
Media Players Documentation
Release 2.5

Isuma

Apr 03, 2019

Contents

1 Installation 3
1.1 BIOS configuration . 3
1.2 Naming convention . 3
1.3 Install Debian . 3
1.4 More in-depth OS installation instruction . 4
1.5 Configure Puppet . 5
1.6 Stretch Fixes . 7
1.7 Configuring and Running Git Annex . 7

2 Old Installation Details 9
2.1 Puppet . 9
2.2 Git-annex . 10
2.3 Git-annex configuration . 12
2.4 Other configurations . 18

3 Testing 21
3.1 Backend . 21
3.2 CableTV . 21
3.3 Git-annex sync . 21
3.4 Isuma.tv . 22

4 Maintenance 23
4.1 Changing preferred content . 23
4.2 Unused and deleted files . 24
4.3 Metadata . 24
4.4 Settings . 26
4.5 External synchronisation drives . 28
4.6 Creating user accounts . 33
4.7 Upgrading git-annex . 33

5 User guides 35
5.1 How to setup a playlist . 35

6 Hardware platforms 43
6.1 Rugged specification . 43
6.2 Lightweight specification . 44
6.3 Shuttle XPC small desktops . 45

i

6.4 Logic Supply desktops (v2.5 series) . 45
6.5 Advantech rugged servers (1.0 series) . 45

7 Troubleshooting 47
7.1 Test procedure . 47
7.2 Basics . 47
7.3 Git-annex . 49
7.4 S3 diagnostics . 59

8 Development 61
8.1 Git-annex internals . 61
8.2 Git-annex Drupal integration . 62
8.3 Metadata sync script . 63
8.4 Metadata purge script . 64
8.5 Debian packages . 65

9 Configuration Management 69
9.1 Installing the puppet master . 69
9.2 Setting up git repositories to ease up modification . 71
9.3 Managing modules . 74
9.4 Configuring a dashboard . 74

10 Design 77
10.1 Context . 77
10.2 Requirements . 78
10.3 Technical decisions . 79
10.4 Architecture overview . 80
10.5 Transcoding . 82
10.6 Metadata . 83
10.7 Schedules . 84
10.8 Bandwith limits . 84
10.9 File deletion and garbage collection . 84
10.10 Server-specific metadata . 84
10.11 Remaining issues . 85
10.12 Security issues . 87

11 Transition plan 89
11.1 General principles . 89
11.2 Timeline . 90
11.3 Metrics and communication . 90
11.4 Implementation . 90

12 Similar projects 95
12.1 Commercial CDNs . 95
12.2 Debian mirrors network . 95
12.3 Git annex . 95
12.4 Camlistore . 96

13 Terminology 97

14 About this document 101
14.1 License . 101

ii

Media Players Documentation, Release 2.5

The Isuma Media Players project is a fully free and open source software project to create a two-way, distributed
content distribution network for communities with limited bandwidth to the larger internet.

Note: This documentation covers the 3.x generation of media players. For older media players, see the 2.x branch.

Contents 1

http://isuma-media-players.readthedocs.org/en/2.x/

Media Players Documentation, Release 2.5

2 Contents

CHAPTER 1

Installation

This describes how to set up a media player from scratch. You may be able to install the components on an existing
system, but this is currently not supported.

1.1 BIOS configuration

The BIOS should be configured so the machines power up after a power outage instead of just staying powered off.
This varies according to the device being provisionned. It could be something like: Restore on AC Power
Loss and it should be set to reset or on.

1.2 Naming convention

Media players should adhere to a strict naming and labeling convention. A media player’s hostname (the first part
of the “fully-qualified domain name” or fqdn) should be named mpYYYYMMDD-N, where YYYY is the year, MM is
the month and DD is the day the machine was installed. N designates the number of the machine, e.g. 1 for the first
machine created. So mp20150508-1 designates the first machine created on may 8th 2015. -0 or lower are invalid
version numbers.

The remaining part of the fqdn (the domain) should always be mp.isuma.tv. So the fqdn will always be
something like mp20150508-1.mp.isuma.tv.

Every media player should be labeled with their fully-qualified domain name in the front and the back.

1.3 Install Debian

Media players run on Debian “stable”. We are now installing new media players on Debian 9 “Stretch”.

The regular Debian install manual can be followed, with those exceptions:

1. mount the largest partition as /var/isuma

3

http://www.debian.org/releases/stretch/installmanual

Media Players Documentation, Release 2.5

2. use the UTC timezone

3. use an American keyboard layout

4. hostname: use the Naming convention

5. do not enter a root password (we use sudo)

6. create yourself an account for diagnostic purposes during the install (Puppet will create the other accounts as
needed)

7. use the “CDN redirector” mirror, so that APT uses the mirror closest to the machine

8. On the software selection screen, select the “standard system” and “Web server” software collections.

1.4 More in-depth OS installation instruction

1.4.1 Create bootable Debian USB

Download latest (stretch in 2019) small/netinst amd64 image: https://www.debian.org/distrib/netinst

Write iso image to USB stick: https://www.debian.org/releases/stretch/amd64/ch04s03.html.en

[b@tt43 Downloads]$ sudo cp debian-9.8.0-amd64-netinst.iso /dev/sdb
[b@tt43 Downloads]$ sync

1.4.2 Installation Parameters

• Localization: English, Canada, American English

• No to loading non-free firmware for wifi from local media.

• Choose Ethernet Controller for network interface.

• A media player’s hostname (the first part of the “fully-qualified domain name” or fqdn) should be named
mpYYYYMMDD-N, where YYYY is the year, MM is the month and DD is the day the machine was installed.
N designates the number of the machine, e.g. 1 for the first machine created. So mp20150508-1 designates
the first machine created on May 8th 2015.

• The domain (the remaining part of the fqdn) should always be mp.isuma.tv. So the fqdn will always be some-
thing like mp20150508-1.mp.isuma.tv.

•

• Leave root password empty

• Initial user: nursery (give it a throwaway password you remember for the duration of this install)

• Eastern time zone

• UEFI installation?

1.4.3 Partition disk

• Manual partitioning:

• Choose 6TB HDD, yes to new partition table

• Choose 6GB FREE SPACE, create a new partition, 128MB, Beginning, Use as: EFI System Partition, Done

4 Chapter 1. Installation

https://www.debian.org/distrib/netinst
https://www.debian.org/releases/stretch/amd64/ch04s03.html.en

Media Players Documentation, Release 2.5

• Configure the Logical Volume Manager, Yes, Create volume group: vgroup, select 6TB partition (/dev/sda2) w/
spacebar, Continue

• Create logical volume, on vgroup, name: swap, size: 16GB, continue

• Create logical volume, on vgroup, name: root, size: 64GB, continue

• Create logical volume, on vgroup, name: isuma, size: remaining space (5921174MB, 5.9TB), continue, Finish

• Select 5.9TB partition LV, Use as: Ext4, mount point: enter manually: /var/isuma, done

• Select 64GB partition LV, Use as: Ext4, mount point: /, done

• Selection 16GB partition LV, Use as: swap area, done

• Scroll down to Finishing partitioning and write changes to disk, Yes

1.4.4 Install system services

• Choose package manager: Canada, deb.debian.org, no proxy, no to popularity survey

• Use spacebar to disable all options except “SSH server” and “standard system utilities” which should be enabled
with the * symbol.

• Now wait while it does the install. . . (~8mins) and then it automatically reboots (remove the USB stick as soon
as it shuts down so that it boots from disk).

1.4.5 Initial login

• It should boot to a console session login prompt, login with user nursery and your password.

• Use the “ip a” command to find the local ip address of the media player 192.168.#.###

• On a different computer on the same LAN as the new media player, connect with ssh nursery@192.168.#.###
(this makes it much easier to copy-paste commands from these instructions into your console session!)

1.5 Configure Puppet

1.5.1 Puppet Master

The puppet master needs to be have the new media player added as a node:

• Clone the puppet repository onto your local machine:

$ git clone cs.isuma.tv:/srv/git/puppet.git

• cd into the puppet dir and edit /manifests/nodes.pp

• Copy last node and replace old hostname with new one.

• Commit and push the changes:

$ git commit -a
$ git push

• SSH into the puppet master and run puppet as root:

1.5. Configure Puppet 5

mailto:nursery@192.168

Media Players Documentation, Release 2.5

puppet agent -t

1.5.2 On the media player

SSH into the nursery user on the new media player.

Add an apt GPG key:

wget https://github.com/puppetlabs/puppetlabs-debbuilder/raw/master/files/
→˓puppetlabs-keyring.gpg -O /etc/apt/trusted.gpg.d/puppetlabs-keyring.gpg
apt-key add /etc/apt/trusted.gpg.d/puppetlabs-keyring.gpg

Add some apt sources:

cat > /etc/apt/sources.list.d/puppetlabs.list <<EOF
Puppetlabs products
deb http://apt.puppetlabs.com precise main
deb-src http://apt.puppetlabs.com precise main
Puppetlabs dependencies
deb http://apt.puppetlabs.com precise dependencies
deb-src http://apt.puppetlabs.com precise dependencies
EOF

cat > /etc/apt/sources.list.d/jessie.list <<EOF
Jessie repo for older ruby dependencies for puppet precise
deb http://deb.debian.org/debian/ jessie main
EOF

cat > /etc/apt/preferences.d/puppet_from_precise.pref << EOG
Package: puppet puppet-common facter hiera
Pin: release n=precise
Pin-Priority: 1500
EOG

cat > /etc/apt/preferences.d/ruby_from_jessie.pref << EOG
Package: libaugeas-ruby libruby libruby2.1:amd64 ruby ruby-augeas ruby-json ruby-
→˓shadow ruby2.1 rubygems-integration rake
Pin: release n=jessie
Pin-Priority: 1500
EOG

Install packages:

apt update
apt install puppet
apt install util-linux lsb-release ntp alsa-utils htop iotop iftop screen

1.5.3 Running puppet

On the media player as root:

puppet agent --no-stringify_facts -t --server cs.isuma.tv --waitforcert 10

On the puppet master as root:

6 Chapter 1. Installation

Media Players Documentation, Release 2.5

puppet cert -l

Compare the two fingerprints. If they match, on the puppet master run the following (with the correct hostname of the
new player):

puppet cert -s mp2019####-1.mp.isuma.tv

Back on the media player, puppet will run and then fail.

• First run, get an error like “Parameter hour failed on Cron[git-annex_start]: undef is not a valid hour” go to
cs.isuma.tv:3000

• Open two tabs, one with the node page of the hostname of the new MP, and the other with the node page of a
different MP.

• Click “Edit” in the top right corner of both.

• Copy-paste the six Parameter key and values from the old MP to the new one, clicking “Add Parameter” for
each new one, then click “Save changes”.

• Run puppet again (451 seconds, ~7.5 minutes)

• Run puppet a third time, less than a minute.

• chown www-data:www-data /var/www

• Run puppet a fourth time with no errors (except now monkeysphere but we can ignore those)

1.6 Stretch Fixes

These are fixes for Debian Stretch, which have not yet been incorporated into the puppet run:

sudo usermod -a -G tty isuma
chmod ug+s /usr/lib/xorg/Xorg

sudo update-rc.d git-annex defaults
sudo update-rc.d isuma-kiosk defaults
sudo update-rc.d autossh defaults

Enure the following line is present in /etc/modprobe.d/default.conf:

options snd_hda_intel index=1

Reboot:: sudo reboot now

1.7 Configuring and Running Git Annex

su to the www-data user on media player, and go to /var/isuma/git-annex. Get the UUID for the media
player:

git-annex info --fast | grep here

Give the media player the proper name in git-annex metadata:

git-annex describe $UUID host-$HOSTNAME.mp.isuma.tv

1.6. Stretch Fixes 7

Media Players Documentation, Release 2.5

Do the preferred content configs:

git-annex group . mediaplayer
git-annex wanted . groupwanted
git-annex groupwanted mediaplayer 'include=* and (exclude=video/original/*)'

Do an initial sync. This takes a while, so you might want to use a screen:

git-annex sync

Do some S3 configs:

git-annex enableremote s3
git config remote.s3.annex-verify false

Plug in the syncdisk (An external harddrive). Check /media/isuma_sneakernet to see if it is mounted (if it is
empty it is not mounted). If it is not, then use lsblk to confirm the partition identifier for the syncdisk, and then do
the mount manually:

sudo mount /dev/sdb1 /media/isuma_sneakernet/

Run screen as regular user, and then su to www-data. Run the syncdisk sync!:

cd /var/isuma/git-annex
git-annex sync --content sneakernet --jobs=4

Finally, when the syncdisk run is done, run a manual network sync:

git-annex sync --content --jobs=4

8 Chapter 1. Installation

CHAPTER 2

Old Installation Details

2.1 Puppet

Note: This assumes you already have configured a Puppet Master server to serve and manage all the configurations
of the media players. See Configuration Management if you haven’t done so yet.

The media players are now configured through the Puppet configuration management system. (They used to be con-
figured through Debian packages, but that made non-code changes hard to deploy and maintained.)

First, on the Puppet Master server, we want to create a node resource in the file nodes.pp that represents the server
(here we assume that we have checked out the puppet-manifests directory and are working in that copy:

cat >> nodes.pp <<EOF
node 'cs.isuma.tv' {

user { 'someadmin':
ensure => present,
uid => 1001,
gid => 1001,
groups => ['admin', 'puppetadmin'],
comment => 'Some admin',
home => '/home/someadmin',
managehome => false,
shell => '/bin/bash',
password => '...',

}
}
EOF

Then, on the media player, since we’re using various versions of Debian derivatives that doesn’t necessarily have
access to the latest puppet version (3.7) yet, we’ll add an apt source to download packages directly from puppetlabs.
Before that we need to add the PGP key that signs all packages in that repository so we can verify their integrity:

9

Media Players Documentation, Release 2.5

cd /etc/apt/trusted.gpg.d
curl https://downloads.puppetlabs.com/puppetlabs-gpg-signing-key.pub \

| gpg --no-default-keyring --keyring ./puppetlabs-gpg-signing-key.gpg --import

Now we can add the source:

cat > /etc/apt/sources.list.d/puppetlabs.list <<EOF
Puppetlabs main
deb http://apt.puppetlabs.com precise main
deb-src http://apt.puppetlabs.com precise main
EOF
apt-get update

Next we need to install puppet and required tools (this was already done for the master):

apt-get install puppet tzdata util-linux lsb-release

Now we can attach the client to the master (for the puppet master itself, since it is using the same certificate as the
puppet master, we don’t need to authenticate it, so we can directly run puppet agent -t):

puppet agent -t --server cs.isuma.tv --waitforcert 10

If all goes well it should generate a certificate, send a signing request to the master and then display that it still hasn’t
gotten the certificate from the master. For signing the certificate, we need to go on the puppet master and issue the
following command in order to list requests:

puppet cert -l

This will display host names of machines that requested access and a certificate signature that looks like multiple
blocks of hexadecimal values separated by colons. It is strongly encouraged to verify this signature to the same
signature that was displayed when the certificate was created on the client with the previous command. Once you are
certain the fingerprints match for the host name, you can ask puppet to sign the certificate:

puppet cert -s client.domain.tld

Now after a short delay the client should be able to download the catalog (the list of operations that need to be done)
and files.

For further information on the process, see PuppetLabs’ documentation on what to do after install .

2.2 Git-annex

The section describes how to install, or “deploy” git-annex in various ways. We try to privilege installing it through
Debian packages and Puppet, but this is not always possible so instructions are also provided for manual installation.

We currently require version 5.20150610 for the public Amazon S3 support

2.2.1 Puppet deployment

If the machine is managed by the central Puppetmaster, one can install the git-annex software with:

class { 'gitannex': method => 'package' }

10 Chapter 2. Old Installation Details

https://docs.puppetlabs.com/guides/install_puppet/post_install.html#configure-a-puppet-agent-node
http://git-annex.branchable.com/tips/public_Amazon_S3_remote/

Media Players Documentation, Release 2.5

This will install the standalone git-annex package from NeuroDebian.

Note: We can also install git-annex on any Linux distribution with:

class { 'gitannex': method => 'gitannex' }

This will install and maintain git-annex with. . . git-annex! That is, it will use git to keep an updated copy of
the upstream standalone images and will download the right tarball associated with the release, and deploy it to /opt.
We do not, however, use this mechanism because upgrades a harder to perform.

We also need to deploy the assistant, with:

class { 'gitannex::daemon':
repository => '/var/isuma/git-annex',
user => 'www-data',

}

This will deploy the git-annex assistant over a given directory. By default, that directory is /var/lib/gitannex/
repo, but on media players we use the old non-standard partition /var/isuma to avoid having to reconfigure all
older media players. Files are also assigned to the www-data user.

Also note the above gitannex::metadata class which takes care of deploying the Custom metadata script to
update the IP addresses of the media players.

2.2.2 Debian package installation

The official Git annex installation instructions can also be used here. On Debian, however, the packages are too out
of date for our needs so we use the standalone git-annex package from NeuroDebian. This works only on Debian
derivatives.

To install the Debian standalone package from the NeuroDebian distribution:

wget -O- http://neuro.debian.net/lists/wheezy.us-nh.libre | sudo tee /etc/apt/sources.
→˓list.d/neurodebian.sources.list
gpg --recv-keys DD95CC430502E37EF840ACEEA5D32F012649A5A9
sudo gpg --export DD95CC430502E37EF840ACEEA5D32F012649A5A9 > /etc/apt/trusted.gpg.d/
→˓neurodebian.gpg
sudo apt-get update
sudo apt-get install git-annex-standalone

At the second step above, when receiving the key, its validity can be checked using:

gpg --check-sigs DD95CC430502E37EF840ACEEA5D32F012649A5A9

The key should be signed by a few Debian developpers, one of which should be signed by Antoine Beaupré
<anarcat@koumbit.org>.

You then need to manually configure the assistant (see below).

2.2.3 Manual installation on any Linux system

The official Git annex installation instructions also feature a standalone tarball distribution, which works across all
Linux distributions.

To install using the standalone tarball distributions:

2.2. Git-annex 11

http://neuro.debian.net/install_pkg.html?p=git-annex-standalone
http://downloads.kitenet.net/git-annex/
http://git-annex.branchable.com/install/
http://neuro.debian.net/install_pkg.html?p=git-annex-standalone
http://neuro.debian.net/pkgs/git-annex-standalone.html
http://neuro.debian.net/
http://git-annex.branchable.com/install/

Media Players Documentation, Release 2.5

wget https://downloads.kitenet.net/git-annex/linux/current/git-annex-standalone-amd64.
→˓tar.gz
tar -C /opt -zxf git-annex-standalone-amd64.tar.gz
ln -s /opt/git-annex.linux/git /usr/local/bin/
ln -s /opt/git-annex.linux/git-annex /usr/local/bin/
ln -s /opt/git-annex.linux/git-annex-shell /usr/local/bin
ln -s /opt/git-annex.linux/git-annex-webapp /usr/local/bin

2.2.4 Manually configuring the assistant

In manual installs, we need also to enable the daemon to start. We can deploy the init script that we coded for this in
Puppet, and also available upstream. Install the script in /etc/init.d/git-annex and enable it:

wget -O /etc/init.d/git-annex https://redmine.koumbit.net/projects/media-players-3/
→˓repository/revisions/master/raw/files/init.d
chmod +x /etc/init.d/git-annex
update-rc.d git-annex defaults

It can be configured in a /etc/defaults/git-annex file like this:

DAEMON=/usr/bin/git-annex
ANNEX=/var/lib/git-annex/isuma-files
USER=www-data

The path to git-annex will of course change depending on the installation method. The standalone install we did
above will install it in /usr/local/bin/git-annex while the Debian package will install it in /usr/bin/
git-annex.

2.3 Git-annex configuration

Whether git-annex is installed through Puppet, Debian or standalone distributions, some more steps need to be per-
formed before the installation is complete.

2.3.1 Repository name

When created, a given git-annex repository should be given a short, descriptive name. There is a default description
provided by git-annex that is formatted like user@hostname:path, for example, on my desktop:

anarcat@desktop008:~/src/isuma/isuma-files

This is fine for test repositories, or repositories used to control git-annex remotely. However, for media players, we
want to reuse the hostname convention we defined earlier, so we need to set a proper name that reflects the canonical
hostname of the machine. For this, use the git annex describe command. For example, the Koumbit media
player was renamed this way:

git annex describe 2d61a8de-a24e-44e3-9aa0-54f033fec1e9 host-mp20120507-1.mp.isuma.tv

Notice how we omit the username and path parts: we assume to be standard or specific to the machine so irrelevant
for day to day operation. The location of the repository can be found in /etc/default/git-annex in any case.

12 Chapter 2. Old Installation Details

https://git-annex.branchable.com/todo/server-level_daemon__63__/

Media Players Documentation, Release 2.5

2.3.2 Preferred content configuration

For now, only the group setting need to be set, to avoid downloading original files on the media players. This can be
done within the git-annex repository with:

git annex group . mediaplayer
git annex wanted . groupwanted

New groups can also be defined as necessary, see Changing preferred content.

2.3.3 Central server configuration

The central server has a fairly special configuration as well. The package was installed using Puppet, with:

class { 'gitannex':
method => 'package',

}

1. the git-annex repository was created in /var/lib/git-annex/isuma-files:

git init /var/lib/git-annex/isuma-files
cd /var/lib/git-annex/isuma-files
git annex init

2. then it was configured to allow shared access:

git config core.sharedrepository group
chmod g+rwX -R .
chgrp -R isuma-files .
find -type d -exec chmod g+s {} \;

3. then an S3 remote was initialized with the isuma-files bucket:

export AWS_ACCESS_KEY_ID="CENSORED"
export AWS_SECRET_ACCESS_KEY="CENSORED"
git annex initremote s3 type=S3 encryption=none public=yes bucket=isuma-files
initremote cloud (checking bucket...) (creating bucket in US...) ok
(Recording state in git...)

Note: The S3 bucket name was chosen without a dot (.) to avoid problems with HTTPS.

Note: The bucket was actually created through the AWS web interface originally, and was granted public read
access using the instructions provided in the “publishing your files to the public” tip, with a configuration like:

{
"Version": "2008-10-17",
"Statement": [

{
"Sid": "AllowPublicRead",
"Effect": "Allow",
"Principal": {
"AWS": "*"

},

(continues on next page)

2.3. Git-annex configuration 13

http://git-annex.branchable.com/tips/shared_git_annex_directory_between_multiple_users/
http://git-annex.branchable.com/tips/publishing_your_files_to_the_public/

Media Players Documentation, Release 2.5

(continued from previous page)

"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::public-annex/*"

}
]

}

With newer versions of git-annex (after 5.20150610) the public=yes argument configures this automati-
cally.

Caution: For a while, some files were added in the git-annex repository with git annex addurl
as git-annex didn’t support downloading files anonymously from S3. So some of the files have old URLs
attached to them which may yield some weird results. See Redmine issue #17958 for the cleanup issue.

Those URLs were originally imported with:

git annex find --in s3 | while read file ; do
key=$(git annex lookupkey $file)
echo $key https://public-annex.s3.amazonaws.com/$key

done | git annex registerurl

Note: The S3 credentials were originally stored on the main website, but were moved to the central server
because it is the only one that all servers (transcoding server, main website, media players) have direct access to.
By using it as a central point for S3 uploads, we avoid a “mesh” topology that may have problems transfering
files down a chain of machines. See Redmine issue #18170 for a discussion about this. To add the credentials
to the already existing git-annex repository on the central server, the following commands were ran:

cs:/var/lib/git-annex/isuma-files$ export AWS_ACCESS_KEY_ID="CENSORED"
cs:/var/lib/git-annex/isuma-files$ export AWS_SECRET_ACCESS_KEY="CENSORED"
cs:/var/lib/git-annex/isuma-files$ git annex enableremote s3 type=S3
→˓encryption=none public=yes bucket=isuma-files
enableremote s3 (checking bucket...) ok
(recording state in git...)

This ensures that the credentials for the S3 remote are available (locally only!) in .git/annex/creds/*.

When the credentials were on the main website, files were all sent to the S3 remote with the following com-
mands:

nice ionice -c3 git annex add .
git commit -m"first import of all files"
git annex move --to s3

4. prefered content was set to not inallgroup=backup because files shouldn’t be staying on the server
longer than necessary:

git annex wanted . "not inallgroup=backup"

Note: We are not using the transfer group because that standard group assumes that use client groups
on the other side, which is not the case.

14 Chapter 2. Old Installation Details

https://redmine.koumbit.net/issues/17958
https://redmine.koumbit.net/issues/18170

Media Players Documentation, Release 2.5

5. the assistant was configured through Puppet, using:

class { 'gitannex::daemon':
repository => $central_repo,
groups => ['isuma-files'],

}

This repository can then be used as a regular git-annex remote to exchange metadata, as long as all users
created are within the isuma-files group. This is taken care of by the Puppet recipes, by properly calling the
site_sshd::sandbox with the right remote_group, as such:

site_sshd::sandbox { 'www-data':
remote_user => 'host-mp20120507-1.mp.isuma.tv',
remote_group => ['isuma-files'],
tag => 'sshd-cs.isuma.tv',
path => '/var/www/.ssh/id_rsa',

}

Those users are then collected on the central server with the following Puppet class:

class { 'site_sshd::collector':
group => 'isuma-files',

}

Those users are also used to create the autossh tunnels on the media players, used to remotely access the media
players for diagnostics. See Remote login to media players for more information.

2.3.4 Main website configuration

The main website has a set of special configurations that are documented here.

1. git-annex was installed with the Debian packages, as explained in Debian package installation

2. we run the remaining commands as the www-data user:

sudo -u www-data -i

3. the git-annex repository was created in /mnt/media:

git init /mnt/media
cd /mnt/media
git annex init

Note: Notice how the git-annex repository is not directly in the Drupal filesystem (/persistent/www/
isumatv/sites/default/files) because the file layout there is completely different than the old S3
bucket or the media players layout. The workaround we used is that git-annex is in a separate location the the
Drupal modules (media mover, presumably) take care of copying files over.

In the Drupal filesystem, original files are in the video-original directory and transcoded files in the
media_mover/isuma directory.

See Redmine issue #17653 for the gory details of that transition.

Note: This was originally setup in the NFS-shared /persistent/media directory, but was changed be-
cause of compatibility problems between NFS and git-annex. See Redmine issue #18170 and related for more

2.3. Git-annex configuration 15

https://redmine.koumbit.net/issues/17653
https://redmine.koumbit.net/issues/18170

Media Players Documentation, Release 2.5

information.

4. a remote was added for the central server:

git remote add origin host-isuma.tv@cs.isuma.tv:/var/lib/git-annex/isuma-files/

5. a first sync was performed:

git annex sync origin

6. on the central server, a user was created for the server to sync, with the right group:

cs$ sudo adduser --force-badname --disabled-password host-isuma.tv
cs$ sudo adduser host-isuma.tv isuma-files

7. And the SSH key of the www-data user was added to the account:

sudo -u host-isuma.tv -i tee .ssh/authorized_keys # paste the key then "control-d"

Note: the last two steps should probably have been done through Puppet.

8. prefered content was set to source because files shouldn’t be staying on the server longer than necessary:

git annex group . source
git annex wanted . standard

9. the assistant was configured by setting up the startup script in /etc/init.d/git-annex, as documented
in Manually configuring the assistant, and with the following config in /etc/default/git-annex:

DAEMON=/usr/bin/git-annex
ANNEX=/mnt/media
USER=www-data

10. the assistant was started with:

service git-annex restart

Note: the following need to be created for proper assistant operation, for some reason:

sudo mkdir .kde .local .config
sudo chown www-data .kde .local .config

11. the Drupal website has the gitannnex Drupal module installed and configured with the path to the git-annex
repository setup above

Note: Files were imported from the other buckets as well here, the complete process is not relevant here but was
documented partly in Redmine issue #16729.

2.3.5 Encoding server configuration

This is almost exactly like the Main website configuration, except the username is host-encoding.isuma.tv.

16 Chapter 2. Old Installation Details

https://redmine.koumbit.net/issues/16729

Media Players Documentation, Release 2.5

1. git-annex was installed with the Debian packages, as explained in Debian package installation

2. we run the remaining commands as the www-data user:

sudo -u www-data -i

3. the git-annex repository was created in /mnt/media:

git init /mnt/media
cd /mnt/media
git annex init

4. a remote was added for the central server:

git remote add origin host-encoding.isuma.tv@cs.isuma.tv:/var/lib/git-annex/isuma-
→˓files/

5. on the central server, a user was created for the server to sync, with the right group:

cs$ sudo adduser --force-badname --disabled-password host-encoding.isuma.tv
cs$ sudo adduser host-encoding.isuma.tv isuma-files

6. And the SSH key of the www-data user was added to the account:

sudo -u host-encoding.isuma.tv -i tee .ssh/authorized_keys # paste the key then
→˓"control-d"

Note: the last two steps should probably have been done through Puppet.

7. then, back on the encoding server, a first sync was performed:

git annex sync origin

8. prefered content was set to source because files shouldn’t be staying on the server longer than necessary:

git annex group . source
git annex wanted . standard

9. the assistant was configured by setting up the startup script in /etc/init.d/git-annex, as documented
in Manually configuring the assistant, and with the following config in /etc/default/git-annex:

DAEMON=/usr/bin/git-annex
ANNEX=/mnt/media
USER=www-data

10. the assistant was started with:

service git-annex restart

Note: the following need to be created for proper assistant operation, for some reason:

sudo mkdir .kde .local .config
sudo chown www-data .kde .local .config

2.3. Git-annex configuration 17

Media Players Documentation, Release 2.5

2.4 Other configurations

There are more configuration tasks done in Puppet or manually when installing a media player that are not directly
related to git-annex or the media players code.

Most of this happens in the roles::common Puppet class, unless otherwise noted below.

2.4.1 User creation

A common set of users is created by Puppet in the user::admins class.

2.4.2 Puppet auto-configuration

Puppet itself is managed through Puppet, using the puppet::agent class using the Puppet module.

2.4.3 SSH and Monkeysphere

SSH is also configured through Puppet, through the site_sshd class. This sets up a few basic SSH configurations
like enabling password authentication and port forwarding.

It also enables the monkeysphere::sshserver modules which uses Monkeysphere to distribute the public SSH
keys of users.

Note: In older versions of Debian (including Ubuntu Precise), the version of SSH precludes having multiple
authorized_keys files, which means that, with Monkeysphere, manual changes to that file may seem ineffec-
tive. In fact, they will take effect only when the next monkeysphere cron job runs, which is by default every
hour.

To force the regeneration of authorized_keys files, the job can be run by hand with:

monkeysphere-authentication update-users

2.4.4 Automated upgrades

As with most Koumbit servers, we setup automated upgrades with:

class { 'apt::unattended_upgrades': }

Warning: Note that, on Debian 7 “Wheezy” and earlier, it is somewhat dangerous as the resulting configuration
may automatically upgrade to the next major release once Debian 9 “Stretch” is released. This is an issue with the
upstream unattended-upgrades package (bug report #762965). We are also tracking this issue in our own
tracker (Redmine issue #17964).

18 Chapter 2. Old Installation Details

https://github.com/stephenrjohnson/puppetmodule
http://web.monkeysphere.info/
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=762965
https://redmine.koumbit.net/issues/17964

Media Players Documentation, Release 2.5

2.4.5 First content synchronisation

The new media player needs to have all the new content before it is shipped. For this, a synchronisation drive needs to
be connected to the media player, at which point it will start syncing all the content from the sync drive onto the media
player.

Such a sync can take up to 24 hours right now (June 2015). The procedure is the same as the regular synchronisation
procedure described in the maintenance manual.

2.4. Other configurations 19

Media Players Documentation, Release 2.5

20 Chapter 2. Old Installation Details

CHAPTER 3

Testing

3.1 Backend

Puppet agent provision is running without blocking errors:

sudo puppet agent -t

Autossh (for remote login and VLC web interface) is working, starting on its own after reboot, staying up for days.:

Locally: sudo service autossh status
ssh user@cs.isuma.tv -p 22###
http://cs.isuma.tv:28###

3.2 CableTV

• VLC appears on local monitor

• VLC web interface appears at http://cs.isuma.tv:28###

• Playlists load using the Add Playlist button on the web interface

• Videos play fullscreen on the local monitor

• Sound works though headphone-out when video play (test sound with speaker-test command, use alsamixer to
make adjustments)

3.3 Git-annex sync

Git-annex works at all. Try:

21

http://cs.isuma.tv

Media Players Documentation, Release 2.5

git-annex info --fast

Git-annex daemon is running:

sudo service git-annex status
ps aux | grep assistant

Videos are syncing (in a normal user screen session, run as www-data user):

git-annex sync --content

Latest videos are synced, by comparing latest videos on MP versus CS and encoding servers (check if daemon is
running on these as well:

ls -lart /var/isuma/git-annex/video/mp4_sd | tail

Check total media size to see if it is similar to other MPs:

df -h #media is in /var/isuma partition

Shut down the MP via the UPS battery after nut is configured (to avoid git-annex repo corruption):

sudo upsmon -c fsd

3.4 Isuma.tv

• Check for UUID of MP (from git-annex info –fast) on http://www.isuma.tv/git-annex

• Check status of MP on puppet dashboard cs.isuma.tv:3000

22 Chapter 3. Testing

http://www.isuma.tv/git-annex

CHAPTER 4

Maintenance

4.1 Changing preferred content

Every git-annex repository has a “preferred content” expression that defines which part of the main git-annex repository
will be downloaded.

For example, by default we setup new media players with the following preferred content:

include=* and (exclude=video/original/*)

This means the media player will fetch all files but the files in the video/original directory. This is imple-
mented through a group setting called mediaplayer. New groups can be defined. For example, here is how the
mediaplayer group was created:

git annex groupwanted mediaplayer 'include=* and (exclude=video/original/*)'

Note: Groups are global across different media players and cannot be erased once created, so make sure the name is
good before creating it. It should be a singular, descriptive name.

This created the new mediaplayer group, which can be used similarly to the standard groups. Then the repository
can be added to that group and then configured to follow the configured preferred content expression from the group,
as is done during the installation process:

git annex group . mediaplayer
git annex wanted . groupwanted

You can also assign any other media player to a given group. So say you have created an audio group with:

git annex groupwanted audio 'include=audio/*'

You could assign the host-mp20120507-1.mp.isuma.tv git annex repository to the group with:

23

http://git-annex.branchable.com/git-annex-groupwanted/
https://git-annex.branchable.com/preferred_content/standard_groups/

Media Players Documentation, Release 2.5

git annex group host-mp20120507-1.mp.isuma.tv audio
git annex wanted host-mp20120507-1.mp.isuma.tv groupwanted

Group configuration is also available to remote operators through the web interface.

Currently, only the mediaplayer group is defined, when new groups are defined, they should be documented here.

4.2 Unused and deleted files

When a file is deleted from the git repository, git-annex still has a copy. This is also the case when a file is modified
with git annex edit: the previous version stays around for a while. Those are called unused files.

Caution: Those files should be scheduled for removal automatically, but for safety reasons, this is not currently
enabled. See Redmine issue #17493 for followup.

Unused files can be inspected with:

git annex unused

Those unused files can then be completely destroyed with:

git annex drop --unused

If, however, there are no more copies of the file anywhere, git-annex will refuse to remove those old copies. In this
case, you need to use --force:

git annex drop --unused --force

Unused files may also exist on the S3 repository. Add --from s3 to the above commands to operate on the S3
remote from the main website.

Finally, in some cases, files remain in the current repository when they are supposed to have been moved to a different
repository. For example, this can happen with transfers to S3 that failed to complete. In this case, this command will
drop the local files that have been transfered:

git annex drop --auto .

4.3 Metadata

The media players communicate various metadata about their status through two different channels: a Custom meta-
data script and Puppet facts.

4.3.1 Generic Puppet facts

Puppet gives us a bunch of facts which provide information about the machines.

hostname short name of the machine (mpYYYYMMDD-N, see the Naming convention for more information)

domain domain name of the machine (should always be mp.isuma.tv, see the Naming convention for more
information)

24 Chapter 4. Maintenance

https://redmine.koumbit.net/issues/17493

Media Players Documentation, Release 2.5

fqdn concatenation of hostname and domain (e.g. mp20150508-1.mp.isuma.tv)

memoryfree, memoryfree_mb the amount of RAM memory available on the machine in a variable unit or in
MiB, e.g. 2.15 GB or 2198.61

memorysize, memorysize_mb the total amount of RAM on the machine in a variable unit or in MiB, e.g. 3.48
GB or 3562.93

operatingsystem, operatingsystemrelease, os those describe the operating system of the machine, in-
cluding the version and code name. Example:

operatingsystem => Debian
operatingsystemmajrelease => 8
operatingsystemrelease => 8.0
os => {"name"=>"Debian", "family"=>"Debian", "release"=>{"major"=>"8", "minor"=>"0
→˓", "full"=>"8.0"}, "lsb"=>{"distcodename"=>"jessie", "distid"=>"Debian",
→˓"distdescription"=>"Debian GNU/Linux 8.0 (jessie)", "distrelease"=>"8.0",
→˓"majdistrelease"=>"8", "minordistrelease"=>"0"}}
osfamily => Debian

blockdevice* those facts describe the disks installed in the machine. example:

blockdevice_sda_model => M4-CT128M4SSD2
blockdevice_sda_size => 128035676160
blockdevice_sda_vendor => ATA
blockdevices => sda

the sizes are in bytes.

uptime, uptime_seconds, uptime_hours, uptime_days the time since the last reboot of the machine, as
a human-readable timestamp (e.g. 50 days), seconds (4343990), hours (1206) and days (50).

processor* those fields describe the processors (or CPU) installed on this machine. Example:

processor0 => AMD E-350 Processor
processor1 => AMD E-350 Processor

ipaddress the private IP address of this media player. we do not currently ship the public IP address through
Puppet.

boardmanufacturer, boardproductname, boardserialnumber hardware information about the moth-
erboard of the machine

The last check-in time is not per se a fact but is kept by the Puppet dashboard separately. The last checkin time is
currently in UTC. We are using the universal time zone (UTC) to avoid confusion if media players are deployed across
multiple time zones. That way we always have uniform timezone regardless of where the media player is located.

4.3.2 Custom Puppet facts

The following facts have been implemented (Redmine issue #16706 to provide us with a better overview of the situa-
tion in the Puppetmaster dashboard.

mp_autossh_ssh_port The port that should be used while connecting to the central server to connect to a medi-
aplayer with SSH.

mp_autossh_vnc_port The port that should be used while connecting to the central server to reach a medi-
aplayer’s VNC server.

The following facts are generated by the gitannex_info.py script in the gitannex Puppet module.

4.3. Metadata 25

https://redmine.koumbit.net/issues/16706

Media Players Documentation, Release 2.5

gitannex_disk_space_available the amount of disk space available for git-annex to download new files.
units vary: may be in Gigabytes, Megabytes, depending on the size available.

gitannex_transfers_in_progress the list of files currently being transfered. If no transfer in is progress,
an empty list, [], will be shown. Otherwise, a list of file names will be shown. For example: ['video/
mp4_sd/779.mp4','video/mp4_sd/781.mp4']

gitannex_files_present_count, gitannex_files_present_size the size and number of files al-
ready present in the git-annex repository. this is equivalent to the local annex keys and local annex
size fields in the git annex info output.

gitannex_files_total_count, gitannex_files_total_size the total size and number of files, miss-
ing or present the git-annex repository. this is equivalent to the annexed files in working tree and
size of annexed files in working tree fields in the git annex info output.

Note: The missing and total counts currently exclude the originals directory as to avoid confusion because the
media players do not sync that content. The actual total repository size is larger.

gitannex_files_missing_count, gitannex_files_missing_size the size and number of files
missing from the git-annex repository. this is calculated from the different between the total and present
facts.

gitannex_master_age this holds the relative date (e.g. “one week ago”) of the last commit on the master
branch of the git-annex repository. this branch holds the last changes to the file repository (adding, renaming,
removing files) that the local git-annex repository is aware of and is a good description of how up to date the
media player is. this is equivalent to git log -1 --format=%ct.

gitannex_master_age_days, gitannex_master_age_hours, gitannex_master_age_minutes, gitannex_master_age_seconds
same as the above, but rounded up to days, hours, minutes or seconds. that is, if the commit is 2 days and 3
hours long, gitannex_master_age_hours is 51 hours.

The following facts are generated from the network_stats.py script in the vnstat Puppet module.

vnstat_bandwidth_usage_up_5_seconds, vnstat_bandwidth_usage_up_day, vnstat_bandwidth_usage_up_yesterday, vnstat_bandwidth_usage_up_month, vnstat_bandwidth_usage_up_year
the upload bandwidth usage in the last 5 seconds, the current and previous day, the current month and year.

vnstat_bandwidth_usage_down_5_seconds, vnstat_bandwidth_usage_down_day, vnstat_bandwidth_usage_down_yesterday, vnstat_bandwidth_usage_down_month, vnstat_bandwidth_usage_down_year
same for download bandwith

Note that the total amount of disk space allocated for downloading files can be somewhat deduced from the total
git_annex_files_present_size and gitannex_disk_space_available. It will be accurate insofar
that all the files in the partition are managed by git-annex.

4.4 Settings

There are various “settings” available in the Puppet dashboard. They are arbitrary key/value pairs that get passed down
in the Puppet configurations and can affect (or not) the behavior of media players.

Do not use fields that are not explicitely documented here, as it may make a media player unreachable or unusable.

4.4.1 Configuration settings

Those are settings that control various operations of git-annex on the media player.

26 Chapter 4. Maintenance

Media Players Documentation, Release 2.5

gitannex_sync_start_hour, gitannex_sync_start_minute, gitannex_sync_stop_hour, gitannex_sync_stop_minute
time (hour and minute) at which the git-annex assistant should start and stop syncing the media player. none or
both fields need to be specified. if no field is specified, the media player is always on.

gitannex_sync_upload_limit Upload bandwidth limit. If no units are specified, the provided number is in
kibibytes, that is 1024 bytes per second. A unit should be provided to avoid confusion.

This is passed verbatim to to the --bwlimit option of rsync. Here’s an excerpt of the rsync manual explaining
the how the units are interpreted and the limit implemented:

The RATE value can be suffixed with a string to indicate a size
multiplier, and may be a fractional value (e.g.
"--bwlimit=1.5m"). If no suffix is specified, the value will be
assumed to be in units of 1024 bytes (as if "K" or "KiB" had
been appended).

For backward-compatibility reasons, the rate limit will be
rounded to the nearest KiB unit, so no rate smaller than 1024
bytes per second is possible.

Rsync writes data over the socket in blocks, and this option
both limits the size of the blocks that rsync writes, and tries
to keep the average transfer rate at the requested limit. Some
"burstiness" may be seen where rsync writes out a block of data
and then sleeps to bring the average rate into compliance.

[...]

The suffixes are as follows: "K" (or "KiB") is a kibibyte
(1024), "M" (or "MiB") is a mebibyte (1024*1024), and "G" (or
"GiB") is a gibibyte (1024*1024*1024). If you want the
multiplier to be 1000 instead of 1024, use "KB", "MB", or "GB".
(Note: lower-case is also accepted for all values.) Finally, if
the suffix ends in either "+1" or "-1", the value will be offset
by one byte in the indicated direction.

Examples: [...] 1.5mb-1 is 1499999 bytes, and [...] 2g+1 is
2147483649 bytes.

gitannex_sync_download_limit Download bandwidth limit. If no units are specified, the provided number
is in bytes per second. A unit should be provided to avoid confusion.

This is passed verbatim to the --limit-rate option of wget. Here’s an excerpt of the wget manual explaining
how the units are interpreted and how the limit is implemented:

Limit the download speed to amount bytes per second. Amount may
be expressed in bytes, kilobytes with the k suffix, or megabytes
with the m suffix. For example, --limit-rate=20k will limit the
retrieval rate to 20KB/s. This is useful when, for whatever
reason, you don't want Wget to consume the entire available
bandwidth.

This option allows the use of decimal numbers, usually in
conjunction with power suffixes; for example, --limit-rate=2.5k
is a legal value.

Note that Wget implements the limiting by sleeping the
appropriate amount of time after a network read that took less
time than specified by the rate. Eventually this strategy

(continues on next page)

4.4. Settings 27

https://rsync.samba.org/
http://manpages.debian.org/cgi-bin/man.cgi?query=rsync
https://www.gnu.org/software/wget/
http://manpages.debian.org/cgi-bin/man.cgi?query=wget

Media Players Documentation, Release 2.5

(continued from previous page)

causes the TCP transfer to slow down to approximately the
specified rate. However, it may take some time for this balance
to be achieved, so don't be surprised if limiting the rate
doesn't work well with very small files.

4.4.2 Informative settings

Those fields are not necessarily used by Puppet for anything, but are used by Isuma operators to add information about
the machine. Fields may or may not be available.

isuma_mp_address Location (address, street, city, country) of this media player.

isuma_mp_site Free-form description of the site where the media player is (e.g. “Isuma Office, Cara’s desk”)

isuma_mp_location Geographic coordinates of this media player, if address is missing or irrelevant (e.g. 45°
30’ 0” N, 73° 34’ 0” W)

isuma_mp_operator_name, isuma_mp_operator_phone, isuma_mp_operator_email, isuma_mp_operator_address
name, phone number, email and city address of the last known local operator of the media player.

isuma_mp_notes random notes about the media player.

New fields may be added, but they must have the prefix isuma_mp_.

4.5 External synchronisation drives

Content can be synchronised to media players using an external synchronisation drive. That drive, when connected to
a media player, will add all the missing content to the media player, and all content only on the media player will be
added to the drive as well.

4.5.1 Syncing a media player

This is the standard procedure to synchronise a media player with an external synchronisation drive.

1. connect the drive

2. observe the led start flashing

3. wait for the led to stop flashing

4. disconnect the drive

The media player should now be synced with the drive, and the drive should have the latest content from the media
player.

Debugging information is sent to syslog, in /var/log/daemon.log. Here’s an example logfile excerpt:

Jun 24 15:52:12 koumbit-mp-test logger: starting mediaplayers /lib/udev/mediaplayers-
→˓syncdrive on sdc, looking for label isuma_sneakernet
Jun 24 15:52:13 koumbit-mp-test logger: starting mediaplayers /lib/udev/mediaplayers-
→˓syncdrive on sdc1, looking for label isuma_sneakernet
Jun 24 15:52:13 koumbit-mp-test logger: mounting sdc1 on /media/isuma_sneakernet
Jun 24 15:52:13 koumbit-mp-test logger: synchronizing git-annex repository /var/isuma/
→˓git-annex with remote sneakernet as www-data

28 Chapter 4. Maintenance

Media Players Documentation, Release 2.5

4.5.2 Updating a synchronisation drive

Just connecting a synchronisation drive on a media player should download all the content from the media player and
update the synchronisation drive to that content.

To see which transfers are in progress, you can use the following command:

antoine@koumbit-mp-test:/var/isuma/git-annex$ sudo -u www-data -H git annex info --
→˓fast
repository mode: indirect
trusted repositories: 0
semitrusted repositories: 7

00000000-0000-0000-0000-000000000002 -- bittorrent
2d61a8de-a24e-44e3-9aa0-54f033fec1e9 -- host-mp20120507-1.mp.isuma.tv [here]
36d2cb94-e0a2-446a-87c9-02f73135b302 -- anarcat@desktop008:~/src/isuma/isuma-

→˓files
9401d7b3-44d2-48ab-a9f1-c77fac469a1a -- [s3]
c510ddad-24cd-4353-b5f4-03581f6f9dca -- cs.isuma.tv [origin]
d2a7d4ff-1dbf-4bfa-bb97-ae593626daf6 -- [sneakernet]
e747d5c8-ea47-480f-8c5d-2986ce65ed89 -- isuma.tv

untrusted repositories: 1
00000000-0000-0000-0000-000000000001 -- web

transfers in progress:
uploading video/mp4_sd/strata_may15_hd.mp4.mp4 to sneakernet

available local disk space: 929.96 gigabytes (+1 megabyte reserved)

Above we see that a video file (video/mp4_sd/strata_may15_hd.mp4.mp4) is being uploaded from the
media player to the sneakernet, that is, the synchronisation drive. This file was downloaded on the media player
after the synchronisation drive was created, so git-annex is updating the drive.

If synchronisation would be complete, you would see transfers in progress: none.

Note: Note that git-annex may wait a little between two transfers, so you may want to run the command multiple
times to make sure the transfer is complete.

To make sure no content is missing, compared to a media player, you can use:

git annex find --not --in sneakernet --in here

4.5.3 Manual updates of synchronisation drives

However, if the media player isn’t up to date, it’s still possible to synchronise the drive by hand in one shot, with:

cd /media/isuma_sneakernet/git-annex
git annex sync
git annex get --exclude 'video/original/*'

There may be bandwidth limits on the sync drive. Use the annex.web-download-command setting to control
that. For example, to disable bandwidth limits by hand, use:

git config --unset annex.web-download-command

To see the current setting, use:

4.5. External synchronisation drives 29

Media Players Documentation, Release 2.5

git config --get annex.web-download-command

4.5.4 Design notes

This was originally implemented using rsync in the 2.x series (see Redmine issue #181 for background) but we now
use the git annex sync command with the --content argument to synchronise the contents. This is implemented
in the /lib/udev/mediaplayers-syncdrive, deployed through Puppet in the mediaplayers module. It
is configured to automatically start when a properly formatted hard drive is connected in /etc/udev/rules.d/
010_mediaplayers_syncdrive.rules.

The synchronisation script will automatically mount (and then unmount, when finished) the drive on /media/
isuma_sneakernet then run the git annex sync --content command. Puppet is assumed to have al-
ready properly configured the remote in the main git repository for that sync to work properly.

4.5.5 External drive format

A drive is identified as carrying Isuma content if it has the isuma_sneakernet filesystem label (all lowercase).
The git-annex repository should be in a git-annex subdirectory on the filesystem (all lowercase).

This folder is further subdivided by content and file format. So, one should find a file structure like this on the drive:

isuma_sneakernet/
git-annex/
picture/small
picture/large
picture/xlarge
album/small
album/large
album/xlarge
video/small
video/large
video/xlarge
attachment/normal
vod/normal
video/mp4_low
video/mp4_sd
video/mp4_hd
video/mp4_hd2
video/webm_low
video/webm_sd
video/webm_hd
video/webm_hd2
video/original
audio/aac
audio/ogg
uvanga/image
uvanga/video

Some of those files may not be synced with the media player based on prefered content settings. For example, usually
the video/original content is not synced to the media players.

30 Chapter 4. Maintenance

https://redmine.koumbit.net/issues/181
http://git-annex.branchable.com/git-annex-sync/

Media Players Documentation, Release 2.5

4.5.6 Creating a new synchronisation drive

This is usually done from an existing media player, but can actually be done from anywhere that has a network
connection. But that will mean a lot of data will be downloaded over the wire, which will be slow or worse, may end
up imposing extra bandwidth costs with your Internet Service Provider.

1. connect the drive

2. find the drive identifier:

$ dmesg | tail
[1373209.300987] scsi 18:0:0:0: Direct-Access OEM Ext Hard Disk 0000
→˓PQ: 0 ANSI: 5
[1373209.301912] sd 18:0:0:0: Attached scsi generic sg3 type 0
[1373209.427839] sd 18:0:0:0: [sdd] Spinning up disk...
[1373211.584051] .ready
[1373211.615951] sd 18:0:0:0: [sdd] 3907029168 512-byte logical blocks: (2.00 TB/
→˓1.81 TiB)
[1373211.640576] sd 18:0:0:0: [sdd] Write Protect is off
[1373211.640580] sd 18:0:0:0: [sdd] Mode Sense: 10 00 00 00
[1373211.664833] sd 18:0:0:0: [sdd] Write cache: enabled, read cache: enabled,
→˓doesn't support DPO or FUA
[1373211.776849] sdd: sdd1
[1373211.926204] sd 18:0:0:0: [sdd] Attached SCSI disk

or:

$ cat /proc/partitions
major minor #blocks name

8 0 488386584 sda
8 1 248832 sda1
8 2 1 sda2
8 5 488134656 sda5

254 0 479952896 dm-0
254 1 8179712 dm-1

8 48 1953514584 sdd
8 49 1953512001 sdd1

In both examples above, the new partition discovered is /dev/sdd1.

Warning: The following can destroy data if not followed properly. In particular, we are using the device
/dev/sdd1 from here on, if that device is in use for some other filesystem, it will be destroyed at the next
step. You can use the df command to see mounted filesystems.

3. format it with an ext4 filesystem with the magic label:

mkfs -t ext4 -L isuma_sneakernet /dev/sdd1

4. mount the drive:

mkdir /media/isuma_sneakernet
mount /dev/sdd1 /media/isuma_sneakernet

5. clone the git-annex repository:

4.5. External synchronisation drives 31

Media Players Documentation, Release 2.5

git clone /var/isuma/git-annex /media/isuma_sneakernet/git-annex

Note: If you are not on a media player, the /var/isuma/git-annex repository will not be available. Not
all is lost however! You can still clone from any other git-annex repo, including the one on the central server.
For example, this should also work:

git clone antoine@cs.isuma.tv:/var/lib/git-annex/isuma-files /media/isuma_
→˓sneakernet/git-annex

You may need to create a new SSH key pair and install it on the central server. Since it is running an old version
of Monkeysphere, you will also need to run:

monkeysphere-authentication u antoine

For the change to be effective.

Once the repository is cloned, however, you will likely want to ensure the synchronisation drive doesn’t require
SSH keys to synchronise the metadata on media players. So change the URL to the internal repository, even if
it doesn’t exist yet:

git remote set-url origin /var/isuma/git-annex

6. make sure repository is readable by the webserver, for uploads:

chown -R www-data /media/isuma_sneakernet/git-annex

Note: If you are running this on a non-Debian system, this user may not exist. For the record, the current UID
for www-data is 33, so this would be equivalent:

chown -R 33 /media/isuma_sneakernet/git-annex

See also the Debian base-passwd package for more information about those identifiers.

7. launch the sync script:

umount /dev/sdd1
/lib/udev/mediaplayers-syncdrive sdd1

Note: If you are not running this on a media player, the above will fail because it will not find the git-annex
repository. You can still synchronise data directly from S3 using the following commands:

sudo -u www-data git annex enableremote s3
sudo -u www-data git annex get

This can take up to 24 hours right now (June 2015), depending on the data set size.

Note: Creating a completely new sync drive from scratch, at the Koumbit datacenter, took around 30 hours with
connexion rate-limited to 5MB/s. The dataset was about 860GB in June 2015, see Redmine issue #17834 for details.

32 Chapter 4. Maintenance

https://tracker.debian.org/pkg/base-passwd
https://redmine.koumbit.net/issues/17834

Media Players Documentation, Release 2.5

4.6 Creating user accounts

Access to the media player is granted on a per-user basis. Users need to be created in Puppet, in the user::admins
class. For example, this grants access to the antoine user:

user {
'antoine':
ensure => present,
gid => $gid,
groups => $groups,
comment => 'Antoine Beaupre',
managehome => false,
shell => '/bin/bash',
password => '6[...censored..]';

}

A new block like this needs to be added to the site/user/manifests/admins.pp file for every user we want
to give access to.

Warning: Note that this grants access to all machines managed through Puppet, including sudo access. Some
rearchitecturing of the Puppet classes would need to be performed to have access specific to the media players, but
this was not a requirement at first.

Note: The previous access system was based on the root account, which is now locked down.

4.7 Upgrading git-annex

Depending on the git annex installation method, there are various ways of updating git-annex when a new release
comes out.

As a rule of thumb, as long as the first part of the git-annex version number doesn’t change, upgrades are non-
destructive and will be forward- and backward-compatible. For example, right now the version number is 5.
20150409, which means it is basically Git annex 5. A major upgrade including a data migration would come if
the next release is something like 6.x.

Those changes are documented upstream in the upgrades page and are not very common. Keep in mind that git-annex
“will always support upgrades from all past versions”, so upgrading is usually a painless process, which only requires
running git annex upgrade after deploying the new codebase.

Since we are usually deploying with Debian packages from NeuroDebian, only that method is documented here. You
can see the latest versions available from NeuroDebian in their package page. To perform an upgrade by hand, you
can simply do:

apt-get install git-annex-standalone

With Puppet, it is also possible to specify the desired version with:

class { 'gitannex':
method => 'package',
ensure => '5.20150819+gitgc587698-1~ndall+1',

}

4.6. Creating user accounts 33

https://git-annex.branchable.com/upgrades/
http://neuro.debian.net/pkgs/git-annex-standalone.html

Media Players Documentation, Release 2.5

The downside of using a specific version in Puppet is that it needs to be updated every time a new release comes up.

Note: Hopefully, git-annex will eventually be part of the standard backports, issue #760787 was opened about this in
Debian. That way, git-annex will be part of the regular unattended-upgrades process.

34 Chapter 4. Maintenance

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=760787

CHAPTER 5

User guides

5.1 How to setup a playlist

(once the cabletv package is completed this will all be possible to do remotely through a web interface, and parts of it
will be automated)

1. Open www.isuma.tv on your browser.

2. Make sure that you are connected to your IsumaTV Media Player:

3. Sign in with your username and password.

35

Media Players Documentation, Release 2.5

4. Go to your playlist by entering this URL: www.isuma.tv/DID/tv/name of your community and click on your
playlist at the bottom of the page to open it.

36 Chapter 5. User guides

Media Players Documentation, Release 2.5

5. Click on “EDIT THIS” under the DASHBOARD

6. Edit your playlist by adding and removing videos as well as changing their order.

Note: Make sure to only select videos that are currently available on the MP and not videos still in the process of being
downloaded to the Media Player. Note: Don’t forget to save your playlist regularly, even if you have not yet finished
(the save button is at the bottom of the page).

Make a note of the node number for your playlist in the address bar (in this example www.isumatv/node/56706)

5.1. How to setup a playlist 37

Media Players Documentation, Release 2.5

7. You can now save this new playlist to the Media Player for local broadcast.

Note: The playlist can be modified from any computer but then needs to be saved on the Media Player in order to be
broadcasted.

In the address bar type www.isuma.tv/playlist/playlist/node number for your playlist In this example http://www.
isuma.tv/playlist/playlist/56706

8. Make sure you see the IP address of your local Media Player. In this example: 192.168.0.110

If instead of reading numbers like this one, you see isuma.tv or amazon this means you are not connected to the Media
Player. In this case, return to www.isuma.tv and make sure you have connected to the Media Player and can see the
message “You are connected to an IsumaTV Media Player”.

9. Right-click in the middle of the page. Select “Save Page as”.

38 Chapter 5. User guides

http://www.isuma.tv/playlist/playlist/56706
http://www.isuma.tv/playlist/playlist/56706

Media Players Documentation, Release 2.5

10. Change the file name to playlist.xspf (Your file can have any name but it is essential to save it as an .xspf file).
Select “WebPage, HTML only” option at the bottom right of the window. Then click “Save”.

11. You will then return to the www.isuma.tv/playlist/playlist page. Press the “Ctrl” and “Q” keys on the keyboard to
quit this page. The page will close and a VLC Player window will automatically pop up. Click the Play button, then
select “Add. . . ”

5.1. How to setup a playlist 39

Media Players Documentation, Release 2.5

12. Select your playlist (playlist.xspf). Click “Open”.

13. Click the Loop button and the Full Screen button on the VLC Player. Then Click the Play button to begin playing
the playlist.

40 Chapter 5. User guides

Media Players Documentation, Release 2.5

You are now done!

To stop the playlist:

1. Press the “Esc” (escape) key on the keyboard.

2. Under the “Media” menu at the top left of the Player, select “Quit”.

3. The VLC Player will close and the web browser will reopen automatically on www.isuma.tv after a short delay.

5.1. How to setup a playlist 41

Media Players Documentation, Release 2.5

42 Chapter 5. User guides

CHAPTER 6

Hardware platforms

The media players project doesn’t require any special hardware to run, although we do expect the usual:

• network interface

• display and sound card (to play videos)

• storage

However, since we are storing videos, we are aiming for large storage specifications. As of July 2014, the Isuma.tv
store is around 1 TB (terabyte, or 0.9 TiB, tebibyte), so we currently deploy 2TB hard drives.

The rest of this section is dedicated to current and previous platform specifications.

6.1 Rugged specification

This specification was built in 2015 in order to set strict requirements of durability and availability for tough environ-
ments. The list of requirements is sorted by priority, with more important items first.

1. Durability

The MPs may be subject to dust, humidity, low temperatures, high temperatures and general user abuse: drop-
ping, pulling out wires, etc. The MPs are to be operating in extreme conditions like the Canadian Arctic or the
Brazilian Amazon. For example, Nunavut temperatures vary from -50°C to 10°C but humidity is low. In Olinda
Brazil, temperatures vary from 20°C to 30°C and humidity is on average at 70%.

So ideally, we would like a tough piece of hardware that could take anything. But, if this just to unrealistic
in regards to all our other requirements, we may need to think about having different MP models for different
climates.

SSD storage devices may be prioritized over HDD for their greater resistance to shocks.

The machines should self-heal as much as possible. For example, the device should be able to automatically
restart after a power outage, which is usually just a configuration in the BIOS.

2. Storage capacity

Media players should have a capacity of at least 1 TB (10^12 bytes).

43

Media Players Documentation, Release 2.5

3. Ports

there should be at least the following ports on the media players:

• 1 Ethernet (internet from modem)

• 2 USB (keyboard and mouse)

• 1 VGA (we currently connect a VGA splitter to the only VGA port on the current model, to carry the video
signal from the MP to a scan convertor where it is converted for television broadcast, and to a TV monitor
to access the MP to save a playlist for broadcast)

• 2 auxiliary stereo sound (one port to send the sound to the video modulator for television broadcast, and
the other port to send the sound to the TV monitor)

• 1 user-friendly power adapter (it can be internal or external, as long as the user doesn’t have too much
opportunity for mistakenly inserting the power adapter the wrong way or touching what seem to be exposed
wires)

This is a minimum. Having extra ports is not an issue.

4. Expandability - field upgradeable storage

Media Players may need to be setup with some sort of RAID technology to allow for future storage expansion.
In short, the expandability requirement requires that we setup some sort of stripping configuration, but this may
threaten its stability so it’s a trade-off.

Some machines have hot-swappable “trays” of hard drives that can make swapping in and out multiple redundant
drives easier, and that is what we use in the datacenter. But unfortunately, those devices are usually not sealed
against the environment, so it conflicts with the durability requirement. Regular users with little technical ability
should be able to perform storage swaps in the field. This will require special storage enclosures, ideally hot-
swappable screw-less drives.

One big concern here is that people can learn how to remove and install disks, but the hard part is which disk to
add/remove and when. We could make LED displays for this, but in our experience, software control for those
LEDs has been limited, so this is the biggest hurdle here.

Also, it should be possible to add content to the media players by shipping storage devices that would be
somewhat attached to the Media Player in the field. The extra device would be used to sync new content in and
out of the Media Player, but also, and ideally, used to expand the storage capacity of the media player.

5. Availability

Perhaps from supplier in Montreal to decrease delivery times and eliminate any customs delays.

6. Size

As small and as light as possible to reduce shipping costs and for easier handling.

6.2 Lightweight specification

Those specifications were designed for lighter models that do not have the same strict environmental requirements as
the rugged model, but that should be small, lighter and cheaper.

1. Price

Less than 1000$ CAD, shipping and hard drives included.

2. Size

As small and as light as possible to reduce shipping costs and for easier handling. Should be no bigger than the
current solid logic 2.5 version: 11”(W) x 11.5” (D) x 2.5”(H) and approx. 10lb (drives included).

44 Chapter 6. Hardware platforms

Media Players Documentation, Release 2.5

3. Availability

Perhaps from supplier in Montreal to decrease delivery times and eliminate any customs delays.

4. Storage capacity

Media players should have a capacity of at least 6 TB (6 x 10^12 bytes).

5. Ports

there should be at least the following ports on the media players:

• 1 Ethernet (internet from modem)

• 3 USB (keyboard, mouse, sync drive)

• 1 DVI (monitor and scan convertor for cable TV)

• 1 extra VGA a plus

• 1 stereo sound port, extra auxiliary a plus

• 1 user-friendly power adapter (it can be internal or external, as long as the user doesn’t have too much
opportunity for mistakenly inserting the power adapter the wrong way or touching what seem to be exposed
wires)

This is a minimum. Having extra ports is not an issue.

Note that this is similar to the rugged setup except the following requirements are gone:

• durability

• expandability

The “ports” requirements is also slightly different.

6.3 Shuttle XPC small desktops

We have one Shuttle machine in the office, in the XPC series, there isn’t much to say about it other than its peculiar
form factor is not very convenient.

6.4 Logic Supply desktops (v2.5 series)

Around 10 machines were built with some Logic Supply Mini-ITX cases, although the original product link is now
dead. We also had trouble with shipping and delivery to Canada. Finally, some hard drive sockets were damaged
during travel, which makes us doubt of the viability of this platform on the long term.

6.5 Advantech rugged servers (1.0 series)

We have deployed some Advantech UNO-3282 servers on the field.

6.3. Shuttle XPC small desktops 45

http://global.shuttle.com/products/productsList?categoryId=19
http://www.logicsupply.com/components/cases/mini-itx/
http://www.logicsupply.com/products/ci57_2766
http://buy.advantech.com/UNO+3282+S/UNO-3282-S/system-2926.htm

Media Players Documentation, Release 2.5

Two of those servers were provisionned for Isuma and are still running after years of service. They have sealed cases
that are very solid.

Advantages:

• very sturdy

• sealed, so it won’t collect dust

• power button protected from accidental tripping

Disadvantages:

• heavy

• power supply is external

46 Chapter 6. Hardware platforms

CHAPTER 7

Troubleshooting

7.1 Test procedure

When a new media player is installed, it needs to be thoroughly tested. This procedure can also be used on existing
media players to diagnose problems.

1. ping/pong test

2. new videos are downloaded on media players

3. URL rewriting for recent and old videos is performed correctly on the website

4. upload videos larger than 8MB without errors

5. git-annex syncs metadata (files added, removed) with website

6. git-annex uploads files to central server, and eventually to S3

7. files uploaded by a media player are eventually transcoded and redistributed to other media players

7.2 Basics

7.2.1 Queue is full but media player sees it empty

If the queue is full of good stuff to download but the media player sees it as empty, it could be that the schedule is too
restrictive. Try to disable the schedule in the central server and try again.

7.2.2 Password resets

If the password for the media player is lost, it can be recovered by rebooting in a special Linux mode. See Koumbit’s
documentation for that purpose.

47

https://wiki.koumbit.net/PasswordReset#Linux_init.3D.2BAC8-bin.2BAC8-sh
https://wiki.koumbit.net/PasswordReset#Linux_init.3D.2BAC8-bin.2BAC8-sh

Media Players Documentation, Release 2.5

This technique is complicated and should be considered last resort, if other techniques do not work or are unavailable,
as it is difficult and prone to errors.

This technique is known as “booting into /bin/sh as init(8)”.

1. reboot the machine (by doing control-alt-delete or by holding the power button for 5 seconds and then
clicking it again)

2. you will then see the BIOS screen flash by quickly, then the GRUB menu, which should be shown for a few
seconds, quickly hit the shift key to disable the timeout.

3. hit the e key to edit the menu item

4. you are now in an editor, with the arrow keys, navigate to the end of the line starting with linux

5. append init=/bin/sh to the line

6. hit control-x to boot the resulting configuration

7. you should end up at a commandline prompt, enter the following command in order (do not type what is after
the # symbol):

mount -w -n -o remount / # -w read/write, -n don't write /etc/mtab
mount /usr # in case passwd is on /usr/bin
/usr/bin/passwd #
sync
umount /usr
sync
sync # it cannot hurt
umount -a # will mount / read only
reboot -nf # -n don't sync or write anything, -f don't call shutdown

8. the machine should reboot with the new root password

7.2.3 Logging in to media players on the console

Some media players are in “Kiosk” mode by default, which makes it difficult to diagnose or see what is going on. A
Linux console should be available if you type control-alt-F2. Then login with your user account.

Note: See Creating user accounts for information on how to grant access to users.

7.2.4 Remote login to media players

Note: This system replaces the old isuma-autossh package. Some media players may still use the old system.
Refer to the 2.x documentation for those.

Each media player is configured to automatically login to the central server with a reverse SSH tunnel. The tunnel
should always be up if the media player is online, as it is supervised by the autossh command (which we are looking
at replacing, see Redmine issue #17967).

This tunnel allows operators to login through SSH into the media player, regardless of the firewall rules or network
configuration at the other end.

By default, each media player has a random port assigned, but one can also be defined in the Puppet manifests. In any
case, the most reliable way to find the port of a given media player is with lsof:

48 Chapter 7. Troubleshooting

https://redmine.koumbit.net/issues/17967

Media Players Documentation, Release 2.5

antoine@cs:~$ sudo lsof -c ssh -a -i 4TCP:22000-23000 -s TCP:LISTEN -P -a -u host-
→˓mp20120507-1.mp.isuma.tv
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
sshd 5025 host-mp20120507-1.mp.isuma.tv 7u IPv4 70526409 0t0 TCP *:22529
→˓(LISTEN)

Note: The above media player name is from the standard hostname configuration. You may need to login to the
Puppet Dashboard or look in the Puppet manifests to find that name.

In the above example, you can connect to the media player host-mp20120507-1.mp.isuma.tv on port 22529
on cs.isuma.tv. So let’s try that:

$ ssh -p 22529 -l antoine cs.isuma.tv
antoine@localhost's password:

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Could not chdir to home directory /home/antoine: No such file or directory
antoine@koumbit-mp-test:/$

The last warning is not important: it just indicates that my user has no home directory. Also note that you can login to
the media player from anywhere, not just from the central server.

I am now logged into the media player and can do various maintenance tasks.

Note: See the Creating user accounts for information on how to grant access to users.

7.2.5 Inspecting status from the commandline

Note: This section is kept for historical purposes only.

There used to be a way to list media players from the commandline, but this has not been ported to the new system.
Access the Puppet Dashboard to see a listing of media players.

7.3 Git-annex

Git-annex is an extension to the Git source control management software that allows you to store large files into git,
but also to manage multiple repositories on many different storage. It was chosen because it supports S3, metadata
and lots of other things, see the similar projects section for more information about why git-annex was chosen.

It is used in the media players project to keep track of files across all media players, sync them to S3, but also to
minimally track the media players locations so that the main website can determine if a given file can be served
through S3 or a local media player. See the Architecture overview for more information about this.

7.3. Git-annex 49

http://git-annex.branchable.com/
http://git-scm.com/

Media Players Documentation, Release 2.5

In a git-annex :repository:, files are stored as symbolic links, pointers to the real file that resides in the .git/annex/
objects directory. The .git/annex directory is well described in the upstream “internals” documentation but
basically, a file can be present on some or all repositories, and git-annex tracks where the files are actually located in
a special git branch called the git-annex branch.

The git-annex assistant is used to automatically manage the files (addition, removals, synchronisation to S3, etc).

7.3.1 Caveats

Note that recent git-annex releases need fairly recent version of git, at least 1.8.1. If you are running the git-annex
binary directly, this is not a problem as the standalone version ships with its own copy of git, and the Debian package
ensure dependencies are properly satisfied. But if you run git annex (ie. first call git and use the annex
subcommand), you will end up with an older version of git, which may cause problems.

The workaround is to use the absolute path to the git binary distributed in the standalone package. It can be in
/usr/lib/git-annex.linux/exec/git, /opt/git-annex.linux/git or /usr/local/bin/git.
Use the following command to figure out the git version:

$ git --version
git version 2.1.4

Above, the git version is 2.1.4, which is after 1.8.1, so no problems.

7.3.2 Troubleshooting stuck queues

1. login to the server (using the above procedure)

2. become the proper user (su www-data -s /bin/bash)

3. look at the git-annex logfiles (/var/isuma/git-annex/.git/annex/daemon.log*)

4. if nothing comes to mind, run git annex sync by hand

7.3.3 Diagnostics on the git-annex assistant

The assistant is ran automatically on the media players. It is configured through Puppet in the gitannex::daemon class.
It can be stopped and restarted using a fairly standard system-level startup script:

service git-annex stop
service git-annex start
service git-annex status

When it is running, the logs are in the git annex repository, for example in /var/isuma/media/video/.git/
annex/daemon.log.

A rough idea of the state of the assistant can also be found in .git/annex/daemon.status, for example, while
the assistant is starting up, it will look like this:

root@koumbit-mp-test:/var/isuma/git-annex# cat .git/annex/daemon.status
lastRunning:1434577176.692046s
scanComplete:False
sanityCheckRunning:False
lastSanityCheck:

50 Chapter 7. Troubleshooting

http://git-annex.branchable.com/internals/

Media Players Documentation, Release 2.5

7.3.4 Stopping transfers

To make the assistant stop doing transfers, you can use the annex-ignore setting for a given remote. For example,
to stop downloading from S3, you can use:

git config remote.s3.annex-ignore true

Also note that some old URLs are still stuck in the git history, so you will probably need to disable the web remote as
well:

git config remote.web.annex-ignore true

See Redmine issue #17958 for more information about this.

The assistant may need to be restarted for those changes to take effect.

7.3.5 Media player not detected

If a media player running git-annex is not detected when visiting the website, it will not load the videos locally.
Everything will be very slow or unusable for the users of the media players and the green ball confirming that the
media player is detected will not show on the main website.

Note:

Note that you may want to start this list from the bottom for more trivial cases.

1. To diagnose this, first make sure the media player has the cronjob configured:

crontab -u www-data -l
HEADER: This file was autogenerated at 2015-07-22 16:08:27 -0400 by puppet.
HEADER: While it can still be managed manually, it is definitely not
→˓recommended.
HEADER: Note particularly that the comments starting with 'Puppet Name' should
HEADER: not be deleted, as doing so could cause duplicate cron jobs.
Puppet Name: metadata

*/5 * * * * /usr/local/bin/save_repo_metadata --repository /var/isuma/git-annex

The above is the cron job deployed by Puppet in the gitannex::metadata class.

2. Then you can try to run the cron job by hand:

sudo -u www-data /usr/local/bin/save_repo_metadata --repository /var/isuma/git-
→˓annex

And see if any errors shows up. You can add --verbose for more information:

sudo -u www-data /usr/local/bin/save_repo_metadata --repository /var/isuma/git-
→˓annex --verbose
no change detected in IP addresses ({'external_ip': u'70.83.139.100', 'internal_ip
→˓': '192.168.20.227'}), nothing committed

Note: In the above example, the IP address hasn’t changed since the last run. If the IP address changed, you
would get something like this:

7.3. Git-annex 51

https://redmine.koumbit.net/issues/17958

Media Players Documentation, Release 2.5

sudo -u www-data /usr/local/bin/save_repo_metadata --repository /var/isuma/git-
→˓annex -v
saved metadata {'external_ip': u'70.83.139.100', 'internal_ip': '192.168.20.227'}
→˓into git-annex commit 2a152045d43630c60595a27c557344350960d6f1

--verbose --verbose will also output debugging information, including the IP address discovery, the
changes to the content of the remote.log file and so on.

You can use the --external-ip and --internal-ip arguments to bypass the detection code if that is
the piece that is missing.

3. Those changes should show up in the remote.log file in the git-annex branch. You can inspect the branch
on the media player with the command:

cd /var/isuma/git-annex
git cat-file -p git-annex:remote.log

You should see a line like:

2d61a8de-a24e-44e3-9aa0-54f033fec1e9 external_ip=70.83.139.100 internal_ip=192.
→˓168.20.227

4. Then run the same command on the central server, which should be synchronised automatically by the assistant
on both sides:

cd /var/lib/git-annex/isuma-files
git cat-file -p git-annex:remote.log

5. Finally, also run this on the main website:

cd /persistent/media
git cat-file -p git-annex:remote.log

6. All files should be the same. If not, run git annex sync to force a synchronisation of the branches on the
machine that doesn’t have the right version.

7.3.6 Offline media player not detected

If a media player is offline, but still seen as offline, it is possible that the purge script has not timed out yet. To purge
it, use:

/usr/local/sbin/purge_stale_mps --repository /var/lib/git-annex/isuma-files/ -v --
→˓uuid a23c90e1-baf5-42d8-9bdf-c367eba3a4a8 --timeout 0

See Metadata purge script for more details.

7.3.7 Unblocking the assistant

It seems the assistant on the main website sometimes stops adding and moving files to S3. This procedure bypasses
the assistant and manages files by hand on the main website.

Note: Permissions are important here! Run this as the user that owns the git-annex repository, for example:

52 Chapter 7. Troubleshooting

Media Players Documentation, Release 2.5

sudo -u www-data -H <command>

or:

sudo -u www-data -i

1. inspect the status of the git repository:

www-data@ip-10-87-135-88:/persistent/media$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: video/original/ruth_mc_5_revisited.mov
new file: video/small/nitvyouthshow.mov.jpg
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
video/large/2005kaugjajjuk.mov.jpg
video/large/2005kaugjajjuk2.mov.jpg
video/large/cofounderthoughtsfrance.mov.jpg
video/large/essakaneroughedit.mov.jpg
video/large/essakaneroughedit2.mov.jpg
video/large/europeartcirqfounders.mov.jpg
video/large/fibonaccimexicoandessakane.mov.jpg
video/large/fibonaccimexicoroughedit.mov.jpg
video/large/highschoolchristmasfoodbank.mov.jpg
video/large/igloolikhighschoolchristmasconcert.mov.jpg
video/large/iglooliktofrance.mov.jpg
[...]

here you can see files were added to the git staging area (the “index”), presumably by git annex add, but were
never committed. you can inspect those changes with:

$ git diff --cached
diff --git a/video/original/ruth_mc_5_revisited.mov b/video/original/ruth_mc_5_
→˓revisited.mov
new file mode 120000
index 0000000..9834110
--- /dev/null
+++ b/video/original/ruth_mc_5_revisited.mov
@@ -0,0 +1 @@
+../../.git/annex/objects/wK/Gp/SHA256E-s151210348--
→˓f43d44e93d6523728baee2acfce6a3a7a819e68a05299e28bd3c9b60522ed2ca.mov/SHA256E-
→˓s151210348--f4
\ No newline at end of file

2. the untracked files need to be inspected, sometimes we have seen files that are symlinks like in git-annex but
that were not staged for commit. run this to list the files:

$ git status --porcelain | sed 's/?? //' | xargs ls -l
-rw-rw-r-- 1 www-data www-data 26857 Jun 22 13:51 video/large/

→˓2005kaugjajjuk2.mov.jpg
-rw-rw-r-- 1 www-data www-data 24108 Jun 22 14:25 video/large/

→˓2005kaugjajjuk.mov.jpg

(continues on next page)

7.3. Git-annex 53

Media Players Documentation, Release 2.5

(continued from previous page)

-rw-rw-r-- 1 www-data www-data 23231 Jun 22 15:26 video/large/
→˓cofounderthoughtsfrance.mov.jpg
-rw-rw-r-- 1 www-data www-data 17567 Jun 22 17:30 video/large/

→˓essakaneroughedit2.mov.jpg
[...]

here you see the files are *not* symlink, which is fine.

.. note:: If symlinks were found above, we could have added them
directly with::

git add <symlink>

Do be careful here: adding a *non* symlinked file *will*
create major performance issues, so make sure the file
is a symlink if you ``git add`` it by hand.

3. all untracked files (after symlink cleanup, above) can be then added with git-annex add:

git annex add .

4. then all of this can be committed into git:

git commit -m"add uncommitted files by hand"

5. files should then be moved to S3 by hand, since the assistant may not pick them up properly:

git annex move --to s3

Now the files are copied over properly to S3. You will probably want to restart the assistant to fix whatever was broken
there:

sudo service git-annex restart

You should also file a bug on the upstream bugtracker to describe the problem that caused this in the first place.

7.3.8 Changing files in git-annex

By default, git-annex doesn’t allow file modification. It is, however, possible to make modifications with a special set
of commands.

1. To edit a file, you first unlock it:

git annex unlock <file>

2. Then you can replace the file or edit it directly

3. When done, add the file back into git-annex:

git annex add <file>

Note: To cancel changes on the file instead of saving the new version, use:

git annex lock <file>

54 Chapter 7. Troubleshooting

http://git-annex.branchable.com/bugs/

Media Players Documentation, Release 2.5

7.3.9 Errors running git-annex

If you get an error like this:

/opt/git-annex.linux/runshell: 51: /opt/git-annex.linux/runshell: cannot create /.ssh/
→˓git-annex-wrapper: Directory nonexistent

It is likely that your $HOME directory isn’t setup properly. Ensure the $HOME variable is set to something reasonable
(e.g. /var/www for www-data) or use sudo -u <user> -H <command> or sudo -i -u <user> when
using sudo.

7.3.10 Evaluating disk usage

Because everything is a symlink in git-annex, traditionnal tools like du will not work as expected. This is a known
issue with git-annex with various workarounds. The one we use is the git annex info command, like this:

www-data@koumbit-mp-test:/var/isuma/git-annex/video$ git annex info --fast *
directory: large
local annex keys: 15700
local annex size: 486.52 megabytes
annexed files in working tree: 15700
size of annexed files in working tree: 486.52 megabytes
directory: mp4_sd
local annex keys: 7977
local annex size: 897.83 gigabytes
annexed files in working tree: 7977
size of annexed files in working tree: 897.83 gigabytes
directory: original
local annex keys: 0
local annex size: 0 bytes
annexed files in working tree: 15800
size of annexed files in working tree: 582.74 gigabytes
directory: small
local annex keys: 15698
local annex size: 48.51 megabytes
annexed files in working tree: 15698
size of annexed files in working tree: 48.51 megabytes
directory: xlarge
local annex keys: 6213
local annex size: 207.93 megabytes
annexed files in working tree: 6213
size of annexed files in working tree: 207.93 megabytes

The local annex * lines are the files available locally and the annexed files are the files available globally
on that branch of git.

7.3.11 Dealing with files committed by mistake

It can happen that files get committed into git (instead of git-annex) by mistake. In this case we absolutely want to
remove those files from the whole git history. For this we use a tool called bfg because it can easily remove files larger
than a certain threshold.

We need to do the following for every git repository:

• install a java runtime:

7.3. Git-annex 55

http://git-annex.branchable.com/forum/__34__du__34___equivalent_on_an_annex__63__/
http://git-annex.branchable.com/forum/__34__du__34___equivalent_on_an_annex__63__/
https://rtyley.github.io/bfg-repo-cleaner/

Media Players Documentation, Release 2.5

sudo apt-get install default-jre-headless

• download a copy of bfg (unless it becomes available in Debian directly)

• run this command in the repository:

git clone --mirror /path/to/repo repo.git
java -jar bfg-1.12.3.jar --strip-blobs-bigger-than 1M repo.git

• examine the output

• run this if you are satisfied and want to delete the remaining data:

git reflog expire --expire=now --all && \
git gc --prune=now --aggressive

This needs to be repeated for every repository.

7.3.12 Inspecting the git-annex branch

It can be that we need to look into the git-annex branch for some reason. There is good documentation upstream about
how that branch is laid out, but this may not be immediately useful for git beginners. A few tricks:

• to list the files in that branch, you can use the .git/annex/index file like this:

$ GIT_INDEX_FILE=.git/annex/index git ls-files | tail -3
schedule.log
trust.log
uuid.log

• to read a specific file (already demonstrated above):

$ git cat-file -p git-annex:uuid.log
31912b57-62a5-475c-87a7-582b5492a216 WD green 1.5TB backup drive
→˓timestamp=1400246214.443942s
31912b57-62a5-475c-87a7-582b5492a216 green_crypt timestamp=1400246182.491768s
5adbab10-0f7a-467b-b0d8-5d7af2223103 anarcat@marcos:/srv/video
→˓timestamp=1397883325.873598s
5adbab10-0f7a-467b-b0d8-5d7af2223103 main (anarcat@marcos:/srv/video)
→˓timestamp=1400245511.126472s

in this case, we see the list of remotes and their recorded descriptions.

7.3.13 Removing refused commits

It is possible that the central server refuses to sync with a media player because it did an illegal modification. In this
case you would see something like this:

www-data@koumbit-mp-test:/var/isuma/git-annex$ git push
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 365 bytes, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: WARNING: protected files modified, refusing commit: set(['trust.log'])

(continues on next page)

56 Chapter 7. Troubleshooting

https://search.maven.org/remote_content?g=com.madgag&a=bfg&v=LATEST
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=781546
http://git-annex.branchable.com/internals/

Media Players Documentation, Release 2.5

(continued from previous page)

To host-mp20120507-1.mp.isuma.tv@cs.isuma.tv:/var/lib/git-annex/isuma-files
! [remote rejected] git-annex -> git-annex (pre-receive hook declined)
error: failed to push some refs to 'host-mp20120507-1.mp.isuma.tv@cs.isuma.tv:/var/
→˓lib/git-annex/isuma-files'

The way to recover from this is to reset the git-annex branch to a previously known good state. The commits that need
to be removed can be found with:

$ git log --oneline --stat git-annex
2f682fc update
trust.log | 1 +
1 file changed, 1 insertion(+)
9a7b6b1 update
trust.log | 1 +
1 file changed, 1 insertion(+)
0326e0e update
c1d/68a/SHA256E-s368747492--
→˓2c1d01a79e8366e1d8ef12d14aeae8b941648f5853666fd09b95af7657d8c63d.mov.mp4.log | 3
→˓++-
1 file changed, 2 insertions(+), 1 deletion(-)

In the above we see the changes to the trust.log file which were refused. We also see a previous commit to a track
log. We will try to reset to that commit, assuming that it is safe. First we backup the current position, just in case we
want to jump back:

git tag git-annex-bak 2f682fc

Then we update the git-annex branch to the older commit and try to push. Notice how we pass the current commit
as well, to avoid updating the wrong branch or losing commits that may have been added in between:

$ git update-ref refs/heads/git-annex 0326e0e 2f682fc
$ git push
Everything up-to-date

It worked! It also seems that were reset to the same commit as what was already on the remote server as well, otherwise
the push would have send other commits up as well. We can now remove our backup:

git tag -d git-annex-bak

Caution: It is possible that good commits become tangled up with bad commits, and just reseting the branch like
the above will lose those commits. In this case, you will need to clone the repository aside and rebase on a new
branch. First, tag the known good version (we take the origin remote branch, but you can also use git log to
find a better, closer, one):

git tag good origin/git-annex

Then clone the repository:

cd ..
git clone isuma-files isuma-files-fixup

Then rebase interactively against the good version:

cd isuma-files-fixup
git rebase -i good

7.3. Git-annex 57

https://help.github.com/articles/about-git-rebase/

Media Players Documentation, Release 2.5

That will start an editor where you can drop the bad commits. Use git log --stat in another window to find
which commits are problematic. When done, push the changes back in the other repository:

git push origin git-annex:git-annex-fixup

Then backup the current git-annex branch and push the new one:

git tag git-annex-bak git-annex
git update-ref refs/heads/git-annex git-annex-fixup
git push

Once this works, delete the backup tag:

git tag -d git-annex-bak

Note: If the above rescue procedure is too complicated, try to checkout the git-annex branch in a clone and revert the
commits:

cd ..
git clone isuma-files isuma-files-fixup
cd isuma-files-fixup
git checkout git-annex
git revert <bad>
git push origin git-annex:git-annex
cd ../isuma-files
git push

7.3.14 Known issues

During this project, we have filed a number of issues upstream, some of which were fixed and some that are still
pending. This documents the known problems with git-annex we have documented so far.

Bugs

• s3 InternalIOException

• Resource temporarily unavailable when running enableremote

• high memory usage in assistant (workaround: restart the assistant)

• sync problems between the remotes (work around: with www-data a cronjob on the main site server or running
git annex sync by hand, see also Redmine issue #16727

• NFS problems (and workarounds)

Missing features

• easy way to reproduce normal download command

• S3 fsck support

• git annex du command

• removing remote.log information completely - for the offline detection, see Redmine issue #18262

58 Chapter 7. Troubleshooting

http://git-annex.branchable.com/bugs/s3_InternalIOException__63__/
http://git-annex.branchable.com/bugs/Resource_temporarily_unavailable_when_running_enableremote/
http://git-annex.branchable.com/bugs/assistant_memory_leak/
http://git-annex.branchable.com/bugs/sync-git-annex_branch_not_syncing_in_the_assistant/
https://redmine.koumbit.net/issues/16727
http://git-annex.branchable.com/tips/git-annex_on_NFS/
http://git-annex.branchable.com/todo/easy_way_to_reproduce_normal_download_command/
http://git-annex.branchable.com/todo/S3_fsck_support/
http://git-annex.branchable.com/todo/git-annex_info___34__du__34___remote_support/
http://git-annex.branchable.com/forum/removing_remote.log_information_completely/
https://redmine.koumbit.net/issues/18262

Media Players Documentation, Release 2.5

Note that this list was basically created from anarcat’s contributions to git-annex. And of course, more bugs specific
to Isuma are documented in the Redmine issue tracker.

7.3.15 Resolved issues

Those issues have been filed by the Koumbit team but have been resolved, either by upstream or by Koumbit.

Bugs

• git annex log fails with -raw error (pending deployment of 5.20150710 or later)

• trouble with SSH caching on NFS

• weird entry in process list

• mesh issues - problem was a simple configuration problem, to use the proper preferred content expressions

Features

• transfer in progress not present in json output (pending deployment of 5.20150617 or later, see Redmine issue
#16706

• credentials-less access to S3

• server-level daemon

• git-hook to sanity-check git-annex branch pushes

• disabling a special remote

• sharing a git-annex repository between multiple users

• s3 bandwidth limitations and next release

• how do automated upgrades work?

• how to edit the git-annex branch?

• remote-specific meta-data

• optimising lookupkey

• original filename on s3

• canceling wrong repository merge

• scalability with lots of files

Note that this list was basically created from anarcat’s contributions to git-annex.

7.4 S3 diagnostics

You can access the S3 buckets directly if you ever need some diagnostics. You can find the credentials on the main
server in /persistent/media/.git/annex/creds/<UUID> where <UUID> is the UUID of the S3 remote,
as shown in git annex info --fast. The first line is access key, and the second one is the secret key.

Those credentials can then be used with the s3cmd software to do various operations on the repository. For example,
you can list the contents of a bucket:

7.4. S3 diagnostics 59

http://git-annex.branchable.com/users/anarcat/
https://redmine.koumbit.net/projects/media-players-3/issues
http://git-annex.branchable.com/bugs/log_fails_with_-raw_error/
http://git-annex.branchable.com/bugs/git-annex-shell_doesn__39__t_work_as_expected/
http://git-annex.branchable.com/bugs/weird_entry_in_process_list/
http://git-annex.branchable.com/forum/mesh_configurations
http://git-annex.branchable.com/bugs/transfer_in_progress_not_present_in_json_output/
https://redmine.koumbit.net/issues/16706
https://redmine.koumbit.net/issues/16706
http://git-annex.branchable.com/todo/credentials-less_access_to_s3/
http://git-annex.branchable.com/todo/server-level_daemon__63__/
http://git-annex.branchable.com/todo/git-hook_to_sanity-check_git-annex_branch_pushes/
http://git-annex.branchable.com/tips/disabling_a_special_remote/
http://git-annex.branchable.com/tips/shared_git_annex_directory_between_multiple_users/
http://git-annex.branchable.com/forum/s3_bandwidth_limitations_and_next_release/
http://git-annex.branchable.com/forum/how_do_automated_upgrades_work__63__/
http://git-annex.branchable.com/forum/how_to_edit_the_git-annex_branch__63__/
http://git-annex.branchable.com/forum/remote-specific_meta-data/
http://git-annex.branchable.com/forum/optimising_lookupkey/
http://git-annex.branchable.com/forum/original_filename_on_s3/
http://git-annex.branchable.com/forum/canceling_wrong_repository_merge/
http://git-annex.branchable.com/forum/scalability_with_lots_of_files/
http://git-annex.branchable.com/users/anarcat/
http://s3tools.org/s3cmd

Media Players Documentation, Release 2.5

$ s3cmd ls s3://isuma.misc.test
2015-02-13 00:37 10441 s3://isuma.misc.test/SHA256E-s10441--
→˓533128ceb96cb2a6d8039453c3ecf202586c0e001dce312ecbd6a7a356b201dc.jpg

60 Chapter 7. Troubleshooting

CHAPTER 8

Development

Koumbit developped several components to make this project work. Here’s an overview of the components:

• Git-annex Drupal integration

• Metadata sync script

• Metadata purge script

• Git-annex Puppet module and facts

• Hard drive sync script

• Git-annex integrity check script, also in the git-annex puppet module

• http-parser and libgit2 official Debian 7 “Wheezy” backports to have python-git2 working properly in
Wheezy (required for the metadata sync script)

• vnstat Puppet facts

• improvements to the monkeysphere, sshd and apt shared modules

Some of those components are more thoroughly described below.

8.1 Git-annex internals

This section shows some of the internals of git-annex and through that, explains some implementation decisions we
have made regarding the way we use git-annex and how we communicate with it.

8.1.1 Fetching key names

We are optimising key lookups by bypassing the git-annex bootstrap and directly getting the information from git. So
the command:

61

http://git-annex.branchable.com/todo/git-hook_to_sanity-check_git-annex_branch_pushes/
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=786341

Media Players Documentation, Release 2.5

$ time git annex lookupkey films/Une\ contrehistoire\ de\ linternet.webm
SHA256E-s370358233--502d2cdbe609299f483c6172d7cc93a3be6e9057e007fd910da1f4f752a2ce27.
→˓webm
0.01user 0.01system 0:00.97elapsed 2%CPU (0avgtext+0avgdata 16288maxresident)k
26856inputs+0outputs (111major+1103minor)pagefaults 0swaps

simply becomes, with only git:

$ time basename $(readlink Une\ contrehistoire\ de\ linternet.webm)
SHA256E-s370358233--502d2cdbe609299f483c6172d7cc93a3be6e9057e007fd910da1f4f752a2ce27.
→˓webm
0.00user 0.00system 0:00.00elapsed ?%CPU (0avgtext+0avgdata 1576maxresident)k
0inputs+0outputs (0major+77minor)pagefaults 0swaps

This is much faster than the original and can be used directly on the website without caching. It is used to generate the
S3 URL for remote viewing, by prefixing it with the S3 bucket name, to give, for example, the following URL:

http://s3.amazonaws.com/test/SHA256E-s370358233--
→˓502d2cdbe609299f483c6172d7cc93a3be6e9057e007fd910da1f4f752a2ce27.webm

8.1.2 Location tracking

Next up is trying to figure out if a given remote has a copy of the file or not. Here git-annex’ performance isn’t so
great:

$ time git annex find --in 2f90b958-95e4-44e3-8d3b-e780b63936d1 Une\ contrehistoire\
→˓de\ linternet.webm
Une contrehistoire de linternet.webm
0.18user 0.20system 0:07.19elapsed 5%CPU (0avgtext+0avgdata 31736maxresident)k
48336inputs+5952outputs (724major+10599minor)pagefaults 0swaps

It’s doing much more work here. What we do instead of the above is to first lookup the git-annex key using the
previous procedure, then grep the git-annex branch just using git:

$ time sh -c "file=SHA256E-s370358233--
→˓502d2cdbe609299f483c6172d7cc93a3be6e9057e007fd910da1f4f752a2ce27.webm ; pref=
→˓$(printf $file | md5sum| sed 's/^\(...\)\(...\).*$/\1\/\2/'); git cat-file -p refs/
→˓heads/git-annex:$pref/$file.log | grep 2f90b958-95e4-44e3-8d3b-e780b63936d1"
1407511627.234161s 1 2f90b958-95e4-44e3-8d3b-e780b63936d1
0.00user 0.00system 0:00.00elapsed 80%CPU (0avgtext+0avgdata 5788maxresident)k
0inputs+0outputs (0major+463minor)pagefaults 0swaps

Both this approach and the lookupkey mechanism have been reviewed upstream.

8.2 Git-annex Drupal integration

We have built a Drupal module to integrate with git-annex. It is currently available for download at the Koumbit
Redmine or:

git clone git://git.koumbit.net/drupal-gitannex.git

There is builtin documentation, mostly in the gitannex.module file that should be good to get people started. The
goal of the module is to allow Drupal to build URLs to the best location of a file. It does not handle adding or removing

62 Chapter 8. Development

http://git-annex.branchable.com/forum/optimising_lookupkey/
https://redmine.koumbit.net/projects/media-players-3/repository/drupal-gitannex
https://redmine.koumbit.net/projects/media-players-3/repository/drupal-gitannex

Media Players Documentation, Release 2.5

files into git-annex itself: this should be taken care of by an assistant running in the background. That assistant can be
deployed as described in the Git-annex manual.

The module shouldn’t need any special configuration, once installed. There are two main entry points that should
prove useful:

• gitannex_get_internal_ip()

• gitannex_get_preferred_url($file)

A copy of the module’s documentation is available below. More information is available directly in the source of the
module, as PHP documentation strings.

8.2.1 gitannex_get_internal_ip

Find the internal IP of a media player

This is mainly used to determine if there is a media player available to the client.

This function will search the IP of the currently connected client in the git-annex repository and find which remote has
this IP mentionned in its remote.log file. it returns FALSE if there is no media player present, otherwise it will
return an array of metadata about the remote server.

Wrapper around gitannex_get_remote() to easily get the internal IP of a given media player.

This more or less replaces the cachingserver_get_localserver() function in the previous API, but
this talks to git-annex instead of the central server and returns only the IP address instead of a list. Use
gitannex_get_remote() to get an associative array of media players properties (including unique identifier
and so on).

8.2.2 gitannex_get_preferred_url

Construct a valid URL for the given filename

This function will generate the best possible URL for a given uploaded file. it will look in the git-annex tracking
information to see if the file is available in a nearby media player

This replaces the cachingserver_get_url() function in the old 2.x API, with the difference that it treats all
files equally and doesn’t accept restrictions such as “type” or “option”.

8.3 Metadata sync script

There is a metadata sync script that sends IP address information to the central server with a custom Python script.
The script is available in the gitannex Puppet module described above and can be easily deployed with the
gitannex::metadata class.

The script writes the data in the remote.log file of the git-annex branch. A discussion also took place upstream, where
the remote.log location was suggested. That file then gets synced all aroud by the assistant, along with the other
changes on the git-annex branch. The data currently synced is:

• public IP address (external_ip_address field)

• private IP address (internal_ip_address field)

This information is synced automatically by the git-annex assistant without around a minute after it is changed by the
script, which runs every five minute in a cron job configured by Puppet in the gitannex::metadata class.

8.3. Metadata sync script 63

http://git-annex.branchable.com/forum/remote-specific_meta-data

Media Players Documentation, Release 2.5

The git-annex branch is written directly using the libgit2 Python bindings (pygit2). pygit2 was not available in
Debian 7 “Wheezy” so required a significant backporting effort, including libgit2 and http-parser. pygit2 itself ended
up not being backportable to “wheezy” at all and is currently installed with pip through Puppet. See Redmine issue
#17091 for more details.

The public IP is gleaned from public services, currently httpbin.org, ip.42.pl and ifconfig.me (in that order), with a
one second timeout. If more privacy is desired or we get throttled, we can easily implement our own script to do this
on the central server, but this is considered premature optimisation at this point. The script can be easily extended to
change the source of the public IP address, by editing the script right now. A static IP can also be provided on the
commandline.

An IP address change should look something like this in the git history:

antoine@cs:/srv/gitannex-test$ git show git-annex
commit 7b21e94b8af7f914f65b3c9addad8a1f61f9be69
Author: Antoine Beaupré <anarcat@koumbit.org>
Date: Mon Apr 6 17:29:20 2015 -0400

saving metadata fields

diff --git a/remote.log b/remote.log
index 62d49da..7ad8d40 100644
--- a/remote.log
+++ b/remote.log
@@ -1 +1 @@
-d57de23d-0f38-4bef-b743-a9567beb853d external_ip=70.83.139.100 interna
+d57de23d-0f38-4bef-b743-a9567beb853d external_ip=127.0.0.1 internal_ip
antoine@cs:/srv/gitannex-test$ stat .git/objects/7b/
→˓21e94b8af7f914f65b3c9addad8a1f61f9be69
File: `.git/objects/7b/21e94b8af7f914f65b3c9addad8a1f61f9be69'
Size: 174 Blocks: 8 IO Block: 4096 regular file

Device: ca01h/51713d Inode: 274888 Links: 1
Access: (0444/-r--r--r--) Uid: (999/gitannex) Gid: (999/gitannex)
Access: 2015-04-06 21:30:12.506830065 +0000
Modify: 2015-04-06 21:30:06.646904510 +0000
Change: 2015-04-06 21:30:06.646904510 +0000
Birth: -

Notice how the change took less than a minute (46 seconds) to propagate to the central server. It is so fast because the
media players and the central server are both running the assistant, so are in a “connected” mode.

Then the presence of a media player on a given IP address can then be found with:

$ git cat-file -p git-annex:remote.log | grep 70.83.139.100
d57de23d-0f38-4bef-b743-a9567beb853d external_ip=70.83.139.100 internal_ip=192.168.20.
→˓108

This is effectively what the Drupal module does, more or less.

8.4 Metadata purge script

The metadata purge script, described in Offline detection, is a Python script residing on the central server, in /usr/
local/sbin/purge_stale_mps. It is ran every minute through a cronjob. Both the cron job and the script are
deployed through the mediaplayers::purge Puppet class.

The script uses the same pygit2 library as the other metadata script, so the above comments about the backports and
pip also apply here.

64 Chapter 8. Development

http://www.pygit2.org/
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=786341
https://redmine.koumbit.net/issues/17091
https://redmine.koumbit.net/issues/17091
http://httpbin.org/
http://ip.42.pl/
http://ifconfig.me/

Media Players Documentation, Release 2.5

By default, the script looks in the remote.log file for entries having IP address information (the string
external_ip=, more specifically) and then looks up the UUIDs of the media player through the PuppetDB REST
API in order to find the last checkin time of the media player in Puppet. If the last check in time is older than a certain
timeout, the entries for the media player are removed from remote.log completely. The timeout is by default set
to 35 minutes, to cover the regular 30 minute delay at which Puppet is ran, plus 5 minutes for slower Puppet runs.

The script can be run in --dryrun mode to simulate what it would do, during tests. An example run should look
like this:

antoine@cs:~$ /usr/local/sbin/purge_stale_mps --repository /var/lib/git-annex/isuma-
→˓files/ --dryrun -v
found uuids in remote.log: ['a23c90e1-baf5-42d8-9bdf-c367eba3a4a8', '2d61a8de-a24e-
→˓44e3-9aa0-54f033fec1e9']
Starting new HTTP connection (1): localhost
Starting new HTTP connection (1): localhost
host koumbit-mp-test.office.koumbit.net age: 1:11:46.820404
Starting new HTTP connection (1): localhost
host mediaplayerv25n6.office.koumbit.net age: 0:01:28.489461
found expired remotes: [(u'2d61a8de-a24e-44e3-9aa0-54f033fec1e9', u'koumbit-mp-test.
→˓office.koumbit.net')]
rewriting remote.log to remove: [u'2d61a8de-a24e-44e3-9aa0-54f033fec1e9']
not generating commit because running in --drymode, expired: [(u'2d61a8de-a24e-44e3-
→˓9aa0-54f033fec1e9', u'koumbit-mp-test.office.koumbit.net')]

In the above case, it found the koumbit-mp-test.office.koumbit.net media player that is out of date (but
didn’t remove its entry because of the --dryrun flag).

We could also have restricted the run to the other media player and changed the timeout to force a timeout:

antoine@cs:~$ /usr/local/sbin/purge_stale_mps --repository /var/lib/git-annex/isuma-
→˓files/ --dryrun -v --uuid a23c90e1-baf5-42d8-9bdf-c367eba3a4a8 --timeout 0
found uuids in remote.log: ['a23c90e1-baf5-42d8-9bdf-c367eba3a4a8']
Starting new HTTP connection (1): localhost
Starting new HTTP connection (1): localhost
host mediaplayerv25n6.office.koumbit.net age: 0:03:17.836652
found expired remotes: [(u'a23c90e1-baf5-42d8-9bdf-c367eba3a4a8', u'mediaplayerv25n6.
→˓office.koumbit.net')]
rewriting remote.log to remove: [u'a23c90e1-baf5-42d8-9bdf-c367eba3a4a8']
not generating commit because running in --drymode, expired: [(u'a23c90e1-baf5-42d8-
→˓9bdf-c367eba3a4a8', u'mediaplayerv25n6.office.koumbit.net')]

The commits are generated on the git-annex branch, and git annex sync is then called to make sure the
synced/git-annex branch.

Caution: We have sometimes had problems with the changes not propagating properly here, with the “union
merge” driver of git-annex overriding our changes. This is a known issue, documented partly in Redmine issue
#18262 and the upstream issue removing remote.log information completely.

8.5 Debian packages

Caution: This entire section is deprecated. We are phasing out the use of Debian packages for now and pro-
gressively replacing them with Puppet manifests. Only the isuma-kiosk package remains now and will also
eventually be replaced.

8.5. Debian packages 65

https://redmine.koumbit.net/issues/18262
https://redmine.koumbit.net/issues/18262
http://git-annex.branchable.com/forum/removing_remote.log_information_completely/

Media Players Documentation, Release 2.5

The Isuma Media Players make an extensive use of Debian packaging to deploy software but also configuration and
policy. This section describes how the packages are built and maintained.

8.5.1 Automated package build system

Isuma Debian packages are automatically built by Koumbit’s Jenkins server. The complete documentation about this
server is available in the Koumbit wiki, this is only a summary applicable to Isuma packages.

When a change is pushed to one of the Debian packages git repository, they are automatically rebuilt within an intervall
of around 15 minutes. The package is built within a Debian Wheezy environment and then uploaded into the Koumbit
Debian archive, which is automatically signed.

Packages are uploaded to unstable by default. To migrate them to testing or stable, a manual operation must
be performed on the Debian archive, a server only Koumbit personnel currently has the access to.

8.5.2 Automated package upgrades

Since isuma-local-servers 2.5.0, upgrades are automatically performed on all Media Players. This is done
through the use of the unattend-upgrades package. Packages from the Koumbit archive and the main Debian archive
are automatically updated. To update more packages automatically, create a new file in /etc/apt/apt.conf.d
the specify a new Origins-Pattern that is appended to the existing list.

See /etc/apt/apt.conf.d/50unattended-upgrades or /usr/share/doc/
unattended-upgrades/README for more information about this software.

8.5.3 Manually building a package

To build the current Debian packages by hand:

git clone gitolite@git.koumbit.net:isuma-local-servers.git
cd isuma-local-servers
git-buildpackage

To issue a new version, edit files, commit them, then bump the package version and rebuild:

edit file/foo.txt
git commit -m"update foo" file/foo.txt
dch -r -i "updating foo" # increments the version number and inserts a commit in
→˓debian/changelog
git-buildpackage # or debuild

Make sure you use -D stable, if you want to make a hotfix for stable. Package is now in .. or ../build-area.

To upload the package:

scp isuma-local-servers_* antoine@cs.isuma.tv:/var/www/debian/incoming

then on the central server:

sudo -u www-data reprepro -b /var/www/debian/ processincoming incoming

kind of klunky but works.

66 Chapter 8. Development

http://koumbit.org
https://jenkins.koumbit.net
https://wiki.koumbit.net/JenkinsService
http://debian.koumbit.net/
http://debian.koumbit.net/
https://wiki.koumbit.net/JenkinsGuide#Migrating_a_package_down_into_stable
https://help.ubuntu.com/community/AutomaticSecurityUpdates#Using_the_.22unattended-upgrades.22_package

Media Players Documentation, Release 2.5

8.5.4 Manually installing a package

Copy the package to the local server and run:

dpkg -i isuma-local-servers_<version>_all.deb

If it complains about some dependencies not being installed, run:

apt-get install

to install them.

After installing the package, you will need to perform a few additional steps:

get the ssh private key for the site server and place it in ISUMA_ROOT with the
→˓name .id_dsa.
scp cachingserver@isuma.tv:/home/cachingserver/.ssh/id_rsa /var/isuma/.id_rsa
(password in issue #187)

At this point you can check the logs in /var/isuma/log and make sure things are running properly.

8.5.5 Manually upgrading Media Players

Mass upgrades or installs can be performed with our scripts:

mp_ssh_config | grep Online
for s in mediaplayerv25n3 mediaplayerv25n4 mediaplayerv25n5; do mp_ssh_into $s apt-
→˓get update; done
for s in mediaplayerv25n3 mediaplayerv25n4 mediaplayerv25n5; do mp_ssh_into $s apt-
→˓get install isuma-local-servers; done

This should normally not be necessary as the Media Players are automatically upgraded.

8.5. Debian packages 67

Media Players Documentation, Release 2.5

68 Chapter 8. Development

CHAPTER 9

Configuration Management

All players can be controlled by a central configuration management system, a Puppet master, to ensure that some
utility packages are installed everywhere and that access is configured right on all computers.

Important: Note that Puppet was not systematically deployed on all media players originally, so it may not be
deployed on media players that were not online at the time of conversion (February 2015). At the time of writing
(June 2015), the central server and most online media players have been converted to Puppet. See Redmine issue
#15587 for more information.

For more information on Puppet, see the project’s official documentation.

Here’s how one can set up a puppet master server and then to hook up clients to it. This guide was largely inspired by
the puppet official install manual.

9.1 Installing the puppet master

First, we’ll install some tools that are required for puppet and some modules that we’ll use with it:

apt-get install ntp lsb-release augeas-tools

Next, since we’re using a stable version of Ubuntu that doesn’t have access to the latest puppet version (3.7) yet, we’ll
add an apt source to download packages directly from puppetlabs. Before that we need to add the PGP key that signs
all packages in that repository so we can verify their integrity:

cd /etc/apt/trusted.gpg.d
curl https://downloads.puppetlabs.com/puppetlabs-gpg-signing-key.pub \

| gpg --no-default-keyring --keyring ./puppetlabs-gpg-signing-key.gpg --import

Now we can add the source:

69

https://redmine.koumbit.net/issues/15587
https://redmine.koumbit.net/issues/15587
https://docs.puppetlabs.com/puppet/
https://docs.puppetlabs.com/guides/install_puppet/pre_install.html

Media Players Documentation, Release 2.5

cat > /etc/apt/sources.list.d/puppetlabs.list <<EOF
Puppetlabs main
deb http://apt.puppetlabs.com precise main
deb-src http://apt.puppetlabs.com precise main
EOF
apt-get update

With this in place we can now install the puppet master package. This package will install puppet master itself, plus
apache2 and an apache module called passenger that is used to run puppet’s ruby code through apache:

apt-get install puppetmaster-passenger

We now want to configure the puppet master so that it can respond to different host names. This step is op-
tional if the configuration management server already has the hostname puppet.yourdomain.tld. Edit the file
/etc/puppet/puppet.conf and in the section of the file below [main] add the following line (adjust it to reflect which
hostnames you want your server to respond to. This step is important since all clients will be verifying that the
encryption certificate they receive when establishing connection does match the puppet master’s host name):

dns_alt_names = puppet,puppet.isuma.tv,cs.isuma.tv,puppetdb,puppetdb.isuma.tv

In the same file, comment out (put a # sign at the beginning of the line) the line that starts with the text templatedir =.

Still in the same file, add the following line in the [main] section:

environmentpath = $confdir/environments

We should create the main environment directory so that we can put our files in it later on:

mkdir -p /etc/puppet/environments/production
cat > /etc/puppet/environments/production/environment.conf <<EOF
Get modules from two directories:
modules/ should contain generic service configuration blocks
#
site/ should contain anything specific to your infrastructre: overrides
on generic modules, glue between modules, user management, etc.
modulepath=site:modules
EOF
mkdir /etc/puppet/environments/production/{modules,site,manifests}

Then since we changed the information about which hostnames should be added to the certificates, we need to regen-
erate the certificates. Stop apache, delete the current set of certificates (don’t do this step for already existing puppet
masters. in that case it’s better to use puppet cert to clear the current certificate but since we’re setting up a new server
it’s ok to remove the whole directory), and run the master attached to the terminal so that it creates its TLS certificate
files. Once the puppet master shows that it’s running version 3.x.y, hit ctrl-c:

service apache2 stop
rm -rf /var/lib/puppet/ssl
puppet master --verbose --no-daemonize

Let’s add some basic configuration that’ll be usefull for all further puppet manifests. In
/etc/puppet/environments/production/manifests/site.pp add the following:

filebucket { 'server': server => $servername }
File { backup => server, owner => 0, group => 0, mode => '0644' }
Exec {

path => '/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin',
}

70 Chapter 9. Configuration Management

Media Players Documentation, Release 2.5

Now let’s start apache back up:

service apache2 start

9.2 Setting up git repositories to ease up modification

Now that we have the most minimal puppet master setup, we’d like to put files inside git repositories so that we can
backtrack to an older version of the files if something goes wrong. This will also make it easier to change files if
multiple people need to be working on them at the same time.

Later we’ll have all the modules inside git repositories, too, but for now since we don’t have any module, we’ll setup
repositories for the /etc/puppet and the /etc/puppet/environments/production/manifests directories:

cd /etc/puppet
git init .
cat > .gitignore <<EOF

*~

*.dpkg-dist
/puppet.conf
/fileserver.conf
/auth.conf
environments
files
manifests
modules
site
EOF
git add .gitignore
git commit -m "initial commit"

cd /etc/puppet/environments/production/manifests
git init .
git add site.pp
git commit -m "initial configuration"

Now we can add a script to automate creation of a repository for modules. Create the file /etc/puppet/create_repo.sh
with the following contents:

#! /bin/sh -e
#
Create a repository for a puppet module with the right permissions so that a
group can collectively push commits to it.
#
This script must be run on the puppet master, not on your own computer
#

GITGROUP=puppetadmin
PUPPET_ENVT=production

usage() {

cat <<EOF
Usage: $0 name [modules | site]

$name is the name of the module to create, use site_ prefix if it is a 'site'

(continues on next page)

9.2. Setting up git repositories to ease up modification 71

Media Players Documentation, Release 2.5

(continued from previous page)

module

second argument is the path to put it in (only modules/ and site/ supported
now). defaults to modules/

This script must be run on the puppet master, not on your own computer.
EOF

exit 1
}

set -- `getopt hv $*`

for i; do
case "$i" in

-h) shift; usage;;
-v) shift; set -x;;
--) shift; break;;

esac
done

if [$# -lt 1] ; then
usage

fi

umask 002

cd /srv/git
module=$1
type=${2:-modules}

echo Creating $type in $module

if [-e puppet-$module.git]; then
echo /srv/git/puppet-$module.git already exists, aborting
exit 2

fi

git init --bare puppet-$module.git
ln -s /etc/puppet/environments/$PUPPET_ENVT/$type/$module puppet-$module
cd puppet-$module.git
git config core.sharedRepository true
chown -R :$GITGROUP .
chmod g+ws . -R
ln -s ../../git-hooks/post-receive-checkout-copy hooks/post-receive

cd /etc/puppet/environments/$PUPPET_ENVT/$type/
git clone /srv/git/puppet-$module.git $module
cd $module
git config core.sharedRepository true
chown -R :$GITGROUP .
chmod g+ws . -R

To facilitate operations on multiple repositories, we’ll also add a configuration file for the application mr:

cat > /etc/puppet/.mrconfig <<EOF
#
PLEASE KEEP THIS FILE IN ALPHABETICAL ORDER. IT MAKES IT EASIER TO GET RID OF

(continues on next page)

72 Chapter 9. Configuration Management

Media Players Documentation, Release 2.5

(continued from previous page)

DUPLICATES AND ADD MISSING PIECES
#
[DEFAULT]

lib =
isuma_prod='cs.isuma.tv:/srv/git'
koumbit='git://git.koumbit.net/'
default=${isuma_prod}
git_assure_remote() {

remote="$1"
url="$2"
git remote | grep -q "^$remote$" || {

echo I: Adding remote $remote
git remote add "$remote" "$url"
git fetch "$remote"

}
git remote -v | grep "^$remote" | grep -q "$url" || {

echo I: Changing remote URL for $remote
git remote set-url $remote $url
git fetch "$remote"

}
}

[manifests]
checkout = git clone ${default}/puppet-manifests.git manifests
EOF

Then commit it to the repository. We also want to ensure that the script is executable:

cd /etc/puppet
chmod a+x create_repo.sh
git add create_repo.sh
git commit -m "add a helper script for setting up repositories for new modules"
git add .mrconfig
git commit -m "add a configuration file for mr"

Next step is to add some hooks that we’ll use with all module repositories:

cd /srv
mkdir git
cd git
git clone git://git.koumbit.net/git-hooks.git

Now we have mimic what the create_repo.sh script would have done if we had used it to initiate two modules, except
for /etc/puppet and /etc/puppet/environments/production/manifests. For that we’ll create bare repositories and a sym-
link for each repository to the original directory that they’re referring to. The symlinks could be avoided in theory, but
they make it easier to maintain a hook script that works for every repository:

cd /srv/git
git init --bare puppet.git
ln -s /etc/puppet puppet
cd puppet
git remote add origin /srv/git/puppet.git
git push -u origin master
cd ..
cd puppet.git/hooks

(continues on next page)

9.2. Setting up git repositories to ease up modification 73

Media Players Documentation, Release 2.5

(continued from previous page)

ln -s ../../git-hooks/post-receive-checkout-copy post-receive
cd ..
same process for the other repository:
git init --bare puppet-manifests.git
ln -s /etc/puppet/environments/production/manifests puppet-manifests
cd puppet-manifests
git remote add origin /srv/git/puppet-manifests.git
git push -u origin master
cd ..
cd puppet-manifests.git/hooks
ln -s ../../git-hooks/post-receive-checkout-copy post-receive

Finally we want to ensure that the permissions on those repositories are correct. We need to let users of the group
puppetadmin change and create files in them. For that, we need to create the group, change the permissions for the
repostories we’ve already created, and add desired users in the puppetadmin group:

cd /srv/git
addgroup puppetadmin
chgrp -R puppetadmin /srv/git/*.git
chmod -R g+ws puppet.git puppet-manifests.git
adduser someadminuser puppetadmin

And with this fairly complicated procedure, we’re done with bootstrapping our puppet master!

9.3 Managing modules

The last step put in place bare repositories and hooks that will automatically update files in the right places so that our
changes are immediately available to the puppet master.

To make your puppet master manage more files and services, you will most likely want to change files in the manifests
repository – especially the special file called node.pp which wasn’t created yet.

Also, to be able to reuse blocks of code (called manifests in the puppet world) you’ll want to organize things into
modules. In the process above, we’ve created two module directories to be able to separate the blocks that should only
manage and configure one aspect of the system (e.g. install and configure apache) from those that specify how your
organization glues services together. The former should be placed in the modules directory, and the latter should go in
the site directory.

When you’re ready to create a new module repository, you can use the create_repo.sh script to ease the operation. You
should know in advance in which if modules or site directory you want your module to be placed. Let’s create a user
module in the site directory to manage users for our infrastructure:

/etc/puppet/create_repo.sh user site

You can now push code to the repository in /srv/git/puppet-user.git.

Note that the script should only be run as root, for security.

9.4 Configuring a dashboard

Important: The following instructions were taken from the puppet-dashboard manual and the puppetdb manual both
of which may diverge from the instructions here. Also, while we currently use puppet-dashboard, this may change in

74 Chapter 9. Configuration Management

https://docs.puppetlabs.com/dashboard/manual/1.2/
https://docs.puppetlabs.com/puppetdb/latest/

Media Players Documentation, Release 2.5

the future.

Installing packages:

apt-get install puppet-dashboard mysql-server

Note: it looks like the Puppet Dashboard doesn’t actually require PuppetDB. it seems there was some confusion with
puppetboard during install. yet things seem to work fine, and the below configuration should have no adverse
effects.

Configure puppetdb:

puppet resource package puppetdb ensure=latest
puppet resource service puppetdb ensure=running enable=true
puppet resource package puppetdb-terminus ensure=latest
echo 127.0.0.1 puppetdb >> /etc/hosts
cat <<EOF > /etc/puppet/routes.yaml

master:

facts:
terminus: puppetdb
cache: yaml

EOF

Make sure you have the following in puppet.conf :

[master]
thin_storeconfigs = false
storeconfigs = true
storeconfigs_backend = puppetdb

And in auth.conf :

path /facts
auth any
method find, search
allow localhost

If the puppetmaster was configured without puppetdb as an alt name, you’ll need to regenerate the SSL certificates:

/usr/sbin/puppetdb ssl-setup

See also this question for another workaround and the upstream documentation.

Configuring the database:

CREATE DATABASE dashboard CHARACTER SET utf8;
CREATE USER 'dashboard'@'localhost' IDENTIFIED BY 'my_password';
GRANT ALL PRIVILEGES ON dashboard.* TO 'dashboard'@'localhost';

Put the proper credentials in the /etc/puppet-dashboard/database.yml file, in the production section.

Then populate the database:

cd /usr/share/puppet-dashboard
rake RAILS_ENV=production db:migrate

9.4. Configuring a dashboard 75

http://serverfault.com/questions/400092/puppetdb-failed-to-submit-replace-facts-command
https://docs.puppetlabs.com/puppetdb/latest/install_from_source.html#step-3-option-a-run-the-ssl-configuration-script

Media Players Documentation, Release 2.5

Test run:

sudo -u www-data ./script/server -e production

Real run:

vi /etc/default/puppet-dashboard* # uncomment START=yes
service puppet-dashboard start
service puppet-dashboard-workers start

Then configure the master to send reports to the dashboard, in /etc/puppet/puppet.conf :

[master]
reports=log,http
reporturl = http://localhost:3000/reports/upload

And restart the puppetmaster:

service apache2 restart

76 Chapter 9. Configuration Management

CHAPTER 10

Design

This document is the design document for what is dubbed the “3.0 generation of media players”. It covers and
explains various design decisions made during the design. In doing so, we also explain some of the design of the
previous versions, mostly for historical reasons. Previous historical specifications are also available in the 2.x branch
of the documentation.

The basis of this document was originally written by John Hodgins in an email to Antoine Beaupré and has since then
been repeatedly refactored. It should be considered a work in progress in the sense that the design of the 3.0 media
players may change in the future or that this design document may be out of date. The code available in the Redmine
Koumbit repository should be considered the authoritative source in case there’s ambiguity. If such problem is found
with this document, bugs can be reported in the isuma-doc project See also the About this document section for more
information about how to maintain this documentation.

10.1 Context

The 2.x Media Player code base was a bit of a proof of concept – it needed to be evaluated and used to imagine what we
would build from the ground up. There are a number of things we want to focus on for the long term: open sourcing,
stability, and scalability. Decisions we make about these things are being applied to the 2.x development work we are
doing as much as possible.

The basic 2.x design is a filesystem with a server (called the “central server”) and multiple dispersed clients (called
“media players”). The server tracks the locations of remote clients on networks, locations of files on remote clients,
and other metadata for files. The remote clients contact the central server in order to syncronize files and send location
data. The central server also publishes information about files and metadata that can be used by other systems (such
as a Drupal-based website) to access and control files in the filesystem.

The central server was originally implemented in Drupal with the Queues module, which was fairly inefficient, but
allow for flexibly requeuing items for download and so on. A set of custom PHP scripts were also written for the
media players to communicate with the central server over an XML-RPC interface. The main website would also
communicate with the central server over XML-RPC to discover file locations.

Various media players were built in the history of the project. The above description covers more or less the original
design and 2.x implementation. The Terminology will be essential to understand the different names given to the
devices as history progressed.

77

http://isuma-media-players.readthedocs.org/en/2.x/
http://isuma-media-players.readthedocs.org/en/2.x/
https://redmine.koumbit.net/projects/local-servers
https://redmine.koumbit.net/projects/local-servers
https://redmine.koumbit.net/projects/isuma-doc

Media Players Documentation, Release 2.5

10.2 Requirements

Here is the set of requirements we will hold on to in developping prototypes for the next generation. Each requirement
has, if relevant, a section about the chosen implementation.

The 3.0 design is a major rift from the 2.x code base, which is based on a paradigm of queues. The new paradigm
would be files, keeping track of their locations, storing and making available their metadata, doing things with them
and to them, etc.

10.2.1 Open source

The 2.x code base is too specific to Isuma’s use-case to be valuable to anyone else. The next generation should be
abstracted and generalized, in order to be useful to a wider variety of projects.

Implementation This is done by reusing existing open-source tools (mainly Puppet and Git-
annex) and documenting the process more thoroughly, here and in the Koumbit Redmine
issue tracker. Some software is written to glue parts together, mostly Python scripts and
Puppet manifests, and are available in the Puppet git repositoryies., All software and doc-
umentation produced by Koumbit is released under a GPL-compatible license.

10.2.2 Standard communication API

There should be a well defined API for communication between the different entities (local servers, central servers,
clients fetching content, other clients fetching metadata). The previous communication 2.x API was through XML-
RPC. XMLRPC was quite a pain to deal with, but it’s RPC and generally works. JSON and REST protocol are also
elegant and much simpler to use than XMLRPC.

Implementation we have settled on using the Puppet and git-annex protocols as black boxes
and expand on this. Puppet does provide a good REST API, especially through the Pup-
petDB system. The git-annex interface is mostly through standard SSH connexions, but
can also communicate with a wide range of third party services like Amazon S3. We are
also thinking of expanding the current ping/pong test to simply try to fetch files from the
local network, if available, and fallback to the upstream version otherwise, which would
be implemented in a client-side Javascript library.

10.2.3 Location tracking

The Isuma Media Players project is a geographically distributed filesystem, with the files on local servers and file
metadata on a central server. One could also describe the local servers and the central server as a CDN. This includes
tracking of local server locations on the internet, along with files and basic filesystem functions (add, copy, delete,
etc).

Implementation Git-annex features an extensive location tracking system that allows track-
ing which device has a copy of which files and enforcing a minimum number of copies.
It will take care of syncing files according to flexible policies defined using git-annex’s
custom language. Transfer progress will be implemented using the Puppet inventory, see
Monitoring below.

10.2.4 Modularity

Code should be modular so that new functionality could be added and use existing functionality. Also consider that
there are multiple components that are isolated from each other: the local server, central server and website codebases

78 Chapter 10. Design

https://en.wikipedia.org/wiki/GNU_General_Public_License#Compatibility_and_multi-licensing

Media Players Documentation, Release 2.5

are independant from each other. We should also consider the possibility of supporting other CMS in the future (e.g.
Wordpress).

Implementation Puppet will take care of deploying changes and monitoring. Git-annex will
take care of syncing files and location tracking. Any website using this infrastructure
will clone the git-annex repository from a central server and use git-annex to get tracking
information. A standard Javascript library may take care of checking existence of files.
Plupload takes care of one-step uploads, both on the main website and on media players.

10.2.5 Monitoring

It should be possible to monitor the status of the various media players easily.

Implementation This is implemented through the Puppet “inventory” system which makes an
inventory of various “facts” collected from the Puppet clients running on all media players.
There is significant latency in those checks however, Pupppet being run around once per
hour. The exact parameters to be specified are detailed in Metadata. Monitoring tools
such as Munin, Logstash and/or Kibana could be deployed for more precise monitoring
eventually.

10.2.6 Remote management

it should be possible to remotely manage the media players to debug problems with them, deploy new software and
configuration. Maintenance should be automated as much as possible, when it’s possible we should be able to login
the machines easily to diagnose problems and implement solutions. We should also be able to manage video playlists
remotely. Download and upload bandwidth limits should be configurable remotely. It should also be possible to
forbid certain files to be propagated to certain media players and prioritise the download of certain files. A link to the
dashboard of the currently active media player should be provided.

Implementation Some parameters can be configured through Puppet, but remote-control is
currently limited to SSH interactions and thus reserved to developpers. So we will reuse
the existing autossh and auto-upgrade code for now, but it may eventually be deployed
only through Puppet, see Redmine issue #17259 for progress information on this. A link
to the media player configuration is not currently possible on the main website and remote
traffic prioritisation is not implemented either see Redmine issue #17469 for rationale.

10.3 Technical decisions

There are a few decisions to be made about the technical implementation.

10.3.1 Programming language and framework

we favor adopting existing applications as much as possible instead of writing our own software so in that sense,
this question will be answered by the best software we find for the tools we have. however, if new software is to be
implemented at the server side, Python will be favored as it supports basic POSIX primitives better than PHP, and is
more stable to implement daemons and servers. The Koumbit team has sufficient experience with Python to provide
support in the future.

10.3. Technical decisions 79

http://plupload.com/
https://redmine.koumbit.net/issues/17259
https://redmine.koumbit.net/issues/17469

Media Players Documentation, Release 2.5

10.3.2 Cron or daemons?

so far the cron-based approach has given us a lot of problems, as we had to implement a locking system that has
repeatedly shown its flaws, thanks to PHP’s poor system-level API. we therefore look towards a syncing daemon,
which git-annex provides. still, some short-lived jobs like the Custom metadata script and stopping/starting daemons
for Schedules are implemented using cron jobs.

10.4 Architecture overview

This diagram gives a good overview of the system.

Caution: The original design above involved having a custom-build transcoding server. Unfortunately, this
implementation was never completed and therefore the transcoding server is somewhated treated like a black box.
See Redmine issue #17492 for more details about the transcoding server design.

The transcoding server is built with the Media Mover Drupal module. It adds files into a git-annex repository on
the transcoding server, where files get transfered to the central server which, in turn, has the credentials to send the
files up to S3.

80 Chapter 10. Design

https://redmine.koumbit.net/issues/17492

Media Players Documentation, Release 2.5

10.4.1 Main website

The main website is a source git annex repository, where files are first added from the website. This is where original
files get “hashed” into their unique “key” storage. Files here are then transfered to the transcoding server. The
repository is also used to do key lookups to find the keys to each file

The assistant also runs here to pick up (or delete!) files uploaded by the website and sync files automatically to the
transcoding server.

10.4.2 Transcoding server

The transcoding server runs a source git annex respository. The files are added to it by the media mover transcoding
system, and then moved to the central server for upload to S3.

The original design expected files to be sent from the main website and central server for transcoding. Then scripts
would have kicked in to start transcoding the files.

A custom preferred content expression may be required to avoid removing the file until transcoded copies are gener-
ated.

The assistant runs here to keep the repository up to date and transfer files to the central server.

More details of this implementation in the Transcoding section.

10.4.3 Central server

The central server is also a transfer git annex repository. All other git-annex repositories will push and pull from this
repo through key-based SSH authentication, using keys and individual accounts per media players created by Puppet.
Files from the media players, the main website and the transcoding server are uploaded here and then uploaded to S3.

Caution: More precisely, the actual preferred content is not transfer, but more a custom preferred content
expression like not inallgroup=backup, to make sure it keeps files until they get sent to S3. See Redmine
issue #18170 for more details.)

Note: The central server could also be a unwanted repository, but it seems those may be ignored by git-annex, which
is not what we want.

An assistant is running here to make synchronisation faster, but is otherwise not really necessary.

The Puppetmaster server is the main configuration server. It will store Puppet manifests that get managed through
git repositories. It is only accessible to developers through SSH.

The Puppet Dashboard communicates with the Puppetmaster server to display information about the various media
players to Isuma operators. We use Puppet Dashboard because it provides an ENC (External Node Classifier) that will
allow us to grant configuration access to less technical users, something that is not supported by the alternative,
Puppetboard.

The dashbaord also provides basic statistics about the status of Git-annex, disk usage and bandwidth statistics (through
vnstat) in a web interface, which replaces the previously custom-built Drupal website.

10.4. Architecture overview 81

https://redmine.koumbit.net/issues/18170
https://redmine.koumbit.net/issues/18170
https://github.com/sodabrew/puppet-dashboard
https://github.com/puppet-community/puppetboard/issues/134

Media Players Documentation, Release 2.5

10.4.4 Media players

Media players host are backup git annex repositories. That is: they hold a copy of all the files they can get their hands
on.

The assistant is also running here to download files from S3 storage and synchronize location tracking information
with the central server repository through the SSH tunnel.

Each media player is running a Puppet client which connects to the central Puppetmaster to deliver facts about the
local media player and git-annex execution.

Each media player also creates a reverse proxy connexion to the central server using autossh to allow remote manage-
ment.

10.4.5 Amazon S3

Amazon S3 stores all the files that are known to git-annex. It therefore behaves as a full backup. The file layout on
there is different than the file layout on the regular git-annex repositories, as it is only the backend storage. Files there
will look something like:

SHA256E-s31959420--42422ebca6f3a41fc236a60d39261d21e78ef918cf2026a88091ab6b2a624688.
→˓mp3.m4a

Yet this is used by git-annex and the website to access files. This hashing mechanism ensures that files are deduplicated
in git-annex.

Otherwise no special code runs on S3 for us: we just treat it as the mass storage system that it is. Files are stored in
the isuma-files bucket.

10.4.6 Note about standard groups

Note that we use the standard groups vocabulary above to distinguish the various functions of the different git annex
repositories. An overview:

Source A source git annex repository only holds file while they are being transfered elsewhere. Its normal state is to
only have the metadata.

Backup This repository has a copy of all the files that ever existed. This is the case for the S3 and media players
repositories.

10.5 Transcoding

Uploaded files are the “originals”. Currently, they are stored in a specific S3 bucket and also on the main website. The
transcoding server NFS-mounts the main website directory and does transcoding remotely to avoid overloading the
main website. This is handled by a media mover cronjob, which we would like to get rid of.

Note that we also rescale images (think imagecache) right now, so this would also need to cover this work.

One solution that John suggested was to write a daemon that would react to git annex repository changes and would
do the transcoding and upload to amazon. This way:

1. the main website doesn’t have access to the AWS credentials

2. transcoding operates on a separate server still

3. we decouple transcoding from the main website modules

82 Chapter 10. Design

http://git-annex.branchable.com/backends/
http://git-annex.branchable.com/preferred_content/standard_groups/

Media Players Documentation, Release 2.5

4. transcoding implementation remains stable and portable against Drupal releases and infrastructure changes

One way to react to those changes could be through regular git hooks or the git annex specific post-update hook that
was recently added.

We should probably look at existing implementations of such a transcoding daemon, and how to hook that into git.
Otherwise I would suggest using Python to implement this, as it is future-proof and an elegant and stable enough
language to have a lower barrier to entry.

This could all be done in a second phase of the 3G media players. Followup is in Redmine issue #17492.

10.6 Metadata

Caution: This is not implemented yet, as it needs some help from the transcoding server. For now, we only use
path-based preferred content expressions, see Changing preferred content. See also Redmine issue #17492 for
details about the transcoding server integration.

We want to attach metadata to files. A few fields should be defined:

• mimetype: image/jpg, video/. . .

• quality: sd/hd/original/. . .

• original: name of the original file, allowing transcoded versions to be linked to their original file. absent for
originals.

• channel: the number of the channels the file was published to (multiple values)

• site: “isuma.tv” for now

The above metadata can then be used to have certain media players sync only certain content. For example, a given
media players may only carry a certain channel or site, or certain quality settings. Those could be then used to
determined the preferred content of a set (or a single) media player. We can then create groups (using the git annex
groupwanted command) and assign media players to those groups (using the git annex group command).

For example, this would create a group for sd and hd files and assign the current media player to it:

git annex groupwanted sdhd 'metadata=quality=sd or metadata=quality=hd'
git annex group here sdhd

The specific transfer group can be chosen on the commandline or in a dropdown in the webapp interface, but groups
need to be created on the commandline or in the configuration file. So the group definition would be propagated
through puppet and could be set using the ENC.

Note that those groups will not not make git-annex drop non-matching files. In other words, files that match the pattern
will be kept, but other files are not necessarily removed immediately.

To add a file to channels (say 1 and 2), the web site would need to do a command such as:

git annex metdata -s channel+=1 -s channel+=2 file

Arbitrary tags could also be used:

git annex metadata -t word -t awesome file

10.6. Metadata 83

http://source.git-annex.branchable.com/?p=source.git;a=blobdiff;f=doc/git-annex.mdwn;h=8e56f42b5e2334c42f911a86e9967a711283ca7e;hp=7cd02fb637b1a3959a78aaaa38736755cf4fea00;hb=798da6cf2e80c278c72dc0faef7fb0a14b19d23f;hpb=dd35cf34a44d84cf38ad01f44dabf413b11ca14e
https://redmine.koumbit.net/issues/17492
https://redmine.koumbit.net/issues/17492
http://git-annex.branchable.com/preferred_content/
http://git-annex.branchable.com/preferred_content/standard_groups/

Media Players Documentation, Release 2.5

10.7 Schedules

Download schedules are not managed by git-annex yet. We have made Puppet rules to enforce the sync schedules
to disable the S3 remote at specific times, which need to be configured through the Puppet ENC. See Redmine issue
#17261 for more details.

We are using the annex-ignore configuration flag to disable remotes on a specific schedule, an idea documented in the
“disabling a special remote tip” upstream.

This remains to be connected with the Puppet Dashboard.

We have considered using the Puppet schedules but that only precludes certain resources from being loaded, which
is not what we want exactly. A discussion on the Puppet mailing list clarified that we had to come up with our own
solution for this.

10.8 Bandwith limits

Bandwidth limitation is not available natively in git-annex. One solution is to override the annex.
web-download-command to specify a bandwidth limit with wget. The trickle command could also be used but it
wouldn’t be effective for manual downloads (see below). Another option may be in the AWS support.

This was implemented with the annex.web-download-command (for downloads) and annex.
rsync-upload-options for uploads. It was verified that S3 uses wget for public downloads.

See Redmine issue #17262 for details.

This remains to be connected with the Puppet Dashboard.xs

10.9 File deletion and garbage collection

Removed files should be scheduled for deletion after a certain period of time that remains to be decided. This will
be done by the assistant with the annex.expireunused configuration setting. See Redmine issue #17493 for
followup.

The annex.expireunused is used by the assistant to prune old “unused” (e.g. deleted or old versions) content.
For example, this will make the assistant remove files that have been unused for 1 month:

git config annex.expireunused 1m

This setting is documented in the git-annex manpage.

Files uploaded to the main website repository are automatically uploaded to S3 and dropped locally, thanks to the
source group the repository is assigned to. In a way, the files, once uploaded to S3, become locally unused and this is
why the assistant removes them.

10.10 Server-specific metadata

There is a certain set of metadata that isn’t the same as the “git annex metadata”. We need to propagate a certain set of
server-specific metadata like the public IP address, last check-in time, and so on. This is propagated through Puppet
runs, which are usually scheduled around once per hour, so there is significant latency in those checks.

84 Chapter 10. Design

http://git-annex.branchable.com/todo/wishlist:___39__get__39___queue_and_schedule./
https://redmine.koumbit.net/issues/17261
https://redmine.koumbit.net/issues/17261
http://git-annex.branchable.com/tips/disabling_a_special_remote//
http://git-annex.branchable.com/tips/disabling_a_special_remote//
http://docs.puppetlabs.com/references/latest/type.html#schedule
https://groups.google.com/forum/#!topic/puppet-users/C5gZCrsUEC0
http://git-annex.branchable.com/forum/s3_bandwidth_limitations_and_next_release
https://redmine.koumbit.net/issues/17262
https://redmine.koumbit.net/issues/17493
https://git-annex.branchable.com/git-annex/

Media Players Documentation, Release 2.5

10.10.1 Puppet facts and settings

Puppet facts are used to send to the central server various information about the media players. In return, the media
players also receive settings that affect their behavior from the central server. Those are documented in Metadata.

10.10.2 Custom metadata script

The IP address of the media players are propagated using a custom Python script that saves the data in the git-annex
repository. The inner workings of the script are detailed in the development section.

A trace of the reasoning behind this implementation is available in Redmine issue #17091. A discussion also took
place upstream, where the remote.log location was suggested. Basically, this option was retained because we wanted
to avoid having another channel of communication and remote-specific metadata has to be inspected by the website to
see where files are. So it’s a logical extension of the file location tracking code.

The other options that were considered (and discarded) were:

• Puppet fact: required interoperation of the main website with Puppet, which required more research and a more
explicit dependency on the Puppet requirement. concerns were also raised about the security of the system,
considering how critical Puppet is (because it runs as root everywhere)

• Pagekite: doesn’t fulfill the requirement, because it is only a reverse proxy to bypass NATs and Firewalls. it
is also a paid service and while we could have setup our own replica, it was a big overhead and wouldn’t have
given us the information we wanted about the internal and external IPs out of the box. it is still considered as an
alternative to the remote access problem.

• DDNS: would have involved running our own DNS server with a client that would update a pair of DNS records
that would be looked up by the main website. this would have required a separate authentication system to be
setup when we setup a new machine and extra configuration on the server. Koumbit currently uses this approach
for the office router (see documentation here) but only for the office router, a quite different use case.

10.10.3 Offline detection

The above metadata system works well if media players are always offline. But unfortunately, the metadata has no
timestamp, so it is not possible for the main website to tell if the information is stale. For that reason, there is a purge
script that detects offline media players and removes them from the metadata storage. This is documented in Metadata
purge script.

10.11 Remaining issues

These are the issues with the current design that have been noticed during development. There are also Known issues
in git-annex itself that should be kept in mind here.

10.11.1 Hard drive sync feedback

Right now, it is difficult to tell how or when a HD sync operates. we could send a message through to the main website
(same as the IP address problem above) and use it to inform the user of progress. if we use git-annex to propagate that
metadata, that could involve extra latency, as it remains to be tested how fast changes propagate from a media player
through to the website. our current preferred solution is to train users to use the webapp to examine the transfers in
progress. The webapp could also pop up on the desktop when a HD sync is in progress. . . Another option is to use
desktop notifications (e.g. the notify-send command), but all those assume a working screen and desktop configuration,
which is not always available.

10.11. Remaining issues 85

https://redmine.koumbit.net/issues/17091
http://git-annex.branchable.com/forum/remote-specific_meta-data
http://git-annex.branchable.com/forum/remote-specific_meta-data
http://pagekite.me
https://wiki.koumbit.net/BindConfiguration#Updates_dynamiques_du_DNS

Media Players Documentation, Release 2.5

10.11.2 Operators can’t configure media players

Right now, configuration changes are accessible only by operators. right now, configuration is being fetched through
our custom XML-RPC API. we’d like that to go away, so it will likely be replaced by Puppet. but then this means
giving users (or at least “operators”) access to the puppet manifests, which in turns means root everywhere, so huge
security issue and error potential. an External Node Classifier (ENC) may resolve that issue in that it would restrict
the changes allowed to the operator. the parameters we need to change here are:

• bandwith limits (Redmine issue #17262

• scheduling times (Redmine issue #17261

• preferred content - this can also be done by the operator through the git annex webapp UI

This implementation of this still needs to be decided, see Redmine issue #16705 for follow.

10.11.3 Remote transfer prioritisation

Transfer prioritisation cannot be handled by an operator on the central server in the current design. this would need to
be managed by an operator on the media player, so we need to teach users to operate the git annex webapp UI. those
would be called “manual downloads”. git-annex has a todo item regarding having queues, but it’s not implemented at
all so far. this will not be implemented at first as on-site operators can prioritise transfers.

The git-annex web interface by default listens only to the localhost socket, which make it necessary to have a screen on
the media player for certain operations mentionned above. A workaround is to force the webapp to listen on a specific
interface, but it is yet unclear how to make it listen on all interfaces. It is possible to forward the web interface port
through SSH, but then it doesn’t allow us to manage queue priority because this is done by manually forcing files to
be downloaded through the file manager, which won’t show up in the web interface.

In other words, the remote view of the git-annex web interface allows us to have a readonly interface to the media-
players, only to see what is going on, but not prioritise downloads or remove files. In fact, the git-annex webapp
interface isn’t currently available at all in the “kiosk” mode of the media players, which only provide Firefox and
VLC. It could be possible to start the webapp in the kiosk mode as well, but that remains to be implemented.

There are a few solutions to this issue:

• the aforementionned git-annex implementation, but that would require hiring Joey and actually writing that
software

• VNC access, which would work, but would provide access to only one media player at a time

• Puppet-based “jobs”, but that would take at least an hour to propagate and would require Koumbit’s intervention

• more research on similar alternatives (e.g. MCollective, Fabric, etc)

10.11.4 Multiple UIs

The 3.x design has multiple UIs: the main website, the puppet dashboard, the git annex webapp UI. . . this could be
overwhelming for operators of media players. Unfortunately, that is the cost of modularity and software reuse at this
point and, short of implementing yet another dashboard on top of all the other ones, this will not be fixed in the short
term.

Eventually, an interface could be built on the main website to show key Puppet parameters and so on.

86 Chapter 10. Design

https://redmine.koumbit.net/issues/17262
https://redmine.koumbit.net/issues/17261
https://redmine.koumbit.net/issues/16705
http://git-annex.branchable.com/todo/wishlist:___39__get__39___queue_and_schedule./

Media Players Documentation, Release 2.5

10.11.5 HTML site cache

The media players still don’t provide an offline copy of the Drupal site. This is an inherent problem with the way
Drupal works: it is a dynamic website that is hard to mirror offline. There are various modules in Drupal that could be
leveraged to distribute files on the media players, however:

• boost creates a static HTML cache of a running Drupal. The cache may be incomplete or even inconsistent, so
it maybe not the best candidate. Still, it’s a long lasting project in the Drupal community with stable releases
that is worth mentionning, if only to contrast with the others.

• static can create a static copy of the website. Updates can be triggered to refresh certain pages. This looks like a
great candidate that could eventually be deployed to distribute an offline copy of the website. However, anything
that looks like a form (comments, searching, etc) wouldn’t work. There is only a Drupal 7 version with no stable
releases.

• html_export is similar, but hasn’t seen a release since 2012 and little changes since then. There is little docu-
mentation available to compare it with the others.

Any of those options would need to first be implemented in the Drupal site before any effort is made into propagating
those files into the media players. git-annex may be leveraged to distribute the files but it could be easier to just commit
the resulting files into git and distribute them that way.

Transitionning the main site to a static site generator engine would help a lot in distributing a static copy of the website,
as there would be clearer separation of duties in the different components of the site (content submission, rendering,
distribution).

But that is beyond the scope of this document for now. The current design should be able to adapt to various platforms
beyond Drupal, provided that files are put in the git-annex repository on the frontend site and that the site properly
rewrites URLs depending on the origin of the client. Still, even with a static site generator, some research would need
to be done to see how clients would discover the static copy while offline. . .

Another way this could work would be by providing a simple way to browse the content on the media player, without
being a direct mirror of the website. This issue is tracked in Redmine issue #7159.

10.12 Security issues

Introducing git annex adds certain problematic properties to the system. Those issues were mostly addressed in a git
validation hook (see also Redmine issue #17829 . The validation hook currently forbids changes to trust.log and
file removal. There is also a discussion upstream about this to implement this natively in git-annex.

The hook is installed in /var/lib/git-annex/isuma-files/.git/hooks/pre-receive and is man-
aged through Puppet, in modules/gitannex/files/pre-receive-gitannex-check.py.

10.12.1 Amazon S3 access

To allow media players to upload, they could need to be able to upload directly to Amazon, but we don’t want that,
since it gives way too much power to the media players. They could, for example, destroy all the data on the precious
S3 buckets.

We could implement access policies and special credentials on Amazon, but that means yet another set of credentials
to distribute, and complicated configurations on S3.

The solution we have chosen instead is to make the media players upload to the central server which would then upload
to Amazon itself, as its repository is a transfer repository.

10.12. Security issues 87

https://www.drupal.org/project/boost
https://www.drupal.org/project/static
https://www.drupal.org/project/html_export
https://www.staticgen.com/
https://redmine.koumbit.net/issues/7159
https://redmine.koumbit.net/issues/17829
http://git-annex.branchable.com/todo/git-hook_to_sanity-check_git-annex_branch_pushes/

Media Players Documentation, Release 2.5

10.12.2 File removal

A malicious or broken media player may start removing files from the “master” branch in the git repository. This
would be destructive in that the files would appear to be gone or “unused” from all repositories after those changes are
synced out. They could then end up being garbage-collected and lost.

Note that this could easily be reverted if files are not garbage-collected everywhere.

A git hook that refuses pushes that remove files has been implemented to workaround that problem.

Filesystem-level permissions could also have be used to enforce this, but this was considered to be more complicated,
if not impossible.

10.12.3 Tracking information tampering

A malicious media player could start inserting bad information in the git-annex branch, either corrupting the branch’s
content or inserting erroneous information in other media player’s state information. Since this is stored in a per file
basis (as opposed to per-repository), it could be difficult to control those kind of corruption.

Once detected however, the offending media player access could be simply removed and changes reverted by a devel-
opper.

The git hook implemented forbids changes to critical git-annex files like the trust.log file. This file is where trust
information is kept, which make git-annex trust a remote or not about the location tracking information it provides.

A remaining issue here is the number of copies of files in a given remote. A media player should only be allowed to
change tracking information from its own files. This has not been implemented yet in the git hook, but is considered
to be a benign problem: the worst case is that a media player lies about the presence of a file on Amazon or the site
server, which could confuse the queuing system. A simple git annex fsck would resolve the problem.

10.12.4 Removal of the last copy of a file

Normally, git-annex will not willingly drop the “last copy” (which may mean any number of copies depending on
the numcopies setting) of a file, unless the --force flag is used. Nevertheless, it could be possible that some
garbage-collection routine we would set would drop unused files that would be have been removed by a malicious
server. the above git hooks should protect against such an attack.

88 Chapter 10. Design

CHAPTER 11

Transition plan

This section documents the transition process from the old media players to the new media players. This consists
mainly of replacing the old software shipped in Debian packages by Puppet configurations and git-annex (Redmine
issue #16708 but also replacing all the previous, old media content on media players with HTML 5 ready media
content (Redmine issue #14032).

We will therefore not maintain a backwards-compatible API for the new 3G software, so we will transition all media
players at once. That means that non-transitionned media players will be broken until they can run Puppet and follow
the transition.

11.1 General principles

We will make a clear break between the older and newer system. We will schedule a specific date and time for the
transition. Media players that will be offline on that date will not be updated until they go back online. We cannot
afford to ship new physical machines installed from scratch so we will need to implement an automated transition
script between the two versions, which will require more time.

We will implement a typical “one, some, many” approach:

• Create a well-defined update that will be distributed to all hosts. Nominate it for distribu-
tion. The nomination begins a buy-in phase to get it approved by all stakeholders. This
practice prevents overly enthusiastic SAs from distributing trivial, non-business-critical
software packages.

• Establish a communication plan so that those affected don’t feel surprised by updates.
Execute the plan the same way every time, because customers find comfort in consistency.

• When you’re ready to implement your Some phase, define (and use!) a success metric,
such as If there are no failures, each succeeding group is about 50 percent larger than the
previous group. If there is a single failure, the group size returns to a single host and starts
growing again.

• Finally, establish a way for customers to stop the deployment process if things go disas-
trously wrong. The process document should indicate who has the authority to request a

89

https://redmine.koumbit.net/issues/16708
https://redmine.koumbit.net/issues/16708
https://redmine.koumbit.net/issues/14032

Media Players Documentation, Release 2.5

halt, how to request it, who has the authority to approve the request, and what happens
next.

—Section 3.1.2.2 of the PSNA

11.2 Timeline

The three phases above will be the following:

• Phase “one” or “alpha”: koumbit media player - week of June 1st

• Phase “some” or “beta”: isuma office media player - June 8-22

• Phase “many” or “production”: all media players - July

The above roadmap and dates will be confirmed by Cara before it is put into play, and Cara will be responsible in
contacting the various stakeholders affected by the deployment. Updates should be deployed on 3 to 5 machines at
a time for better efficiency, in 2 hours maintenance windows. Before an update is actually deployed, Cara will be
notified and will coordinate with the stakeholders to ensure everything still works correctly.

11.3 Metrics and communication

The success metric for a given media player is determined by the Test procedure, that is, a media player should be
basically working as before, syncing new content and allowing uploads (although the latter also depends on the one-
step upload work). The success criteria is that 75% of the media players updated in a phase be working before we
move on to the next batch, that is, a problem with one machine in a batch is acceptable.

Koumbit and Isuma will be communicating during the migration. Cara can file a ticket with “Immediate” priority in
the Media players 3.0 Redmine project to stop operations. Cara from Isuma, Antoine, Cleve and Gabriel from Koumbit
are the ones with the authority to stop a deployment.

11.4 Implementation

The actual update that will be performed on the media players will be the following. Unless otherwise noted, all steps
are performed through Puppet and still remain to be implemented. Each step is grouped and numbered according to
the (eventual) mediaplayers::transitionX class in which the transition will be implemented.

0. have a hard drive sent up north and connected

1. upgrade to wheezy (not through Puppet)

2. Prepare for the puppet deployment

a. add stringify_facts=false to [main] of /etc/puppet/puppet.conf

b. generate the unique hostname for the mediaplayer using cs.isuma.tv:

cd /var/www/cachingserver; drush sql-query 'SELECT uid,name,CONCAT("host-mp",
→˓YEAR(FROM_UNIXTIME(created)),MONTH(FROM_UNIXTIME(created)),DAY(FROM_
→˓UNIXTIME(created)),"-1.mp.isuma.tv") AS hostname FROM users WHERE name LIKE
→˓"%n6%" ;'

c. make sure fail2ban is disabled on cs.isuma.tv:

90 Chapter 11. Transition plan

http://everythingsysadmin.com/
https://redmine.koumbit.net/issues/14028
https://redmine.koumbit.net/issues/14028
https://redmine.koumbit.net/projects/media-players-3/issues/new

Media Players Documentation, Release 2.5

sudo service fail2ban status

3. git-annex deployment (all those are automated through Puppet in the mediaplayers class)

• install git-annex (Puppet class gitannex)

• configure the assistant in /var/isuma/git-annex (Puppet class gitannex::daemon and define
gitannex::repository)

• configure hard drive sync script in udev (Puppet class mediaplayers::syncdrive)

• setup a cronjob for the metadata sync (Puppet class gitannex::metadata)

• setup reverse SSH tunnel (Puppet class sshd::autossh and site_sshd::sandbox)

• configure the remote and bandwidth limits in the assistant (Puppet define gitannex::remote and
gitannex::bandwidth)

• test checklist:

– new files are synchronised from the central server to the player, just look for the latest changes in the
repository, and see if they correspond to latest videos uploaded on the main site:

cd /var/isuma/git-annex
git log --stat

– the IP address is propagated in the git repo, see the Media player not detected procedure

– the new reverse SSH tunel is up and running, see the Remote login to media players procedure

– downloading an actual file works:

git annex enableremote s3
git annex get video/mp4_sd/ZACK_QIA_.mov.mp4

– the bandwidth limits are effective: there should be annex.rsync-upload-options and
annex.web-download-command settings that reflect the upload and download parameters
in the mediaplayers Puppet class. then when there’s a download, you can look at the process list
to see if the commandline flag is effective:

ps axfu | grep wget

You can still look at the actual bandwidth usage with vnstat --traffic.

– the schedules are effective: try to set the stop time to the next hour, for example, to stop at 17h00 and
start at 18h00:

class { 'mediaplayers':
[...]
sched_start_hour => ['18'],
sched_start_minute => 0,
sched_stop_hour => ['17'],
sched_stop_minute => 0,

}

4. Manual deployment (those steps need to be done by hand on the media player)

• make sure the s3 remote is configured properly:

cd /var/isuma/git-annex
git annex enableremote s3

11.4. Implementation 91

Media Players Documentation, Release 2.5

• disable the web and s3 remotes so that downloads are not done from the internet until the drive sync is
completed:

cd /var/isuma/git-annex
git config remote.web.annex-ignore true
git config remote.s3.annex-ignore true

• configure the group and wanted content:

git annex group . mediaplayer
git annex wanted . groupwanted

• remove /var/isuma/media by hand:

rm -r /var/isuma/media

• run the syncdrive script, unless Updating a synchronisation drive:

/lib/udev/mediaplayers-syncdrive <drivepath>

The drive path is the device without /dev and can be found with cat /proc/partitions or dmesg.
See also Creating a new synchronisation drive for more detailed instructions on how to find the device
number.

If you are not running this by hand (if it’s already started or you don’t have a sync drive), at least disable
the sneakernet remote to remove noises from the logs:

git config remote.sneakernet.annex-ignore true

• enable the web and s3 remotes so that downloads are properly done from the internet from now on:

cd /var/isuma/git-annex
git config remote.web.annex-ignore true
git config remote.s3.annex-ignore true

• test checklist:

– new files are downloaded from S3 to the media player

– the sync drive is working: content is being copied from the external hard drive to the git-annex repo

5. deploy remaining components

• deploy the new upload.php and pong.js.php scripts in /var/www/isuma/ (done by hand for
now, to be put in the mediaplayers::upload Puppet module)

• configure Apache and PHP to serve those files (configured by hand, to be put in the
mediaplayers::upload Puppet class)

• setup automated upgrades (apt::unattended_upgrades Puppet class)

• test checklist:

– ping/pong test

– url rewrite test

– upload test

– apt-get test

6. remove the old infrastructure

92 Chapter 11. Transition plan

Media Players Documentation, Release 2.5

• remove the old packages: koumbit-archive-keyring, ffmpeg, php-xml-rpc,
isuma-local-servers and isuma-autossh packages (mediaplayers::transition
puppet class)

• rerun the entire Test procedure

Also, we will work on a separate set of AWS S3 buckets and then transition over to them during the break, dropping
the old ones after two months. This will double the storage cost at the benefit of a much safer transition.

See also the Redmine issue #17242 for more detailed information on the various tasks in the transition. This includes
blocking issues for the above transition. The larger 3g deployment plan is in Redmine issue #16707.

11.4. Implementation 93

https://redmine.koumbit.net/issues/17242
https://redmine.koumbit.net/issues/16707

Media Players Documentation, Release 2.5

94 Chapter 11. Transition plan

CHAPTER 12

Similar projects

This section describes various services and software alternatives to this project. There seems to be an opportunity to
build a more generic content distribution system. We should, however, consider the existing alternatives and work
from there or at the very least study the way they operate to avoid running into similar problems.

12.1 Commercial CDNs

The CDN service is currently mostly implemented by closed-source, for-profit corporations, like Akamai, Cloudflare
and others. What we are doing is essentially the same problem, although their use case is simpler because they can
usually get the content on the fly and don’t necessarily deal with large files and low bandwidth.

12.2 Debian mirrors network

There is a free software projects with similar goals and problems: Debian itself. The Debian project operates a large
network of mirrors all over the world. Although a lot of the files on the mirror are small files (less than 1MiB), quite a
few are much larger (Chromium is currently around 50MiB) and the total size of an archive snapshot is around 1TB,
something quite close to the dataset of Isuma right now.

They have some software to sync packages between the different archives, called ftpsync. It is, however, not well
released or distributed (there isn’t even a debian package!), or abstracted: it is very tied to the Debian mirrors network.

12.3 Git annex

Holy shit, GIT-annex does a lot of what we want, in implementing a distributed file system on a variety of possible
remote repositories!

Integrated with gitolite providing centralized authentication/authorization, much of our required functionality would
be available. Git hooks would make it pretty easy to customize and automate. GIT-annex even has a full metadata

95

https://www.debian.org/mirror/list
https://www.debian.org/mirror/list
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=673565

Media Players Documentation, Release 2.5

system implemented, which was a feature I had in mind for the next version of media players. Building on this seems
like a good direction!

Challenges with a git-annex implementation:

• metadata is stored in a separate git branch, by synthesizing commits, which requires git wizardry, and some
overhead, see the details of the internals

• git-annex is still in heavy development and may move under our feet, although the kickstarter phase is finishing
now and the product is quite stable for basis

• git-annex may not scale well with lots of files and lots of clients, see this complaint for example

The git annex author, Joey Hess, may be available for consulting. In this self-run crowdfunding campaign he was
proposing 300$/hr consulting fee, but that is now sold out. After discussions in person with Joey, I get the impression
it may be possible to hire him for specific improvements to git-annex, but those would need to be useful for the project
as a whole, and not juste for our use case. For example, he may be opened to being contracted for improving scalability,
but not for storing “behind NAT” metadata that we need.

Those are the things missing from git-annex at this point:

• bandwidth limiting - although we could use –bwlimit in rsync fairly easily

• local uploads: git-annex won’t provide you with a web interface for uploads, but will certainly take care of local
files

• glue to automatically mount drives and sync: git-annex doesn’t automatically mount drives but can certainly
sync

• cache of the HTML files - unless the website is redone in static html

• a good view of sync progress in the various MPs for the CS

• transcoding - if we keep doing that at all

• glue for URL rewriting in the website

git-annex manages metadata, and can store arbitrary per-file metadata as well. That meta-data can be exchanged
through the git annex assistant, through SSH or XMPP. There had been some talks of using Telehash but
this somewhat fell through as the telehash.org upstream development is still incomplete. Looking back at the previous
development year Joey mentionned that he will keep an eye on the project and consider other alternatives such as
MaidSafe.

Those backends could be useful to help media players share data with each other and facilitate communication without
talking to the central server.

12.4 Camlistore

Another storage system that may be interesting, similar to git-annex, is Camlistore.

96 Chapter 12. Similar projects

http://git-annex.branchable.com/internals/
http://git-annex.branchable.com/forum/A_tiny_filesystem__63__/
https://campaign.joeyh.name/
http://git-annex.branchable.com/design/assistant/telehash/
http://telehash.org/
http://git-annex.branchable.com/devblog/day_219__catching_up_and_looking_back/
http://git-annex.branchable.com/devblog/day_219__catching_up_and_looking_back/
http://maidsafe.net/
http://camlistore.org/

CHAPTER 13

Terminology

In this documentation, the following definitions are used:

Local servers Physical machines installed in remote communities with low bandwidth, high-latency or no internet
connectivity providing read and write access to a large media library.

Media players The IsumaTV implementation of the local servers, mainly distributed in Canada’s northern native
communities.

Central server A Drupal website with a set of custom modules to keep an inventory of which files are on which local
server, currently only deployed on cs.isuma.tv.

Website The main Drupal site with all the content and user interface for the public, with custom Drupal modules to
rewrite URLs to point to the media players if they are detected after a “ping pong test”. Currently isuma.tv.

v1.0

first generation The first implementation of media players distributed during the first phase of the project designed
jointly by Koumbit and Isuma.TV around 2010.

v2.0

second generation

3g The second generation of media players was developped around 2012 to adress some bugs and issues with the
central server, add a remote diagnostic system (isuma-autossh) and other updates. This is sometimes refered to
as “3g” in the litteratue because part of the work on the second generation involved working on the design of a
third generation.

v2.5 The “v2.5” is an incremental update on the second generation to improve stability and fix a lot of bugs to
ease deployments. During that phase, Debian packaging, install procedures and documentation were improved
significantly.

v3.0

third generation

3g A new generation of media players, most likely a complete rewrite of the local servers code.

CDN Content Distribution Network, to quote wikipedia:

97

http://cs.isuma.tv/
http://isuma.tv

Media Players Documentation, Release 2.5

[A CDN is a] large distributed system of servers deployed in multiple [locations]. The goal of a CDN
is to serve content to end-users with high availability and high performance.

SSD Solid State Drive, to quote Wikipedia: “is a data storage device that uses integrated circuit assemblies as memory
to store data persistently. [. . .] SSDs have no moving (mechanical) components. This distinguishes them from
traditional electromechanical magnetic disks such as hard disk drives (HDDs) or floppy disks, which contain
spinning disks and movable read/write heads.”

“Compared with electromechanical disks, SSDs are typically more resistant to physical shock, run silently, have
lower access time, and less latency. However, while the price of SSDs has continued to decline over time,
consumer-grade SSDs are still roughly six to seven times more expensive per unit of storage than consumer-
grade HDDs.” (SSD article on Wikipedia)

SSDs are commonly found in laptops, music players, cell phones and embeded devices, but also more and more
commonly in servers.

HDD Hard Disk Drives, to quote Wikipedia: “data storage device used for storing and retrieving digital information
using rapidly rotating disks (platters) coated with magnetic material. An HDD retains its data even when
powered off. Data is read in a random-access manner, meaning individual blocks of data can be stored or
retrieved in any order rather than sequentially. An HDD consists of one or more rigid (“hard”) rapidly rotating
disks (platters) with magnetic heads arranged on a moving actuator arm to read and write data to the surfaces.”
(HDD article on Wikipedia)

HDD are high-capacity, but use more power and are more fragile than SSD drives. HDD drives are commonly
found in servers, workstations and external backup drives.

RAID There are two ways of configuring two storage devices:

• “RAID-1” or “mirroring”: two or more drives that hold the same copy of the data. if one fails, the other
still has a copy

• “RAID-0” or “stripping”: two or more drives that hold different data. if one fails, all the data is lost.

“Stripping”, allows for storage expansion because more than one drive appear as one. The problem with this is
that if one of the drives fails (or simply disconnected, if it’s an external drive), the whole data set can be lost.
The way we usually work around this problem is by “stripping” multiple “mirrors”, what is basically known as
“RAID-10”. So basically, instead of having two drives, we have two times two drives, so four drives.

storage enclosures Some background: there are really 3 ways of storing disks:

• internal, no hot-swap: disks are stored internally in the machine and are simply not hot-swappable without
stopping the machine, opening the case and taking out your screwdrive and fiddling with wires. This is the
current design of the media players

• externally-accessible trays, but no hotswap: disks are in trays that are accessible from the outside but can’t
reliably be replaced or added while the machine is running, in other words, the machine needs to be turned
off before a disk is added

• fully hot-swappable trays: disks are in trays that can be removed while the machine is running

And even in trays, there are some variations: some trays you need a screwdriver to attach the disk in the tray,
some don’t have screws, and some don’t have trays at all (you just slide the disk in the slot)!

So basically, it’s a scale of skills required to replace a hard drive here:

1. internal, highest skill level: operator needs to know how to open the case, remove and install the drive,
connect and tell apart the different wires

2. non-hotswap trays, with screws: operator needs to be able to power-cycle the machine, remove and insert
trays, remove and install disks in trays

3. hotswap trays, with screws: operator needs to be able to remove and insert trays, remove and install disks
in trays

98 Chapter 13. Terminology

https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Hard_disk_drive

Media Players Documentation, Release 2.5

4. hotswap trays, without screws: operator needs to be able to remove and insert disks

The last disk layout could be possible for anyone with a user manual. Most people should also be able to
swap drives in and out of trays with a screwdriver, and probably power-cycle the machine as well. This is why
hot-swappable drives are so interesting.

Keep in mind that, in all those situations, there’s always the risk that the operator removes too many disks from
the array and destroy everything, so the first skill is to be able to interpret the status of the disk array. Hopefully
visual indicators could help with that, but it’s something that would need to be part of the requirements, for
example.

Repository

Repositories A git-annex repository is basically a git repository, a directory with files and subdirectories in it where
git-annex manages the files as symlinks. There can be many different interconnected repositories that have their
own copies of the files.

Remote A git-annex remote is another git-annex repository, from the point of view of a given repository. It allows
one repository to push changes into, and pull changes from, another repository. It can also be a special remote
that is not really a git-annex repository, but some special storage. We particularly use the S3 special remote that
way.

S3 Amazon S3 (Simple Storage Service) is a commonly used online file storage service that is used to storing objects,
often publicly, in “buckets”. Git-annex uses this to store unique copies of the files. Amazon garantees 99.9%
uptime on S3, that is, not more than 43 minutes downtime per month.

PuppetDB REST API A RESTful interface is a standard respecting the Representational state transfer standard. The
exact protocol varies according to the application, but in our case, we mostly use it to communicate with the
PuppetDB REST API.

Assistant The git-annex assistant is a daemon that runs in the background and implements the various policies defined
by the operator. It will automatically add or remove files from git as they are changed from the outside. It will
also synchronise content to other repositories as determined by preferred content policies and sometimes even
drop files locally if they are not required anymore.

If two git-annex :remotes: run git-annex, they also can do real-time synchronisation of their content.

99

http://git-annex.branchable.com/special_remotes/
http://git-annex.branchable.com/special_remotes/S3/
http://en.wikipedia.org/wiki/Amazon_S3
https://en.wikipedia.org/wiki/Representational_state_transfer
https://docs.puppetlabs.com/puppetdb/index.html
http://docs.puppetlabs.com/puppetdb/2.2/api/index.html

Media Players Documentation, Release 2.5

100 Chapter 13. Terminology

CHAPTER 14

About this document

This documentation is formatted with ReST and managed by the Sphinx documentation engine.

You can generate the documentation locally with:

make html

You will need to have GNU Make and Sphinx installed for this to work.

Changes should be pushed to the central git repository at:

gitolite@git.koumbit.net:isuma-doc.git

This requires write access to the repository, which can be requested at support@koumbit.org.

Alternatively, a read-only access to the repository is available at:

git://git.koumbit.net/isuma-doc.git

The main documentation is on the master branch while older documentation is available, as an archive, in the 2.x
branch.

The documentation is also automatically generated on Readthedocs.org when new content is pushed to the source
repository. To get the same results as the rendering there locally, you will need the RTD theme, also available as a
Debian package.

The documentation is currently only available in english, but could be translated fairly easily, contact us if you are
interested.

14.1 License

This documentation and all software produced as part of the Isuma 3G project are available under the AGPLv3 license,
a copy of which is available below.

Various components are used in the Isuma projects, with license links below:

101

http://sphinx-doc.org/rest.html
http://sphinx-doc.org/
https://redmine.koumbit.net/projects/isuma-doc/repository
http://isuma-media-players.readthedocs.org/en/latest/installation.html
https://github.com/snide/sphinx_rtd_theme
https://tracker.debian.org/pkg/sphinx-rtd-theme
https://redmine.koumbit.net/issues/17720
https://www.gnu.org/licenses/agpl-3.0.html

Media Players Documentation, Release 2.5

• git-annex

• Puppet

• Debian

GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.

A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.

The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.

An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under

(continues on next page)

102 Chapter 14. About this document

https://git-annex.branchable.com/license/
https://docs.puppetlabs.com/guides/faq.html#what-license-is-puppet-released-under
https://www.debian.org/social_contract#guidelines

Media Players Documentation, Release 2.5

(continued from previous page)

this license.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License" refers to version 3 of the GNU Affero General Public License.

"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

A "covered work" means either the unmodified Program or a work based
on the Program.

To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

(continues on next page)

14.1. License 103

Media Players Documentation, Release 2.5

(continued from previous page)

The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users' Legal Rights From Anti-Circumvention Law.
(continues on next page)

104 Chapter 14. About this document

Media Players Documentation, Release 2.5

(continued from previous page)

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,

(continues on next page)

14.1. License 105

Media Players Documentation, Release 2.5

(continued from previous page)

and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
(continues on next page)

106 Chapter 14. About this document

Media Players Documentation, Release 2.5

(continued from previous page)

from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

7. Additional Terms.

"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately

(continues on next page)

14.1. License 107

Media Players Documentation, Release 2.5

(continued from previous page)

under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.
(continues on next page)

108 Chapter 14. About this document

Media Players Documentation, Release 2.5

(continued from previous page)

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may

(continues on next page)

14.1. License 109

Media Players Documentation, Release 2.5

(continued from previous page)

not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is "discriminatory" if it does not include within
(continues on next page)

110 Chapter 14. About this document

Media Players Documentation, Release 2.5

(continued from previous page)

the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others' Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Remote Network Interaction; Use with the GNU General Public License.

Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

(continues on next page)

14.1. License 111

Media Players Documentation, Release 2.5

(continued from previous page)

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
(continues on next page)

112 Chapter 14. About this document

Media Players Documentation, Release 2.5

(continued from previous page)

possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<http://www.gnu.org/licenses/>.

14.1. License 113

Media Players Documentation, Release 2.5

114 Chapter 14. About this document

Index

Symbols
3g, 97

A
Assistant, 99

C
CDN, 97
Central server, 97

F
first generation, 97

H
HDD, 98

L
Local servers, 97

M
Media players, 97

P
PuppetDB REST API, 99

R
RAID, 98
Remote, 99
Repositories, 99
Repository, 99

S
S3, 99
second generation, 97
SSD, 98
storage enclosures, 98

T
third generation, 97

V
v1.0, 97
v2.0, 97
v2.5, 97
v3.0, 97

W
Website, 97

115

	Installation
	BIOS configuration
	Naming convention
	Install Debian
	More in-depth OS installation instruction
	Configure Puppet
	Stretch Fixes
	Configuring and Running Git Annex

	Old Installation Details
	Puppet
	Git-annex
	Git-annex configuration
	Other configurations

	Testing
	Backend
	CableTV
	Git-annex sync
	Isuma.tv

	Maintenance
	Changing preferred content
	Unused and deleted files
	Metadata
	Settings
	External synchronisation drives
	Creating user accounts
	Upgrading git-annex

	User guides
	How to setup a playlist

	Hardware platforms
	Rugged specification
	Lightweight specification
	Shuttle XPC small desktops
	Logic Supply desktops (v2.5 series)
	Advantech rugged servers (1.0 series)

	Troubleshooting
	Test procedure
	Basics
	Git-annex
	S3 diagnostics

	Development
	Git-annex internals
	Git-annex Drupal integration
	Metadata sync script
	Metadata purge script
	Debian packages

	Configuration Management
	Installing the puppet master
	Setting up git repositories to ease up modification
	Managing modules
	Configuring a dashboard

	Design
	Context
	Requirements
	Technical decisions
	Architecture overview
	Transcoding
	Metadata
	Schedules
	Bandwith limits
	File deletion and garbage collection
	Server-specific metadata
	Remaining issues
	Security issues

	Transition plan
	General principles
	Timeline
	Metrics and communication
	Implementation

	Similar projects
	Commercial CDNs
	Debian mirrors network
	Git annex
	Camlistore

	Terminology
	About this document
	License

