s"""
cursor.execute(query,[id])
season_id,year = cursor.fetchone()
return year

add_season

This function takes year value and add it to database with INSERT sql satatement.

def add_season(self, year):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ INSERT INTO SEASONS (year) VALUES (%s) """
cursor.execute(query, [year])
connection.commit()

seach_coach

This method returns the matching season with WHERE and SELECT statements.

def search_season(self, year1):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()

2.2. Code 45

itucsdb1507 Documentation, Release 1.0

query="""SELECT * FROM SEASONS WHERE YEAR = %s"""
cursor.execute(query,[year1])
connection.commit()
result = [(key, year)

for key, year in cursor]
return result

delete_season

Method takes id of the item as parameter. With WHERE statement, we can delete related item.

def delete_season(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ DELETE FROM SEASONS WHERE SEASON_ID =%s """
cursor.execute(query, [id])
connection.commit()

update_coach

Similar to add function but in addition takes id value of the item to be updated.

def update_season(self, season_id, year):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE SEASONS SET YEAR = %s WHERE SEASON_ID = %s """
cursor.execute(query, (year,season_id))
connection.commit()

Coaching Table and Operations

Coaching table class created and its operations implemented.

This table has columns below.

• COACHING_ID as serial primary key This is the primary key of the table

• TEAM_ID as integer and not null and references TEAM table

• COACH_ID as integer and not null and references COACHES table

• SEASON_ID as integer and not null and references SEASONS table

Coaching table is a relation table. It has three foreign keys and one serial primary key.

initialize_tables

First we create table with CREATE sql statement.

def initialize_tables(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""CREATE TABLE IF NOT EXISTS COACHING
(
COACHING_ID SERIAL NOT NULL PRIMARY KEY,
TEAM_ID INT NOT NULL REFERENCES TEAMS(TEAM_ID),
COACH_ID INT NOT NULL REFERENCES COACHES(COACH_ID),
SEASON_ID INT NOT NULL REFERENCES SEASONS(SEASON_ID)
) """)
connection.commit()

46 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

select_coaching

This method helps us to see every coaching relation we have in our database.

def select_coaching(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """SELECT * FROM COACHING"""
cursor.execute(query)
result = cursor.fetchall()
return result

get_coaching

With this method we call the values from other tables to show.

def get_coaching(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ select coaching_id, teams.name, coaches.name, seasons.year

from coaching
inner join teams on teams.team_id=coaching.team_id
inner join coaches on coaches.coach_id=coaching.coach_id
inner join seasons on seasons.season_id=coaching.season_id"""

cursor.execute(query)
result = cursor.fetchall()
return result

add_coaching

This function takes Team id, Season id and Coach id and add them to database with INSERT sql statement.

def add_coaching(self,team_id,coach_id,season_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ INSERT INTO COACHING (TEAM_ID, COACH_ID, SEASON_ID) VALUES (%s, %s, %s) """
cursor.execute(query, (team_id, coach_id, season_id))
connection.commit()

seach_coaching

This method returns the matching coaching row with WHERE and SELECT statements.

def search_coaching(self, term):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""select coaching_id, teams.name, coaches.name, seasons.year

from coaching
inner join teams on teams.team_id=coaching.team_id
inner join coaches on coaches.coach_id=coaching.coach_id
inner join seasons on seasons.season_id=coaching.season_id
WHERE coaches.name LIKE '%s' OR teams.name LIKE '%s'""" % (('%'+term+'%'),('%'+term+'%'))

cursor.execute(query)
connection.commit()
coachlist = [(key, team, name, year)

for key, team, name, year in cursor]

return coachlist

2.2. Code 47

itucsdb1507 Documentation, Release 1.0

delete_coaching

Method takes id of the item as parameter. With WHERE statement it finds item that we want to delete.

def delete_coaching(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor=connection.cursor()
query ="""

DELETE FROM COACHING
WHERE COACHING_ID = %s"""

cursor.execute(query,[id])
connection.commit()

update_coaching

Like add function but in addition takes id value of the row to update.

def update_coaching(self, coaching_id, team_id, coach_id, season_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE COACHING

SET TEAM_ID = %s,
COACH_ID = %s,
SEASON_ID = %s
WHERE COACHING_ID = %s"""

cursor.execute(query, [team_id, coach_id, season_id, coaching_id])
connection.commit()

2.2.3 Parts Implemented by Kubilay Karpat

I implemented country, league and stadium entities and belonging operations. I created countries, leagues and
stadiums classes in order to implement demanded operations. All these classes contains same basic methods
which listed below.

• Initialize table methods This operations basicly run a queary to create related table.

• Add methods This methods take variables that represent columns in table and perform a insert operation.

• Delete methods This method takes the entity’s primary key and delete it from database. Users reach delete
function from listing pages and they do not naturally interact with the primary keys, this information
kept but hidden.

• Update methods Similar with add methods this methods also take entitys fields as parameters but also an
entity ID which corresponds to the primary key in the table is given. Same as in the delete operation,
these keys are invisible to users.

• Get Entity Methods These methods take an entity ID an returns the entities all columns. These are actually
helper functions that used by another entities since some table have foreing keys and had to reach
related name or etc with these keys.

• Get Entities Methods Mostly used in list pages these methods simply returns all entries belong to a entity.
Also these functions used in to Add / Delete operations of entities that have foreing keys since they
need to list all options to the users as a dropdown etc. These methods do not take parameters.

• Search Methods Search methods designed to search by name in all three entities as case sensitive. They
basically takes a string that represents search words and returns all related entries.

Note: The difference between single and all get functions is not limited with the number of elements returned.
There is also difference between returned element’s properties. Single get functions returns values a in the table
but get entities methods change foreing key IDs with more understandable variables. (country_id changed with

48 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

country_name in LEAGUES table for example.) Beacuse get entities methods used to list entities to users while
get entity methods used by another back-end functions.

Delete and Update Operations and Their Form

I want to implement delete and update functions in list page in a such way that users can easily reach. In order to
archive this I placed delete and update buttons following the entries in list page.

Fig. 2.4: Users can directly delete entries or reach their update pages.

In delete button I used a hidden form value to send the primary key with POST request. But in update button I just
put the ID of element that want to deleted in to URL. In this way I achieved the function that I want, users were
able to delete / update entries by just clicking the corresponding button without entering a key value or an attribute
like name etc.

<form action="{{ url_for('countries') }}" method="post"
role="form" style="display: inline">

<input value="{{key}}" name="id" type="hidden" />
<button class="btn btn-primary btn-sm" name="Delete" type="submit">

</button>

</form>
<form action="{{url_for('country_edit', country_id=key)}}" method="get"

role="form" style="display:inline">
<button class="btn btn-primary btn-sm" name="Update" type="submit">

<
/button>

</form>

Country Implementation

I designed countries class in order to perform operations in my countries table. Country is a core entity in our
dateabase and used in some tables as a foreing key. Also ı designed a country class to represent a row data of a
country except for primary key.

Note: After implementing country entity and some of league functions I realized that using a class for holding
entity information and using it as a parameter in functions is not a good way to maintain the operations. In other
entities I did not used classes for entities / methods instead I used column variables as seperate parameters.

2.2. Code 49

itucsdb1507 Documentation, Release 1.0

Countires Table

In our database countries table has following columns

• COUNTRY_ID as serial type and primary key This is the primary key of the table

• NAME as varchar(50) and not null This column holds the name of the country and it can’t be null

• ABBREVIATION a varchar(5) This column holds the abbrevitaion of the country (like US, UK etc.)

Since this is a core entity, it does not has a foreing key.

add_country Method

This method takes a country object as a parameter and insert it into database.

Here is the code block that does the add operation in database using INSERT command:

def add_country(self, country):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

INSERT INTO COUNTRIES (NAME, ABBREVIATION)
VALUES (%s, %s) """, (country.name,country. abbreviation))

connection.commit()

delete_country Method

This method takes a country id (which is a primary key of countries table actually) and deletes if from database.
To match the country on database WHERE statement used on country id column.

Here is the code block that perform delete operation on countries table.

def delete_country(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ DELETE FROM COUNTRIES WHERE COUNTRY_ID =%s """
cursor.execute(query, [id])
connection.commit()

update_country Method

This method works in a similar fashion with add function, it takes one more argument which is the country id.
The given Country object is parsed and the row that related with country id argument is updated with tihs parsed
information.

def update_country(self, country_id, country):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE COUNTRIES

SET NAME = %s, ABBREVIATION = %s
WHERE COUNTRY_ID = %s """

cursor.execute(query, (country.name,country. abbreviation,country_id))
connection.commit()

get_country Method

This method is used by another classes. It is main function is the provide all columns related with a
foreing key which consists a country id. It does simply run SELECT query with WHERE statement

50 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

to match country id.

def get_country(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT * FROM COUNTRIES WHERE COUNTRY_ID =%s """
cursor.execute(query, [id])

connection.commit()
result = cursor.fetchone()
country = Country(result[1], result[2])
return country

get_countries Method

Similiar to get_country methods runs a SELECT on countries table but this time without a specific ID. Simply it
returns all countries in database without taking a parameter.

def get_countries(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT * FROM COUNTRIES ORDER BY NAME"""
cursor.execute(query)
connection.commit()
countries = [(key, Country(name, abbreviation))

for key, name, abbreviation in cursor]

return countries

search_countries Method

This method takes a string and search in countires table by matching this string which is the search pharase acutally
on the name column and returns a list of matching countries.

def search_countries(self, search_terms):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT * FROM COUNTRIES WHERE NAME LIKE '%s' ORDER BY NAME"""

% (('%'+search_terms+'%'))
cursor.execute(query)
connection.commit()
countries = [(key, Country(name, abbreviation))

for key, name, abbreviation in cursor]
return countries

League Implementation

League is an important entity in American Football Database project because all the teams, matches, coaches,
officals are specific for a league.

Leagues Table

Leagues table consists of following columns:

• LEAGUE_ID as serial type and primary key This is the primary key of the table

• NAME as varchar(100) and not null This column holds the name of the league and it can’t be null

• ABBREVIATION a varchar(10) This column holds the abbrevitaion of the leaguey (like NFL)

2.2. Code 51

itucsdb1507 Documentation, Release 1.0

• COUNTRY_ID as integer type, nut null and references to countries table This is foreing key to coun-
tries table, represent the country that the leauge has belongs to

add_league Method

This method takes a league object and performs INSERT operation onto database.

def add_league(self, league):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

INSERT INTO LEAGUES (NAME, ABBREVIATION, COUNTRY_ID)
VALUES (%s, %s, %s) """,
(league.name, league.abbreviation, league.countryID))

connection.commit()

delete_league Method

This method takes a league_id and deletes corresponding row from database using DELETE operation.

def delete_league(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ DELETE FROM LEAGUES WHERE LEAGUE_ID =%s """
cursor.execute(query, [id])
connection.commit()

update_league Method

Takes an league_id and match the row in database then updates all columns with given parameters.

def update_league(self, league_id, name, abbreviation, country_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE LEAGUES

SET NAME = %s, ABBREVIATION = %s, COUNTRY_ID = %s
WHERE LEAGUE_ID = %s """

cursor.execute(query, (name, abbreviation, country_id, league_id))
connection.commit()

get_league Method

This method is an helper function to other entities which hold league_id as a foreing key. It simply takes an
league_id and returns corresponding league information.

def get_league(self, league_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT * FROM LEAGUES

WHERE LEAGUE_ID =%s """
cursor.execute(query, [league_id])
connection.commit()

league_id, name, abbreviation, country_id = cursor.fetchone()
return league_id, name, abbreviation, country_id

52 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

get_leagues Method

This method used to fetch all leagues from the database. It does not take a parameter and as a return value it
returns the list of leagues information in the database.

def get_leagues(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT L.LEAGUE_ID, L.NAME, L.ABBREVIATION, C.NAME

FROM LEAGUES L
LEFT JOIN COUNTRIES C ON (L.COUNTRY_ID = C.COUNTRY_ID)
"""

cursor.execute(query)
connection.commit()

leagues = [(league_id, name, abbreviation, country_name)
for league_id, name, abbreviation, country_name in cursor]

return leagues

search_leagues Method

Search countries method runs a SELECT argument with WHERE argument which compare the given input pa-
rameter with leagues’ names with LIKE option. The results returned as a list.

def search_leagues(self, search_terms):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT L.LEAGUE_ID, L.NAME, L.ABBREVIATION, C.NAME

FROM LEAGUES L
LEFT JOIN COUNTRIES C ON (L.COUNTRY_ID = C.COUNTRY_ID)
WHERE L.NAME LIKE '%s' ORDER BY L.NAME"""

% (('%'+search_terms+'%'))

cursor.execute(query)
connection.commit()

leagues = [(league_id, name, abbreviation, country_name)
for league_id, name, abbreviation, country_name in cursor]

return leagues

Note: LEAGUES table holds the countries where stadiums located by referencing COUNTRIES table. This
information established with storing country_id as a foreing key. But this ID number is meaningless to users.
In order to properly show country information with country name LEFT JOIN method used and countries table
joined on stadiums table with country_id in common.

Stadium Implementation

Stadium is a small entity that used to store records of stadiums.

Note: We first planned to give a reference to stadium in MATCHES table but we could not able to implement
time due to lack of time.

2.2. Code 53

itucsdb1507 Documentation, Release 1.0

Stadium Table

Stadium table consists of following columns:

• STADIUM_ID as serial type and primary key This is the primary key of the table

• NAME as varchar(100) and not null This column holds the name of the stadium and it can’t be null

• CAPACITY as integer This column used to store capacity of stadium if given.

• COUNTRY_ID as integer type, nut null and references to countries table This is foreing key to
COUNTRIES table, represent the country where stadium placed.

• TEAM_ID as integer type, nut null and references to countries table This is foreing key to TEAMS ta-
ble, represent the owner team of the stadium.

add_stadium Method

This method takes variables corresponds to coloumns of STADIUMS and insert new row to the table.

def add_stadium(self, name, capacity, country_id, team_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query ="""

INSERT INTO STADIUMS (NAME, CAPACITY, COUNTRY_ID, TEAM_ID)
VALUES (%s, %s, %s, %s) """

cursor.execute(query, (name, capacity, country_id, team_id))
connection.commit()

delete_stadium Method

This method takes an stadium_id and deletes corresponding row from database.

def delete_stadium(self, stadium_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ DELETE FROM STADIUMS WHERE STADIUM_ID =%s """
cursor.execute(query, [stadium_id])
connection.commit()

update_stadium Method

This method takes an stadium_id and new information that belongs to this entry.

def update_stadium(self, stadium_id, name, capacity, country_id, team_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE STADIUMS

SET NAME=%s, CAPACITY=%s, COUNTRY_ID=%s, TEAM_ID=%s
WHERE STADIUM_ID = %s """

cursor.execute(query, (name, capacity, country_id, team_id, stadium_id))
connection.commit()

get_stadium Method

Using fetchone function, this method returns information of an stadium whose stadium_id given as parameter.

54 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

def get_stadium(self, stadium_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT * FROM STADIUMS

WHERE STADIUM_ID =%s """
cursor.execute(query, (stadium_id))
connection.commit()

stadium_id, name, capacity, country_id, team_id = cursor.fetchone()
return stadium_id, name, capacity, country_id, team_id

get_stadiums Method

Without an input parameter this method returns all stadiums and information belongs to that stadiums by using
fetchall function. LEFT JOIN used in order to get league’s and country’s name.

def get_stadiums(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT S.STADIUM_ID, S.NAME, S.CAPACITY, C.NAME, T.NAME

FROM STADIUMS S
LEFT JOIN COUNTRIES C ON (S.COUNTRY_ID = C.COUNTRY_ID)
LEFT JOIN TEAMS T ON (S.TEAM_ID = T.TEAM_ID)
"""

cursor.execute(query)
connection.commit()

stadiums = [(key, name, capacity, country, team)
for key, name, capacity, country, team in cursor]

return stadiums

search_stadiums Method

This method searches stadiums with stadium name and return results in a same fashion with get_stadiums method.
Again LEFT JOIN used in order to get league’s and country’s name.

def search_stadiums(self, search_terms):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT S.STADIUM_ID, S.NAME, S.CAPACITY, C.NAME, T.NAME

FROM STADIUMS S
LEFT JOIN COUNTRIES C ON (S.COUNTRY_ID = C.COUNTRY_ID)
LEFT JOIN TEAMS T ON (S.TEAM_ID = T.TEAM_ID)
WHERE S.NAME LIKE '%s' ORDER BY S.NAME"""

% (('%'+search_terms+'%'))
cursor.execute(query)
connection.commit()
stadiums = [(key, name, capacity, country, team)

for key, name, capacity, country, team in cursor]

return stadiums

2.2.4 Parts Implemented by Seda Yıldırım

The following three tables were implemented: Fixtures, Player Statistics, and Team Statistics. The tabs Fixtures
and Statistics can be seen on the navigation bar above the site interface. The classes for the respective tables were
created with the same method in mind. All classes include the methods below.

2.2. Code 55

itucsdb1507 Documentation, Release 1.0

• Initialize Table: Run a query to create the table.

• Add methods: Add a new value to the respective tables.

• Delete methods: Delete the selected entry from a table.

• Update methods: Update the selected entry.

• Get Single Entity Methods: Take an entity ID an return the whole row.

• Get Multiple Entities Methods: Return all entries of an entity. Does not take parameters.

• Search Methods: Search methods by name. Case sensitive.

Fixtures Table

Fixtures table was implemented to hold the fixture data of the teams. It has Fixture_ID as a primary key, and
Season_ID and Team_ID as a foreign key. It also has points data as local data.

def initialize_tables(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

CREATE TABLE IF NOT EXISTS FIXTURES
(
FIXTURE_ID SERIAL NOT NULL PRIMARY KEY,
SEASON_ID INTEGER NOT NULL REFERENCES SEASONS(SEASON_ID),
TEAM_ID INTEGER NOT NULL REFERENCES TEAMS(TEAM_ID),
POINTS INTEGER NOT NULL
)
""")

connection.commit()

add_fixture Method

This method takes the respective queries and adds the resulting fixture to the database. This operation is done by
INSERT INTO feature in SQL. The said code is shown below.

def add_fixture(self, season_id, team_id, points):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ INSERT INTO FIXTURES (SEASON_ID, TEAM_ID, POINTS) VALUES
(%s, %s, %s) """

cursor.execute(query, (season_id, team_id, points))
connection.commit()

delete_fixture Method

This method takes the Fixture_ID of a query and deletes the resulting fixture from the database. This operation is
done by DELETE FROM feature in SQL. The said code is shown below.

def delete_fixture(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

DELETE FROM FIXTURES
WHERE FIXTURE_ID = %s""",
id)

connection.commit()

56 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

update_fixture Method

This method takes the Fixture_ID of a query and updates the said entry by simply calling the UPDATE feature in
SQL.

def update_fixture(self, fixture_id, season_id, team_id, points):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE FIXTURES

SET SEASON_ID = %s,
TEAM_ID = %s,
POINTS = %s
WHERE FIXTURE_ID = %s"""

cursor.execute(query, (season_id, team_id, points, fixture_id))
connection.commit()

search_fixture Method

This method provides the user with all the columns related to the search query. It runs a SELECT query with a
WHERE statement to match Fixture_ID. It uses JOIN feature of SQL to display the proper results.

def search_fixture(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT FIXTURE_ID, SEASONS.YEAR, TEAMS.NAME, POINTS

FROM FIXTURES
INNER JOIN SEASONS ON SEASONS.SEASON_ID=FIXTURES.SEASON_ID
INNER JOIN TEAMS ON TEAMS.TEAM_ID=FIXTURES.TEAM_ID
WHERE TEAMS.NAME LIKE '%s'""" % ('%'+id+'%')

cursor.execute(query)
connection.commit()

result = cursor.fetchall()
return result

get_fixtures Method

This method simply returns all the fixtures in the database. It uses LEFT JOIN feature of SQL to get season and
team name data from the foreign keys.

def get_fixtures(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT F.FIXTURE_ID, S.YEAR, T.NAME, F.POINTS

FROM FIXTURES F
LEFT JOIN SEASONS S ON (F.SEASON_ID = S.SEASON_ID)
LEFT JOIN TEAMS T ON (F.TEAM_ID = T.TEAM_ID)
ORDER BY S.YEAR ASC"""

cursor.execute(query)
connection.commit()

fixtures = [(key, season, team, points)
for key, season, team, points in cursor]

return fixtures

Player Statistics Table

Player Statistics table was implemented to hold the various statistics data of the players in the database. It has
Statistic_ID as a primary key, and Season_ID and Player_ID as a foreign key. It also has tackles and penalties

2.2. Code 57

itucsdb1507 Documentation, Release 1.0

data as local data. The following code initializes the Team Statistics table.

def initialize_tables(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

CREATE TABLE IF NOT EXISTS STATISTICSP
(
STATISTIC_ID SERIAL NOT NULL PRIMARY KEY,
SEASON_ID INTEGER NOT NULL REFERENCES SEASONS(SEASON_ID),
PLAYER_ID INTEGER NOT NULL REFERENCES PLAYERS(PLAYER_ID),
tackles INTEGER NOT NULL,
penalties INTEGER NOT NULL
)
""")

connection.commit()

add_statistic_player Method

This method takes the respective queries and adds the resulting statistics to the database. This operation is done
by INSERT INTO feature in SQL. The said code is shown below.

def add_statistic_player(self, season_id, player_id, tackles, penalties):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ INSERT INTO STATISTICSP (SEASON_ID, PLAYER_ID, tackles,
penalties) VALUES (%s, %s, %s, %s) """

cursor.execute(query, (season_id, player_id, tackles, penalties))
connection.commit()

delete_statistic_player Method

This method takes the Statistic_ID of a query and deletes the resulting statistic from the database. This operation
is done by DELETE FROM feature in SQL. The said code is shown below.

def delete_statistic_player(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

DELETE FROM STATISTICSP
WHERE STATISTIC_ID = %s""",
id)

connection.commit()

update_statistic_player Method

This method takes the Statistic_ID of a query and updates the said entry by simply calling the UPDATE feature in
SQL.

def update_statistic_player(self, statistic_id, season_id, player_id, tackles,
penalties):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE STATISTICSP

SET SEASON_ID = %s,
PLAYER_ID = %s,
TACKLES = %s,
PENALTIES = %s
WHERE STATISTIC_ID = %s"""

58 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

cursor.execute(query, (season_id, player_id, tackles, penalties,
statistic_id))

connection.commit()

search_statistic_player Method

This method provides the user with all the columns related to the search query. It runs a SELECT query with a
WHERE statement to match Statistic_ID. It uses JOIN feature of SQL to display the proper results.

def search_statistic_player(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT STATISTIC_ID, SEASONS.YEAR, PLAYERS.NAME, TACKLES, PENALTIES

FROM STATISTICSP
INNER JOIN SEASONS ON SEASONS.SEASON_ID=STATISTICSP.SEASON_ID
INNER JOIN PLAYERS ON PLAYERS.PLAYER_ID=STATISTICSP.PLAYER_ID
WHERE PLAYERS.NAME LIKE '%s'""" % ('%'+id+'%')

cursor.execute(query)
connection.commit()

result = cursor.fetchall()
return result

get_statistics_player Method

This method simply returns all the player statistics in the database. It uses LEFT JOIN feature of SQL to get
season and player name data from the foreign keys.

def get_statistics_player(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT S.STATISTIC_ID, SS.YEAR, P.NAME, S.TACKLES, S.PENALTIES

FROM STATISTICSP S
LEFT JOIN SEASONS SS ON (S.SEASON_ID = SS.SEASON_ID)
LEFT JOIN PLAYERS P ON (S.PLAYER_ID = P.PLAYER_ID)
ORDER BY SS.YEAR ASC"""

cursor.execute(query)
connection.commit()

statisticsp = [(key, season, player, tackles, penalties)
for key, season, player, tackles, penalties in cursor]

return statisticsp

Team Statistics Table

Team Statistics table was implemented to hold the various statistics data of the teams in the database. It has
Statistic_ID as a primary key, and Season_ID and Team_ID as a foreign key. It also has touchdowns and rushing
yards data as local data. The following code initializes the Team Statistics table.

def initialize_tables(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

CREATE TABLE IF NOT EXISTS STATISTICST
(
STATISTIC_ID SERIAL NOT NULL PRIMARY KEY,
SEASON_ID INTEGER NOT NULL REFERENCES SEASONS(SEASON_ID),
TEAM_ID INTEGER NOT NULL REFERENCES TEAMS(TEAM_ID),

2.2. Code 59

itucsdb1507 Documentation, Release 1.0

touchdowns INTEGER NOT NULL,
rushingYards INTEGER NOT NULL
)
""")

connection.commit()

add_statistic_team Method

This method takes the respective queries and adds the resulting statistics to the database. This operation is done
by INSERT INTO feature in SQL. The said code is shown below.

def add_statistic_team(self, season_id, team_id, touchdowns, rushingYards):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ INSERT INTO STATISTICST (SEASON_ID, TEAM_ID, touchdowns,
rushingYards) VALUES (%s, %s, %s, %s) """

cursor.execute(query, (season_id, team_id, touchdowns, rushingYards))
connection.commit()

delete_statistic_team Method

This method takes the Statistic_ID of a query and deletes the resulting statistic from the database. This operation
is done by DELETE FROM feature in SQL. The said code is shown below.

def delete_statistic_team(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
cursor.execute("""

DELETE FROM STATISTICST
WHERE STATISTIC_ID = %s""",
id)

connection.commit()

update_statistic_team Method

This method takes the Statistic_ID of a query and updates the said entry by simply calling the UPDATE feature in
SQL.

def update_statistic_team(self, statistic_id, season_id, team_id, touchdowns,
rushingYards):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE STATISTICST

SET SEASON_ID = %s,
TEAM_ID = %s,
TOUCHDOWNS = %s,
RUSHINGYARDS = %s
WHERE STATISTIC_ID = %s"""

cursor.execute(query, (season_id, team_id, touchdowns, rushingYards,
statistic_id))

connection.commit()

search_statistic_team Method

This method provides the user with all the columns related to the search query. It runs a SELECT query with a
WHERE statement to match Statistic_ID. It uses JOIN feature of SQL to display the proper results.

60 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

def search_statistic_team(self, id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT STATISTIC_ID, SEASONS.YEAR, TEAMS.NAME, TOUCHDOWNS,

RUSHINGYARDS
FROM STATISTICST
INNER JOIN SEASONS ON SEASONS.SEASON_ID=STATISTICST.SEASON_ID
INNER JOIN TEAMS ON TEAMS.TEAM_ID=STATISTICST.TEAM_ID
WHERE TEAMS.NAME LIKE '%s'""" % ('%'+id+'%')

cursor.execute(query)
connection.commit()

result = cursor.fetchall()
return result

get_statistics_team Method

This method simply returns all the team statistics in the database. It uses LEFT JOIN feature of SQL to get season
and team name data from the foreign keys.

def get_statistics_team(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query="""SELECT S.STATISTIC_ID, SS.YEAR, T.NAME, S.TOUCHDOWNS,

S.RUSHINGYARDS
FROM STATISTICST S
LEFT JOIN SEASONS SS ON (S.SEASON_ID = SS.SEASON_ID)
LEFT JOIN TEAMS T ON (S.TEAM_ID = T.TEAM_ID)
ORDER BY SS.YEAR ASC"""

cursor.execute(query)
connection.commit()

statisticst = [(key, season, team, touchdowns, rushingYards)
for key, season, team, touchdowns, rushingYards in cursor]

return statisticst

2.2.5 Parts Implemented by Sefa Eren Şahin

Players, Teams and Squad tables are implemented.

Players Table

This table consists of 4 columns

Column Name Data Type Key
PLAYER_ID serial PRIMARY KEY
NAME varchar none
BIRTHDAY date none
POSITION varchar none

Table Initialization

Table is created by following sql code:

CREATE TABLE IF NOT EXISTS PLAYERS
(PLAYER_ID serial NOT NULL PRIMARY KEY,
NAME varchar(100) NOT NULL,
BIRTHDAY date NOT NULL,

2.2. Code 61

itucsdb1507 Documentation, Release 1.0

POSITION varchar(100) NOT NULL
)

Selection

If “/players” route is loaded by GET method, players are going to be selected and will be printed to players.html:

@app.route('/players', methods=['GET', 'POST'])
def players():

if request.method == 'GET':
return render_template('players.html', players=app.players.select_players())

else:
name = request.form['name']
birthday = request.form['birthday']
position = request.form['position']
app.players.add_player(name, birthday, position)

return redirect(url_for('players'))

Selection operation is done by the following function which is in players.py:

def select_players(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT * FROM PLAYERS ORDER BY PLAYER_ID"""
cursor.execute(query)
players = cursor.fetchall()
return players

Insert Operation

A route is defined in order to use Player Adding html page:

@app.route('/players/add', methods=['GET', 'POST'])
def add_players():
return render_template('players_add.html')

After the form is filled and submitted in page, form action directs to the following route:

@app.route('/players', methods=['GET', 'POST'])
def players():

if request.method == 'GET':
return render_template('players.html', players=app.players.select_players())

else:
name = request.form['name']
birthday = request.form['birthday']
position = request.form['position']
app.players.add_player(name, birthday, position)

return redirect(url_for('players'))

If “/players” route is loaded by POST method, which is the player addition form’s method, player will be added
and route will redirect to itself again. If route is loaded by GET method, players.html page will be opened up.

Insertion operation is done by the following function which is in players.py:

def add_player(self, name, birthday, position):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ INSERT INTO PLAYERS (NAME, BIRTHDAY, POSITION)

VALUES (%s, %s, %s) """
cursor.execute(query, (name, birthday, position))
connection.commit()

62 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

Update Operation

In update operation, route is defined uniquely for the corresponding tuple’s player_id:

@app.route('/players/update/<player_id>', methods=['GET', 'POST'])
def update_players(player_id):

if request.method == 'GET':
return render_template('players_edit.html',
player = app.players.get_player(player_id))

else:
name = request.form['name']
birthday = request.form['birthday']
position = request.form['position']
app.players.update_player(player_id, name, birthday, position)
return redirect(url_for('players'))

If the route is loaded by GET method, player with corresponding player_id will be selected to update and route
will be directed to players_edit.html:

def get_player(self, player_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT * FROM PLAYERS WHERE PLAYER_ID = %s """
cursor.execute(query, [player_id])
player = cursor.fetchall()
return player

The form’s action in players_edit.html redirects form to the current route. Since form’s method is POST, route
is loaded by POST method. Values are requested from form and the update function is called. After that, route
redirects to players page. Update operation is done by the following function in players.py:

def update_player(self, player_id, name, birthday, position):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE PLAYERS

SET NAME = %s,
BIRTHDAY = %s,
POSITION = %s
WHERE
PLAYER_ID = %s """

cursor.execute(query, (name, birthday, position, player_id))
connection.commit()

Delete Operation

Delete operation is very similar to Update operation. Like update, in delete operation, route is defined uniquely
for the corresponding tuple’s player id.:

@app.route('/players/delete/<player_id>', methods=['GET', 'POST'])
def delete_players(player_id):

app.players.delete_player(player_id)
return redirect(url_for('players'))

After the player is deleted, route redirects to players page. Delete operation is done by the following function in
players.py:

def delete_player(self, player_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ DELETE FROM PLAYERS

WHERE PLAYER_ID = %s """

2.2. Code 63

itucsdb1507 Documentation, Release 1.0

cursor.execute(query, [player_id])
connection.commit()

Search Operation

A route is defined in order to search players by player name. Search form is in players.html:

@app.route('/players/search', methods = ['GET', 'POST'])
def search_players():
if request.method == 'GET':

return redirect(url_for('players_search.html'))
else:

searchname = request.form['nametosearch']
return render_template('players_search.html',
players = app.players.search_player(searchname))

Since the form has POST method, after the submission, search name will be requested from form. After searching,
results will be listed in players_search.html.

Searching is done by the following function in players.py:

def search_player(self, name):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT * FROM PLAYERS WHERE NAME LIKE %s

ORDER BY PLAYER_ID """
cursor.execute(query, ['%'+name+'%'])
players = cursor.fetchall()
return players

Teams Table

This table consists of 4 columns

Column Name Data Type Key
TEAM_ID serial PRIMARY KEY
NAME varchar none
LEAGUE_ID date FK LEAGUES(LEAGUE_ID)

Table Initialization

Table is created by following sql code:

CREATE TABLE IF NOT EXISTS TEAMS
(
TEAM_ID serial NOT NULL PRIMARY KEY,
NAME varchar(100) NOT NULL,
LEAGUE_ID int NOT NULL REFERENCES LEAGUES(LEAGUE_ID)
)

Selection

If “/teams” route is loaded by GET method, teams are going to be selected and will be printed to teams.html:

@app.route('/teams', methods=['GET', 'POST'])
def teams():
if request.method == 'GET':

return render_template('teams.html', teams = app.teams.select_teams())

64 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

else:
name = request.form['name']
league_id = request.form['league_id']
app.teams.add_team(name,league_id)

return redirect(url_for('teams'))

Selection operation is done by the following function which is in teams.py:

def select_teams(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT * FROM TEAMS ORDER BY TEAM_ID """
cursor.execute(query)
connection.commit()

teams = cursor.fetchall()
return teams

Insert Operation

A route is defined in order to use Team Adding html page Leagues are selected and added to Dropdown Menu
since League_id is foreign key.:

@app.route('/teams/add', methods=['GET', 'POST'])
def add_teams():
return render_template('teams_add.html', leagues = app.leagues.get_leagues())

After the form is filled and submitted in page, form action directs to the following route:

@app.route('/teams', methods=['GET', 'POST'])
def teams():
if request.method == 'GET':

return render_template('teams.html', teams = app.teams.select_teams())
else:

name = request.form['name']
league_id = request.form['league_id']
app.teams.add_team(name,league_id)

return redirect(url_for('teams'))

If “/teams” route is loaded by POST method, which is the team addition form’s method, team will be added and
route will redirect to itself again. If route is loaded by GET method, teams.html page will be opened up.

Insertion operation is done by the following function which is in teams.py:

def add_team(self, name, league_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ INSERT INTO TEAMS (NAME, LEAGUE_ID) VALUES (%s, %s) """
cursor.execute(query, (name, league_id))
connection.commit()

Update Operation

In update operation, route is defined uniquely for the corresponding tuple’s team_id.:

@app.route('/teams/update/<team_id>', methods=['GET', 'POST'])
def update_teams(team_id):
if request.method == 'GET':

return render_template('teams_edit.html', team = app.teams.get_team(team_id),
leagues = app.leagues.get_leagues())

else:

2.2. Code 65

itucsdb1507 Documentation, Release 1.0

name = request.form['name']
league_id = request.form['league_id']
app.teams.update_team(team_id, name, league_id)
return redirect(url_for('teams'))

If the route is loaded by GET method, team with corresponding team_id will be selected to update and route will
be directed to teams_edit.html:

def get_team(self, team_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT * FROM TEAMS WHERE TEAM_ID = %s """
cursor.execute(query, [team_id])
connection.commit()
team = cursor.fetchall()
return team

The form’s action in teams_edit.html redirects form to the current route. Since form’s method is POST, route
is loaded by POST method. Values are requested from form and the update function is called. After that, route
redirects to teams page. Update operation is done by the following function in teams.py:

def update_team(self, team_id, name, league_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE TEAMS

SET NAME = %s,
LEAGUE_ID = %s
WHERE
TEAM_ID = %s """

cursor.execute(query, (name, league_id, team_id))
connection.commit()

Delete Operation

Delete operation is very similar to Update operation. Like update, in delete operation, route is defined uniquely
for the corresponding tuple’s team id.:

@app.route('/teams/delete/<team_id>', methods=['GET', 'POST'])
def delete_teams(team_id):
app.teams.delete_team(team_id)
return redirect(url_for('teams'))

After the team is deleted, route redirects to players page. Delete operation is done by the following function in
teams.py:

def delete_team(self, team_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ DELETE FROM TEAMS WHERE TEAM_ID = %s """
cursor.execute(query, [team_id])
connection.commit()

Search Operation

A route is defined in order to search teams by team name. Search form is in teams.html:

@app.route('/teams/search', methods = ['GET', 'POST'])
def search_teams():
if request.method == 'GET':

return redirect(url_for('teams_search.html'))
else:

66 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

searchname = request.form['nametosearch']
return render_template('teams_search.html',
teams = app.teams.search_team(searchname))

Since the form has POST method, after the submission, search name will be requested from form. After searching,
results will be listed in teams_search.html.

Searching is done by the following function in teams.py:

def search_team(self, name):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT * FROM TEAMS WHERE NAME LIKE %s ORDER BY TEAM_ID """
cursor.execute(query, ['%'+name+'%'])
teams = cursor.fetchall()
return teams

Squads Table

This table consists of 4 columns

Column Name Data Type Key
SQUAD_ID serial PRIMARY KEY
TEAM_ID int FK TEAMS(TEAM_ID)
PLAYER_ID int FK PLAYERS(PLAYER_ID)
KIT_NO int none

Table Initialization

Table is created by following sql code:

CREATE TABLE IF NOT EXISTS SQUADS
(
SQUAD_ID serial NOT NULL PRIMARY KEY,
TEAM_ID int NOT NULL REFERENCES TEAMS(TEAM_ID),
PLAYER_ID int NOT NULL UNIQUE REFERENCES PLAYERS(PLAYER_ID),
KIT_NO int NOT NULL
)

Selection

If “/squads” route is loaded by GET method, squads are going to be selected and will be printed to squads.html:

@app.route('/squads', methods=['GET', 'POST'])
def squads():
if request.method == 'GET':

return render_template('squads.html', teams = app.squads.get_teams(),
squads = app.squads.show_squads())

else:
team_id = request.form['team_id']
player_id = request.form['player_id']
kit_no = request.form['kit_no']
app.squads.add_squad(team_id, player_id, kit_no)

return redirect(url_for('squads'))

Selection is made in a way that, instead of using team_id and player_id, team name and player name corresponding
to their id’s are selected using LEFT JOIN. Selection operation is done by the following function which is in
squads.py:

2.2. Code 67

itucsdb1507 Documentation, Release 1.0

def show_squads(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT squad_id, teams.name, players.name, kit_no FROM SQUADS

LEFT JOIN TEAMS
ON SQUADS.TEAM_ID = TEAMS.TEAM_ID
LEFT JOIN PLAYERS
ON SQUADS.PLAYER_ID = PLAYERS.PLAYER_ID
ORDER BY SQUADS.TEAM_ID """

cursor.execute(query)
connection.commit()

squads = cursor.fetchall()
return squads

Insert Operation

A route is defined in order to use Squad Adding html page. Teams and Players are selected and added to Dropdown
Menus since they’re foreign keys.:

@app.route('/squads/add', methods=['GET', 'POST'])
def add_squads():
return render_template('squads_add.html', teams = app.teams.select_teams(),
players = app.squads.get_players())

After the form is filled and submitted in page, form action directs to the following route:

@app.route('/squads', methods=['GET', 'POST'])
def squads():
if request.method == 'GET':

return render_template('squads.html', teams = app.squads.get_teams(),
squads = app.squads.show_squads())

else:
team_id = request.form['team_id']
player_id = request.form['player_id']
kit_no = request.form['kit_no']
app.squads.add_squad(team_id, player_id, kit_no)

return redirect(url_for('squads'))

If “/squads” route is loaded by POST method, which is the squad addition form’s method, team will be added and
route will redirect to itself again. If route is loaded by GET method, squads.html page will be opened up.

Insertion operation is done by the following function which is in squads.py:

def add_squad(self, team_id, player_id, kit_no):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ INSERT INTO SQUADS (TEAM_ID, PLAYER_ID, KIT_NO)

VALUES (%s, %s, %s) """
cursor.execute(query, (team_id, player_id, kit_no))
connection.commit()

Update Operation

In update operation, route is defined uniquely for the corresponding tuple’s squad_id.:

@app.route('/squads/update/<squad_id>', methods=['GET', 'POST'])
def update_squads(squad_id):

if request.method == 'GET':
return render_template('squads_edit.html',squad=app.squads.get_squad(squad_id),
teams = app.teams.select_teams(), players = app.players.select_players())

68 Chapter 2. Developer Guide

itucsdb1507 Documentation, Release 1.0

else:
team_id = request.form['team_id']
player_id = request.form['player_id']
kit_no = request.form['kit_no']
app.squads.update_squad(squad_id, team_id, player_id, kit_no)
return redirect(url_for('squads'))

If the route is loaded by GET method, team with corresponding squad_id will be selected to update and route will
be directed to squads_edit.html:

def get_squad(self, squad_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT * FROM SQUADS WHERE SQUAD_ID = %s """
cursor.execute(query, [squad_id])
connection.commit()
squad = cursor.fetchall()
return squad

The form’s action in squads_edit.html redirects form to the current route. Since form’s method is POST, route
is loaded by POST method. Values are requested from form and the update function is called. After that, route
redirects to squads page. Update operation is done by the following function in squads.py:

def update_squad(self, squad_id, team_id, player_id, kit_no):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ UPDATE SQUADS

SET
TEAM_ID = %s,
PLAYER_ID = %s,
KIT_NO = %s
WHERE
SQUAD_ID = %s """

cursor.execute(query, (team_id, player_id, kit_no, squad_id))
connection.commit()

Delete Operation

Delete operation is very similar to Update operation. Like update, in delete operation, route is defined uniquely
for the corresponding tuple’s squad id.:

@app.route('/squads/delete/<squad_id>', methods=['GET', 'POST'])
def delete_squads(squad_id):

app.squads.delete_squad(squad_id)
return redirect(url_for('squads'))

After the team is deleted, route redirects to squads page. Delete operation is done by the following function in
squads.py:

def delete_squad(self, squad_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ DELETE FROM SQUADS WHERE SQUAD_ID = %s """
cursor.execute(query, [squad_id])
connection.commit()

Search Operation

A route is defined in order to search and filter squads by team name. Searching is made in a way that in
squads.html, team names are selected and added to a dropdown list. And squads can be filtered by selecting
team name. Search form is in squads.html:

2.2. Code 69

itucsdb1507 Documentation, Release 1.0

@app.route('/squads/search', methods = ['GET', 'POST'])
def search_squads():
if request.method == 'GET':

return redirect(url_for('squads_search.html'), teams = app.squads.get_teams())
else:

team_id = request.form['name']
return render_template('squads_search.html', teams = app.squads.get_teams(),
squads = app.squads.search_squad(team_id))

Team names ae selected by the following function in squads.py. This function selects team names distinctly. To
obtain team name corresponding to team_id, LEFT JOIN is used.:

def get_teams(self):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT DISTINCT teams.team_id, teams.name FROM SQUADS

LEFT JOIN TEAMS
ON SQUADS.TEAM_ID = TEAMS.TEAM_ID ORDER BY TEAM_ID"""

cursor.execute(query)
connection.commit()
teams = cursor.fetchall()
return teams

Since the form has POST method, after the submission, search name will be requested from form. After searching,
results will be listed in squads_search.html.

Searching is done by the following function in squads.py:

def search_squad(self, team_id):
with dbapi2.connect(self.app.config['dsn']) as connection:

cursor = connection.cursor()
query = """ SELECT squad_id, teams.name, players.name, kit_no FROM SQUADS

LEFT JOIN TEAMS
ON SQUADS.TEAM_ID = TEAMS.TEAM_ID
LEFT JOIN PLAYERS
ON SQUADS.PLAYER_ID = PLAYERS.PLAYER_ID
WHERE SQUADS.TEAM_ID = %s
ORDER BY SQUADS.TEAM_ID """

cursor.execute(query, [team_id])
connection.commit()
squad = cursor.fetchall()
return squad

70 Chapter 2. Developer Guide

CHAPTER 3

Installation Guide

American Football Database Project coded in Python using Flask web framework. In this part installation instruc-
tions of our project will be given.

3.1 Package Requirements

3.1.1 Python

Python 3.4.x required and it can be installed from https://www.python.org/downloads/ page.

Note: Many Linux distributions comes with python3 package installed.

3.1.2 Flask

Flask can be downloaded from http://flask.pocoo.org/ or could be simply installed via pip package manager via
following command:

pip install Flask

3.1.3 Psycopg2

Psycopg2 can be downloaded from http://initd.org/psycopg/ or could be installed via pip package manager via
following command:

pip install psycopg2

3.1.4 PostgreSQL

PostgreSQL can be downloaded from http://www.postgresql.org/download/

71

https://www.python.org/downloads/
http://flask.pocoo.org/
http://initd.org/psycopg/
http://www.postgresql.org/download/

	User Guide
	Developer Guide
	Installation Guide

