
investpy Documentation
Release 1.0.8

Alvaro Bartolome

Oct 02, 2022

DOCUMENTATION

1 Introduction 3
1.1 Data Source . 3
1.2 Getting Started . 3

2 Installation 5

3 Usage 7
3.1 Recent/Historical Data Retrieval . 7
3.2 Search Live Data . 8
3.3 Crypto Currencies Data Retrieval . 9

4 Related projects 11

5 Contact Information 13

6 Citation 15

7 Discussions (Q&A, AMA) 17

8 Disclaimer 19

9 API Reference 21
9.1 investpy.stocks . 21
9.2 investpy.funds . 30
9.3 investpy.etfs . 37
9.4 investpy.indices . 44
9.5 investpy.currency_crosses . 50
9.6 investpy.bonds . 58
9.7 investpy.commodities . 64
9.8 investpy.certificates . 71
9.9 investpy.crypto . 78
9.10 investpy.news . 85
9.11 investpy.technical . 86
9.12 investpy.search . 89

10 Indices and tables 95

Python Module Index 97

Index 99

i

ii

investpy Documentation, Release 1.0.8

DOCUMENTATION 1

investpy Documentation, Release 1.0.8

2 DOCUMENTATION

CHAPTER

ONE

INTRODUCTION

investpy is a Python package to retrieve data from Investing.com, which provides data retrieval from up to 39952
stocks, 82221 funds, 11403 ETFs, 2029 currency crosses, 7797 indices, 688 bonds, 66 commodities, 250 certificates,
and 4697 cryptocurrencies.

investpy allows the user to download both recent and historical data from all the financial products indexed at Invest-
ing.com. It includes data from all over the world, from countries such as United States, France, India, Spain, Russia,
or Germany, amongst many others.

investpy seeks to be one of the most complete Python packages when it comes to financial data extraction to stop
relying on public/private APIs since investpy is FREE and has NO LIMITATIONS. These are some of the features
that currently lead investpy to be one of the most consistent packages when it comes to financial data retrieval.

1.1 Data Source

Investing.com is the main data source from which investpy retrieves the data. Investing.com is a global financial portal
and Internet brand owned by Fusion Media Ltd. which provides news, analysis, streaming quotes, charts, technical
data and financial tools about the global financial markets.

1.2 Getting Started

TODO

3

https://www.investing.com/
https://www.investing.com/

investpy Documentation, Release 1.0.8

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

To get this package working you will need to install it via pip (with a Python 3.6 version or higher) on the terminal
by typing:

$ pip install investpy

Additionally, if you want to use the latest investpy version instead of the stable one, you can install it from source
with the following command:

$ pip install git+https://github.com/alvarobartt/investpy.git@master

The master branch ensures the user that the most updated version will always be working and fully operative
so as not to wait until the the stable release comes out (which eventually may take some time depending on the number
of issues to solve).

5

investpy Documentation, Release 1.0.8

6 Chapter 2. Installation

CHAPTER

THREE

USAGE

Even though some investpy usage examples are presented on the docs, some basic functionality will be sorted out
with sample Python code blocks. Additionally, more usage examples can be found under examples/ directory, which
contains a collection of Jupyter Notebooks on how to use investpy and handle its data.

Note that investpy.search_quotes is the only function that ensures that the data is updated and aligned
1:1 with the data provided by Investing.com!

3.1 Recent/Historical Data Retrieval

investpy allows the user to download both recent and historical data from any financial product indexed (stocks,
funds, ETFs, currency crosses, certificates, bonds, commodities, indices, and cryptos). In the example presented
below, the historical data from the past years of a stock is retrieved.

import investpy

df = investpy.get_stock_historical_data(stock='AAPL',
country='United States',
from_date='01/01/2010',
to_date='01/01/2020')

print(df.head())

Open High Low Close Volume Currency
Date
2010-01-04 30.49 30.64 30.34 30.57 123432176 USD
2010-01-05 30.66 30.80 30.46 30.63 150476160 USD
2010-01-06 30.63 30.75 30.11 30.14 138039728 USD
2010-01-07 30.25 30.29 29.86 30.08 119282440 USD
2010-01-08 30.04 30.29 29.87 30.28 111969192 USD

To get to know all the available recent and historical data extraction functions provided by investpy, and also, parameter
tuning, please read the docs.

7

https://investpy.readthedocs.io/usage.html
https://github.com/alvarobartt/investpy/tree/master/examples

investpy Documentation, Release 1.0.8

3.2 Search Live Data

Investing.com search engine is completely integrated with investpy, which means that any available financial prod-
uct (quote) can be easily found. The search function allows the user to tune the parameters to adjust the search results
to their needs, where both product types and countries from where the products are, can be specified. All the search
functionality can be easily used, for example, as presented in the following piece of code:

import investpy

search_result = investpy.search_quotes(text='apple', products=['stocks'],
countries=['united states'], n_results=1)

print(search_result)

{"id_": 6408, "name": "Apple Inc", "symbol": "AAPL", "country": "united states", "tag
→˓": "/equities/apple-computer-inc", "pair_type": "stocks", "exchange": "NASDAQ"}

Retrieved search results will be a list of investpy.utils.search_obj.SearchObj class instances, unless
n_results is set to 1, when just a single investpy.utils.search_obj.SearchObj class instance will be
returned. To get to know which are the available functions and attributes of the returned search results, please read the
related documentation at Search Engine Documentation. So on, those search results let the user retrieve both recent
and historical data, its information, the technical indicators, the default currency, etc., as presented in the pieces of
code below:

3.2.1 Recent Data

recent_data = search_result.retrieve_recent_data()
print(recent_data.head())

Open High Low Close Volume Change Pct
Date
2021-05-13 124.58 126.15 124.26 124.97 105861000 1.79
2021-05-14 126.25 127.89 125.85 127.45 81918000 1.98
2021-05-17 126.82 126.93 125.17 126.27 74245000 -0.93
2021-05-18 126.56 126.99 124.78 124.85 63343000 -1.12
2021-05-19 123.16 124.92 122.86 124.69 92612000 -0.13

3.2.2 Historical Data

historical_data = search_result.retrieve_historical_data(from_date='01/01/2019', to_
→˓date='01/01/2020')
print(historical_data.head())

Open High Low Close Volume Change Pct
Date
2020-01-02 74.06 75.15 73.80 75.09 135647008 2.28
2020-01-03 74.29 75.14 74.13 74.36 146536000 -0.97
2020-01-06 73.45 74.99 73.19 74.95 118579000 0.80
2020-01-07 74.96 75.22 74.37 74.60 111511000 -0.47
2020-01-08 74.29 76.11 74.29 75.80 132364000 1.61

8 Chapter 3. Usage

https://investpy.readthedocs.io/search_api.html

investpy Documentation, Release 1.0.8

3.2.3 Information

information = search_result.retrieve_information()
print(information)

{"prevClose": 126.11, "dailyRange": "126.1-127.44", "revenue": 325410000000, "open":
→˓126.53, "weekRange": "83.14-145.09", "eps": 4.46, "volume": 53522373, "marketCap":
→˓2130000000000, "dividend": "0.88(0.70%)", "avgVolume": 88858729, "ratio": 28.58,
→˓"beta": 1.2, "oneYearReturn": "50.35%", "sharesOutstanding": 16687631000,
→˓"nextEarningDate": "03/08/2021"}

3.2.4 Currency

default_currency = search_result.retrieve_currency()
print(default_currency)

'USD'

3.2.5 Technical Indicators

technical_indicators = search_result.retrieve_technical_indicators(interval="daily")
print(technical_indicators)

indicator signal value
0 RSI(14) neutral 52.1610
1 STOCH(9,6) buy 63.7110
2 STOCHRSI(14) overbought 100.0000
3 MACD(12,26) sell -0.6700
4 ADX(14) neutral 21.4750
5 Williams %R buy -20.9430
6 CCI(14) buy 67.1057
7 ATR(14) less_volatility 1.7871
8 Highs/Lows(14) buy 0.4279
9 Ultimate Oscillator sell 47.3620
10 ROC buy 1.5150
11 Bull/Bear Power(13) buy 1.3580

3.3 Crypto Currencies Data Retrieval

Cryptocurrencies support has recently been included, to let the user retrieve data and information from any available
crypto at Investing.com. Please note that some cryptocurrencies do not have available data indexed at Investing.com
so that it can not be retrieved using investpy either, even though they are just a few, consider it.

As already presented previously, historical data retrieval using investpy is really easy. The piece of code presented
below shows how to retrieve the past years of historical data from Bitcoin (BTC).

import investpy

data = investpy.get_crypto_historical_data(crypto='bitcoin',

(continues on next page)

3.3. Crypto Currencies Data Retrieval 9

investpy Documentation, Release 1.0.8

(continued from previous page)

from_date='01/01/2014',
to_date='01/01/2019')

print(data.head())

Open High Low Close Volume Currency
Date
2014-01-01 805.9 829.9 771.0 815.9 10757 USD
2014-01-02 815.9 886.2 810.5 856.9 12812 USD
2014-01-03 856.9 888.2 839.4 884.3 9709 USD
2014-01-04 884.3 932.2 848.3 924.7 14239 USD
2014-01-05 924.7 1029.9 911.4 1014.7 21374 USD

10 Chapter 3. Usage

CHAPTER

FOUR

RELATED PROJECTS

Since investpy is intended to retrieve data from different financial products as indexed in Investing.com, the develop-
ment of some support modules which implement an additional functionality based on investpy data, is presented.
Note that anyone can contribute to this section by creating any package, module, or utility that uses investpy. So on,
the ones already created are going to be presented, since they are intended to be used combined with investpy:

• pyrtfolio: is a Python package to generate stock portfolios.

• trendet: is a Python package for trend detection on stock time-series data.

If you developed an interesting/useful project based on investpy data, please open an issue to let me know to include
it in this section.

11

https://github.com/alvarobartt/pyrtfolio/
https://github.com/alvarobartt/trendet/

investpy Documentation, Release 1.0.8

12 Chapter 4. Related projects

CHAPTER

FIVE

CONTACT INFORMATION

You can contact me at any of my social network profiles:

• LinkedIn: https://linkedin.com/in/alvarobartt

• Twitter: https://twitter.com/alvarobartt

• GitHub: https://github.com/alvarobartt

Or via email at alvarobartt@yahoo.com, even though this last one is not recommended as mentioned in the FAQs.

13

investpy Documentation, Release 1.0.8

14 Chapter 5. Contact Information

CHAPTER

SIX

CITATION

When citing this repository on your scientific publications please use the following BibTeX citation:

@misc{investpy,
author = {Alvaro Bartolome del Canto},
title = {investpy - Financial Data Extraction from Investing.com with Python},
year = {2018-2021},
publisher = {GitHub},
journal = {GitHub Repository},
howpublished = {\url{https://github.com/alvarobartt/investpy}},

}

When citing this repository on any other social media, please use the following citation:

investpy - Financial Data Extraction from Investing.com with Python developed
by Alvaro Bartolome del Canto

You should also mention the source from where the data is retrieved, Investing.com; even though it’s already included
in the package short description title.

15

investpy Documentation, Release 1.0.8

16 Chapter 6. Citation

CHAPTER

SEVEN

DISCUSSIONS (Q&A, AMA)

GitHub recently released a new feature named GitHub Discussions (still in beta). GitHub Discussions is a collabora-
tive communication forum for the community around an open source project.

Check the investpy GitHub Discussions page at Discussions, and feel free to ask me (ar any developer) anything, share
updates, have open-ended conversations, and follow along on decisions affecting the community’s way of working.

Note. Usually I don’t answer emails asking me questions about investpy, as we currently have the GitHub Discussions
tab, and I encourage you to use it. GitHub Discussions is the easiest way to contact me about investpy, so that I don’t
answer the same stuff more than once via email, as anyone can see the opened/answered discussions.

Also, in this section some Frequent Asked Questions are answered, so please read this section before posting a question
or openning an issue since duplicates will not be solved or will be referenced to this section. Also, if you think that
there are more possible FAQs, consider openning an issue in GitHub so to notify it, since if we all contribute this
section can be clear enough so to ease question answering.

Where can I find the reference of a function and its usage?

Currently the docs/ are still missing a lot of information, but they can be clear enough so that users can get to know
which functions can be used and how. If you feel that any functionallity or feature is not clear enough, please let me
know in the issues tab, so that I can explain it properly for newcomers, so that answers are more general and help more
users than just the one asking it. Docs can be found at: Documentation

What do I do if the financial product I am looking for is not indexed in investpy?

As it is known, investpy gathers and retrieves data from Investing.com which is a website that contains a lot of financial
information. Since investpy relies on Investing.com data, some of it may not be available in Investing, which will mean
that it will not be available in investpy either. Anyways, it can be an investpy problem while retrieving data, so on,
there is a search function (investpy.search_quotes(text, products, countries, n_results))
that can be used for searching financial products that are available in Investing.com but they can not be retrieved using
investpy main functions.

I am having problems while installing the package.

If you followed the Installation Guide, you should be able to use investpy without having any problem, anyways, if
you are stuck on it, open an issue at investpy issues tab so to let the developers know which is your problem in order
to solve it as soon as possible. If you were not able to complete the installation, please check that you are running at
least Python 3.6 and that you are installing the latest version available, if you are still having problems, open an issue.

How do I contribute to investpy?

As this is an open-source project it is open to contributions, bug reports, bug fixes, documentation improvements,
enhancements, and ideas. There is an open tab of issues where anyone can open new issues if needed or navigate
through them to solve them or contribute to its solving. Remember that issues are not threads to describe multiple
problems, this does not mean that issues can not be discussed, but so to keep structured project management, the same
issue should not describe different problems, just the main one and some nested/related errors that may be found.

17

https://github.com/alvarobartt/investpy/discussions
https://investpy.readthedocs.io/
https://github.com/alvarobartt/investpy/blob/master/README.md#Installation
https://github.com/alvarobartt/investpy/issues

investpy Documentation, Release 1.0.8

18 Chapter 7. Discussions (Q&A, AMA)

CHAPTER

EIGHT

DISCLAIMER

This Python package has been made for research purposes to fit the needs that Investing.com does not cover, so this
package works like an Application Programming Interface (API) of Investing.com developed in an altruistic way.

Conclude that investpy is not affiliated in any way to Investing.com or any dependant company, the only require-
ment specified by Investing.com to develop this package was to “mention the source where data is retrieved from”.

19

investpy Documentation, Release 1.0.8

20 Chapter 8. Disclaimer

CHAPTER

NINE

API REFERENCE

9.1 investpy.stocks

investpy.stocks.get_stock_company_profile(stock, country='spain', language='english')
This function retrieves the company profile of a stock company in the specified language. This function is really
useful if NLP techniques want to be applied to stocks, since the company profile is a short description of what
the company does and since it is written by the company, it can give the user an overview on what does the
company do. The company profile can be retrieved either in english or in spanish, the only thing that changes is
the source from where the data is retrieved, but the resulting object will be the same. Note that this functionalliy
as described in the docs is just supported for spanish stocks currently, so on, if any other stock from any other
country is introduced as parameter, the function will raise an exception.

Note: Currently just the spanish company profile can be retrieved from spanish stocks, so if you try to retrieve
it in spanish for any other country, this function will raise a ValueError exception.

Parameters

• stock (str) – symbol of the stock to retrieve its company profile from.

• country (str) – name of the country from where the stock is.

• language (str, optional) – language in which the company profile is going to be re-
trieved, can either be english or spanish.

Returns

The resulting dict contains the retrieved company profile from the selected source depending
on the specified language in the function parameters, which can be either Investing.com (english)
or Bolsa de Madrid (spanish); and the URL from where it was retrieved, so to have both the
source and the description of the company_profile.

So the resulting dict should look like:

company_profile = {
url: 'https://www.investing.com/equities/bbva-company-profile',
desc: 'Banco Bilbao Vizcaya Argentaria, S.A. (BBVA) is a ...'

}

Return type dict - company_profile

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• FileNotFound – raised if the stocks.csv file was not found or unable to retrieve.

21

investpy Documentation, Release 1.0.8

• IOError – raised if stocks object/file was not found or unable to retrieve.

• RuntimeError – raised if the introduced stock/country was not found or did not match
any of the existing ones.

• ConnectionError – raised if connection to Investing.com could not be established.

Examples

>>> company_profile = investpy.get_stock_company_profile(stock='bbva', country=
→˓'spain', language='english')
>>> company_profile
company_profile = {

url: 'https://www.investing.com/equities/bbva-company-profile',
desc: 'Banco Bilbao Vizcaya Argentaria, S.A. (BBVA) is a ...'

}

investpy.stocks.get_stock_countries()
This function returns a listing with all the available countries from where stocks can be retrieved, so to let
the user know which of them are available, since the parameter country is mandatory in every stock retrieval
function.

Returns The resulting list contains all the available countries with stocks as indexed in Invest-
ing.com

Return type list - countries

investpy.stocks.get_stock_dividends(stock, country)
This function retrieves the stock dividends from the introduced stocks, which are token rewards paid to the
shareholders for their investment in a company’s stock/equity. Dividends data include date of the dividend,
dividend value, type, payment date and yield. This information is really useful when it comes to creating
portfolios.

Parameters

• stock (str) – symbol of the stock to retrieve its dividends from.

• country (country) – name of the country from where the stock is from.

Returns

Returns a pandas.DataFrame containing the retrieved information of stock dividends for
every stock symbol introduced as parameter.

So on, the resulting pandas.DataFrame will look like:

Date Dividend Type Payment Date Yield
0 2019-10-11 0.2600 trailing_twelve_months 2019-10-15 5,67%
1 2019-04-08 0.2600 trailing_twelve_months 2019-04-10 5,53%
2 2018-06-11 0.3839 trailing_twelve_months 2018-06-13 3,96%
3 2018-04-06 0.2400 trailing_twelve_months 2018-04-10 4,41%
4 2017-10-06 0.3786 trailing_twelve_months 2017-10-10 4,45%

Return type pandas.DataFrame - stock_dividends

investpy.stocks.get_stock_financial_summary(stock, country, sum-
mary_type='income_statement', pe-
riod='annual')

This function retrieves the financial summary of the introduced stock (by symbol) from the introduced country,
based on the summary_type value this function returns a different type of financial summary, so that the output

22 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

format of this function depends on its type. Additionally, the period of the retrieved financial summary type can
be specified.

Parameters

• stock (str) – symbol of the stock to retrieve its financial summary.

• country (str) – name of the country from where the introduced stock symbol is.

• summary_type (str, optional) – type of the financial summary table to retrieve,
default value is income_statement, but all the available types are: income_statement,
cash_flow_statement and balance_sheet.

• period (str, optional) – period range of the financial summary table to rertieve, detault
value is annual, but all the available periods are: annual and quarterly.

Returns

The resulting pandas.DataFrame contains the table of the requested financial summary
from the introduced stock, so the fields/column names may vary, since it depends on the sum-
mary_type introduced. So on, the returned table will have the following format/structure:

Date || Field 1 | Field 2 | ... | Field N
-----||---------|---------|-----|---------
xxxx || xxxxxxx | xxxxxxx | xxx | xxxxxxx

Return type pandas.DataFrame - financial_summary

Raises

• ValueError – raised if any of the introduced parameters is not valid or errored.

• FileNotFoundError – raised if the stocks.csv file was not found.

• IOError – raised if the stocks.csv file could not be read.

• ConnectionError – raised if the connection to Investing.com errored or could not be
established.

• RuntimeError – raised if any error occurred while running the function.

Examples

>>> data = investpy.get_stock_financial_summary(stock='AAPL', country='United
→˓States', summary_type='income_statement', period='annual')
>>> data.head()

Total Revenue Gross Profit Operating Income Net Income
Date
2019-09-28 260174 98392 63930 55256
2018-09-29 265595 101839 70898 59531
2017-09-30 229234 88186 61344 48351
2016-09-24 215639 84263 60024 45687

investpy.stocks.get_stock_historical_data(stock, country, from_date, to_date,
as_json=False, order='ascending', inter-
val='Daily')

This function retrieves historical data from the introduced stock from Investing.com. So on, the historical data
of the introduced stock from the specified country in the specified date range will be retrieved and returned
as a pandas.DataFrame if the parameters are valid and the request to Investing.com succeeds. Note that
additionally some optional parameters can be specified: as_json and order, which let the user decide if the data

9.1. investpy.stocks 23

investpy Documentation, Release 1.0.8

is going to be returned as a json or not, and if the historical data is going to be ordered ascending or descending
(where the index is the date), respectively.

Parameters

• stock (str) – symbol of the stock to retrieve historical data from.

• country (str) – name of the country from where the stock is.

• from_date (str) – date formatted as dd/mm/yyyy, since when data is going to be re-
trieved.

• to_date (str) – date formatted as dd/mm/yyyy, until when data is going to be retrieved.

• as_json (bool, optional) – to determine the format of the output data, either a pandas.
DataFrame if False and a json if True.

• order (str, optional) – to define the order of the retrieved data which can either be as-
cending or descending.

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function can return either a pandas.DataFrame or a json object, containing the re-
trieved historical data of the specified stock from the specified country. So on, the resulting
dataframe contains the open, high, low, close and volume values for the selected stock on mar-
ket days and the currency in which those values are presented.

The returned data is case we use default arguments will look like:

Date || Open | High | Low | Close | Volume | Currency
-----||------|------|-----|-------|--------|----------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxx | xxxxxxxx

but if we define as_json=True, then the output will be:

{
name: name,
historical: [

{
date: 'dd/mm/yyyy',
open: x,
high: x,
low: x,
close: x,
volume: x,
currency: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• IOError – raised if stocks object/file was not found or unable to retrieve.

24 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

• RuntimeError – raised if the introduced stock/country was not found or did not match
any of the existing ones.

• ConnectionError – raised if connection to Investing.com could not be established.

• IndexError – raised if stock historical data was unavailable or not found in Invest-
ing.com.

Examples

>>> data = investpy.get_stock_historical_data(stock='bbva', country='spain', from_
→˓date='01/01/2010', to_date='01/01/2019')
>>> data.head()

Open High Low Close Volume Currency
Date
2010-01-04 12.73 12.96 12.73 12.96 0 EUR
2010-01-05 13.00 13.11 12.97 13.09 0 EUR
2010-01-06 13.03 13.17 13.02 13.12 0 EUR
2010-01-07 13.02 13.11 12.93 13.05 0 EUR
2010-01-08 13.12 13.22 13.04 13.18 0 EUR

investpy.stocks.get_stock_information(stock, country, as_json=False)
This function retrieves fundamental financial information from the specified stock. The retrieved information
from the stock can be valuable as it is additional information that can be used combined with OHLC values, so
to determine financial insights from the company which holds the specified stock.

Parameters

• stock (str) – symbol of the stock to retrieve its information from.

• country (country) – name of the country from where the stock is from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(dict or json).

Returns

The resulting pandas.DataFrame contains the information fields retrieved from Invest-
ing.com from the specified stock ; it can also be returned as a dict, if argument as_json=True.

If any of the information fields could not be retrieved, that field/s will be filled with None values.
If the retrieval process succeeded, the resulting dict will look like:

stock_information = {
"Stock Symbol": "AAPL",
"Prev. Close": 267.25,
"Todays Range": "263.45 - 268.25",
"Revenue": 260170000000.00003,
"Open": 267.27,
"52 wk Range": "142 - 268.25",
"EPS": 11.85,
"Volume": 23693550.0,
"Market Cap": 1173730000000.0,
"Dividend (Yield)": "3.08 (1.15%)",
"Average Vol. (3m)": 25609925.0,
"P/E Ratio": 22.29,
"Beta": 1.23,
"1-Year Change": "47.92%",
"Shares Outstanding": 4443236000.0,

(continues on next page)

9.1. investpy.stocks 25

investpy Documentation, Release 1.0.8

(continued from previous page)

"Next Earnings Date": "04/02/2020"
}

Return type pandas.DataFrame or dict- stock_information

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if stocks.csv file was not found or errored.

• IOError – raised if stocks.csv file is empty or errored.

• RuntimeError – raised if scraping process failed while running.

• ConnectionError – raised if the connection to Investing.com errored (did not return
HTTP 200)

investpy.stocks.get_stock_recent_data(stock, country, as_json=False, order='ascending', in-
terval='Daily')

This function retrieves recent historical data from the introduced stock from Investing.com. So on, the re-
cent data of the introduced stock from the specified country will be retrieved and returned as a pandas.
DataFrame if the parameters are valid and the request to Investing.com succeeds. Note that additionally some
optional parameters can be specified: as_json and order, which let the user decide if the data is going to be
returned as a json or not, and if the historical data is going to be ordered ascending or descending (where the
index is the date), respectively.

Parameters

• stock (str) – symbol of the stock to retrieve recent historical data from.

• country (str) – name of the country from where the stock is.

• as_json (bool, optional) – to determine the format of the output data, either a pandas.
DataFrame if False and a json if True.

• order (str, optional) – to define the order of the retrieved data which can either be as-
cending or descending.

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function can return either a pandas.DataFrame or a json object, containing the re-
trieved recent data of the specified stock from the specified country. So on, the resulting
dataframe contains the open, high, low, close and volume values for the selected stock on market
days and the currency in which those values are presented.

The resulting recent data, in case that the default parameters were applied, will look like:

Date || Open | High | Low | Close | Volume | Currency
-----||------|------|-----|-------|--------|----------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxx | xxxxxxxx

but in case that as_json parameter was defined as True, then the output will be:

{
name: name,
recent: [

{

(continues on next page)

26 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

(continued from previous page)

date: 'dd/mm/yyyy',
open: x,
high: x,
low: x,
close: x,
volume: x,
currency: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• IOError – raised if stocks object/file was not found or unable to retrieve.

• RuntimeError – raised if the introduced stock/country was not found or did not match
any of the existing ones.

• ConnectionError – raised if connection to Investing.com could not be established.

• IndexError – raised if stock recent data was unavailable or not found in Investing.com.

Examples

>>> data = investpy.get_stock_recent_data(stock='bbva', country='spain')
>>> data.head()

Open High Low Close Volume Currency
Date
2019-08-13 4.263 4.395 4.230 4.353 27250000 EUR
2019-08-14 4.322 4.325 4.215 4.244 36890000 EUR
2019-08-15 4.281 4.298 4.187 4.234 21340000 EUR
2019-08-16 4.234 4.375 4.208 4.365 46080000 EUR
2019-08-19 4.396 4.425 4.269 4.269 18950000 EUR

investpy.stocks.get_stocks(country=None)
This function retrieves all the stock data stored in stocks.csv file, which previously was retrieved from Invest-
ing.com. Since the resulting object is a matrix of data, the stock data is properly structured in rows and columns,
where columns are the stock data attribute names. Additionally, country filtering can be specified, which will
make this function return not all the stored stock data, but just the stock data of the stocks from the introduced
country.

Parameters country (str, optional) – name of the country to retrieve all its available stocks
from.

Returns

The resulting pandas.DataFrame contains all the stock data from the introduced country if
specified, or from every country if None was specified, as indexed in Investing.com from the
information previously retrieved by investpy and stored on a csv file.

So on, the resulting pandas.DataFrame will look like:

9.1. investpy.stocks 27

investpy Documentation, Release 1.0.8

country	name	full name	isin	currency	symbol
xxxxxxx | xxxx | xxxxxxxxx | xxxx | xxxxxxxx | xxxxxx

Return type pandas.DataFrame - stocks_df

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

• FileNotFoundError – raised if stocks.csv file was not found.

• IOError – raised when stocks.csv file is missing or empty.

investpy.stocks.get_stocks_dict(country=None, columns=None, as_json=False)
This function retrieves all the stock information stored in the stocks.csv file and formats it as a Python dictionary
which contains the same information as the file, but every row is a dict and all of them are contained in a
list. Note that the dictionary structure is the same one as the JSON structure. Some optional paramaters
can be specified such as the country, columns or as_json, which are a filtering by country so not to return all
the stocks but just the ones from the introduced country, the column names that want to be retrieved in case
of needing just some columns to avoid unnecessary information load, and whether the information wants to be
returned as a JSON object or as a dictionary; respectively.

Parameters

• country (str, optional) – name of the country to retrieve all its available stocks from.

• columns (list, optional) – column names of the stock data to retrieve, can be: <country,
name, full_name, isin, currency, symbol>

• as_json (bool, optional) – if True the returned data will be a json object, if False, a
list of dict.

Returns

The resulting list of dict contains the retrieved data from every stock as indexed in Invest-
ing.com from the information previously retrieved by investpy and stored on a csv file.

In case the information was successfully retrieved, the list of dict will look like:

stocks_dict = {
'country': country,
'name': name,
'full_name': full_name,
'isin': isin,
'currency': currency,
'symbol': symbol,

}

Return type list of dict OR json - stocks_dict

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

• FileNotFoundError – raised if stocks.csv file was not found.

• IOError – raised when stocks.csv file is missing or empty.

investpy.stocks.get_stocks_list(country=None)
This function retrieves all the stock symbols stored in stocks.csv file, which contains all the data from the stocks
as previously retrieved from Investing.com. So on, this function will just return the stock symbols which will
be one of the input parameters when it comes to stock data retrieval functions from investpy. Additionally, note

28 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

that the country filtering can be applied, which is really useful since this function just returns the symbols and
in stock data retrieval functions both the symbol and the country must be specified and they must match.

Parameters country (str, optional) – name of the country to retrieve all its available stocks
from.

Returns

The resulting list contains the all the stock symbols from the introduced country if specified,
or from every country if None was specified, as indexed in Investing.com from the information
previously retrieved by investpy and stored on a csv file.

In case the information was successfully retrieved, the list of stock symbols will look like:

stocks_list = ['TS', 'APBR', 'GGAL', 'TXAR', 'PAMP', ...]

Return type list - stocks_list

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

• FileNotFoundError – raised if stocks.csv file was not found.

• IOError – raised when stocks.csv file is missing or empty.

investpy.stocks.get_stocks_overview(country, as_json=False, n_results=100)
This function retrieves an overview containing all the real time data available for the main stocks from a country,
such as the names, symbols, current value, etc. as indexed in Investing.com. So on, the main usage of this
function is to get an overview on the main stocks from a country, so to get a general view. Note that since this
function is retrieving a lot of information at once, by default just the overview of the Top 100 stocks is being
retrieved, but an additional parameter called n_results can be specified so to retrieve N results.

Parameters

• country (str) – name of the country to retrieve the stocks overview from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• n_results (int, optional) – number of results to be displayed on the overview table
(0-1000).

Returns

The resulting pandas.DataFrame contains all the data available in Investing.com of the
main stocks from a country in order to get an overview of it.

If the retrieval process succeeded, the resulting pandas.DataFrame should look like:

country | name | symbol | last | high | low | change | change_
→˓percentage | turnover | currency
--------|------|--------|------|------|-----|--------|----------------
→˓---|----------|----------
xxxxxxx | xxxx | xxxxxx | xxxx | xxxx | xxx | xxxxxx |
→˓xxxxxxxxxxxxxxxxx | xxxxxxxx | xxxxxxxx

Return type pandas.DataFrame - stocks_overview

Raises

• ValueError – raised if any of the introduced arguments errored.

• FileNotFoundError – raised when stocks.csv file is missing.

9.1. investpy.stocks 29

investpy Documentation, Release 1.0.8

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised either if the introduced country does not match any of the listed
ones or if no overview results could be retrieved from Investing.com.

• ConnectionError – raised if GET requests does not return 200 status code.

investpy.stocks.search_stocks(by, value)
This function searches stocks by the introduced value for the specified field. This means that this function is
going to search if there is a value that matches the introduced one for the specified field which is the stocks.csv
column name to search in. Available fields to search stocks are ‘name’, ‘full_name’ and ‘isin’.

Parameters

• by (str) – name of the field to search for, which is the column name which can be: ‘name’,
‘full_name’ or ‘isin’.

• value (str) – value of the field to search for, which is the value that is going to be
searched.

Returns The resulting pandas.DataFrame contains the search results from the given query,
which is any match of the specified value in the specified field. If there are no results for the
given query, an error will be raised, but otherwise the resulting pandas.DataFrame will
contain all the available stocks that match the introduced query.

Return type pandas.DataFrame - search_result

Raises

• ValueError – raised if any of the introduced parameters is not valid or errored.

• FileNotFoundError – raised if stocks.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised if no results were found for the introduced value in the introduced
field.

9.2 investpy.funds

investpy.funds.get_fund_countries()
This function retrieves all the country names indexed in Investing.com with available funds to retrieve data from,
via reading the fund_countries.csv file from the resources directory. So on, this function will display a listing
containing a set of countries, in order to let the user know which countries are taken into account and also the
return listing from this function can be used for country param check if needed.

Returns The resulting list contains all the available countries with funds as indexed in Invest-
ing.com

Return type list - countries

Raises

• FileNotFoundError – raised when the fund_countries.csv file was not found.

• IndexError – raised if fund_countries.csv file was unavailable or not found.

investpy.funds.get_fund_historical_data(fund, country, from_date, to_date, as_json=False,
order='ascending', interval='Daily')

This function retrieves historical data from the introduced fund from Investing via Web Scraping on the intro-
duced date range. The resulting data can it either be stored in a pandas.DataFrame or in a json object
with ascending or descending order.

30 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

Parameters

• fund (str) – name of the fund to retrieve recent historical data from.

• country (str) – name of the country from where the introduced fund is.

• from_date (str) – date as str formatted as dd/mm/yyyy, from where data is going to be
retrieved.

• to_date (str) – date as str formatted as dd/mm/yyyy, until where data is going to be
retrieved.

• as_json (bool, optional) – to determine the format of the output data (pandas.
DataFrame or json).

• order (str, optional) – optional argument to define the order of the retrieved data (as-
cending, asc or descending, desc).

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function returns a either a pandas.DataFrame or a json file containing the retrieved
recent data from the specified fund via argument. The dataset contains the open, high, low and
close values for the selected fund on market days.

The returned data is case we use default arguments will look like:

Date || Open | High | Low | Close | Currency
-----||------|------|-----|-------|----------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxxxx

but if we define as_json=True, then the output will be:

{
name: name,
historical: [

{
date: dd/mm/yyyy,
open: x,
high: x,
low: x,
close: x,
currency: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – argument error.

• IOError – funds object/file not found or unable to retrieve.

• RuntimeError – introduced fund does not match any of the indexed ones.

• ConnectionError – if GET requests does not return 200 status code.

• IndexError – if fund information was unavailable or not found.

9.2. investpy.funds 31

investpy Documentation, Release 1.0.8

Examples

>>> data = investpy.get_fund_historical_data(fund='bbva multiactivo conservador pp
→˓', country='spain', from_date='01/01/2010', to_date='01/01/2019')
>>> data.head()

Open High Low Close Currency
Date
2018-02-15 1.105 1.105 1.105 1.105 EUR
2018-02-16 1.113 1.113 1.113 1.113 EUR
2018-02-17 1.113 1.113 1.113 1.113 EUR
2018-02-18 1.113 1.113 1.113 1.113 EUR
2018-02-19 1.111 1.111 1.111 1.111 EUR

investpy.funds.get_fund_information(fund, country, as_json=False)
This function retrieves basic financial information from the specified fund. Retrieved information from the fund
can be valuable as it is additional information that can be used combined with OHLC values, so to determine
financial insights from the company which holds the specified fund.

Parameters

• fund (str) – name of the fund to retrieve the financial information from.

• country (str) – name of the country from where the introduced fund is.

• as_json (bool, optional) – optional argument to determine the format of the output data
(dict or json).

Returns

The resulting pandas.DataFrame contains the information fields retrieved from Invest-
ing.com from the specified fund; it can also be returned as a dict, if argument as_json=True.

If any of the information fields could not be retrieved, that field/s will be filled with None values.
If the retrieval process succeeded, the resulting dict will look like:

fund_information = {
'Fund Name': fund_name,
'Rating': rating,
'1-Year Change': year_change,
'Previous Close': prev_close,
'Risk Rating': risk_rating,
'TTM Yield': ttm_yield,
'ROE': roe,
'Issuer': issuer,
'Turnover': turnover,
'ROA': row,
'Inception Date': inception_date,
'Total Assets': total_assets,
'Expenses': expenses,
'Min Investment': min_investment,
'Market Cap': market_cap,
'Category': category

}

Return type pandas.DataFrame or dict- fund_information

investpy.funds.get_fund_recent_data(fund, country, as_json=False, order='ascending', inter-
val='Daily')

This function retrieves recent historical data from the introduced fund from Investing via Web Scraping. The

32 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

resulting data can it either be stored in a pandas.DataFrame or in a json file, with ascending or descending
order.

Parameters

• fund (str) – name of the fund to retrieve recent historical data from.

• country (str) – name of the country from where the introduced fund is.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• order (str, optional) – optional argument to define the order of the retrieved data (as-
cending, asc or descending, desc).

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function returns a either a pandas.DataFrame or a json file containing the retrieved
recent data from the specified fund via argument. The dataset contains the open, high, low and
close values for the selected fund on market days.

The returned data is case we use default arguments will look like:

Date || Open | High | Low | Close | Currency
-----||------|------|-----|-------|----------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxxxx

but if we define as_json=True, then the output will be:

{
name: name,
recent: [

{
date: dd/mm/yyyy,
open: x,
high: x,
low: x,
close: x,
currency: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – argument error.

• IOError – funds object/file not found or unable to retrieve.

• RuntimeError – introduced fund does not match any of the indexed ones.

• ConnectionError – if GET requests does not return 200 status code.

• IndexError – if fund information was unavailable or not found.

9.2. investpy.funds 33

investpy Documentation, Release 1.0.8

Examples

>>> data = investpy.get_fund_recent_data(fund='bbva multiactivo conservador pp',
→˓country='spain')
>>> data.head()

Open High Low Close Currency
Date
2019-08-13 1.110 1.110 1.110 1.110 EUR
2019-08-16 1.109 1.109 1.109 1.109 EUR
2019-08-19 1.114 1.114 1.114 1.114 EUR
2019-08-20 1.112 1.112 1.112 1.112 EUR
2019-08-21 1.115 1.115 1.115 1.115 EUR

investpy.funds.get_funds(country=None)
This function retrieves all the available funds from Investing.com and returns them as a pandas.DataFrame,
which contains not just the fund names, but all the fields contained on the funds.csv file. All the available funds
can be found at: https://www.investing.com/funds/

Parameters country (str, optional) – name of the country to retrieve all its available funds from.

Returns

The resulting pandas.DataFrame contains all the funds basic information retrieved from
Investing.com, some of which is not useful for the user, but for the inner package functions,
such as the id field, for example.

In case the information was successfully retrieved, the pandas.DataFrame will look like:

country | name | symbol | issuer | isin | asset_class | currency |
→˓underlying
--------|------|--------|--------|------|-------------|----------|----
→˓--------
xxxxxxx | xxxx | xxxxxx | xxxxxx | xxxx | xxxxxxxxxxx | xxxxxxxx |
→˓xxxxxxxxxx

Return type pandas.DataFrame - funds_df

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised when the funds.csv file was not found.

• IOError – raised if the funds.csv file is missing or errored.

investpy.funds.get_funds_dict(country=None, columns=None, as_json=False)
This function retrieves all the available funds on Investing.com and returns them as a dict containing the
country, name, symbol, tag, id, issuer, isin, asset_class, currency and underlying data. All the available funds
can be found at: https://www.investing.com/funds/

Parameters

• country (str, optional) – name of the country to retrieve all its available funds from.

• columns (list of str, optional) – description a list containing the column names
from which the data is going to be retrieved.

• as_json (bool, optional) – description value to determine the format of the output data
(dict or json).

Returns

34 Chapter 9. API Reference

https://www.investing.com/funds/
https://www.investing.com/funds/

investpy Documentation, Release 1.0.8

The resulting dict contains the retrieved data if found, if not, the corresponding fields are filled
with None values.

In case the information was successfully retrieved, the dict will look like:

{
'country': country,
'name': name,
'symbol': symbol,
'issuer': issuer,
'isin': isin,
'asset_class': asset_class,
'currency': currency,
'underlying': underlying

}

Return type dict or json - funds_dict

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised when the funds.csv file was not found.

• IOError – raised if the funds.csv file is missing or errored.

investpy.funds.get_funds_list(country=None)
This function retrieves all the available funds and returns a list of each one of them. All the available funds can
be found at: https://www.investing.com/funds/

Parameters country (str, optional) – name of the country to retrieve all its available funds from.

Returns

The resulting list contains the retrieved data, which corresponds to the fund names of every fund
listed on Investing.com.

In case the information was successfully retrieved from the CSV file, the list will look like:

funds = [
'Blackrock Global Funds - Global Allocation Fund E2',
'Quality Inversión Conservadora Fi',
'Nordea 1 - Stable Return Fund E Eur',
...

]

Return type list - funds_list

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised when the funds.csv file was not found.

• IOError – raised if the funds.csv file is missing or errored.

investpy.funds.get_funds_overview(country, as_json=False, n_results=100)
This function retrieves an overview containing all the real time data available for the main funds from a country,
such as the names, symbols, current value, etc. as indexed in Investing.com. So on, the main usage of this
function is to get an overview on the main funds from a country, so to get a general view. Note that since this
function is retrieving a lot of information at once, by default just the overview of the Top 100 funds is being
retrieved, but an additional parameter called n_results can be specified so to retrieve N results.

Parameters

9.2. investpy.funds 35

https://www.investing.com/funds/

investpy Documentation, Release 1.0.8

• country (str) – name of the country to retrieve the funds overview from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• n_results (int, optional) – number of results to be displayed on the overview table
(0-1000).

Returns

The resulting pandas.DataFrame contains all the data available in Investing.com of the
main ETFs from a country in order to get an overview of it.

If the retrieval process succeeded, the resulting pandas.DataFrame should look like:

country	name	symbol	last	change	total_assets
xxxxxxx | xxxx | xxxxxx | xxxx | xxxxxx | xxxxxxxxxxxx

Return type pandas.DataFrame - funds_overview

Raises

• ValueError – raised if there was any argument error.

• FileNotFoundError – raised when funds.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised either if the introduced country does not match any of the listed
ones or if no overview results could be retrieved from Investing.com.

• ConnectionError – raised if GET requests does not return 200 status code.

investpy.funds.search_funds(by, value)
This function searches funds by the introduced value for the specified field. This means that this function is
going to search if there is a value that matches the introduced value for the specified field which is the funds.csv
column name to search in. Available fields to search funds are ‘name’, ‘symbol’, ‘issuer’ and ‘isin’.

Parameters

• by (str) – name of the field to search for, which is the column name (‘name’, ‘symbol’,
‘issuer’ or ‘isin’).

• value (str) – value of the field to search for, which is the str that is going to be searched.

Returns The resulting pandas.DataFrame contains the search results from the given query (the spec-
ified value in the specified field). If there are no results and error will be raised, but otherwise this
pandas.DataFrame will contain all the available field values that match the introduced query.

Return type pandas.DataFrame - search_result

Raises

• ValueError – raised if any of the introduced params is not valid or errored.

• FileNotFoundError – raised if funds.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised if no results were found for the introduced value in the introduced
field.

36 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

9.3 investpy.etfs

investpy.etfs.get_etf_countries()
This function retrieves all the available countries to retrieve etfs from, as the listed countries are the ones indexed
on Investing.com. The purpose of this function is to list the countries which have available etfs according to
Investing.com data, so to ease the etf retrieval process of a particular country.

Returns

The resulting list contains all the countries listed on Investing.com with etfs available to
retrieve data from.

In the case that the file reading of etf_countries.csv which contains the names and codes of the
countries with etfs was successfully completed, the resulting list will look like:

countries = ['australia', 'austria', 'belgium', 'brazil', ...]

Return type list - countries

Raises FileNotFoundError – raised when etf_countries.csv file was not found.

investpy.etfs.get_etf_historical_data(etf, country, from_date, to_date,
stock_exchange=None, as_json=False, or-
der='ascending', interval='Daily')

This function retrieves historical data from the introduced etf from Investing.com via Web Scraping on the
introduced date range. The resulting data can it either be stored in a pandas.DataFrame or in a json
object with ascending or descending order.

Parameters

• etf (str) – name of the etf to retrieve recent historical data from.

• country (str) – name of the country from where the etf is.

• from_date (str) – date as str formatted as dd/mm/yyyy, from where data is going to be
retrieved.

• to_date (str) – date as str formatted as dd/mm/yyyy, until where data is going to be
retrieved.

• as_json (bool, optional) – to determine the format of the output data (pandas.
DataFrame or json).

• order (str, optional) – optional argument to define the order of the retrieved data (as-
cending, asc or descending, desc).

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function returns either a pandas.DataFrame or a json file containing the retrieved
recent data from the specified etf via argument. The dataset contains the open, high, low and
close values for the selected etf on market days.

The returned data is case we use default arguments will look like:

Date || Open | High | Low | Close | Volume | Currency | Exchange
-----||------|------|-----|-------|--------|----------|---------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxx | xxxxxxxx | xxxxxxxx

but if we define as_json=True, then the output will be:

9.3. investpy.etfs 37

investpy Documentation, Release 1.0.8

{
name: name,
historical: [

{
date: dd/mm/yyyy,
open: x,
high: x,
low: x,
close: x,
volume: x,
currency: x,
exchange: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised whenever any of the arguments is not valid or errored.

• IOError – raised if etfs object/file not found or unable to retrieve.

• RuntimeError – raised if the introduced etf does not match any of the indexed ones.

• ConnectionError – raised if GET requests does not return 200 status code.

• IndexError – raised if etf information was unavailable or not found.

Examples

>>> data = investpy.get_etf_historical_data(etf='bbva accion dj eurostoxx 50',
→˓country='spain', from_date='01/01/2010', to_date='01/01/2019')
>>> data.head()

Open High Low Close Volume Currency Exchange
Date
2011-12-07 23.70 23.70 23.70 23.62 2000 EUR Madrid
2011-12-08 23.53 23.60 23.15 23.04 599 EUR Madrid
2011-12-09 23.36 23.60 23.36 23.62 2379 EUR Madrid
2011-12-12 23.15 23.26 23.00 22.88 10695 EUR Madrid
2011-12-13 22.88 22.88 22.88 22.80 15 EUR Madrid

investpy.etfs.get_etf_information(etf, country, as_json=False)
This function retrieves fundamental financial information from the specified ETF. The retrieved information
from the ETF can be valuable as it is additional information that can be used combined with OHLC values, so
to determine financial insights from the company which holds the specified ETF.

Parameters

• etf (str) – name of the ETF to retrieve recent historical data from.

• country (str) – name of the country from where the ETF is.

• as_json (bool, optional) – optional argument to determine the format of the output data
(dict or json).

Returns

38 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

The resulting pandas.DataFrame contains the information fields retrieved from Invest-
ing.com from the specified ETF; it can also be returned as a dict, if argument as_json=True.

If any of the information fields could not be retrieved, that field/s will be filled with None values.
If the retrieval process succeeded, the resulting dict will look like:

etf_information = {
"1-Year Change": "21.83%",
"52 wk Range": "233.76 - 320.06",
"Asset Class": "Equity",
"Average Vol. (3m)": 59658771.0,
"Beta": 1.01,
"Dividend Yield": "1.73%",
"Dividends (TTM)": 4.03,
"ETF Name": "SPDR S&P 500",
"Market Cap": 296440000000.0,
"Open": 319.25,
"Prev. Close": 317.27,
"ROI (TTM)": "- 0.46%",
"Shares Outstanding": 934132116.0,
"Todays Range": "319.18 - 320.06",
"Total Assets": 167650000000.0,
"Volume": 27928710.0

}

Return type pandas.DataFrame or dict- etf_information

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if etfs.csv file was not found or errored.

• IOError – raised if etfs.csv file is empty or errored.

• RuntimeError – raised if scraping process failed while running.

• ConnectionError – raised if the connection to Investing.com errored (did not return
HTTP 200)

investpy.etfs.get_etf_recent_data(etf, country, stock_exchange=None, as_json=False, or-
der='ascending', interval='Daily')

This function retrieves recent historical data from the introduced etf from Investing via Web Scraping. The
resulting data can it either be stored in a pandas.DataFrame or in a json file, with ascending or descending
order.

Parameters

• etf (str) – name of the etf to retrieve recent historical data from.

• country (str) – name of the country from where the etf is.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• order (str, optional) – optional argument to define the order of the retrieved data (as-
cending, asc or descending, desc).

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

9.3. investpy.etfs 39

investpy Documentation, Release 1.0.8

The function returns either a pandas.DataFrame or a json file containing the retrieved
recent data from the specified etf via argument. The dataset contains the open, high, low and
close values for the selected etf on market days.

The returned data is case we use default arguments will look like:

Date || Open | High | Low | Close | Volume | Currency | Exchange
-----||------|------|-----|-------|--------|----------|---------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxx | xxxxxxxx | xxxxxxxx

but if we define as_json=True, then the output will be:

{
name: name,
recent: [

{
date: dd/mm/yyyy,
open: x,
high: x,
low: x,
close: x,
volume: x,
currency: x,
exchange: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised whenever any of the arguments is not valid or errored.

• IOError – raised if etfs object/file not found or unable to retrieve.

• RuntimeError – raised if the introduced etf does not match any of the indexed ones.

• ConnectionError – raised if GET requests does not return 200 status code.

• IndexError – raised if etf information was unavailable or not found.

Examples

>>> data = investpy.get_etf_recent_data(etf='bbva accion dj eurostoxx 50',
→˓country='spain')
>>> data.head()

Open High Low Close Volume Currency Exchange
Date
2020-04-09 28.890 29.155 28.40 28.945 20651 EUR Madrid
2020-04-14 29.345 30.235 28.94 29.280 14709 EUR Madrid
2020-04-15 29.125 29.125 28.11 28.130 14344 EUR Madrid
2020-04-16 28.505 28.590 28.08 28.225 17662 EUR Madrid
2020-04-17 29.000 29.325 28.80 28.895 19578 EUR Madrid

investpy.etfs.get_etfs(country=None)
This function retrieves all the available etfs indexed on Investing.com, already stored on etfs.csv. This function

40 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

also allows the users to specify which country do they want to retrieve data from or if they want to retrieve it
from every listed country; so on, all the indexed etfs will be returned.

Parameters country (str, optional) – name of the country to retrieve all its available etfs from.

Returns

The resulting pandas.DataFrame contains all the etfs basic information stored on etfs.csv,
since it was previously retrieved by investpy. Unless the country is specified, all the available
etfs indexed on Investing.com is returned, but if it is specified, just the etfs from that country are
returned.

In the case that the file reading of etfs.csv or the retrieval process from Investing.com was suc-
cessfully completed, the resulting pandas.DataFrame will look like:

country | name | full_name | symbol | isin | asset_class | currency |
→˓stock_exchange | def_stock_exchange
--------|------|-----------|--------|------|-------------|----------|-
→˓---------------|--------------------
xxxxxxx | xxxx | xxxxxxxxx | xxxxxx | xxxx | xxxxxxxxxxx | xxxxxxxx |
→˓xxxxxxxxxxxxxx | xxxxxxxxxxxxxxxxxx

Return type pandas.DataFrame - etfs

Raises

• ValueError – raised when any of the input arguments is not valid.

• FileNotFoundError – raised when etfs.csv file was not found.

• IOError – raised when etfs.csv file is missing.

investpy.etfs.get_etfs_dict(country=None, columns=None, as_json=False)
This function retrieves all the available etfs indexed on Investing.com, already stored on etfs.csv. This function
also allows the user to specify which country do they want to retrieve data from, or from every listed country;
the columns which the user wants to be included on the resulting dict; and the output of the function will
either be a dict or a json.

Parameters

• country (str, optional) – name of the country to retrieve all its available etfs from.

• columns (list, optional) – names of the columns of the etf data to retrieve <country,
name, full_name, symbol, isin, asset_class, currency, stock_exchange>

• as_json (bool, optional) – value to determine the format of the output data which can
either be a dict or a json.

Returns

The resulting dict contains the retrieved data if found, if not, the corresponding fields are filled
with None values.

In case the information was successfully retrieved, the dict will look like:

etfs_dict = {
"country": country,
"name": name,
"full_name": full_name,
"symbol": symbol,
"isin": isin,
"asset_class": asset_class,
"currency": currency,

(continues on next page)

9.3. investpy.etfs 41

investpy Documentation, Release 1.0.8

(continued from previous page)

"stock_exchange": stock_exchange,
"def_stock_exchange": def_stock_exchange

}

Return type dict or json - etfs_dict

Raises

• ValueError – raised when any of the input arguments is not valid.

• FileNotFoundError – raised when etfs.csv file was not found.

• IOError – raised when etfs.csv file is missing.

investpy.etfs.get_etfs_list(country=None)
This function retrieves all the available etfs indexed on Investing.com, already stored on etfs.csv. This function
also allows the users to specify which country do they want to retrieve data from or if they want to retrieve it
from every listed country; so on, a listing of etfs will be returned. This function helps the user to get to know
which etfs are available on Investing.com.

Parameters country (str, optional) – name of the country to retrieve all its available etfs from.

Returns

The resulting list contains the retrieved data from the etfs.csv file, which is a listing of the
names of the etfs listed on Investing.com, which is the input for data retrieval functions as the
name of the etf to retrieve data from needs to be specified.

In case the listing was successfully retrieved, the list will look like:

etfs_list = [
'Betashares U.S. Equities Strong Bear Currency Hedg',
'Betashares Active Australian Hybrids',
'Australian High Interest Cash', ...

]

Return type list - etfs_list

Raises

• ValueError – raised when any of the input arguments is not valid.

• FileNotFoundError – raised when etfs.csv file was not found.

• IOError – raised when etfs.csv file is missing.

investpy.etfs.get_etfs_overview(country, as_json=False, n_results=100)
This function retrieves an overview containing all the real time data available for the main ETFs from a country,
such as the ETF names, symbols, current value, etc. as indexed in Investing.com. So on, the main usage of this
function is to get an overview on the main ETFs from a country, so to get a general view. Note that since this
function is retrieving a lot of information at once, by default just the overview of the Top 100 ETFs is being
retrieved, but an additional parameter called n_results can be specified so to retrieve N results.

Parameters

• country (str) – name of the country to retrieve the ETFs overview from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• n_results (int, optional) – number of results to be displayed on the overview table
(0-1000).

42 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

Returns

The resulting pandas.DataFrame contains all the data available in Investing.com of the
main ETFs from a country in order to get an overview of it.

If the retrieval process succeeded, the resulting pandas.DataFrame should look like:

country	name	full_name	symbol	last	change	turnover
xxxxxxx | xxxx | xxxxxxxxx | xxxxxx | xxxx | xxxxxx | xxxxxxxx

Return type pandas.DataFrame - etfs_overview

Raises

• ValueError – raised if there was any argument error.

• FileNotFoundError – raised when etfs.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised either if the introduced country does not match any of the listed
ones or if no overview results could be retrieved from Investing.com.

• ConnectionError – raised if GET requests does not return 200 status code.

investpy.etfs.search_etfs(by, value)
This function searches etfs by the introduced value for the specified field. This means that this function is going
to search if there is a value that matches the introduced value for the specified field which is the etfs.csv column
name to search in. Available fields to search etfs are ‘name’, ‘full_name’ and ‘symbol’.

Parameters

• by (str) – name of the field to search for, which is the column name (‘name’, ‘full_name’
or ‘symbol’).

• value (str) – value of the field to search for, which is the str that is going to be searched.

Returns The resulting pandas.DataFrame contains the search results from the given query (the spec-
ified value in the specified field). If there are no results and error will be raised, but otherwise this
pandas.DataFrame will contain all the available field values that match the introduced query.

Return type pandas.DataFrame - search_result

Raises

• ValueError – raised if any of the introduced params is not valid or errored.

• FileNotFoundError – raised if etfs.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised if no results were found for the introduced value in the introduced
field.

9.3. investpy.etfs 43

investpy Documentation, Release 1.0.8

9.4 investpy.indices

investpy.indices.get_index_countries()
This function retrieves all the country names indexed in Investing.com with available indices to retrieve data
from, via reading the indices.csv file from the resources directory. So on, this function will display a listing
containing a set of countries, in order to let the user know which countries are available for indices data retrieval.

Returns The resulting list contains all the available countries with indices as indexed in Invest-
ing.com

Return type list - countries

Raises

• FileNotFoundError – raised if the indices.csv file was not found.

• IOError – raised if the indices.csv file is missing or errored.

investpy.indices.get_index_historical_data(index, country, from_date, to_date,
as_json=False, order='ascending', inter-
val='Daily')

This function retrieves historical data of the introduced index (from the specified country, note that both index
and country should match since if the introduced index is not listed in the indices of that country, the function
will raise an error). The retrieved historical data are the OHLC values plus the Volume and the Currency in
which those values are specified, from the introduced date range if valid. So on, the resulting data can it either
be stored in a pandas.DataFrame or in a json file.

Parameters

• index (str) – name of the index to retrieve recent historical data from.

• country (str) – name of the country from where the index is.

• from_date (str) – date as str formatted as dd/mm/yyyy, from where data is going to be
retrieved.

• to_date (str) – date as str formatted as dd/mm/yyyy, until where data is going to be
retrieved.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function returns either a pandas.DataFrame or a json file containing the retrieved
historical data from the specified index via argument. The dataset contains the open, high, low,
close and volume values for the selected index on market days, additionally the currency in
which those values are specified is returned.

The returned data is case we use default arguments will look like:

Date || Open | High | Low | Close | Volume | Currency
-----||------|------|-----|-------|--------|----------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxx | xxxxxxxx

but if we define as_json=True, then the output will be:

44 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

{
name: name,
historical: [

{
date: dd/mm/yyyy,
open: x,
high: x,
low: x,
close: x,
volume: x,
currency: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised if there was an argument error.

• IOError – raised if indices object/file was not found or unable to retrieve.

• RuntimeError – raised if the introduced index does not match any of the indexed ones.

• ConnectionError – raised if GET requests does not return 200 status code.

• IndexError – raised if index information was unavailable or not found.

Examples

>>> data = investpy.get_index_historical_data(index='ibex 35', country='spain',
→˓from_date='01/01/2018', to_date='01/01/2019')
>>> data.head()

Open High Low Close Volume Currency
Date
2018-01-02 15128.2 15136.7 14996.6 15096.8 10340000 EUR
2018-01-03 15145.0 15186.9 15091.9 15106.9 12800000 EUR
2018-01-04 15105.5 15368.7 15103.7 15368.7 17070000 EUR
2018-01-05 15353.9 15407.5 15348.6 15398.9 11180000 EUR
2018-01-08 15437.1 15448.7 15344.0 15373.3 12890000 EUR

investpy.indices.get_index_information(index, country, as_json=False)
This function retrieves fundamental financial information from the specified index. The retrieved information
from the index can be valuable as it is additional information that can be used combined with OHLC values, so
to determine financial insights from the company which holds the specified index.

Parameters

• index (str) – name of the index to retrieve recent historical data from.

• country (str) – name of the country from where the index is.

• as_json (bool, optional) – optional argument to determine the format of the output data
(dict or json).

Returns

9.4. investpy.indices 45

investpy Documentation, Release 1.0.8

The resulting pandas.DataFrame contains the information fields retrieved from Invest-
ing.com from the specified index; it can also be returned as a dict, if argument as_json=True.

If any of the information fields could not be retrieved, that field/s will be filled with None values.
If the retrieval process succeeded, the resulting dict will look like:

index_information = {
"Index Name": "S&P Merval",
"Prev. Close": 36769.59,
"Volume": None,
"Todays Range": "36,769.59 - 37,894.32",
"Open": 36769.59,
"Average Vol. (3m)": None,
"52 wk Range": "22,484.4 - 44,470.76",
"1-Year Change": "18.19%"

}

Return type pandas.DataFrame or dict- index_information

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if indices.csv file was not found or errored.

• IOError – raised if indices.csv file is empty or errored.

• RuntimeError – raised if scraping process failed while running.

• ConnectionError – raised if the connection to Investing.com errored (did not return
HTTP 200)

investpy.indices.get_index_recent_data(index, country, as_json=False, order='ascending',
interval='Daily')

This function retrieves recent historical data from the introduced index from Investing via Web Scraping. The
resulting data can it either be stored in a pandas.DataFrame or in a json file, with ascending or descending
order.

Parameters

• index (str) – name of the index to retrieve recent historical data from.

• country (str) – name of the country from where the index is.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• order (str, optional) – optional argument to define the order of the retrieved data (as-
cending, asc or descending, desc).

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function returns either a pandas.DataFrame or a json file containing the retrieved
recent data from the specified index via argument. The dataset contains the open, high, low,
close and volume values for the selected index on market days, additionally the currency value
is returned.

The returned data is case we use default arguments will look like:

46 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

Date || Open | High | Low | Close | Volume | Currency
-----||------|------|-----|-------|--------|----------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxx | xxxxxxxx

but if we define as_json=True, then the output will be:

{
name: name,
recent: [

{
date: dd/mm/yyyy,
open: x,
high: x,
low: x,
close: x,
volume: x,
currency: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised if there was an argument error.

• IOError – raised if indices object/file was not found or unable to retrieve.

• RuntimeError – raised if the introduced index does not match any of the indexed ones.

• ConnectionError – raised if GET requests does not return 200 status code.

• IndexError – raised if index information was unavailable or not found.

Examples

>>> data = investpy.get_index_recent_data(index='ibex 35', country='spain')
>>> data.head()

Open High Low Close Volume Currency
Date
2019-08-26 12604.7 12646.3 12510.4 12621.3 4770000 EUR
2019-08-27 12618.3 12723.3 12593.6 12683.8 8230000 EUR
2019-08-28 12657.2 12697.2 12585.1 12642.5 7300000 EUR
2019-08-29 12637.2 12806.6 12633.8 12806.6 5650000 EUR
2019-08-30 12767.6 12905.9 12756.9 12821.6 6040000 EUR

investpy.indices.get_indices(country=None)
This function retrieves all the available indices from Investing.com as previously listed in investpy, and returns
them as a pandas.DataFrame with all the information of every available index. If the country filtering
is applied, just the indices from the introduced country are going to be returned. All the available indices
can be found at: https://www.investing.com/indices/world-indices and at https://www.investing.com/indices/
world-indices, since both world and global indices are retrieved.

Parameters country (str, optional) – name of the country to retrieve all its available indices
from.

9.4. investpy.indices 47

https://www.investing.com/indices/world-indices
https://www.investing.com/indices/world-indices
https://www.investing.com/indices/world-indices

investpy Documentation, Release 1.0.8

Returns

The resulting pandas.DataFrame contains all the indices information retrieved from Invest-
ing.com, as previously listed by investpy.

In case the information was successfully retrieved, the pandas.DataFrame will look like:

country	name	full_name	symbol	currency	class	market
xxxxxxx | xxxx | xxxxxxxxx | xxxxxx | xxxxxxxx | xxxxx | xxxxxx

Return type pandas.DataFrame - indices_df

Raises

• ValueError – raised if any of the introduced parameters is missing or errored.

• FileNotFoundError – raised if the indices.csv file was not found.

• IOError – raised if the indices.csv file from investpy is missing or errored.

investpy.indices.get_indices_dict(country=None, columns=None, as_json=False)
This function retrieves all the available indices from Investing.com as previously listed in investpy, and returns
them as a dict with all the information of every available index. If the country filtering is applied, just the
indices from the introduced country are going to be returned. Additionally, the columns to retrieve data from
can be specified as a parameter formatted as a list. All the available indices can be found at: https://www.
investing.com/indices/world-indices and at https://www.investing.com/indices/world-indices, since both world
and global indices are retrieved.

Parameters

• country (str, optional) – name of the country to retrieve all its available indices from.

• columns (list of str, optional) – description a list containing the column names
from which the data is going to be retrieved.

• as_json (bool, optional) – description value to determine the format of the output data
(dict or json).

Returns

The resulting dict contains the retrieved data if found, if not, the corresponding fields are filled
with None values.

In case the information was successfully retrieved, the dict will look like:

indices_dict = {
'country': country,
'name': name,
'full_name': full_name,
'symbol': symbol,
'currency': currency,
'class': class,
'market': market

}

Return type dict or json - indices_dict

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if the indices.csv file was not found.

48 Chapter 9. API Reference

https://www.investing.com/indices/world-indices
https://www.investing.com/indices/world-indices
https://www.investing.com/indices/world-indices

investpy Documentation, Release 1.0.8

• IOError – raised if the indices.csv file is missing or errored.

investpy.indices.get_indices_list(country=None)
This function retrieves all the available indices from Investing.com as previously listed in investpy, and returns
them as a list with the names of every available index. If the country filtering is applied, just the indices
from the introduced country are going to be returned. All the available indices can be found at: https://www.
investing.com/indices/world-indices and at https://www.investing.com/indices/world-indices, since both world
and global indices are retrieved.

Parameters country (str, optional) – name of the country to retrieve all its available indices
from.

Returns

The resulting list contains the retrieved data, which corresponds to the index names of every
index listed in Investing.com.

In case the information was successfully retrieved, the list will look like:

indices = ['S&P Merval', 'S&P Merval Argentina', 'S&P/BYMA Argentina
→˓General', ...]

Return type list - indices_list

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if the indices.csv file was not found.

• IOError – raised if the indices.csv file is missing or errored.

investpy.indices.get_indices_overview(country, as_json=False, n_results=100)
This function retrieves an overview containing all the real time data available for the main indices from a
country, such as the names, symbols, current value, etc. as indexed in Investing.com. So on, the main usage
of this function is to get an overview on the main indices from a country, so to get a general view. Note that
since this function is retrieving a lot of information at once, by default just the overview of the Top 100 indices
is being retrieved, but an additional parameter called n_results can be specified so to retrieve N results.

Parameters

• country (str) – name of the country to retrieve the indices overview from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• n_results (int, optional) – number of results to be displayed on the overview table
(0-1000).

Returns

The resulting pandas.DataFrame contains all the data available in Investing.com of the
main indices from a country in order to get an overview of it.

If the retrieval process succeeded, the resulting pandas.DataFrame should look like:

country | name | last | high | low | change | change_percentage |
→˓currency
--------|------|------|------|-----|--------|-------------------|-----
→˓-----
xxxxxxx | xxxx | xxxx | xxxx | xxx | xxxxxx | xxxxxxxxxxxxxxxxx |
→˓xxxxxxxx

9.4. investpy.indices 49

https://www.investing.com/indices/world-indices
https://www.investing.com/indices/world-indices
https://www.investing.com/indices/world-indices

investpy Documentation, Release 1.0.8

Return type pandas.DataFrame - indices_overview

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised when indices.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised either if the introduced country does not match any of the listed
ones or if no overview results could be retrieved from Investing.com.

• ConnectionError – raised if GET requests does not return 200 status code.

investpy.indices.search_indices(by, value)
This function searches indices by the introduced value for the specified field. This means that this function is
going to search if there is a value that matches the introduced value for the specified field which is the indices.csv
column name to search in. Available fields to search indices are ‘name’, ‘full_name’ and ‘symbol’.

Parameters

• by (str) – name of the field to search for, which is the column name (‘name’, ‘full_name’
or ‘symbol’).

• value (str) – value of the field to search for, which is the str that is going to be searched.

Returns The resulting pandas.DataFrame contains the search results from the given query (the spec-
ified value in the specified field). If there are no results and error will be raised, but otherwise this
pandas.DataFrame will contain all the available field values that match the introduced query.

Return type pandas.DataFrame - search_result

Raises

• ValueError – raised if any of the introduced params is not valid or errored.

• FileNotFoundError – raised if indices.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised if no results were found for the introduced value in the introduced
field.

9.5 investpy.currency_crosses

investpy.currency_crosses.get_available_currencies()
This function retrieves a listing with all the available currencies with indexed currency crosses in order to get
to know which are the available currencies. The currencies listed in this function, so on, can be used to search
currency crosses and used the retrieved data to get historical data of those currency crosses, so to determine
which is the value of one base currency in the second currency.

Returns

The resulting list contains all the available currencies with currency crosses being either the
base or the second value of the cross, as listed in Investing.com.

In case the listing was successfully retrieved, the list will look like:

available_currencies = [
'AED', 'AFN', 'ALL', 'AMD', 'ANG', ...

]

50 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

Return type list - available_currencies

Raises

• FileNotFoundError – raised if currency_crosses.csv file was not found.

• IOError – raised if currency crosses retrieval failed, both for missing file or empty file.

investpy.currency_crosses.get_currency_cross_historical_data(currency_cross,
from_date, to_date,
as_json=False,
order='ascending',
interval='Daily')

This function retrieves recent historical data from the introduced currency_cross from Investing via Web Scrap-
ing. The resulting data can it either be stored in a pandas.DataFrame or in a json file, with ascending or
descending order.

Parameters

• currency_cross (str) – name of the currency cross to retrieve recent historical data
from.

• from_date (str) – date as str formatted as dd/mm/yyyy, from where data is going to be
retrieved.

• to_date (str) – date as str formatted as dd/mm/yyyy, until where data is going to be
retrieved.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• order (str, optional) – optional argument to define the order of the retrieved data (as-
cending, asc or descending, desc).

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function returns a either a pandas.DataFrame or a json file containing the retrieved
recent data from the specified currency_cross via argument. The dataset contains the open, high,
low, close and volume values for the selected currency_cross on market days.

The return data is case we use default arguments will look like:

Date || Open | High | Low | Close | Currency
-----||------|------|-----|-------|---------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxxxx

but if we define as_json=True, then the output will be:

{
name: name,
historical: [

dd/mm/yyyy: {
'open': x,
'high': x,
'low': x,
'close': x,
'currency' : x

},
...

(continues on next page)

9.5. investpy.currency_crosses 51

investpy Documentation, Release 1.0.8

(continued from previous page)

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – argument error.

• IOError – stocks object/file not found or unable to retrieve.

• RuntimeError – introduced currency_cross does not match any of the indexed ones.

• ConnectionError – if GET requests does not return 200 status code.

• IndexError – if currency_cross information was unavailable or not found.

Examples

>>> data = investpy.get_currency_cross_historical_data(currency_cross='EUR/USD',
→˓from_date='01/01/2018', to_date='01/01/2019')
>>> data.head()

Open High Low Close Currency
Date
2018-01-01 1.2003 1.2014 1.1995 1.2010 USD
2018-01-02 1.2013 1.2084 1.2003 1.2059 USD
2018-01-03 1.2058 1.2070 1.2001 1.2014 USD
2018-01-04 1.2015 1.2090 1.2004 1.2068 USD
2018-01-05 1.2068 1.2085 1.2021 1.2030 USD

investpy.currency_crosses.get_currency_cross_information(currency_cross,
as_json=False)

This function retrieves fundamental financial information from the specified currency cross. The retrieved infor-
mation from the currency cross can be valuable as it is additional information that can be used combined with
OHLC values, so to determine financial insights from the company which holds the specified currency cross.

Parameters

• currency_cross (str) – name of the currency_cross to retrieve recent historical data
from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(dict or json).

Returns

The resulting pandas.DataFrame contains the information fields retrieved from Invest-
ing.com from the specified currency cross; it can also be returned as a dict, if argument
as_json=True.

If any of the information fields could not be retrieved, that field/s will be filled with None values.
If the retrieval process succeeded, the resulting dict will look like:

currency_cross_information = {
"1-Year Change": "- 1.61%",
"52 wk Range": "1.0879 - 1.1572",
"Ask": 1.1144,
"Bid": 1.114,
"Currency Cross": "EUR/USD",

(continues on next page)

52 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

(continued from previous page)

"Open": 1.1121,
"Prev. Close": 1.1119,
"Todays Range": "1.1123 - 1.1159"

}

Return type pandas.DataFrame or dict- currency cross_information

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if currency_crosses.csv file was not found.

• IOError – raised if currency_crosses.csv file is empty or errored.

• RuntimeError – raised if scraping process failed while running.

• ConnectionError – raised if the connection to Investing.com errored (did not return
HTTP 200)

investpy.currency_crosses.get_currency_cross_recent_data(currency_cross,
as_json=False, or-
der='ascending', inter-
val='Daily')

This function retrieves recent historical data from the introduced currency_cross as indexed in Investing.com
via Web Scraping. The resulting data can it either be stored in a pandas.DataFrame or in a json file, with
ascending or descending order.

Parameters

• currency_cross (str) – name of the currency_cross to retrieve recent historical data
from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• order (str, optional) – optional argument to define the order of the retrieved data (as-
cending, asc or descending, desc).

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function returns a either a pandas.DataFrame or a json file containing the retrieved
recent data from the specified currency_cross via argument. The dataset contains the open, high,
low, close, volume and currency values for the selected currency_cross on market days.

The return data is in case we use default arguments will look like:

Date || Open | High | Low | Close | Currency
-----||------|------|-----|-------|---------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxxxx

but if we define as_json=True, then the output will be:

{
name: name,
recent: [

dd/mm/yyyy: {
'open': x,

(continues on next page)

9.5. investpy.currency_crosses 53

investpy Documentation, Release 1.0.8

(continued from previous page)

'high': x,
'low': x,
'close': x,
'currency' : x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised if any of the introduced arguments was not valid or errored.

• IOError – raised if currency_crosses object/file not found or unable to retrieve.

• RuntimeError – raised introduced currency_cross does not match any of the indexed
ones.

• ConnectionError – raised if GET request did not return 200 status code.

• IndexError – raised if currency_cross information was unavailable or not found.

Examples

>>> data = investpy.get_currency_cross_recent_data(currency_cross='EUR/USD')
>>> data.head()

Open High Low Close Currency
Date
2019-08-27 1.1101 1.1116 1.1084 1.1091 USD
2019-08-28 1.1090 1.1099 1.1072 1.1078 USD
2019-08-29 1.1078 1.1093 1.1042 1.1057 USD
2019-08-30 1.1058 1.1062 1.0963 1.0991 USD
2019-09-02 1.0990 1.1000 1.0958 1.0968 USD

investpy.currency_crosses.get_currency_crosses(base=None, second=None)
This function retrieves all the available currency crosses from Investing.com and returns them as a pandas.
DataFrame, which contains not just the currency crosses names, but all the fields contained on the cur-
rency_crosses file. Note that the filtering params are both base and second, which mean the base and the
second currency of the currency cross, for example, in the currency cross EUR/USD the base currency is EUR
and the second currency is USD. These are optional parameters, so specifying one of them means that all the
currency crosses where the introduced currency is either base or second will be returned; if both are specified,
just the introduced currency cross will be returned if it exists. All the available currency crosses can be found
at: https://www.investing.com/currencies/

Parameters

• base (str, optional) – symbol of the base currency of the currency cross, this will re-
turn a pandas.DataFrame containing all the currency crosses where the base currency
matches the introduced one.

• second (str) – symbol of the second currency of the currency cross, this will return
a pandas.DataFrame containing all the currency crosses where the second currency
matches the introduced one.

Returns

54 Chapter 9. API Reference

https://www.investing.com/currencies/

investpy Documentation, Release 1.0.8

The resulting pandas.DataFrame contains all the currency crosses basic information re-
trieved from Investing.com.

In case the information was successfully retrieved, the resulting pandas.DataFrame will
look like:

name	full_name	base	second	base_name	second_name
xxxx | xxxxxxxxx | xxxx | xxxxxx | xxxxxxxxx | xxxxxxxxxxx

Return type pandas.DataFrame - currency_crosses_df

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if currency_crosses.csv file was not found.

• IOError – raised if currency crosses retrieval failed, both for missing file or empty file.

investpy.currency_crosses.get_currency_crosses_dict(base=None, second=None,
columns=None, as_json=False)

This function retrieves all the available currency crosses from Investing.com and returns them as a dict, which
contains not just the currency crosses names, but all the fields contained on the currency_crosses file is columns
is None, otherwise, just the specified column values will be returned. Note that the filtering params are both base
and second, which mean the base and the second currency of the currency cross, for example, in the currency
cross EUR/USD the base currency is EUR and the second currency is USD. These are optional parameters,
so specifying one of them means that all the currency crosses where the introduced currency is either base or
second will be returned; if both are specified, just the introduced currency cross will be returned if it exists. All
the available currency crosses can be found at: https://www.investing.com/currencies/

Parameters

• base (str, optional) – symbol of the base currency of the currency cross, this will re-
turn a pandas.DataFrame containing all the currency crosses where the base currency
matches the introduced one.

• second (str) – symbol of the second currency of the currency cross, this will return
a pandas.DataFrame containing all the currency crosses where the second currency
matches the introduced one.

• columns (list, optional) – names of the columns of the currency crosses data to retrieve
<name, full_name, base, base_name, second, second_name>

• as_json (bool, optional) – value to determine the format of the output data which can
either be a dict or a json.

Returns

The resulting dict contains the retrieved data if found, if not, the corresponding fields are filled
with None values.

In case the information was successfully retrieved, the dict will look like:

{
'name': name,
'full_name': full_name,
'base': base,
'base_name': base_name,
'second': second,
'second_name': second_name

}

9.5. investpy.currency_crosses 55

https://www.investing.com/currencies/

investpy Documentation, Release 1.0.8

Return type dict or json - currency_crosses_dict

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if currency_crosses.csv file was not found.

• IOError – raised if currency crosses retrieval failed, both for missing file or empty file.

investpy.currency_crosses.get_currency_crosses_list(base=None, second=None)
This function retrieves all the available currency crosses from Investing.com and returns them as a dict, which
contains not just the currency crosses names, but all the fields contained on the currency_crosses file is columns
is None, otherwise, just the specified column values will be returned. Note that the filtering params are both base
and second, which mean the base and the second currency of the currency cross, for example, in the currency
cross EUR/USD the base currency is EUR and the second currency is USD. These are optional parameters,
so specifying one of them means that all the currency crosses where the introduced currency is either base or
second will be returned; if both are specified, just the introduced currency cross will be returned if it exists. All
the available currency crosses can be found at: https://www.investing.com/currencies/

Parameters

• base (str, optional) – symbol of the base currency of the currency cross, this will re-
turn a pandas.DataFrame containing all the currency crosses where the base currency
matches the introduced one.

• second (str) – symbol of the second currency of the currency cross, this will return
a pandas.DataFrame containing all the currency crosses where the second currency
matches the introduced one.

Returns

The resulting list contains the retrieved data from the currency_crosses.csv file, which is a
listing of the names of the currency crosses listed in Investing.com, which is the input for data
retrieval functions as the name of the currency cross to retrieve data from needs to be specified.

In case the listing was successfully retrieved, the list will look like:

currency_crosses_list = [
'USD/BRLT', 'CAD/CHF', 'CHF/CAD', 'CAD/PLN', 'PLN/CAD', ...

]

Return type list - currency_crosses_list

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if currency_crosses.csv file was not found.

• IOError – raised if currency crosses retrieval failed, both for missing file or empty file.

investpy.currency_crosses.get_currency_crosses_overview(currency, as_json=False,
n_results=100)

This function retrieves an overview containing all the real time data available for the main stocks from a country,
such as the names, symbols, current value, etc. as indexed in Investing.com. So on, the main usage of this
function is to get an overview on the main stocks from a country, so to get a general view. Note that since this
function is retrieving a lot of information at once, by default just the overview of the Top 100 stocks is being
retrieved, but an additional parameter called n_results can be specified so to retrieve N results.

Parameters

• currency (str) – name of the currency to retrieve the currency crosses overview from.

56 Chapter 9. API Reference

https://www.investing.com/currencies/

investpy Documentation, Release 1.0.8

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• n_results (int, optional) – number of results to be displayed on the overview table
(0-1000).

Returns

The resulting pandas.DataFrame contains all the data available in Investing.com of the
main currency crosses from a given currency in order to get an overview of them.

If the retrieval process succeeded, the resulting pandas.DataFrame should look like:

symbol	name	bid	ask	high	low	change	change_percentage
xxxxxx | xxxx | xxx | xxx | xxxx | xxx | xxxxxx | xxxxxxxxxxxxxxxxx

Return type pandas.DataFrame - stocks_overview

Raises

• ValueError – raised if any of the introduced arguments errored.

• FileNotFoundError – raised if currencies.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised either if the introduced currency does not match any of the listed
ones or if no overview results could be retrieved from Investing.com.

• ConnectionError – raised if GET requests does not return 200 status code.

investpy.currency_crosses.search_currency_crosses(by, value)
This function searches currency crosses by the introduced value for the specified field. This means that this
function is going to search if there is a value that matches the introduced value for the specified field which is
the currency_crosses.csv column name to search in. Available fields to search indices are ‘name’, ‘full_name’,
‘base’, ‘second’, ‘base_name’ and ‘second_name’.

Parameters

• by (str) – name of the field to search for, which is the column name (‘name’, ‘full_name’,
‘base’, ‘second’, ‘base_name’ or ‘second_name’).

• value (str) – value of the field to search for, which is the str that is going to be searched.

Returns The resulting pandas.DataFrame contains the search results from the given query (the spec-
ified value in the specified field). If there are no results and error will be raised, but otherwise this
pandas.DataFrame will contain all the available field values that match the introduced query.

Return type pandas.DataFrame - search_result

Raises

• ValueError – raised if any of the introduced params is not valid or errored.

• FileNotFoundError – raised if currency_crosses.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised if no results were found for the introduced value in the introduced
field.

9.5. investpy.currency_crosses 57

investpy Documentation, Release 1.0.8

9.6 investpy.bonds

investpy.bonds.get_bond_countries()
This function returns a listing with all the available countries from where bonds can be retrieved, so to let
the user know which of them are available, since the parameter country is mandatory in every bond retrieval
function. Also, not just the available countries, but the required name is provided since Investing.com has a
certain country name standard and countries should be specified the same way they are in Investing.com.

Returns The resulting list contains all the available countries with government bonds as indexed
in Investing.com

Return type list - countries

Raises

• FileNotFoundError – raised when bond countries file was not found.

• IOError – raised when bond countries file is missing or empty.

investpy.bonds.get_bond_historical_data(bond, from_date, to_date, as_json=False, or-
der='ascending', interval='Daily')

This function retrieves historical data from the introduced bond from Investing.com. So on, the historical data
of the introduced bond in the specified date range will be retrieved and returned as a pandas.DataFrame
if the parameters are valid and the request to Investing.com succeeds. Note that additionally some optional
parameters can be specified: as_json and order, which let the user decide if the data is going to be returned as
a json or not, and if the historical data is going to be ordered ascending or descending (where the index is the
date), respectively.

Parameters

• bond (str) – name of the bond to retrieve historical data from.

• from_date (str) – date formatted as dd/mm/yyyy, since when data is going to be re-
trieved.

• to_date (str) – date formatted as dd/mm/yyyy, until when data is going to be retrieved.

• as_json (bool, optional) – to determine the format of the output data, either a pandas.
DataFrame if False and a json if True.

• order (str, optional) – to define the order of the retrieved data which can either be as-
cending or descending.

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function returns a either a pandas.DataFrame or a json file containing the retrieved
recent data from the specified bond via argument. The dataset contains the open, high, low and
close for the selected bond on market days.

The resulting recent data, in case that the default parameters were applied, will look like:

Date || Open | High | Low | Close
-----||------|------|-----|-------
xxxx || xxxx | xxxx | xxx | xxxxx

but in case that as_json parameter was defined as True, then the output will be:

58 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

{
name: name,
historical: [

{
date: 'dd/mm/yyyy',
open: x,
high: x,
low: x,
close: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• IOError – raised if bonds object/file was not found or unable to retrieve.

• RuntimeError – raised if the introduced bond was not found or did not match any of the
existing ones.

• ConnectionError – raised if connection to Investing.com could not be established.

• IndexError – raised if bond historical data was unavailable or not found in Invest-
ing.com.

Examples

>>> data = investpy.get_bond_historical_data(bond='Argentina 3Y', from_date='01/
→˓01/2010', to_date='01/01/2019')
>>> data.head()

Open High Low Close
Date
2011-01-03 4.15 4.15 4.15 5.15
2011-01-04 4.07 4.07 4.07 5.45
2011-01-05 4.27 4.27 4.27 5.71
2011-01-10 4.74 4.74 4.74 6.27
2011-01-11 4.30 4.30 4.30 6.56

investpy.bonds.get_bond_information(bond, as_json=False)
This function retrieves fundamental financial information from the specified bond. The retrieved information
from the bond can be valuable as it is additional information that can be used combined with OHLC values, so
to determine financial insights from the company which holds the specified bond.

Parameters

• bond (str) – name of the bond to retrieve information from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(dict or json).

Returns

The resulting pandas.DataFrame contains the information fields retrieved from Invest-
ing.com from the specified bond; it can also be returned as a dict, if argument as_json=True.

9.6. investpy.bonds 59

investpy Documentation, Release 1.0.8

If any of the information fields could not be retrieved, that field/s will be filled with None values.
If the retrieval process succeeded, the resulting dict will look like:

bond_information = {
"1-Year Change": "46.91%",
"52 wk Range": "-0.575 - 0.01",
"Bond Name": "Spain 1Y",
"Coupon": "None",
"Maturity Date": "04/12/2020",
"Prev. Close": -0.425,
"Price": 100.417,
"Price Open": 100.416,
"Price Range": -100.481,
"Todays Range": "-0.49 - -0.424"

}

Return type pandas.DataFrame or dict- bond_information

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if bonds.csv file was not found or errored.

• IOError – raised if bonds.csv file is empty or errored.

• RuntimeError – raised if scraping process failed while running.

• ConnectionError – raised if the connection to Investing.com errored (did not return
HTTP 200)

investpy.bonds.get_bond_recent_data(bond, as_json=False, order='ascending', inter-
val='Daily')

This function retrieves recent historical data from the introduced bond from Investing.com. So on, the recent
data of the introduced bond will be retrieved and returned as a pandas.DataFrame if the parameters are valid
and the request to Investing.com succeeds. Note that additionally some optional parameters can be specified:
as_json and order, which let the user decide if the data is going to be returned as a json or not, and if the recent
data is going to be ordered ascending or descending (where the index is the date), respectively.

Parameters

• bond (str) – name of the bond to retrieve recent historical data from.

• as_json (bool, optional) – to determine the format of the output data, either a pandas.
DataFrame if False and a json if True.

• order (str, optional) – to define the order of the retrieved data which can either be as-
cending or descending.

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function can return either a pandas.DataFrame or a json object, containing the re-
trieved recent data of the specified bond. So on, the resulting dataframe contains the open, high,
low and close values for the selected bond on market days.

The resulting recent data, in case that the default parameters were applied, will look like:

Date || Open | High | Low | Close
-----||------|------|-----|-------
xxxx || xxxx | xxxx | xxx | xxxxx

60 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

but in case that as_json parameter was defined as True, then the output will be:

{
name: name,
recent: [

{
date: 'dd/mm/yyyy',
open: x,
high: x,
low: x,
close: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• IOError – raised if bonds object/file was not found or unable to retrieve.

• RuntimeError – raised if the introduced bond was not found or did not match any of the
existing ones.

• ConnectionError – raised if connection to Investing.com could not be established.

• IndexError – raised if bond historical data was unavailable or not found in Invest-
ing.com.

Examples

>>> data = investpy.get_bond_recent_data(bond='Argentina 3Y')
>>> data.head()

Open High Low Close
Date
2019-09-23 52.214 52.214 52.214 52.214
2019-09-24 52.323 52.323 52.323 52.323
2019-09-25 52.432 52.432 52.432 52.432
2019-09-26 52.765 52.765 52.765 52.765
2019-09-27 52.876 52.876 52.876 52.876

investpy.bonds.get_bonds(country=None)
This function retrieves all the bonds data stored in bonds.csv file, which previously was retrieved from Invest-
ing.com. Since the resulting object is a matrix of data, the bonds data is properly structured in rows and columns,
where columns are the bond data attribute names. Additionally, country filtering can be specified, which will
make this function return not all the stored bond data, but just the data of the bonds from the introduced country.

Parameters country (str, optional) – name of the country to retrieve all its available bonds from.

Returns

The resulting pandas.DataFrame contains all the bond data from the introduced country if
specified, or from every country if None was specified, as indexed in Investing.com from the
information previously retrieved by investpy and stored on a csv file.

So on, the resulting pandas.DataFrame will look like:

9.6. investpy.bonds 61

investpy Documentation, Release 1.0.8

country	name	full name
xxxxxxx | xxxx | xxxxxxxxx

Return type pandas.DataFrame - bonds_df

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

• FileNotFoundError – raised when bonds file was not found.

• IOError – raised when bond countries file is missing or empty.

investpy.bonds.get_bonds_dict(country=None, columns=None, as_json=False)
This function retrieves all the bonds information stored in the bonds.csv file and formats it as a Python dictionary
which contains the same information as the file, but every row is a dict and all of them are contained in a
list. Note that the dictionary structure is the same one as the JSON structure. Some optional paramaters
can be specified such as the country, columns or as_json, which are a filtering by country so not to return all
the bonds but just the ones from the introduced country, the column names that want to be retrieved in case
of needing just some columns to avoid unnecessary information load, and whether the information wants to be
returned as a JSON object or as a dictionary; respectively.

Parameters

• country (str, optional) – name of the country to retrieve all its available bonds from.

• columns (list, optional) – column names of the bonds data to retrieve, can be: <country,
name, full_name>

• as_json (bool, optional) – if True the returned data will be a json object, if False, a
list of dict.

Returns

The resulting list of dict contains the retrieved data from every bond as indexed in Invest-
ing.com from the information previously retrieved by investpy and stored on a csv file.

In case the information was successfully retrieved, the list of dict will look like:

bonds_dict = {
'country': country,
'name': name,
'full_name': full_name,

}

Return type list of dict OR json - bonds_dict

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

• FileNotFoundError – raised when bonds file was not found.

• IOError – raised when bond countries file is missing or empty.

investpy.bonds.get_bonds_list(country=None)
This function retrieves all the bond names as stored in bonds.csv file, which contains all the data from the
bonds as previously retrieved from Investing.com. So on, this function will just return the government bond
names which will be one of the input parameters when it comes to bond data retrieval functions from investpy.
Additionally, note that the country filtering can be applied, which is really useful since this function just returns
the names and in bond data retrieval functions both the name and the country must be specified and they must
match.

62 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

Parameters country (str, optional) – name of the country to retrieve all its available bonds from.

Returns

The resulting list contains the all the bond names from the introduced country if specified,
or from every country if None was specified, as indexed in Investing.com from the information
previously retrieved by investpy and stored on a csv file.

In case the information was successfully retrieved, the list of bond names will look like:

bonds_list = ['Argentina 1Y', 'Argentina 3Y', 'Argentina 5Y',
→˓'Argentina 9Y', ...]

Return type list - bonds_list

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

• FileNotFoundError – raised when bonds file was not found.

• IOError – raised when bond countries file is missing or empty.

investpy.bonds.get_bonds_overview(country, as_json=False)
This function retrieves an overview containing all the real time data available for the government bonds from a
country, such as the names, symbols, current value, etc. as indexed in Investing.com. So on, the main usage of
this function is to get an overview on the government bonds from a country, so to get a general view.

Parameters

• country (str) – name of the country to retrieve the government bonds overview from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

Returns

The resulting pandas.DataFrame contains all the data available in Investing.com of the
government bonds from a country in order to get an overview of it.

If the retrieval process succeeded, the resulting pandas.DataFrame should look like:

country | name | last | last_close | high | low | change | change_
→˓percentage
--------|------|------|------------|------|-----|--------|------------
→˓-------
xxxxxxx | xxxx | xxxx | xxxxxxxxxx | xxxx | xxx | xxxxxx |
→˓xxxxxxxxxxxxxxxxx

Return type pandas.DataFrame - bonds_overview

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if bonds.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised either if the introduced country does not match any of the listed
ones or if no overview results could be retrieved from Investing.com.

• ConnectionError – raised if GET requests does not return 200 status code.

9.6. investpy.bonds 63

investpy Documentation, Release 1.0.8

investpy.bonds.search_bonds(by, value)
This function searches bonds by the introduced value for the specified field. This means that this function is
going to search if there is a value that matches the introduced one for the specified field which is the bonds.csv
column name to search in. Available fields to search bonds are ‘name’ or ‘full_name’.

Parameters

• by (str) – name of the field to search for, which is the column name which can be: ‘name’
or ‘full_name’.

• value (str) – value of the field to search for, which is the value that is going to be
searched.

Returns The resulting pandas.DataFrame contains the search results from the given query,
which is any match of the specified value in the specified field. If there are no results for the
given query, an error will be raised, but otherwise the resulting pandas.DataFrame will
contain all the available bonds that match the introduced query.

Return type pandas.DataFrame - search_result

Raises

• ValueError – raised if any of the introduced parameters is not valid or errored.

• FileNotFoundError – raised if bonds.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised if no results were found for the introduced value in the introduced
field.

9.7 investpy.commodities

investpy.commodities.get_commodities(group=None)
This function retrieves all the commodities data stored in commodities.csv file, which previously was retrieved
from Investing.com. Since the resulting object is a matrix of data, the commodities data is properly structured
in rows and columns, where columns are the commodity data attribute names. Additionally, group filtering can
be specified, so that the return commodities are from the specified group instead from every available group.
Anyways, since it is an optional parameter it does not need to be specified, which means that if it is None or not
specified, all the available commodities will be returned.

Parameters group (str, optional) – name of the group to retrieve all the available commodities
from.

Returns

The resulting pandas.DataFrame contains all the commodities data from the introduced
group if specified, or from all the commodity groups if None was specified, as indexed in Invest-
ing.com from the information previously retrieved by investpy and stored on a csv file.

So on, the resulting pandas.DataFrame will look like:

title	country	name	full_name	currency	group
xxxxx | xxxxxxx | xxxx | xxxxxxxxx | xxxxxxxx | xxxxx

Return type pandas.DataFrame - commodities_df

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

64 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

• FileNotFoundError – raised when commodities.csv file was not found.

• IOError – raised when commodities.csv file is missing or empty.

investpy.commodities.get_commodities_dict(group=None, columns=None, as_json=False)
This function retrieves all the commodities information stored in the commodities.csv file and formats it as a
Python dictionary which contains the same information as the file, but every row is a dict and all of them are
contained in a list. Note that the dictionary structure is the same one as the JSON structure. Some optional
paramaters can be specified such as the group, columns or as_json, which are the name of the commodity group
to filter between all the available commodities so not to return all the commodities but just the ones from the
introduced group, the column names that want to be retrieved in case of needing just some columns to avoid
unnecessary information load, and whether the information wants to be returned as a JSON object or as a
dictionary; respectively.

Parameters

• group (str, optional) – name of the group to retrieve all the available commodities from.

• columns (list, optional) – column names of the commodities data to retrieve, can be:
<title, country, name, full_name, currency, group>

• as_json (bool, optional) – if True the returned data will be a json object, if False, a
list of dict.

Returns

The resulting list of dict contains the retrieved data from every bond as indexed in Invest-
ing.com from the information previously retrieved by investpy and stored on a csv file.

In case the information was successfully retrieved, the list of dict will look like:

commodities_dict = {
'title': title,
'country': country,
'name': name,
'full_name': full_name,
'currency': currency,
'group': group,

}

Return type list of dict OR json - bonds_dict

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

• FileNotFoundError – raised when commodities.csv file was not found.

• IOError – raised when commodities.csv file is missing or empty.

investpy.commodities.get_commodities_list(group=None)
This function retrieves all the commodity names as stored in commodities.csv file, which contains all the data
from the commodities as previously retrieved from Investing.com. So on, this function will just return the
commodity names from either all the available groups or from any group, which will later be used when it
comes to both recent and historical data retrieval.

Parameters group (str, optional) – name of the group to retrieve all the available commodities
from.

Returns

9.7. investpy.commodities 65

investpy Documentation, Release 1.0.8

The resulting list contains the all the commodity names from the introduced group if specified,
or from every group if None was specified, as indexed in Investing.com from the information
previously retrieved by investpy and stored on a csv file.

In case the information was successfully retrieved, the list of commodity names will look
like:

commodities_list = ['Gold', 'Copper', 'Silver', 'Palladium', 'Platinum
→˓', ...]

Return type list - commodities_list

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

• FileNotFoundError – raised when commodities.csv file was not found.

• IOError – raised when commodities.csv file is missing or empty.

investpy.commodities.get_commodities_overview(group, as_json=False, n_results=100)
This function retrieves an overview containing all the real time data available for the main commodities from
every commodity group (metals, softs, meats, energy and grains), such as the names, symbols, current value,
etc. as indexed in Investing.com. So on, the main usage of this function is to get an overview on the main
commodities from a group, so to get a general view. Note that since this function is retrieving a lot of information
at once, by default just the overview of the Top 100 commodities is being retrieved, but an additional parameter
called n_results can be specified so to retrieve N results. Anyways, note that in commodities case, there are just
a few ones available.

Parameters

• group (str) – name of the commodity group to retrieve an overview from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• n_results (int, optional) – number of results to be displayed on the overview table
(0-1000).

Returns

The resulting pandas.DataFrame contains all the data available in Investing.com of the
main commodities from a commodity group in order to get an overview of it.

If the retrieval process succeeded, the resulting pandas.DataFrame should look like:

country | name | last | last_close | high | low | change | change_
→˓percentage | currency
--------|------|------|------------|------|-----|--------|------------
→˓-------|----------
xxxxxxx | xxxx | xxxx | xxxxxxxxxx | xxxx | xxx | xxxxxx |
→˓xxxxxxxxxxxxxxxxx | xxxxxxxx

Return type pandas.DataFrame - commodities_overview

Raises

• ValueError – raised if any of the introduced arguments errored.

• FileNotFoundError – raised if commodities.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

66 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

• RuntimeError – raised either if the introduced group does not match any of the listed
ones or if no overview results could be retrieved from Investing.com.

• ConnectionError – raised if GET requests does not return 200 status code.

investpy.commodities.get_commodity_groups()
This function returns a listing with all the available commodity groupsson that a filtering can be applied when
retrieving data from commodities. The current available commodity groups are metals, agriculture and energy,
which include all the raw materials or commodities included in them.

Returns The resulting list contains all the available commodity groups as indexed in Invest-
ing.com

Return type list - commodity_groups

Raises

• FileNotFoundError – raised when commodities.csv file was not found.

• IOError – raised when commodities.csv file is missing or empty.

investpy.commodities.get_commodity_historical_data(commodity, from_date, to_date,
country=None, as_json=False,
order='ascending', inter-
val='Daily')

This function retrieves historical data from the introduced commodity from Investing.com. So on, the historical
data of the introduced commodity in the specified date range will be retrieved and returned as a pandas.
DataFrame if the parameters are valid and the request to Investing.com succeeds. Note that additionally some
optional parameters can be specified: as_json and order, which let the user decide if the data is going to be
returned as a json or not, and if the historical data is going to be ordered ascending or descending (where the
index is the date), respectively.

Parameters

• commodity (str) – name of the commodity to retrieve recent data from.

• from_date (str) – date formatted as dd/mm/yyyy, since when data is going to be re-
trieved.

• to_date (str) – date formatted as dd/mm/yyyy, until when data is going to be retrieved.

• country (str, optional) – name of the country to retrieve the commodity data from (if
there is more than one country that provides data from the same commodity).

• as_json (bool, optional) – to determine the format of the output data, either a pandas.
DataFrame if False and a json if True.

• order (str, optional) – to define the order of the retrieved data which can either be as-
cending or descending.

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function returns a either a pandas.DataFrame or a json file containing the retrieved
historical data of the specified commodity. So on, the resulting dataframe contains the open,
high, low and close values for the selected commodity on market days and the currency in which
those values are presented.

The returned data is case we use default arguments will look like:

9.7. investpy.commodities 67

investpy Documentation, Release 1.0.8

Date || Open | High | Low | Close | Volume | Currency
-----||------|------|-----|-------|--------|----------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxx | xxxxxxxx

but in case that as_json parameter was defined as True, then the output will be:

{
name: name,
historical: [

{
date: 'dd/mm/yyyy',
open: x,
high: x,
low: x,
close: x,
volume: x,
currency: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• IOError – raised if commodities object/file was not found or unable to retrieve.

• RuntimeError – raised if the introduced commodity was not found or did not match any
of the existing ones.

• ConnectionError – raised if connection to Investing.com could not be established.

• IndexError – raised if commodity historical data was unavailable or not found in Invest-
ing.com.

Examples

>>> data = investpy.get_commodity_historical_data(commodity='gold', from_date='01/
→˓01/2018', to_date='01/01/2019')
>>> data.head()

Open High Low Close Volume Currency
Date
2018-01-01 1305.8 1309.7 1304.6 1308.7 0 USD
2018-01-02 1370.5 1370.5 1370.5 1370.5 97 USD
2018-01-03 1372.0 1372.0 1369.0 1374.2 22 USD
2018-01-04 1363.4 1375.6 1362.7 1377.4 13 USD
2018-01-05 1377.8 1377.8 1377.8 1378.4 10 USD

investpy.commodities.get_commodity_information(commodity, country=None,
as_json=False)

This function retrieves fundamental financial information from the specified commodity. The retrieved informa-
tion from the commodity can be valuable as it is additional information that can be used combined with OHLC
values, so to determine financial insights from the company which holds the specified commodity.

Parameters

68 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

• commodity (str) – name of the commodity to retrieve information from.

• country (str, optional) – name of the country to retrieve the commodity information
from (if there is more than one country that provides data from the same commodity).

• as_json (bool, optional) – optional argument to determine the format of the output data
(dict or json).

Returns

The resulting pandas.DataFrame contains the information fields retrieved from Invest-
ing.com from the specified commodity; it can also be returned as a dict, if argument
as_json=True.

If any of the information fields could not be retrieved, that field/s will be filled with None values.
If the retrieval process succeeded, the resulting dict will look like:

commodity_information = {
"1-Year Change": "16.15%",
"52 wk Range": "1,270.2 - 1,566.2",
"Base Symbol": "GC",
"Commodity Name": "Gold",
"Contract Size": "100 Troy Ounces",
"Last Rollover Day": "24/11/2019",
"Month": "Feb 20",
"Months": "GJMQVZ",
"Open": 1479.8,
"Point Value": "$100",
"Prev. Close": 1481.2,
"Settlement Day": "25/01/2020",
"Settlement Type": "Physical",
"Tick Size": 0.1,
"Tick Value": 10.0,
"Day's Range": "1,477.55 - 1,484.25"

}

Return type pandas.DataFrame or dict- commodity_information

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if commodities.csv file was not found or errored.

• IOError – raised if commodities.csv file is empty or errored.

• RuntimeError – raised if scraping process failed while running.

• ConnectionError – raised if the connection to Investing.com errored (did not return
HTTP 200)

investpy.commodities.get_commodity_recent_data(commodity, country=None,
as_json=False, order='ascending',
interval='Daily')

This function retrieves recent historical data from the introduced commodity from Investing.com, which will
be returned as a pandas.DataFrame if the parameters are valid and the request to Investing.com succeeds.
Note that additionally some optional parameters can be specified: as_json and order, which let the user decide
if the data is going to be returned as a json or not, and if the historical data is going to be ordered ascending or
descending (where the index is the date), respectively.

Parameters

• commodity (str) – name of the commodity to retrieve recent data from.

9.7. investpy.commodities 69

investpy Documentation, Release 1.0.8

• country (str, optional) – name of the country to retrieve the commodity data from (if
there is more than one country that provides data from the same commodity).

• as_json (bool, optional) – to determine the format of the output data, either a pandas.
DataFrame if False and a json if True.

• order (str, optional) – to define the order of the retrieved data which can either be as-
cending or descending.

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function can return either a pandas.DataFrame or a json object, containing the re-
trieved recent data of the specified commodity. So on, the resulting dataframe contains the open,
high, low and close values for the selected commodity on market days and the currency in which
those values are presented.

The returned data is case we use default arguments will look like:

Date || Open | High | Low | Close | Volume | Currency
-----||------|------|-----|-------|--------|----------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxx | xxxxxxxx

but in case that as_json parameter was defined as True, then the output will be:

{
name: name,
recent: [

{
date: 'dd/mm/yyyy',
open: x,
high: x,
low: x,
close: x,
volume: x,
currency: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• IOError – raised if commodities object/file was not found or unable to retrieve.

• RuntimeError – raised if the introduced commodity was not found or did not match any
of the existing ones.

• ConnectionError – raised if connection to Investing.com could not be established.

• IndexError – raised if commodity recent data was unavailable or not found in Invest-
ing.com.

70 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

Examples

>>> data = investpy.get_commodity_recent_data(commodity='gold')
>>> data.head()

Open High Low Close Volume Currency
Date
2019-10-25 1506.4 1520.9 1503.1 1505.3 368743 USD
2019-10-28 1507.4 1510.8 1492.3 1495.8 318126 USD
2019-10-29 1494.3 1497.1 1485.6 1490.7 291980 USD
2019-10-30 1490.5 1499.3 1483.1 1496.7 353638 USD
2019-10-31 1498.8 1516.7 1496.0 1514.8 390013 USD

investpy.commodities.search_commodities(by, value)
This function searches commodities by the introduced value for the specified field. This means that this func-
tion is going to search if there is a value that matches the introduced one for the specified field which is the
commodities.csv column name to search in. Available fields to search commodities are ‘name’, ‘full_name’ and
‘title’.

Parameters

• by (str) – name of the field to search for, which is the column name which can be: ‘’name’,
‘full_name’ or ‘title’.

• value (str) – value of the field to search for, which is the value that is going to be
searched.

Returns The resulting pandas.DataFrame contains the search results from the given query,
which is any match of the specified value in the specified field. If there are no results for the
given query, an error will be raised, but otherwise the resulting pandas.DataFrame will
contain all the available commodities that match the introduced query.

Return type pandas.DataFrame - search_result

Raises

• ValueError – raised if any of the introduced parameters is not valid or errored.

• FileNotFoundError – raised if commodities.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised if no results were found for the introduced value in the introduced
field.

9.8 investpy.certificates

investpy.certificates.get_certificate_countries()
This function retrieves all the available countries to retrieve certificates from, as the listed countries are the ones
indexed on Investing.com. The purpose of this function is to list the countries which have available certificates
according to Investing.com data, since the country parameter is needed when retrieving data from any certificate
available.

Returns

The resulting list contains all the countries listed on Investing.com with available certificates
to retrieve data from.

9.8. investpy.certificates 71

investpy Documentation, Release 1.0.8

In the case that the file reading of certificate_countries.csv which contains the names of the
available countries with certificates was successfully completed, the resulting list will look
like:

countries = ['france', 'germany', 'italy', 'netherlands', 'sweden']

Return type list - countries

Raises FileNotFoundError – raised when certificate_countries.csv file was not found.

investpy.certificates.get_certificate_historical_data(certificate, country,
from_date, to_date,
as_json=False, or-
der='ascending', inter-
val='Daily')

This function retrieves historical data from the introduced certificate from Investing.com. So on, the historical
data of the introduced certificate from the specified country in the specified date range will be retrieved and
returned as a pandas.DataFrame if the parameters are valid and the request to Investing.com succeeds.
Note that additionally some optional parameters can be specified: as_json and order, which let the user decide
if the data is going to be returned as a json or not, and if the historical data is going to be ordered ascending or
descending (where the index is the date), respectively.

Parameters

• certificate (str) – name of the certificate to retrieve historical data from.

• country (str) – name of the country from where the certificate is.

• from_date (str) – date formatted as dd/mm/yyyy, since when data is going to be re-
trieved.

• to_date (str) – date formatted as dd/mm/yyyy, until when data is going to be retrieved.

• as_json (bool, optional) – to determine the format of the output data, either a pandas.
DataFrame if False and a json if True.

• order (str, optional) – to define the order of the retrieved data which can either be as-
cending or descending.

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function can return either a pandas.DataFrame or a json object, containing the re-
trieved historical data of the specified certificate from the specified country. So on, the resulting
dataframe contains the OHLC values for the selected certificate on market days.

The returned data is case we use default arguments will look like:

Date || Open | High | Low | Close
-----||------|------|-----|-------
xxxx || xxxx | xxxx | xxx | xxxxx

but if we define as_json=True, then the output will be:

{
name: name,
historical: [

{
date: 'dd/mm/yyyy',

(continues on next page)

72 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

(continued from previous page)

open: x,
high: x,
low: x,
close: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• IOError – raised if certificates object/file was not found or unable to retrieve.

• RuntimeError – raised if the introduced certificate/country was not found or did not
match any of the existing ones.

• ConnectionError – raised if connection to Investing.com could not be established.

• IndexError – raised if certificate historical data was unavailable or not found in Invest-
ing.com.

Examples

>>> data = investpy.get_certificate_historical_data(certificate='BNP Gold 31Dec99
→˓', country='france', from_date='01/01/2010', to_date='01/01/2019')
>>> data.head()

Open High Low Close
Date
2010-01-04 77.15 77.15 77.15 77.15
2010-01-05 77.40 77.45 77.15 77.45
2010-01-06 78.40 78.40 78.40 78.40
2010-01-07 78.40 78.45 78.35 78.35
2010-01-08 77.95 78.10 77.95 78.10

investpy.certificates.get_certificate_information(certificate, country, as_json=False)
This function retrieves fundamental financial information from the specified certificate. The retrieved informa-
tion from the certificate can be valuable as it is additional information that can be used combined with OHLC
values, so to determine financial insights from the company which holds the specified certificate.

Parameters

• certificate (str) – name of the certificate to retrieve information from

• country (country) – name of the country from where the certificate is from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(dict or json).

Returns

The resulting pandas.DataFrame contains the information fields retrieved from Invest-
ing.com from the specified certificate; it can also be returned as a dict, if argument
as_json=True.

If any of the information fields could not be retrieved, that field/s will be filled with None values.
If the retrieval process succeeded, the resulting dict will look like:

9.8. investpy.certificates 73

investpy Documentation, Release 1.0.8

certificate_information = {
"Certificate Name": "XXXX",
"Certificate Country": "XXXX",
"Prev. Close": X.Y,
"Todays Range": "X.Y - X.Y",
"Leverage": "X:Y",
"Open": X.Y,
"52 wk Range": "X.Y - X.Y",
"Strike Price": "XXXX",
"Volume": X.Y,
"Issue Date": "XXXX",
"Issue Amount": "XXXX",
"Average Vol. (3m)": X.Y,
"Maturity Date": "dd/mm/yyyy",
"1-Year Change": "X.Y%",
"Asset Class": "XXXX"

}

Return type pandas.DataFrame or dict- certificate_information

investpy.certificates.get_certificate_recent_data(certificate, country, as_json=False,
order='ascending', inter-
val='Daily')

This function retrieves recent historical data from the introduced certificate from Investing.com. So on, the
recent data of the introduced certificate from the specified country will be retrieved and returned as a pandas.
DataFrame if the parameters are valid and the request to Investing.com succeeds. Note that additionally some
optional parameters can be specified: as_json and order, which let the user decide if the data is going to be
returned as a json or not, and if the historical data is going to be ordered ascending or descending (where the
index is the date), respectively.

Parameters

• certificate (str) – name of the certificate to retrieve recent data from.

• country (str) – name of the country from where the certificate is.

• as_json (bool, optional) – to determine the format of the output data, either a pandas.
DataFrame if False and a json if True.

• order (str, optional) – to define the order of the retrieved data which can either be as-
cending or descending.

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function returns either a pandas.DataFrame or a json file containing the retrieved
recent data from the specified certificate via argument. The dataset contains the OHLC values
of the certificate.

The returned data is case we use default arguments will look like:

Date || Open | High | Low | Close
-----||------|------|-----|-------
xxxx || xxxx | xxxx | xxx | xxxxx

but if we define as_json=True, then the output will be:

74 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

{
name: name,
recent: [

{
date: dd/mm/yyyy,
open: x,
high: x,
low: x,
close: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised if there was an argument error.

• IOError – raised if certificates object/file was not found or unable to retrieve.

• RuntimeError – raised if the introduced certificate does not match any of the indexed
ones.

• ConnectionError – raised if GET requests does not return 200 status code.

• IndexError – raised if certificate information was unavailable or not found.

Examples

>>> data = investpy.get_certificate_recent_data(certificate='BNP Gold 31Dec99',
→˓country='france')
>>> data.head()

Open High Low Close
Date
2020-07-09 146.4 146.8 145.95 145.95
2020-07-10 146.2 146.2 145.55 145.55
2020-07-13 145.6 145.6 145.45 145.45
2020-07-14 145.4 145.4 145.25 145.25
2020-07-15 144.9 145.1 144.70 144.95

investpy.certificates.get_certificates(country=None)
This function retrieves all the data stored in certificates.csv file, which previously was retrieved from Invest-
ing.com. Since the resulting object is a matrix of data, the certificate’s data is properly structured in rows and
columns, where columns are the certificate data attribute names. Additionally, country filtering can be specified,
which will make this function return not all the stored certificates, but just the data of the certificates from the
introduced country.

Parameters country (str, optional) – name of the country to retrieve all its available certificates
from.

Returns

The resulting pandas.DataFrame contains all the certificate’s data from the introduced
country if specified, or from every country if None was specified, as indexed in Investing.com
from the information previously retrieved by investpy and stored on a csv file.

So on, the resulting pandas.DataFrame will look like:

9.8. investpy.certificates 75

investpy Documentation, Release 1.0.8

country | name | full_name | symbol | issuer | isin | asset_class |
→˓underlying
--------|------|-----------|--------|--------|------|-------------|---
→˓---------
xxxxxxx | xxxx | xxxxxxxxx | xxxxxx | xxxxxx | xxxx | xxxxxxxxxxx |
→˓xxxxxxxxxx

Return type pandas.DataFrame - certificates_df

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

• FileNotFoundError – raised if certificates.csv file was not found.

• IOError – raised when certificates.csv file is missing or empty.

investpy.certificates.get_certificates_dict(country=None, columns=None,
as_json=False)

This function retrieves all the available certificates indexed on Investing.com, stored on certificates.csv. This
function also allows the user to specify which country do they want to retrieve data from, or from every listed
country; the columns which the user wants to be included on the resulting dict; and the output of the function
will either be a dict or a json.

Parameters

• country (str, optional) – name of the country to retrieve all its available certificates
from.

• columns (list, optional) – names of the columns of the certificate data to retrieve <coun-
try, name, full_name, symbol, issuer, isin, asset_class, underlying>

• as_json (bool, optional) – value to determine the format of the output data which can
either be a dict or a json.

Returns

The resulting dict contains the retrieved data if found, if not, the corresponding fields are filled
with None values.

In case the information was successfully retrieved, the dict will look like:

certificates_dict = {
"country": "france",
"name": "SOCIETE GENERALE CAC 40 X10 31DEC99",
"full_name": "SOCIETE GENERALE EFFEKTEN GMBH ZT CAC 40 X10

→˓LEVERAGE 31DEC99",
"symbol": "FR0011214527",
"issuer": "Societe Generale Effekten GMBH",
"isin": "FR0011214527",
"asset_class": "index",
"underlying": "CAC 40 Leverage x10 NR"

}

Return type dict or json - certificates_dict

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

• FileNotFoundError – raised if certificates.csv file was not found.

• IOError – raised when certificates.csv file is missing or empty.

76 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

investpy.certificates.get_certificates_list(country=None)
This function retrieves all the available certificates indexed on Investing.com, already stored on certificates.csv.
This function also allows the users to specify which country do they want to retrieve data from or if they want
to retrieve it from every listed country; so on, a listing of certificates will be returned. This function helps the
user to get to know which certificates are available on Investing.com.

Parameters country (str, optional) – name of the country to retrieve all its available certificates
from.

Returns

The resulting list contains the retrieved data from the certificates.csv file, which is a listing
of the names of the certificates listed on Investing.com, which is the input for data retrieval
functions as the name of the certificate to retrieve data from needs to be specified.

In case the listing was successfully retrieved, the list will look like:

certificates_list = ['SOCIETE GENERALE CAC 40 X10 31DEC99', 'SG ZT
→˓CAC 40 x7 Short 31Dec99', ...]

Return type list - certificates_list

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

• FileNotFoundError – raised if certificates.csv file was not found.

• IOError – raised when certificates.csv file is missing or empty.

investpy.certificates.get_certificates_overview(country, as_json=False,
n_results=100)

This function retrieves an overview containing all the real time data available for the main certificates from a
country, such as the names, symbols, current value, etc. as indexed in Investing.com. So on, the main usage
of this function is to get an overview on the main certificates from a country, so to get a general view. Note
that since this function is retrieving a lot of information at once, by default just the overview of the Top 100
certificates is being retrieved, but an additional parameter called n_results can be specified so to retrieve N
results.

Parameters

• country (str) – name of the country to retrieve the certificates overview from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

• n_results (int, optional) – number of results to be displayed on the overview table
(0-1000).

Returns

The resulting pandas.DataFrame contains all the data available in Investing.com of the
main certificates from a country in order to get an overview of it.

If the retrieval process succeeded, the resulting pandas.DataFrame should look like:

country	name	symbol	last	change_percentage	turnover
xxxxxxx | xxxx | xxxxxx | xxxx | xxxxxxxxxxxxxxxxx | xxxxxxxx

Return type pandas.DataFrame - certificates_overview

Raises

9.8. investpy.certificates 77

investpy Documentation, Release 1.0.8

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised when certificates.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised either if the introduced country does not match any of the listed
ones or if no overview results could be retrieved from Investing.com.

• ConnectionError – raised if GET requests does not return 200 status code.

investpy.certificates.search_certificates(by, value)
This function searches certificates by the introduced value for the specified field. This means that this function
is going to search if there is a value that matches the introduced one for the specified field which is the certifi-
cates.csv column name to search in. Available fields to search certificates are country, name, full_name, symbol,
issuer, isin, asset_class, underlying.

Parameters

• by (str) – name of the field to search for, which is the column name which can be: country,
name, full_name, symbol, issuer, isin, asset_class or underlying.

• value (str) – value of the field to search for, which is the value that is going to be
searched.

Returns The resulting pandas.DataFrame contains the search results from the given query,
which is any match of the specified value in the specified field. If there are no results for the
given query, an error will be raised, but otherwise the resulting pandas.DataFrame will
contain all the available certificates that match the introduced query.

Return type pandas.DataFrame - search_result

Raises

• ValueError – raised if any of the introduced parameters is not valid or errored.

• FileNotFoundError – raised if certificates.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised if no results were found for the introduced value in the introduced
field.

9.9 investpy.crypto

investpy.crypto.get_crypto_historical_data(crypto, from_date, to_date, as_json=False, or-
der='ascending', interval='Daily')

This function retrieves historical data from the introduced crypto from Investing.com. So on, the historical data
of the introduced crypto will be retrieved and returned as a pandas.DataFrame if the parameters are valid
and the request to Investing.com succeeds. Note that additionally some optional parameters can be specified:
as_json and order, which let the user decide if the data is going to be returned as a json or not, and if the
historical data is going to be ordered ascending or descending (where the index is the date), respectively.

Parameters

• crypto (str) – name of the crypto currency to retrieve data from.

• from_date (str) – date formatted as dd/mm/yyyy, since when data is going to be re-
trieved.

• to_date (str) – date formatted as dd/mm/yyyy, until when data is going to be retrieved.

78 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

• as_json (bool, optional) – to determine the format of the output data, either a pandas.
DataFrame if False and a json if True.

• order (str, optional) – to define the order of the retrieved data which can either be as-
cending or descending.

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function can return either a pandas.DataFrame or a json object, containing the re-
trieved historical data of the specified crypto currency. So on, the resulting dataframe contains
the open, high, low, close and volume values for the selected crypto on market days and the
currency in which those values are presented.

The returned data is case we use default arguments will look like:

Date || Open | High | Low | Close | Volume | Currency
-----||------|------|-----|-------|--------|----------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxx | xxxxxxxx

but if we define as_json=True, then the output will be:

{
name: name,
historical: [

{
date: 'dd/mm/yyyy',
open: x,
high: x,
low: x,
close: x,
volume: x,
currency: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• IOError – raised if cryptos object/file was not found or unable to retrieve.

• RuntimeError – raised if the introduced crypto currency name was not found or did not
match any of the existing ones.

• ConnectionError – raised if connection to Investing.com could not be established.

• IndexError – raised if crypto historical data was unavailable or not found in Invest-
ing.com.

9.9. investpy.crypto 79

investpy Documentation, Release 1.0.8

Examples

>>> data = investpy.get_crypto_historical_data(crypto='bitcoin', from_date='01/01/
→˓2018', to_date='01/01/2019')
>>> data.head()

Open High Low Close Volume Currency
Date
2018-01-01 13850.5 13921.5 12877.7 13444.9 78425 USD
2018-01-02 13444.9 15306.1 12934.2 14754.1 137732 USD
2018-01-03 14754.1 15435.0 14579.7 15156.6 106543 USD
2018-01-04 15156.5 15408.7 14244.7 15180.1 110969 USD
2018-01-05 15180.1 17126.9 14832.4 16954.8 141960 USD

investpy.crypto.get_crypto_information(crypto, as_json=False)
This function retrieves fundamental financial information from the specified crypto currency. The retrieved in-
formation from the crypto currency can be valuable as it is additional information that can be used combined
with OHLC values, so to determine financial insights from the company which holds the specified crypto cur-
rency.

Parameters

• currency_cross (str) – name of the currency_cross to retrieve recent historical data
from.

• as_json (bool, optional) – optional argument to determine the format of the output data
(dict or json).

Returns

The resulting pandas.DataFrame contains the information fields retrieved from Invest-
ing.com from the specified crypto currency; it can also be returned as a dict, if argument
as_json=True.

If any of the information fields could not be retrieved, that field/s will be filled with None values.
If the retrieval process succeeded, the resulting dict will look like:

crypto_information = {
'Chg (7D)': '-4.63%',
'Circulating Supply': ' BTC18.10M',
'Crypto Currency': 'Bitcoin',
'Currency': 'USD',
'Market Cap': '$129.01B',
'Max Supply': 'BTC21.00M',
'Todays Range': '7,057.8 - 7,153.1',
'Vol (24H)': '$17.57B'

}

Return type pandas.DataFrame or dict- crypto_information

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• FileNotFoundError – raised if cryptos.csv file was not found or errored.

• IOError – raised if cryptos.csv file is empty or errored.

• RuntimeError – raised if scraping process failed while running.

• ConnectionError – raised if the connection to Investing.com errored (did not return
HTTP 200)

80 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

investpy.crypto.get_crypto_recent_data(crypto, as_json=False, order='ascending', inter-
val='Daily')

This function retrieves recent historical data from the introduced crypto from Investing.com. So on, the recent
data of the introduced crypto will be retrieved and returned as a pandas.DataFrame if the parameters are
valid and the request to Investing.com succeeds. Note that additionally some optional parameters can be speci-
fied: as_json and order, which let the user decide if the data is going to be returned as a json or not, and if the
historical data is going to be ordered ascending or descending (where the index is the date), respectively.

Parameters

• crypto (str) – name of the crypto currency to retrieve data from.

• as_json (bool, optional) – to determine the format of the output data, either a pandas.
DataFrame if False and a json if True.

• order (str, optional) – to define the order of the retrieved data which can either be as-
cending or descending.

• interval (str, optional) – value to define the historical data interval to retrieve, by
default Daily, but it can also be Weekly or Monthly.

Returns

The function can return either a pandas.DataFrame or a json object, containing the re-
trieved recent data of the specified crypto currency. So on, the resulting dataframe contains the
open, high, low, close and volume values for the selected crypto on market days and the currency
in which those values are presented.

The resulting recent data, in case that the default parameters were applied, will look like:

Date || Open | High | Low | Close | Volume | Currency
-----||------|------|-----|-------|--------|----------
xxxx || xxxx | xxxx | xxx | xxxxx | xxxxxx | xxxxxxxx

but in case that as_json parameter was defined as True, then the output will be:

{
name: name,
recent: [

{
date: 'dd/mm/yyyy',
open: x,
high: x,
low: x,
close: x,
volume: x,
currency: x

},
...

]
}

Return type pandas.DataFrame or json

Raises

• ValueError – raised whenever any of the introduced arguments is not valid or errored.

• IOError – raised if cryptos object/file was not found or unable to retrieve.

• RuntimeError – raised if the introduced crypto name was not found or did not match
any of the existing ones.

9.9. investpy.crypto 81

investpy Documentation, Release 1.0.8

• ConnectionError – raised if connection to Investing.com could not be established.

• IndexError – raised if crypto recent data was unavailable or not found in Investing.com.

Examples

>>> data = investpy.get_crypto_recent_data(crypto='bitcoin')
>>> data.head()

Open High Low Close Volume Currency
Date
2019-10-25 7422.8 8697.7 7404.9 8658.3 1177632 USD
2019-10-26 8658.4 10540.0 8061.8 9230.6 1784005 USD
2019-10-27 9230.6 9773.2 9081.0 9529.6 1155038 USD
2019-10-28 9530.1 9866.9 9202.5 9207.2 1039295 USD
2019-10-29 9206.5 9531.3 9125.3 9411.3 918477 USD

investpy.crypto.get_cryptos()
This function retrieves all the crypto data stored in cryptos.csv file, which previously was retrieved from In-
vesting.com. Since the resulting object is a matrix of data, the crypto data is properly structured in rows and
columns, where columns are the crypto data attribute names.

Note that just some cryptos are available for retrieval, since Investing.com does not provide information from
all the available ones, just the main ones.

Returns

The resulting pandas.DataFrame contains all the crypto data from every available crypto
coin as indexed in Investing.com from the information previously retrieved by investpy and
stored on a csv file.

So on, the resulting pandas.DataFrame will look like:

name	symbol	currency
xxxx | xxxxxx | xxxxxxxx

Return type pandas.DataFrame - cryptos_df

Raises

• FileNotFoundError – raised if cryptos.csv file was not found.

• IOError – raised when cryptos.csv file is missing or empty.

investpy.crypto.get_cryptos_dict(columns=None, as_json=False)
This function retrieves all the crypto information stored in the cryptos.csv file and formats it as a Python dictio-
nary which contains the same information as the file, but every row is a dict and all of them are contained in
a list. Note that the dictionary structure is the same one as the JSON structure. Some optional paramaters
can be specified such as the columns or as_json, which are the column names that want to be retrieved in case
of needing just some columns to avoid unnecessary information load, and whether the information wants to be
returned as a JSON object or as a dictionary; respectively.

Note that just some cryptos are available for retrieval, since Investing.com does not provide information from
all the available ones, just the main ones.

Parameters

• columns (list, optional) – column names of the crypto data to retrieve, can be: <name,
currency, symbol>

82 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

• as_json (bool, optional) – if True the returned data will be a json object, if False, a
list of dict.

Returns

The resulting list of dict contains the retrieved data from every crypto coin as indexed in
Investing.com from the information previously retrieved by investpy and stored on a csv file.

In case the information was successfully retrieved, the list of dict will look like:

cryptos_dict = {
'name': name,
'currency': currency,
'symbol': symbol,

}

Return type list of dict OR json - cryptos_dict

Raises

• ValueError – raised whenever any of the introduced arguments is not valid.

• FileNotFoundError – raised if cryptos.csv file was not found.

• IOError – raised when cryptos.csv file is missing or empty.

investpy.crypto.get_cryptos_list()
This function retrieves all the crypto coin names stored in cryptos.csv file, which contains all the data from the
crypto coins as previously retrieved from Investing.com. So on, this function will just return the crypto coin
names which will be the main input parameters when it comes to crypto data retrieval functions from investpy.

Note that just some cryptos are available for retrieval, since Investing.com does not provide information from
all the available ones, just the main ones.

Returns

The resulting list contains the all the available crypto coin names as indexed in Investing.com
from the information previously retrieved by investpy and stored on a csv file.

In case the information was successfully retrieved, the list of crypto coin names will look
like:

cryptos_list = ['Bitcoin', 'Ethereum', 'XRP', 'Bitcoin Cash', 'Tether
→˓', 'Litecoin', ...]

Return type list - cryptos_list

Raises

• FileNotFoundError – raised if cryptos.csv file was not found.

• IOError – raised when cryptos.csv file is missing or empty.

investpy.crypto.get_cryptos_overview(as_json=False, n_results=100)
This function retrieves an overview containing all the real time data available for the main crypto currencies,
such as the names, symbols, current value, etc. as indexed in Investing.com. So on, the main usage of this
function is to get an overview on the main crypto currencies, so to get a general view. Note that since this
function is retrieving a lot of information at once, by default just the overview of the Top 100 crypto currencies
is being retrieved, but an additional parameter called n_results can be specified so to retrieve N results.

Parameters

• as_json (bool, optional) – optional argument to determine the format of the output data
(pandas.DataFrame or json).

9.9. investpy.crypto 83

investpy Documentation, Release 1.0.8

• n_results (int, optional) – number of results to be displayed on the overview table
(0-all_cryptos), where all crypto currencies will be retrieved if n_results=None.

Note: The amount of indexed crypto currencies may vary, so if n_results is set to None, all the available crypto
currencies in Investing.com while retrieving the overview, will be retrieved and returned.

Returns

The resulting pandas.DataFrame contains all the data available in Investing.com of the
main crypto currencies in order to get an overview of it.

If the retrieval process succeeded, the resulting pandas.DataFrame should look like:

name | symbol | price | market_cap | volume24h | total_volume |
→˓change24h | change7d | currency
-----|--------|-------|------------|-----------|--------------|-------
→˓----|----------|----------
xxxx | xxxxxx | xxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxxxxx |
→˓xxxxxxxxx | xxxxxxxx | xxxxxxxx

Return type pandas.DataFrame - cryptos_overview

Raises

• ValueError – raised if any of the introduced arguments is not valid or errored.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised it no overview results could be retrieved from Investing.com.

• ConnectionError – raised if GET requests does not return 200 status code.

investpy.crypto.search_cryptos(by, value)
This function searches cryptos by the introduced value for the specified field. This means that this function is
going to search if there is a value that matches the introduced one for the specified field which is the cryptos.csv
column name to search in. Available fields to search cryptos are ‘name’ and ‘symbol’.

Parameters

• by (str) – name of the field to search for, which is the column name which can be: ‘name’
or ‘symbol’.

• value (str) – value of the field to search for, which is the value that is going to be
searched.

Returns The resulting pandas.DataFrame contains the search results from the given query,
which is any match of the specified value in the specified field. If there are no results for the
given query, an error will be raised, but otherwise the resulting pandas.DataFrame will
contain all the available cryptos that match the introduced query.

Return type pandas.DataFrame - search_result

Raises

• ValueError – raised if any of the introduced parameters is not valid or errored.

• FileNotFoundError – raised if cryptos.csv file is missing.

• IOError – raised if data could not be retrieved due to file error.

• RuntimeError – raised if no results were found for the introduced value in the introduced
field.

84 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

9.10 investpy.news

investpy.news.economic_calendar(time_zone=None, time_filter='time_only', countries=None,
importances=None, categories=None, from_date=None,
to_date=None)

This function retrieves the economic calendar, which covers financial events and indicators from all over the
world updated in real-time. By default, the economic calendar of the currrent day from you local timezone will
be retrieved, but note that some parameters can be specified so that the economic calendar to retrieve can be
filtered.

Parameters

• time_zone (str, optional) – time zone in GMT +/- hours:minutes format, which will be
the reference time, if None, the local GMT time zone will be used.

• time_filter (str, optional) – it can be time_only or time_remain, so that the calendar
will display the time when the event will occurr according to the time zone or the remaining
time until an event occurs.

• countries (list of str, optional) – list of countries from where the events of the
economic calendar will be retrieved, all contries will be taken into consideration if this
parameter is None.

• importances (list of str, optional) – list of importances of the events to be taken into
consideration, can contain: high, medium and low; if None all the importance ratings will
be taken into consideration including holidays.

• categories (list of str, optional) – list of categories to which the events will be
related to, if None all the available categories will be taken into consideration.

• from_date (str, optional) – date from when the economic calendar will be retrieved in
dd/mm/yyyy format, if None just current day’s economic calendar will be retrieved.

• to_date (str, optional) – date until when the economic calendar will be retrieved in
dd/mm/yyyy format, if None just current day’s economic calendar will be retrieved.

Returns The resulting pandas.DataFrame will contain the retrieved information from the eco-
nomic calendar with the specified parameters which will include information such as: date, time,
zone or country of the event, event’s title, etc. Note that some of the retrieved fields may be None
since Investing.com does not provides that information.

Return type pandas.DataFrame - economic_calendar

Raises ValueError – raised if any of the introduced parameters is not valid or errored.

Examples

>>> data = investpy.economic_calendar()
>>> data.head()

id date time zone currency importance
→˓ event actual forecast previous
0 323 27/01/2020 All Day singapore None None Singapore - Chinese
→˓New Year None None None
1 9 27/01/2020 All Day hong kong None None Hong Kong - New
→˓Year's Day None None None
2 71 27/01/2020 All Day australia None None Australia -
→˓Australia Day None None None

(continues on next page)

9.10. investpy.news 85

investpy Documentation, Release 1.0.8

(continued from previous page)

3 750 27/01/2020 All Day china None None China - Spring
→˓Festival None None None
4 304 27/01/2020 All Day south korea None None South Korea -
→˓Market Holiday None None None

9.11 investpy.technical

investpy.technical.moving_averages(name, country, product_type, interval='daily')
This function retrieves the moving averages values calculated by Investing.com for every financial product
available (stocks, funds, etfs, indices, currency crosses, bonds, certificates and commodities) for different time
intervals. So on, the user must provide the product_type name and the name of the product (unless product_type
is ‘stock’ which name value will be the stock’s symbol) and the country if required (mandatory unless prod-
uct_type is either ‘currency_cross’ or ‘commodity’, where it must be None). Additionally, the interval can be
specified which defines the update frequency of the calculations of the moving averages (both simple and expo-
nential). Note that the specified interval is not the moving average’s interval, since all the available time frames
used on the calculation of the moving averages are retrieved.

Parameters

• name (str) – name of the product to retrieve the moving averages table from (if prod-
uct_type is stock, its value must be the stock’s symbol not the name).

• country (str) – country name of the introduced product if applicable (if product_type is
either currency_cross or commodity this parameter should be None, unless it can be specified
just for commodity product_type).

• product_type (str) – identifier of the introduced product, available ones are: stock,
fund, etf, index, currency_cross, bond, certificate and commodity.

• interval (str) – time interval of the resulting calculations, available values are: 5mins,
15mins, 30mins, 1hour, 5hours, daily, weekly and monthly.

Returns

The resulting pandas.DataFrame contains the table with the results of the calculation of
the moving averages made by Investing.com for the introduced financial product. So on, if the
retrieval process succeed its result will look like:

period	sma_value	sma_signal	ema_value	ema_signal
xxxxxx | xxxxxxxxx | xxxxxxxxxx | xxxxxxxxx | xxxxxxxxxx

Return type pandas.DataFrame - moving_averages

Raises

• ValueError – raised if any of the introduced parameters is not valid or errored.

• ConnectionError – raised if the connection to Investing.com errored or could not be
established.

86 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

Examples

>>> data = investpy.moving_averages(name='bbva', country='spain', product_type=
→˓'stock', interval='daily')
>>> data.head()
period sma_value sma_signal ema_value ema_signal

0 5 4.615 buy 4.650 buy
1 10 4.675 sell 4.693 sell
2 20 4.817 sell 4.763 sell
3 50 4.859 sell 4.825 sell
4 100 4.809 sell 4.830 sell
5 200 4.822 sell 4.867 sell

investpy.technical.pivot_points(name, country, product_type, interval='daily')
This function retrieves the pivot points values calculated by Investing.com for every financial product available
(stocks, funds, etfs, indices, currency crosses, bonds, certificates and commodities) for different time intervals.
Pivot points are calculated on different levels: three support levels (S) and three resistance ones (R). So on, the
user must provide the product_type name and the name of the product (unless product_type is ‘stock’ which
name value will be the stock’s symbol) and the country if required (mandatory unless product_type is either
‘currency_cross’ or ‘commodity’, where it must be None). Additionally, the interval can be specified which
defines the update frequency of the calculations of the technical indicators (mainly momentum indicators).

Parameters

• name (str) – name of the product to retrieve the technical indicators table from (if prod-
uct_type is stock, its value must be the stock’s symbol not the name).

• country (str) – country name of the introduced product if applicable (if product_type is
either currency_cross or commodity this parameter should be None, unless it can be specified
just for commodity product_type).

• product_type (str) – identifier of the introduced product, available ones are: stock,
fund, etf, index, currency_cross, bond, certificate and commodity.

• interval (str) – time interval of the resulting calculations, available values are: 5mins,
15mins, 30mins, 1hour, 5hours, daily, weekly and monthly.

Returns

The resulting pandas.DataFrame contains the table with the results of the calculation of the
pivot points made by Investing.com for the introduced financial product. So on, if the retrieval
process succeed its result will look like:

name	s3	s2	s1	pivot_points	r1	r2	r3
xxxx | xx | xx | xx | xxxxxxxxxxxx | xx | xx | xx

Return type pandas.DataFrame - pivot_points

Raises

• ValueError – raised if any of the introduced parameters is not valid or errored.

• ConnectionError – raised if the connection to Investing.com errored or could not be
established.

9.11. investpy.technical 87

investpy Documentation, Release 1.0.8

Examples

>>> data = investpy.pivot_points(name='bbva', country='spain', product_type='stock
→˓', interval='daily')
>>> data.head()

name s3 s2 s1 pivot_points r1 r2 r3
0 Classic 4.537 4.573 4.620 4.656 4.703 4.739 4.786
1 Fibonacci 4.573 4.605 4.624 4.656 4.688 4.707 4.739
2 Camarilla 4.645 4.653 4.660 4.656 4.676 4.683 4.691
3 Woodie's 4.543 4.576 4.626 4.659 4.709 4.742 4.792
4 DeMark's NaN NaN 4.639 4.665 4.721 NaN NaN

investpy.technical.technical_indicators(name, country, product_type, interval='daily')
This function retrieves the technical indicators values calculated by Investing.com for every financial product
available (stocks, funds, etfs, indices, currency crosses, bonds, certificates and commodities) for different time
intervals. So on, the user must provide the product_type name and the name of the product (unless product_type
is ‘stock’ which name value will be the stock’s symbol) and the country if required (mandatory unless prod-
uct_type is either ‘currency_cross’ or ‘commodity’, where it must be None). Additionally, the interval can be
specified which defines the update frequency of the calculations of the technical indicators (mainly momentum
indicators).

Parameters

• name (str) – name of the product to retrieve the technical indicators table from (if prod-
uct_type is stock, its value must be the stock’s symbol not the name).

• country (str) – country name of the introduced product if applicable (if product_type is
either currency_cross or commodity this parameter should be None, unless it can be specified
just for commodity product_type).

• product_type (str) – identifier of the introduced product, available ones are: stock,
fund, etf, index, currency_cross, bond, certificate and commodity.

• interval (str) – time interval of the resulting calculations, available values are: 5mins,
15mins, 30mins, 1hour, 5hours, daily, weekly and monthly.

Returns

The resulting pandas.DataFrame contains the table with the results of the calculation of the
technical indicators made by Investing.com for the introduced financial product. So on, if the
retrieval process succeed its result will look like:

technical_indicator	value	signal
xxxxxxxxxxxxxxxxxxx | xxxxx | xxxxxx

Return type pandas.DataFrame - technical_indicators

Raises

• ValueError – raised if any of the introduced parameters is not valid or errored.

• ConnectionError – raised if the connection to Investing.com errored or could not be
established.

88 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

Examples

>>> data = investpy.technical_indicators(name='bbva', country='spain', product_
→˓type='stock', interval='daily')
>>> data.head()

technical_indicator value signal
0 RSI(14) 39.1500 sell
1 STOCH(9,6) 33.2340 sell
2 STOCHRSI(14) 67.7390 buy
3 MACD(12,26) -0.0740 sell
4 ADX(14) 55.1150 sell
5 Williams %R -66.6670 sell
6 CCI(14) -77.1409 sell
7 ATR(14) 0.0939 less_volatility
8 Highs/Lows(14) -0.0199 sell
9 Ultimate Oscillator 43.0010 sell
10 ROC -6.6240 sell
11 Bull/Bear Power(13) -0.1590 sell

9.12 investpy.search

investpy.search.search_events(text, importances=None, countries=None, n_results=None)
TODO

investpy.search.search_quotes(text, products=None, countries=None, n_results=None)
This function will use the Investing.com search engine so to retrieve the search results of the introduced text.
This function will create a list of investpy.utils.search_obj.SearchObj class instances, unless
n_results is set to 1, where just a single investpy.utils.search_obj.SearchObj will be returned.

Those class instances will contain the search results so that they can be easily accessed and so to
ease the data retrieval process since it can be done calling the methods self.retrieve_recent_data() or
self.retrieve_historical_data(from_date, to_date) from each class instance, which will fill the histori-
cal data attribute, self.data. Also the information of the financial product can be retrieved using the
function self.retrieve_information(), that will also dump the information in the attribute self.information;
the technical indicators can be retrieved using self.retrieve_technical_indicators() dumped in the at-
tribute self.technical_indicators; the default currency using self.retrieve_currecy() dumped in the attribute
self.default_currency.

Parameters

• text (str) – text to search in Investing.com among all its indexed data.

• products (list of str, optional) – list with the product type filter/s to be applied to
search result quotes so that they match the filters. Possible products are: indices, stocks,
etfs, funds, commodities, currencies, cryptos, bonds, certificates and fxfutures, by default
this parameter is set to None which means that no filter will be applied, and all product type
quotes will be retrieved.

• countries (list of str, optional) – list with the country name filter/s to be applied to
search result quotes so that they match the filters. Possible countries can be found in the
docs, by default this paremeter is set to None which means that no filter will be applied, and
quotes from every country will be retrieved.

• n_results (int, optional) – number of search results to retrieve and return.

Returns The resulting list of investpy.utils.search_obj.SearchObj will contained
the retrieved financial products matching the introduced text if found, otherwise a RuntimeError

9.12. investpy.search 89

investpy Documentation, Release 1.0.8

will be raised, so as to let the user know that no results were found for the introduced text. But
note that if the n_results value is equal to 1, a single value will be returned, instead of a list of
values.

Return type list of investpy.utils.search_obj.SearchObj or investpy.
utils.search_obj.SearchObj

Raises

• ValueError – raised whenever any of the introduced parameter is not valid or errored.

• ConnectionError – raised whenever the connection to Investing.com failed.

• RuntimeError – raised when there was an error while executing the function.

class investpy.utils.search_obj.SearchObj(id_, name, symbol, tag, country, pair_type, ex-
change)

Class which contains each search result when searching data in Investing.com.

This class contains the search results of the Investing.com search made with the function call in-
vestpy.search_quotes(text, products, countries, n_results) which returns a list of instances of this class
with the formatted retrieved information. Additionally, data can either be retrieved or not including both
recent and historical data, which will be included in the SearchObj.data attribute when calling either
SearchObj.retrieve_recent_data() or SearchObj.retrieve_historical_data(from_date, to_date), respectively.

id_
ID value used by Investing.com to retrieve data.

Type int

name
name of the retrieved financial product.

Type str

symbol
symbol of the retrieved financial product.

Type str

tag
tag (which is the Investing.com URL) of the retrieved financial product.

Type str

country
name of the country from where the retrieved financial product is.

Type str

pair_type
type of retrieved financial product (stocks, funds, etfs, etc.).

Type str

exchange
name of the stock exchange of the retrieved financial product.

Type str

Extra Attributes:

data (pandas.DataFrame): recent or historical data to retrieve from the current financial product,
generated after calling either self.retrieve_recent_data or self.retrieve_historical_data().

90 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

info (dict): contains the information of the current financial product, generated after calling the
self.retrieve_information() function.

__eq__(other)
Return self==value.

__hash__()
Return hash(self).

__init__(id_, name, symbol, tag, country, pair_type, exchange)
Initialize self. See help(type(self)) for accurate signature.

__str__()
Return str(self).

__weakref__
list of weak references to the object (if defined)

retrieve_currency()
Class method used to retrieve the default currency from the class instance of any financial product.

This method retrieves the default currency from Investing.com of the financial product of the current class
instance. This method uses the data previously retrieved from the investpy.search_quotes(text, products,
countries, n_results) function search results to build the request that it is going to be sent to Investing.com
so to retrieve and parse the information, since the product tag is required.

Returns This method retrieves the default currency from the current class instance of a financial
product from Investing.com.

Return type str - default_currency

Raises

• ConnectionError – raised if connection to Investing.com could not be established.

• RuntimeError – raised if there was any problem while retrieving the data from Invest-
ing.com.

retrieve_historical_data(from_date, to_date)
Class method used to retrieve the historical data from the class instance of any financial product.

This method retrieves the historical data from Investing.com of the financial product of the current class
instance on the specified date range, so it fills the SearchObj.data attribute with the retrieved pandas.
DataFrame. This method uses the previously filled data from the investpy.search_quotes(text, products,
countries, n_results) function search results to build the request that it is going to be sent to Investing.com
so to retrieve and parse the data.

Parameters

• from_date (str) – date from which data will be retrieved, specified in dd/mm/yyyy
format.

• to_date (str) – date until data will be retrieved, specified in dd/mm/yyyy format.

Returns This method retrieves the historical data from the current class instance of a financial
product from Investing.com. This method both stores retrieved data in self.data attribute of
the class instance and it also returns it as a normal function will do.

Return type pandas.DataFrame - data

Raises

• ValueError – raised if any of the introduced parameters was not valid or errored.

9.12. investpy.search 91

investpy Documentation, Release 1.0.8

• RuntimeError – raised if there was any error while retrieving the data from Invest-
ing.com.

retrieve_information()
Class method used to retrieve the information from the class instance of any financial product.

This method retrieves the information from Investing.com of the financial product of the current class
instance, so it fills the SearchObj.info attribute with the retrieved dict. This method uses the previously
retrieved data from the investpy.search_quotes(text, products, countries, n_results) function search results
to build the request that it is going to be sent to Investing.com so to retrieve and parse the information,
since the product tag is required.

Returns This method retrieves the information from the current class instance of a finan-
cial product from Investing.com. This method both stores retrieved information in
self.information attribute of the class instance and it also returns it as a normal function
will do.

Return type dict - info

Raises

• ConnectionError – raised if connection to Investing.com could not be established.

• RuntimeError – raised if there was any problem while retrieving the data from Invest-
ing.com.

retrieve_recent_data()
Class method used to retrieve the recent data from the class instance of any financial product.

This method retrieves the recent data from Investing.com of the financial product of the current class in-
stance, so it fills the SearchObj.data attribute with the retrieved pandas.DataFrame. This method
uses the previously filled data from the investpy.search_quotes(text, products, countries, n_results) func-
tion search results to build the request that it is going to be sent to Investing.com so to retrieve and parse
the data.

Returns This method retrieves the recent data from the current class instance of a financial
product from Investing.com. This method both stores retrieved data in self.data attribute of
the class instance and it also returns it as a normal function will do.

Return type pandas.DataFrame - data

retrieve_technical_indicators(interval='daily')
Class method used to retrieve the technical indicators from the class instance of any financial product.

This method retrieves the technical indicators from Investing.com for the financial product of the current
class instance, to later put in into the SearchObj.technical_indicators attribute. This method uses the
previously retrieved data from the investpy.search_quotes(text, products, countries, n_results) function
search results to build the request that it is going to be sent to Investing.com so to retrieve and parse the
technical indicators, since the product id is required.

Parameters interval (str, optional) – time interval of the technical indicators’ calculations,
available values are: 5mins, 15mins, 30mins, 1hour, 5hours, daily, weekly and monthly. Note
that for funds just the intervals: daily, weekly and monthly are available.

Returns This method retrieves the technical indicators from the current class instance of a finan-
cial product from Investing.com. This method not just stores retrieved technical indicators
table into self.technical_indicators but it also returns it as a normal function will do.

Return type pd.DataFrame - technical_indicators

Raises

• ValueError – raised if any of the input parameters is not valid.

92 Chapter 9. API Reference

investpy Documentation, Release 1.0.8

• ConnectionError – raised if connection to Investing.com could not be established.

• RuntimeError – raised if there was any problem while retrieving the data from Invest-
ing.com.

9.12. investpy.search 93

investpy Documentation, Release 1.0.8

94 Chapter 9. API Reference

CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

95

investpy Documentation, Release 1.0.8

96 Chapter 10. Indices and tables

PYTHON MODULE INDEX

i
investpy.bonds, 58
investpy.certificates, 71
investpy.commodities, 64
investpy.crypto, 78
investpy.currency_crosses, 50
investpy.etfs, 37
investpy.funds, 30
investpy.indices, 44
investpy.news, 85
investpy.search, 89
investpy.stocks, 21
investpy.technical, 86

97

investpy Documentation, Release 1.0.8

98 Python Module Index

INDEX

Symbols
__eq__() (investpy.utils.search_obj.SearchObj

method), 91
__hash__() (investpy.utils.search_obj.SearchObj

method), 91
__init__() (investpy.utils.search_obj.SearchObj

method), 91
__str__() (investpy.utils.search_obj.SearchObj

method), 91
__weakref__ (investpy.utils.search_obj.SearchObj at-

tribute), 91

C
country (investpy.utils.search_obj.SearchObj at-

tribute), 90

E
economic_calendar() (in module investpy.news),

85
exchange (investpy.utils.search_obj.SearchObj at-

tribute), 90

G
get_available_currencies() (in module in-

vestpy.currency_crosses), 50
get_bond_countries() (in module in-

vestpy.bonds), 58
get_bond_historical_data() (in module in-

vestpy.bonds), 58
get_bond_information() (in module in-

vestpy.bonds), 59
get_bond_recent_data() (in module in-

vestpy.bonds), 60
get_bonds() (in module investpy.bonds), 61
get_bonds_dict() (in module investpy.bonds), 62
get_bonds_list() (in module investpy.bonds), 62
get_bonds_overview() (in module in-

vestpy.bonds), 63
get_certificate_countries() (in module in-

vestpy.certificates), 71
get_certificate_historical_data() (in

module investpy.certificates), 72

get_certificate_information() (in module
investpy.certificates), 73

get_certificate_recent_data() (in module
investpy.certificates), 74

get_certificates() (in module in-
vestpy.certificates), 75

get_certificates_dict() (in module in-
vestpy.certificates), 76

get_certificates_list() (in module in-
vestpy.certificates), 76

get_certificates_overview() (in module in-
vestpy.certificates), 77

get_commodities() (in module in-
vestpy.commodities), 64

get_commodities_dict() (in module in-
vestpy.commodities), 65

get_commodities_list() (in module in-
vestpy.commodities), 65

get_commodities_overview() (in module in-
vestpy.commodities), 66

get_commodity_groups() (in module in-
vestpy.commodities), 67

get_commodity_historical_data() (in mod-
ule investpy.commodities), 67

get_commodity_information() (in module in-
vestpy.commodities), 68

get_commodity_recent_data() (in module in-
vestpy.commodities), 69

get_crypto_historical_data() (in module in-
vestpy.crypto), 78

get_crypto_information() (in module in-
vestpy.crypto), 80

get_crypto_recent_data() (in module in-
vestpy.crypto), 80

get_cryptos() (in module investpy.crypto), 82
get_cryptos_dict() (in module investpy.crypto),

82
get_cryptos_list() (in module investpy.crypto),

83
get_cryptos_overview() (in module in-

vestpy.crypto), 83
get_currency_cross_historical_data() (in

99

investpy Documentation, Release 1.0.8

module investpy.currency_crosses), 51
get_currency_cross_information() (in mod-

ule investpy.currency_crosses), 52
get_currency_cross_recent_data() (in mod-

ule investpy.currency_crosses), 53
get_currency_crosses() (in module in-

vestpy.currency_crosses), 54
get_currency_crosses_dict() (in module in-

vestpy.currency_crosses), 55
get_currency_crosses_list() (in module in-

vestpy.currency_crosses), 56
get_currency_crosses_overview() (in mod-

ule investpy.currency_crosses), 56
get_etf_countries() (in module investpy.etfs), 37
get_etf_historical_data() (in module in-

vestpy.etfs), 37
get_etf_information() (in module investpy.etfs),

38
get_etf_recent_data() (in module investpy.etfs),

39
get_etfs() (in module investpy.etfs), 40
get_etfs_dict() (in module investpy.etfs), 41
get_etfs_list() (in module investpy.etfs), 42
get_etfs_overview() (in module investpy.etfs), 42
get_fund_countries() (in module investpy.funds),

30
get_fund_historical_data() (in module in-

vestpy.funds), 30
get_fund_information() (in module in-

vestpy.funds), 32
get_fund_recent_data() (in module in-

vestpy.funds), 32
get_funds() (in module investpy.funds), 34
get_funds_dict() (in module investpy.funds), 34
get_funds_list() (in module investpy.funds), 35
get_funds_overview() (in module investpy.funds),

35
get_index_countries() (in module in-

vestpy.indices), 44
get_index_historical_data() (in module in-

vestpy.indices), 44
get_index_information() (in module in-

vestpy.indices), 45
get_index_recent_data() (in module in-

vestpy.indices), 46
get_indices() (in module investpy.indices), 47
get_indices_dict() (in module investpy.indices),

48
get_indices_list() (in module investpy.indices),

49
get_indices_overview() (in module in-

vestpy.indices), 49
get_stock_company_profile() (in module in-

vestpy.stocks), 21

get_stock_countries() (in module in-
vestpy.stocks), 22

get_stock_dividends() (in module in-
vestpy.stocks), 22

get_stock_financial_summary() (in module
investpy.stocks), 22

get_stock_historical_data() (in module in-
vestpy.stocks), 23

get_stock_information() (in module in-
vestpy.stocks), 25

get_stock_recent_data() (in module in-
vestpy.stocks), 26

get_stocks() (in module investpy.stocks), 27
get_stocks_dict() (in module investpy.stocks), 28
get_stocks_list() (in module investpy.stocks), 28
get_stocks_overview() (in module in-

vestpy.stocks), 29

I
id_ (investpy.utils.search_obj.SearchObj attribute), 90
investpy.bonds

module, 58
investpy.certificates

module, 71
investpy.commodities

module, 64
investpy.crypto

module, 78
investpy.currency_crosses

module, 50
investpy.etfs

module, 37
investpy.funds

module, 30
investpy.indices

module, 44
investpy.news

module, 85
investpy.search

module, 89
investpy.stocks

module, 21
investpy.technical

module, 86

M
module

investpy.bonds, 58
investpy.certificates, 71
investpy.commodities, 64
investpy.crypto, 78
investpy.currency_crosses, 50
investpy.etfs, 37
investpy.funds, 30

100 Index

investpy Documentation, Release 1.0.8

investpy.indices, 44
investpy.news, 85
investpy.search, 89
investpy.stocks, 21
investpy.technical, 86

moving_averages() (in module investpy.technical),
86

N
name (investpy.utils.search_obj.SearchObj attribute), 90

P
pair_type (investpy.utils.search_obj.SearchObj

attribute), 90
pivot_points() (in module investpy.technical), 87

R
retrieve_currency() (in-

vestpy.utils.search_obj.SearchObj method),
91

retrieve_historical_data() (in-
vestpy.utils.search_obj.SearchObj method),
91

retrieve_information() (in-
vestpy.utils.search_obj.SearchObj method),
92

retrieve_recent_data() (in-
vestpy.utils.search_obj.SearchObj method),
92

retrieve_technical_indicators() (in-
vestpy.utils.search_obj.SearchObj method),
92

S
search_bonds() (in module investpy.bonds), 63
search_certificates() (in module in-

vestpy.certificates), 78
search_commodities() (in module in-

vestpy.commodities), 71
search_cryptos() (in module investpy.crypto), 84
search_currency_crosses() (in module in-

vestpy.currency_crosses), 57
search_etfs() (in module investpy.etfs), 43
search_events() (in module investpy.search), 89
search_funds() (in module investpy.funds), 36
search_indices() (in module investpy.indices), 50
search_quotes() (in module investpy.search), 89
search_stocks() (in module investpy.stocks), 30
SearchObj (class in investpy.utils.search_obj), 90
symbol (investpy.utils.search_obj.SearchObj attribute),

90

T
tag (investpy.utils.search_obj.SearchObj attribute), 90

technical_indicators() (in module in-
vestpy.technical), 88

Index 101

	📚 Introduction
	📦 Data Source
	💻 Getting Started

	🛠️ Installation
	💻 Usage
	📈 Recent/Historical Data Retrieval
	🔍 Search Live Data
	💸 Crypto Currencies Data Retrieval

	🗂️ Related projects
	👨💻 Contact Information
	📝 Citation
	❓ Discussions (Q&A, AMA)
	⚠️ Disclaimer
	API Reference
	investpy.stocks
	investpy.funds
	investpy.etfs
	investpy.indices
	investpy.currency_crosses
	investpy.bonds
	investpy.commodities
	investpy.certificates
	investpy.crypto
	investpy.news
	investpy.technical
	investpy.search

	Indices and tables
	Python Module Index
	Index

