
intspan Documentation
Release 1.5.15

Jonathan Eunice

Sep 24, 2019

Contents

1 Usage 3

2 intspanlist 5
2.1 Symbolic Rest . 6

3 Performance and Alternatives 7

4 Notes 9

5 API Reference 11

6 Installation 15
6.1 Testing . 15

7 Change Log 17

Index 21

i

ii

intspan Documentation, Release 1.5.15

intspan is a set subclass that conveniently represents sets of integers. Sets can be created from and displayed as
integer spans such as 1-3,14,29,92-97 rather than exhaustive member listings. Compare:

intspan('1-3,14,29,92-97')
[1, 2, 3, 14, 29, 92, 93, 94, 95, 96, 97]

Or worse, the unsorted, non-intuitive listings that crop up with Python’s native unordered sets, such as:

set([96, 1, 2, 3, 97, 14, 93, 92, 29, 94, 95])

While they all indicate the same values, intspan output is much more compact and comprehensible. It better
divulges the contiguous nature of segments of the collection, making it easier for humans to quickly determine the
“shape” of the data and ascertain “what’s missing?”

When iterating, pop()-ing an item, or converting to a list, intspan behaves as if it were an ordered–in fact,
sorted–collection. A key implication is that, regardless of the order in which items are added, an intspan will
always be rendered in the most compact, organized form possible.

The main draw is having a convenient way to specify, manage, and see output in terms of ranges–for example, rows to
process in a spreadsheet. It can also help you quickly identify or report which items were not successfully processed
in a large dataset.

Contents 1

intspan Documentation, Release 1.5.15

2 Contents

CHAPTER 1

Usage

from __future__ import print_function # Python 2 and 3 compatibility
from intspan import intspan

s = intspan('1-3,14,29,92-97')
s.discard('2,13,92')
print(s)
print(repr(s))
print(list(s))

yields:

1,3,14,29,93-97
intspan('1,3,14,29,93-97')
[1, 3, 14, 29, 93, 94, 95, 96, 97]

While:

>>> for n in intspan('1-3,5'):
>>> print(n)
1
2
3
5

Most set operations such as intersection, union, and so on are available just as they are in Python’s set. In addition,
if you wish to extract the contiguous ranges:

>>> for r in intspan('1-3,5,7-9,10,21-22,23,24').ranges():
>>> print(r)
(1, 3)
(5, 5)
(7, 10)
(21, 24)

3

intspan Documentation, Release 1.5.15

Note that these endpoints represent closed intervals, rather than the half-open intervals commonly used with Python’s
range(). If you combine intspan ranges with Python generators, you’ll have to increment the stop value by one
yourself to create the suitable “half-open interval.”

There is a corresponding range-oriented constructor:

>>> intspan.from_ranges([(4,6), (10,12)])
intspan('4-6,10-12')

A convenience from_range method creates a contiguous intspan from a given low to a high value.:

>>> intspan.from_range(8, 12)
intspan('8-12')

The universe method returns the covering set or “implied universe” of an intspan:

>> intspan('1,3,5,7').universe()
intspan('1-7')

To find the elements not included, you can use the complement method:

>>> items = intspan('1-3,5,7-9,10,21-24')
>>> items.complement()
intspan('4,6,11-20')

The “missing” elements are computed as any integers between the intspan’s minimum and maximum values that
aren’t included. If you’d like to customize the intended low and high bounds, you can give those explicitly.:

>>> items.complement(high=30)
intspan('4,6,11-20,25-30')

You can use the difference method or - operator to find the complement with respect to an arbitrary set, rather
than just an expected contiguous range.

4 Chapter 1. Usage

http://en.wikipedia.org/wiki/Interval_(mathematics)

CHAPTER 2

intspanlist

As of version 1.2, a new function spanlist is provided. It returns a list from the same kind of specification string
intspan does, but ordered as given rather than fully sorted. A corresponding intspanlist class subclasses list
in the same way that intspan subclasses set.

>>> intspanlist('4,1-5,5') # note order preserved
intspanlist('4,1-3,5')

>>> list(intspanlist('4,1-5,5'))
[4, 1, 2, 3, 5]

>>> spanlist('4,1-5,5')
[4, 1, 2, 3, 5]

So spanlist the function creates a list, whereas intspanlist creates a similar object–but one that has a more
sophisticated representation and more specific update methods. Both of them have somewhat set-like behavior, in that
they seek to not have excess duplication of members.

The intended use for this strictly-ordered version of intspan is to specify an ordering of elements. For exam-
ple, a program might have 20 items, 1-20. If you wanted to process item 7, then item 3, then “all the rest,”
intspanlist('7,3,1-20') would be a convenient way to specify this. You could loop over that object in
the desired order.(See below for a different formulation, intspanlist('7,3,*'), in which the * is a symbolic
“all the rest” marker, and the universe set can be specified either immediately or later.)

Note that intspanlist objects do not necessarily display as they are entered:

>>> intspanlist('7,3,1-20')
intspanlist('7,3,1-2,4-6,8-20')

This is an equivalent representation–though lower-level, more explicit, and more verbose.

Many other list methods are available to intspanlist, especially including iteration. Note however that while
intspan attempts to faithfully implement the complete methods of a Python set , intspanlist is a thinner
shim over list. It works well as an immutable type, but modifications such as pop, insert, and slicing are more
problematic. append and extend work to maintain a “set-ish,” no-repeats nature–by discarding any additions that
are already in the container. Whatever was seen first is considered to be in its “right” position.

5

intspan Documentation, Release 1.5.15

Addition and subtraction are supported, but as in-order operations. a + b implies all the elements of b would come
after all the elements of a, for example.

insert and other list update methods, however, aren’t supported because it’s unclear where in the intspanlist
they should update. If a duplicate is appended or inserted somewhere, should an exception be raised? Should the code
silently refuse to add items aßlready seen? Or something else? Maybe even duplicates should be allowed? Silent
denial is the current default, which is compatible with set behavior and intspan; whether that’s the “right” or best
choice for a fully ordered variant is unclear. (If you have thoughts on this or relevant use cases to discuss, open an
issue on Bitbucket or ping the author.)

2.1 Symbolic Rest

As a final trick, intspanlist instances can contain a special value, rendered as an asterisk (*), meaning “the rest
of the list.” Under the covers, this is converted into the singleton object TheRest.

>>> intspanlist('1-4,*,8')
intspanlist('1-4,*,8')

This symbolic “everything else” can be a convenience, but eventually it must be “resolved.”

intspanlist objects may be created with an optional second parameter which provides “the universe of all items”
against which “the rest” may be evaluated. For example:

>>> intspanlist('1-4,*,8', '1-9')
intspanlist('1-7,9,8')

Whatever items are “left over” from the universe set are included wherever the asterisk appears. Like the rest of
intspan and intspanlist constructors, duplicates are inherently removed.

If the universe is not given immediately, you may later update the intspanlist with it:

>>> i = intspanlist('1-4,*,8')
>>> i.therest_update('1-9')
intspanlist('1-7,9,8')

If you don’t wish to modify the original list (leaving its abstract marker in place), a copy may be created by setting the
inplace=False kwarg.

The abstract “and the rest” markers are intended to make intspanlist more convenient for specifying complex
partial orderings.

6 Chapter 2. intspanlist

CHAPTER 3

Performance and Alternatives

intspan piggybacks Python’s set type. inspanlist piggybacks list. So they both store every integer indi-
vidually. Unlike Perl’s Set::IntSpan these types are not optimized for long contiguous runs. For sets of several
hundred or even thousands of members, you’ll probably never notice the difference.

But if you’re doing extensive processing of large sets (e.g. with 100K, 1M, or more elements), or doing numerous set
operations on them (e.g. union or intersection), a data structure based on lists of ranges, run length encoding, or Judy
arrays might perform and scale better. Horses for courses.

There are several modules you might want to consider as alternatives or supplements. AFAIK, none of them provide
the convenient integer span specification intspan does, but they have other virtues:

• cowboy provides generalized ranges and multi-ranges. Bonus points for the tagline: “It works on ranges”

• spans provides several different kinds of ranges and then sets for those ranges. Includes nice datetime
based intervals similar to PostgreSQL time intervals, and float ranges/sets. More ambitious and general than
intspan, but lacks truly convenient input or output methods akin to intspan.

• ranger is a generalized range and range set module. It supports open and closed ranges, and includes mapping
objects that attach one or more objects to range sets.

• rangeset is a generalized range set module. It also supports infinite ranges.

• judy a Python wrapper around Judy arrays that are implemented in C. No docs or tests to speak of.

• RoaringBitmap, a hybrid array and bitmap structure designed for efficient compression and fast operations on
sets of 32-bit integers.

7

http://en.wikipedia.org/wiki/Run-length_encoding
http://en.wikipedia.org/wiki/Judy_array
http://en.wikipedia.org/wiki/Judy_array
http://pypi.python.org/pypi/cowboy
https://pypi.python.org/pypi/Spans
http://pypi.python.org/pypi/ranger
http://pypi.python.org/pypi/rangeset
http://pypi.python.org/pypi/judy
https://pypi.python.org/pypi/roaringbitmap

intspan Documentation, Release 1.5.15

8 Chapter 3. Performance and Alternatives

CHAPTER 4

Notes

• Though inspired by Perl’s Set::IntSpan, that’s where the similarity stops. intspan supports only finite sets,
and it follows the methods and conventions of Python’s set.

• intspan methods and operations such as add() discard(), and >= take integer span strings, lists, and
sets as arguments, changing facilities that used to take only one item into ones that take multiple, including
arguments that are technically string specifications rather than proper intspan objects.

• A version of intspanlist that doesn’t discard duplicates is under consideration.

• String representation and ranges() method based on Jeff Mercado’s concise answer to this StackOverflow
question. Thank you, Jeff!

• Automated multi-version testing managed with pytest, pytest-cov, coverage and tox. Continuous integration
testing with Travis-CI. Packaging linting with pyroma.

Successfully packaged for, and tested against, all current versions of Python including latest builds of 2.6, 2.7,
3.2, 3.3, 3.4, 3.5, 3.6, and 3.7 as well as latest PyPy and PyPy3. Test line coverage 100%.

• The author Jonathan Eunice or @jeunice on Twitter welcomes your comments and suggestions.

9

http://search.cpan.org/~swmcd/Set-IntSpan/IntSpan.pm
http://codereview.stackexchange.com/questions/5196/grouping-consecutive-numbers-into-ranges-in-python-3-2
http://codereview.stackexchange.com/questions/5196/grouping-consecutive-numbers-into-ranges-in-python-3-2
http://pypi.python.org/pypi/pytest
http://pypi.python.org/pypi/pytest-cov
https://pypi.python.org/pypi/coverage/4.0b1
http://pypi.python.org/pypi/tox
https://travis-ci.org/jonathaneunice/intspan
https://pypi.python.org/pypi/pyroma
mailto:jonathan.eunice@gmail.com
http://twitter.com/jeunice

intspan Documentation, Release 1.5.15

10 Chapter 4. Notes

CHAPTER 5

API Reference

In addition to the methods explicitly documented here, intspan attempts to implement the complete list of set
methods.

class intspan.intspan(initial=None)
A set of integers, expressed as an ordered sequence of spans. Because intspan('1-3,14,29,92-97') is
clearer than [1, 2, 3, 14, 29, 92, 93, 94, 95, 96, 97].

add(items)
Add items.

Parameters items (iterable|str) – Items to add. May be an intspan-style string.

complement(low=None, high=None)
Return the complement of the given intspan–that is, all of the ‘missing’ elements between its minimum
and missing values. Optionally allows the universe set to be manually specified.

Parameters

• low (int) – Low bound of universe to complement against.

• high (int) – High bound of universe to complement against.

Returns the complement set

Return type intspan

Raises ValueError – if the set is empty (thus the compelement is infinite)

copy()
Return a new set with the same members.

difference(items)
Return the difference of two or more sets as a new set.

(i.e. all elements that are in this set but not the others.)

difference_update(items)
Remove all elements of another set from this set.

11

intspan Documentation, Release 1.5.15

discard(items)
Discard items.

Parameters items (iterable|str) – Items to remove. May be an intspan-style string.

classmethod from_range(low, high)
Construct an intspan from the low value to the high value, inclusive. I.e., closed range, not the more typical
Python half-open range.

Parameters

• low (int) – Low bound of set to construct.

• high (int) – High bound of set to construct.

Returns New intspan low-high.

Return type intspan

classmethod from_ranges(ranges)
Construct an intspan from a sequence of (low, high) value sequences (lists or tuples, say). Note that these
values are inclusive, closed ranges, not the more typical Python half-open ranges.

Parameters ranges (list) – List of closed/inclusive ranges, each a tuple.

Returns intspan combining the ranges

Return type intspan

intersection(items)
Return the intersection of two or more sets as a new set.

(i.e. elements that are common to all of the sets.)

intersection_update(items)
Update a set with the intersection of itself and another.

issubset(items)
Report whether another set contains this set.

issuperset(items)
Report whether this set contains another set.

pop()
Remove and return an arbitrary element; raises KeyError if empty.

Returns Arbitrary member of the set (which is removed)

Return type int

Raises KeyError – If the set is empty.

ranges()
Return a list of the set’s contiguous (inclusive) ranges.

Returns List of all contained ranges.

Return type list

remove(items)
Remove an element from a set; it must be a member.

If the element is not a member, raise a KeyError.

symmetric_difference(items)
Return the symmetric difference of two sets as a new set.

12 Chapter 5. API Reference

intspan Documentation, Release 1.5.15

(i.e. all elements that are in exactly one of the sets.)

symmetric_difference_update(items)
Update a set with the symmetric difference of itself and another.

union(items)
Return the union of sets as a new set.

(i.e. all elements that are in either set.)

universe(low=None, high=None)
Return the “universe” or “covering set” of the given intspan–that is, all of the integers between its minimum
and missing values. Optionally allows the bounds of the universe set to be manually specified.

Parameters

• low (int) – Low bound of universe.

• high (int) – High bound of universe.

Returns the universe or covering set

Return type intspan

update(items)
Add multiple items.

Parameters items (iterable|str) – Items to add. May be an intspan-style string.

class intspan.intspanlist(initial=None, universe=None)
An ordered version of intspan. Is to list what intspan is to set, except that it is somewhat set-like,
in that items are not intended to be repeated. Works fine as an immutable data structure. Still some issues if
one mutates an instance. Not terrible problems, but the set-like nature where there is only one entry for each
included integer may be broken.

append(item)
Add to the end of the intspanlist

Parameters item (int) – Item to add

complement(low=None, high=None)
Return the complement of the given intspanlist–that is, all of the ‘missing’ elements between its minimum
and missing values. Optionally allows the universe set to be manually specified.

Parameters

• low (int) – Low bound of universe to complement against.

• high (int) – High bound of universe to complement against.

Returns the complement set

Return type intspanlist

Raises ValueError – if the set is empty (thus the compelement is infinite)

copy()
Return a copy of the intspanlist.

extend(items)
Add a collection to the end of the intspanlist

Parameters items (iterable) – integers to add

13

intspan Documentation, Release 1.5.15

classmethod from_range(low, high)
Construct an intspanlist from the low value to the high value, inclusive. I.e., closed range, not the more
typical Python half-open range.

Parameters

• low (int) – Low bound.

• high (int) – High bound.

Returns New intspanlist low-high.

Return type intspanlist

classmethod from_ranges(ranges)
Construct an intspanlist from a sequence of (low, high) value sequences (lists or tuples, say). Note that
these values are inclusive, closed ranges, not the more typical Python half-open ranges.

Parameters ranges (list) – List of closed/inclusive ranges, each a tuple.

Returns intspanlist combining the ranges

Return type intspanlist

ranges()
Return a list of the set’s contiguous (inclusive) ranges.

therest_update(universe, inplace=True)
If the receiving intspanlist contains a TheRest marker, replace it with the contents of the universe.
Generally done in situ, but if value of inplace kwarg false, returns an edited copy.

intspan.spanlist(spec=None)
Given a string specification like the ones given to intspan, return a list of the included items, in the same
item given. Thus, spanlist("3,1-4") yields [3, 1, 2, 4]. Experimental partial implementation of
ability to have ordered intspans.

14 Chapter 5. API Reference

CHAPTER 6

Installation

To install or upgrade to the latest version:

pip install -U intspan

On some systems, you may need to use pip2 to install under Python 2, or pip3 to install under Python 3. You
may also need to prefix these commands with sudo to authorize installation. In environments without super-user
privileges, you may want to use pip’s --user option, to install only for a single user, rather than system-wide.
Finally, in cases where pip is not well-configured to match a specific Python interpreter you want to use, a useful
fallback:

python3.6 -m pip install -U intspan

6.1 Testing

intspan is tested twice before each release–once on the developer’s workstation, and once by the Travis CI continu-
ous integration service. If you’d like to also run the module tests locally, you’ll need to install pytest and tox. For
full testing, you will also need pytest-cov and coverage. Then run one of these commands:

tox # normal test run, across all currently-supported versions
tox -e py27 # run for a environment only (e.g. py27)
tox -c toxcov.ini # run full coverage tests

15

intspan Documentation, Release 1.5.15

16 Chapter 6. Installation

CHAPTER 7

Change Log

1.6.0 (March 11, 2019)

intspanlist extended with addition and subtraction operations, as well as in-place and some right-
associative forms of same.

1.5.15 (January 25, 2019)

Documentation tweaked.

Dropped unused argument to spanlist().

1.5.13 (June 3, 2018)

Documentation tweaks.

1.5.12 (June 2, 2018)

Updated testing matrix. Now includes Python 3.7 pre-release.

Tox tests trimmed in favor of Travis CI.

1.5.11 (October 13, 2017)

Add pyproject.toml for PEP 508 conformance

1.5.10 (May 30, 2017)

Update Python version compatibility strategy. Now Python 3 centric. More future-proofed.

Updated testing matrix. Tweaked docs.

1.5.8 (February 9, 2017)

Changed from module to package builds.

1.5.5 (February 1, 2017)

Documentation upgrades.

1.5.4 (January 31, 2017)

17

intspan Documentation, Release 1.5.15

Tested and certified for all early 2017 versions of Python including latest builds of 2.6, 2.7, 3.3, 3.4, 3.5,
and 3.6, as well as latest PyPy and PyPy3.

1.5.3 (June 21, 2016)

Tested and certified for Python 2.7.11, 3.4.4, 3.5.1, 3.6.0a2, PyPy 3.5.1 (based on Python 2.7.10), and
PyPy3 5.2.0-alpha0 (based on Python 3.3.5). Python 3.2 is deprecated due to its advancing age and now-
limited compatibility with my test rig. It still passes Travis CI tests–but as soon as it does not, it will be
withdrawn from support.

1.5.2 (September 23, 2015)

Tested and certified for PyPy 2.6.1 (based on Python 2.7.10)

1.5.1 (September 14, 2015)

Updated testing for Python 3.5.0 final.

1.5.0 (August 27, 2015)

Added universe method. Extended tests. Continuing to extend docs.

1.4.4 (August 27, 2015)

Improving documentation, especially around API details. Will probably require a handful of incremental
passes to get the API reference ship-shape.

1.4.2 (August 26, 2015)

Reorganied documentation. Added API details and moved full docs to Read The Docs.

1.4.1

Achieves 100% branch coverage. Hooah!

1.4.0

Achieves 100% test coverage and integrated coverage testing across multiple versions with tox.

1.3.10

Improved test coverage and explicit coverage testing. Also tweaked docs.

1.3.9

Simplified setup.py and packaging.

1.3.7

Adds bdist_wheel packaging support.

1.3.6

Switches from BSD to Apache License 2.0 and integrates tox testing with setup.py

1.3.0

Adds * notation for abstract “the rest of the items” in an intspanlist.

1.2.6

Inaugurates continuous integration with Travis CI.

1.2.0

Adds an experimental spanlist constructor and intspanlist type.

1.1.0

18 Chapter 7. Change Log

intspan Documentation, Release 1.5.15

Adds from_range and complement methods; improves error handling of pop on an empty set), and
tweaks testing.

1.0.0

Immediately follows 0.73. Bumped to institute a cleaner “semantic versioning” scheme. Upgraded from
“beta” to “production” status.

0.73.0

Updates testing to include the latest Python 3.4

0.7.0

Fixed parsing of spans including negative numbers, and added the ranges() method. As of 0.71, the
from_ranges() constructor appeared.

19

intspan Documentation, Release 1.5.15

20 Chapter 7. Change Log

Index

A
add() (intspan.intspan method), 11
append() (intspan.intspanlist method), 13

C
complement() (intspan.intspan method), 11
complement() (intspan.intspanlist method), 13
copy() (intspan.intspan method), 11
copy() (intspan.intspanlist method), 13

D
difference() (intspan.intspan method), 11
difference_update() (intspan.intspan method),

11
discard() (intspan.intspan method), 11

E
extend() (intspan.intspanlist method), 13

F
from_range() (intspan.intspan class method), 12
from_range() (intspan.intspanlist class method), 13
from_ranges() (intspan.intspan class method), 12
from_ranges() (intspan.intspanlist class method), 14

I
intersection() (intspan.intspan method), 12
intersection_update() (intspan.intspan

method), 12
intspan (class in intspan), 11
intspanlist (class in intspan), 13
issubset() (intspan.intspan method), 12
issuperset() (intspan.intspan method), 12

P
pop() (intspan.intspan method), 12

R
ranges() (intspan.intspan method), 12

ranges() (intspan.intspanlist method), 14
remove() (intspan.intspan method), 12

S
spanlist() (in module intspan), 14
symmetric_difference() (intspan.intspan

method), 12
symmetric_difference_update()

(intspan.intspan method), 13

T
therest_update() (intspan.intspanlist method), 14

U
union() (intspan.intspan method), 13
universe() (intspan.intspan method), 13
update() (intspan.intspan method), 13

21

	Usage
	intspanlist
	Symbolic Rest

	Performance and Alternatives
	Notes
	API Reference
	Installation
	Testing

	Change Log
	Index

