

Welcome to intake_elasticsearch’s documentation!

This package enables the Intake data access and catalog system to read from the ElasticSearch
data analytics platform.

Contents:

	Quickstart
	Installation

	Usage

	API Reference

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

intake-elasticsearch provides quick and easy access to data stored in
ElasticSearch [https://www.elastic.co/]

This plugin reads ElasticSearch query results without random access: there is only ever
a single partition.

Installation

To use this plugin for intake [https://github.com/ContinuumIO/intake], install with the following command:

conda install -c intake intake-elasticsearch

Usage

Ad-hoc

After installation, the functions intake.open_elasticsearch_table
and intake.open_elasticsearch_seq
will become available. They can be used to execute queries on the ElasticSearch
server, and download the results as a sequence of dictionaries, or a data-frame.

Three parameters are of interest when defining a data source:

	query: the query to execute, which can be defined either using Lucene [https://www.elastic.co/guide/en/kibana/current/lucene-query.html] or
JSON [https://www.elastic.co/guide/en/elasticsearch/reference/1.4/_introducing_the_query_language.html] syntax, both of which are to be provided as a string.

	qargs: further arguments [https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch.search] to pass along with the query, such as the index(es)
to consider, sorting and any filters to apply

	other arguments are passed as parameters to the server connection [https://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch] instance,

In the simplest case, this might look something like:

import intake
source = intake.open_elasticsearch_seq("*:*", host='elastic.server', port=9200,
 qargs={'index': 'mydocuments'})
result = source.read()

Where "*:*" is Lucene syntax for “match all”, so this will grab every document
within the given index, as a data-frame. The host and port parameters define the connection
to the ElasticSearch server.

Further parameters which can be used to modify how the source works are as follows. These
are likely not altered often.

	scroll: a text string specifying how long the query remains live on the server

	size: the number of entries to download in a single call; smaller numbers will download
slower, but may be more stable.

Creating Catalog Entries

Catalog entries must specify driver: elasticsearch_seq for the sequence
of dictionaries version, and driver: elasticsearch_table for the dataframe
version.

Aside from this, the same arguments are available as for ad-hoc usage. Note that queries
are commonly multi-line, especially is using JSON syntax, so the YAML "|" character
should be used to define them within the catalog file. A full entry may look something like:

args:
 qargs:
 index: intake_test
 doc_type: entry
 query: |
 {
 "query": {
 "match":
 {"typeid": 1}
 },
 "sort": {
 "price": {"order": "desc"}
 },
 "_source": ["price", "typeid"]
 }
 host: intake_es

where we have specified both the index and document types (these could have been lists), the fields
to extract and sort order, as well as a matching term, loosely equivalent to "WHERE typeid = 1"
in SQL.

Using a Catalog

Assuming a catalog file 'cat.yaml', and an entry called 'es_data', the corresponding
dataframe could be fetched as follows:

import intake
cat = intake.Catalog('cat.yaml')
result = cat.es_data.read()

Since the query cannot be partitioned with this plugin, the other methods of the data source
(iterate, read one partition, create Dask data-frame) are not particularly useful here.

API Reference

	intake_elasticsearch.elasticsearch_table.ElasticSearchTableSource(…)

	Data source which executes arbitrary queries on ElasticSearch

	intake_elasticsearch.elasticsearch_seq.ElasticSearchSeqSource(query)

	Data source which executes arbitrary queries on ElasticSearch

	
class intake_elasticsearch.elasticsearch_table.ElasticSearchTableSource(*args, **kwargs)

	Data source which executes arbitrary queries on ElasticSearch

This is the tabular reader: will return dataframes. Nested return items
will become dict-like objects in the output.

	Parameters

	
	query: str

	Query to execute. Can either be in Lucene single-line format, or a
JSON structured query (presented as text)

	npartitions: int

	Split query into this many sections. If one, will not split.

	qargs: dict

	Further parameters to pass to the query, such as set of indexes to
consider, filtering, ordering. See
http://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch.search

	es_kwargs: dict

	Settings for the ES connection, e.g., a simple local connection may be
{'host': 'localhost', 'port': 9200}.
Other keywords to the Plugin that end up here and are material:

	scroll: str

	how long the query is live for, default '100m'

	size: int

	the paging size when downloading, default 1000.

	metadata: dict

	Extra information for this source.

	Attributes

	
	cache_dirs

	

	datashape

	

	description

	

	hvplot

	Returns a hvPlot object to provide a high-level plotting API.

	plot

	Returns a hvPlot object to provide a high-level plotting API.

	plots

	List custom associated quick-plots

Methods

	close()

	Close open resources corresponding to this data source.

	discover()

	Open resource and populate the source attributes.

	read()

	Read all data in one go

	read_chunked()

	Return iterator over container fragments of data source

	read_partition(i)

	Return a part of the data corresponding to i-th partition.

	to_dask()

	Turn into dask.dataframe

	to_spark()

	Provide an equivalent data object in Apache Spark

	yaml([with_plugin])

	Return YAML representation of this data-source

	set_cache_dir

	

	
to_dask()

	Turn into dask.dataframe

	
class intake_elasticsearch.elasticsearch_seq.ElasticSearchSeqSource(query, npartitions=1, qargs={}, metadata={}, **es_kwargs)

	Data source which executes arbitrary queries on ElasticSearch

This is the sequential reader: will return a list of dictionaries.

	Parameters

	
	query: str

	Query to execute. Can either be in Lucene single-line format, or a
JSON structured query (presented as text)

	npartitions: int

	Split query into this many sections. If one, will not split.

	qargs: dict

	Further parameters to pass to the query, such as set of indexes to
consider, filtering, ordering. See
http://elasticsearch-py.readthedocs.io/en/master/api.html#elasticsearch.Elasticsearch.search

	es_kwargs: dict

	Settings for the ES connection, e.g., a simple local connection may be
{'host': 'localhost', 'port': 9200}.
Other keywords to the Plugin that end up here and are material:

	scroll: str

	how long the query is live for, default '100m'

	size: int

	the paging size when downloading, default 1000.

	metadata: dict

	Extra information for this source.

	Attributes

	
	cache_dirs

	

	datashape

	

	description

	

	hvplot

	Returns a hvPlot object to provide a high-level plotting API.

	plot

	Returns a hvPlot object to provide a high-level plotting API.

	plots

	List custom associated quick-plots

Methods

	close()

	Close open resources corresponding to this data source.

	discover()

	Open resource and populate the source attributes.

	read()

	Read all data in one go

	read_chunked()

	Return iterator over container fragments of data source

	read_partition(i)

	Return a part of the data corresponding to i-th partition.

	to_dask()

	Form partitions into a dask.bag

	to_spark()

	Provide an equivalent data object in Apache Spark

	yaml([with_plugin])

	Return YAML representation of this data-source

	set_cache_dir

	

	
read()

	Read all data in one go

	
to_dask()

	Form partitions into a dask.bag

Index

 E
 | R
 | T

E

 	
 	ElasticSearchSeqSource (class in intake_elasticsearch.elasticsearch_seq)

 	
 	ElasticSearchTableSource (class in intake_elasticsearch.elasticsearch_table)

R

 	
 	read() (intake_elasticsearch.elasticsearch_seq.ElasticSearchSeqSource method)

T

 	
 	to_dask() (intake_elasticsearch.elasticsearch_seq.ElasticSearchSeqSource method)

 	(intake_elasticsearch.elasticsearch_table.ElasticSearchTableSource method)

 nav.xhtml

 Table of Contents

 		
 Welcome to intake_elasticsearch’s documentation!

 		
 Quickstart

 		
 Installation

 		
 Usage

 		
 Ad-hoc

 		
 Creating Catalog Entries

 		
 Using a Catalog

 		
 API Reference

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

