

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 Fixes #

Proposed Changes

	

	

	

	I’m submitting a …

	[] bug report

	[] feature request

	[] support request

	Do you want to request a feature or report a bug?

	What is the current behavior?

	If the current behavior is a bug, please provide the steps to reproduce and if possible a minimal demo of the problem

	

	

	

	What is the expected behavior?

	What is the motivation / use case for changing the behavior?

	Please tell us about your environment:

	Device:

	OS:

	Other information (e.g. detailed explanation, stacktraces, related issues, suggestions how to fix, links for us to have context, eg. stackoverflow, gitter, etc)

 If you are interested in contributing to this project please use the https://github.com/txn2/txwifi fork. This version is archived for refrence.

Update 2018-12-01. I am archiving this project. The original use case was to enable the configuration of wifi, over wifi, like many IOT devices on the market. It has worked well for me for this purpose. However, many of the issues people have been reporting as bugs are simply other opinions on how it should work for them, and outside of the original use case. Unfortunately, I don’t have the personal resources to help in these requests. If others are willing to be contributors I would be grateful; until then, this project is for reference only.

Update: Looking for contributors / maintainers.

NOTICE: This project is intended to aid in developing “configure wifi over wifi” solutions for IOT projects using the Raspberry Pi. The main use case for this project is to reproduce functionality common to devices like Nest or Echo, where the user turns on the device, connects to it and configures it for wifi. I have over 800 devices running this software in production and all have had their wifi configured using it.

This is not a captive portal project. While I have personaly used it for this, it requires additional networking and can be unstable. I don’t support this use and so your millage may vary.

iotwifi is only expected to run properly on stock Raspberry Pis and not tested on any other hardware configurations.

IOT Wifi (Raspberry Pi AP + Client)

[image: Go Report Card] [https://goreportcard.com/report/github.com/cjimti/iotwifi]
[image: GoDoc] [https://godoc.org/github.com/cjimti/iotwifi/iotwifi]
[image: Docker Container Image Size] [https://hub.docker.com/r/cjimti/iotwifi/]
[image: Docker Container Layers] [https://hub.docker.com/r/cjimti/iotwifi/]
[image: Docker Container Pulls] [https://hub.docker.com/r/cjimti/iotwifi/]

[image: Waffle.io - Columns and their card count] [https://waffle.io/cjimti/iotwifi]

IOT Wifi is very small/8MB Docker Container built for the Raspberry Pi 3 [https://amzn.to/2jfXhCA].
IOT Wifi exposes a simple JSON based REST API for controlling the wireless network interface. This container allows the Raspberry Pi to accept wifi connections as an access point (aka AP) while at the same time connecting to an existing wifi network (station mode).

Go (Golang) was used to develop the main application code, to produce a minimal docker image with great performance. The container runs Alpine Linux [https://alpinelinux.org/] with small, optimized versions of hostapd [https://w1.fi/hostapd/], wpa_supplicant [https://w1.fi/wpa_supplicant/] and dnsmasq [http://www.thekelleys.org.uk/dnsmasq/doc.html], controlled by the container’s API endpoints.

If you have a Raspberry Pi 3 and you want to provide wifi based configuration abilities, all you need is Docker installed and a little over 8MB of free drive space.

[image: Raspberry Pi AP + Client] [https://amzn.to/2jfXhCA]

Table of Contents

	IOT Wifi (Raspberry Pi AP Client)

	Background

	Getting Started

	Disable wpa_supplicant on Raspberry Pi

	Install Docker on Raspberry Pi

	Pull the IOT Wifi Docker Image

	IOT Wifi Configuration

	Run The IOT Wifi Docker Container

	Connect to the Pi over Wifi

	Connect the Pi to a Wifi Network

	Check the network interface status

	Conclusion

TL;DR? If you are not interested in reading all this, you can skip ahead to
Getting Started.

IOT Wifi is a Raspberry Pi [https://amzn.to/2jfXhCA] wifi management REST service written in Go [https://golang.org/] and
intended to run in a Docker container on a Raspberry Pi [https://hub.docker.com/r/cjimti/iotwifi/].

IOT Wifi sets up network interfaces, runs hostapd [https://w1.fi/hostapd/], wpa_supplicant [https://w1.fi/wpa_supplicant/] and
dnsmasq [http://www.thekelleys.org.uk/dnsmasq/doc.html] to run simultaneously, allowing a user (or another service) to connect to the Raspberry Pi via hostapd [https://w1.fi/hostapd/]/dnsmasq [http://www.thekelleys.org.uk/dnsmasq/doc.html] and issue commands that configure and connect wpa_supplicant [https://w1.fi/wpa_supplicant/] to another AP [https://en.wikipedia.org/wiki/Wireless_access_point]. IOT Wifi then exposes a small web server on the Pi and offers a JSON based REST API to configure Wifi. The IOT Wifi container allows you to build a custom Captive Portal [https://en.wikipedia.org/wiki/Captive_portal] web page or even programmatically connect from another device and use the exposed API to configure the target device.

Using wifi to configure a wifi connection is often a standard requirement for IOT [https://en.wikipedia.org/wiki/Internet_of_things]. As Raspberry Pis are becoming a popular choice as an IOT [https://en.wikipedia.org/wiki/Internet_of_things] platform, this helps solve the frequent need to manage AP and Station modes.

Background

Over a year ago I wrote a blog post called RASPBERRY PI 3 - WIFI STATION+AP [http://imti.co/post/145442415333/raspberry-pi-3-wifi-station-ap] with my notes on setting up a Raspberry Pi 3 to run as a Wifi Access Point [https://en.wikipedia.org/wiki/Wireless_access_point] (Hotspot) and a Wifi Client (aka Wifi Station) [https://en.wikipedia.org/wiki/Station_(networking)] simultaneously. This old blog post gets a considerable amount of traffic, so it seems there is quite a bit of interest in this. I have come to realize that some of the steps in my old post have changed since newer versions of Raspian [https://www.raspberrypi.org/downloads/raspbian/] (n00bs build) are released.

Since writing the post, I have had a few personal and professional projects
requiring a Raspberry Pi to allow wifi setup over wifi. I decided to open
source this simple project to help others with similar requirements as well
as gain some feedback on where and how I can improve it. I would welcome
any contribution and credit any contributors.

Getting Started

You will need a Raspberry Pi 3, running Raspian Stretch. You
can use the Noobs [https://www.raspberrypi.org/downloads/noobs/] release to install the latest version of Raspian.

Disable wpa_supplicant on Raspberry Pi

You do not want the default wpa_supplicant [https://w1.fi/wpa_supplicant/] (the software that communicates
with the wifi driver and connects to Wifi networks,) running and competing
with the IOT Wifi container.

prevent wpa_supplicant from starting on boot
$ sudo systemctl mask wpa_supplicant.service

rename wpa_supplicant on the host to ensure that it is not
used.
sudo mv /sbin/wpa_supplicant /sbin/no_wpa_supplicant

kill any running processes named wpa_supplicant
$ sudo pkill wpa_supplicant

Install Docker on Raspberry Pi

Ssh into the Pi or use the terminal application from the desktop on the Pi
to get a Bash shell.

Docker install script
$ curl -sSL https://get.docker.com | sh

[image: Install Docker]

add pi user to Docker user group
$ sudo usermod -aG docker pi

[image: Usermod Docker]

Reboot the Pi and test Docker.

$ sudo reboot

After reboot, ensure Docker is installed correctly by running a Hello World
Docker container.

run the Docker Hello World container and remove the container
when finished (the --rm flag)
$ docker run --rm hello-world

[image: Docker Hello World on Raspberry Pi]

Pull the IOT Wifi Docker Image

You can optionally clone and build the entire project, however, to get
started quickly I’ll show you how to use a pre-built Docker Image. At
only 16MB this little image contains everything you need. The image
is based on Alpine Linux [https://alpinelinux.org/] and contains hostapd [https://w1.fi/hostapd/], wpa_supplicant [https://w1.fi/wpa_supplicant/] and
dnsmasq [http://www.thekelleys.org.uk/dnsmasq/doc.html], along with a compiled wifi management utility written in go,
the source is found in this repository: https://github.com/cjimti/iotwifi.

Pull the IOT Wifi Docker Image
$ docker pull cjimti/iotwifi

[image: Docker IOT Wifi Image]

IOT Wifi Configuration

You will need a configuration JSON file. You can download a default as
a template or just it unmodified for testing. You can mount the
configuration file into the container or specify a location with
an environment variable.

Use the default configuration file and location for testing:

Download the default configuration file

$ wget https://raw.githubusercontent.com/cjimti/iotwifi/master/cfg/wificfg.json

[image: Download Configuration]

The default configuration looks like this:

{
 "dnsmasq_cfg": {
 "address": "/#/192.168.27.1",
 "dhcp_range": "192.168.27.100,192.168.27.150,1h",
 "vendor_class": "set:device,IoT"
 },
 "host_apd_cfg": {
 "ip": "192.168.27.1",
 "ssid": "iot-wifi-cfg-3",
 "wpa_passphrase":"iotwifipass",
 "channel": "6"
 },
 "wpa_supplicant_cfg": {
 "cfg_file": "/etc/wpa_supplicant/wpa_supplicant.conf"
 }
}

You may want to change the ssid (AP/Hotspot Name) and the wpa_passphrase to something more appropriate to your needs. However, the defaults are fine for testing.

Run The IOT Wifi Docker Container

The following docker run command will create a running Docker container from
the cjimti/iotwifi [https://hub.docker.com/r/cjimti/iotwifi/] Docker image we pulled in the steps above. The container needs to run in a privileged mode and have access to the host network (the
Raspberry Pi device) to configure and manage the network interfaces on
the Raspberry Pi. We will also need to mount the configuration file.

We will run it in the foreground to observe the startup process. If you want
it to run the background, you need to remove the --rm and pass the -d flag. If you want to it restart on reboot or failure, you can pass the flag
--restart=unless-stopped.

Read more on the docker run command. [https://docs.docker.com/engine/reference/run/]

$ docker run --rm --privileged --net host \
 -v $(pwd)/wificfg.json:/cfg/wificfg.json \
 cjimti/iotwifi

Optionally, you can also provide a wpa_supplicant.conf, like so:

$ docker run --rm --privileged --net host \
 -v $(pwd)/wificfg.json:/cfg/wificfg.json \
 -v <HOST_PATH>/wpa_supplicant.conf:<CONTAINER_PATH>/wpa_supplicant.conf \
 cjimti/iotwifi

Where <CONTAINER_PATH> is the path to wpa_supplicant.conf specified in wificfg.json.

The IOT Wifi container outputs logs in the JSON format. While this makes
them a bit more challenging to read, we can feed them directly (or indirectly)
into tools like Elastic Search or other databases for alerting or analytics.

You should see some initial JSON objects with messages like Starting IoT Wifi...:

{"hostname":"raspberrypi","level":30,"msg":"Starting IoT Wifi...","name":"iotwifi","pid":0,"time":"2018-03-15T20:19:50.374Z","v":0}

Keeping the current terminal open, you can log in to another terminal and
take a look the network interfaces on the Raspberry Pi.

use ifconfig to view the network interfaces
$ ifconfig

You should see a new interface called uap0:

uap0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.27.1 netmask 255.255.255.0 broadcast 192.168.27.255
 inet6 fe80::6e13:d169:b00b:c946 prefixlen 64 scopeid 0x20<link>
 ether b8:27:eb:fe:c8:ab txqueuelen 1000 (Ethernet)
 RX packets 111 bytes 8932 (8.7 KiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 182 bytes 24416 (23.8 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

The standard wifi interface wlan0 should be available, yet unconfigured since we have not yet connected to an external wifi network (access point).

wlan0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
 ether b8:27:eb:fe:c8:ab txqueuelen 1000 (Ethernet)
 RX packets 0 bytes 0 (0.0 B)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 0 bytes 0 (0.0 B)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Connect to the Pi over Wifi

On your laptop or phone, you should now see a Wifi Network named iot-wifi-cfg-3 assuming you did not change it from the default. The default password for this network is iotwifipass. Once connected to this network you should get an IP address assigned to the range specified in the config: 192.168.27.100,192.168.27.150,1h.

[image: Coeect Phone]

Once connected open a web browser and go to http://192.168.27.1:8080/status. You can access this API endpoint on the Raspberry Pi device itself from localhost*. On on Pi try the curl command curl http://localhost:8080/status.

You should receive a JSON message similar to the following:

{"status":"OK","message":"status","payload":{"address":"b8:27:eb:fe:c8:ab","uuid":"a736659a-ae85-5e03-9754-dd808ea0d7f2","wpa_state":"INACTIVE"}}

From now on I’ll demonstrate API calls to the new container with the curl command [https://en.wikipedia.org/wiki/CURL] on the device. If you were developing a Captive Portal or configuration web page, you could translate these calls into Javascript and control the device Wifi with AJAX.

You can use my simple static web server IOT Web container for hosting a Captive Portal or configuration web page. See https://github.com/cjimti/iotweb.

To get a list of Wifi Networks the device can see, issue a call to the scan endpoint:

curl http://localhost:8080/scan

Connect the Pi to a Wifi Network

The device can connect to any network it can see. After running a network scan curl http://localhost:8080/scan you can choose a network and post the login credentials to IOT Web.

post wifi credentials
$ curl -w "\n" -d '{"ssid":"home-network", "psk":"mystrongpassword"}' \
 -H "Content-Type: application/json" \
 -X POST localhost:8080/connect

You should get a JSON response message after a few seconds. If everything went well you will see something like the following:

{"status":"OK","message":"Connection","payload":{"ssid":"straylight-g","state":"COMPLETED","ip":"","message":""}}

You can get the status at any time with the following call to the status endpoint. Here is an example:

get the wifi status
$ curl -w "\n" http://localhost:8080/status

Sample return JSON:

{"status":"OK","message":"status","payload":{"address":"b7:26:ab:fa:c9:a4","bssid":"50:3b:cb:c8:d3:cd","freq":"2437","group_cipher":"CCMP","id":"0","ip_address":"192.168.86.116","key_mgmt":"WPA2-PSK","mode":"station","p2p_device_address":"fa:27:eb:fe:c9:ab","pairwise_cipher":"CCMP","ssid":"straylight-g","uuid":"a736659a-ae85-5e03-9754-dd808ea0d7f2","wpa_state":"COMPLETED"}}

Check the network interface status

The wlan0 is now a client on a wifi network. In this case, it received the IP address 192.168.86.116. We can check the status of wlan0 with ifconfig*

check the status of wlan0 (wireless interface)
$ ifconfig wlan0

Example return.

wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.86.116 netmask 255.255.255.0 broadcast 192.168.86.255
 inet6 fe80::9988:beab:290e:a6af prefixlen 64 scopeid 0x20<link>
 ether b8:27:eb:fe:c8:ab txqueuelen 1000 (Ethernet)
 RX packets 547 bytes 68641 (67.0 KiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 36 bytes 6025 (5.8 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

We can also check the connection by issuing a ping command from the
device and specify the network interface to use:

ping out from the wlan0 interface
$ ping -I wlan0 8.8.8.8

Hit Control-C to stop the ping and get calculations.

PING 8.8.8.8 (8.8.8.8) from 192.168.86.116 wlan0: 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=57 time=20.9 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=57 time=23.4 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=57 time=16.0 ms
^C
--- 8.8.8.8 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 16.075/20.138/23.422/3.049 ms

Conclusion

Wrapping the all complexity of wifi management into a small Docker
container, accessible over a web-based REST API reduces the dependencies on the device to only require Docker.

There are many ways to handle security using middleware or IP tables. A separate container can also manage security.

Check out the project IOT Web [https://github.com/cjimti/iotweb] to get
started with tiny a static web container suitable for building user interfaces for wifi management or captive portals.

Submit a Github issue or pull request if there are features or bug fixes you would like added to the project.

gorilla/handlers

[image: GoDoc] [https://godoc.org/github.com/gorilla/handlers] [image: Build Status] [https://travis-ci.org/gorilla/handlers]
[image: Sourcegraph] [https://sourcegraph.com/github.com/gorilla/handlers?badge]

Package handlers is a collection of handlers (aka “HTTP middleware”) for use
with Go’s net/http package (or any framework supporting http.Handler), including:

	LoggingHandler [https://godoc.org/github.com/gorilla/handlers#LoggingHandler] for logging HTTP requests in the Apache Common Log
Format [http://httpd.apache.org/docs/2.2/logs.html#common].

	CombinedLoggingHandler [https://godoc.org/github.com/gorilla/handlers#CombinedLoggingHandler] for logging HTTP requests in the Apache Combined Log
Format [http://httpd.apache.org/docs/2.2/logs.html#combined] commonly used by
both Apache and nginx.

	CompressHandler [https://godoc.org/github.com/gorilla/handlers#CompressHandler] for gzipping responses.

	ContentTypeHandler [https://godoc.org/github.com/gorilla/handlers#ContentTypeHandler] for validating requests against a list of accepted
content types.

	MethodHandler [https://godoc.org/github.com/gorilla/handlers#MethodHandler] for matching HTTP methods against handlers in a
map[string]http.Handler

	ProxyHeaders [https://godoc.org/github.com/gorilla/handlers#ProxyHeaders] for populating r.RemoteAddr and r.URL.Scheme based on the
X-Forwarded-For, X-Real-IP, X-Forwarded-Proto and RFC7239 Forwarded
headers when running a Go server behind a HTTP reverse proxy.

	CanonicalHost [https://godoc.org/github.com/gorilla/handlers#CanonicalHost] for re-directing to the preferred host when handling multiple
domains (i.e. multiple CNAME aliases).

	RecoveryHandler [https://godoc.org/github.com/gorilla/handlers#RecoveryHandler] for recovering from unexpected panics.

Other handlers are documented on the Gorilla
website [http://www.gorillatoolkit.org/pkg/handlers].

Example

A simple example using handlers.LoggingHandler and handlers.CompressHandler:

import (
 "net/http"
 "github.com/gorilla/handlers"
)

func main() {
 r := http.NewServeMux()

 // Only log requests to our admin dashboard to stdout
 r.Handle("/admin", handlers.LoggingHandler(os.Stdout, http.HandlerFunc(ShowAdminDashboard)))
 r.HandleFunc("/", ShowIndex)

 // Wrap our server with our gzip handler to gzip compress all responses.
 http.ListenAndServe(":8000", handlers.CompressHandler(r))
}

License

BSD licensed. See the included LICENSE file for details.

 What version of Go are you running? (Paste the output of go version)

What version of gorilla/mux are you at? (Paste the output of git rev-parse HEAD inside $GOPATH/src/github.com/gorilla/mux)

Describe your problem (and what you have tried so far)

Paste a minimal, runnable, reproduction of your issue below (use backticks to format it)

gorilla/mux

[image: GoDoc] [https://godoc.org/github.com/gorilla/mux]
[image: Build Status] [https://travis-ci.org/gorilla/mux]
[image: Sourcegraph] [https://sourcegraph.com/github.com/gorilla/mux?badge]

[image: Gorilla Logo]

http://www.gorillatoolkit.org/pkg/mux

Package gorilla/mux implements a request router and dispatcher for matching incoming requests to
their respective handler.

The name mux stands for “HTTP request multiplexer”. Like the standard http.ServeMux, mux.Router matches incoming requests against a list of registered routes and calls a handler for the route that matches the URL or other conditions. The main features are:

	It implements the http.Handler interface so it is compatible with the standard http.ServeMux.

	Requests can be matched based on URL host, path, path prefix, schemes, header and query values, HTTP methods or using custom matchers.

	URL hosts, paths and query values can have variables with an optional regular expression.

	Registered URLs can be built, or “reversed”, which helps maintaining references to resources.

	Routes can be used as subrouters: nested routes are only tested if the parent route matches. This is useful to define groups of routes that share common conditions like a host, a path prefix or other repeated attributes. As a bonus, this optimizes request matching.

	Install

	Examples

	Matching Routes

	Static Files

	Registered URLs

	Walking Routes

	Graceful Shutdown

	Middleware

	Testing Handlers

	Full Example

Install

With a correctly configured [https://golang.org/doc/install#testing] Go toolchain:

go get -u github.com/gorilla/mux

Examples

Let’s start registering a couple of URL paths and handlers:

func main() {
 r := mux.NewRouter()
 r.HandleFunc("/", HomeHandler)
 r.HandleFunc("/products", ProductsHandler)
 r.HandleFunc("/articles", ArticlesHandler)
 http.Handle("/", r)
}

Here we register three routes mapping URL paths to handlers. This is equivalent to how http.HandleFunc() works: if an incoming request URL matches one of the paths, the corresponding handler is called passing (http.ResponseWriter, *http.Request) as parameters.

Paths can have variables. They are defined using the format {name} or {name:pattern}. If a regular expression pattern is not defined, the matched variable will be anything until the next slash. For example:

r := mux.NewRouter()
r.HandleFunc("/products/{key}", ProductHandler)
r.HandleFunc("/articles/{category}/", ArticlesCategoryHandler)
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler)

The names are used to create a map of route variables which can be retrieved calling mux.Vars():

func ArticlesCategoryHandler(w http.ResponseWriter, r *http.Request) {
 vars := mux.Vars(r)
 w.WriteHeader(http.StatusOK)
 fmt.Fprintf(w, "Category: %v\n", vars["category"])
}

And this is all you need to know about the basic usage. More advanced options are explained below.

Matching Routes

Routes can also be restricted to a domain or subdomain. Just define a host pattern to be matched. They can also have variables:

r := mux.NewRouter()
// Only matches if domain is "www.example.com".
r.Host("www.example.com")
// Matches a dynamic subdomain.
r.Host("{subdomain:[a-z]+}.domain.com")

There are several other matchers that can be added. To match path prefixes:

r.PathPrefix("/products/")

…or HTTP methods:

r.Methods("GET", "POST")

…or URL schemes:

r.Schemes("https")

…or header values:

r.Headers("X-Requested-With", "XMLHttpRequest")

…or query values:

r.Queries("key", "value")

…or to use a custom matcher function:

r.MatcherFunc(func(r *http.Request, rm *RouteMatch) bool {
 return r.ProtoMajor == 0
})

…and finally, it is possible to combine several matchers in a single route:

r.HandleFunc("/products", ProductsHandler).
 Host("www.example.com").
 Methods("GET").
 Schemes("http")

Routes are tested in the order they were added to the router. If two routes match, the first one wins:

r := mux.NewRouter()
r.HandleFunc("/specific", specificHandler)
r.PathPrefix("/").Handler(catchAllHandler)

Setting the same matching conditions again and again can be boring, so we have a way to group several routes that share the same requirements. We call it “subrouting”.

For example, let’s say we have several URLs that should only match when the host is www.example.com. Create a route for that host and get a “subrouter” from it:

r := mux.NewRouter()
s := r.Host("www.example.com").Subrouter()

Then register routes in the subrouter:

s.HandleFunc("/products/", ProductsHandler)
s.HandleFunc("/products/{key}", ProductHandler)
s.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler)

The three URL paths we registered above will only be tested if the domain is www.example.com, because the subrouter is tested first. This is not only convenient, but also optimizes request matching. You can create subrouters combining any attribute matchers accepted by a route.

Subrouters can be used to create domain or path “namespaces”: you define subrouters in a central place and then parts of the app can register its paths relatively to a given subrouter.

There’s one more thing about subroutes. When a subrouter has a path prefix, the inner routes use it as base for their paths:

r := mux.NewRouter()
s := r.PathPrefix("/products").Subrouter()
// "/products/"
s.HandleFunc("/", ProductsHandler)
// "/products/{key}/"
s.HandleFunc("/{key}/", ProductHandler)
// "/products/{key}/details"
s.HandleFunc("/{key}/details", ProductDetailsHandler)

Static Files

Note that the path provided to PathPrefix() represents a “wildcard”: calling
PathPrefix("/static/").Handler(...) means that the handler will be passed any
request that matches “/static/*”. This makes it easy to serve static files with mux:

func main() {
 var dir string

 flag.StringVar(&dir, "dir", ".", "the directory to serve files from. Defaults to the current dir")
 flag.Parse()
 r := mux.NewRouter()

 // This will serve files under http://localhost:8000/static/<filename>
 r.PathPrefix("/static/").Handler(http.StripPrefix("/static/", http.FileServer(http.Dir(dir))))

 srv := &http.Server{
 Handler: r,
 Addr: "127.0.0.1:8000",
 // Good practice: enforce timeouts for servers you create!
 WriteTimeout: 15 * time.Second,
 ReadTimeout: 15 * time.Second,
 }

 log.Fatal(srv.ListenAndServe())
}

Registered URLs

Now let’s see how to build registered URLs.

Routes can be named. All routes that define a name can have their URLs built, or “reversed”. We define a name calling Name() on a route. For example:

r := mux.NewRouter()
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler).
 Name("article")

To build a URL, get the route and call the URL() method, passing a sequence of key/value pairs for the route variables. For the previous route, we would do:

url, err := r.Get("article").URL("category", "technology", "id", "42")

…and the result will be a url.URL with the following path:

"/articles/technology/42"

This also works for host and query value variables:

r := mux.NewRouter()
r.Host("{subdomain}.domain.com").
 Path("/articles/{category}/{id:[0-9]+}").
 Queries("filter", "{filter}").
 HandlerFunc(ArticleHandler).
 Name("article")

// url.String() will be "http://news.domain.com/articles/technology/42?filter=gorilla"
url, err := r.Get("article").URL("subdomain", "news",
 "category", "technology",
 "id", "42",
 "filter", "gorilla")

All variables defined in the route are required, and their values must conform to the corresponding patterns. These requirements guarantee that a generated URL will always match a registered route – the only exception is for explicitly defined “build-only” routes which never match.

Regex support also exists for matching Headers within a route. For example, we could do:

r.HeadersRegexp("Content-Type", "application/(text|json)")

…and the route will match both requests with a Content-Type of application/json as well as application/text

There’s also a way to build only the URL host or path for a route: use the methods URLHost() or URLPath() instead. For the previous route, we would do:

// "http://news.domain.com/"
host, err := r.Get("article").URLHost("subdomain", "news")

// "/articles/technology/42"
path, err := r.Get("article").URLPath("category", "technology", "id", "42")

And if you use subrouters, host and path defined separately can be built as well:

r := mux.NewRouter()
s := r.Host("{subdomain}.domain.com").Subrouter()
s.Path("/articles/{category}/{id:[0-9]+}").
 HandlerFunc(ArticleHandler).
 Name("article")

// "http://news.domain.com/articles/technology/42"
url, err := r.Get("article").URL("subdomain", "news",
 "category", "technology",
 "id", "42")

Walking Routes

The Walk function on mux.Router can be used to visit all of the routes that are registered on a router. For example,
the following prints all of the registered routes:

package main

import (
 "fmt"
 "net/http"
 "strings"

 "github.com/gorilla/mux"
)

func handler(w http.ResponseWriter, r *http.Request) {
 return
}

func main() {
 r := mux.NewRouter()
 r.HandleFunc("/", handler)
 r.HandleFunc("/products", handler).Methods("POST")
 r.HandleFunc("/articles", handler).Methods("GET")
 r.HandleFunc("/articles/{id}", handler).Methods("GET", "PUT")
 r.HandleFunc("/authors", handler).Queries("surname", "{surname}")
 err := r.Walk(func(route *mux.Route, router *mux.Router, ancestors []*mux.Route) error {
 pathTemplate, err := route.GetPathTemplate()
 if err == nil {
 fmt.Println("ROUTE:", pathTemplate)
 }
 pathRegexp, err := route.GetPathRegexp()
 if err == nil {
 fmt.Println("Path regexp:", pathRegexp)
 }
 queriesTemplates, err := route.GetQueriesTemplates()
 if err == nil {
 fmt.Println("Queries templates:", strings.Join(queriesTemplates, ","))
 }
 queriesRegexps, err := route.GetQueriesRegexp()
 if err == nil {
 fmt.Println("Queries regexps:", strings.Join(queriesRegexps, ","))
 }
 methods, err := route.GetMethods()
 if err == nil {
 fmt.Println("Methods:", strings.Join(methods, ","))
 }
 fmt.Println()
 return nil
 })

 if err != nil {
 fmt.Println(err)
 }

 http.Handle("/", r)
}

Graceful Shutdown

Go 1.8 introduced the ability to gracefully shutdown [https://golang.org/doc/go1.8#http_shutdown] a *http.Server. Here’s how to do that alongside mux:

package main

import (
 "context"
 "flag"
 "log"
 "net/http"
 "os"
 "os/signal"
 "time"

 "github.com/gorilla/mux"
)

func main() {
 var wait time.Duration
 flag.DurationVar(&wait, "graceful-timeout", time.Second * 15, "the duration for which the server gracefully wait for existing connections to finish - e.g. 15s or 1m")
 flag.Parse()

 r := mux.NewRouter()
 // Add your routes as needed

 srv := &http.Server{
 Addr: "0.0.0.0:8080",
 // Good practice to set timeouts to avoid Slowloris attacks.
 WriteTimeout: time.Second * 15,
 ReadTimeout: time.Second * 15,
 IdleTimeout: time.Second * 60,
 Handler: r, // Pass our instance of gorilla/mux in.
 }

 // Run our server in a goroutine so that it doesn't block.
 go func() {
 if err := srv.ListenAndServe(); err != nil {
 log.Println(err)
 }
 }()

 c := make(chan os.Signal, 1)
 // We'll accept graceful shutdowns when quit via SIGINT (Ctrl+C)
 // SIGKILL, SIGQUIT or SIGTERM (Ctrl+/) will not be caught.
 signal.Notify(c, os.Interrupt)

 // Block until we receive our signal.
 <-c

 // Create a deadline to wait for.
 ctx, cancel := context.WithTimeout(context.Background(), wait)
 defer cancel()
 // Doesn't block if no connections, but will otherwise wait
 // until the timeout deadline.
 srv.Shutdown(ctx)
 // Optionally, you could run srv.Shutdown in a goroutine and block on
 // <-ctx.Done() if your application should wait for other services
 // to finalize based on context cancellation.
 log.Println("shutting down")
 os.Exit(0)
}

Middleware

Mux supports the addition of middlewares to a Router [https://godoc.org/github.com/gorilla/mux#Router], which are executed in the order they are added if a match is found, including its subrouters.
Middlewares are (typically) small pieces of code which take one request, do something with it, and pass it down to another middleware or the final handler. Some common use cases for middleware are request logging, header manipulation, or ResponseWriter hijacking.

Mux middlewares are defined using the de facto standard type:

type MiddlewareFunc func(http.Handler) http.Handler

Typically, the returned handler is a closure which does something with the http.ResponseWriter and http.Request passed to it, and then calls the handler passed as parameter to the MiddlewareFunc. This takes advantage of closures being able access variables from the context where they are created, while retaining the signature enforced by the receivers.

A very basic middleware which logs the URI of the request being handled could be written as:

func loggingMiddleware(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 // Do stuff here
 log.Println(r.RequestURI)
 // Call the next handler, which can be another middleware in the chain, or the final handler.
 next.ServeHTTP(w, r)
 })
}

Middlewares can be added to a router using Router.Use():

r := mux.NewRouter()
r.HandleFunc("/", handler)
r.Use(loggingMiddleware)

A more complex authentication middleware, which maps session token to users, could be written as:

// Define our struct
type authenticationMiddleware struct {
 tokenUsers map[string]string
}

// Initialize it somewhere
func (amw *authenticationMiddleware) Populate() {
 amw.tokenUsers["00000000"] = "user0"
 amw.tokenUsers["aaaaaaaa"] = "userA"
 amw.tokenUsers["05f717e5"] = "randomUser"
 amw.tokenUsers["deadbeef"] = "user0"
}

// Middleware function, which will be called for each request
func (amw *authenticationMiddleware) Middleware(next http.Handler) http.Handler {
 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 token := r.Header.Get("X-Session-Token")

 if user, found := amw.tokenUsers[token]; found {
 // We found the token in our map
 log.Printf("Authenticated user %s\n", user)
 // Pass down the request to the next middleware (or final handler)
 next.ServeHTTP(w, r)
 } else {
 // Write an error and stop the handler chain
 http.Error(w, "Forbidden", http.StatusForbidden)
 }
 })
}

r := mux.NewRouter()
r.HandleFunc("/", handler)

amw := authenticationMiddleware{}
amw.Populate()

r.Use(amw.Middleware)

Note: The handler chain will be stopped if your middleware doesn’t call next.ServeHTTP() with the corresponding parameters. This can be used to abort a request if the middleware writer wants to. Middlewares should write to ResponseWriter if they are going to terminate the request, and they should not write to ResponseWriter if they are not going to terminate it.

Testing Handlers

Testing handlers in a Go web application is straightforward, and mux doesn’t complicate this any further. Given two files: endpoints.go and endpoints_test.go, here’s how we’d test an application using mux.

First, our simple HTTP handler:

// endpoints.go
package main

func HealthCheckHandler(w http.ResponseWriter, r *http.Request) {
 // A very simple health check.
 w.WriteHeader(http.StatusOK)
 w.Header().Set("Content-Type", "application/json")

 // In the future we could report back on the status of our DB, or our cache
 // (e.g. Redis) by performing a simple PING, and include them in the response.
 io.WriteString(w, `{"alive": true}`)
}

func main() {
 r := mux.NewRouter()
 r.HandleFunc("/health", HealthCheckHandler)

 log.Fatal(http.ListenAndServe("localhost:8080", r))
}

Our test code:

// endpoints_test.go
package main

import (
 "net/http"
 "net/http/httptest"
 "testing"
)

func TestHealthCheckHandler(t *testing.T) {
 // Create a request to pass to our handler. We don't have any query parameters for now, so we'll
 // pass 'nil' as the third parameter.
 req, err := http.NewRequest("GET", "/health", nil)
 if err != nil {
 t.Fatal(err)
 }

 // We create a ResponseRecorder (which satisfies http.ResponseWriter) to record the response.
 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(HealthCheckHandler)

 // Our handlers satisfy http.Handler, so we can call their ServeHTTP method
 // directly and pass in our Request and ResponseRecorder.
 handler.ServeHTTP(rr, req)

 // Check the status code is what we expect.
 if status := rr.Code; status != http.StatusOK {
 t.Errorf("handler returned wrong status code: got %v want %v",
 status, http.StatusOK)
 }

 // Check the response body is what we expect.
 expected := `{"alive": true}`
 if rr.Body.String() != expected {
 t.Errorf("handler returned unexpected body: got %v want %v",
 rr.Body.String(), expected)
 }
}

In the case that our routes have variables, we can pass those in the request. We could write
table-driven tests [https://dave.cheney.net/2013/06/09/writing-table-driven-tests-in-go] to test multiple
possible route variables as needed.

// endpoints.go
func main() {
 r := mux.NewRouter()
 // A route with a route variable:
 r.HandleFunc("/metrics/{type}", MetricsHandler)

 log.Fatal(http.ListenAndServe("localhost:8080", r))
}

Our test file, with a table-driven test of routeVariables:

// endpoints_test.go
func TestMetricsHandler(t *testing.T) {
 tt := []struct{
 routeVariable string
 shouldPass bool
 }{
 {"goroutines", true},
 {"heap", true},
 {"counters", true},
 {"queries", true},
 {"adhadaeqm3k", false},
 }

 for _, t := tt {
 path := fmt.Sprintf("/metrics/%s", t.routeVariable)
 req, err := http.NewRequest("GET", path, nil)
 if err != nil {
 t.Fatal(err)
 }

 rr := httptest.NewRecorder()
 handler := http.HandlerFunc(MetricsHandler)
 handler.ServeHTTP(rr, req)

 // In this case, our MetricsHandler returns a non-200 response
 // for a route variable it doesn't know about.
 if rr.Code == http.StatusOK && !t.shouldPass {
 t.Errorf("handler should have failed on routeVariable %s: got %v want %v",
 t.routeVariable, rr.Code, http.StatusOK)
 }
 }
}

Full Example

Here’s a complete, runnable example of a small mux based server:

package main

import (
 "net/http"
 "log"
 "github.com/gorilla/mux"
)

func YourHandler(w http.ResponseWriter, r *http.Request) {
 w.Write([]byte("Gorilla!\n"))
}

func main() {
 r := mux.NewRouter()
 // Routes consist of a path and a handler function.
 r.HandleFunc("/", YourHandler)

 // Bind to a port and pass our router in
 log.Fatal(http.ListenAndServe(":8000", r))
}

License

BSD licensed. See the LICENSE file for details.

 _static/down-pressed.png

_static/down.png

_static/minus.png

_images/install_docker.gif
4. pi@raspberrypi: ~ (ssh]

_static/plus.png

_images/gorilla-icon-64.png

_static/file.png

_static/up.png

_static/up-pressed.png

_images/docker-hello-world.gif
pieraspberrypi:~ $ [|

_images/docker-pull-image.gif
pieraspberrypi:- § ||

berrypi

_images/download-config.gif
-aspberrypi: ~ (ssh)
pieraspberrypi:~ § |

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/pi.jpg

_images/usermod.gif
Built: Wed Feb 7 21:
05/Arch: inux/arm
Experimental: false
If you would like to use Docker as a non-root user, you should now consider
adding your user to the "docker” group with something like:

Iudn usermod -aG docker pi
Remember that you will have to log out and back in for this to take effect!

WARNING: Adding a user to the "docker” group will grant the ability to run
containers which can be used to obtain root privileges on the
docker host.
Refer to https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface
for more infornation.

pieraspberrypi:~ $ ||

_images/phone.jpg
VI R ——— R
e e = € Wiz B

catus”,“payiond

(Catatusnior, sasan
wisi [o) Forget This Network

« lotitiecig-3 as®

Auto-Join ©

Contgure P Aomatic
1P Address 1921682716
‘Subnet ask 2552552550

Router 192168271

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

