

Welcome to intake-avro’s documentation!

This package enables the loading of Apache Avro files within the Intake data loading and catalog system.
Two plugins are contained: for fast loading of strictly tabular data to pandas dataframes, and slower
reading of more complicatedly structured data as a sequence of python dictionaries.

Each avro file becomes one partition.

Contents:

	Quickstart
	Installation

	Usage

	API Reference

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

intake_avro provides quick and easy access to tabular data stored in
the Apache Avro [https://avro.apache.org/docs/current/] binary, columnar format.

Installation

To use this plugin for intake [https://github.com/ContinuumIO/intake], install with the following command:

conda install -c conda-forge intake-avro

Usage

Ad-hoc

After installation, the functions intake.open_avro_table
and intake.open_avro_sequence will become available. The former, much faster
method can be used to open one or more Avro files with flat schema into dataframes, but
the latter can be used for any files and produces generic sequences of dictionaries.

Assuming some Avro files in a given path, the following would load them into a
dataframe:

import intake
source = intake.open_avro_table('data_path/*.avro')
dataframe = source.read()

There will, by default, be partitions within each file of about 100MB in size. To skip
scanning files for the purpose of partitioning, you can pass blocksize=None.

Arguments to the open_avro_* functions:

	urlpath : the location of the data. This can be a single file, a list of specific files,

or a glob string (containing "*"). The
URLs can be local files or, if using a protocol specifier such as 's3://', a remote file
location.

	blocksize: defines the partitioning within input files. The special value None avoids

partitioning within files - you get exactly one partition per input file. This avoids some
upfront overhead to scan for block markers within files, so may be desirable in some cases.
The default value of about 100MB, so for small files, there will be no difference.

	storage_options : other parameters that are to be passed to the filesystem

implementation, in the case that a remote filesystem is referenced in urlpath. For
specifics, see the Dask documentation [http://dask.pydata.org/en/latest/remote-data-services.html].

A source so defined will provide the usual methods such as discover and read_partition.

Creating Catalog Entries

To use for a data-source within a catalog, a spec may look something like

	sources:

	
	test:

	description: Sample description of some avro dataset
driver: avro_table
args:

urlpath: ‘{{ CATALOG_DIR }}/data.*.avro’

and entries must specify driver: avro_table or driver: avro_sequence.
The further arguments are exactly the same
as for the open_avro_* functions.

Using a Catalog

Assuming a catalog file called cat.yaml, containing a Avro source pdata, one could
load it into a dataframe as follows:

import intake
cat = intake.Catalog('cat.yaml')
df = cat.pdata.read()

The type of the output will depend on the plugin that was defined in the catalog. You can
inspect this before loading by looking at the .container attribute, which will be
either "dataframe" or "python".

The number of partitions will be at least one for the number of files pointed to.

API Reference

	intake_avro.source.AvroTableSource(urlpath)

	Source to load tabular Avro datasets.

	intake_avro.source.AvroSequenceSource(urlpath)

	Source to load Avro datasets as sequence of Python dicts.

	
class intake_avro.source.AvroTableSource(urlpath, blocksize=100000000, metadata=None, storage_options=None)

	Source to load tabular Avro datasets.

	Parameters

	
	urlpath: str

	Location of the data files; can include protocol and glob characters.

	blocksize: int or None

	Partition the input files by roughly this number of bytes. Actual
partition sizes will depend on the inherent structure of the data
files. If None, each input file will be one partition, no file
scanning will be needed ahead of time

	storage_options: dict or None

	Parameters to pass on to the file-system backend

	Attributes

	
	cache_dirs

	

	datashape

	

	description

	

	hvplot

	Returns a hvPlot object to provide a high-level plotting API.

	plot

	Returns a hvPlot object to provide a high-level plotting API.

	plots

	List custom associated quick-plots

Methods

	close()

	Close open resources corresponding to this data source.

	discover()

	Open resource and populate the source attributes.

	read()

	Load entire dataset into a container and return it

	read_chunked()

	Return iterator over container fragments of data source

	read_partition(i)

	Return a part of the data corresponding to i-th partition.

	to_dask()

	Create lazy dask dataframe object

	to_spark()

	Pass URL to spark to load as a DataFrame

	yaml([with_plugin])

	Return YAML representation of this data-source

	set_cache_dir

	

	
read()

	Load entire dataset into a container and return it

	
to_dask()

	Create lazy dask dataframe object

	
to_spark()

	Pass URL to spark to load as a DataFrame

Note that this requires org.apache.spark.sql.avro.AvroFileFormat
to be installed in your spark classes.

This feature is experimental.

	
class intake_avro.source.AvroSequenceSource(urlpath, blocksize=100000000, metadata=None, storage_options=None)

	Source to load Avro datasets as sequence of Python dicts.

	Parameters

	
	urlpath: str

	Location of the data files; can include protocol and glob characters.

	blocksize: int or None

	Partition the input files by roughly this number of bytes. Actual
partition sizes will depend on the inherent structure of the data
files. If None, each input file will be one partition, no file
scanning will be needed ahead of time

	storage_options: dict or None

	Parameters to pass on to the file-system backend

	Attributes

	
	cache_dirs

	

	datashape

	

	description

	

	hvplot

	Returns a hvPlot object to provide a high-level plotting API.

	plot

	Returns a hvPlot object to provide a high-level plotting API.

	plots

	List custom associated quick-plots

Methods

	close()

	Close open resources corresponding to this data source.

	discover()

	Open resource and populate the source attributes.

	read()

	Load entire dataset into a container and return it

	read_chunked()

	Return iterator over container fragments of data source

	read_partition(i)

	Return a part of the data corresponding to i-th partition.

	to_dask()

	Create lazy dask bag object

	to_spark()

	Provide an equivalent data object in Apache Spark

	yaml([with_plugin])

	Return YAML representation of this data-source

	set_cache_dir

	

	
read()

	Load entire dataset into a container and return it

	
to_dask()

	Create lazy dask bag object

Index

 A
 | R
 | T

A

 	
 	AvroSequenceSource (class in intake_avro.source)

 	
 	AvroTableSource (class in intake_avro.source)

R

 	
 	read() (intake_avro.source.AvroSequenceSource method)

 	(intake_avro.source.AvroTableSource method)

T

 	
 	to_dask() (intake_avro.source.AvroSequenceSource method)

 	(intake_avro.source.AvroTableSource method)

 	
 	to_spark() (intake_avro.source.AvroTableSource method)

 nav.xhtml

 Table of Contents

 		
 Welcome to intake-avro’s documentation!

 		
 Quickstart

 		
 Installation

 		
 Usage

 		
 Ad-hoc

 		
 Creating Catalog Entries

 		
 Using a Catalog

 		
 API Reference

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

