

Welcome to it-edit’s documentation!

Contents:

	it-edit (Integrated Terminal Editor)
	Motivation for writing it-edit

	Requirement of it-edit

	What it-edit does for me !

	it-edit spirit

	Terminal integration

	it-edit writing spirit

	Conclusion

	it-edit‘s menu
	Files

	Edition

	Actions

	Applications

	View

	Settings

	About

	Editor
	Files management.

	Text edition functionalities.

	Contextual menu from editor

	Spell-check functionality

	Go to line number

	Find and replace

	Replace in all files

	Copy to clipboard

	Order page

	Editor usage more

	Terminals
	A sidebar terminals

	A full-screen terminal

	Top-level terminals

	Contextual menu from the terminals

	Files
	New file

	File(s) opening

	Saving files

	Reload file

	File informations

	Spell check
	it-edit spell check features

	Using it-edit spell check

	it-edit spell check support

	Thanks

	Sessions
	Configure your sessions recovering

	The automatic session mechanism

	Shortcuts table
	Application shortcuts:

	Terminals shortcuts:

	Supported charset

	Supported languages

	it-edit smart widgets
	GtkSmartMenuItem

	GtkSmartIconButton

	GtkItTerm

Indices and tables

	Index

	Module Index

	Search Page

it-edit (Integrated Terminal Editor)

	program:	it-edit

	version:	3.0

	author:	Brüggemann Eddie

	contact:	<mrcyberfighter@gmail.com>

	license:	GPLv3

	website:	<http://www.open-source-projects.net/it-edit/it-edit>

	release:	Apr 19, 2017

Motivation for writing it-edit

I think they are 2 sort of programmers in their habits of writing programs:

	They which use an I.D.E with full integrated functionalities, and master it to respond to most of their requirements.

	They which use an text editor to write their programs and a terminal to compile, debug or launch them and some other tools separately.

Because I’m an programmer from the second category and because i remark that i often use additional tools than the editor and the terminal.

I decide to write my own text editor program which provide me all the functionalities that i need to get a development environment fully adapt to my requirement.

So in fact it-edit is more than a basic programming text editor, but a powerful tool which I hope you will agree the concept.

Note

In fact in conjunction with my project generator mk-project [http://www.open-source-projects.net/mk-project/mk-project] which generate me a big do all Makefile.

I enjoy using it-edit every time !

Even when I only to type few targets like (make, make exec, make ddebug, make gdb,...) it-edit is useful for all task to do in a terminal.

All this with an accompanied editor.

	note:	By the way mk-project [http://www.open-source-projects.net/mk-project/mk-project] can be useful for every vim or T.U.I editor user.

Requirement of it-edit

it-edit requires

	gtk-3 as G.U.I

	gtksourceview-3.

	vte-2.91 for the virtual terminals emulation as a gtk-3 widget.

	Optionally gspell-1 as spell checker.

	warning:	You must install the development packages of all required library because it will be compiled and installed on the target host.

What it-edit does for me !

it-edit consist of a basic programming text editor with all basic functionalities with

intelligently integrated terminals the best positioned so that they are easy to reach into the main interface of the program.

With many others practices functionalities.

—

it-edit integrated terminals in the best way I have thought for me.

A side bar terminal which you can add and remove items, a big full-screen terminal, the same divided into 4 terminals and as many top-level terminals as you want.

—

it-edit provide an easy file access...

In fact it was thought for registering HTML documentation and so accessing it easily.

But you can register your winner song if you want when you have terminate all your assertions well,

to celebrate your victory !

it-edit will open the registered file with the default program for it if any available.

Saving and restoring your file(s) list.

$ cp /usr/local/share/it-edit/Files_handler/Files_handler.conf $HOME

To restore your file(s) list after upgrade per example.

$ cp $HOME/Files_handler.conf /usr/local/share/it-edit/Files_handler/Files_handler.conf

—

You can launch graphical applications with it-edit very easily:

	At first it-edit will check your system, at first start, for some predefined applications and register it into their related category.

	note:	You can change the application(s), if found or not, as you want.

	Then you can choose to register and delete the applications you want, into the category Other.

—

The version 3.**0** of it-edit embedded a configurable spell checker utility which you can use to write documentations

reachable as

	in-line spell-check (the misspelled words are underline)

or

	through launching a dialog spell-check window which permit you to correct all misspelled words of the current document.

it-edit spirit

it-edit offers:

A programming editor

A text-editor without favoring any language.

With all the basic text editor functionalities and overall useful shortcuts which you didn’t have to know all.

And some unusual like duplicate text or copy to clipboard the current edited absolute file-path (Ctrl + Shift + Y).

You will be able to open, open a recent, save, save as, save all, file(s).

Or reload your last session file(s) as documentation and launched applications.

it-edit provides some informations like:

	Line

	Column

	Total lines

	Total characters

	The filename (hold the mouse over the notebook tab, you will know the absolute file-path).

By opening the file informations you will get more informations and can do some basic functions on (and strictly over) the file on disk (not the current edited buffer):

	The file base-name.

	Language, Mime-type and Extension.

	Lines, Words and Chars count.

	MD5, SHA1, SHA256 and SHA512 checksum in hexadecimal notation.

You will be able to see and to modify:

	The file permissions.

	warning:	By saving the configured mask will overwrite your changes.

	The last
	Access time

	Modification time (can be useful with make and system clock disturbing).

	Last status change time (this one isn’t modifiable).

	Rename, Copy, Compress (using the gzip algorithm), Move file.

Terminal integration

it-edit provides the best terminals integration for everyone:

	The sidebar terminals can be useful by editing and requiring immediately a terminal in the same window.

	The single “Big Terminal” can be useful if you need space: you can mask the button bar and made it full-screen.

	The 4 divided “Big Terminal” can be useful if you need severals terminals on the screen.

	The top level terminal is re-sizable and in a separate window.

	note:	It’s recommended to use it-edit with a Makefile (easy self-build or not) for compiled languages, else enjoy the terminals for launching your scripts and commands.

make makes the life easier !

All this terminals have a good contextual menu and I had problems to add some items, as sync current directory in every terminal, and so on.

it-edit writing spirit

it-edit is written in C (-std=c99) using gtk-3 and related libraries.

it-edit writing style takes cares of:

	structure variables order: so that no unneeded padding is added from the compiler.

	cache optimizing: so that we get the best cache-hits we can.

it-edit make strong usage of the gtk-3 types.

it-edit provide an optional spell checker useful for writing documentation or simply comments.

it-edit make usage of /** **/ comments so for commenting out a code section, by hacking it-edit, use the preprocessor: #if 0 ... #endif.

	note:	The spirit of it-edit says that you have to do a thing a single time then it’s automatize.

Conclusion

Control all your system with it-edit and show us that you can dialog with it through the best medium: the terminal.

it-edit‘s menu

Files

	‣ New file (Ctrl + n)

	‣ Open file (Ctrl + o)

	‣ Recent file(s)

... List of recent files

	‣ Save file (Ctrl + s)

	‣ Save file as

	‣ Save all file(s) (Ctrl + Shift + N)

	‣ Close file (Ctrl + Alt + c)

	‣ Close all files (Ctrl + Shift + C)

	‣ Reload :ref:`session <session>

	‣ Reload entire session

	‣ Reload last file(s)

	‣ Reload last documentation

	‣ Reload last application(s)

	‣ Clear session

	‣ Reload current file (Ctrl + r)

	‣ File informations (Ctrl + i)

	‣ Quit (Ctrl + q)

Edition

	‣ Undo (Ctrl + z)

	‣ Redo (Ctrl + Shift + Z)

	‣ Find text (Ctrl + f)

	‣ Find all (Ctrl + Shift + F)

	‣ Find previous (Ctrl + -)

	‣ Find next (Ctrl + +)

	‣ Replace text (Ctrl + Enter (KP))

	‣ Replace all (Ctrl + Shift + Enter (KP))

	‣ Replace all in all files (Ctrl + Shift + R))

	‣ Go to line number (Ctrl + g)

	‣ Cut (Ctrl + x)

	‣ Copy (Ctrl + c)

	‣ Paste (Ctrl + v)

	‣ Duplicate text (Ctrl + d)

	‣ Use space instead of tabs (Ctrl + p)

	‣ In-line spell check (Ctrl + w)

Actions

	‣ Execute command (Ctrl + e)

	‣ Order pages (Ctrl + Alt + y)

	‣ Copy file-path to clipboard (Ctrl + y)

	‣ Copy folder-path to clipboard (Ctrl + Shift + Y)

	‣ Sidebar terminals add tab (Ctrl + Shift + T)

	‣ Big terminals(s) switch (Ctrl + Shift + B)

	‣ File(s) handler (Ctrl + h)

	‣ Application launcher (Ctrl + a)

	‣ Spell check dialog (Ctrl + Shift + W)

Applications

	‣ Programming
	‣ Diff G.U.I (Graphical User Interface) tool

	‣ Debugger G.U.I (Graphical User Interface) tool

	‣ Python smart interpreter G.U.I (Graphical User Interface) tool

	‣ G.U.I (Graphical User Interface) designer tool

	‣ devhelp

	‣ Utilities

	‣ Calculator

	‣ Color picker

	‣ Dictionary

	‣ File manager

	‣ Browser

	‣ User defined applications

View

	‣ Big terminal show

	‣ Sidebar terminals show

	‣ Button bar show

	‣ Full screen

Settings

	‣ Syntax highlight

	‣ Editor scheme

	‣ Configure spell check language

	‣ Configure program

About

	‣ Uptime

	‣ Notice

	‣ License

	‣ About

Editor

The editor has as functionalities :

Files management.

	New file.

	Open file(s) or a recent file.

	Save file(s).

	Close file.

	Close all file(s).

	File informations.

	Reload file (from disk).

Text edition functionalities.

	Undo/Redo.

	Search and Replace.

	Go to line number.

	Cut/Copy/Paste.

	Duplicate text.

	Use spaces instead of tabs.

	Enable/Disable in-line spell-check.

Contextual menu from editor

	Undo

	Redo

—

	Cut

	Copy

	Paste

	Erase

—

	Select all

	Change case
	All to uppercase

	All to lowercase

	Invert case

	First letter uppercase

	note:	If you’re using the In-line spell check functionality an item with a sub-menu of suggestions is added to the contextual menu of the editor.

Spell-check functionality

	In-line spell-check (Ctrl + w) : the misspelled words are highlight.

	Spell-check dialog (Ctrl + Maj + w) : scan all the text buffer for misspelled words, with a dialog window for correct them or not.

	warning:	Install the optional gspell-1 -dev or -devel package, before installing it-edit.

Go to line number

	Use the menu item, the button or the shortcut: Ctrl + g.

A window will appear asking you for a valid line number.

Enter a valid line number and press Enter or the Apply button to move the editor to the wanted line,

which will be highlight according to the current scheme.

	note:	This is very useful to go to a specific line.

Find and replace

	You can show | hide the Find and replace bar by using the toggle button.

The Search and Replace bar has following functionalities:

	Search button: this will highlight all the matching occurrences from the search term and moving the editor to the first occurrence position.

	Next button: highlight the next matching occurrence from the search term.

Pressing Enter when the search entry field has the focus has the same effect.

The search will start at selection or at the cursor position.

If you select some text with the mouse and using the shortcut Ctrl + f.

The search field will toggle on if not visible and will contains the selected text as search term.

	note:	You can use the shortcut Ctrl + + (KP) to activate the Next functionality.

	Previous button: highlight the previous matching occurrence from the search term.

The search will start at selection or at the cursor position.

If you select some text with the mouse and use the shortcut Ctrl + f.

The search field will toggle on if not visible and will contains the selected text as search term.

	note:	You can use the shortcut Ctrl + - (KP) to activate the Previous functionality.

	Replace button: replace the current matching occurrence, which is highlight, with the content of the replace field.

	note:	You can use the shortcut Ctrl + Enter (KP): instead of the button.

	Replace all button: replace all the matching occurrence in the current file.

	note:	You can use the shortcut Ctrl + Shift + Enter (KP) instead of the button.

	Mode: You can select how your search term(s) will be interpreted.

	Raw text: all search terms matching.

	Word boundary: The search term must be a complete word, not a part but an variable with separators like underscores or points will work too.

	Regular expression: Perl compatible regular expression (REGEX).

	note:	For REGEX read the GLib Regex documentation which is contains into the gtk-doc directory.

	Close button: hide the search and replace bar and clear the highlight.

	note:	If you select some text with the mouse and use the Ctrl + f shortcut, then:

	The search and replace bar will be show.

	The search field will be filled with your selection.

	note:	The search will begin at your selection position if you hit the Next or Previous button.

Note

The search terms history:

Every search term you make a search for will be register into the history.

	You can use the Up key to start the history search from the beginning.

	You can use the Down key to start the history search from the end.

It will flow through the search terms history but not wrap around, simply end at the other end.

Replace in all files

You can use the button, menu item or shortcut (Ctrl + Shift + R),

to replace all occurrence(s) from a pattern according the settings:

	Case sensitive

	Mode
	Raw text

	Word boundary

	REGEX

Which are all settable, like the pattern and the replacement text, into the appearing top-level window.

Copy to clipboard

You can copy to clipboard either :

	The current absolute file-path (Ctrl + y).

	The current absolute folder-path (Ctrl + Shift + Y).

Order page

You can use menu item or the shortcut (Ctrl + Shift + O) to reorder all the pages lexicographically.

Editor usage more

	You can use the page up and page down to scroll faster than with the arrows.

	You can use the key Insert for changing the form of the cursor.

	You can use the combination Control + Left | Right to move to previous | next sequence of characters.

	You can use the Erase key to erase the current selection.

	You can use the shortcut Ctrl + Backspace to remove an entire characters sequence.

	You can use the shortcut Ctrl + Start and Ctrl + End to move the cursor to the beginning or end of the document.

	The search-replace shortcuts are clever set on the keypad:

	Find next : Ctrl + + (KP).

	Find previous : Ctrl + - (KP).

	Replace : Ctrl + Enter (KP).

	Replace all : Ctrl + Shift + Enter (KP).

For a better and faster search and replace feature.

	By all top-level windows you can use the shortcuts:

	Escape to close the window.

	Enter to confirm.

Terminals

it-edit provides:

A sidebar terminals

it-edit provides terminals in the same window as the editor, as a sidebar, which can easily shown, hidden and pull as you want.

You can add and remove as many terminals as you want to the sidebar.

A full-screen terminal

it-edit provides a big terminal occupying the full interface, dividable into 4 re-sizable terminals, to which you can easy toggle from the main window.

Top-level terminals

it-edit provides a top-level terminal window (so it can be resize, minimize, maximize and closed),

At first you will be prompt to enter a command.

After the execution of the command the top-level terminal is yours and can continue to enter commands.

Contextual menu from the terminals

	Copy from terminal

	Paste to terminal

—

	Decrease font

	Increase font

—

	Reset terminals

Note

By the sidebar terminals the items:

	Open new tab

	Close tab

Are added to the contextual menu.

Files

New file

You can open a New file, this will create a random named New_XXXXXX file into your TEMPDIR folder, and erase it immediately but the file-path is kept.

You will surely write inside the new create buffer and surely save it after (surely not into the TEMPDIR folder).

Use the menu item Files ‣ New file or the shortcut Ctrl + N to create a new buffer as describe above.

File(s) opening

They are several ways for opening file(s) into it-edit:

	By using the open file(s)
	The menu item: Files ‣ Open file.

	The button.

	The shortcut Ctrl + O.

This will present you a file selector to open the wanted file(s).

Note

The current tab influate the file-selector behaviour:

	The active editor page will influence into which folder the file-selector gets open.

Because the file-selector will be launched into the folder from the current edited file location.

You can held the mouse over the tab (which content the current filename) to sea the absolute file path in a tool-tip.

The same mechanic is by placing the mouse over the filename into the bottom bar.

	You can configure to get the current edited file selected (highlighted into the file-selector) into the editor or not.

	note:	This can be practice if per example you want to open the header file from a source file or inversed.

	By using the recent file menu-item to open a recent used file.

	You can open the last registered files, most often the files opened in the last session, by using the the menu item Reload Session ‣ Reload last files.

This will open automatically all the last registered files.

	note:	This can be practice if you work on a single project during some time.

Saving files

They are several ways of saving files into it-edit:

	You can save the current file simply using:

	The menu item: Files ‣ Save file.

	The button.

	The shortcut Ctrl + S

This will save the file at is current location.

	You can save a “New” file or the edited file into another location by using:

	The menu item: Files ‣ Save file as.

	The button.

	warning:	They is no shortcut for this purpose, but if you save (Save file Ctrl + S) simply a “New” file this will act as a Save file as.

	You can save all the open files using:

	The menu item: Files ‣ Save all files.

	The button.

	The shortcut Ctrl + Shift + S

This will save all the unsaved files at their current location.

Note

You can distinguish if a file is currently save or modified by looking at the name in the tab:

if their is an asterisk ‘*‘ before the file name this mean that the file is currently not saved on the disk.

	note:	If enabled it-edit will remove all the trailing spaces from the document after having save it.

Reload file

You can reload a file from disk with it-edit by using:

	The menu item: Files ‣ Reload current file.

	The shortcut Ctrl + R.

	note:	This can be practice if per example you have redirect you compilation process to a file for debugging compilation errors.

File informations

You can get and change files informations by using the menu item Files ‣ File informations Ctrl + I.

This will display a top-level window presenting following informations and action to process on the file:

	A frame named: Main informations will display:

	A nice image from the mime type of your current edited file.

	The programming language of the file.

	The mime type verbatim.

	The file extension.

	A frame named: Mode will display a file permissions table like this:

+---+---+---+---+
| | R | W | X |
+---+---+---+---+
| U | * | * | |
+---+---+---+---+
| G | * | * | |
+---+---+---+---+
| O | * | | |
+---+---+---+---+

U -> User. R -> Read.

G -> Group. W -> Write.

O -> Others. X -> Execute.

The cells of the table contains check-boxes representing the current permissions of the file.

By simply (un)checking the check-boxes you change the permissions of the file on disk.

	warning:	By saving your file you will set the permissions according to your configuration into it-edit for files saving.

	A frame named: File counts display some few statistics of the file:

	The number of lines.

	The number of characters.

	The number of words.

Of the file on the disk.

	note:	it-edit use the program wc to gets this informations.

	warning:	The number of line(s) and character(s) into your current edited buffer is visible into the bottom bar.

	A frame named: Timestamps display the:

	Last status change date and time.

	Last access date and time.

	Last modification date and time.

Of the file on the disk.

Near of every information is a button named Modify which permit you to change the timestamps.

Which will present you a calendar for the date

and 3 spin buttons:

	Hours

	Minutes

	Seconds

Which permit you to change the timestamps easily.

	note:	This can be useful per example if you have change your system clock and you use the make tool,...

	A frame named: Checksum will display the:

	MD 5 hash.

	SHA 1 hash.

	SHA 256 hash.

	SHA 512 hash.

of your file.

	note:	The checksums are displayed into hexadecimal values.

	A frame named: File actions will present you:

The file name and 4 buttons, named:

	Rename file

	Copy file

	Compress file (using gzip)

	Move file.

The functionalities of this buttons are clear as their name.

Spell check

it-edit spell check features

it-edit provide 2 different spell check methods:

	In-line spell check:

The in-line spell check mechanism is to underline the misspelled words and to provides corrections

by setting the cursor over the misspell word and opening the contextual menu from it-edit.

The contextual menu include then a Spelling suggestion menu item, from which you can choose

to correct the misspelled word: the word is automatically replaced with the word you’ve chosen.

	Spell check dialog:

it-edit provide a dialog window which will check the entire current edited file buffer.

Using it-edit spell check

You can enable or disable the in-line spell check by using:

	The menu item: Edition ‣ Inline spell check.

	The button.

	The shortcut: Ctrl + W.

You can display the spell check dialog window using the:

	The menu item: Actions ‣ Spell check dialog.

	The button.

	The shortcut: Ctrl + Shift + W.

it-edit spell check support

it-edit use the gspell-1 library for providing spell check.

See also

it-edit and gspell-1 library:

Actually the gspell-1 library is relative young, so not available in every repository.

So where ever you get the spell check functionality into it-edit depends on what version

of gtk-3 you get.

Because the gspell-1 library is only available with >= gtk-+3.20.

	note:	You can get gtk+-3.22 and gspell-1 currently with the ppa gnome3-staging for debian packages or by debian distributions through the “sid” repository.

gspell-1 has the advantages:

	To be compatible with the gtksourceview-3 library contextual menu.

	To provide a spell check dialog has widget.

	To have a good language selection mechanism.

See also

gspell-1 library

gspell provides a flexible API to add spell checking to a GTK+ application. It
features:
* GObject wrappers around Enchant
* An inline spell checker for GtkTextView (enhanced version of GtkSpell)
* A spell checker dialog for GtkTextView
* Support of the no-spell-check tag defined by GtkSourceView
* Language choosers (button and dialog)

So we know that gspell is based on enchant:

Enchant is a generic spell checking library which uses existing spell checker
engines such as ispell, aspell and myspell as its backends.

Enchant steps in to provide uniformity and conformity on top of these libraries,
and implement certain features that may be lacking in any individual provider
library.

So for getting dictionaries compatibles with the gspell-1 library simply download either or:

	aspell

	ispell

	myspell

dictionnaries in the wanted language(s).

Thanks

Big Thanks to the author of the gpsell-1 library Sébastien Wilmet which I get some form of familiarity within.

	Sébastien Wilmet:

	 	is the author of the Texilla Latex editor and maintainer of the gtksourceview-3 library and participate in many other projects like gedit.

Sessions

Configure your sessions recovering

Their are 3 different modes for registering your session at your convenience.

Files, documentation, applications registering:

	Asked for registering the current session at quitting.

	Automatic registering.

	Disable session registering.

The automatic session mechanism

How does it work ?

Registering:

	Every time you open or close a file into the editor the registered files list is recomputed.

	note:	The path is registered.

	Every time you launch a file through the File handler (Ctrl + H), the file is registered.

	note:	The URI is registered.

	Every time you launch an application, the application is registered.

	note:	The application path is registered.

	Nothing is erase if you don’t clear the session Files ‣ Reload session ‣ Clear session.

	If you reload something it’s automatically stored again for next session.

Reloading a session

You can reload the entire session by activating the menu item:

	Reload all last session

This will activate the reloading of the last registered:

	Files.

	Documentation files.

	Applications.

Or reload the different items singular.

Clear a session

	warning:	To know that every non-empty registered list can be relaunch at the next session or into the same session.

The only way to clear all the list is to activate the menu item Files ‣ Reload session ‣ Clear session.

Into a session.

This permit to clear the lists and

if you want to reconstruct a new session by reactivating the concern session registering mechanism.

Warning

Application launching Note:

When you launch an application per the Actions ‣ Application launch it won’t be registered as applications

because I consider that we need the application only now not very often.

But if you open an application per the menu items Applications where you can register your personal applications you use often.

They are are registered because you will use them often with the it-edit easy application access menus.

Shortcuts table

Application shortcuts:

	Shortcut
	functionality
	Mnemonic

	Ctrl + n
	New file
	n = new

	Ctrl + o
	Open file
	o = open

	Ctrl + s
	Save file
	s = save

	Ctrl + Shift + S
	Save all files
	S = Save

	Ctrl + Alt + c
	Close file
	C = Close

	Ctrl + Shift + c
	Close all file(s)
	C = Close

	Ctrl + r
	Reload file
	r = reload

	Ctrl + i
	File informations
	i = Informations

	Ctrl + z
	Undo
	None

	Ctrl + Shift + Z
	Redo
	None

	Ctrl + f
	Search
	f = find

	Ctrl + Enter
	Replace
	None

	Ctrl + Shift + Enter
	Replace all
	None

	Ctrl + +
	Next
	None

	Ctrl + -
	Previous
	None

	Ctrl + g
	Go to line number
	g = go to

	Ctrl + x
	Cut
	None

	Ctrl + c
	Copy
	c = copy

	Ctrl + v
	Paste
	None

	Ctrl + d
	Duplicate text
	d = duplicate

	Ctrl + p
	Use tabs
	None

	Ctrl + w
	In-line spell-check
	None

	Ctrl + Shift + W
	Spell-check dialog
	None

	Ctrl + e
	Execute command
	e = execute

	Ctrl + Alt + o
	Order pages
	o = order

	Ctrl + y
	Copy file-path to clipboard
	None

	Ctrl + Shift + y
	Copy folder-path to clipboard
	None

	Ctrl + b
	Show|Hide big term
	b = big term

	Ctrl + Shift + B
	big term switch
	B = Big term

	Ctrl + t
	Show | Hide terminal
	t = terminal

	Ctrl + Shift + T
	Add new terminals
	T = Terminals

	Shift + Copy
	Copy from terminal
	None

	Shift + Insert
	Paste to terminal
	None

	Ctrl + h
	File handler
	h = handler

	Ctrl + a
	Application launcher
	a = application

	Ctrl + q
	Quit application
	q = quit

Terminals shortcuts:

	Shortcut
	functionality
	Mnemonic

	Shift + Copy (KP 1)
	Copy from terminal
	None

	Shift + Insert (KP 0)
	Paste to terminal
	None

	Shift + Ctrl + T
	Open new tab
	t = tab

	Shift + Ctrl + -
	Decrease font-scale
	- = decrease

	Shift + Ctrl + +
	Increase font-scale
	+ = increase

	note:	Else you can close a tab and reset the terminal from the terminals contextual menu.

Supported charset

Unicode

	UTF-8

—

Western

	ISO-8859-1

—

Central European

	ISO-8859-2

—

South European

	ISO-8859-3

—

Baltic

	ISO-8859-4

—

Cyrillic

	ISO-8859-5

—

Arabic

	ISO-8859-6

—

Greek

	ISO-8859-7

—

Hebrew Visual

	ISO-8859-8

—

Turkish

	ISO-8859-9

—

Nordic

	ISO-8859-10

—

Baltic

	ISO-8859-13

—

Celtic

	ISO-8859-14

—

Western

	ISO-8859-15

—

Romanian

	ISO-8859-16

—

Unicode

	UTF-7

—

Unicode

	UTF-16

—

Unicode

	UTF-16BE

—

Unicode

	UTF-16LE

—

Unicode

	UTF-32

—

Unicode

	UCS-2

—

Unicode

	UCS-4

—

Armenian

	ARMSCII-8

—

Chinese Traditional

	BIG5

—

Chinese Traditional

	BIG5-HKSCS

—

Cyrillic/Russian

	CP866

—

Japanese

	EUC-JP

—

Japanese

	EUC-JP-MS

—

Japanese

	CP932

—

Korean

	EUC-KR

—

Chinese Traditional

	EUC-TW

—

Chinese Simplified

	GB18030

—

Chinese Simplified

	GB2312

—

Chinese Simplified

	GBK

—

Georgian

	GEORGIAN-ACADEMY

—

Western

	IBM850

—

Central European

	IBM852

—

Cyrillic

	IBM855

—

Turkish

	IBM857

—

Hebrew

	IBM862

—

Arabic

	IBM864

—

Japanese

	ISO-2022-JP

—

Korean

	ISO-2022-KR

—

Cyrillic

	ISO-IR-111

—

Korean

	JOHAB

—

Cyrillic

	KOI8R

—

Cyrillic

	KOI8-R

—

Cyrillic/Ukrainian

	KOI8U

—

Japanese

	SHIFT_JIS

—

Vietnamese

	TCVN

—

Thai

	TIS-620

—

Korean

	UHC

—

Vietnamese

	VISCII

—

Central European

	WINDOWS-1250

—

Cyrillic

	WINDOWS-1251

—

Western

	WINDOWS-1252

—

Greek

	WINDOWS-1253

—

Turkish

	WINDOWS-1254

—

Hebrew

	WINDOWS-1255

—

Arabic

	WINDOWS-1256

—

Baltic

	WINDOWS-1257

—

Vietnamese

	WINDOWS-1258

Supported languages

ActionScript:

text/x-actionscript

	*.as

—

Ada:

text/x-ada, text/x-adasrc

	*.adb

	*.ads

—

ANS-Forth94:

text/x-forth

	*.4th

	*.forth

—

ASP:

text/x-asp, application/x-asp, application/x-asap

	*.asp

—

Automake:

	Makefile.am

	GNUmakefile.am

—

awk:

application/x-awk

	*.awk

—

BennuGD:

	*.prg

—

BibTeX:

text/x-bibtex

	*.bib

—

Bluespec SystemVerilog:

	*.bsv

—

Boo:

text/x-boo

	*.boo

—

C:

text/x-c, text/x-csrc, image/x-xpixmap

	*.c

—

C#:

text/x-csharpsrc, text/x-csharp

	*.cs

—

C++:

text/x-c++, text/x-cpp, text/x-c++src

	*.cpp

	*.cxx

	*.cc

	*.C

	*.c++

—

CG Shader Language:

	*.cg

—

ChangeLog:

text/x-changelog

	ChangeLog*

—

C++ Header:

text/x-c++hdr

	*.hh

	*.hp

	*.hpp

	*.h++

—

CMake:

	CMakeLists.txt

	*.cmake

	*.cmake.in

	*.ctest

	*.ctest.in

—

C/ObjC Header:

text/x-chdr

	*.h

—

COBOL:

	*.cbl

	*.cob

	*.cbd

	*.cdb

	*.cdc

—

CSS:

text/css

	*.css

	*.CSSL

—

CSV:

text/csv

	*.csv

—

CUDA:

	*.cu

	*.cuh

—

D:

text/x-dsrc

	*.d

—

Defaults:

.desktop:

application/x-gnome-app-info, application/x-desktop

	*.desktop

	*.kdelnk

—

Diff:

text/x-diff, text/x-patch, text/x-reject

	*.diff

	*.patch

	*.rej

—

DocBook:

application/docbook+xml

	*.docbook

—

DOS Batch:

	*.bat

	*.cmd

	*.sys

—

DPatch:

text/x-dpatch

	*.dpatch

—

DTD:

text/x-dtd

	*.dtd

—

Eiffel:

text/x-eiffel

	*.e

	*.eif

—

Erlang:

text/x-erlang

	*.erl

	*.hrl

—

F#:

text/x-fsharp

	*.fs

—

FCL:

	*.fcl

—

Forth:

text/x-forth

	*.frt

	*.fs

—

Fortran 95:

text/x-fortran

	*.f

	*.f90

	*.f95

	*.for

	*.F

	*.F90

—

GAP:

text/x-gap

	*.g

	*.gd

	*.gi

	*.gap

—

GDB Log:

	*.gdb

—

Genie:

text/x-genie

	*.gs

—

gettext translation:

text/x-po, text/x-pot, text/x-pox, text/x-gettext-translation, text/x-gettext-translation-template

	*.po

	*.pot

—

Go:

	*.go

—

Graphviz Dot:

text/vnd.graphviz

	*.dot

	*.gv

—

gtk-doc:

GtkRC:

text/x-gtkrc

	gtkrc

	.gtkrc

	gtkrc-*

	.gtkrc-*

—

Haddock:

Haskell:

text/x-haskell

	*.hs

—

HTML:

text/html

	*.html

	*.htm

—

IDL:

text/x-idl

	*.idl

—

IDL-Exelis:

	*.pro

—

ImageJ:

	*.ijm

—

.ini:

text/x-ini-file, application/x-ini-file

	*.ini

—

J:

	*.ijs

—

Jade:

	*.jade

—

Java:

text/x-java

	*.java

—

JavaScript:

application/javascript, application/x-javascript, text/x-javascript, text/javascript, text/x-js

	*.js

	*.node

—

JSON:

application/json

	*.json

	*.geojson

	*.topojson

—

Julia:

	*.jl

—

LaTeX:

text/x-tex

	*.tex

	*.ltx

	*.sty

	*.cls

	*.dtx

	*.ins

	*.bbl

—

Lex:

	*.l

	*.lex

	*.flex

—

libtool:

text/x-libtool

	*.la

	*.lai

	*.lo

—

Literate Haskell:

text/x-literate-haskell

	*.lhs

—

LLVM IR:

	*.ll

—

Lua:

text/x-lua

	*.lua

—

m4:

application/x-m4

	*.m4

	configure.ac

	configure.in

—

Makefile:

text/x-makefile

	[Mm]akefile

	GNUmakefile

	*.make

	*.mak

	*.mk

—

Mallard:

	*.page

—

Markdown:

text/x-markdown

	*.markdown

	*.md

	*.mkd

—

Matlab:

text/x-matlab

	*.m

—

MediaWiki:

Meson:

text/x-meson

	meson.build

	meson_options.txt

—

Modelica:

text/x-modelica

	*.mo

	*.mop

—

MXML:

	*.mxml

—

Nemerle:

text/x-nemerle

	*.n

—

NetRexx:

text/x-netrexx

	*.nrx

—

NSIS:

	*.nsi

	*.nsh

—

Objective-C:

text/x-objcsrc

	*.m

—

Objective-J:

text/x-objective-j

	*.j

—

OCaml:

text/x-ocaml

	*.ml

	*.mli

	*.mll

	*.mly

—

OCL:

text/x-ocl

	*.ocl

—

Octave:

text/x-octave

	*.m

—

OOC:

	*.ooc

—

Opal:

	*.sign

	*.impl

—

OpenCL:

	*.cl

—

OpenGL Shading Language:

	*.glslv

	*.glslf

—

Pascal:

text/x-pascal

	*.p

	*.pas

—

Perl:

text/x-perl, application/x-perl

	*.pl

	*.pm

	*.al

	*.perl

	*.t

—

PHP:

text/x-php, application/x-php, text/x-php-source, application/x-php-source

	*.php

	*.php3

	*.php4

	*.phtml

—

Pig:

	*.pig

—

pkg-config:

text/x-pkg-config

	*.pc

—

Prolog:

text/x-prolog

	*.prolog

—

Protobuf:

text/x-protobuf

	*.proto

—

Puppet:

	*.pp

—

Python:

text/x-python, application/x-python

	*.py

—

Python 3:

	*.py3

—

R:

text/x-R

	*.R

	*.Rout

	*.r

	*.Rhistory

	*.Rt

	*.Rout.save

	*.Rout.fail

—

reStructuredText:

text/x-rst

	*.rst

—

RPM spec:

text/x-rpm-spec

	*.spec

—

Ruby:

application/x-ruby, text/x-ruby

	*.rb

	*.rake

	*.gemspec

	Rakefile

	Capfile

	Gemfile

—

Rust:

text/rust

	*.rs

—

Scala:

text/x-scala

	*.scala

—

Scheme:

text/x-scheme

	*.scm

—

Scilab:

	*.sce

	*.sci

—

sh:

text/x-shellscript, application/x-shellscript, text/x-sh

	*.sh

	*bashrc

	.profile

	.bash_profile

—

SPARQL:

application/sparql-query

	*.rq

—

SQL:

text/x-sql

	*.sql

—

Standard ML:

	*.sml

	*.sig

—

Sweave:

	*.rnw

	*.Rnw

	*.snw

	*.Snw

—

SystemVerilog:

	*.sv

	*.svh

—

Tcl:

text/x-tcl, application/x-tcl

	*.tcl

	*.tk

—

Texinfo:

text/x-texinfo

	*.texi

	*.texinfo

—

Thrift:

	*.thrift

—

txt2tags:

	*.t2t

—

Vala:

text/x-vala

	*.vala

	*.vapi

—

VB.NET:

text/x-vbnet, text/x-vb

	*.vb

—

Verilog:

text/x-verilog-src

	*.v

—

VHDL:

text/x-vhdl

	*.vhd

—

XML:

application/xml, text/xml

	*.xml

	*.xspf

	*.siv

	*.smil

	*.smi

	*.sml

	*.kino

	*.xul

	*.xbel

	*.abw

	*.zabw

	*.glade

	*.jnlp

	*.xhtml

	*.svg

	*.mml

	*.rdf

	*.rss

	*.wml

	*.xmi

	*.fo

	*.xslfo

—

XSLT:

application/xslt+xml

	*.xslt

	*.xsl

—

Yacc:

text/x-yacc, text/x-bison

	*.y

	*.yacc

—

YAML:

application/x-yaml

	*.yaml

	*.yml

it-edit smart widgets

it-edit implement some few self build widget:

Note

If you get interest into Gtk-3 widget building

you can broad the source to understand How-To build GtkWidget(s) for Gtk-3 from your own.

GtkSmartMenuItem

A simple menu item containing:

	An icon.

	A label.

	An universal shortcut text.

Constructors

	
GtkWidget* gtk_smart_menu_item_new_all(const gchar *label, const gchar *icon_filepath, GtkAccelGroup *accel_group, const GdkModifierType accel_modifier, const guint accel_key) ;

	

	Parameters:	
	label (const gchar *) – The label to display into the menu item.

	icon_filepath (const gchar *) – The menu item icon file-path.

	accel_group (GtkAccelGroup *) – The shortcut accelerator group.

	accel_modifier (const GdkModifierType) – The shortcut modifier.

	accel_key (const guint) – The shortcut accelerator key.

	Return type:	GtkWidget *

	Returns:	A pointer to the GtkSmartMenuItem.

	
GtkWidget* gtk_smart_check_menu_item_new_all(const gchar *label, const gboolean draw_as_radio, const gchar *icon_filepath, GtkAccelGroup *accel_group, const GdkModifierType accel_modifier, const guint accel_key) ;

	

	Parameters:	
	label (const gchar *) – The label to display into the menu item.

	draw_as_radio (const gboolean) – draw_as_radio

	icon_filepath (const gchar *) – The menu item icon file-path.

	accel_group (GtkAccelGroup *) – The shortcut accelerator group.

	accel_modifier (const GdkModifierType) – The shortcut modifier.

	accel_key (const guint) – The shortcut accelerator key.

	Return type:	GtkWidget *

	Returns:	A pointer to the GtkSmartMenuItem check button.

Note

You can pass a NULL pointer or 0 to the parameters :

	icon_filepath

	accel_group

	accel_modifier

	accel_key.

	note:	You can build others constructors if you have understand How-To build this kind of widgets.

Getters

	
GtkWidget* gtk_smart_menu_item_get_image(GtkWidget *smart_menu_item) ;

	

	Parameters:	
	smart_menu_item (GtkWidget *) – The return value from the constructors.

	Return type:	GtkWidget *

	Returns:	A pointer to the GtkImage widget.

	
GtkWidget* gtk_smart_menu_item_get_menuitem(GtkWidget *smart_menu_item) ;

	

	Parameters:	
	smart_menu_item (GtkWidget *) – The return value from the constructors.

	Return type:	GtkWidget *

	Returns:	A pointer to the GtkMenuItem widget.

	
GtkWidget* gtk_smart_menu_item_get_label(GtkWidget *smart_menu_item) ;

	

	Parameters:	
	smart_menu_item (GtkWidget *) – The return value from the constructors.

	Return type:	GtkWidget *

	Returns:	A pointer to the GtkLabel widget.

	
GtkWidget* gtk_smart_menu_item_get_accel_label(GtkWidget *smart_menu_item) ;

	

	Parameters:	
	smart_menu_item (GtkWidget *) – The return value from the constructors.

	Return type:	GtkWidget *

	Returns:	A pointer to the GtkAccelLabel widget.

GtkSmartIconButton

A simple button with an icon without label and tool-tip which embed an universal short-cut text.

Constructors

	
GtkWidget* gtk_smart_icon_button_new_all(const gchar *filepath, const gchar *tooltip_text, const guint accel_key, const GdkModifierType accel_modifier) ;

	

	Parameters:	
	filepath (const gchar *) – The filepath to the image to use as icon.

	tooltip_text (const gchar *) – The tool-tip text without the accelerator label.

	accel_key (const guint) – The shortcut accelerator key.

	accel_modifier (const GdkModifierType) – The shortcut modifier.

	Return type:	GtkWidget *

	Returns:	A pointer to the GtkSmartIconButton widget.

	
GtkWidget* gtk_smart_icon_toggle_button_new_all(const gchar *filepath, const gchar *tooltip_text, const guint accel_key, const GdkModifierType accel_modifier) ;

	

	Parameters:	
	filepath (const gchar *) – The filepath to the image to use as icon.

	tooltip_text (const gchar *) – The tool-tip text without the accelerator label.

	accel_key (const guint) – The shortcut accelerator key.

	accel_modifier (const GdkModifierType) – The shortcut modifier.

	Return type:	GtkWidget *

	Returns:	A pointer to the GtkSmartIconButton toggle button widget.

Getters

	
GtkWidget* gtk_smart_icon_button_get_image(GtkWidget *smart_icon_button) ;

	

	Parameters:	
	smart_icon_button (GtkWidget *) – The return value from the constructor of a GtkSmartIconButton.

	Return type:	GtkWidget *

	Returns:	A pointer to the GtkImage widget.

GtkItTerm

Not reusable like this.

Note

I’ve learned how to implement self builded Gtk-3 widgets

If you get interest in building widgets take a look at the source for basics.

Index

Mini-multipurpose-editor

This functionality of program:it-edit provide a minimal text editor as neighbor window from your source file editing editor,

with all the basic functionalities of an editor, reachable to the it-edit usual ways and shortcuts.

This mini-multipurpose-editor is configurable in terms of:

	Schemes.

	Language highlight (using a simple markup language can be useful).

	Language used for the spell check of misspelled words.

This tool can perform some actions on the mini-multipurpose-editor content:

	Import a file content: the source language is automatically detected, set and stored as language.

	Export the content to an external file.

	Save the content without passing trough a file.

All the spell checking functionalities of it-edit are provided too

into this aside mini-multipurpose-editor.

—

This mini-multipurpose-editor can be easy opened by simply pressing a button into the main button bar or

by using the menu item Action ‣ multipurpose editor.

It can be used for the purpose you want, as per example:

	Plan your program.

	Write a task list.

	Write a "todo" file.

	Use it as note taker.

	Use it as task reminder.

You can per example keep it open to parallelize your work with a ChangeLog file,

which syntax highlight is provided as all the syntax highlights from it-edit.

Or for what ever you think this tool can be useful for you.

By opening the mini-multipurpose-editor it isn’t maximize but a window contains a button bar and an editor

from a reasonable size is opened.

You can easy minimize, maximize or resize the window as you want.

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to it-edit's documentation!

 		it-edit (Integrated Terminal Editor)

 		Motivation for writing it-edit

 		Requirement of it-edit

 		What it-edit does for me !

 		it-edit spirit

 		A programming editor

 		Terminal integration

 		it-edit writing spirit

 		Conclusion

 		it-edit's menu

 		Files

 		Edition

 		Actions

 		Applications

 		View

 		Settings

 		About

 		Editor

 		Files management.

 		Text edition functionalities.

 		Contextual menu from editor

 		Spell-check functionality

 		Go to line number

 		Find and replace

 		Replace in all files

 		Copy to clipboard

 		Order page

 		Editor usage more

 		Terminals

 		A sidebar terminals

 		A full-screen terminal

 		Top-level terminals

 		Contextual menu from the terminals

 		Files

 		New file

 		File(s) opening

 		Saving files

 		Reload file

 		File informations

 		Spell check

 		it-edit spell check features

 		Using it-edit spell check

 		it-edit spell check support

 		Thanks

 		Sessions

 		Configure your sessions recovering

 		Files, documentation, applications registering:

 		The automatic session mechanism

 		Registering:

 		Reloading a session

 		Clear a session

 		Shortcuts table

 		Application shortcuts:

 		Terminals shortcuts:

 		Supported charset

 		Supported languages

 		it-edit smart widgets

 		GtkSmartMenuItem

 		Constructors

 		Getters

 		GtkSmartIconButton

 		Constructors

 		Getters

 		GtkItTerm

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

