
Eclipse IoT-Testware Documentation

Eclipse IoT-Testware Team

Dec 16, 2019

Contents

1 Quickstart Guide 3
1.1 Preparation . 3
1.2 Installation . 3

2 Installation 5
2.1 Target Environment . 5
2.2 Dashboard . 5
2.3 Dockerized Command Line . 6
2.4 Manual Installation . 8

3 Protocol Conformance Testing 19
3.1 General . 19
3.2 Test Suite Structure . 20
3.3 Test Configurations . 20
3.4 Test Purpose Catalogues . 20
3.5 IoT-Testware Test Suites . 21

4 ETSI and Eclipse Foundation 31

5 Dashboard 33
5.1 Introduction . 33
5.2 Overview . 33
5.3 Backend . 34
5.4 Frontend . 34
5.5 Integration . 34

6 Fuzzing 37

7 Smart Fuzzing Proxy 39
7.1 Installation . 40
7.2 General Concept . 41
7.3 Identify the SUT . 42
7.4 Identify Input fields . 42
7.5 Choose a Test Data Generator . 48
7.6 Running a Fuzzing Session . 48
7.7 Analyzing Fuzzing Logging . 48

i

8 About Eclipse IoT-Testware 51
8.1 IoT-Testware Team . 51
8.2 Objective . 51
8.3 Conformance Test Methodology and Framework . 51
8.4 Implementation . 52

9 Glossary 55

10 References 57
10.1 2017 . 57
10.2 2018 . 57
10.3 2019 . 57

11 License 59

12 MQTT Specification 63

13 CoAP RFC 7252 65

14 Indices and tables 67

Bibliography 69

Index 71

ii

Eclipse IoT-Testware Documentation

Great that you considering the Eclipse IoT-Testware to test your implementations. We would like to guide you to start
with the test suites.

Contents 1

Eclipse IoT-Testware Documentation

2 Contents

CHAPTER 1

Quickstart Guide

The easiest way to get started is to use Docker. The provided Dockerfile hides the complexity of TTCN-3 from the
user. Therefore the user has more time to test his systems.

1.1 Preparation

• Make sure you have a working Git installation

• Make sure you have a working Docker installation

• (optional) Set the following environment variables

TESTWARE=iot_testware

1.2 Installation

1. Clone the IoT-Testware Dashboard project

git clone https://github.com/eclipse/iottestware.dashboard
cd iottestware.dashboard

2. Build the Docker image

docker build -t $TESTWARE .

3. Start the Docker container

docker run --network=host -ti $TESTWARE

4. Call the Dashboard in your browser from https://localhost:3001

3

https://www.docker.com/
https://git-scm.com/
https://www.docker.com/

Eclipse IoT-Testware Documentation

4 Chapter 1. Quickstart Guide

CHAPTER 2

Installation

2.1 Target Environment

It is possible to install and run (parts of) the IoT-Testware in at least three different ways:

• Dashboard

• CLI

• Manual

For each of the mentioned possibilities exists different requirements for the environment to be set up. Please consider
your favorite way of using the IoT-Testware and make sure you fullfill all requirements.

2.2 Dashboard

2.2.1 Preparation

• Make sure you have a working Git installation

• Make sure you have a working Docker installation

• (optional) Set the following environment variables

TESTWARE=iot_testware

2.2.2 Installation

1. Clone the IoT-Testware Dashboard project

git clone https://github.com/eclipse/iottestware.dashboard
cd iottestware.dashboard

5

https://git-scm.com/
https://www.docker.com/

Eclipse IoT-Testware Documentation

2. Build the Docker image

docker build -t $TESTWARE .

3. Start the Docker container

docker run --network=host -ti $TESTWARE

4. Call the Dashboard in your browser from https://localhost:3001

2.3 Dockerized Command Line

If you are already familiar with concepts and the CLI of Eclipse Titan than this way is a light-weight solution to run
the Testware without webserver and dashboard.

2.3.1 Preparation

• Make sure you have a working Git installation

• Make sure you have a working Docker installation

2.3.2 Installation

1. Clone the main IoT-Testware project

git clone https://github.com/eclipse/iottestware
cd iottestware

2. Build the Docker image

docker build -t TESTWARE .

3. Start the Docker container

docker run -ti TESTWARE /bin/bash

2.3.3 Run Test Campaigns

The IoT-Testware Docker image ships currently two test suites for MQTT and CoAP. We will show you quickly how
to configure and run the test suites.

Starting test suites with TITAN

ttcn3_start [-ip host_ip_address] executable [file.cfg] {module_name[.testcase_name]}

Looks quite easy: in order to start a test campaign TITAN requires us to provide an executable test suite. As we want
also be able to provide different kinds of configurations, we also need to provide a .cfg file. Fortunately, we already
have all the components in Docker. Let’s see how we can run some MQTT conformance tests against your System
Under Test (SUT).

1. Change directory to the MQTT playground and make yourself familiar with the provided files.

6 Chapter 2. Installation

https://projects.eclipse.org/projects/tools.titan
https://git-scm.com/
https://www.docker.com/

Eclipse IoT-Testware Documentation

cd /home/titan/playground/mqtt; ls

By default, the public MQTT Broker iot.eclipse.org is preconfigured in the provided configuration file. If you
want to change the default configuration follow the next instructions.

1.1 (optional) get started with your own configuration

cp BasicConfig.cfg YOUR_CONFIG.cfg
vi YOUR_CONFIG.cfg

1.2 (optional) to configure the TS (Test System) for your SUT you can change the hostName, portNumber and
credentials definitions.

tsp_addresses :=
{
{

id := "mqtt_server",
hostName := "iot.eclipse.org",
portNumber := 1883

}, {
id := "mqtt_client",
hostName := "0.0.0.0",
portNumber := 45679,
credentials :=
{

clientId := "CLIENT_ID",
username := "USER_NAME",
password := "PASSWORD",
topicName := "your/mqtt/topic/name"

}
}

}

1.3 (optional) put together your own test campaing by choosing test cases from the [EXECUTE] section.

Note: The configuration file can contain any white space characters. There are three ways to put com-
ments in the file: you can use the C comment delimiters (i.e. /* and */). Additionally, characters beginning
with # or // are treated as comments until the end of line.

[EXECUTE]
CONNECT Control Packet
MQTT_TestCases.TC_MQTT_BROKER_CONNECT_001 # <- will execute
MQTT_TestCases.TC_MQTT_BROKER_CONNECT_002 # <- will execute
#MQTT_TestCases.TC_MQTT_BROKER_CONNECT_003 # <- won't execute
...

2.1 Run the whole test campaign given in YOUR_CONFIG.cfg

ttcn3_start iottestware.mqtt YOUR_CONFIG.cfg

2.2 (alternative) Run a single test case TC_MQTT_BROKER_CONNECT_001 from MQTT_TestCases

ttcn3_start iottestware.mqtt YOUR_CONFIG.cfg MQTT_TestCases.TC_MQTT_BROKER_
→˓CONNECT_001

2.3. Dockerized Command Line 7

Eclipse IoT-Testware Documentation

2.4 Manual Installation

The IoT-Testware is composed of several test suites from different repositories with once again several dependencies to
the Eclipse Titan runtime. Hence, the process for a native installation can become quite complex. However, a native
installation is very helpful for development. Therefore we provide additional ‘flavours’ of installation for development
purposes.

• We highly recommend to consider the Titan installation guide to set up Titan properly (check the supported OS
ons the side beforehand).

• If you are not using one of the supported OS, we recommend to set up a virtual machine or use Titan with
Docker.

2.4.1 install.py

This documentation helps you to understand and use the install.py script.

Contents

• install.py

– Prerequisites

– help command

– protocol command

– build command

– path command

– executable command

– verbose command

Prerequisites

• Latest version of

• Latest version of . For installation details please consult the official

help command

You can refer to the help command if you don’t know how to continue at any point. Simply run one the following
command:

python install.py -h
python install.py --help

The result gives you a first idea, what is possible with the script. The output looks like this:

-h show this help message and exit

-p PROTO available protocol test suites are {mqtt, coap, opcua} sets a protocol that will be
cloned together with its dependencies

-b build the project and create a Makefile

8 Chapter 2. Installation

https://projects.eclipse.org/projects/tools.titan/downloads
https://github.com/eclipse/iottestware/blob/master/install.py

Eclipse IoT-Testware Documentation

--path PATH specify optionally your root directory, where all dependencies will be stored

-e NAME set the name of the executable that will be generated

-v progress status output is verbose

protocol command

The protocol command is the a mandatory flag. It will scan your working directory to check whether all dependencies
are met. In case there is something missing, the script will download the missing dependencies automatically. The
command demands a parameter representing the interesting protocol.

Let’s assume you would like to run tests against a CoAP implementation. Run one of the following command to get
the CoAP conformance test suite and all it’s dependencies:

python install.py -p coap
python install.py --protocol coap

Use the same procedure for any available protocol.

build command

This optional command can be used to build the IoT-Tesware. It builds a Makefile first and creates an executable
afterwards. You can only build one protocol at a time. It is determined by the protocol command. To build the CoAP
test suite for example, run one of the following commands:

python install.py -p coap -b
python install.py -p coap --build

path command

When you run the install script, it creates a folder structure under ~/Titan by default. This is your base directory
where the IoT-Testware and all it’s dependencies are stored:

IoT-Testware You find the test suites for the protocols you have chosen via the protocol command. It creates a
folder for every protocol separately in the form of iottestware.<PROTOCOL>

Libraries Collection of libraries needed for the specific IoT-Testware protocol.

ProtocolModules The protocol modules, provided in , are included inside this directory. The subset of protocol
modules are protocol dependent. They define the protocol types.

TestPorts To bridge the gap between the test suite and the system under test (SUT), test ports are needed. They are
provided by Eclipse Titan project.

executable command

With this command it is possible to name the executable that is generated when calling the build command. In contrast,
the install script chose a default name for the executable following the scheme:

iottestware.<PROTOCOL>

To set your own name for the resulting executable, let’s say “myExecutable” simply run one of this command:

python install.py -p coap -e myExecutable
python install.py -p coap --executable_name myExecutable

2.4. Manual Installation 9

https://projects.eclipse.org/projects/tools.titan/developer

Eclipse IoT-Testware Documentation

verbose command

If you set this command, the console output will be verbose and give you more information during the process. By
default, the output is quite, meaning only important messages are shown. To switch the verbose output on, you add
either ‘‘ -v ‘‘ or ‘‘ –verbose ‘‘ to your command like in the following examples:

python install.py -p coap --verbose -e myExecutable
python install.py -p coap -b -v
python install.py --verbose --protocol coap

2.4.2 Install with Eclipse IDE

These instructions will get you a clean IoT-Testware clone up and running on your local machine for development and
testing purposes.

Contents

• Install with Eclipse IDE

– Prerequisites

– Installing Quickstart

– Set up

– Eclipse IDE

Prerequisites

• Latest version of Java

• Latest version of Python (v2 or v3)

• Latest version of Eclipse Titan. For installation details please consult the official Eclipse Titan

Installing Quickstart

Note: Make sure all prerequisites are met. As we use Eclipse Titan (natively running under Linux) to compile and exe-
cute our test suite, the following instruction won’t cover other OS like Windows or MacOS. We recommend installing
a Linux derivate in a virtual machine.

Set up

Firstly, you need to get all needed dependencies to run the test suites. To do so, simply run the python script
install.py with your protocol of choice:

python install.py -p <PROTOCOL>

This is the most minimalistic way of getting the dependencies. For a more complete explanation of the installation
script please refer to the documentation. With Eclipse Titan you are free to choose to work either from the Command
Line (CLI) or from Eclipse IDE. Go ahead and read further instructions of your preferred way of working.

10 Chapter 2. Installation

https://projects.eclipse.org/projects/tools.titan/downloads

Eclipse IoT-Testware Documentation

Eclipse IDE

In every of our protocol repositories you find a iottestware.<PROTOCOL>.tpd file that you need to import. Open
the Titan IDE in your desired workspace and use the import feature File -> Import -> TITAN -> Project
from .tpd file

Klick Next and choose the iottestware.<PROTOCOL>.tpd from ${PATH_BASE}

2.4. Manual Installation 11

Eclipse IoT-Testware Documentation

Klick Next and choose importation options.

12 Chapter 2. Installation

Eclipse IoT-Testware Documentation

Klick Finish and the IDE will import all the required Projects and open the properties for each. Make sure each project
is configured to _generate Makefile for use with the function test runtime_.

Right-click the iottestware.<PROTOCOL> project and select Build Project.

2.4. Manual Installation 13

Eclipse IoT-Testware Documentation

Note: Make sure you are in the TITAN Editing Perspective, otherwise the Build Project might be not available.

2.4.3 Install with Docker

For an easy deployment, you can use the shipped Dockerfile coming with the repository.

Contents

• Install with Docker

– Preparations

* Additional Docker commands

– Start Docker container

– Run the Dashboard

Docker is a computer program that performs operating-system-level virtualization. It uses the resource isolation

14 Chapter 2. Installation

https://en.wikipedia.org/wiki/Operating-system-level_virtualization

Eclipse IoT-Testware Documentation

features of the Linux kernel to allow independent containers to run within a single Linux instance, avoiding the
overhead of staring and maintaining virtual machines.

Docker will perform all the heavy lifting of virtualization and running the IoT-Testware including Eclipse Titan.
Therefore, an installed and functioning Docker is the only prerequisite.

Note: Although, it is possible to run Docker containers on different operating systems, Docker’s host networking
driver only works on Linux hosts. Hence, it is recommended to run the Docker containers on a Linux machine.

Preparations

• Make sure you have a working Docker installation

• (optional) Set the following environment variables

TW_CONTAINER_NAME=iot_testware
TW_NETWORK_NAME=iottestware_net
TW_SUBNET=172.18.0.0/16
TW_FIXED_IP=172.18.0.4

TW_VOLUME_NAME=testware_volume
TW_VOLUME_PATH=/home/titan/iottestware.webserver/backend/resources/history

• (optional) Create separated Docker network

docker network create --subnet $TW_SUBNET $TW_NETWORK_NAME
docker network ls

• (optional) Create persistend storage and docker volumes

docker volume create $TW_VOLUME_NAME

• Build the Docker container

2.4. Manual Installation 15

https://www.docker.com/
https://docs.docker.com/network/host/
https://docs.docker.com/network/host/
https://www.docker.com/
https://docs.docker.com/storage/
https://docs.docker.com/storage/volumes/#create-and-manage-volumes

Eclipse IoT-Testware Documentation

docker build -t $TW_CONTAINER_NAME .

Additional Docker commands

• Stop all running container

docker stop $(docker ps -aq)

• Delete all containers

docker rm $(docker ps -aq)

• Delete all images

docker rmi $(docker images -q)

• Force delete a specific image

docker rmi -f <IMAGE_ID>

• open second bashwindow

docker exec -it <CONTAINER_ID> /bin/bash

Start Docker container

Docker offers many options for starting and integrating containers. In this section we will show how the container
can be started with persistend storage and how to attach the container to the previously created sub-network. Read the
Docker networking overview for more information.

1. Most basic way to start a Docker container without persistend storage and using the host’s network interface

docker run --network host $TW_CONTAINER_NAME

2. Isolated Docker container which is attached to the sub-network with a fixed IP and without persistend storage

docker run --network $TW_NETWORK_NAME --ip $TW_FIXED_IP $TW_CONTAINER_NAME

3. Using host’s network interface and with persistend storage

docker run --network host -v $TW_VOLUME:$TW_VOLUME_PATH $TW_CONTAINER_NAME

4. Isolated Docker container which is attached to the sub-network with a fixed IP and with persistend storage

docker run --network $TW_NETWORK_NAME --ip $TW_FIXED_IP -v $TW_VOLUME:$TW_
→˓VOLUME_PATH $TW_CONTAINER_NAME

Run the Dashboard

Note: This step requires that you have used the Dashboard Docker file

16 Chapter 2. Installation

https://docs.docker.com/storage/
https://docs.docker.com/network/
https://github.com/eclipse/iottestware.dashboard

Eclipse IoT-Testware Documentation

Once everything is correctly deployed and started you can access the IoT-Testware Dashboard from your browser.
Dependent on you network configuration simply open one of the following URLs in your browser:

• If you used the host network for the container: https://localhost:3001

• If you deployed the container with a custom network and given fixed IP: https://$TW_FIXED_IP:3001

Useful

2.4. Manual Installation 17

Eclipse IoT-Testware Documentation

18 Chapter 2. Installation

CHAPTER 3

Protocol Conformance Testing

Contents

• Protocol Conformance Testing

– General

– Test Suite Structure

– Test Configurations

– Test Purpose Catalogues

– IoT-Testware Test Suites

3.1 General

The purpose of conformance testing is to determine to what extent a single implementation of a particular standard
conforms to the individual requirements of that standard. Please find additional and more detailed information about
conformance testing at ETSI’s Center for Testing & Interoperability

The ISO (International Organization for Standardization) standard for the methodology of conformance testing
(ISO/IEC 9646-1 and ISO/IEC 9646-2) as well as the ETSI (European Telecommunications Standards Institute) rules
for conformance testing (ETSI ETS 300 406) are used as a basis for the test methodology.

To implement this methodology we require several intermediary artefacts. Those single artefacts break down the whole
complexity of conformance testing into smaller pieces, each with a specific perspective on the problem.

19

https://portal.etsi.org/services/centrefortestinginteroperability/etsiapproach/conformancetesting.aspx

Eclipse IoT-Testware Documentation

3.2 Test Suite Structure

In the first step we define a TSS (Test Suite Structure) for a specific IUT (Implementation Under Test).

The TSS reflects the coverage of the reference specification by the TS (Test System): it is a synopsis of “which tests
are performed on which aspects of the reference specification”. The conformance requirements and the ICS (Im-
plementation Conformance Statement) proforma of the base specification are an essential source of cross-reference to
check that the coverage of the test suite specified by the TSS&TP (Test Suite Structure & Test Purposes) is acceptable.

3.3 Test Configurations

TODO: Why do we need Test configurations?

3.4 Test Purpose Catalogues

A TP (Test Purpose) (Test Purpose) is a formal description of a test case. A formal description in the form of a
TP offers a possibility of describing the purpose of a test without having the later technical implementation in mind.
Following the TSS the tester is supported in systematically covering the complete IUT specification.

The listing below shows a simple MQTT (MQ Telemetry Transport) TP specified in TDL-TO (Test Description
Language - Structured Test Objective Specification).

Test Purpose {
TP Id TP_MQTT_Broker_CONNECT_001

Test objective
"The IUT MUST close the network connection if fixed header flags in CONNECT Control

→˓Packet are invalid"
Reference

(continues on next page)

20 Chapter 3. Protocol Conformance Testing

Eclipse IoT-Testware Documentation

(continued from previous page)

"[MQTT-2.2.2-1], [MQTT-2.2.2-2], [MQTT-3.1.4-1], [MQTT-3.2.2-6]"
PICS Selection PICS_BROKER_BASIC

Expected behaviour
ensure that {
when {

the IUT entity receives a CONNECT message containing
header_flags indicating value '1111'B;

}
then {

the IUT entity closes the TCP_CONNECTION
}

}
}

The exemple below shows a simplified tabular representation for the TP.

TP-ID TP_MQTT_BROKER_CONNECT_01
Selection PICS_Broker
Summary The IUT MUST close the network connection if. . .
Reference [MQTT-2.2.2-1], [MQTT-2.2.2-2]
Expected bahaviour
initial condition statement
ensure that statement

3.5 IoT-Testware Test Suites

This steps focuses on a technical implementation of the TPs. We use TTCN-3 and Eclipse Titan to implement each
TP into a TC (Test Case) and orchestrate to executable test suites.

3.5.1 MQTT Test Suite

Contents

• MQTT Test Suite

– MQTT Protocol

– Test Configurations

– Test Purposes

– Test System

– Test Cases

– Test Case Functions

– Translation Port

– Generic Functions

– Test Templates

3.5. IoT-Testware Test Suites 21

http://www.ttcn-3.org/
https://projects.eclipse.org/projects/tools.titan

Eclipse IoT-Testware Documentation

– Default Behaviours

MQTT Protocol

A very brief summary of MQTT from the FAQ MQTT stands for MQ Telemetry Transport. It is a pub-
lish/subscribe, extremely simple and lightweight messaging protocol, designed for constrained devices and
low-bandwidth, high-latency or unreliable networks.

Note: We provide an annotated version of the official MQTT specification which can be directly referenced (e.g. and
)

Test Configurations

From a general and abstract perspective MQTT has two basic architectures for testing. This architecture directly
reflects the choice of your SUT (System Under Test). We will call the first architecture Broker Testing. A MQTT
Broker is the SUT as shown in the figure blow:

The second major architecture we will call Client Testing as now, the Client is in focus as the SUT.

22 Chapter 3. Protocol Conformance Testing

http://mqtt.org/faq
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Eclipse IoT-Testware Documentation

Now we can start to extract different configurations from the test architectures. The image below depicts the step of
retrieving test configurations from the architecture:

The output of this exemplary step is a test configuration (CF01) where the Broker is the SUT and the TS takes the
role of a MQTT Client.

The MQTT test suite uses four test configurations in order to cover the different test scenarios. In these configurations,
the tester simulates one or several MQTT clients or brokers implementing the MQTT protocol.

ID: MQTT_Conf_01
Description: The MQTT Broker is the IUT and the TS takes the role of a MQTT Client

ID: MQTT_Conf_02
Description: The MQTT Broker is the IUT and the TS takes the role of multiple MQTT Clients.

3.5. IoT-Testware Test Suites 23

Eclipse IoT-Testware Documentation

ID: MQTT_Conf_03
Descrip-
tion:

The MQTT Client is the IUT and the TS takes the role of a MQTT Broker. For this configuration an
optional UT (Upper Tester) might be required.

ID: MQTT_Conf_04
De-
scrip-
tion:

As well the MQTT Broker as the MQTT Client, each is a IUT in this configuration. The part of the UT
from the previous configuration is here replaced by a concrete application.

Test Purposes

TODO: link to .tplan2 from GitHub and .pdf from ETSI

1 Test Purpose {
2 TP Id TP_MQTT_Broker_CONNECT_001
3

4 Test objective
5 "The IUT MUST close the network connection if fixed header flags in CONNECT

→˓Control Packet are invalid"
6 Reference
7 "[MQTT-2.2.2-1], [MQTT-2.2.2-2], [MQTT-3.1.4-1], [MQTT-3.2.2-6]"
8 PICS Selection PICS_BROKER_BASIC

(continues on next page)

24 Chapter 3. Protocol Conformance Testing

Eclipse IoT-Testware Documentation

(continued from previous page)

9

10 Expected behaviour
11 ensure that {
12 when {
13 the IUT entity receives a CONNECT message containing
14 header_flags indicating value '1111'B;
15 }
16 then {
17 the IUT entity closes the TCP_CONNECTION
18 }
19 }
20 }

Test System

TODO: describe Test System -> TTCN-3 code

Test Cases

You can find all MQTT Tests on GitHub.

We will examine the procedure of a single TC in order to get the understanding of the code structure.

The code block below shows the TTCN-3 implementation of the TC TC_MQTT_BROKER_CONNECT_01 for the
cohesive TP TP_MQTT_BROKER_CONNECT_01

1 /*
2 * @purpose The IUT MUST close the network connection if fixed header flags in CONNECT

→˓Control Packet are invalid
3 *
4 * @reference [MQTT-2.2.2-2], [MQTT-3.1.4-1], [MQTT-3.2.2-6]
5 */
6 testcase TC_MQTT_BROKER_CONNECT_001() runs on MQTT_Client
7 {
8 if(f_init("mqtt_client", "mqtt_server"))
9 {

10 f_TC_MQTT_BROKER_CONNECT_001();
11 }
12 f_cleanUp();
13 }

Let’s have a deeper look into the details of a TC. The first block comment contains only two TTCN-3 documentation
tags but these give us a direct connection between a TC, a TP, and the MQTT specification.

/*
* @purpose The IUT MUST close the network connection if fixed header flags in CONNECT
→˓Control Packet are invalid

*
* @reference [MQTT-2.2.2-2], [MQTT-3.1.4-1], [MQTT-3.2.2-6]

*/

The signature of a TTCN-3 TC contains many information which help us to reflect the Test Architecture.

testcase TC_MQTT_BROKER_CONNECT_001() runs on MQTT_Client

3.5. IoT-Testware Test Suites 25

https://www.etsi.org/deliver/etsi_es/201800_201899/20187310/04.05.01_60/es_20187310v040501p.pdf#page=9
https://www.etsi.org/deliver/etsi_es/201800_201899/20187310/04.05.01_60/es_20187310v040501p.pdf#page=9

Eclipse IoT-Testware Documentation

We have a distinct name for the TC which can be easy mapped to it’s cohesive TP. (see in the MQTT |tp| catalogue for
TP_MQTT_BROKER_CONNECT_001) The signature tells us also, that this TC will be executed on a Client (runs
on MQTT_Client).

The body of the TC is used to initialize the test configuration and start the TC behaviour which is wrapped into a
single function.

if(f_init("mqtt_client", "mqtt_server"))
{
f_TC_MQTT_BROKER_CONNECT_001();

}
f_cleanUp();

Test Case Functions

How does a TC function look like?

function f_TC_MQTT_BROKER_CONNECT_001() runs on MQTT_Client
{

var UTF8EncodedString v_clientId := f_getClientId();

var template MQTT_v3_1_1_Message v_conMsg := t_connect_flags(p_client_id := v_
→˓clientId, p_flags := '1111'B);
f_send(valueof(v_conMsg));

if(f_receiveNetworkClosedEvent())
{
setverdict(pass, "IUT closed the Network Connection correctly");

}
else
{
setverdict(fail, "IUT MUST close the Network Connection");
f_disconnectMqtt();

}
}

While syntactically this function might appear confusing, though the semantic behind is quite powerful and simple.
Let’s go through the implemented TC and the according TP.

Translation Port

TODO: Explain translation port

Generic Functions

TODO: describe MQTT_Functions module

Test Templates

TODO: describe templates

26 Chapter 3. Protocol Conformance Testing

Eclipse IoT-Testware Documentation

Default Behaviours

TODO: describe the default behaviours

See also:

MQTT Interop Test Day in Burlingame, CA - March 17, 2014 The goal was to have as many different MQTT
client and server implementations participate in interoperability testing to validate the implementation of the
upcoming OASIS MQTT standard.

MQTT Interop Test Day in Ottawa, Canada – April 8, 2014 MQTT Test Day Demonstrates Successful Interoper-
ability for the Internet of Things

MQTT Interop Test Day in Burlingame, CA - March 9, 2015 The goal was to have as many different MQTT client
and server implementations participate in interoperability testing to validate the implementation of the OASIS
MQTT 3.1.1 specification.

3.5.2 CoAP Test Suite

Contents

• CoAP Test Suite

– CoAP Protocol

– Test Configurations

– Test Purposes

– Test System

– Test Cases

– Test Case Functions

– Translation Port

– Generic Functions

– Test Templates

– Default Behaviours

CoAP Protocol

COAP (Constrained Application Protocol) is a specialized Internet Application Protocol for constrained devices, as defined in RFC 7252
The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained
nodes and constrained (e.g., low-power, lossy) networks. The nodes often have 8-bit microcontrollers with
small amounts of ROM and RAM, while constrained networks such as IPv6 over Low-Power Wireless Personal
Area Networks (6LoWPANs) often have high packet error rates and a typical throughput of 10s of kbit/s.
The protocol is designed for machine- to-machine (M2M) applications such as smart energy and building
automation.

Note: We provide an annotated version of the official RFC which can be directly referenced (e.g. or)

3.5. IoT-Testware Test Suites 27

https://wiki.eclipse.org/Paho/MQTT_Interop_Testing_Day
https://www.eclipse.org/org/press-release/20140407_mqtt_test_day.php
https://wiki.eclipse.org/Paho/MQTT_Interop_Testing_Day_2015
https://tools.ietf.org/html/rfc7252
hhttps://tools.ietf.org/html/rfc7252

Eclipse IoT-Testware Documentation

Test Configurations

The concrete CoAP test configurations are listed below:

ID: CoAP_Conf_01
Description: The CoAP Server is the IUT and the TS takes the role of a CoAP Client

ID: CoAP_Conf_02
Description: The CoAP Server is the IUT and the TS takes the role of multiple CoAP Clients.

ID: CoAP_Conf_03
Descrip-
tion:

The CoAP Client is the IUT and the TS takes the role of a CoAP Server. For this configuration an
optional UT might be required.

ID: CoAP_Conf_04
De-
scrip-
tion:

As well the CoAP Server as the CoAP Client, each is a IUT in this configuration. The part of the UT
from the previous configuration is here replaced by a concrete application.

28 Chapter 3. Protocol Conformance Testing

Eclipse IoT-Testware Documentation

Test Purposes

TODO: link to .tplan2 from GitHub and .pdf from ETSI

1 Test Purpose {
2 TP Id TP_CoAP_MessageFormat_Header_Version_001
3

4 Test objective
5 "The IUT is responding on a correctly set version number."
6

7 Reference
8 "RFC7252#section-3", "https://tools.ietf.org/html/rfc7252#section-3",
9 "RFC7252#section-4.1", "https://tools.ietf.org/html/rfc7252#section-4.1",

10 "RFC7252#section-4.2 (b)", "https://tools.ietf.org/html/rfc7252#section-4.2"
11

12 PICS Selection PIC_Server
13

14 Expected behaviour
15 ensure that {
16 when {
17 the IUT entity receives a request message containing
18 version indicating value 1,
19 msg_type indicating value 0, //Confirmable
20 token_length indicating value 0,
21 code indicating value 0.00, //Empty Message
22 msg_id corresponding to MSG_ID1;
23 } then {
24 the IUT entity sends a response message containing
25 version indicating value 1,
26 msg_type indicating value 3, //Reset
27 token_length indicating value 0,
28 code indicating value 0.00, //Empty Message
29 msg_id corresponding to MSG_ID1;
30 or the client entity times_out //from section 4.2 (b)
31 }
32 }
33 }

Test System

TODO: describe Test System -> TTCN-3 code

Test Cases

You can find all CoAP Tests on GitHub.

3.5. IoT-Testware Test Suites 29

Eclipse IoT-Testware Documentation

testcase TC_COAP_SERVER_001() runs on MTC_CT
{

map(self:p, system:p);
f_TC_COAP_SERVER_001();
unmap(self:p, system:p);

}

Test Case Functions

TODO: describe a CoAP Test Case Function

function f_TC_COAP_SERVER_001() runs on MTC_CT
{

f_sendMessage(m_coapPingMessage);
f_receiveMessage(m_coapEmptyMessage);

}

Translation Port

TODO: Explain translation port

Generic Functions

TODO: describe MQTT_Functions module

Test Templates

TODO: describe templates

Default Behaviours

TODO: describe the default behaviours

See also:

CoAP Plugtests 1: Guide ETSI CTI Plugtests Guide (First Draft V0.0.16 2012-03) for achieving interoperability

CoAP Plugtests 1: Report The 1st CoAP Plugtest was held from 24 to 25 March 2012 in Paris, France and was
co-located with IETF#83. This event was jointly organized by ETSI, IPSO Alliance and the FP7 Probe-IT
project1.

3.5.3 OPC-UA Test Suite

30 Chapter 3. Protocol Conformance Testing

https://portal.etsi.org/cti/downloads/TestSpecifications/CoAP_IOT_TestSpecification_v016_20120321.pdf
https://portal.etsi.org/Portals/0/TBpages/CTI/Docs/CoAP_Plugtest_1_TR_2012.pdf

CHAPTER 4

ETSI and Eclipse Foundation

Test projects currently cover MQTT, CoAP, Lo-RaWAN and foundational security IoT-Profile of IEC 62443-4-2. The
work of ETSI MTS-TST is correlated with the IoT-Testware which is hosted by the Eclipse Foundation. The technical
contributions from the Eclipse members are coordinated by several dedicated Eclipse committers. The work includes
Test purposes in TDL (primarily TDL-TO which is an extension of TDL for Structured Test Objective Specification)
but also TTCN-3 test code developments that is important for test campaign execution in the test labs. In particular,
ETSI members from MTS-TST control the test purposes developments and are responsible for the utilization of the
resulting TP definitions for the ETSI working items and technical specifications. This approach allows to get input
from active developers from the Eclipse community and a fast implementation of the target test suites for the interested
industry but also support a faster develop-ment of ETSI specifications.

The illustrates an overview regarding two development procedures and its relationships: (a) the defini-tion and imple-
mentation of the target system (under test) that needs to address subjects, assets and require-ments as well as threats,
policies and assumptions, and (b) the test development including test architecture, test purposes and test suite structure.
System and test engi-neers need to derive the test implementation to be executed and analysed, e.g. for certification
purposes.

31

https://www.etsi.org/
https://portal.etsi.org/TBSiteMap/MTS/MTSTSTToR.aspx
https://www.eclipse.org/
https://tdl.etsi.org/
https://www.etsi.org/deliver/etsi_es/203100_203199/20311904/01.03.01_60/es_20311904v010301p.pdf
http://www.ttcn-3.org/

Eclipse IoT-Testware Documentation

32 Chapter 4. ETSI and Eclipse Foundation

CHAPTER 5

Dashboard

Contents

• Dashboard

– Introduction

– Overview

– Backend

– Frontend

– Integration

5.1 Introduction

The Eclipse IoT-Testware Dashboard is a collection of several tools and test suites which makes it extremely flexible
and powerful. Firstly the Backend which runs in background and provides the core functionality. Secondly, the
Frontend, a thin ReactJS Application which provides a convenient user interface. And last but not least, the IoT-
Testware with the test suites itself.

5.2 Overview

The first picture gives a brief overview about the basic idea.

33

https://github.com/eclipse/iottestware
https://github.com/eclipse/iottestware

Eclipse IoT-Testware Documentation

Building upon the overview, the next picture is intended to give a more detailed view on the whole system.

5.3 Backend

The backend component is a node.js application which is intended to abstract the “low-level” handling of testing tools
and their configurations.

5.4 Frontend

The frontend component is a JavaScript application which serves as a user interface to the backend component.
Through the nature of the architecture the frontend is intended to be a thin client.

5.5 Integration

The sequence diagram below gives an overview about the interaction of involved components, starting from the user
and ending with the SUT.

34 Chapter 5. Dashboard

Eclipse IoT-Testware Documentation

5.5. Integration 35

Eclipse IoT-Testware Documentation

36 Chapter 5. Dashboard

CHAPTER 6

Fuzzing

TODO: What is fuzzing and how do we make use of fuzzing?

37

Eclipse IoT-Testware Documentation

38 Chapter 6. Fuzzing

CHAPTER 7

Smart Fuzzing Proxy

Contents

• Smart Fuzzing Proxy

– Installation

* Prerequisite

* Set-up a Virtual Environment

* Manual Set-up of a Virtual Environment

* Quickstart

– General Concept

– Identify the SUT

– Identify Input fields

* Protocol Module

· Protocol Message Examples

* Fuzzdata Generators

* Fuzzing Mutators

· Unary Operators

· Binary Operators

* Filters

· Filter Direction

· Filter Definition

* Rules

39

Eclipse IoT-Testware Documentation

* Checking the configuration

– Choose a Test Data Generator

– Running a Fuzzing Session

– Analyzing Fuzzing Logging

7.1 Installation

7.1.1 Prerequisite

Make sure the following prerequisites are met.

• Python (at least version 3, 3.7 is recommended)

• pip

• python3-venv

7.1.2 Set-up a Virtual Environment

The Fuzzing Proxy requires a set of external libraries which must be installed beforehand. To get you started as easy
as possible, a helping Monkey (based on the Infinite monkey theorem) is provided to assist you with your fuzzing
endeavor. Provided that your system meets the prerequisites, instruct the Monkey to setup a virtual environment for
you:

./monkey setup

This will create a Python virtual environment in ./venv directory.

7.1.3 Manual Set-up of a Virtual Environment

The previously introduced Bash script provides an easy way to set up a virtual environment and installation of all
required dependencies. However, the script might fail or you just might want to set up the virtual environment on your
own. In this case the following steps will be required.

1. Create a virtual environment with python3 -m venv {VENV_DIRECTORY}

2. Activate the virtual environment with source {VENV_DIRECTORY}/bin/activate

3. Install pipenv for your virtual environment with pip install pipenv

4. Install all required libraries with pipenv install

1. if installation fails with a FileNotFoundError probably pdflatex is missing as discussed on
GitHub

2. Quickfix: simply install LaTeX with e.g. apt install texlive-latex-base and repeat step 4

Note: If you choose to create your {VENV_DIRECTORY} other than ./venv the Monkey won’t be any longer able to
find your virtual environment. To overcome this issue you will either need change the directory in the monkey script
or simply replace monkey with python3 proxy.py in the following examples.

40 Chapter 7. Smart Fuzzing Proxy

https://www.python.org/downloads/
https://pypi.org/project/pip/
https://en.wikipedia.org/wiki/Infinite_monkey_theorem
https://github.com/secdev/scapy/pull/2152

Eclipse IoT-Testware Documentation

7.1.4 Quickstart

To start the Fuzzing Proxy against iot.eclipse.org:1883 with a sample configuration execute the following
command:

./monkey fuzzing -l 1883 -r iot.eclipse.org -c resources/samples/mqtt_01.json

This will start the Fuzzing Proxy which will proxy the MQTT traffic from your local machine to iot.eclipse.org
and vice versa.

You can further explore the functionalities provided by the Fuzzing Proxy by using the built-in help.

./monkey --help

./monkey {command} --help

Important: Do not fuzz against production environments or systems other than your ones without permission.

7.2 General Concept

The Fuzzing Proxy is a MITM (Man-in-the-middle) Fuzzer which is capable of proxying the network traffic between
to systems and altering this traffic on behalf of predefined rules. The Fuzzing Proxy does not generate any message on
it’s own. To trigger the fuzzing you need to provide (more or less) valid templates.

In the next sections we will show you how to use the Fuzzing Proxy by applying a 5 Steps Fuzzing Workflow as shown
in the following graphic.

7.2. General Concept 41

Eclipse IoT-Testware Documentation

7.3 Identify the SUT

Identifying the SUT (System Under Test) is the first step in the workflow.

Note: Needs to be further documented.

7.4 Identify Input fields

Identifying input fields and corresponding mutators for your fuzzing session is probably the most challenging part in
the whole workflow. In this section we will demonstrate how interesting input fields can be chosen and corresponding
mutators defined in the configuration file.

The configuration file provided to the Fuzzing Proxy contains abstract fuzzing instructions which are used at runtime
for manipulation of proxied messages. This section will explain the basic concepts behind the configuration file and
show you how to build a fuzzing scenario.

The configuration file is a plain JSON file following a specific schema. Below each single configuration block is
described in detail.

7.4.1 Protocol Module

First, we will start with the protocolModule block which simply defines some basic information about the fuzzed
protocol.

{
"protocolModule": {
"protocol": "MQTT",
"encoding": "utf-8",
"payload": "json" }

}

1. protocol obviously, defines which protocol will be used.

2. encoding defines how strings within the protocol fields should be handled.

42 Chapter 7. Smart Fuzzing Proxy

Eclipse IoT-Testware Documentation

3. payload defines how to handle payloads within messages. Currently, only json and raw are possible.

You can simply ask the Monkey to tell you the supported protocols:

./monkey protocols

Protocol Message Examples

For the next steps we will require some insights into the protocol chosen in the protocol module. Especially, the field
namings and message structures provided by Scapy (which is used to decode and encode the messages) are required in
the next steps. To get familiar with Scapy’s representation of protocol messages, you can use some provided message
examples.

Again, simply ask the Monkey to give you some examples for your chosen protocol:

./monkey samples mqtt

7.4.2 Fuzzdata Generators

The Fuzzing Proxy is capable of using multiple fuzzdata generators. Currently, only a basic random generator is
implemented. However, the integration of different kinds of more sophisticated fuzz-data generators like Fuzzino
might be implemented in the future.

{
"generators": [
{ "id": "g_rand_uniform" },
{ "id": "g_rand_uniform_2" },
{ "id": "g_with_seed", "seed": 123 }]

}

For now, each basic generator requires only an unique id which we will use later on to reference the generators.
Additionallly, each generator can be initialised with a predefined seed for deterministic results.

Note: Generator IDs are enforced to start with g_

7.4.3 Fuzzing Mutators

Now things start getting interesting. Fuzzing Mutators are one of the basic concepts of the Fuzzing Proxy. The
following block shows a set of different mutators, which will be explained in detail afterwards.

{
"mutators": [
{ "id": "m_xor_protoname_fixed", "field": "protoname", "binary": "XOR", "hex":

→˓"0xA5A5" },
{ "id": "m_inc_protolevel", "field": "protolevel", "unary": "INCR" },
{ "id": "m_inc_clientid_len", "field": "clientIdlen", "unary": "INCR" },
{ "id": "m_replace_clientid", "field": "clientId", "binary": "SET", "generator":

→˓"g_with_seed" },
{ "id": "m_replace_username", "field": "username", "binary": "SET", "generator":

→˓"g_rand_uniform_2" },
{ "id": "m_invert_username_flag", "field": "usernameflag", "unary": "NOT" },
{ "id": "m_invert_flags_dup", "field": "DUP", "unary": "NOT" },
{ "id": "m_invert_flags_qos", "field": "QOS", "unary": "NOT" }]

}

7.4. Identify Input fields 43

https://scapy.net/
https://github.com/fraunhoferfokus/Fuzzino

Eclipse IoT-Testware Documentation

Note: Mutator IDs are enforced to start with m_

Generally, each mutator requires an unique id and is always bound to a specific message field with an operation.
For now, two kinds of operations exist: unary and binary operations.

Unary Operators

Unary Operators, as the name implies, are unary with respect to the number of parameters which they expect. An unary
operator expects only one single parameter. It takes the value of the specified field (as the one and only parameter)
and applies a fuzzing operation on it. The following example of an increment operator is an unary operation
without any additional parameter:

{ "id": "m_inc_protolevel", "field": "protolevel", "unary": "INCR" }

Or, if you want to think about the mutator in a more functional way:

function increment(value) => { return (value + 1) }

protolevel := increment(protolevel)

The class of Unary Operators has the following concrete operators:

• INCR which simply increments the given value by one

• DECR which simply decrements the given value by one

• NOT which simply inverts the given value

Binary Operators

Binary Operators on the other hand, take two parameters, the value of the specified field and either a fixed value or
a generator as the second parameter. The following example of a xor operator is a binary operator with a fixed
value:

{ "id": "m_xor_protoname_fixed", "field": "protoname", "binary": "XOR", "hex": "0xA5A5
→˓" }

This mutator will take value of the field protoname and apply the XOR operator with a fixed hex value of 0xA5A5.
Or, if you want to think about the mutator in a more functional way:

function xor(value, mask) => { return (value ^ mask) }

protoname := xor(protoname, 0xA5A5)

Additionally, Binary Operators can be also provided with generators which generate dynamically (random) values.
The following example of a set operator is a binary operator with a dynamically generated value:

{ "id": "m_replace_clientid", "field": "clientId", "binary": "SET", "generator": "g_
→˓with_seed" }

This mutator will take the value of the field clientId and appyl the SET operator with a dynamically generated
value generated by the generator with the ID g_with_seed. Or, if you want to think about the mutator in a more
functional way:

44 Chapter 7. Smart Fuzzing Proxy

Eclipse IoT-Testware Documentation

function set(value, generator) => { return generator.rand(typeof(value)) }

clientId := set(clientId, g_with_seed)

All Binary Operators can either be used with a fixed and predefined hex-value or with a generator. The example
below is also perfectly valid:

{ "id": "m_replace_clientid", "field": "clientId", "binary": "SET", "hex": "0xA5A5" }
{ "id": "m_xor_protoname_fixed", "field": "protoname", "binary": "XOR", "generator":
→˓"g_with_seed" }

In a functional representation, these would look as follows:

function set(field, hex_mask) => { return hex_mask) }
function xor(field, generator) => { return (field ^ generator.rand(typeof(field)) }

clientId := set(clientId, 0xA5A5)
protoname := xor(protoname, g_with_seed)

The class of Binary Operators has the following concrete operators:

• XOR which applies an xor operation with the given second parameter on the given value

• AND which applies an and operation with the given second parameter on the given value

• OR which applies an or operation with the given second parameter on the given value

• SET which applies an set operation with the given second parameter on the given value

7.4.4 Filters

After mutators, filters are the second building blocks on the path of building fuzzing rules. These fuzzing filters are
conceptually very similar to Wireshark’s DisplayFilters and serve pretty much the same purpose. As one might want to
intercept more complex protocol behaviours, altering each single message would be a bad idea. The concept of filters
allows the user to pick only specific messages for fuzzing, while other message not matching any filter are simply
passed through without being fuzzed. The given example below contains two filters which will be explained in more
detail afterwards:

{
"filters": [
{
"id": "f_all_connect",
"description": "This filter matches all connect packets",
"direction": "Request",
"filter": { "field": "type", "op": "-eq", "value": 1 }

}, {
"id": "f_publish_subscribe",
"descritpion": "Matches all publish or subscribe or unsubscribe packets",
"direction": "All",
"left": {

"left": { "filter": { "field": "type", "op": "-eq", "value": 3 } },
"op": "OR",
"right": { "filter": { "field": "type", "op": "-eq", "value": 8 } } },

"op": "OR",
"right": { "filter": { "field": "type", "op": "-eq", "value": 10 } }

}]
}

7.4. Identify Input fields 45

https://wiki.wireshark.org/DisplayFilters

Eclipse IoT-Testware Documentation

Note: Filter IDs are enforced to start with f_

The first filter with the ID f_all_connect is a quite simple one and more or less self explanatory. However, the
filter demonstrates the basic concept. While id and description are quite obvious, the direction and filter
fields require a little more explanation.

Filter Direction

The direction field defines the direction of the filter. Valid directions are Request, Response and All. Filters
with "direction": "Request" will be only applied on messages passing through the Fuzzing Proxy from the
client to the server. On the other hand, filters with "direction": "Response" will only look for responses
coming from the server. And obviously, "direction": "All" will look for both directions.

Filter Definition

The filter field is actually the part which defines the filtering criteria. The following example filter matches all packets
of the type = 1 (the CONNECT Control Packet in case of MQTT):

{ "filter": { "field": "type", "op": "-eq", "value": 1 } }

Conceptually, this filter can be thought of as follows:

But filters can be more complex and contain multiple filtering criteria as demonstrated by the filter with the ID
f_publish_subscribe: This filter contains a combination of three simple filters.

{
"left": {
"left": { "filter": { "field": "type", "op": "-eq", "value": 3 } },
"op": "OR",
"right": { "filter": { "field": "type", "op": "-eq", "value": 8 } } },

"op": "OR",
"right": { "filter": { "field": "type", "op": "-eq", "value": 10 } }

}

Conceptually, this filter can be thought of as follows:

As one can see, we have two types of operators (op) in filters. The comparison operators are used within concrete
filter definitions as shown below:

Valid comparison operators are:

• -eq which stands for ==

• -ne which stands for !=

• -gt which stands for >

• -lt which stands for <

• -ge which stands for >=

• -le which stands for <=

The logical operators, on the other hand, are used to combine multiple single filter logically.

Valid logical operators are: OR, and AND

46 Chapter 7. Smart Fuzzing Proxy

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718028

Eclipse IoT-Testware Documentation

7.4.5 Rules

Finally, the Rules Engine can be build by combining mutators and filters to concrete fuzzing rules. The given example
below contains two rules which will be explained in more detail afterwards:

{
"rules": [
{
"match": "f_all_connect",
"mutators": ["m_inc_clientid_len", "m_xor_protoname_fixed", "m_inc_protolevel"]

}, {
"match": "f_publish_subscribe",
"distribution": {
"model": "multinomial",
"seed": 12345,
"nxp": 10
"items": [

{ "strength": 11, "mutators": ["m_invert_flags_retain", "m_inc_flags_qos",
→˓"m_or_topic"] },

{ "strength": 12, "mutators": ["m_invert_flags_retain", "m_xor_topic", "m_
→˓inc_pl_length"] },

{ "strength": 13, "mutators": ["m_inc_pl_length"] },
{ "strength": 14, "mutators": [] }

] }
}]

}

The first rule is a quite simple one and contains two fields. The match field references a matching filter previously
defined in Filters and a set of mutators previously defined in Fuzzing Mutators. You can think of the first rule as
follows: Once the matching filter with the ID f_all_connect matches a message, apply all three given mutators
with the IDs m_inc_clientid_len, m_xor_protoname_fixed and m_inc_protolevel to this message.

The second rule is a little more complex, though more flexible and powerful with regards to it’s capabilities to ma-
nipulate protocol messages. Once again, the match field references a matching filter. However, this time the rule
does not contain a simple fixed list of mutators but rather a distribution of several lists. Let’s have a closer
look at the distribution block. The model field defines the kind of the distribution which will be used to choose one
of the items. Currently, multinomial distribution is the only one possible. (The concrete implementation uses
the numpy.random.multinomial module.) The distribution can also be configured with a seed and nxp (Number of
experiments). However, these fields are optional and can be omitted. The items list represents all the possibilities
the distribution can choose from. Each set of mutators within a distribution is not necessarily equally weighted. That
means, you can favor specific sets of mutators and disfavor others via the strength field. Thereby applies, the
higher the strength, the higher the probability to be chosen. In concrete, in the example above the distribution has four
items with an overall strength of 11+12+13+14 = 50. That means, the probability to get the empty list of mutators
(the last one, which in fact won’t manipulate any fields at all) is 𝑝4 = 14

50 = 0.28 whereas the probability to get the
first list is only 𝑝1 = 11

50 = 0.22 and so on.

Warning: The total number of rules/filters should be kept as small as possible. In worst case scenarios each
single filter must be checked for each message. Therefore, messages which do not match any filter (or the last one)
need to be checked agains each single filter. The filter mechanism has a 𝑂(𝑛) time complexity. This might lead to
performance issues on large sets of filters.

Note: The total number of items within a distribution has a 𝑂(1) time complexity, which means, you can theoretically
have as many items as you need without influencing the runtime performance.

7.4. Identify Input fields 47

https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.random.multinomial.html

Eclipse IoT-Testware Documentation

7.4.6 Checking the configuration

A fuzzing configuration can be become quite complex and confusing which might lead to errors at runtime. To ensure
that your configuration is valid, the validate command comes handy. Once you have finished your configuration,
ask the Monkey to validate your configuration:

./monkey validate {CONFIGURATION}

Where {CONFIGURATION} can be either a relative or absolute path to your configuration file.

7.5 Choose a Test Data Generator

As testcase generator you can either use a simple client of your choice or use an according IoT-Testware conformance
test suite.

7.6 Running a Fuzzing Session

Once you have build and validated your configuration you are ready to start fuzzing. The Fuzzing Proxy can help you
to start the Fuzzing Proxy:

./monkey fuzzing -l {LISTEN_PORT} -r {REMOTE_ADDRESS} -c {CONFIGURATION}

Where {LISTEN_PORT} is the port on which the fuzzing proxy will listen for incoming requests and for-
ward to {REMOTE_ADDRESS}:{LISTEN_PORT} with considering the rules given in {CONFIGURATION}.
The following sketch demonstrates the following fuzzing setup: 0.0.0.0:{LISTEN_PORT} <->
{REMOTE_ADDRESS}:{LISTEN_PORT}

If you need to further configure the ports and interfaces you can provide parameters as follows:

./monkey fuzzing -l {LOCAL_LISTEN_PORT} -r {REMOTE_ADDRESS} -p {REMOTE_LISTEN_
→˓PORT} -c {CONFIGURATION}

This will result in the following fuzzing setup: 0.0.0.0:{LOCAL_LISTEN_PORT} <->
{REMOTE_ADDRESS}:{REMOTE_LISTEN_PORT}

To stop the Fuzzing Proxy press Ctrl + C

7.7 Analyzing Fuzzing Logging

Once you have finished a fuzzing session, you will find within the logs folder a newly created folder with
a timestamped naming e.g. 20190822_13_38_24 (which is in fact the datetime when the Fuzzing Proxy
was started). Inside of this folder you will find at least the two log files fuzzing_operations.log and
proxy_traffic.log which can be used to analyze the fuzzing session. In general, the proxy_traffic.
log contains all events happened, mainly incoming and outgoing messages and network events. On the other hand,
the fuzzing_operations.log contains all events which were executed by the fuzzer during the reception and
the forwarding of each single messages.

Let’s have a closer look at an exemplary log file of a MQTT session. First we will look into the proxy_traffic.
log and go through the snipped line by line:

In line 1 we see a network event (TCP connection) coming from a client (127.0.0.1:58636) and on line 2 the
client sent immediatelly a message over this connection. This message is a MQTT Connect Control Packet triggered
by the client to request a (MQTT) connection to the server. If you like to look into the MQTT message, ask the
Monkey to decode the bytestream for you:

48 Chapter 7. Smart Fuzzing Proxy

https://projects.eclipse.org/projects/technology.iottestware/developer
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718028

Eclipse IoT-Testware Documentation

./monkey decode -p mqtt -o '101c00044d5154540402003c00104d5154545f46585f436c69656e745f32'O

So far so good, everything went fine so far and the fuzzer didn’t intercept. In line 3 we can observe how the Fuzzing
Proxy proxies the original network event (TCP connection) to the SUT (192.168.56.101:1883) and forwards the
original, though manipulated, MQTT Connect Control Packet. Finally, the SUT reacts with an error handling routine
by simply closing the network connection due to a protocol violation. So, what happend inside the Fuzzing Proxy and
what was the reason for the protocol violation? First, we might take a closer look at the incoming and outgoing MQTT
packets:

Well, didn’t change that much. Let’s consult the fuzzing_operations.log to figure out what happened in
between. There we will find a line like the following one:

First of all, we can acknowledge this fuzzing operation took place in between the reception and forwarding of
the MQTT packet by comparing the timestamps. Second, by following the [f_all_connect.3] hint, we can
clearly traceback to applied rule, matching filter and set of mutators. And finally, with [NOT(DUP)=0->1;
NOT(QOS)=0->1] we get a summary of the complete set of mutators applied to this message.

In the following code block we can see the corresponding rule and the marked item:

{
"match": "f_all_connect",
"distribution": {
"model": "multinomial",
"seed": 3456,
"nxp": 10,
"items": [
{ "strength": 1, "mutators": ["m_xor_protoname_fixed", "m_inc_protolevel"] },
{ "strength": 12, "mutators": ["m_replace_username", "m_invert_username_flag"

→˓] },
{ "strength": 15, "mutators": ["m_inc_clientid_len", "m_replace_clientid"] },
{ "strength": 7, "mutators": ["m_invert_flags_dup", "m_invert_flags_qos"] },
{ "strength": 15, "mutators": [] }

] }
}

By having this information, we can now even further precise the protocol violation.

However, it should be noted, that this example is not a perfect fuzzing example as the broker responded perfectly
conformant according to the specification without crashing or exposing any weaknesses. But this simple example
should only serve as an illustration of the capabilities of the fuzzer and demonstrate the workflow.

7.7. Analyzing Fuzzing Logging 49

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718110
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718022

Eclipse IoT-Testware Documentation

50 Chapter 7. Smart Fuzzing Proxy

CHAPTER 8

About Eclipse IoT-Testware

8.1 IoT-Testware Team

Who’s involved

8.2 Objective

As stated in [MVQ18] communication protocols for the IoT are currently in a immature state and offer different kinds
of attack vectors. We believe. . . TODO!

8.3 Conformance Test Methodology and Framework

The IoT-Testware test suites will have a well-defined test suite structure (TSS) and a set of protocol implementation
conformance statements (PICS) as well as protocol implementation extra information for testing (PIXIT). The work
will follow the standardized approach as defined in ISO “Conformance Test Methodology and Framework” ISO 9646
and the best practices as described by ETSI White Paper No 3 “Achieving Technical Interoperability – the ETSI
Approach”.

51

https://projects.eclipse.org/projects/technology.iottestware/who

Eclipse IoT-Testware Documentation

8.4 Implementation

The Eclipse IoT-Testware project provides standardized Abstract Test Suite (ATS) for popular IoT protocols. For
the implementation of the ATS for CoAP and MQTT we apply ETSI Test Methodology which is well-proven in
standardizing and testing of telecommunication systems.

Such an ATS contains of several parts which are required to implement the Conformance Test Methodology and
Framework. But ATS, as the name says, are abstract, which means we need a system which executes the ATS. Just
like Java code requires the JVM to be executed, an ATS requires in our case a TTCN-3 runtime. As our TTCN-3
runtime we have chosen Eclipse Titan which can compile and run our ATS.

52 Chapter 8. About Eclipse IoT-Testware

www.etsi.org
http://www.ttcn-3.org/
https://projects.eclipse.org/projects/tools.titan

Eclipse IoT-Testware Documentation

The Executable Test Suite (ETS) is, as the name states, is a test suite under execution, just like running Java code.

8.4. Implementation 53

Eclipse IoT-Testware Documentation

54 Chapter 8. About Eclipse IoT-Testware

CHAPTER 9

Glossary

ASP Abstract Service Primitive

ATS Abstract Test Suite

CoAP The Constrained Application Protocol (CoAP) is a specialized web transfer protocol for use with constrained
nodes and constrained (e.g., low-power, lossy) networks.

ETS Executable Test Suite

ETSI The European Telecommunications Standards Institute is an independent, not-for-profit, standardization organi-
zation in the telecommunications industry (equipment makers and network operators) in Europe, headquartered
in Sophia-Antipolis, France, with worldwide projection.

IoT see Internet of Things

Internet of Things The internet of things, or IoT, is a system of interrelated computing devices, mechanical and
digital machines, objects, animals or people that are provided with unique identifiers and the ability to transfer
data over a network without requiring human-to-human or human-to-computer interaction.

IUT Implementation Under Test

MQTT The MQ Telemetry Transport is a machine-to-machine (M2M) / Internet of Things connectivity protocol. It
was designed as an extremely lightweight publish/subscribe messaging transport. It is useful for connections
with remote locations where a small code footprint is required and/or network bandwidth is at a premium.

PCO Point of Control and Observation

PDU Protocol Data Unit

SUT System Under Test

Test Case A test case is. . .

Test Purpose A test purpose is. . .

TC see Test Case

TDL Test Description Language (TDL) is a new language for the specification of test descriptions and the presentation
of test execution results.

55

Eclipse IoT-Testware Documentation

Thing The Thing in the context of IoT is an entity which is connected to the IoT and consumes or provides digital
services.

TP Test Purpose

TS Test System

TSS Test Suite Structure

TTCN-3 Testing and Test Control Notation version 3 is a standardized, modular testing language specifically designed
for testing communication systems.

UT Upper Tester

56 Chapter 9. Glossary

CHAPTER 10

References

10.1 2017

[HKR17] [KKR17] [RennochAxel17] [SKRW17] [SR17]

10.2 2018

[Sch18] [RH18] [RHK18]

10.3 2019

[RK19] [RK19]

57

Eclipse IoT-Testware Documentation

58 Chapter 10. References

CHAPTER 11

License

Eclipse Public License - v 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS ECLIPSE PUBLIC
LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE PROGRAM
CONSTITUTES RECIPIENT'S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

"Contribution" means:

a) in the case of the initial Contributor, the initial code and documentation
distributed under this Agreement, and

b) in the case of each subsequent Contributor:
i) changes to the Program, and

ii) additions to the Program;

where such changes and/or additions to the Program originate from and are
distributed by that particular Contributor. A Contribution 'originates'
from a Contributor if it was added to the Program by such Contributor
itself or anyone acting on such Contributor's behalf. Contributions do not
include additions to the Program which: (i) are separate modules of
software distributed in conjunction with the Program under their own
license agreement, and (ii) are not derivative works of the Program.

"Contributor" means any person or entity that distributes the Program.

"Licensed Patents" mean patent claims licensable by a Contributor which are
necessarily infringed by the use or sale of its Contribution alone or when
combined with the Program.

"Program" means the Contributions distributed in accordance with this
Agreement.

"Recipient" means anyone who receives the Program under this Agreement,

(continues on next page)

59

Eclipse IoT-Testware Documentation

(continued from previous page)

including all Contributors.

2. GRANT OF RIGHTS
a) Subject to the terms of this Agreement, each Contributor hereby grants

Recipient a non-exclusive, worldwide, royalty-free copyright license to
reproduce, prepare derivative works of, publicly display, publicly
perform, distribute and sublicense the Contribution of such Contributor,
if any, and such derivative works, in source code and object code form.

b) Subject to the terms of this Agreement, each Contributor hereby grants
Recipient a non-exclusive, worldwide, royalty-free patent license under
Licensed Patents to make, use, sell, offer to sell, import and otherwise
transfer the Contribution of such Contributor, if any, in source code and
object code form. This patent license shall apply to the combination of
the Contribution and the Program if, at the time the Contribution is
added by the Contributor, such addition of the Contribution causes such
combination to be covered by the Licensed Patents. The patent license
shall not apply to any other combinations which include the Contribution.
No hardware per se is licensed hereunder.

c) Recipient understands that although each Contributor grants the licenses
to its Contributions set forth herein, no assurances are provided by any
Contributor that the Program does not infringe the patent or other
intellectual property rights of any other entity. Each Contributor
disclaims any liability to Recipient for claims brought by any other
entity based on infringement of intellectual property rights or
otherwise. As a condition to exercising the rights and licenses granted
hereunder, each Recipient hereby assumes sole responsibility to secure
any other intellectual property rights needed, if any. For example, if a
third party patent license is required to allow Recipient to distribute
the Program, it is Recipient's responsibility to acquire that license
before distributing the Program.

d) Each Contributor represents that to its knowledge it has sufficient
copyright rights in its Contribution, if any, to grant the copyright
license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under
its own license agreement, provided that:

a) it complies with the terms and conditions of this Agreement; and
b) its license agreement:

i) effectively disclaims on behalf of all Contributors all warranties
and conditions, express and implied, including warranties or
conditions of title and non-infringement, and implied warranties or
conditions of merchantability and fitness for a particular purpose;

ii) effectively excludes on behalf of all Contributors all liability for
damages, including direct, indirect, special, incidental and
consequential damages, such as lost profits;

iii) states that any provisions which differ from this Agreement are
offered by that Contributor alone and not by any other party; and

iv) states that source code for the Program is available from such
Contributor, and informs licensees how to obtain it in a reasonable
manner on or through a medium customarily used for software exchange.

When the Program is made available in source code form:

a) it must be made available under this Agreement; and
(continues on next page)

60 Chapter 11. License

Eclipse IoT-Testware Documentation

(continued from previous page)

b) a copy of this Agreement must be included with each copy of the Program.
Contributors may not remove or alter any copyright notices contained
within the Program.

Each Contributor must identify itself as the originator of its Contribution,
if
any, in a manner that reasonably allows subsequent Recipients to identify the
originator of the Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with
respect to end users, business partners and the like. While this license is
intended to facilitate the commercial use of the Program, the Contributor who
includes the Program in a commercial product offering should do so in a manner
which does not create potential liability for other Contributors. Therefore,
if a Contributor includes the Program in a commercial product offering, such
Contributor ("Commercial Contributor") hereby agrees to defend and indemnify
every other Contributor ("Indemnified Contributor") against any losses,
damages and costs (collectively "Losses") arising from claims, lawsuits and
other legal actions brought by a third party against the Indemnified
Contributor to the extent caused by the acts or omissions of such Commercial
Contributor in connection with its distribution of the Program in a commercial
product offering. The obligations in this section do not apply to any claims
or Losses relating to any actual or alleged intellectual property
infringement. In order to qualify, an Indemnified Contributor must:
a) promptly notify the Commercial Contributor in writing of such claim, and
b) allow the Commercial Contributor to control, and cooperate with the
Commercial Contributor in, the defense and any related settlement
negotiations. The Indemnified Contributor may participate in any such claim at
its own expense.

For example, a Contributor might include the Program in a commercial product
offering, Product X. That Contributor is then a Commercial Contributor. If
that Commercial Contributor then makes performance claims, or offers
warranties related to Product X, those performance claims and warranties are
such Commercial Contributor's responsibility alone. Under this section, the
Commercial Contributor would have to defend claims against the other
Contributors related to those performance claims and warranties, and if a
court requires any other Contributor to pay any damages as a result, the
Commercial Contributor must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON AN
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR
IMPLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE,
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each
Recipient is solely responsible for determining the appropriateness of using
and distributing the Program and assumes all risks associated with its
exercise of rights under this Agreement , including but not limited to the
risks and costs of program errors, compliance with applicable laws, damage to
or loss of data, programs or equipment, and unavailability or interruption of
operations.

6. DISCLAIMER OF LIABILITY

(continues on next page)

61

Eclipse IoT-Testware Documentation

(continued from previous page)

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION
LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF THE PROGRAM OR THE
EXERCISE OF ANY RIGHTS GRANTED HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of the
remainder of the terms of this Agreement, and without further action by the
parties hereto, such provision shall be reformed to the minimum extent
necessary to make such provision valid and enforceable.

If Recipient institutes patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Program itself
(excluding combinations of the Program with other software or hardware)
infringes such Recipient's patent(s), then such Recipient's rights granted
under Section 2(b) shall terminate as of the date such litigation is filed.

All Recipient's rights under this Agreement shall terminate if it fails to
comply with any of the material terms or conditions of this Agreement and does
not cure such failure in a reasonable period of time after becoming aware of
such noncompliance. If all Recipient's rights under this Agreement terminate,
Recipient agrees to cease use and distribution of the Program as soon as
reasonably practicable. However, Recipient's obligations under this Agreement
and any licenses granted by Recipient relating to the Program shall continue
and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in
order to avoid inconsistency the Agreement is copyrighted and may only be
modified in the following manner. The Agreement Steward reserves the right to
publish new versions (including revisions) of this Agreement from time to
time. No one other than the Agreement Steward has the right to modify this
Agreement. The Eclipse Foundation is the initial Agreement Steward. The
Eclipse Foundation may assign the responsibility to serve as the Agreement
Steward to a suitable separate entity. Each new version of the Agreement will
be given a distinguishing version number. The Program (including
Contributions) may always be distributed subject to the version of the
Agreement under which it was received. In addition, after a new version of the
Agreement is published, Contributor may elect to distribute the Program
(including its Contributions) under the new version. Except as expressly
stated in Sections 2(a) and 2(b) above, Recipient receives no rights or
licenses to the intellectual property of any Contributor under this Agreement,
whether expressly, by implication, estoppel or otherwise. All rights in the
Program not expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the
intellectual property laws of the United States of America. No party to this
Agreement will bring a legal action under this Agreement more than one year
after the cause of action arose. Each party waives its rights to a jury trial in
any resulting litigation.

62 Chapter 11. License

CHAPTER 12

MQTT Specification

63

Eclipse IoT-Testware Documentation

64 Chapter 12. MQTT Specification

CHAPTER 13

CoAP RFC 7252

65

Eclipse IoT-Testware Documentation

66 Chapter 13. CoAP RFC 7252

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

67

Eclipse IoT-Testware Documentation

68 Chapter 14. Indices and tables

Bibliography

[HKR17] Sascha Hackel, Dorian Knobloch, and Axel Rennoch. Qualitätsanalyse mit IoT-Testware.
url: https://gi.de/fileadmin/FG/TAV/42.TAV/42_GI-TAV_paper_1.pdf, 2017.

[KKR17] Alexander Kaiser, Sascha Kretzschmann, and Axel Rennoch. Eclipse
IoT-Testware: Die Open-Source-Testsuite für das MQTT-Protokoll.
url: http://www.sigs.de/public/ots/2017/OTS_Testing_2017/Kaiser_OTS_Testing_2017.pdf, 2017.

[MVQ18] Federico Maggi, Rainer Vosseler, and Davide Quarta. The Fragility of Industrial IoT’s Data Backbone.
Trend Micro Research White Paper, pages 65, 2018.

[RH18] Axel Rennoch and Sascha Hackel. Quality analysis with IoT-Testware.
url: http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-4971018.pdf, 2018.

[RHK18] Axel Rennoch, Sascha Hackel, and Dorian Knobloch. Test Execution Infrastructure for IoT Quality Anal-
ysis. url: http://vvass2018.ist.tugraz.at/wp-content/uploads/2018/08/IoT-T_Testware_VVASS.pdf, 2018.

[RK19] Axel Rennoch and Alexander Kaiser. Functional and non-functional testing for the IoT.
url: http://publica.fraunhofer.de/eprints/urn_nbn_de_0011-n-5344321.pdf, 2019.

[SR17] Schieferdecker, Ina and Axel Rennoch. IoT Testing and the Eclipse IoT Testware.
url: https://paris.utdallas.edu/qrs17/docs/Keynote-Ina-Schieferdecker-slides.pdf, 2017.

[Sch18] Ina Schieferdecker. IoT Testware - Modern Automated Test Solutions for IoT Components and Systems.
2018.

[SKRW17] Ina Schieferdecker, Sascha Kretzschmann, Axel Rennoch, and Michael Wagner. IoT-testware - an eclipse
project. url: https://ieeexplore.ieee.org/document/8009903, 2017.

[RennochAxel17] Rennoch, Axel. Test automation for the iot: iot-testware.
url: https://www.iotcamp.net/fileadmin/iot-barcamp/IoTcamp2017_FOKUS-Rennoch.pdf, 2017.

69

Eclipse IoT-Testware Documentation

70 Bibliography

Index

A
ASP, 55
ATS, 55

C
CoAP, 55

E
ETS, 55
ETSI, 55

I
Internet of Things, 55
IoT, 55
IUT, 55

M
MQTT, 55

P
PCO, 55
PDU, 55

S
SUT, 55

T
TC, 55
TDL, 55
Test Case, 55
Test Purpose, 55
Thing, 56
TP, 56
TS, 56
TSS, 56
TTCN-3, 56

U
UT, 56

71

	Quickstart Guide
	Preparation
	Installation

	Installation
	Target Environment
	Dashboard
	Dockerized Command Line
	Manual Installation

	Protocol Conformance Testing
	General
	Test Suite Structure
	Test Configurations
	Test Purpose Catalogues
	IoT-Testware Test Suites

	ETSI and Eclipse Foundation
	Dashboard
	Introduction
	Overview
	Backend
	Frontend
	Integration

	Fuzzing
	Smart Fuzzing Proxy
	Installation
	General Concept
	Identify the SUT
	Identify Input fields
	Choose a Test Data Generator
	Running a Fuzzing Session
	Analyzing Fuzzing Logging

	About Eclipse IoT-Testware
	IoT-Testware Team
	Objective
	Conformance Test Methodology and Framework
	Implementation

	Glossary
	References
	2017
	2018
	2019

	License
	MQTT Specification
	CoAP RFC 7252
	Indices and tables
	Bibliography
	Index

