
ising Documentation

Konrad Jałowiecki, Marek Rams, Bartłomiej Gardas

Sep 17, 2019

Contents:

1 Installation 3
1.1 Installing binary wheel from PyPI . 3
1.2 Building from source . 3

2 User guide 5
2.1 Introduction . 5
2.2 Basic usage . 5
2.3 Other supported input formats . 6
2.4 Tweaking execution . 6

i

ii

ising Documentation

Ising is an open source package to solve abritrary spin-glass Ising models using exhaustive (brute force) search. It can
serve as an excellent tool for benchmarking other solvers or generating low energy spectra (desirable e.g. for machine
learning related tasks). The package is compatible with *NIX systems (and in principle should work on Windows too).
Ising supports parallel computation via OpenMP or GPU, provided it has been build with CUDA support.

Contents: 1

ising Documentation

2 Contents:

CHAPTER 1

Installation

1.1 Installing binary wheel from PyPI

If you are running a Linux system and are only interested in non GPU-enabled build, you can install binary wheel
from PyPI as usual:

pip install ising

Unfortunately, we cannot provide GPU-enabled binary wheel due to a manylinux PEP-513 policy, as it is impossible
to build ising on CentOS 5.

1.2 Building from source

If you are not running Linux and/or are interested in a GPU-enabled build, you need to build ising from source. The
process is simple and requires running a single command. We highly recommend using virtual environment instead of
installing the package into the global scope. Note that otherwise installing the package may require root privileges.

1.2.1 Prerequisites

To build ising you need the following:

• Virtually any C and C++ compiler,

• A Fortran compiler. The build script supports PGI, Intel, and gfortran compilers.

• Working CUDA toolkit. For CPU based implementation only its thrust library with OMP_DEVICE_BACKEND
is used, but nvcc is still required for compiling sources. You can get around this requirement and use your local
installation of thrust if you use GNU fortran compiler.

• numpy Python package installed in the same environment as is used to run the build process.

• Python development headers.

3

https://www.python.org/dev/peps/pep-0513/
https://thrust.github.io/

ising Documentation

In addition, to build a GPU-enabled version you need PGI CUDA Fortran. Our package was tested against CUDA 9.2
and CUDA 10.0.

1.2.2 Building and installing

To build the ising package download its source code and run install.py script as follows:

python install.py --fcompiler=<fortran_compiler> [--usecuda]

where <fortran_compiler> is one of pgi, intel, gfortran. The --usecuda switch can be used to enable
GPU support. Note that --usecuda requires --fcompiler=pgi.

The script should take care of building extensions and installing package, so after running the above command ising
package should be ready to use.

4 Chapter 1. Installation

CHAPTER 2

User guide

2.1 Introduction

The ising package allows to find a ground state (or, more generally, low energy spectrum) of an arbitrary spin-glass
Ising model. That is, with ising one can to find the minimum of the following energy function (i.e. Hamiltonian)

𝐻(𝑠0, . . . , 𝑠𝑛) = −
𝑛∑︁

𝑖,𝑗=0

𝐽𝑖𝑗𝑠𝑖𝑠𝑗 −
𝑛∑︁

𝑖=0

ℎ𝑖𝑠𝑖

where 𝐽𝑖𝑗 and ℎ𝑖 are arbitrary real coefficients (interaction couplings and external biases, respectively) and variables
𝑠𝑖 can admit one of two values, either 𝑠𝑖 = −1 or 𝑠𝑖 = 1.

2.2 Basic usage

The main functionallity of the ising package is wrapped in the ising.search function. For instance, suppose one
would like to to find four lowest energy states given the following problem Hamiltonian,

𝐻(𝑠0, 𝑠1, 𝑠2) = −2𝑠0𝑠1 + 3𝑠1𝑠2 + 2.5𝑠2𝑠3 − 𝑠0

To that end, one can simply run ising.search as follows

import ising

graph = {(0, 1): 2, (1, 2): -3, (2, 3): 2.5, (0, 0): 1}

result = ising.search(graph, num_states=4)
print(result.energies)

Note how the above model is defined using a dictionary:

• Couplings, 𝐽𝑖𝑗 , are specified as its entries with the corresponding keys being (i, j).

• Similarly, biases ℎ𝑖 are provided as the diagonal entries whose keys are (i, i).

5

ising Documentation

2.3 Other supported input formats

There are three formats supported by ising:

• The dictionary format already presented in previous section.

• The coefficients list format. In this format coefficients are specified as a list of lists, where each row is of the
form [i, j, J_ij] or [i, i, h_i].

• The matrix format. In this format one specifies coefficients as a matrix where its diagonal elements correspond
to ℎ𝑖 and off-diagonal elements correspond to 𝐽𝑖𝑗 . The matrix can either be a list of lists or a numpy array.

To summarize, here are three equivalent ways to specify the problem graph

1) coefficients list format
graph = [[0, 1, 2], [1, 2, -3], [0, 0, 1], [2, 3, 2.5]],
2) matrix format: list of lists
graph = [[1, 2, 0, 0], [0, 0, -3, 0], [0, 0, 0, 2.5], [0, 0, 0, 0]],
3) matrix format: numpy array
graph = np.array([[1, 2, 0, 0], [0, 0, -3, 0], [0, 0, 0, 2.5], [0, 0, 0, 0]]),

Note that the matrix format requires spins variables to be labelled with 0, . . . , 𝑛, other two formats are not restricted
in this way.

Since both couplings 𝐽𝑖𝑗 and 𝐽𝑗𝑖 can be specified in all three formats, it does not matter which one is chosen. In fact,
if one provides both coefficients, both will be used. Therefore, specifing the following graphs would yield the same
result as the previous example:

coefficient list format
graph = [[0, 1, 1], [1, 0, 1], [1, 2, -3], [0, 0, 1], [2, 3, 2.5]],
matrix format
graph = [[1, 1, 0, 0], [1, 0, -3, 0], [0, 0, 0, 2.5], [0, 0, 0, 0]]

2.4 Tweaking execution

One can use the following keyword arguments to ising.search to tweak its execution:

• num_states: an integer specifying how many low-energy states to find.

• method: a flag indicating whether CPU (method='CPU', default) or GPU (method='GPU') implementa-
tion to invoke.

• energies_only: a boolean indicating whether both the energies and the states should be returned. Default
is False.

• chunk_size: To fit into the host memory, ising performs search in fixed chunks of a given size 2𝑐ℎ𝑢𝑛𝑘𝑠𝑖𝑧𝑒.

In addition, when executing the CPU implementation, one can specify how many OpenMP threads to use for compu-
tations using OMP_NUM_THREADS environmental variable.

6 Chapter 2. User guide

	Installation
	Installing binary wheel from PyPI
	Building from source

	User guide
	Introduction
	Basic usage
	Other supported input formats
	Tweaking execution

