InstrumentKit Library Documentation
Release 0.1.0

Steven Casagrande

June 09, 2016

Contents

Introduction

InstrumentKit API Reference
InstrumentKit Development Guide
Acknowledgements

Indices and tables

109

121

123

InstrumentKit Library Documentation, Release 0.1.0

Contents:

Contents 1

InstrumentKit Library Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Introduction

InstrumentKit allows for the control of scientific instruments in a platform-independent manner, abstracted from the
details of how the instrument is connected. In particular, InstrumentKit supports connecting to instruments via serial
port (including USB-based virtual serial connections), GPIB, USBTMC, TCP/IP or by using the VISA layer.

1.1 Installing

1.1.1 Dependencies

Most of the required and optional dependencies can be obtained using pip.

Required Dependencies

Using pip, these requirements can be obtained automatically by using the provided requirements. txt:

$ pip install -r requirements.txt

* NumPy

* PySerial

* quantities

* enum34

* future

* python-vxill
* PyUSB

* python-usbtmc
* PyYAML

Optional Dependencies

* PyVISA (required for accessing instruments via VISA library)

http://pyserial.sourceforge.net/
http://pythonhosted.org/quantities/
https://pypi.python.org/pypi/enum34
https://pypi.python.org/pypi/future
https://pypi.python.org/pypi/python-vxi11
http://sourceforge.net/apps/trac/pyusb/
https://pypi.python.org/pypi/python-usbtmc
https://bitbucket.org/xi/pyyaml
http://pyvisa.sourceforge.net/

InstrumentKit Library Documentation, Release 0.1.0

1.2 Getting Started

1.2.1 Instruments and Instrument Classes

Each make and model of instrument that is supported by InstrumentKit is represented by a specific class, as docu-
mented in the InstrumentKit API Reference. Instruments that offer common functionality, such as multimeters, are
represented by base classes, such that specific instruments can be exchanged without affecting code, so long as the
proper functionality is provided.

For some instruments, a specific instrument class is not needed, as the Generic SCPI Instruments classes can be used
to expose functionality of these instruments. If you don’t see your specific instrument listed, then, please check in the
instrument’s manual whether it uses a standard set of SCPI commands.

1.2.2 Connecting to Instruments

Each instrument class in InstrumentKit is constructed using a communicator class that wraps a file-like object with
additional information about newlines, terminators and other useful details. Most of the time, it is easiest to not worry
with creating communicators directly, as convienence methods are provided to quickly connect to instruments over a
wide range of common communication protocols and physical connections.

For instance, to connect to a generic SCPI-compliant multimeter using a Galvant Industries GPIB-USB adapter, the
open_ gpibushb method can be used:

>>> import instruments as ik
>>> inst = ik.generic_scpi.SCPIMultimeter.open_gpibusb ("/dev/ttyUSBO", 1)

Similarly, many instruments connected by USB use an FTDI or similar chip to emulate serial ports, and can be
connected using the open_ serial method by specifying the serial port device file (on Linux) or name (on Windows)
along with the baud rate of the emulated port:

’>>> inst = ik.generic_scpi.SCPIMultimeter.open_serial ("COM10"™, 115200)

As a convienence, an instrument connection can also be specified using a uniform resource identifier (URI) string:

’>>> inst = ik.generic_scpi.SCPIMultimeter.open_from uri("tcpip://192.168.0.10:4100:)

Instrument connection URIs of this kind are useful for storing in configuration files, as the same method,
open_ from_uri,isused, regardless of the communication protocol and physical connection being used. Instrumen-
tKit provides special support for this usage, and can load instruments from specifications listed in a YAML-formatted
configuration file. See the 1oad_instruments function for more details.

1.2.3 Using Connected Instruments

Once connected, functionality of each instrument is exposed by methods and properties of the instrument object. For
instance, the name of an instrument can be queried by getting the name property:

>>> print (inst.name)

For details of how to use each instrument, please see the InstrumentKit API Reference entry for that instrument’s class.
If that class does not implement a given command, raw commands and queries can be issued by using the sendcmd
and query methods, respectively:

>>> inst.sendcmd ("DATA") # Send command with no response
>>> resp = inst.query ("«IDN?") # Send command and retrieve response

4 Chapter 1. Introduction

http://galvant.ca/shop/gpibusb/

InstrumentKit Library Documentation, Release 0.1.0

1.3 OS-Specific Instructions

1.3.1 Linux

Raw USB Device Configuration

To enable writing to a USB device in raw or usbtmc mode, the device file must be readable writable by users. As this
is not normally the default, you need to add rules to /et c/udev/rules.d to override the default permissions. For
instance, to add a Tektronix DPO 4104 oscilloscope with world-writable permissions, add the following to rules.d:

ATTRS{idVendor}=="0699", ATTRS{idProduct}=="0401", SYMLINK+="tekdpo4104", MODE="0666"

Warning: This configuration causes the USB device to be world-writable. Do not do this on a multi-user system
with untrusted users.

1.3. OS-Specific Instructions 5

InstrumentKit Library Documentation, Release 0.1.0

6 Chapter 1. Introduction

CHAPTER 2

InstrumentKit APl Reference

Contents:

2.1 Instrument Base Classes

2.1.1 Instrument - Base class for instrument communication

class instruments.Instrument (filelike)
This is the base instrument class from which all others are derived from. It provides the basic implementation
for all communication related tasks. In addition, it also contains several class methods for opening connections
via the supported hardware channels.

binblockread (data_width, fmt=None)
” Read a binary data block from attached instrument. This requires that the instrument respond in a
particular manner as EOL terminators naturally can not be used in binary transfers.

The format is as follows: #{number of following digits:1-9}{num of bytes to be read } {data bytes}
Parameters

* data_width (int) — Specify the number of bytes wide each data point is. One of
[1,2.4].

» fmt (str)— Format string as specified by the st ruct module, or None to choose a for-
mat automatically based on the data width. Typically you can just specify data_width
and leave this default.

classmethod open_file (filename)
Given a file, treats that file as a character device file that can be read from and written to in order to
communicate with the instrument. This may be the case, for instance, if the instrument is connected by the
Linux usbtmc kernel driver.

Parameters filename (st r)— Name of the character device to open.
Return type Tnstrument
Returns Object representing the connected instrument.

classmethod open_from_uri (uri)
Given an instrument URI, opens the instrument named by that URI. Instrument URIs are formatted with a
scheme, such as serial://, followed by a location that is interpreted differently for each scheme. The
following examples URIs demonstrate the currently supported schemes and location formats:

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/struct.html#module-struct
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

serial://COM3

serial:///dev/ttyACMO

tcpip://192.168.0.10:4100

gpib+usb://COM3/15

gpib+serial://COM3/15

gpib+serial:///dev/ttyACMO/15 # Currently non-functional.
visa://USB::0x0699::0x0401::C0000001::0::INSTR
usbtmc://USB::0x0699::0x0401::C0000001::0::INSTR

For the serial URI scheme, baud rates may be explicitly specified using the query parameter baud=,
as in the example serial://COM9?baud=115200. If not specified, the baud rate is assumed to be
115200.

Parameters uri (st r)— URI for the instrument to be loaded.
Return type Tnstrument

See also:

PySerial documentation for serial port URI format

classmethod open_gpibethernet (host, port, gpib_address)

Warning: The GPIB-Ethernet adapter that this connection would use does not actually exist, and thus
this class method should not be used.

classmethod open_gpibusb (port, gpib_address, timeout=3, write_timeout=3)
Opens an instrument, connecting via a Galvant Industries GPIB-USB adapter.

Parameters

* port (str)— Name of the the port or device file to open a connection on. Note that
because the GI GPIB-USB adapter identifies as a serial port to the operating system, this
should be the name of a serial port.

* gpib_address (int)— Address on the connected GPIB bus assigned to the instrument.

* timeout (float)—Number of seconds to wait when reading from the instrument before
timing out.

* write_timeout (f1loat)— Number of seconds to wait when writing to the instrument
before timing out.

Return type Tnstrument

Returns Object representing the connected instrument.
See also:
Serial for description of port and timeouts.

classmethod open_serial (port, baud, timeout=3, write_timeout=3)
Opens an instrument, connecting via a physical or emulated serial port. Note that many instruments which
connect via USB are exposed to the operating system as serial ports, so this method will very commonly
be used for connecting instruments via USB.

Parameters

* port (str)— Name of the the port or device file to open a connection on. For example,
"COM10" on Windows or " /dev/ttyUSBO" on Linux.

¢ baud (int) — The baud rate at which instrument communicates.

8 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#str
http://pyserial.sourceforge.net/
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

* timeout (f1loat)— Number of seconds to wait when reading from the instrument before
timing out.

* write_timeout (float)— Number of seconds to wait when writing to the instrument
before timing out.

Return type Tnstrument

Returns Object representing the connected instrument.
See also:
Serial for description of port, baud rates and timeouts.

classmethod open_tcpip (host, port)
Opens an instrument, connecting via TCP/IP to a given host and TCP port.

Parameters
¢ host (str)— Name or IP address of the instrument.
e port (int)— TCP port on which the insturment is listening.
Return type Instrument
Returns Object representing the connected instrument.
See also:
connect for description of host and port parameters in the TCP/IP address family.

classmethod open_test (stdin=None, stdout=None)
Opens an instrument using a loopback communicator for a test connection. The primary use case of this is
to instantiate a specific instrument class without requiring an actual physical connection of any kind. This
is also very useful for creating unit tests through the parameters of this class method.

Parameters
* stdin (io.BytesIO or None) — The stream of data coming from the instrument

* stdout (i0.BytesIO or None)— Empty data stream that will hold data sent from the
Python class to the loopback communicator. This can then be checked for the contents.

Returns Object representing the virtually-connected instrument

classmethod open_usb (vid, pid)
Opens an instrument, connecting via a raw USB stream.

Note: Note that raw USB a very uncommon of connecting to instruments, even for those that are con-
nected by USB. Most will identify as either serial ports (in which case, open_serial should be used),
or as USB-TMC devices. On Linux, USB-TMC devices can be connected using open_ £1i1e, provided
that the usbtmc kernel module is loaded. On Windows, some such devices can be opened using the VISA
library and the open_ visa method.

Parameters
* vid (str)— Vendor ID of the USB device to open.
e pid (int) — Product ID of the USB device to open.
Return type Instrument

Returns Object representing the connected instrument.

2.1.

Instrument Base Classes 9

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/socket.html#socket.socket.connect
http://docs.python.org/library/io.html#io.BytesIO
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/io.html#io.BytesIO
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

classmethod open_usbtme (*args, **kwargs)
Opens an instrument, connecting to a USB-TMC device using the Python usbtmc library.

Warning: The operational status of this is unknown. It is suggested that you connect via the other
provided class methods. For Linux, if you have the usbtmc kernel module, the open_ £ile class
method will work. On Windows, using the open_visa class method along with having the VISA
libraries installed will work.

Returns Object representing the connected instrument

classmethod open_visa (resource_name)
Opens an instrument, connecting using the VISA library. Note that PyVISA and a VISA implementation
must both be present and installed for this method to function.

Parameters resource_name (st r) — Name of a VISA resource representing the given in-
strument.

Return type Tnstrument

Returns Object representing the connected instrument.
See also:
National Instruments help page on VISA resource names.

classmethod open_vxill (*args, **kwargs)
Opens a vxill enabled instrument, connecting using the python library python-vxil 1. This package must
be present and installed for this method to function.

Return type Tnstrument
Returns Object representing the connected instrument.

query (cmd, size=-1)
Executes the given query.

Parameters
* cmd (st r) — String containing the query to execute.

e size (int)— Number of bytes to be read. Default is read until termination character is
found.

Returns The result of the query as returned by the connected instrument.
Return type str

read (size=-1)
Read the last line.

Parameters size (int)— Number of bytes to be read. Default is read until termination char-
acter is found.

Returns The result of the read as returned by the connected instrument.
Return type str

sendemd (cmd)
Sends a command without waiting for a response.

Parameters cmd (st r) — String containing the command to be sent.

write (msg)
Write data string to the connected instrument. This will call the write method for the attached filelike

10

Chapter 2. InstrumentKit APl Reference

http://pyvisa.sourceforge.net/
http://docs.python.org/library/functions.html#str
http://zone.ni.com/reference/en-XX/help/371361J-01/lvinstio/visa_resource_name_generic/
https://github.com/python-ivi/python-vxi11
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

object. This will typically bypass attaching any termination characters or other communication channel
related work.

See also:
Instrument .sendcmd if you wish to send a string to the

instrument, while still having InstrumentKit handle termination characters and other communication chan-
nel related work.

Parameters msg (str) — String that will be written to the filelike object
(Instrument._file) attached to this instrument.

URI_SCHEMES = [u’serial’, u’tcpip’, u’gpib+usb’, u’gpib+serial’, u’visa’, u’file’, u’usbtme’, u’vxil1’]

address
Gets/sets the target communication of the instrument.

This is useful for situations when running straight from a Python shell and your instrument has enumerated
with a different address. An example when this can happen is if you are using a USB to Serial adapter and
you disconnect/reconnect it.

Type int for GPIB address, st r for other

prompt
Gets/sets the prompt used for communication.

The prompt refers to a character that is sent back from the instrument after it has finished processing your
last command. Typically this is used to indicate to an end-user that the device is ready for input when
connected to a serial-terminal interface.

In IK, the prompt is specified that that it (and its associated termination character) are read in. The value
read in from the device is also checked against the stored prompt value to make sure that everything is still
in sync.

Type str

terminator
Gets/sets the terminator used for communication.

For communication options where this is applicable, the value corresponds to the ASCII character used for
termination in decimal format. Example: 10 sets the character to NEWLINE.

Type int,or str for GPIB adapters.

timeout
Gets/sets the communication timeout for this instrument. Note that setting this value after opening the
connection is not supported for all connection types.

Type int

2.1.2 Multimeter - Abstract class for multimeter instruments
class instruments.abstract_instruments.Multimeter (filelike)
Abstract base class for multimeter instruments.
All applicable concrete instruments should inherit from this ABC to provide a consistent interface to the user.

measure (mode)
Perform a measurement as specified by mode parameter.

input_range
Gets/sets the current input range setting of the multimeter. This is an abstract method.

2.1. Instrument Base Classes 11

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

Type Quantity or Enum

mode
Gets/sets the measurement mode for the multimeter. This is an abstract method.

Type Enum

relative
Gets/sets the status of relative measuring mode for the multimeter. This is an abstract method.

Type bool

trigger_mode
Gets/sets the trigger mode for the multimeter. This is an abstract method.

Type Enum

2.1.3 FunctionGenerator - Abstract class for function generator instruments
class instruments.abstract_instruments.FunctionGenerator (filelike)

Abstract base class for function generator instruments.

All applicable concrete instruments should inherit from this ABC to provide a consistent interface to the user.

class Function
Enum containg valid output function modes for many function generators

arbitrary = <Function.arbitrary: ‘ARB’>
noise = <Function.noise: ‘NOIS’>

ramp = <Function.ramp: ‘RAMP’>
sinusoid = <Function.sinusoid: ‘SIN’>
square = <Function.square: ‘SQU’>
triangle = <Function.triangle: ‘TRI’>

class FunctionGenerator.VoltageMode
Enum containing valid voltage modes for many function generators

dBm = <VoltageMode.dBm: ‘DBM’>
peak_to_peak = <VoltageMode.peak_to_peak: ‘VPP’>
rms = <VoltageMode.rms: ‘VRMS’>

FunctionGenerator.amplitude
Gets/sets the output amplitude of the function generator.

If set with units of dBm, then no voltage mode can be passed.

If set with units of V as a Quantity or a float without a voltage mode, then the voltage mode is
assumed to be peak-to-peak.

Units As specified, or assumed to be V if not specified.

Type Either a tuple of a Quantity and a FunctionGenerator.VoltageMode, or a
Quantity if no voltage mode applies.

FunctionGenerator. frequency
Gets/sets the the output frequency of the function generator. This is an abstract property.

Type Quantity

12 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#tuple

InstrumentKit Library Documentation, Release 0.1.0

FunctionGenerator. function
Gets/sets the output function mode of the function generator. This is an abstract property.

Type Enum

FunctionGenerator.offset
Gets/sets the output offset voltage of the function generator. This is an abstract property.

Type Quantity

FunctionGenerator.phase
Gets/sets the output phase of the function generator. This is an abstract property.

Type Quantity

2.1.4 signalGenerator - Abstract class for Signal Generators
class instruments.abstract_instruments.signal_generator.SignalGenerator (filelike)
Python abstract base class for signal generators (eg microwave sources).
This ABC is not for function generators, which have their own separate ABC.
See also:
FunctionGenerator

channel
Gets a specific channel object for the SignalGenerator.

Return type A class inherited from SGChannel

2.1.5 SsingleChannelSG - Class for Signal Generators with a Single Channel

class instruments.abstract_instruments.signal_generator.SingleChannelSG (filelike)
Class for representing a Signal Generator that only has a single output channel. The sole property in this class
allows for the user to use the API for SGs with multiple channels and a more compact form since it only has one
output.

For example, both of the following calls would work the same:

>>> print sg.channel[0].freq # Multi-channel style
>>> print sg.freq # Compact style

channel

2.1.6 sGChannel - Abstract class for Signal Generator Channels

class instruments.abstract_instruments.signal_generator.SGChannel
Python abstract base class representing a single channel for a signal generator.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by the
SignalGenerator class.

frequency
Gets/sets the output frequency of the signal generator channel

Type Quantity

2.1. Instrument Base Classes 13

InstrumentKit Library Documentation, Release 0.1.0

output
Gets/sets the output status of the signal generator channel

Type bool

phase
Gets/sets the output phase of the signal generator channel

Type Quantity

power
Gets/sets the output power of the signal generator channel

Type Quantity

2.2 Generic SCPI Instruments

2.2.1 sCPIInstrument - Base class for instruments using the SCPI protocol

class instruments.generic_scpi.SCPIInstrument (filelike)

Base class for all SCPI-compliant instruments. Inherits from from Tnstrument.

This class does not implement any instrument-specific communication commands. What it does add is several
of the generic SCPI star commands. This includes commands such as * IDN?, xOPC?, and *RST.

Example usage:

>>> import instruments as ik
>>> inst = ik.generic_scpi.SCPIInstrument.open_tcpip('192.168.0.2", 8888)
>>> print (inst.name)

class ErrorCodes
Enumeration describing error codes as defined by SCPI 1999.0. Error codes that are equal to 0 mod 100
are defined to be generic.

block data_error = <ErrorCodes.block_data_error: -160>

block_data not_allowed = <ErrorCodes.block_data_not_allowed: -168>
character_data_error = <ErrorCodes.character_data_error: -140>

character data_not_allowed = <ErrorCodes.character_data_not_allowed: -148>
character_data_too_long = <ErrorCodes.character_data_too_long: -144>
command_error = <ErrorCodes.command_error: -100>

command_header_ error = <ErrorCodes.command_header_error: -110>
data_type_error = <ErrorCodes.data_type_error: -104>

exponent_too_large = <ErrorCodes.exponent_too_large: -123>
expression_error = <ErrorCodes.expression_error: -170>
expression_not_allowed = <ErrorCodes.expression_not_allowed: -178>
get_not_allowed = <ErrorCodes.get_not_allowed: -105>
header_separator_error = <ErrorCodes.header_separator_error: -111>

header suffix_out_of range = <ErrorCodes.header_suffix_out_of range: -114>

invalid_block_data = <ErrorCodes.invalid_block_data: -161>

14

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

invalid_character = <ErrorCodes.invalid_character: -101>

invalid_character_data = <ErrorCodes.invalid_character_data: -141>
invalid_character_ in_number = <ErrorCodes.invalid_character_in_number: -121>
invalid expression = <ErrorCodes.invalid_expression: -171>
invalid_inside_macro_definition = <ErrorCodes.invalid_inside_macro_definition: -183>
invalid outside macro_definition = <ErrorCodes.invalid_outside_macro_definition: -181>
invalid separator = <ErrorCodes.invalid_separator: -103>

invalid_string_ data = <ErrorCodes.invalid_string_data: -151>

invalid_suffix = <ErrorCodes.invalid_suffix: -131>

macro_error = <ErrorCodes.macro_error: -180>

macro_parameter_error = <ErrorCodes.macro_parameter_error: -184>
missing_parameter = <ErrorCodes.missing_parameter: -109>

no_error = <ErrorCodes.no_error: 0>

numeric_data_error = <ErrorCodes.numeric_data_error: -120>

numeric _data_not_allowed = <ErrorCodes.numeric_data_not_allowed: -128>
operation_complete = <ErrorCodes.operation_complete: -800>
parameter_not_allowed = <ErrorCodes.parameter_not_allowed: -108>

power_on = <ErrorCodes.power_on: -500>

program_mnemonic_too_long = <ErrorCodes.program_mnemonic_too_long: -112>
request_control_event = <ErrorCodes.request_control_event: -700>

string data_error = <ErrorCodes.string_data_error: -150>

string_data_not_allowed = <ErrorCodes.string_data_not_allowed: -158>

suffix_error = <ErrorCodes.suffix_error: -130>

suffix not_allowed = <ErrorCodes.suffix_not_allowed: -138>

suffix_too_long = <ErrorCodes.suffix_too_long: -134>

syntax_error = <ErrorCodes.syntax_error: -102>

too_many digits = <ErrorCodes.too_many_digits: -124>

undefined_header = <ErrorCodes.undefined_header: -113>

unexpected_number of parameters = <ErrorCodes.unexpected_number_of parameters: -115>
user_request_event = <ErrorCodes.user_request_event: -600>

SCPIInstrument.check_error_ queue ()
Checks and clears the error queue for this device, returning a list of SCPIInstrument.ErrorCodes
or int elements for each error reported by the connected instrument.

SCPIInstrument.clear ()
Clear instrument. Consult manual for specifics related to that instrument.

SCPIInstrument.reset ()
Reset instrument. On many instruments this is a factory reset and will revert all settings to default.

2.2. Generic SCPI Instruments 15

http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

SCPIInstrument.trigger ()
Send a software trigger event to the instrument. On most instruments this will cause some sort of hardware
event to start. For example, a multimeter might take a measurement.

This software trigger usually performs the same action as a hardware trigger to your instrument.

SCPIInstrument.wait_to_continue ()
Instruct the instrument to wait until it has completed all received commands before continuing.

SCPIInstrument.display brightness
Brightness of the display on the connected instrument, represented as a float ranging from 0 (dark) to 1
(full brightness).

Type float

SCPIInstrument.display_contrast
Contrast of the display on the connected instrument, represented as a float ranging from 0 (no contrast) to
1 (full contrast).

Type float

SCPIInstrument.line_frequency
Gets/sets the power line frequency setting for the instrument.

Returns The power line frequency
Units Hertz
Type Quantity

SCPIInstrument.name
The name of the connected instrument, as reported by the standard SCPI command = IDN?.

Return type str

SCPIInstrument.op_complete
Check if all operations sent to the instrument have been completed.

Return type bool

SCPIInstrument .power_on_status
Gets/sets the power on status for the instrument.

Type bool

SCPIInstrument.scpi_version
Returns the version of the SCPI protocol supported by this instrument, as specified by the SYST : VERS?
command described in section 21.21 of the SCPI 1999 standard.

SCPIInstrument.self test_ok
Gets the results of the instrument’s self test. This lets you check if the self test was sucessful or not.

Return type bool

2.2.2 sCPIMultimeter - Generic multimeter using SCPl commands

class instruments.generic_scpi.SCPIMultimeter (filelike)
This class is used for communicating with generic SCPI-compliant multimeters.

Example usage:

16 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

>>> import instruments as ik
>>> inst = ik.generic_scpi.SCPIMultimeter.open_tcpip("192.168.1.1")
>>> print (inst.measure (inst.Mode.resistance))

class InputRange
Valid device range parameters outside of directly specifying the range.

automatic = <InputRange.automatic: ‘AUTO’>
default = <InputRange.default: ‘DEF’>
maximum = <InputRange.maximum: ‘MAX’>
minimum = <InputRange.minimum: ‘MIN’>

class SCPIMultimeter .Mode
Enum of valid measurement modes for (most) SCPI compliant multimeters

capacitance = <Mode.capacitance: ‘CAP’>
continuity = <Mode.continuity: ‘CONT’>
current_ac = <Mode.current_ac: ‘CURR:AC’>
current_dc = <Mode.current_dc: ‘CURR:DC’>
diode = <Mode.diode: ‘DIOD’>
fourpt_resistance = <Mode.fourpt_resistance: ‘FRES’>
frequency = <Mode.frequency: ‘FREQ’>
period = <Mode.period: ‘PER’>

resistance = <Mode.resistance: ‘RES’>
temperature = <Mode.temperature: ‘TEMP’>
voltage_ac = <Mode.voltage_ac: ‘VOLT:AC’>
voltage_dc = <Mode.voltage_dc: ‘VOLT:DC’>

class SCPIMultimeter.Resolution
Valid measurement resolution parameters outside of directly the resolution.

default = <Resolution.default: ‘DEF’>
maximum = <Resolution.maximum: ‘MAX’>
minimum = <Resolution.minimum: ‘MIN’>

class SCPIMultimeter.SampleCount
Valid sample count parameters outside of directly the value.

default = <SampleCount.default: ‘DEF’>
maximum = <SampleCount.maximum: ‘MAX’>
minimum = <SampleCount.minimum: ‘MIN’>

class SCPIMultimeter.SampleSource
Valid sample source parameters.

1.“immediate”: The trigger delay time is inserted between successive samples. After the first mea-
surement is completed, the instrument waits the time specified by the trigger delay and then

performs the next sample.

2.“timer”: Successive samples start one sample interval after the START of the previous sample.

2.2. Generic SCPI Instruments

17

InstrumentKit Library Documentation, Release 0.1.0

immediate = <SampleSource.immediate: ‘IMM’>

timer = <SampleSource.timer: ‘TIM’>

class SCPIMultimeter.TriggerCount

Valid trigger count parameters outside of directly the value.
default = <TriggerCount.default: ‘DEF’>
infinity = <TriggerCount.infinity: ‘INF’>
maximum = <TriggerCount.maximum: ‘MAX’>

minimum = <TriggerCount.minimum: ‘MIN’>

class SCPIMultimeter.TriggerMode

Valid trigger sources for most SCPI Multimeters.
“Immediate”: This is a continuous trigger. This means the trigger signal is always present.
“External”: External TTL pulse on the back of the instrument. It is active low.

“Bus”: Causes the instrument to trigger when a * TRG command is sent by software. This means calling
the trigger() function.

bus = <TriggerMode.bus: ‘BUS’>
external = <TriggerMode.external: ‘EXT’>

immediate = <TriggerMode.immediate: ‘IMM’>

SCPIMultimeter .measure (mode=None)

Instruct the multimeter to perform a one time measurement. The instrument will use default parameters
for the requested measurement. The measurement will immediately take place, and the results are directly
sent to the instrument’s output buffer.

Method returns a Python quantity consisting of a numpy array with the instrument value and appropriate
units. If no appropriate units exist, (for example, continuity), then return type is £ loat.

Parameters mode (Mode) — Desired measurement mode. If set to None, will default to the
current mode.

SCPIMultimeter.input_range

Gets/sets the device input range for the device range for the currently set multimeter mode.

Example usages:

>>> dmm.input_range = dmm.InputRange.automatic
>>> dmm.input_range = 1 % pg.millivolt

Units As appropriate for the current mode setting.

Type Quantity, or InputRange

SCPIMultimeter .mode

Gets/sets the current measurement mode for the multimeter.

Example usage:

>>> dmm.mode = dmm.Mode.voltage_dc

Type Mode

SCPIMultimeter.relative

18

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/constants.html#None

InstrumentKit Library Documentation, Release 0.1.0

SCPIMultimeter.resolution
Gets/sets the measurement resolution for the multimeter. When specified as a float it is assumed that the
user is providing an appropriate value.

Example usage:

>>> dmm.resolution = 3e-06
>>> dmm.resolution = dmm.Resolution.maximum

Type int, float or Resolution
SCPIMultimeter.sample_count
Gets/sets the number of readings (samples) that the multimeter will take per trigger event.
The time between each measurement is defined with the sample_timer property.

Note that if the trigger_count propery has been changed, the number of readings taken total will be a
multiplication of sample count and trigger count (see property SCPIMulimeter.trigger_count).

If specified as a SampleCount value, the following options apply:
1.“minimum”: 1 sample per trigger
2.“maximum”: Maximum value as per instrument manual
3.“default”: Instrument default as per instrument manual

Note that when using triggered measurements, it is recommended that you disable autorange by either
explicitly disabling it or specifying your desired range.

Type int or SampleCount

SCPIMultimeter.sample_source
Gets/sets the multimeter sample source. This determines whether the trigger delay or the sample timer is
used to dtermine sample timing when the sample count is greater than 1.

In both cases, the first sample is taken one trigger delay time period after the trigger event. After that, it
depends on which mode is used.

Type SCPIMultimeter.SampleSource

SCPIMultimeter.sample_timer
Gets/sets the sample interval when the sample counter is greater than one and when the sample source is
set to timer (see SCPIMultimeter.sample_source).

This command does not effect the delay between the trigger occuring and the start of the first sample. This
trigger delay is set with the t rigger._delay property.

Units As specified, or assumed to be of units seconds otherwise.
Type Quantity

SCPIMultimeter.trigger_count
Gets/sets the number of triggers that the multimeter will accept before returning to an “idle” trigger state.

Note that if the sample_count propery has been changed, the number of readings taken total will be a
multiplication of sample count and trigger count (see property SCPIMulimeter.sample_count).

If specified as a TriggerCount value, the following options apply:
1.“minimum”: 1 trigger
2.“maximum”: Maximum value as per instrument manual

3.“default”: Instrument default as per instrument manual

2.2,

Generic SCPI Instruments 19

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

4 “infinity”’: Continuous. Typically when the buffer is filled in this case, the older data points are
overwritten.

Note that when using triggered measurements, it is recommended that you disable autorange by either
explicitly disabling it or specifying your desired range.

Type int or TriggerCount

SCPIMultimeter.trigger_delay

Gets/sets the time delay which the multimeter will use following receiving a trigger event before starting
the measurement.

Units As specified, or assumed to be of units seconds otherwise.
Type Quantity

SCPIMultimeter.trigger_mode
Gets/sets the SCPI Multimeter trigger mode.

Example usage:

>>> dmm.trigger_mode = dmm.TriggerMode.external

Type TriggerMode

2.2.3 SCPIFunctionGenerator - Generic multimeter using SCPI commands

class instruments.generic_scpi.SCPIFunctionGenerator (filelike)
This class is used for communicating with generic SCPI-compliant function generators.

Example usage:

>>> import instruments as ik
>>> import quantities as pg

>>> inst = ik.generic_scpi.SCPIFunctionGenerator.open_tcpip("192.168.1.1")
>>> inst.frequency = 1 * pq.kHz
frequency

Gets/sets the output frequency.
Units As specified, or assumed to be Hz otherwise.
Type float or Quantity

function
Gets/sets the output function of the function generator

Type SCPIFunctionGenerator.Function

offset
Gets/sets the offset voltage of the function generator.

Set value should be within correct bounds of instrument.
Units As specified (if a Quant ity) or assumed to be of units volts.
Type Quantity with units volts.

phase

20 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

2.3 Agilent

2.3.1 Agilent33220a Function Generator

class instruments.agilent.Agilent33220a (filelike)
The Agilent/Keysight 33220a is a 20MHz function/arbitrary waveform generator. This model has been replaced
by the Keysight 33500 series waveform generators. This class may or may not work with these newer models.

Example usage:

>>> import instruments as ik
>>> import quantities as pqgq
>>> inst = ik.agilent.Agilent33220a.open_gpibusb ('/dev/ttyUSBO', 1)

>>> inst.function = inst.Function.sinusoid
>>> inst.frequency = 1 * pqg.kHz
>>> inst.output = True

class Function
Enum containing valid functions for the Agilent/Keysight 33220a

dc = <Function.dc: ‘DC’>

noise = <Function.noise: ‘NOIS’>
pulse = <Function.pulse: ‘PULS’>
ramp = <Function.ramp: ‘RAMP’>
sinusoid = <Function.sinusoid: ‘SIN’>
square = <Function.square: ‘SQU’>
user = <Function.user: ‘USER’>

class Agilent33220a.LoadResistance
Enum containing valid load resistance for the Agilent/Keysight 33220a

high_impedance = <LoadResistance.high_impedance: ‘INF’>
maximum = <LoadResistance.maximum: ‘MAX’>
minimum = <LoadResistance.minimum: ‘MIN’>

class Agilent33220a.0utputPolarity
Enum containg valid output polarity modes for the Agilent/Keysight 33220a

inverted = <QOutputPolarity.inverted: ‘INV’>
normal = <OutputPolarity.normal: ‘NORM’>

Agilent33220a.duty_cycle
Gets/sets the duty cycle of a square wave.

Duty cycle represents the amount of time that the square wave is at a high level.
Type int
Agilent33220a.frequency

Agilent33220a.function
Gets/sets the output function of the function generator

Type Agilent33220a.Function

2.3. Agilent 21

http://www.keysight.com/en/pd-127539-pn-33220A
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

Agilent33220a.load_resistance
Gets/sets the desired output termination load (ie, the impedance of the load attached to the front panel
output connector).

The instrument has a fixed series output impedance of 50ohms. This function allows the instrument to
compensate of the voltage divider and accurately report the voltage across the attached load.

Units As specified (if a Quantity) or assumed to be of units €2 (ohm).
Type Quantityor Agilent33220a.LoadResistance

Agilent33220a.output
Gets/sets the output enable status of the front panel output connector.

The value True corresponds to the output being on, while Fa 1 se is the output being off.
Type bool

Agilent33220a.output_polarity
Gets/sets the polarity of the waveform relative to the offset voltage.

Type OutputPolarity

Agilent33220a.output_sync
Gets/sets the enabled status of the front panel sync connector.

Type bool
Agilent33220a.phase

Agilent33220a.ramp_symmetry
Gets/sets the ramp symmetry for ramp waves.

Symmetry represents the amount of time per cycle that the ramp wave is rising (unless polarity is inverted).

Type int

2.3.2 Agilent34410a Digital Multimeter

class instruments.agilent .Agilent34410a (filelike)
The Agilent 34410a is a very popular 6.5 digit DMM. This class should also cover the Agilent 34401a, 34411a,
as well as the backwards compatability mode in the newer Agilent/Keysight 34460a/34461a. You can find the
full specifications for these instruments on the Keysight website.

Example usage:

>>> import instruments as ik

>>> import quantities as pqg

>>> dmm = ik.agilent.Agilent34410a.open_gpibusb ('/dev/ttyUSBO', 1)
>>> print (dmm.measure (dmm.Mode.resistance))

abort ()
Abort all measurements currently in progress.

clear_memory ()
Clears the non-volatile memory of the Agilent 34410a.

fetch ()
Transfer readings from instrument memory to the output buffer, and thus to the computer. If currently
taking a reading, the instrument will wait until it is complete before executing this command. Readings
are NOT erased from memory when using fetch. Use the R? command to read and erase data. Note that

22 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#int
http://www.keysight.com/

InstrumentKit Library Documentation, Release 0.1.0

the data is transfered as ASCII, and thus it is not recommended to transfer a large number of data points
using this method.

Return type 1ist of Quantity elements
init ()
Switch device from “idle” state to “wait-for-trigger state”. Measurements will begin when specified trig-
gering conditions are met, following the receipt of the INIT command.

Note that this command will also clear the previous set of readings from memory.

r (count)
Have the multimeter perform a specified number of measurements and then transfer them using a binary
transfer method. Data will be cleared from instrument memory after transfer is complete. Data is transfered
from the instrument in 64-bit double floating point precision format.

Parameters count (int)— Number of samples to take.
Return type Quantity with numpy.array

read_data (sample_count)
Transfer specified number of data points from reading memory (RGD_STORE) to output buffer. First data
point sent to output buffer is the oldest. Data is erased after being sent to output buffer.

Parameters sample_count (int)— Number of data points to be transfered to output buffer.
If set to -1, all points in memory will be transfered.

Return type 1ist of Quantity elements

read_data_nvmem ()
Returns all readings in non-volatile memory (NVMEM).

Return type 1ist of Quantity elements

read_ last_data()
Retrieve the last measurement taken. This can be executed at any time, including when the instrument
is currently taking measurements. If there are no data points available, the value 9.91000000E+37 is
returned.

Units As specified by the data returned by the instrument.
Return type Quantity

read _meter ()
Switch device from “idle” state to “wait-for-trigger” state. Immediately after the trigger conditions are
met, the data will be sent to the output buffer of the instrument.

This is similar to calling init and then immediately following fetch.
Return type Quantity

data_point_count
Gets the total number of readings that are located in reading memory (RGD_STORE).

Return type int

23.

Agilent 23

http://docs.python.org/library/functions.html#list
http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

2.4 Holzworth

2.4.1 HS9000 Multichannel frequency synthesizer
class instruments.holzworth.HS9000 (filelike)
Communicates with a Holzworth HS-9000 series multi-channel frequency synthesizer.

class Channel (hs, idx_chan)
Class representing a physical channel on the Holzworth HS9000

Warning: This class should NOT be manually created by the user. It

is designed to be initialized by the HS 9000 class.

query (cmd)

Function used to send a command to the instrument while wrapping the command with the neccessary

identifier for the channel.

Parameters cmd (st) — Command that will be sent to the instrument after being prefixed

with the channel identifier
Returns The result from the query
Return type str

recall state()
Recalls the state of the specified channel from memory.

Example usage: >>> import instruments as ik

ik.holzworth.HS9000.0pen_tcpip(*192.168.0.2”, 8080) >>> hs.channel[0].recall_state()

reset ()
Resets the setting of the specified channel

Example usage: >>> import instruments as ik
ik.holzworth.HS9000.0open_tcpip(“192.168.0.2”, 8080) >>> hs.channel[0].reset()

save_state ()
Saves the current state of the specified channel.

Example usage: >>> import instruments as ik

ik.holzworth.HS9000.0pen_tcpip(“192.168.0.2”, 8080) >>> hs.channel[0].save_state()

sendcmd (cmd)

Function used to send a command to the instrument while wrapping the command with the neccessary

identifier for the channel.

Parameters cmd (st) — Command that will be sent to the instrument after being prefixed

with the channel identifier

frequency

Gets/sets the frequency of the specified channel. When setting, values are bounded between what is

returned by frequency_min and frequency_max.

Example usage: >>> import instruments as ik

ik.holzworth.HS9000.open_tcpip(“192.168.0.2”, 8080) >>> print(hs.channel[0].frequency) >>>

print(hs.channel[0].frequency_min) >>> print(hs.channel[0].frequency_max)

Type Quantity
Units As specified or assumed to be of units GHz

frequency_max

frequency_min

24 Chapter 2. InstrumentKit APl Reference

http://www.holzworth.com/synthesizers-multi.htm
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

output
Gets/sets the output status of the channel. Setting to True will turn the channel’s output stage on,
while a value of False will turn it off.

Example usage: >>> import instruments as ik >>> hs =
ik.holzworth.HS9000.open_tcpip(“192.168.0.2”, 8080) >>> print(hs.channel[0].output) >>>
hs.channel[0].output = True

Type bool

phase
Gets/sets the output phase of the specified channel. When setting, values are bounded between what
is returned by phase_min and phase_max.

Example usage: >>> import instruments as ik >>> hs =
ik.holzworth. HS9000.0pen_tcpip(“192.168.0.2”, 8080) >>> print(hs.channel[0].phase) >>>
print(hs.channel[0].phase_min) >>> print(hs.channel[0].phase_max)

Type Quantity

Units As specified or assumed to be of units degrees

phase_max
phase_min

power
Gets/sets the output power of the specified channel. When setting, values are bounded between what
is returned by power._min and power _max.

Example usage: >>> import instruments as ik >>> hs =
ik.holzworth. HS9000.open_tcpip(“192.168.0.2”, 8080) >>> print(hs.channel[0].power) >>>
print(hs.channel[0].power_min) >>> print(hs.channel[0].power_max)

Type Quantity
Units instruments.units.dBm

power_max
power_min

temperature
Gets the current temperature of the specified channel.
Units As specified by the instrument.
Return type Quantity

HS9000.channel
Gets a specific channel on the HS9000. The desired channel is accessed like one would access a list.

Example usage:

>>> import instruments as ik
>>> hs = ik.holzworth.HS9000.open_tcpip("192.168.0.2", 8080)
>>> print (hs.channel[0].frequency)

Returns A channel object for the HS9000

Return type Channel

HS9000.name
Gets identification string of the HS9000
Returns The string as usually returned by « IDN? on SCPI instruments

Return type str

. Holzworth 25

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

HS9000.ready
Gets the ready status of the HS9000.

Returns If the instrument is ready for operation

Return type bool

2.5 Hewlett-Packard

2.5.1 HP3456a Digital Voltmeter
class instruments.hp.HP3456a (filelike)
The HP3456a is a 6 1/2 digit bench multimeter.

It supports DCV, ACV, ACV + DCYV, 2 wire Ohms, 4 wire Ohms, DCV/DCV Ratio, ACV/DCV Ratio, Offset
compensated 2 wire Ohms and Offset compensated 4 wire Ohms measurements.

Measurements can be further extended using a system math mode that allows for pass/fail, statistics, dB/dBm,
null, scale and percentage readings.

HP3456ais a HPIB / pre-448.2 instrument.

class MathMode
Enum with the supported math modes

db = <MathMode.db: 9>

dbm = <MathMode.dbm: 4>

null = <MathMode.null: 3>

of f = <MathMode.off: 0>

pass_fail = <MathMode.pass_fail: 1>
percent = <MathMode.percent: 8>

scale = <MathMode.scale: 7>

statistic = <MathMode.statistic: 2>
thermistor_c = <MathMode.thermistor_c: 6>
thermistor_f = <MathMode.thermistor_f: 5>

class HP3456a .Mode
Enum containing the supported mode codes

acv = <Mode.acv: ‘S0F2’>

acvdcv = <Mode.acvdcv: ‘SO0F3’>

dcv = <Mode.dcv: ‘SO0F1’>

oc_resistence_ 2wire = <Mode.oc_resistence 2wire: ‘S1F4’°>
oc_resistence_4wire = <Mode.oc_resistence_4wire: ‘S1F5’>
ratio_acv_dcv = <Mode.ratio_acv_dcv: ‘S1F2’>
ratio_acvdev_dcv = <Mode.ratio_acvdev_dcv: ‘S1F3’°>
ratio_dev_dcv = <Mode.ratio_dcv_dcv: ‘S1F1°>

resistance_2wire = <Mode.resistance_2wire: ‘S0F4’>

26 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

resistance_ 4wire = <Mode.resistance_4wire: ‘SOF5°>

class HP3456a .Register
Enum with the register names for all HP345 6a internal registers.

count = <Register.count: ‘C’>

delay = <Register.delay: ‘D’>

lower = <Register.lower: ‘L’>

mean = <Register.mean: ‘M’>

nplc = <Register.nplc: ‘I’>

number_ of_ digits = <Register.number_of_digits: ‘G’>
number_of_readings = <Register.number_of_readings: ‘N’>
r = <Register.r: ‘R’>

upper = <Register.upper: ‘U’>

variance = <Register.variance: ‘V’>

y = <Register.y: ‘Y’>

z = <Register.z: ‘Z’>

class HP3456a . TriggerMode
Enum with valid trigger modes.

external = <TriggerMode.external: 2>
hold = <TriggerMode.hold: 4>
internal = <TriggerMode.internal: 1>
single = <TriggerMode.single: 3>

class HP3456a.ValidRange
Enum with the valid ranges for voltage, resistance, and number of powerline cycles to integrate over.

nplc = <ValidRange.nplc: (0.1, 1.0, 10.0, 100.0)>
resistance = <ValidRange.resistance: (100.0, 1000.0, 10000.0, 100000.0, 1000000.0, 10000000.0, 100000000.0, 100
voltage = <ValidRange.voltage: (0.1, 1.0, 10.0, 100.0, 1000.0)>

HP3456a.auto_range ()
Set input range to auto. The HP3456a should upscale when a reading is at 120% and downscale when it
below 11% full scale. Note that auto ranging can increase the measurement time.

HP3456a . fetch (mode=None)
Retrieve n measurements after the HP3456a has been instructed to perform a series of similar measure-
ments. Typically the mode, range, nplc, analog filter, autozero is set along with the number of measure-
ments to take. The series is then started at the trigger command.

Example usage:

>>> dmm.number_of_digits = 6

>>> dmm.auto_range ()

>>> dmm.nplc = 1

>>> dmm.mode = dmm.Mode.resistance_2wire
>> n = 100

>>> dmm.number_of_readings = n

>>> dmm.trigger ()

2.5. Hewlett-Packard 27

InstrumentKit Library Documentation, Release 0.1.0

>>> time.sleep(n * 0.04)

>>> v = dmm.fetch (dmm.Mode.resistance_2wire)
>>> print len (v)
10

Parameters mode (HP3456a.Mode) — Desired measurement mode. If not specified, the pre-
vious set mode will be used, but no measurement unit will be returned.

Returns A series of measurements from the multimeter.

Return type Quantity

HP3456a.measure (mode=None)

Instruct the HP3456a to perform a one time measurement. The measurement will use the current set
registers for the measurement (number_of_readings, number_of_digits, nplc, delay, mean, lower, upper, y
and z) and will immediately take place.

Note that using HP3456a.measure () will override the trigger_mode to
HP3456a.TriggerMode.single

Example usage:

>>> dmm = ik.hp.HP3456a.o0pen_gpibusb ("/dev/ttyUSBO", 22)
>>> dmm.number_of_digits = 6

>>> dmm.nplc = 1

>>> print dmm.measure (dmm.Mode.resistance_2wire)

Parameters mode (HP3456a . Mode) — Desired measurement mode. If not specified, the pre-
vious set mode will be used, but no measurement unit will be returned.

Returns A measurement from the multimeter.

Return type Quantity

HP3456a.trigger ()

Signal a single manual trigger event to the FP3456a.

HP3456a.autozero

Set the autozero mode.

This is used to compensate for offsets in the dc input amplifier circuit of the multimeter. If set, the ampli-
fier”’s input circuit is shorted to ground prior to actual measurement in order to take an offset reading. This
offset is then used to compensate for drift in the next measurement. When disabled, one offset reading is
taken immediately and stored into memory to be used for all successive measurements onwards. Disabling
autozero increases the HP3456a‘s measurement speed, and also makes the instrument more suitable for
high impendance measurements since no input switching is done.

HP3456a.count

Get the number of measurements taken from HP3456a.Register.count when in
HP3456a.MathMode.statistic.

Return type int

HP3456a.delay

Get/set the delay that is waited after a trigger for the input to settle using HP3456a.Register.delay.
Type As specified, assumed to be s otherwise

Return type s

28

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

HP3456a.filter
Set the analog filter mode.

The HP3456a has a 3 pole active filter with greater than 60dB attenuation at frequencies of 50Hz and
higher. The filter is applied between the input terminals and input amplifier. When in ACV or ACV+DCV
functions the filter is applied to the output of the ac converter and input amplifier. In these modes select
the filter for measurements below 400Hz.

HP3456a.input_range
Set the input range to be used.

The HP3456a has separate ranges for ohm and for volt. The range value sent to the instrument depends
on the unit set on the input range value. aut o selects auto ranging.

Type Quantity

HP3456a.lower
Get/set the value in HP3456a.Register.lower, which indicates the lowest value mea-
surement made while in HP3456a.MathMode.statistic, or the lowest value preset for
HP3456a.MathMode.pass_fail.

Type float

HP3456a.math_mode
Set the math mode.

The HP345 6a has a number of different math modes that can change measurement output, or can provide
additional statistics. Interaction with these modes is done via the HP3456a. Register.

Type HP3456a.MathMode

HP3456a.mean
Get the mean over HP3456a.Register.count measurements from HP3456a.Register.mean
when in HP3456a.Mat hMode . statistic.

Return type float

HP3456a.mode
Set the measurement mode.

Type HP3456a.Mode

HP3456a.nplc
Get/set the number of powerline cycles to integrate per measurement using
HP3456a.Register.nplc.

Setting higher values increases accuracy at the cost of a longer measurement time. The implicit assumption
is that the input reading is stable over the number of powerline cycles to integrate.

Type int

HP3456a.number_of_digits
Get/set the number of digits used in measurements using HP3456a.Register.number._of_digits.

Set to higher values to increase accuracy at the cost of measurement speed.
Type int

HP3456a.number_of_ readings
Get/set the number of readings done per trigger/measurement cycle using
HP3456a.Register.number_of readings.

Type float

Return type float

2.5.

Hewlett-Packard 29

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

HP3456a.r
Get/set the value in HP3456a.Register.r, which indicates the resistor value used while in
HP3456a.MathMode . dbm or the number of recalled readings in reading storage mode.

Type float
Return type float

HP3456a.relative
Enable or disable HP3456a.MathMode .Null on the instrument.

Type bool

HP3456a.trigger_mode
Set the trigger mode.

Note that wusing HP3456a.measure () will override the trigger mode to
HP3456a.TriggerMode.single.

Type HP3456a.TriggerMode

HP3456a.upper
Get/set the value in HP3456a.Register.upper, which indicates the highest value mea-
surement made while in HP3456a.MathMode.statistic, or the highest value preset for
HP3456a.MathMode.pass_fail.

Type float
Return type float

HP3456a.variance
Get the variance over HP3456a.Register.count measurements from
HP3456a.Register.variance whenin HP3456a.MathMode. statistic.

Return type float

HP3456a.y
Get/set the value in HP3456a.Register.y to be wused in calculations when in
HP3456a.MathMode.scaleor HP3456a.MathMode.percent.

Type float
Return type float

HP3456a.z
Get/set the value in HP3456a.Register.z to be used in calculations when in
HP3456a.MathMode. scale or the first reading when in HP3456a . MathMode . statistic.

Type float

Return type float

2.5.2 HP6624a Power Supply

class instruments.hp.HP6624a (filelike)
The HP6624a is a multi-output power supply.

This class can also be used for HP662xa, where x=1,2,3,4,7. Note that some models have less channels then
the HP6624 and it is up to the user to take this into account. This can be changed with the channel_count

property.

Example usage:

30 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

>>> import instruments as ik
>>> psu = ik.hp.HP6624a.open_gpibusb ('/dev/ttyUSBO', 1)
>>> psu.channel[0] .voltage = 10 # Sets channel 1 voltage to 10V.

class Channel (hp, idx)
Class representing a power output channel on the HP6624a.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the HP6624a class.

query (cmd)
Function used to send a command to the instrument while wrapping the command with the neccessary
identifier for the channel.
Parameters cmd (st r)— Command that will be sent to the instrument after being prefixed
with the channel identifier
Returns The result from the query
Return type str

reset ()
Reset overvoltage and overcurrent errors to resume operation.

sendcemd (cmd)
Function used to send a command to the instrument while wrapping the command with the neccessary
identifier for the channel.
Parameters cmd (st r) — Command that will be sent to the instrument after being prefixed
with the channel identifier

current
Gets/sets the current of the specified channel. If the device is in constant voltage mode, this sets the
current limit.

Note there is no bounds checking on the value specified.
Units As specified, or assumed to be A otherwise.
Type float or Quantity

current_sense
Gets the actual output current as measured by the instrument for the specified channel.
Units A (amps)
Return type Quantity

mode
Gets/sets the mode for the specified channel.

output
Gets/sets the outputting status of the specified channel.

This is a toggle setting. True will turn on the channel output while False will turn it off.
Type bool

overcurrent
Gets/sets the overcurrent protection setting for the specified channel.

This is a toggle setting. It is either on or off.
Type bool

overvoltage
Gets/sets the overvoltage protection setting for the specified channel.

Note there is no bounds checking on the value specified.
Units As specified, or assumed to be V otherwise.

2.5. Hewlett-Packard 31

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

Type float or Quantity

voltage
Gets/sets the voltage of the specified channel. If the device is in constant current mode, this sets the

voltage limit.

Note there is no bounds checking on the value specified.
Units As specified, or assumed to be V otherwise.
Type float orQuantity

voltage_sense
Gets the actual voltage as measured by the sense wires for the specified channel.
Units V (volts)
Return type Quantity

class HP6624a .Mode
Enum holding typical valid output modes for a power supply.

However, for the HP6624a I believe that it is only capable of constant-voltage output, so this class current
does not do anything and is just a placeholder.

current = <Mode.current: 0>
voltage = <Mode.current: 0>

HP6624a.clear ()
Taken from the manual:

Return the power supply to its power-on state and all parameters are returned to their initial power-on
values except the following:

1.The store/recall registers are not cleared.
2.The power supply remains addressed to listen.
3.The PON bit in the serial poll register is cleared.

HP6624a.channel
Gets a specific channel object. The desired channel is specified like one would access a list.

Return type HP6624a.Channel
See also:
HP6624a for example using this property.

HP6624a.channel_count
Gets/sets the number of output channels available for the connected power supply.

Type int

HP6624a.current
Gets/sets the current for all four channels.

Units As specified (if a Quantity) or assumed to be of units Amps.
Type 1list of Quantity with units Amp

HP6624a.current_sense
Gets the actual current as measured by the instrument for all channels.

Units A (amps)
Return type tuple of Quantity

32

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#tuple

InstrumentKit Library Documentation, Release 0.1.0

HP6624a.voltage
Gets/sets the voltage for all four channels.

Units As specified (if a Quantity) or assumed to be of units Volts.
Type 1ist of Quantity with units Volt

HP6624a.voltage_sense
Gets the actual voltage as measured by the sense wires for all channels.

Units V (volts)

Return type tuple of Quantity

2.5.3 HP6632b Power Supply

class instruments.hp.HP6632b (filelike)
The HP6632b is a system dc power supply with an output rating of 0-20V/0-5A, precision low current measure-
ment and low output noise.

According to the manual this class MIGHT be usable for any HP power supply with a model number
*HP663Xb with X in {1, 2, 3, 4},
*HP661Xc with X in {1,2, 3,4} and
*HP663X2A for X in {1, 3}, without the additional measurement capabilities.

HOWEVER, it has only been tested by the author with HP6632b supplies.

Example usage:

>>> import instruments as ik

>>> psu = ik.hp.HP6632b.open_gpibusb ('/dev/ttyUSBO', 6)

>>> psu.voltage 10 # Sets voltage to 10V.

>>> psu.output = True # Enable output

>>> psu.voltage

array (10.0) * V

>>> psu.voltage_trigger = 20 # Set transient trigger voltage
>>> psu.init_output_trigger () # Prime instrument to initiated state, ready for trigger
>>> psu.trigger () # Send trigger

>>> psu.voltage

array (10.0) * V

class ALCBandwidth

Enum containing valid ALC bandwidth modes for the hp6632b
fast = <ALCBandwidth.fast: 60000>
normal = <ALCBandwidth.normal: 15000>

class HP6632b .DFISource
Enum containing valid DFI sources for the hp6632b

event_status_bit = <DFISource.event_status_bit: ‘ESB’>
off = <DFISource.off: ‘OFF’>

operation = <DFISource.operation: ‘OPER’>
questionable = <DFISource.questionable: ‘QUES’>

request_service_bit = <DFISource.request_service_bit: ‘RQS’>

2.5. Hewlett-Packard 33

http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#tuple

InstrumentKit Library Documentation, Release 0.1.0

class HP6632b.DigitalFunction

Enum containing valid digital function modes for the hp6632b
data = <DigitalFunction.data: ‘DIG’>

remote_inhibit = <DigitalFunction.remote_inhibit: ‘RIDF’>

class HP6632b .ErrorCodes

Enum containing generic-SCPI error codes along with codes specific to the HP6632b.
block_data_error = <ErrorCodes.block_data_error: -160>

block_data not_allowed = <ErrorCodes.block_data_not_allowed: -168>

cal not_enabled = <ErrorCodes.cal_not_enabled: 403>

cal_password_incorrect = <ErrorCodes.cal_password_incorrect: 402>
cal_switch_prevents_cal = <ErrorCodes.cal_switch_prevents_cal: 401>

character data_error = <ErrorCodes.character_data_error: -140>

character data_not_allowed = <ErrorCodes.character_data_not_allowed: -148>
character_data_ too_long = <ErrorCodes.character_data_too_long: -144>

command_error = <ErrorCodes.command_error: -100>

command_header_ error = <ErrorCodes.command_header_error: -110>

command_only applic_rs232 = <ErrorCodes.command_only_applic_rs232: 602>
computed_prog_cal_constants_incorrect = <ErrorCodes.computed_prog_cal_constants_incorrect: 405>
computed_readback_cal_const_incorrect = <ErrorCodes.computed_readback_cal_const_incorrect: 404>
curr_or_volt_fetch_incompat_with_last_acq = <ErrorCodes.curr_or_volt_fetch_incompat_with_last_a
cv_or_cc_status_incorrect = <ErrorCodes.cv_or_cc_status_incorrect: 407>
data_out_of_ range = <ErrorCodes.data_out_of range: -222>

data_type_error = <ErrorCodes.data_type_error: -104>

digital_io_selftest = <ErrorCodes.digital_io_selftest: 80>

execution_error = <ErrorCodes.execution_error: -200>

exponent_too_large = <ErrorCodes.exponent_too_large: -123>

expression_error = <ErrorCodes.expression_error: -170>

expression_not_allowed = <ErrorCodes.expression_not_allowed: -178>
front_panel_uart_buffer_overrun = <ErrorCodes.front_panel_uart_buffer_overrun: 223>
front_panel_uart_framing = <ErrorCodes.front_panel_uart_framing: 221>
front_panel_uart_overrun = <ErrorCodes.front_panel_uart_overrun: 220>

front_panel uart_parity = <ErrorCodes.front_panel uart_parity: 222>
front_panel_uart_timeout = <ErrorCodes.front_panel_uart_timeout: 224>
get_not_allowed = <ErrorCodes.get_not_allowed: -105>

header_separator_error = <ErrorCodes.header_separator_error: -111>

header suffix_out_of range = <ErrorCodes.header_suffix_out_of range: -114>

illegal_macro_label = <ErrorCodes.illegal_macro_label: -273>

34

Chapter 2. InstrumentKit APl Reference

InstrumentKit Library Documentation, Release 0.1.0

illegal_parameter_value = <ErrorCodes.illegal_parameter_value: -224>
incorrect_seq cal_commands = <ErrorCodes.incorrect_seq_cal_commands: 406>
ingrd_recv_buffer overrun = <ErrorCodes.ingrd_recv_buffer_overrun: 213>
invalid_block_ data = <ErrorCodes.invalid_block_data: -161>
invalid_character = <ErrorCodes.invalid_character: -101>

invalid character_data = <ErrorCodes.invalid_character_data: -141>
invalid_character_in_number = <ErrorCodes.invalid_character_in_number: -121>
invalid_expression = <ErrorCodes.invalid_expression: -171>
invalid_inside_macro_definition = <ErrorCodes.invalid_inside_macro_definition: -183>
invalid outside_macro_definition = <ErrorCodes.invalid_outside_macro_definition: -181>
invalid separator = <ErrorCodes.invalid_separator: -103>
invalid_string_data = <ErrorCodes.invalid_string_data: -151>

invalid_suffix = <ErrorCodes.invalid_suffix: -131>

macro_error_180 = <ErrorCodes.macro_error_180: -180>

macro_error_ 270 = <ErrorCodes.macro_error_270: -270>
macro_execution_error = <ErrorCodes.macro_execution_error: -272>
macro_parameter_ error = <ErrorCodes.macro_parameter_error: -184>
macro_recursion_error = <ErrorCodes.macro_recursion_error: -276>
macro_redefinition not_allowed = <ErrorCodes.macro_redefinition_not_allowed: -277>
measurement_overrange = <ErrorCodes.measurement_overrange: 604>

missing_ parameter = <ErrorCodes.missing_parameter: -109>

no_error = <ErrorCodes.no_error: 0>

numeric_data_error = <ErrorCodes.numeric_data_error: -120>
numeric_data_not_allowed = <ErrorCodes.numeric_data_not_allowed: -128>
operation_complete = <ErrorCodes.operation_complete: -800>

out_of_memory = <ErrorCodes.out_of_memory: -225>
output_mode_must_be_normal = <ErrorCodes.output_mode_must_be_normal: 408>
ovdac_selftest = <ErrorCodes.ovdac_selftest: 15>

parameter_ not_allowed = <ErrorCodes.parameter_not_allowed: -108>

power_on = <ErrorCodes.power_on: -500>

program_mnemonic_too_long = <ErrorCodes.program_mnemonic_too_long: -112>
query_deadlocked = <ErrorCodes.query_deadlocked: -430>

query_error = <ErrorCodes.query_error: -400>

query_interrupted = <ErrorCodes.query_interrupted: -410>
query_unterminated = <ErrorCodes.query_unterminated: -420>

query_unterminated_after_indefinite_response = <ErrorCodes.query_unterminated_after_indefinite_

2.5. Hewlett-Packard 35

InstrumentKit Library Documentation, Release 0.1.0

ram cal checksum failed = <ErrorCodes.ram_cal_checksum_failed: 3>
ram_config checksum_failed = <ErrorCodes.ram_config_checksum_failed: 2>
ram_rdO_checksum_failed = <ErrorCodes.ram_rd(0_checksum_failed: 1>
ram rst checksum failed = <ErrorCodes.ram_rst_checksum_failed: 5>
ram_selftest = <ErrorCodes.ram_selftest: 10>

ram_state_ checksum_failed = <ErrorCodes.ram_state_checksum_failed: 4>
request_control_event = <ErrorCodes.request_control_event: -700>
rs232_recv_framing_error = <ErrorCodes.rs232_recv_framing_error: 216>
rs232_recv_overrun_error = <ErrorCodes.rs232_recv_overrun_error: 218>
rs232_recv_parity error = <ErrorCodes.rs232_recv_parity_error: 217>
string data_error = <ErrorCodes.string_data_error: -150>
string_data_not_allowed = <ErrorCodes.string_data_not_allowed: -158>
suffix_error = <ErrorCodes.suffix_error: -130>

suffix_not_allowed = <ErrorCodes.suffix_not_allowed: -138>
suffix_too_long = <ErrorCodes.suffix_too_long: -134>

syntax_error = <ErrorCodes.syntax_error: -102>

system_error = <ErrorCodes.system_error: -310>

too_many_digits = <ErrorCodes.too_many_digits: -124>

too_many_errors = <ErrorCodes.too_many_errors: -350>

too_many_ sweep_points = <ErrorCodes.too_many_sweep_points: 601>
too_much_data = <ErrorCodes.too_much_data: -223>

undefined header = <ErrorCodes.undefined_header: -113>
unexpected_number of parameters = <ErrorCodes.unexpected_number_of_parameters: -115>
user_request_event = <ErrorCodes.user_request_event: -600>
vdac_idac_selftestl = <ErrorCodes.vdac_idac_selftestl: 11>
vdac_idac_selftest2 = <ErrorCodes.vdac_idac_selftest2: 12>
vdac_idac_selftest3 = <ErrorCodes.vdac_idac_selftest3: 13>
vdac_idac_selftest4 = <ErrorCodes.vdac_idac_selftest4: 14>

class HP6632b .RemoteInhibit
Enum containing vlaid remote inhibit modes for the hp6632b.

latching = <Remotelnhibit.latching: ‘LATC’>
live = <Remotelnhibit.live: ‘LIVE’>
of £ = <Remotelnhibit.off: ‘OFF’>

class HP6632b . SenseWindow
Enum containing valid sense window modes for the hp6632b.

hanning = <SenseWindow.hanning: ‘HANN’>

rectangular = <SenseWindow.rectangular: ‘RECT’>

36 Chapter 2. InstrumentKit APl Reference

InstrumentKit Library Documentation, Release 0.1.0

HP6632b.abort_output_trigger ()
Set the output trigger system to the idle state.

HP6632b.check_error_queue ()
Checks and clears the error queue for this device, returning a list of ErrorCodes or int elements for
each error reported by the connected instrument.

HP6632b.init_output_trigger ()
Set the output trigger system to the initiated state. In this state, the power supply will respond to the next
output trigger command.

HP6632b.current_sense_range
Get/set the sense current range by the current max value.

A current of 20mA or less selects the low-current range, a current value higher than that selects the high-
current range. The low current range increases the low current measurement sensitivity and accuracy.

Units As specified, or assumed to be A otherwise.
Type float or Quantity

HP6632b.current_trigger
Gets/sets the pending triggered output current.

Note there is no bounds checking on the value specified.
Units As specified, or assumed to be A otherwise.
Type float orQuantity

HP6632b.digital_data
Get/set digital in+out port to data. Data can be an integer from 0-7.

Type int

HP6632b.digital_function
Get/set the inhibit+fault port to digital in+out or vice-versa.

Type DigitalFunction
HP6632b.display brightness
HP6632b.display_contrast

HP6632b.init_output_continuous
Get/set the continuous output trigger. In this state, the power supply will remain in the initiated state, and
respond continuously on new incoming triggers by applying the set voltage and current trigger levels.

Type bool
HP6632b.line_frequency

HP6632b.output_dfi
Get/set the discrete fault indicator (DFI) output from the dc source. The DFI is an open-collector logic
signal connected to the read panel FLT connection, that can be used to signal external devices when a fault
is detected.

Type bool

HP6632b.output_dfi_source
Get/set the source for discrete fault indicator (DFI) events.

Type DFISource

2.5. Hewlett-Packard 37

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

HP6632b.output_protection_delay
Get/set the time between programming of an output change that produces a constant current condition and
the recording of that condigition in the Operation Status Condition register. This command also delays
over current protection, but not overvoltage protection.

Units As specified, or assumed to be s otherwise.
Type float orQuantity

HP6632b.output_remote_inhibit
Get/set the remote inhibit signal. Remote inhibit is an external, chassis-referenced logic signal routed
through the rear panel INH connection, which allows an external device to signal a fault.

Type RemotelInhibit

HP6632b.sense_sweep_interval
Get/set the digitizer sample spacing. Can be set from 15.6 us to 31200 seconds, the interval will be rounded
to the nearest 15.6 us increment.

Units As specified, or assumed to be s otherwise.
Type float orQuantity

HP6632b.sense_sweep_points
Get/set the number of points in a measurement sweep.

Type int

HP6632b.sense_window
Get/set the measurement window function.

Type SenseWindow

HP6632b.voltage_alc_bandwidth
Get the “automatic level control bandwidth” which for the HP66332A and HP6631-6634 determines if the
output capacitor is in circuit. Normal denotes that it is, and Fast denotes that it is not.

Type ALCBandwidth

HP6632b.voltage_trigger
Gets/sets the pending triggered output voltage.

Note there is no bounds checking on the value specified.
Units As specified, or assumed to be V otherwise.

Type float or Quantity

2.5.4 HP6652a Single Output Power Supply

class instruments.hp.HP6652a (filelike)

The HP6652a is a single output power supply.
Because it is a single channel output, this object inherits from both PowerSupply and PowerSupplyChannel.

According to the manual, this class MIGHT be usable for any HP power supply with a model number HP66XYA,
where X is in {4,5,7,8,9} and Y is a digit(?). (e.g. HP6652A and HP6671A)

HOWEVER, it has only been tested by the author with an HP6652A power supply.

Example usage:

38

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

>>>
>>>
>>>
>>>
>>>
>>>
arra
>>>
True
>>>
>>>
True
>>>
>>>
'TES
>>>
>>>

import time

import instruments as ik

psu = ik.hp.HP6652a.0open_serial ('/dev/ttyUSBO', 57600)
psu.voltage = 3 # Sets output voltage to 3V.

psu.output = True
psu.voltage

v(3.0) * V
psu.voltage_sense < 5

psu.output = False
psu.voltage_sense < 1

psu.display_textmode=True
psu.display_text ("test GOOD")
T GOOD'

time.sleep (5)
psu.display_textmode=False

display_text (text_to_display)

Sends up to 12 (uppercase) alphanumerics to be sent to the front-panel LCD display. Some punctuation is
allowed, and can affect the number of characters allowed. See the programming manual for the HP6652A
for more details.

Because the maximum valid number of possible characters is 15 (counting the possible use of punctuation),
the text will be truncated to 15 characters before the command is sent to the instrument.

If an invalid string is sent, the command will fail silently. Any lowercase letters in the text_to_display will
be converted to uppercase before the command is sent to the instrument.

No attempt to validate punctuation is currently made.

Because the string cannot be read back from the instrument, this method returns the actual string value
sent.

Parameters text_to_display (’str’) — The text that you wish to have displayed on the
front-panel LCD

Returns Returns the version of the provided string that will be send to the instrument. This
means it will be truncated to a maximum of 15 characters and changed to all upper case.

Return type str

reset ()

Reset overvoltage and overcurrent errors to resume operation.

channel

Return the channel (which in this case is the entire instrument, since there is only 1 channel on the
HP6652a.)

Return type ‘tuple’ of length 1 containing a reference back to the parent HP6652a object.

current

Gets/sets the output current.
Note there is no bounds checking on the value specified.
Units As specified, or assumed to be A otherwise.

Type float orQuantity

current_sense

Gets the actual output current as measured by the sense wires.

2.5. Hewlett-Packard 39

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

Units A (amps)
Return type Quantity

display textmode
Gets/sets the display mode.

This is a toggle setting. True will allow text to be sent to the front-panel LCD with the display_text()

method. False returns to the normal display mode.
See also:

display_text ()

Type bool
mode
Unimplemented.
name

The name of the connected instrument, as reported by the standard SCPI command IDN?.

Return type str

output
Gets/sets the output status.

This is a toggle setting. True will turn on the instrument output while False will turn it off.

Type bool

overcurrent
Gets/sets the overcurrent protection setting.

This is a toggle setting. It is either on or off.
Type bool

overvoltage
Gets/sets the overvoltage protection setting in volts.

Note there is no bounds checking on the value specified.
Units As specified, or assumed to be V otherwise.
Type float orQuantity

voltage
Gets/sets the output voltage.

Note there is no bounds checking on the value specified.
Units As specified, or assumed to be V otherwise.
Type float orQuantity

voltage_sense
Gets the actual output voltage as measured by the sense wires.

Units V (volts)

Return type Quantity

40 Chapter 2

. InstrumentKit API Reference

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

2.6 Keithley

2.6.1 Keithley195 Digital Multimeter

class instruments.keithley.Keithley195 (filelike)
The Keithley 195 is a 5 1/2 digit auto-ranging digital multimeter. You can find the full specifications list in the
Keithley 195 user’s guide.

Example usage:

>>> import instruments as ik

>>> import quantities as pqgq

>>> dmm = ik.keithley.Keithleyl195.0open_gpibusb ('/dev/ttyUSBO', 12)
>>> print dmm.measure (dmm.Mode.resistance)

class Mode
Enum containing valid measurement modes for the Keithley 195

current_ac = <Mode.current_ac: 4>
current_dc = <Mode.current_dc: 3>
resistance = <Mode.resistance: 2>

voltage_ac = <Mode.voltage_ac: 1>
voltage_dc = <Mode.voltage_dc: 0>

class Keithleyl195.TriggerMode
Enum containing valid trigger modes for the Keithley 195

ext_continuous = <TriggerMode.ext_continuous: 6>
ext_one_shot = <TriggerMode.ext_one_shot: 7>
get_continuous = <TriggerMode.get_continuous: 2>
get_one_shot = <TriggerMode.get_one_shot: 3>
talk_continuous = <TriggerMode.talk_continuous: 0>
talk_one_shot = <TriggerMode.talk_one_shot: 1>
x_continuous = <TriggerMode.x_continuous: 4>
x_one_shot = <TriggerMode.x_one_shot: 5>

class Keithley195.ValidRange
Enum containing valid range settings for the Keithley 195

current_ac = <ValidRange.current_ac: (2e-05, 0.0002, 0.002, 0.02, 0.2, 2, 2)>

current_dc = <ValidRange.current_dc: (2e-05, 0.0002, 0.002, 0.02, 0.2, 2)>

resistance = <ValidRange.resistance: (20, 200, 2000, 20000.0, 200000.0, 2000000.0, 20000000.0)>
voltage_ac = <ValidRange.voltage_ac: (0.02, 0.2, 2, 20, 200, 700)>

voltage_dc = <ValidRange.voltage_dc: (0.02, 0.2, 2, 20, 200, 1000)>

Keithleyl95.auto_range ()
Turn on auto range for the Keithley 195.

This is the same as calling Keithley195.input_range = ’auto’

2.6. Keithley 41

http://www.keithley.com/data?asset=803

InstrumentKit Library Documentation, Release 0.1.0

Keithleyl95.get_status_word()
Retreive the status word from the instrument. This contains information regarding the various settings of
the instrument.

The function parse_status_word is designed to parse the return string from this function.
Returns String containing setting information of the instrument
Return type str

Keithleyl95.measure (mode=None)
Instruct the Keithley 195 to perform a one time measurement. The instrument will use default parameters
for the requested measurement. The measurement will immediately take place, and the results are directly
sent to the instrument’s output buffer.

Method returns a Python quantity consisting of a numpy array with the instrument value and appropriate
units.

With the 195, it is HIGHLY recommended that you seperately set the mode and let the instrument settle
into the new mode. This can sometimes take longer than the 2 second delay added in this method. In our
testing the 2 seconds seems to be sufficient but we offer no guarentee.

Example usage:

>>> import instruments as ik

>>> import quantities as pqg

>>> dmm = ik.keithley.Keithley195.open_gpibusb ('/dev/ttyUSBO', 12)
>>> print (dmm.measure (dmm.Mode.resistance))

Parameters mode (Keithleyl95.Mode) — Desired measurement mode. This must always
be specified in order to provide the correct return units.

Returns A measurement from the multimeter.
Return type Quantity
static Keithley195.parse_status_word (statusword)
Parse the status word returned by the function get_status_word.

Returns a dict with the following keys: {trigger, mode, range, eoi,buffer, rate, srqmode, relative, de
selftest,dataformat, datacontrol, filter, terminator}

Parameters statusword — Byte string to be unpacked and parsed
Type str

Returns A parsed version of the status word as a Python dictionary
Return type dict

Keithleyl95.trigger ()
Tell the Keithley 195 to execute all commands that it has received.

Do note that this is different from the standard SCPI « TRG command (which is not supported by the 195
anyways).

Keithleyl95.input_range
Gets/sets the range of the Keithley 195 input terminals. The valid range settings depends on the current
mode of the instrument. They are listed as follows:

l.voltage_dc = (20e-3, 200e-3, 2, 20, 200, 1000)
2.voltage_ac = (20e-3, 200e-3, 2, 20, 200, 700)

42 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict

InstrumentKit Library Documentation, Release 0.1.0

3.current_dc = (20e-6, 200e-6, 2e-3, 20e-3, 200e-3, 2)
4.current_ac = (20e-6, 200e-6, 2e-3, 20e-3, 200e-3, 2)
S.resistance = (20, 200, 2000, 20e3, 200e3, 2e6, 20e6)
All modes will also accept the string aut o which will set the 195 into auto ranging mode.
Return type Quantityorstr

Keithleyl195.mode
Gets/sets the measurement mode for the Keithley 195. The base model only has DC voltage and resistance
measurements. In order to use AC voltage, DC current, and AC current measurements your unit must be
equiped with option 1950.

Example use:

>>> import instruments as ik
>>> dmm = ik.keithley.Keithleyl95.open_gpibusb('/dev/ttyUSBO', 12)
>>> dmm.mode = dmm.Mode.resistance

Type Keithleyl95.Mode

Keithleyl95.relative
Gets/sets the zero command (relative measurement) mode of the Keithley 195.

As stated in the manual: The zero mode serves as a means for a baseline suppression. When the correct
zero command is send over the bus, the instrument will enter the zero mode, as indicated by the front panel
ZERO indicator light. All reading displayed or send over the bus while zero is enabled are the difference
between the stored baseline adn the actual voltage level. For example, if a 100mV baseline is stored,
100mV will be subtracted from all subsequent readings as long as the zero mode is enabled. The value of
the stored baseline can be as little as a few microvolts or as large as the selected range will permit.

See the manual for more information.
Type bool

Keithleyl95.trigger_mode
Gets/sets the trigger mode of the Keithley 195.

There are two different trigger settings for four different sources. This means there are eight different
settings for the trigger mode.

The two types are continuous and one-shot. Continuous has the instrument continuously sample the resis-
tance. One-shot performs a single resistance measurement.

The three trigger sources are on talk, on GET, and on “X”. On talk refers to addressing the instrument
to talk over GPIB. On GET is when the instrument receives the GPIB command byte for “group execute
trigger”. On “X” is when one sends the ASCII character “X” to the instrument. This character is used as
a general execute to confirm commands send to the instrument. In InstrumentKit, “X” is sent after each
command so it is not suggested that one uses on “X” triggering. Last, is external triggering. This is the
port on the rear of the instrument. Refer to the manual for electrical characteristics of this port.

Type Keithleyl95. TriggerMode

2.6.2 Keithley580 Microohm Meter

class instruments.keithley.Keithley580 (filelike)
The Keithley Model 580 is a 4 1/2 digit resolution autoranging micro-ohmmeter with a +- 20,000 count LCD. It
is designed for low resistance measurement requirements from 10uf? to 200k(2.

2.6. Keithley 43

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

The device needs some processing time (manual reports 300-500ms) after a command has been transmitted.

class Drive
Enum containing valid drive modes for the Keithley 580

dc = <Drive.dc: 1>
pulsed = <Drive.pulsed: 0>

class Keithley580.Polarity
Enum containing valid polarity modes for the Keithley 580

negative = <Polarity.negative: 1>
positive = <Polarity.positive: 0>

class Keithley580.TriggerMode
Enum containing valid trigger modes for the Keithley 580

get_continuous = <TriggerMode.get_continuous: 2>
get_one_shot = <TriggerMode.get_one_shot: 3>
talk_continuous = <TriggerMode.talk_continuous: 0>
talk_one_shot = <TriggerMode.talk_one_shot: 1>
trigger_continuous = <TriggerMode.trigger_continuous: 4>
trigger_one_shot = <TriggerMode.trigger_one_shot: 5>

Keithley580.auto_range ()
Turn on auto range for the Keithley 580.

This is the same as calling the Keithley580.set_resistance_range method and setting the
parameter to “AUTO”.

Keithley580.get_status_word()
The keithley will not always respond with the statusword when asked. We use a simple heuristic here:
request it up to 5 times, using a 1s delay to allow the keithley some thinking time.

Return type str

Keithley580.measure ()
Perform a measurement with the Keithley 580.

The usual mode parameter is ignored for the Keithley 580 as the only valid mode is resistance.
Return type Quantity

static Keithley580.parse_measurement (measurement)
Parse the measurement string returned by the instrument.

Returns a dict with the following keys: {status, polarity,drycircuit,drive, resistance}
Parameters measurement — String to be unpacked and parsed
Type str
Return type dict

Keithley580.parse_status_word (statusword)
Parse the status word returned by the function get_status_word.

Returns a dict with the following keys: {drive, polarity,drycircuit, operate, range, relative,eoi, t.
sqrondata, sgronerror, linefreq,terminator}

Parameters statusword — Byte string to be unpacked and parsed

44

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict

InstrumentKit Library Documentation, Release 0.1.0

Type str

Return type dict
Keithley580.query (msg, size=-1)
Keithley580.sendcmd (msg)

Keithley580.set_calibration_value (value)
Sets the calibration value. This is not currently implemented.

Parameters value — Calibration value to write

Keithley580.store_calibration_constants ()
Instructs the instrument to store the calibration constants. This is not currently implemented.

Keithley580.trigger ()
Tell the Keithley 580 to execute all commands that it has received.

Do note that this is different from the standard SCPI « TRG command (which is not supported by the 580
anyways).

Keithley580.drive
Gets/sets the instrument drive to either pulsed or DC.

Example use:

>>> import instruments as ik
>>> keithley = ik.keithley.Keithley580.open_gpibusb ('/dev/ttyUSBO', 1)
>>> keithley.drive = keithley.Drive.pulsed

Type Keithley580.Drive
Keithley580.dry_circuit_test
Gets/sets the ‘dry circuit test” mode of the Keithley 580.

This mode is used to minimize any physical and electrical changes in the contact junction by limiting the
maximum source voltage to 20mV. By limiting the voltage, the measuring circuit will leave the resistive
surface films built up on the contacts undisturbed. This allows for measurement of the resistance of these
films.

See the Keithley 580 manual for more information.
Type bool

Keithley580.input_range
Gets/sets the range of the Keithley 580 input terminals. The valid ranges are one of
{AUTO|2e-112120120012000|2e4|2e5}

Type Quantityor str

Keithley580.operate
Gets/sets the operating mode of the Keithley 580. If set to true, the instrument will be in operate mode,
while false sets the instruments into standby mode.

Type bool

Keithley580.polarity
Gets/sets instrument polarity.

Example use:

2.6.

Keithley 45

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

>>> import instruments as ik
>>> keithley = ik.keithley.Keithley580.open_gpibusb ('/dev/ttyUSBO', 1)
>>> keithley.polarity = keithley.Polarity.positive

Type Keithley580.Polarity

Keithley580.relative
Gets/sets the relative measurement mode of the Keithley 580.

As stated in the manual: The relative function is used to establish a baseline reading. This reading is
subtracted from all subsequent readings. The purpose of making relative measurements is to cancel test
lead and offset resistances or to store an input as a reference level.

Once a relative level is established, it remains in effect until another relative level is set. The relative value
is only good for the range the value was taken on and higher ranges. If a lower range is selected than that
on which the relative was taken, inaccurate results may occur. Relative cannot be activated when “OL” is
displayed.

See the manual for more information.

Type bool

Keithley580.trigger_mode
Gets/sets the trigger mode of the Keithley 580.

There are two different trigger settings for three different sources. This means there are six different
settings for the trigger mode.

The two types are continuous and one-shot. Continuous has the instrument continuously sample the resis-
tance. One-shot performs a single resistance measurement.

The three trigger sources are on talk, on GET, and on “X”. On talk refers to addressing the instrument
to talk over GPIB. On GET is when the instrument receives the GPIB command byte for “group execute
trigger”. Last, on “X” is when one sends the ASCII character “X” to the instrument. This character is used
as a general execute to confirm commands send to the instrument. In InstrumentKit, “X” is sent after each
command so it is not suggested that one uses on “X” triggering.

Type Keithley580.TriggerMode

2.6.3 Keithley2182 Nano-voltmeter

class instruments.keithley.Keithley2182 (filelike)
The Keithley 2182 is a nano-voltmeter. You can find the full specifications list in the user’s guide.

Example usage:

>>> import instruments as ik
>>> meter = ik.keithley.Keithley2182.open_gpibusb ("/dev/ttyUSBO", 10)
>>> print meter.measure (meter.Mode.voltage_dc)

class Channel (parent, idx)
Class representing a channel on the Keithley 2182 nano-voltmeter.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the Keithley2182 class.

46 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#bool
http://www.keithley.com/products/dcac/sensitive/lowvoltage/?mn=2182A

InstrumentKit Library Documentation, Release 0.1.0

measure (mode=None)
Performs a measurement of the specified channel. If no mode parameter is specified then the current
mode is used.
Parameters mode (Keithley2182.Mode) — Mode that the measurement will be per-
formed in
Returns The value of the measurement
Return type Quantity

input_range
mode
relative
trigger_mode

class Keithley2182.Mode
Enum containing valid measurement modes for the Keithley 2182

temperature = <Mode.temperature: ‘TEMP’>
voltage_dc = <Mode.voltage_dc: ‘VOLT’>

class Keithley2182.TriggerMode
Enum containing valid trigger modes for the Keithley 2182

bus = <TriggerMode.bus: ‘BUS’>

external = <TriggerMode.external: ‘EXT’>
immediate = <TriggerMode.immediate: ‘IMM’>
manual = <TriggerMode.manual: ‘MAN’>
timer = <TriggerMode.timer: ‘TIM’>

Keithley2182.fetch()
Transfer readings from instrument memory to the output buffer, and thus to the computer. If currently
taking a reading, the instrument will wait until it is complete before executing this command. Readings
are NOT erased from memory when using fetch. Use the R? command to read and erase data. Note that
the data is transfered as ASCII, and thus it is not recommended to transfer a large number of data points
using GPIB.

Returns Measurement readings from the instrument output buffer.
Return type 1ist of Quantity elements

Keithley2182.measure (mode=None)
Perform and transfer a measurement of the desired type.

Parameters mode — Desired measurement mode. If left at default the measurement will occur
with the current mode.

Type Keithley2182.Mode

Returns Returns a single shot measurement of the specified mode.
Return type Quantity

Units Volts, Celsius, Kelvin, or Fahrenheit

Keithley2182.channel
Gets a specific Keithley 2182 channel object. The desired channel is specified like one would access a list.

Although not default, the 2182 has up to two channels.

. Keithley 47

http://docs.python.org/library/functions.html#list

InstrumentKit Library Documentation, Release 0.1.0

For example, the following would print the measurement from channel 1:

>>> meter = ik.keithley.Keithley2182.open_gpibusb ("/dev/ttyUSB0", 10)
>>> print meter.channel[0] .measure ()

Return type Keithley2182.Channel

Keithley2182.input_range

Keithley2182.relative
Gets/sets the relative measurement function of the Keithley 2182.

This is used to enable or disable the relative function for the currently set mode. When enabling, the
current reading is used as a baseline which is subtracted from future measurements.

If relative is already on, the stored value is refreshed with the currently read value.
See the manual for more information.

Type bool

Keithley2182.units
Gets the current measurement units of the instrument.

Return type UnitQuantity

2.6.4 Keithley6220 Constant Current Supply
class instruments.keithley.Keithley6220 (filelike)
The Keithley 6220 is a single channel constant current supply.

Because this is a constant current supply, most features that a regular power supply have are not present on the
6220.

Example usage:

>>> import quantities as pg
>>> import instruments as ik
>>> ccs = ik.keithley.Keithley6220.open_gpibusb ("/dev/ttyUSBO", 10)

>>> ccs.current = 10 * pg.milliamp # Sets current to 10mA
>>> ccs.disable () # Turns off the output and sets the current to 0A
disable ()

Set the output current to zero and disable the output.

channel
For most power supplies, this would return a channel specific object. However, the 6220 only has a single
channel, so this function simply returns a tuple containing itself. This is for compatibility reasons if a
multichannel supply is replaced with the single-channel 6220.

For example, the following commands are the same and both set the current to 10mA:

>>> ccs.channel[0] .current = 0.01
>>> ccs.current = 0.01
current

Gets/sets the output current of the source. Value must be between -105mA and +105mA.
Units As specified, or assumed to be A otherwise.

Type float orQuantity

48 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

current_max
current_min

voltage
This property is not supported by the Keithley 6220.

2.6.5 Keithley6514 Electrometer

class instruments.keithley.Keithley6514 (filelike)
The Keithley 6514 is an electrometer capable of doing sensitive current, charge, voltage and resistance measure-
ments.

Example usage:

>>> import instruments as ik
>>> import quantities as pqg
>>> dmm ik.keithley.Keithley6514.open_gpibusb ('/dev/ttyUSBO', 12)

class ArmSource
Enum containing valid trigger arming sources for the Keithley 6514

bus = <ArmSource.bus: ‘BUS’>

immediate = <ArmSource.immediate: ‘IMM’>
manual = <ArmSource.manual: ‘MAN’>
nstest = <ArmSource.nstest: ‘NST’>

pstest = <ArmSource.pstest: ‘PST’>

stest = <ArmSource.stest: ‘STES’>

timer = <ArmSource.timer: ‘TIM’>

tlink = <ArmSource.tlink: ‘TLIN’>

class Keithley6514.Mode
Enum containing valid measurement modes for the Keithley 6514

charge = <Mode.charge: ‘CHAR’>
current = <Mode.current: ‘CURR:DC’>
resistance = <Mode.resistance: ‘RES’>
voltage = <Mode.voltage: ‘VOLT:DC’>

class Keithley6514.TriggerMode
Enum containing valid trigger modes for the Keithley 6514

immediate = <TriggerMode.immediate: ‘IMM’>
tlink = <TriggerMode.tlink: ‘TLINK’>

class Keithley6514.ValidRange
Enum containing valid measurement ranges for the Keithley 6514

charge = <ValidRange.charge: (2e-08, 2e-07, 2e-06, 2e-05)>

current = <ValidRange.current: (2e-11, 2e-10, 2e-09, 2e-08, 2e-07, 2e-06, 2e-05, 0.0002, 0.002, 0.02)>
resistance = <ValidRange.resistance: (2000.0, 20000.0, 200000.0, 2000000.0, 20000000.0, 200000000.0, 200000000
voltage = <ValidRange.voltage: (2, 20, 200)>

2.6. Keithley 49

http://www.tunl.duke.edu/documents/public/electronics/Keithley/keithley-6514-electrometer-manual.pdf

InstrumentKit Library Documentation, Release 0.1.0

Keithley6514.auto_config (mode)
This command causes the device to do the following:

» Switch to the specified mode
* Reset all related controls to default values
 Set trigger and arm to the ‘immediate’ setting
* Set arm and trigger counts to 1
* Set trigger delays to 0
* Place unit in idle state
* Disable all math calculations
* Disable buffer operation
* Enable autozero

Keithley6514.fetch ()

Request the latest post-processed readings using the current mode. (So does not issue a trigger) Returns a

tuple of the form (reading, timestamp)

Keithley6514.read _measurements ()

Trigger and acquire readings using the current mode. Returns a tuple of the form (reading, timestamp)

Keithley6514.arm_source
Gets/sets the arm source of the Keithley 6514.

Keithley6514.auto_range
Gets/sets the auto range setting

Type bool

Keithley6514.input_range
Gets/sets the upper limit of the current range.

Type Quantity

Keithley6514.mode
Gets/sets the measurement mode of the Keithley 6514.

Keithley6514.trigger_mode
Gets/sets the trigger mode of the Keithley 6514.

Keithley6514.unit

Keithley6514.zero_check
Gets/sets the zero checking status of the Keithley 6514.

Keithley6514.zero_correct
Gets/sets the zero correcting status of the Keithley 6514.

2.7 Lakeshore

2.7.1 Lakeshore340 Cryogenic Temperature Controller

class instruments.lakeshore.Lakeshore340 (filelike)
The Lakeshore340 is a multi-sensor cryogenic temperature controller.

50 Chapter 2

. InstrumentKit API Reference

http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

Example usage:

>>> import instruments as ik

>>> import quantities as pg

>>> inst = ik.lakeshore.Lakeshore340.open_gpibusb('/dev/ttyUSBO', 1)
>>> print (inst.sensor[0] .temperature)

>>> print (inst.sensor[1l].temperature)

class Sensor (parent, idx)
Class representing a sensor attached to the Lakeshore 340.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the Lakeshore340 class.

temperature
Gets the temperature of the specified sensor.
Units Kelvin

Type Quantity

Lakeshore340.sensor
Gets a specific sensor object. The desired sensor is specified like one would access a list.

For instance, this would query the temperature of the first sensor:

>>> bridge = Lakeshore340.open_serial ("COM5™)
>>> print (bridge.sensor[0].temperature)

The Lakeshore 340 supports up to 2 sensors (index 0-1).

Return type Sensor

2.7.2 Lakeshore370 AC Resistance Bridge

class instruments.lakeshore.Lakeshore370 (filelike)

The Lakeshore 370 is a multichannel AC resistance bridge for use in low temperature dilution refridgerator
setups.

Example usage:

>>> import instruments as ik
>>> bridge ik.lakeshore.Lakeshore370.open_gpibusb('/dev/ttyUsSBO', 1)
>>> print (bridge.channel[0].resistance)

class Channel (parent, idx)
Class representing a sensor attached to the Lakeshore 370.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the Lakeshore370 class.

resistance
Gets the resistance of the specified sensor.
Units Ohm
Return type Quantity

Lakeshore370.channel
Gets a specific channel object. The desired channel is specified like one would access a list.

For instance, this would query the resistance of the first channel:

2.7.

Lakeshore 51

InstrumentKit Library Documentation, Release 0.1.0

>>> import instruments as ik
>>> bridge = ik.lakeshore.Lakeshore370.open_serial ("COM5")
>>> print (bridge.channel[0] .resistance)

The Lakeshore 370 supports up to 16 channels (index 0-15).

Return type Channel

2.7.3 Lakeshore475 Gaussmeter

class instruments.lakeshore.Lakeshored75 (filelike)

The Lakeshore475 is a DSP Gaussmeter with field ranges from 35mG to 350kG.

Example usage:

>>> import instruments as ik

>>> import quantities as pqgq

>>> gm = ik.lakeshore.Lakeshored475.open_gpibusb('/dev/ttyUSBO', 1)
>>> print (gm.field)

>>> gm.field_units = pg.tesla

>>> gm.field_setpoint = 0.05 » pg.tesla

classFilter
Enum containing valid filter modes for the Lakeshore 475

lowpass = <Filter.lowpass: 3>
narrow = <Filter.narrow: 2>
wide = <Filter.wide: 1>

class Lakeshore475.Mode
Enum containing valid measurement modes for the Lakeshore 475

dc = <Mode.dc: 1>
peak = <Mode.peak: 3>
rms = <Mode.rms: 2>

class Lakeshore475.PeakDisplay
Enum containing valid peak displays for the Lakeshore 475

both = <PeakDisplay.both: 3>
negative = <PeakDisplay.negative: 2>
positive = <PeakDisplay.positive: 1>

class Lakeshore475.PeakMode
Enum containing valid peak modes for the Lakeshore 475

periodic = <PeakMode.periodic: 1>
pulse = <PeakMode.pulse: 2>

Lakeshore475.change_measurement_mode (mode, resolution, filter_type,
peak_disp)
Change the measurement mode of the Gaussmeter.

Parameters

¢ mode (Lakeshore475.Mode) — The desired measurement mode.

peak_mode,

52

Chapter 2. InstrumentKit APl Reference

InstrumentKit Library Documentation, Release 0.1.0

* resolution (int) — Digit resolution of the measured field. One of {34 |5}.

e filter_type (Lakeshore475.Filter)— Specify the signal filter used by the in-
strument. Available types include wide band, narrow band, and low pass.

¢ peak_mode (Lakeshore475.PeakMode) — Peak measurement mode to be used.
* peak_disp (Lakeshore475.PeakDisplay)— Peak display mode to be used.

Lakeshore475.control_mode
Gets/sets the control mode setting. False corresponds to the field control ramp being disables, while True
enables the closed loop PI field control.

Type bool

Lakeshore475.control_slope_limit
Gets/sets the I value for the field control ramp.

Units As specified (if a Quantity) or assumed to be of units volt / minute.
Type Quantity

Lakeshore475.field
Read field from connected probe.

Type Quantity

Lakeshored475.field control_params
Gets/sets the parameters associated with the field control ramp. These are (in this order) the P, I, ramp rate,
and control slope limit.

Type tuple of2 float and 2 Quantity

Lakeshore475.field_setpoint
Gets/sets the final setpoint of the field control ramp.

Units As specified (if a Quantity) or assumed to be of units Gauss.
Type Quantity with units Gauss

Lakeshored475.field units
Gets/sets the units of the Gaussmeter.

Acceptable units are Gauss, Tesla, Oersted, and Amp/meter.
Type UnitQuantity

Lakeshore475.i_wvalue
Gets/sets the I value for the field control ramp.

Type float

Lakeshored75.p_value
Gets/sets the P value for the field control ramp.

Type float

Lakeshore475.ramp_rate
Gets/sets the ramp rate value for the field control ramp.

Units As specified (if a Quantity) or assumed to be of current field units / minute.
Type Quantity

Lakeshore475.temp_units
Gets/sets the temperature units of the Gaussmeter.

2.7. Lakeshore 53

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

Acceptable units are celcius and kelvin.

Type UnitQuantity

2.8 Newport

2.8.1 NewportESP301 Motor Controller

class instruments.newport .NewportESP301 (filelike)

Handles communication with the Newport ESP-301 multiple-axis motor controller using the protocol docu-
mented in the user’s guide.

Due to the complexity of this piece of equipment, and relative lack of documentation and following of normal
SCPI guidelines, this class more than likely contains bugs and non-complete behaviour.

define_program (*args, **kwds)
Erases any existing programs with a given program ID and instructs the device to record the commands
within this with block to be saved as a program with that ID.

For instance:

>>> controller = NewportESP301l.open_serial ("COM3")
>>> with controller.define_program(15) :
controller.axis[0] .move (0.001, absolute=False)

>>> controller.run_program(1l5)

Parameters program_id (int) — An integer label for the new program. Must be in
range (1, 101).

execute_bulk_command (*args, **kwds)
Context manager to execute multiple commands in a single communication with device

Example:

with self.execute_bulk_command() :
execute commands as normal...

Parameters errcheck (bool)— Boolean to check for errors after each command that is sent
to the instrument.

reset ()
Causes the device to perform a hardware reset. Note that this method is only effective if the watchdog timer
is enabled by the physical jumpers on the ESP-301. Please see the user’s guide for more information.

run_program (program_id)
Runs a previously defined user program with a given program ID.

Parameters program_id (int)— ID number for previously saved user program

search_for home (axis=1, search_mode=0, errcheck=True)
Searches the specified axis for home using the method specified by search_mode.

Parameters

e axis (int) — Axis ID for which home should be searched for. This value is 1-based
indexing.

54

Chapter 2. InstrumentKit APl Reference

http://assets.newport.com/webDocuments-EN/images/14294.pdf
http://docs.python.org/library/functions.html#bool
http://assets.newport.com/webDocuments-EN/images/14294.pdf

InstrumentKit Library Documentation, Release 0.1.0

¢ search_mode (NewportESP30lHomeSearchMode) — Method to detect when
Home has been found.

e errcheck (bool)— Boolean to check for errors after each command that is sent to the
instrument.
axis
Gets the axes of the motor controller as a sequence. For instance, to move along a given axis:

>>> controller = NewportESP301l.open_serial ("COM3")
>>> controller.axis[0] .move (-0.001, absolute=False)

Note that the axes are numbered starting from zero, so that Python idioms can be used more easily. This
is not the same convention used in the Newport ESP-301 user’s manual, and so care must be taken when
converting examples.

Type NewportESP301Axis

class instruments.newport .NewportESP301Axis (controller, axis_id)
Encapsulates communication concerning a single axis of an ESP-301 controller. This class should not be in-
stantiated by the user directly, but is returned by Newport ESP301.ax1is.

abort_motion ()
Abort motion

disable ()
Turns motor axis off.

enable ()
Turns motor axis on.

get_status ()

s

Returns Dictionary containing values: ‘units’ ‘position ‘desired_position” ‘desired_velocity’

‘1s_motion_done’
Return type dict

move (position, absolute=True, wait=False, block=False)
Parameters
* position (float or Quantity) — Position to set move to along this axis.

* absolute (bool)-If True, the position pos is interpreted as relative to the zero-point
of the encoder. If False, pos is interpreted as relative to the current position of this axis.

e wait (bool) - If True, will tell axis to not execute other commands until movement is
finished

¢ block (bool) - If True, will block code until movement is finished

move_indefinitely ()
Move until told to stop

move_to_hardware_limit ()
move to hardware travel limit

read_setup ()

Returns dictionary containing: ‘units’ ‘motor_type’ ‘feedback_configuration’ ‘full_step_resolution’
‘position_display_resolution’ ‘current’ ‘max_velocity’ ‘encoder_resolution’ ‘acceleration’ ‘deceler-
ation’ ‘velocity’ ‘max_acceleration’ ‘homing_velocity’ ‘jog_high_velocity’ ‘jog_low_velocity’

2.8. Newport 55

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

‘estop_deceleration’ ‘jerk’ ‘proportional_gain’ ‘derivative_gain’ ‘integral_gain’ ‘inte-
gral_saturation_gain’ ‘home’ ‘microstep_factor’ ‘acceleration_feed_forward’ ‘trajectory’ ‘hard-
ware_limit_configuration’

Return type dict of quantities.Quantity, float and int
search_for home (search_mode=0)

Searches this axis only for home using the method specified by search_mode.

Parameters search_mode (NewportESP30lHomeSearchMode) — Method to detect
when Home has been found.

setup_axis (**kwargs)
Setup a non-newport DC servo motor stage. Necessary parameters are.

*‘motor_type’ = type of motor see ‘QM’ in Newport documentation
e‘current’ = motor maximum current (A)

*‘voltage’ = motor voltage (V)

*‘units’ = set units (see NewportESP301Units)(U)
*‘encoder_resolution’ = value of encoder step in terms of (U)
*‘max_velocity’ = maximum velocity (U/s)
*‘max_base_velocity’ = maximum working velocity (U/s)
*‘homing_velocity’ = homing speed (U/s)
*‘jog_high_velocity’ = jog high speed (U/s)
*‘jog_low_velocity’ = jog low speed (U/s)
e‘max_acceleration’ = maximum acceleration (U/s"2)
‘acceleration’ = acceleration (U/s"\2)

e‘deceleration’ = set deceleration (U/s"2)

‘error_threshold’ = set error threshold (U)
*‘proportional_gain’ = PID proportional gain (optional)
*‘derivative_gain’ = PID derivative gain (optional)
*‘interal_gain’ = PID internal gain (optional)
*‘integral_saturation_gain’ = PID integral saturation (optional)
*‘trajectory’ = trajectory mode (optional)
*‘position_display_resolution’ (U per step)
«‘feedback_configuration’

«‘full_step_resolution’ = (U per step)

*‘home’ = (U)

e‘acceleration_feed_forward’ = bewtween 0 to 2e9
*‘reduce_motor_torque’ = (time(ms),percentage)

stop_motion ()
Stop all motion on axis. With programmed deceleration rate

56 Chapter 2. InstrumentKit APl Reference

InstrumentKit Library Documentation, Release 0.1.0

wait_for_motion (poll_interval=0.01, max_wait=None)
Blocks until all movement along this axis is complete, as reported by is_motion_done.

Parameters

* poll_interval (float) — How long (in seconds) to sleep between checking if the
motion is complete.

* max_wait (float)— Maximum amount of time to wait before raising a IOError. If
None, this method will wait indefinitely.

wait_for position (position)
Wait for axis to reach position before executing next command

Parameters position (float or Quantity) — Position to wait for on axis

wait_for_ stop ()
Wiaits for axis motion to stop before next command is executed

acceleration
Gets/sets the axis acceleration

Units As specified (if a Quantity) or assumed to be of current newport unit
Type Quantityor float

acceleration feed forward
Gets/sets the axis acceleration_feed_forward setting

Type int

axis_id
Get axis number of Newport Controller

Type int

current
Gets/sets the axis current (amps)

Units As specified (if a Quantity) or assumed to be of current newport A
Type Quantityor float

deceleration
Gets/sets the axis deceleration

Units As specified (if a Quantity) or assumed to be of current newport %2”
Type Quantity or float

derivative_gain
Gets/sets the axis derivative_gain

Type float

desired position
Gets desired position on axis in units

Units As specified (if a Quantity) or assumed to be of current newport unit
Type Quantityor float

desired_velocity
Gets the axis desired velocity in unit/s

Units As specified (if a Quantity) or assumed to be of current newport unit/s

2.8.

Newport 57

http://docs.python.org/library/constants.html#None
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

Type Quantityor float

encoder_position
Gets the encoder position

Type

encoder resolution
Gets/sets the resolution of the encode. The minimum number of units per step. Encoder functionality must
be enabled.

Units The number of units per encoder step
Type Quantityor float

error_threshold
Gets/sets the axis error threshold

Units units
Type Quantityor float

estop_deceleration
Gets/sets the axis estop deceleration

Units As specified (if a Quantity) or assumed to be of current newport %;t
Type Quantity or float

feedback_configuration
Gets/sets the axis Feedback configuration

Type int

full_step_resolution
Gets/sets the axis resolution of the encode. The minimum number of units per step. Encoder functionality
must be enabled.

Units The number of units per encoder step
Type Quantityor float

hardware_limit_configuration
Gets/sets the axis hardware_limit_configuration

Type int

home
Gets/sets the axis home position. Default should be 0 as that sets current position as home

Units As specified (if a Quantity) or assumed to be of current newport unit
Type Quantityor float

homing_velocity
Gets/sets the axis homing velocity

Units As specified (if a Quantity) or assumed to be of current newport %’t
Type Quantityor float

integral_gain
Gets/sets the axis integral_gain

Type float

58

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

integral_saturation_gain
Gets/sets the axis integral_saturation_gain

Type float

is motion_done
True if and only if all motion commands have completed. This method can be used to wait for a motion
command to complete before sending the next command.

Type bool

jerk
Gets/sets the jerk rate for the controller

Units As specified (if a Quant ity) or assumed to be of current newport unit
Type Quantityor float

jog _high_velocity
Gets/sets the axis jog high velocity

unit

Units As specified (if a Quantity) or assumed to be of current newport “

Type Quantityor float

jog_low_velocity
Gets/sets the axis jog low velocity
Units As specified (if a Quantity) or assumed to be of current newport %’t

Type Quantityor float

left limit
Gets/sets the axis left travel limit

Units The limit in units
Type Quantityor float

max_acceleration
Gets/sets the axis max acceleration

untt

Units As specified (if a Quantity) or assumed to be of current newport

52
Type Quantityor float
max_base_velocity
Gets/sets the maximum base velocity for stepper motors
Units As specified (if a Quantity) or assumed to be of current newport %”

Type Quantityor float
max_deceleration
Gets/sets the axis max decceleration. Max deaceleration is always the same as acceleration.

untt
52

Units As specified (if a Quantity) or assumed to be of current newport
Type Quantityor float

max_velocity
Gets/sets the axis maximum velocity

untt

Units As specified (if a Quantity) or assumed to be of current newport .

Type Quantityor float

micro_inch = UnitQuantity(‘micro-inch’, 1e-06 * in, ‘uin’)

2.8. Newport 59

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

microstep_factor
Gets/sets the axis microstep_factor

Type int

motor_type
Gets/sets the axis motor type * 0 = undefined * 1 = DC Servo * 2 = Stepper motor * 3 = commutated
stepper motor * 4 = commutated brushless servo motor

Type int
Return type NewportESP301MotorType

position
Gets real position on axis in units

Units As specified (if a Quantity) or assumed to be of current newport unit
Type Quantityor float

position_display_resolution
Gets/sets the position display resolution

Type int

proportional_gain
Gets/sets the axis proportional_gain

Type float

right_limit
Gets/sets the axis right travel limit

Units units
Type Quantityor float

trajectory
Gets/sets the axis trajectory

Type int

units
Get the units that all commands are in reference to.

Type Quantity with units corresponding to units of axis connected or int which corresponds
to Newport unit number

velocity
Gets/sets the axis velocity

unit
t s

Units As specified (if a Quantity) or assumed to be of current newpor
Type Quantityor float

voltage
Gets/sets the axis voltage

Units As specified (if a Quantity) or assumed to be of current newport V
Type Quantityor float

class instruments.newport . NewportESP301HomeSearchMode
Enum containing different search modes code

home_index_signals = <NewportESP301HomeSearchMode.home_index_signals: 1>

60 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

home_signal_only = <NewportESP301HomeSearchMode.home_signal_only: 2>
neg_index_signals = <NewportESP301HomeSearchMode.neg_index_signals: 6>
neg_limit_ signal = <NewportESP301HomeSearchMode.neg_limit_signal: 4>
pos_index_signals = <NewportESP301HomeSearchMode.pos_index_signals: 5>
pos_limit_signal = <NewportESP301HomeSearchMode.pos_limit_signal: 3>

zero_position_count = <NewportESP301HomeSearchMode.zero_position_count: 0>

2.8.2 NewportError
class instruments.newport .NewportError (errcode=None, timestamp=None)
Raised in response to an error with a Newport-brand instrument.

static get_message (code)
Returns the error string for a given error code

Parameters code (st r)— Error code as returned by instrument
Returns Full error code string
Return type str

axis
Gets the axis with which this error is concerned, or None if the error was not associated with any particlar
axis.

Type int

errcode
Gets the error code reported by the device.

Type int
messageDict = {‘x29’: ‘DIGITAL I/O INTERLOCK DETECTED’, ‘x32’: ‘INVALID TRAJECTORY MODE FOR M(

start_time = datetime.datetime(2016, 6, 9, 21, 38, 9, 313307)

timestamp
Geturns the timestamp reported by the device as the time at which this error occured.

Type datetime

2.9 Other Instruments

2.9.1 NewportESP301
2.9.2 PhaseMatrixFSW0020

Units

Units are identified to the Phase Matrix FSW-0020 using the Quantity class implemented by the quantities
package. To support the FSW-0020, we provide several additional unit quantities, listed here.

2.9. Other Instruments 61

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/datetime.html#module-datetime
http://pythonhosted.org/quantities/user/tutorial.html#module-quantities

InstrumentKit Library Documentation, Release 0.1.0

2.10 Oxford

2.10.1 OoxfordITC503 Temperature Controller

class instruments.oxford.OxfordITC503 (filelike)
The Oxford ITC503 is a multi-sensor temperature controller.

Example usage:

>>> import instruments as ik
>>> itc

ik.oxford.OxfordITC503.0open_gpibusb ('/dev/ttyUSBO', 1)

>>> print (itc.sensor[0].temperature)
>>> print (itc.sensor[1l].temperature)

class Sensor (parent, idx)
Class representing a probe sensor on the Oxford ITC 503.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the OxfordITC503 class.

temperature
Read the temperature of the attached probe to the specified channel.

Units Kelvin
Type Quantity

OxfordITC503.sensor
Gets a specific sensor object. The desired sensor is specified like one would access a list.

For instance, this would query the temperature of the first sensor:

>>> itc = ik.oxford.OxfordITC503.0open_gpibusb ('/dev/ttyUSBO', 1)
>>> print (itc.sensor[0] .temperature)

Type OxfordITC503.Sensor

2.11 PhaseMatrix

2.11.1 PhaseMatrixFSW0020 Signal Generator

class instruments.phasematrix.PhaseMatrixFSW0020 (filelike)
Communicates with a Phase Matrix FSW-0020 signal generator via the “Native SPI”” protocol, supported on all
FSW firmware versions.

Example:

>>> import instruments as ik

>>> import quantities as pqg

>>> inst = ik.phasematrix.PhaseMatrixFSW0020.open_serial ("/dev/ttyUSBO", baud=11520
>>> inst.frequency = 1 * pqg.GHz

>>> inst.power = 0 % ik.units.dBm # Can omit units and will assume dBm

>>> inst.output = True

reset ()

Causes the connected signal generator to perform a hardware reset. Note that no commands will be ac-

cepted by the generator for at least Hus.

62

Chapter 2. InstrumentKit APl Reference

InstrumentKit Library Documentation, Release 0.1.0

am_modulation
Gets/sets the amplitude modulation status of the FSW0020

Type bool

blanking
Gets/sets the blanking status of the FSW0020

Type bool

frequency
Gets/sets the output frequency of the signal generator. If units are not specified, the frequency is assumed
to be in gigahertz (GHz).

Type Quantity
Units frequency, assumed to be GHz

output
Gets/sets the channel output status of the FSW0020. Setting this property to True will turn the output on.

Type bool
phase

power
Gets/sets the output power of the signal generator. If units are not specified, the power is assumed to be in
decibel-milliwatts (dBm).

Type Quantity
Units log-power, assumed to be dBm

pulse_modulation
Gets/sets the pulse modulation status of the FSW0020

Type bool

ref output
Gets/sets the reference output status of the FSW0020

Type bool

2.12 Picowatt

2.12.1 PicowattAvs47 Resistance Bridge

class instruments.picowatt .PicowattAvs47 (filelike)
The Picowatt AVS 47 is a resistance bridge used to measure the resistance of low-temperature sensors.

Example usage:

>>> import instruments as ik
>>> bridge = ik.picowatt.PicowattAVS47.open_gpibusb ('/dev/ttyUSBO', 1)
>>> print bridge.sensor[0].resistance

class InputSource
Enum containing valid input source modes for the AVS 47

actual = <InputSource.actual: 1>

ground = <InputSource.ground: 0>

2.12. Picowatt 63

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

reference = <InputSource.reference: 2>

class PicowattAvVS47.Sensor (parent, idx)
Class representing a sensor on the PicowattAVS47

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the PicowattAvVS47 class.

resistance
Gets the resistance. It first ensures that the next measurement reading is up to date by first sending the
“ADC” command.
Units) (ohms)
Return type Quantity

PicowattAvS47.display
Gets/sets the sensor that is displayed on the front panel.

Valid display sensor values are O through 7 (inclusive).

Type int

PicowattAVS47.excitation
Gets/sets the excitation sensor number.

Valid excitation sensor values are 0 through 7 (inclusive).

Type int

PicowattAvVS47.input_source
Gets/sets the input source.

Type PicowattAVS47.InputSource

PicowattAVS47.mux_channel
Gets/sets the multiplexer sensor number. It is recommended that you ground the input before switching
the multiplexer channel.

Valid mux channel values are O through 7 (inclusive).

Type int

PicowattAVS47.remote
Gets/sets the remote mode state.

Enabling the remote mode allows all settings to be changed by computer interface and locks-out the front
panel.

Type bool

PicowattAvVS47.sensor
Gets a specific sensor object. The desired sensor is specified like one would access a list.

Return type Sensor
See also:

PicowattAVS47 for an example using this property.

64

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

2.13 Qubitekk

2.13.1 cc1 Coincidence Counter

class instruments.qubitekk.CC1 (filelike)
The CCI1 is a hand-held coincidence counter.

It has two setting values, the dwell time and the coincidence window. The coincidence window determines the
amount of time (in ns) that the two detections may be from each other and still be considered a coincidence. The
dwell time is the amount of time that passes before the counter will send the clear signal.

More information can be found at : http://www.qubitekk.com

class Channel (ccl, idx)
Class representing a channel on the Qubitekk CC1.

count
Gets the counts of this channel.
Return type int

CCl.clear counts()
Clears the current total counts on the counters.

CC1l.acknowledge
Gets/sets the acknowledge message state. If True, the CC1 will echo back every command sent, then print
the response (either Unable to comply, Unknown command or the response to a query). If False, the CC1
will only print the response.

Units None
Type boolean

CCl.channel
Gets a specific channel object. The desired channel is specified like one would access a list.

For instance, this would print the counts of the first channel:

>>> cc = ik.qubitekk.CCl.open_serial ('COM8', 19200, timeout=1)
>>> print (cc.channel[0].count)

Return type CCI1.Channel
CCl.delay
Get/sets the delay value (in nanoseconds) on Channel 1.
When setting, Nmaybe 0, 2, 4, 6, 8, 10, 12, or l4ns.
Return type quantities.ns
Returns the delay value

CCl.dwell_time
Gets/sets the length of time before a clear signal is sent to the counters.

Units As specified (if a Quantity) or assumed to be of units seconds.
Type Quantity

CCl.firmware
Gets the firmware version

Return type tuple ' (Major: ‘int, Minor:int, Patch‘int®)

2.13. Qubitekk 65

http://www.qubitekk.com
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

CCl.gate
Gets/sets the gate enable status

Type bool

CCl.subtract
Gets/sets the subtract enable status

Type bool

CCl.trigger_mode
Gets/sets the trigger mode setting for the CC1. This can be set to continuous or start/stop modes.

Type CC1.TriggerMode

CC1l.window
Gets/sets the length of the coincidence window between the two signals.

Units As specified (if a Quant ity) or assumed to be of units nanoseconds.

Type Quantity

2.14 Rigol

2.14.1 RigolDS1000Series Oscilloscope

class instruments.rigol.RigolDS1000Series (filelike)
The Rigol DS1000-series is a popular budget oriented oscilloscope that has featured wide adoption across hob-

byist circles.

Warning: This instrument is not complete, and probably not even functional!

class AcquisitionType
Enum containing valid acquisition types for the Rigol DS1000

average = <AcquisitionType.average: ‘AVER’>
normal = <AcquisitionType.normal: ‘NORM’>
peak_detect = <AcquisitionType.peak_detect: ‘PEAK’>

class Rigo1DS1000Series.Channel (parent, idx)
Class representing a channel on the Rigol DS1000.

This class inherits from DataSource.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the Rigol1DS1000Series class.

query (cmd)
Passes a command from the Channel class to the parent RigoIDS1000Series, appending the
required channel identification.
Parameters cmd (st r)— The command string to send to the instrument
Returns The result as returned by the instrument
Return type str

66 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

sendcemd (cmd)

Passes a command from the Channel class to the parent RigolDSI1000Series, appending the
required channel identification.
Parameters cmd (st) — The command string to send to the instrument

bw _limit
coupling
display
filter
invert

vernier

class RigolDS1000Series.Coupling
Enum containing valid coupling modes for the Rigol DS1000

ac = <Coupling.ac:

‘AC>

dc = <Coupling.dc: ‘DC’>

ground = <Coupling.ground: ‘GND’>

class Rigo1DS1000Series.DataSource (parent, name)
Class representing a data source (channel, math, or ref) on the Rigol DS1000

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the RigolDS1000Series class.

read_waveform (bin_format=True)

name

RigolDS1000Series.force_trigger ()

RigolDS1000Series.release_panel ()

Releases any lockout of the local control panel.

RigolDS1000Series.

run ()

Starts running the oscilloscope trigger.

RigolDS1000Series.

stop ()

Stops running the oscilloscope trigger.

RigolDS1000Series.acquire_averages
Gets/sets the number of averages the oscilloscope should take per acquisition.

Type int
RigolDS1000Series

RigolDS1000Series

RigolDS1000Series.

RigolDS1000Series

RigolDS1000Series

.acquire_type

.channel

math

.panel_locked

.ref

2.14. Rigol

67

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

2.15 Stanford Research Systems

2.15.1 srs345 Function Generator

class instruments.srs.SRS345 (filelike)
The SRS DS345 is a 30MHz function generator.

Example usage:

>>> import instruments as ik
>>> import quantities as pg
>>> srs = ik.srs.SRS345.open_gpib ('/dev/ttyUSBO', 1)

>>> srs.frequency = 1 * pqg.MHz
>>> print (srs.offset)
>>> srs.function = srs.Function.triangle

class Function
Enum containing valid output function modes for the SRS 345

arbitrary = <Function.arbitrary: 5>
noise = <Function.noise: 4>

ramp = <Function.ramp: 3>
sinusoid = <Function.sinusoid: 0>
square = <Function.square: 1>
triangle = <Function.triangle: 2>

SRS345. frequency
Gets/sets the output frequency.

Units As specified, or assumed to be Hz otherwise.
Type float orQuantity

SRS345. function
Gets/sets the output function of the function generator.

Type Function

SRS345.0ffset
Gets/sets the offset voltage for the output waveform.

Units As specified, or assumed to be V otherwise.
Type float orQuantity

SRS345.phase
Gets/sets the phase for the output waveform.

Units As specified, or assumed to be degrees (°) otherwise.

Type float orQuantity

2.15.2 srs830 Lock-In Amplifier

class instruments.srs.SRS830 (filelike, outx_mode=None)
Communicates with a Stanford Research Systems 830 Lock-In Amplifier.

Example usage:

68 Chapter 2

. InstrumentKit API Reference

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

>>> import instruments as ik

>>> import quantities as pqg

>>> srs = ik.srs.SRS830.open_gpibusb('/dev/ttyUSBO', 1)

>>> srs.frequency = 1000 * pg.hertz # Lock-In frequency

>>> data = srs.take_measurement (1, 10) # 1Hz sample rate, 10 samples total

class Buf ferMode
Enum for the SRS830 buffer modes.

loop = <BufferMode.loop: 1>
one_shot = <BufferMode.one_shot: 0>

class SRS830.Coupling
Enum for the SRS830 channel coupling settings.

ac = <Coupling.ac: 0>
dc = <Coupling.dc: 1>

class SRS830.FreqgSource
Enum for the SRS830 frequency source settings.

external = <FreqSource.external: 0>
internal = <FreqSource.internal: 1>

class SRS830 .Mode
Enum containing valid modes for the SRS 830

auxl = <Mode.aux1: ‘aux1’>
aux2 = <Mode.aux2: ‘aux2’>
aux3 = <Mode.aux3: ‘aux3’>
aux4 = <Mode.aux4: ‘aux4’>

chl = <Mode.chl: ‘chl’>

ch2 = <Mode.ch2: ‘ch2’>

none = <Mode.none: ‘none’>

r = <Mode.r: ‘r’>

ref = <Mode.ref: ‘ref’>

theta = <Mode.theta: ‘theta’>

x = <Mode.x: ‘x>

xnoise = <Mode.xnoise: ‘xnoise’>
y = <Mode.y: ‘y’>

ynoise = <Mode.ynoise: ‘ynoise’>

SRS830.auto_offset (mode)

Sets a specific channel mode to auto offset. This is the same as pressing the auto offset key on the display.

It sets the offset of the mode specified to zero.

Parameters mode (Mode or str) — Target mode of auto_offset function. Valid inputs are
{XIYIR}.

2.15. Stanford Research Systems

69

http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

SRS830.auto_phase ()
Sets the lock-in to auto phase. This does the same thing as pushing the auto phase button.

Do not send this message again without waiting the correct amount of time for the lock-in to finish.

SRS830.clear data_ buffer()
Clears the data buffer of the SRS830.

SRS830.data_snap (model, mode2)
Takes a snapshot of the current parameters are defined by variables model and mode2.

For combinations (X,Y) and (R,THETA), they are taken at the same instant. All other combinations are
done sequentially, and may not represent values taken from the same timestamp.

Returns a list of floats, arranged in the order that they are given in the function input parameters.

Parameters

* model (Mode or st r)—Mode to take data snap for channel 1. Valid inputs are given by:
{XIYIRITHETAIAUX1IAUX2IAUX3IAUX4/REFICH1ICH2}

* mode2 (Mode or st r)— Mode to take data snap for channel 2. Valid inputs are given by:
{XIYIRITHETAIAUX1IAUX2IAUX3IAUX4/REFICH1ICH2 }

Return type 1ist

SRS830.init (sample_rate, buffer_mode)
Wrapper function to prepare the SRS830 for measurement. Sets both the data sampling rate and the end

of buffer mode
Parameters

* sample_rate (Quantity or str)— The desired sampling rate. Acceptable set values
are 2" where n € {—4... + 9} in units Hertz or the string t rigger.

e buffer mode (SRS830.BufferMode) — This sets the behaviour of the instrument
when the data storage buffer is full. Setting to one_shot will stop acquisition, while
loop will repeat from the start.

SRS830.pause ()
Has the instrument pause data capture.

SRS830.read_data_ buffer (channel)
Reads the entire data buffer for a specific channel. Transfer is done in ASCII mode. Although binary

would be faster, this is not currently implemented.
Returns a list of floats containing instrument’s measurements.

Parameters channel (SRS830.Mode or str) — Channel data buffer to read from. Valid
channels are given by {CHIICH2}.

Return type 1ist

SRS830.set_channel_display (channel, display, ratio)
Sets the display of the two channels. Channel 1 can display X, R, X Noise, Aux In 1, Aux In 2 Channel 2
can display Y, Theta, Y Noise, Aux In 3, Aux In 4

Channel 1 can have ratio of None, Aux In 1, Aux In 2 Channel 2 can have ratio of None, Aux In 3, Aux In
4

Parameters

* channel (Mode or st r) — Channel you wish to set the display of. Valid input is one of
{CHI1ICH2}.

70

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

* display (Mode or str) — Setting the channel will be changed to. Valid input is one of
{XIYIRITHETAIXNOISEIYNOISEIAUX1IAUX2IAUX3IAUX4}

* ratio (Mode or str) — Desired ratio setting for this channel. Valid input is one of
{NONEIAUX1IAUX2IAUX3IAUX4}

SRS830.set_offset_expand (mode, offset, expand)
Sets the channel offset and expand parameters. Offset is a percentage, and expand is given as a multiplica-
tion factor of 1, 10, or 100.

Parameters

* mode (SRS830.Mode or str) — The channel mode that you wish to change the offset
and/or the expand of. Valid modes are X, Y, and R.

* offset (float) - Offset of the mode, given as a percent. offset = <-105...+105>.
* expand (int)— Expansion factor for the measurement. Valid input is {11101100}.

SRS830.start_data_transfer()
Wrapper function to start the actual data transfer. Sets the transfer mode to FAST?2, and triggers the data
transfer to start after a delay of 0.5 seconds.

SRS830.start_scan ()
After setting the data transfer on via the dataTransfer function, this is used to start the scan. The scan starts
after a delay of 0.5 seconds.

SRS830.take_measurement (sample_rate, num_samples)
Wrapper function that allows you to easily take measurements with a specified sample rate and number of
desired samples.

Function will call time.sleep() for the required amount of time it will take the instrument to complete this
sampling operation.

Returns a list containing two items, each of which are lists containing the channel data. The order is [[Chl
data], [Ch2 data]].

Parameters

* sample_rate (int) — Set the desired sample rate of the measurement. See
sample_rate for more information.

* num_samples (int)— Number of samples to take.
Return type 1ist

SRS830.amplitude
Gets/set the amplitude of the internal reference signal.

Set value should be 0.004 <= newval <= 5.000

Units As specified (if a Quantity) or assumed to be of units volts. Value should be specified
as peak-to-peak.

Type Quantity with units volts peak-to-peak.
SRS830.amplitude_max
SRS830.amplitude_min

SRS830.buffer_mode
Gets/sets the end of buffer mode.

This sets the behaviour of the instrument when the data storage buffer is full. Setting to one_shot will
stop acquisition, while 1oop will repeat from the start.

2.15. Stanford Research Systems 71

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#list

InstrumentKit Library Documentation, Release 0.1.0

Type SRS830.BufferMode

SRS830.coupling
Gets/sets the input coupling to either ‘ac’ or ‘dc’.

Type SRS830.Coupling

SRS830.data_transfer
Gets/sets the data transfer status.

Note that this function only makes use of 2 of the 3 data transfer modes supported by the SRS830. The
supported modes are FASTO and FAST2. The other, FAST1, is for legacy systems which this package does
not support.

Type bool

SRS830. frequency
Gets/sets the lock-in amplifier reference frequency.

Units As specified (if a Quantity) or assumed to be of units Hertz.
Type Quantity with units Hertz.
SRS830. frequency_source

Gets/sets the frequency source used. This is either an external source, or uses the internal reference.
Type SRS830.FregSource

SRS830.input_shield ground
Function sets the input shield grounding to either ‘float” or ‘ground’.

Type bool

SRS830.num_data_points
Gets the number of data sets in the SRS830 buffer.

Type int

SRS830.phase
Gets/set the phase of the internal reference signal.

Set value should be -360deg <= newval < +730deg.
Units As specified (if a Quantity) or assumed to be of units degrees.
Type Quantity with units degrees.
SRS830.phase_max
SRS830.phase_min

SRS830.sample_rate
Gets/sets the data sampling rate of the lock-in.

Acceptable set values are 2" where n € {—4... + 9} or the string t rigger.

Type Quantity with units Hertz.

2.15.3 srRscTC100 Cryogenic Temperature Controller

class instruments.srs.SRSCTC100 (filelike)
Communicates with a Stanford Research Systems CTC-100 cryogenic temperature controller.

72 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

class Channel (ctc, chan_name)
Represents an input or output channel on an SRS CTC-100 cryogenic temperature controller.

get_log ()
Gets all of the log data points currently saved in the instrument memory.
Returns Tuple of all the log data points. First value is time, second is the measurement
value.
Return type Tuple of 2x Quantity, each comprised of a numpy array
(numpy .dnarray).

get_log_point (which="next’, units=None)
Get a log data point from the instrument.
Parameters
* which (st r)— Which data point you want. Valid examples include first, and next.
Consult the instrument manual for the complete list
* units (UnitQuantity) — Units to attach to the returned data point. If left with the
value of None then the instrument will be queried for the current units setting.
Returns The log data point with units
Return type Quantity

average
Gets the average measurement for the specified channel as determined by the statistics gathering.

Type Quantity

name
Gets/sets the name of the channel that will be used by the instrument to identify the channel in pro-
gramming and on the display.
Type str

sensor_type
Gets the type of sensor attached to the specified channel.
Type SRSCTC100.SensorType

stats_enabled
Gets/sets enabling the statistics for the specified channel.

Type bool

stats_points
Gets/sets the number of sample points to use for the channel statistics.
Type int

std_dev
Gets the standard deviation for the specified channel as determined by the statistics gathering.
Type Quantity

units
Gets the appropriate units for the specified channel.

Units can be one of celsius, watt, volt, ohm, or dimensionless.
Type UnitQuantity

value
Gets the measurement value of the channel. Units depend on what kind of sensor and/or channel you
have specified. Units can be one of celsius, watt, volt, ohm, or dimensionless.

Type Quantity

class SRSCTC100.SensorType
Enum containing valid sensor types for the SRS CTC-100

diode = <SensorType.diode: ‘Diode’>

2.15. Stanford Research Systems 73

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

rox = <SensorType.rox: ‘ROX’>
rtd = <SensorType.rtd: ‘RTD’>
thermistor = <SensorType.thermistor: ‘Thermistor’>

SRSCTC100.channel units ()
Returns a dictionary from channel names to channel units, using the getOutput .units command.
Unknown units and dimensionless quantities are presented the same way by the instrument, and so both
are reported using pg.dimensionless.

Return type dict with channel names as keys and units as values

SRSCTC100.clear_log()
Clears the SRS CTC100 log

Not sure if this works.

SRSCTC100.errcheck ()
Performs an error check query against the CTC100. This function does not return anything, but will raise
an IOError if the error code received by the instrument is not zero.

Returns Nothing
SRSCTC100.query (cmd, size=-1)
SRSCTC100.sendemd (cmd)

SRSCTC100.channel
Gets a specific measurement channel on the SRS CTC100. This is accessed like one would access a dict.
Here you must use the actual channel names to address a specific channel. This is different from most other
instruments in InstrumentKit because the CRC100 channel names can change by the user.

The list of current valid channel names can be accessed by the SRSCTC100._channel_names ()
function.

Type SRSCTC100.Channel

SRSCTC100.display_figures
Gets/sets the number of significant figures to display. Valid range is 0-6 inclusive.

Type int

SRSCTC100.error_check_toggle
Gets/sets if errors should be checked for after every command.

Bool

2.15.4 srRsDG645 Digital Delay Generator

class instruments.srs.SRSDG645 (filelike)

Communicates with a Stanford Research Systems DG645 digital delay generator, using the SCPI commands
documented in the user’s guide.

Example usage:

>>> import instruments as ik

>>> import quantities as pqgq

>>> srs = ik.srs.SRSDG645.open_gpibusb ('/dev/ttyUSBO', 1)

>>> srs.channel ["B"].delay = (srs.channel["A"], pg.Quantity (10, 'ns'))
>>> srs.output ["AB"].level_amplitude = pg.Quantity (4.0, "V")

74

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#int
http://www.thinksrs.com/downloads/PDFs/Manuals/DG645m.pdf

InstrumentKit Library Documentation, Release 0.1.0

class Channels
Enumeration of valid delay channels for the DDG.

A = <Channels.A: 2>
B = <Channels.B: 3>
C = <Channels.C: 4>
D = <Channels.D: 5>
E = <Channels.E: 6>
F = <Channels.F: 7>
G = <Channels.G: 8>
H = <Channels.H: 9>
TO = <Channels.T0: 0>
T1 = <Channels.T1: 1>

class SRSDG645 .DisplayMode
Enumeration of possible modes for the physical front-panel display.

adv_triggering enable = <DisplayMode.adv_triggering_enable: 4>
burst_TO0_config = <DisplayMode.burst_T0_config: 14>
burst_count = <DisplayMode.burst_count: 9>

burst_delay = <DisplayMode.burst_delay: 8>

burst_mode = <DisplayMode.burst_mode: 7>

burst_period = <DisplayMode.burst_period: 10>
channel_delay = <DisplayMode.channel_delay: 11>
channel_levels = <DisplayMode.channel_levels: 12>
channel_polarity = <DisplayMode.channel_polarity: 13>
prescale_config = <DisplayMode.prescale_config: 6>
trigger_ holdoff = <DisplayMode.trigger_ holdoff: 5>
trigger_line = <DisplayMode.trigger_line: 3>
trigger_rate = <DisplayMode.trigger_rate: 0>
trigger_single_shot = <DisplayMode.trigger_single_shot: 2>
trigger_threshold = <DisplayMode.trigger_threshold: 1>

class SRSDG645.LevelPolarity
Polarities for output levels.

negative = <LevelPolarity.negative: 0>
positive = <LevelPolarity.positive: 1>

class SRSDG645 .0utput (parent, idx)
An output from the DDG.

level_amplitude
Amplitude (in voltage) of the output level for this output.
Type float or Quantity

2.15. Stanford Research Systems 75

http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

Units As specified, or V by default.

polarity
Polarity of this output.
Type SRSDG645.LevelPolarity

class SRSDG645.0utputs
Enumeration of valid outputs from the DDG.

AB = <Outputs.AB: 1>
CD = <QOutputs.CD: 2>
EF = <Outputs.EF: 3>
GH = <Outputs.GH: 4>
TO = <Outputs.TO: 0>

class SRSDG645.TriggerSource
Enumeration of the different allowed trigger sources and modes.

external_falling = <TriggerSource.external_falling: 2>
external_rising = <TriggerSource.external_rising: 1>
internal = <TriggerSource.internal: 0>

line = <TriggerSource.line: 6>

single_shot = <TriggerSource.single_shot: 5>
ss_external_falling = <TriggerSource.ss_external_falling: 4>
ss_external_rising = <TriggerSource.ss_external_rising: 3>

SRSDG645.channel
Gets a specific channel object.

The desired channel is accessed by passing an EnumValue from Channels. For example, to access
channel A:

>>> import instruments as ik
>>> inst = ik.srs.SRSDG645.open_gpibusb ('/dev/ttyUSBO", 1)
>>> inst.channel[inst.Channels.A]

See the example in SRSDG64 5 for a more complete example.
Return type _SRSDG645Channel

SRSDG645.display

Gets/sets the front-panel display mode for the connected DDG. The mode is a tuple of the display mode
and the channel.

Type tuple of an SRSDG645.DisplayMode and an SRSDG645.Channels

SRSDG645.enable_adv_triggering
Gets/sets whether advanced triggering is enabled.

Type bool

SRSDG645.holdoff
Gets/sets the trigger holdoff time.

Type Quantityor float

Units As passed, or s if not specified.

76 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

SRSDG645.output
Gets the specified output port.

Type SRSDG645.Output

SRSDG645.trigger_rate
Gets/sets the rate of the internal trigger.

Type Quantityor float
Units As passed or Hz if not specified.

SRSDG645.trigger_source
Gets/sets the source for the trigger.

Type SRSDG645.TriggerSource

2.16 Tektronix

2.16.1 TekAWG2000 Arbitrary Wave Generator

class instruments.tektronix.TekAWG2000 (filelike)
Communicates with a Tektronix AWG2000 series instrument using the SCPI commands documented in the
user’s guide.

class Channel (rek, idx)
Class representing a physical channel on the Tektronix AWG 2000

Warning: This class should NOT be manually created by the user. It

is designed to be initialized by the TekAWG2000 class.

amplitude
Gets/sets the amplitude of the specified channel.
Units As specified (if a Quantity) or assumed to be of units Volts.
Type Quantity with units Volts peak-to-peak.

frequency
Gets/sets the frequency of the specified channel when using the built-in function generator.
::units: As specified (if a Quantity) or assumed to be of units Hertz.

Type Quantity with units Hertz.

name
Gets the name of this AWG channel
Type str

offset
Gets/sets the offset of the specified channel.
Units As specified (if a Quantity) or assumed to be of units Volts.
Type Quantity with units Volts.

polarity
Gets/sets the polarity of the specified channel.
Type TekAWG2000.Polarity

shape
Gets/sets the waveform shape of the specified channel. The AWG will use the internal function
generator for these shapes.

2.16. Tektronix 77

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

Type TekAWG2000.Shape

class TekAWG2000 .Polarity
Enum containing valid polarity modes for the AWG2000

inverted = <Polarity.inverted: ‘INVERTED’>
normal = <Polarity.normal: ‘NORMAL’>

class TekAWG2000 . Shape
Enum containing valid waveform shape modes for hte AWG2000

pulse = <Shape.pulse: ‘PULSE’>

ramp = <Shape.ramp: ‘RAMP’>

sine = <Shape.sine: ‘SINUSOID’>

square = <Shape.square: ‘SQUARE’>
triangle = <Shape.triangle: ‘TRIANGLE’>

TekAWG2000.upload_waveform (yzero, ymult, xincr, waveform)
Uploads a waveform from the PC to the instrument.

Parameters
e yzero (float or int)— Y-axis origin offset
e ymult (float or int) — Y-axis data point multiplier
* xincr (float or int) — X-axis data point increment

* waveform (numpy.ndarray) — Numpy array of values representing the waveform
to be uploaded. This array should be normalized. This means that all absolute values
contained within the array should not exceed 1.

TekAWG2000.channel
Gets a specific channel on the AWG2000. The desired channel is accessed like one would access a list.

Example usage:

>>> import instruments as ik
>>> inst = ik.tektronix.TekAWG2000.open_gpibusb ("/dev/ttyUSBO", 1)
>>> print (inst.channel[0].frequency)

Returns A channel object for the AWG2000
Return type TekAWG2000.Channel
TekAWG2000.waveform_ name
Gets/sets the destination waveform name for upload.
This is the file name that will be used on the AWG for any following waveform data that is uploaded.
Type str

2.16.2 TekDP04104 Oscilloscope

class instruments.tektronix.TekDP04104 (filelike)
The Tektronix DPO4104 is a multi-channel oscilloscope with analog bandwidths ranging from 100MHz to
1GHz.

This class inherits from SCPITnstrument.

78 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/functions.html#int
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

Example usage:

>>> import instruments as ik
>>> tek = ik.tektronix.TekDP0O4104.open_tcpip("192.168.0.2", 8888)
>>> [x, y] = tek.channel[0].read_waveform/()

class Coupling
Enum containing valid coupling modes for the channels on the Tektronix DPO 4104

ac = <Coupling.ac: ‘AC’>
dc = <Coupling.dc: ‘DC’>
ground = <Coupling.ground: ‘GND’>

TekDP04104. force_trigger ()
Forces a trigger event to occur on the attached oscilloscope. Note that this is distinct from the standard
SCPI « TRG functionality.

TekDP0O4104.aquisition_continuous
Gets/sets whether the aquisition is continuous (“run/stop mode”) or whether aquisiton halts after the next
sequence (“single mode”).

Type bool

TekDP0O4104.aquisition_length
Gets/sets the aquisition length of the oscilloscope

Type int

TekDP0O4104.aquisition_running
Gets/sets the aquisition state of the attached instrument. This property is True if the aquisition is running,
and is False otherwise.

Type bool

TekDP04104.channel
Gets a specific oscilloscope channel object. The desired channel is specified like one would access a list.

For instance, this would transfer the waveform from the first channel:

>>> tek = ik.tektronix.TekDP04104.open_tcpip("192.168.0.2", 8888)
>>> [x, y] = tek.channel[0].read_waveform()

Return type _ TekDP0O4104Channel

TekDP04104 .data_source
Gets/sets the the data source for waveform transfer.

TekDP04104 .data_width
Gets/sets the data width (number of bytes wide per data point) for waveforms transfered to/from the oscil-
loscope.

Valid widths are 1 or 2.

Type int

TekDP0O4104 .math
Gets a data source object corresponding to the MATH channel.

Return type _ TekDPO4104DataSource

2.16. Tektronix 79

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

TekDP04104.ref

Gets a specific oscilloscope reference channel object. The desired channel is specified like one would
access a list.

For instance, this would transfer the waveform from the first channel:

>>> import instruments as ik
>>> tek = ik.tektronix.TekDP04104.open_tcpip("192.168.0.2", 8888)
>>> [x, y] tek.ref[0] .read_waveform()

Return type _TekDPO4104DataSource
TekDP04104.y_offset
Gets/sets the Y offset of the currently selected data source.

class instruments.tektronix._TekDPO4104DataSource (fek, name)
Class representing a data source (channel, math, or ref) on the Tektronix DPO 4104.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by the
TekDP0O4104 class.

read_waveform (bin_format=True)
Read waveform from the oscilloscope. This function is all inclusive. After reading the data from the

oscilloscope, it unpacks the data and scales it accordingly. Supports both ASCII and binary waveform
transfer.

Function returns a tuple (x,y), where both x and y are numpy arrays.

Parameters bin_format (bool)—If True, datais transfered in a binary format. Otherwise,
data is transferred in ASCII.

name
Gets the name of this data source, as identified over SCPI.

Type str
y_offset

class instruments.tektronix._TekDP0O4104Channel (parent, idx)
Class representing a channel on the Tektronix DPO 4104.

This class inherits from _ TekDPO4104DataSource.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by the
TekDP0O4104 class.

coupling
Gets/sets the coupling setting for this channel.

Type TekDP04104.Coupling

2.16.3 TekDP0O70000 Oscilloscope

class instruments.tektronix.TekDPO70000 (filelike)
The Tektronix DPO70000 series is a multi-channel oscilloscope with analog bandwidths ranging up to 33GHz.

This class inherits from SCPITnstrument.

Example usage:

80 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

>>> import instruments as ik
>>> tek = ik.tektronix.TekDPO70000.0pen_tcpip("192.168.0.2", 8888)
>>> [x, V] tek.channel[0] .read_waveform()

class AcquisitionMode
Enum containing valid acquisition modes for the Tektronix 70000 series oscilloscopes.

average = <AcquisitionMode.average: ‘AVE’>

envelope = <AcquisitionMode.envelope: ‘ENV’>

hi_res = <AcquisitionMode.hi_res: ‘HIR’>

peak_detect = <AcquisitionMode.peak_detect: ‘PEAK’>
sample = <AcquisitionMode.sample: ‘SAM’>

waveform_db = <AcquisitionMode.waveform_db: ‘WFMDB’>

class TekDPO70000.AcquisitionState
Enum containing valid acquisition states for the Tektronix 70000 series oscilloscopes.

off = <AcquisitionState.off: ‘OFF’>

on = <AcquisitionState.on: ‘ON’>

run = <AcquisitionState.run: ‘RUN’>
stop = <AcquisitionState.stop: ‘STOP’>

class TekDPO70000 .BinaryFormat
Enum containing valid binary formats for the Tektronix 70000 series oscilloscopes (int, unsigned-int,
floating-point).

float = <BinaryFormat.float: ‘FP’>
int = <BinaryFormat.int: ‘RI’>
uint = <BinaryFormat.uint: ‘RP’>

class TekDPO70000 . ByteOrder
Enum containing valid byte order (big-/little-endian) for the Tektronix 70000 series oscilloscopes.

big_endian = <ByteOrder.big_endian: ‘MSB’>
little_endian = <ByteOrder.little_endian: ‘LSB’>

class TekDPO70000 .Channel (parent, idx)
Class representing a channel on the Tektronix DPO 70000.

This class inherits from TekDPO70000.DataSource.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the TekDPO70000 class.

class Coupling
Enum containing valid coupling modes for the oscilloscope channel

ac = <Coupling.ac: ‘AC’>

dc = <Coupling.dc: ‘DC’>

dc_reject = <Coupling.dc_reject: ‘DCREJ’>
ground = <Coupling.ground: ‘GND’>

2.16.

Tektronix 81

InstrumentKit Library Documentation, Release 0.1.0

TekDPO70000.Channel .query (cmd, size=-1)
Wraps queries sent from property factories in this class with identifiers for the specified channel.

Parameters
* cmd (str)— Query command to send to the instrument
* size (int) — Number of characters to read from the response. Default value reads

until a termination character is found.
Returns The query response
Return type str

TekDPO70000.Channel.sendemd (cmd)
Wraps commands sent from property factories in this class with identifiers for the specified channel.
Parameters emd (st r) — Command to send to the instrument

TekDPO70000.Channel .bandwidth

TekDPO70000.Channel.coupling
Gets/sets the coupling for the specified channel.

Example usage:

>>> import instruments as ik

>>> inst = ik.tektronix.TekDPO70000.o0pen_tcpip("192.168.0.1", 8080)
>>> channel = inst.channel[0]

>>> channel.coupling = channel.Coupling.ac

TekDPO70000.Channel.deskew

TekDPO70000.Channel.label
Just a human readable label for the channel.

TekDPO70000.Channel.label_xpos
The x position, in divisions, to place the label.

TekDPO70000.Channel.label_ypos
The y position, in divisions, to place the label.

TekDPO70000.Channel.offset
The vertical offset in units of volts. Voltage is given by offset+scalex (5xraw/2715 -
position).

TekDPO70000.Channel.position
The vertical position, in divisions from the center graticule, ranging from -8 to 8. Voltage is given
by offset+scale* (5+«raw/2715 — position).

TekDPO70000.Channel.scale
Vertical channel scale in units volts/division. Voltage is given by of fset+scalex* (5«raw/2"15
- position).

TekDPO70000.Channel.termination

class TekDPO70000 .DataSource (parent, name)
Class representing a data source (channel, math, or ref) on the Tektronix DPO 70000.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the TekDPO 70000 class.

read_waveform (bin_format=True)

name

82

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

class TekDPO70000 . HorizontalMode
Enum containing valid horizontal scan modes for the Tektronix 70000 series oscilloscopes.

auto = <HorizontalMode.auto: ‘AUTO’>
constant = <HorizontalMode.constant: ‘CONST’>
manual = <HorizontalMode.manual: ‘MAN’>

class TekDPO70000 .Math (parent, idx)
Class representing a math channel on the Tektronix DPO 70000.

This class inherits from TekDPO70000.DataSource.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the TekDPO70000 class.

class FilterMode
Enum containing valid filter modes for a math channel on the TekDPO70000 series oscilloscope.

centered = <FilterMode.centered: ‘CENT’>
shifted = <FilterMode.shifted: ‘SHIF’>

class TekDPO70000.Math.Mag
Enum containing valid amplitude units for a math channel on the TekDPO70000 series oscilloscope.

db = <Mag.db: ‘DB’>
dbm = <Mag.dbm: ‘DBM’>
linear = <Mag.linear: ‘LINEA’>

class TekDPO70000.Math.Phase
Enum containing valid phase units for a math channel on the TekDPO70000 series oscilloscope.

degrees = <Phase.degrees: ‘DEG’>
group_delay = <Phase.group_delay: ‘GROUPD’>
radians = <Phase.radians: ‘RAD’>

class TekDPO70000.Math.SpectralWindow
Enum containing valid spectral windows for a math channel on the TekDPO70000 series oscilloscope.

blackman_harris = <SpectralWindow.blackman_harris: ‘BLACKMANH’>
flattop2 = <SpectralWindow.flattop2: ‘FLATTOP2’>

gaussian = <Spectral Window.gaussian: ‘GAUSS’>

hamming = <SpectralWindow.hamming: ‘HAMM’>

hanning = <SpectralWindow.hanning: ‘HANN’>

kaiser besse = <SpectralWindow.kaiser_besse: ‘KAISERB’>
rectangular = <SpectralWindow.rectangular: ‘RECTANG’>
tek_exponential = <SpectralWindow.tek_exponential: ‘TEKEXP’>

TekDPO70000.Math.query (cmd, size=-1)

Wraps queries sent from property factories in this class with identifiers for the specified math channel.
Parameters

* cmd (str)— Query command to send to the instrument

2.16. Tektronix 83

http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

* size (int) — Number of characters to read from the response. Default value reads
until a termination character is found.
Returns The query response
Return type str

TekDPO70000.Math.sendemd (cmd)
Wraps commands sent from property factories in this class with identifiers for the specified math
channel.
Parameters cmd (st r)— Command to send to the instrument

TekDPO70000.Math.autoscale
Enables or disables the auto-scaling of new math waveforms.

TekDPO70000.Math.define
A text string specifying the math to do, ex. CH1+CH2

TekDPO70000.Math.filter_mode
TekDPO70000.Math.filter risetime

TekDPO70000.Math.label
Just a human readable label for the channel.

TekDPO70000.Math.label_xpos
The x position, in divisions, to place the label.

TekDPO70000.Math.label_ypos
The y position, in divisions, to place the label.

TekDPO70000.Math.num_avg
The number of acquisistions over which exponential averaging is performed.

TekDPO70000.Math.position
The vertical position, in divisions from the center graticule.

TekDPO70000.Math.scale
The scale in volts per division. The range is from 100e-36 to 100e+36.

TekDPO70000.Math.spectral_center
The desired frequency of the spectral analyzer output data span in Hz.

TekDPO70000.Math.spectral_gatepos
The gate position. Units are represented in seconds, with respect to trigger position.

TekDPO70000.Math.spectral_gatewidth
The time across the 10-division screen in seconds.

TekDPO70000.Math.spectral_lock

TekDPO70000.Math.spectral_mag
Whether the spectral magnitude is linear, db, or dbm.

TekDPO70000.Math.spectral_phase
Whether the spectral phase is degrees, radians, or group delay.

TekDPO70000.Math.spectral_reflevel
The value that represents the topmost display screen graticule. The units depend on spectral_mag.

TekDPO70000.Math.spectral_reflevel_ offset

TekDPO70000.Math.spectral_resolution_bandwidth
The desired resolution bandwidth value. Units are represented in Hertz.

84 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

TekDPO70000.Math.spectral_span
Specifies the frequency span of the output data vector from the spectral analyzer.

TekDPO70000.Math.spectral_suppress
The magnitude level that data with magnitude values below this value are displayed as zero phase.

TekDPO70000.Math.spectral_unwrap
Enables or disables phase wrapping.

TekDPO70000.Math.spectral_window

TekDPO70000.Math.threshhold
The math threshhold in volts

TekDPO70000.Math.unit_string
Just a label for the units...doesn”’t actually change anything.

class TekDPO70000 . SamplingMode
Enum containing valid sampling modes for the Tektronix 70000 series oscilloscopes.

equivalent_time_allowed = <SamplingMode.equivalent_time_allowed: ‘ET’>
interpolation_allowed = <SamplingMode.interpolation_allowed: ‘IT’>
real_time = <SamplingMode.real_time: ‘RT’>

class TekDPO70000.StopAfter
Enum containing valid stop condition modes for the Tektronix 70000 series oscilloscopes.

run_stop = <StopAfter.run_stop: ‘RUNST’>
sequence = <StopAfter.sequence: ‘SEQ’>

class TekDPO70000.TriggerState
Enum containing valid trigger states for the Tektronix 70000 series oscilloscopes.

armed = <TriggerState.armed: ‘ARMED’>
auto = <TriggerState.auto: ‘AUTO’>

dpo = <TriggerState.dpo: ‘DPO’>

partial = <TriggerState.partial: ‘PARTIAL’>
ready = <TriggerState.ready: ‘READY’>

class TekDPO70000 .WaveformEncoding
Enum containing valid waveform encoding modes for the Tektronix 70000 series oscilloscopes.

ascii = <WaveformEncoding.ascii: ‘ASCII’>
binary = <WaveformEncoding.binary: ‘BINARY’>

TekDP0O70000. force_trigger ()
Forces a trigger event to happen for the oscilloscope.

TekDPO70000.run ()
Enables the trigger for the oscilloscope.

TekDP0O70000.select_fastest_encoding()
Sets the encoding for data returned by this instrument to be the fastest encoding method consistent with
the current data source.

TekDPO70000.stop ()
Disables the trigger for the oscilloscope.

TekDPO70000.HOR_DIVS =10

2.16. Tektronix 85

InstrumentKit Library Documentation, Release 0.1.0

TekDPO70000.VERT_DIVS =10

TekDPO70000.acquire_enhanced_enob
Valid values are AUTO and OFF.

TekDP0O70000.acquire_enhanced_state

TekDPO70000.acquire_interp_8bit
Valid values are AUTO, ON and OFF.

TekDPO70000.acquire_magnivu
TekDP0O70000.acquire_mode
TekDPO70000.acquire_mode_actual

TekDPO70000.acquire_num_acquisitions
The number of waveform acquisitions that have occurred since starting acquisition with the AC-
Quire:STATE RUN command

TekDP0O70000.acquire_num_avgs
The number of waveform acquisitions to average.

TekDPO70000.acquire_num_envelop
The number of waveform acquisitions to be enveloped

TekDP0O70000.acquire_num_frames
The number of frames acquired when in FastFrame Single Sequence and acquisitions are running.

TekDPO70000.acquire_num_samples
The minimum number of acquired samples that make up a waveform database (WfmDB) waveform for
single sequence mode and Mask Pass/Fail Completion Test. The default value is 16,000 samples. The
range is 5,000 to 2,147,400,000 samples.

TekDPO70000.acquire_sampling_mode

TekDPO70000.acquire_state
This command starts or stops acquisitions.

TekDP0O70000.acquire_stop_after
This command sets or queries whether the instrument continually acquires acquisitions or acquires a single
sequence.

TekDP0O70000.channel
TekDPO70000.data_framestart
TekDPO70000.data_framestop

TekDP0O70000.data_source
Gets/sets the data source for the oscilloscope. This will return the actual Channel/Math/DataSource
object as if it was accessed through the usual TekDPO70000. channel, TekDPO70000.math, or
TekDPO70000. ref properties.

Type TekDPO70000.Channel or TekDPO70000.Math

TekDPO70000.data_start
The first data point that will be transferred, which ranges from 1 to the record length.

TekDP0O70000.data_stop
The last data point that will be transferred.

TekDPO70000.data_sync_sources

86

Chapter 2. InstrumentKit APl Reference

InstrumentKit Library Documentation, Release 0.1.0

TekDPO70000.horiz_acq duration
The duration of the acquisition.

TekDPO70000.horiz_acq length
The record length.

TekDP0O70000.horiz_delay_ mode

TekDPO70000.horiz_delay_pos
The percentage of the waveform that is displayed left of the center graticule.

TekDP0O70000.horiz_delay time
The base trigger delay time setting.

TekDPO70000.horiz_interp_ratio
The ratio of interpolated points to measured points.

TekDP0O70000.horiz_main_pos
The percentage of the waveform that is displayed left of the center graticule.

TekDPO70000.horiz_mode

TekDPO70000.horiz_pos
The position of the trigger point on the screen, left is 0%, right is 100%.

TekDP0O70000.horiz_record_length
The recond length in samples. See horiz_mode; manual mode lets you change the record length, while
the length is readonly for auto and constant mode.

TekDPO70000.horiz_record length_lim
The recond length limit in samples.

TekDPO70000.horiz_roll
Valid arguments are AUTO, OFF, and ON.

TekDPO70000.horiz_sample_rate
The sample rate in samples per second.

TekDPO70000.horiz_scale
The horizontal scale in seconds per division. The horizontal scale is readonly when horiz_mode is
manual.

TekDPO70000.horiz_unit
TekDPO70000.math

TekDPO70000.0outgoing_binary_format
Controls the data type of samples when transferring waveforms from the instrument to the host using
binary encoding.

TekDP0O70000.0utgoing byte_order
Controls whether binary data is returned in little or big endian.

TekDPO70000.0outgoing_n_bytes
The number of bytes per sample used in representing outgoing waveforms in binary encodings.

Must be either 1, 2, 4 or 8.

TekDP0O70000.0outgoing waveform_ encoding
Controls the encoding used for outgoing waveforms (instrument — host).

TekDPO70000.ref

TekDPO70000.trigger_state

2.16. Tektronix 87

InstrumentKit Library Documentation, Release 0.1.0

2.16.4 TekTDS224 Oscilloscope

class instruments.tektronix.TekTDS224 (filelike)
The Tektronix TDS224 is a multi-channel oscilloscope with analog bandwidths of 100MHz.
This class inherits from SCPIInstrument.

Example usage:

>>> import instruments as ik
>>> tek = ik.tektronix.TekTDS224.open_gpibusb ("/dev/ttyUSBO", 1)
>>> [x, V] tek.channel[0] .read_waveform()

class Coupling
Enum containing valid coupling modes for the Tek TDS224

ac = <Coupling.ac: ‘AC’>
dc = <Coupling.dc: ‘DC’>
ground = <Coupling.ground: ‘GND’>

TekTDS224 .channel
Gets a specific oscilloscope channel object. The desired channel is specified like one would access a list.

For instance, this would transfer the waveform from the first channel:

>>> import instruments as ik
>>> tek = ik.tektronix.TekTDS224.open_tcpip('192.168.0.2', 8888)
>>> [x, y] = tek.channel[0].read_waveform()

Return type _TekTDS224Channel
TekTDS224 .data_source
Gets/sets the the data source for waveform transfer.

TekTDS224 .data_width
Gets/sets the byte-width of the data points being returned by the instrument. Valid widths are 1 or 2.

Type int
TekTDS224 . force_trigger

TekTDS224 .math
Gets a data source object corresponding to the MATH channel.

Return type _TekTDS224DataSource

TekTDS224 .ref

Gets a specific oscilloscope reference channel object. The desired channel is specified like one would
access a list.

For instance, this would transfer the waveform from the first channel:

>>> import instruments as ik
>>> tek = ik.tektronix.TekTDS224.open_tcpip('192.168.0.2', 8888)
>>> [x, y] = tek.ref[0].read_waveform()

Return type _TekTDS224DataSource

88 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

2.16.5 TekTDS5xx Oscilloscope

class instruments.tektronix.TekTDS5xx (filelike)
Support for the TDS5xx series of oscilloscopes
Implemented from:

TDS Family Digitizing Oscilloscopes

(TDS 410A, 420A, 460A, 520A, 524 A, 540A, 544A,
620A, 640A, 644A, 684A, 744A & T84A)

Tektronix Document: 070-8709-07

class Bandwidth
Bandwidth in MHz

FULL = <Bandwidth.FULL: ‘FUL’>

OneHundred = <Bandwidth.OneHundred: ‘HUN’>
Twenty = <Bandwidth. Twenty: ‘TWE’>
TwoHundred = <Bandwidth.TwoHundred: ‘TWO’>

class TekTDS5xx .Coupling
Available coupling options for input sources and trigger

ac = <Coupling.ac: ‘AC’>
dc = <Coupling.dc: ‘DC’>
ground = <Coupling.ground: ‘GND’>

class TekTDS5xx . Edge
Auvailable Options for trigger slope

Falling = <Edge.Falling: ‘FALL’>
Rising = <Edge.Rising: ‘RIS’>

class TekTDS5xx . Impedance
Auvailable options for input source impedance

Fifty = <Impedance.Fifty: ‘FIF’>
OneMeg = <Impedance.OneMeg: ‘MEG’>

class TekTDS5xx.Source
Available Data sources

CH1 = <Source.CH1: ‘CHT1’>

CH2 = <Source.CH2: ‘CH2’>

CH3 = <Source.CH3: ‘CH3’>

CH4 = <Source.CH4: ‘CH4’>

Mathl = <Source.Mathl: ‘MATH1’>
Math2 = <Source.Math2: ‘MATH2’>
Math3 = <Source.Math3: ‘MATH3’>
Refl = <Source.Refl: ‘REF1’>
Ref2 = <Source.Ref2: ‘REF2’>

2.16. Tektronix 89

InstrumentKit Library Documentation, Release 0.1.0

Ref3 = <Source.Ref3: ‘REF3’>
Ref4 = <Source.Refd: ‘REF4°>

class TekTDS5xx . Trigger
Available Trigger sources (AUX not Available on TDS520A/TDS540A)

AUX = <Trigger. AUX: ‘AUX’>
CH1 = <Trigger.CH1: ‘CH1’>
CH2 = <Trigger.CH2: ‘CH2’>
CH3 = <Trigger.CH3: ‘CH3’>
CH4 = <Trigger.CH4: ‘CH4’>
LINE = <Trigger.LINE: ‘LINE’>

TekTDS5xx.get_hardcopy ()
Gets a screenshot of the display

Return type string

TekTDS5xx.channel
Gets a specific oscilloscope channel object. The desired channel is specified like one would access a list.

For instance, this would transfer the waveform from the first channel:

>>> tek = ik.tektronix.TekTDS5xx.open_tcpip('192.168.0.2", 8888)
>>> [x, y] = tek.channel[0].read_waveform()

Return type _TekTDS5xxChannel
TekTDS5xx.clock
Get/Set oscilloscope clock
Type datetime.datetime

TekTDS5xx .data_source
Gets/sets the the data source for waveform transfer.

Type TekTDS5xx.Sourceor _TekTDS5xxDataSource
Return type ‘_TekTDS5xxDataSource*

TekTDS5xx.data_width
Gets/Sets the data width for waveform transfers

Type int

TekTDS5xx.display_clock
Get/Set the visibility of clock on the display

Type bool
TekTDS5xx.force_trigger

TekTDS5xx.horizontal_scale
Get/Set Horizontal Scale

Type float

TekTDS5xx.math
Gets a data source object corresponding to the MATH channel.

Return type _TekTDS5xxDataSource

90 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/string.html#module-string
http://docs.python.org/library/datetime.html#datetime.datetime
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#float

InstrumentKit Library Documentation, Release 0.1.0

TekTDS5xx .measurement

Gets a specific oscilloscope measurement object. The desired channel is specified like one would access a
list.

Return type _TDS5xxMeasurement

TekTDS5xx.ref

Gets a specific oscilloscope reference channel object. The desired channel is specified like one would
access a list.

For instance, this would transfer the waveform from the first channel:

>>> tek = ik.tektronix.TekTDS5xx.open_tcpip('192.168.0.2", 8888)
>>> [x, y] = tek.ref[0].read_waveform()

Return type _TekTDS5xxDataSource
TekTDS5xx.sources
Returns list of all active sources
Return type 1ist

TekTDS5xx.trigger_coupling
Get/Set trigger coupling

Type TekTDS5xx.Coupling

TekTDSS5xx.trigger_level
Get/Set trigger level

Type float

TekTDSS5xx.trigger_slope
Get/Set trigger slope

Type TekTDS5xx.Edge

TekTDS5xx.trigger_source
Get/Set trigger source

Type TekTDS5xx.Trigger

2.17 ThorLabs

2.17.1 pmM100USB USB Power Meter

class instruments.thorlabs.PM100USB (filelike)
Instrument class for the ThorLabs PM100USB power meter. Note that as this is an SCPI-compliant instrument,
the properties and methods of SCPTInstrument may be used as well.

class MeasurementConfiguration
Enum containing valid measurement modes for the PM100USB

current = <MeasurementConfiguration.current: ‘CURR’>
energy = <MeasurementConfiguration.energy: ‘ENER’>
energy_density = <MeasurementConfiguration.energy_density: ‘EDEN’>

frequency = <MeasurementConfiguration.frequency: ‘FREQ’>

2.17. ThorLabs 91

http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#float
http://www.thorlabs.com/thorproduct.cfm?partnumber=PM100USB

InstrumentKit Library Documentation, Release 0.1.0

power = <MeasurementConfiguration.power: ‘POW’>

power_density = <MeasurementConfiguration.power_density: ‘PDEN’>
resistance = <MeasurementConfiguration.resistance: ‘RES’>
temperature = <MeasurementConfiguration.temperature: ‘TEMP’>
voltage = <MeasurementConfiguration.voltage: ‘VOLT’>

class PM100USB. Sensor (parent)
Class representing a sensor on the ThorLabs PM100USB

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the PM100USB class.

calibration_message
Gets the calibration message of the sensor channel

Type str

flags
Gets any sensor flags set on the sensor channel
Type collections.namedtuple

name
Gets the name associated with the sensor channel
Type str

serial_number
Gets the serial number of the sensor channel

Type str
type
Gets the sensor type of the sensor channel
Type str

class PM100USB. SensorFlags
Enum containing valid sensor flags for the PM100USB

has_temperature_sensor = <SensorFlags.has_temperature_sensor: 256>
is_energy_sensor = <SensorFlags.is_energy_sensor: 2>
is_power_sensor = <SensorFlags.is_power_sensor: 1>
response_settable = <SensorFlags.response_settable: 16>
tau_settable = <SensorFlags.tau_settable: 64>

wavelength_settable = <SensorFlags.wavelength_settable: 32>

PM100USB.read (size=-1)
Reads a measurement from this instrument, according to its current configuration mode.

Parameters size (int)— Number of bytes to read from the instrument. Default of —1 reads
until a termination character is found.

Units As specified by measurement_configuration.
Return type Quantity

PM100USB.averaging count
Integer specifying how many samples to collect and average over for each measurement, with each sample
taking approximately 3 ms.

92

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/collections.html#collections.namedtuple
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

PM100USB.cache_units
If enabled, then units are not checked every time a measurement is made, reducing by half the number of
round-trips to the device.

Warning: Setting this to True may cause incorrect values to be returned, if any commands are sent
to the device either by its local panel, or by software other than InstrumentKit.

Type bool
PM100USB. flag = <SensorFlags.has_temperature_sensor: 256>

PM100USB.measurement_configuration
Returns the current measurement configuration.

Return type PMI100USB.MeasurementConfiguration

PM100USB.sensor
Returns information about the currently connected sensor.

Type PM100USB. Sensor

2.17.2 ThorLabsAPT ThorLabs APT Controller

class instruments.thorlabs.ThorLabsAPT (filelike)
Generic ThorLabs APT hardware device controller. Communicates using the ThorLabs APT communications
protocol, whose documentation is found in the thorlabs source folder.

class APTChannel (apt, idx_chan)
Represents a channel within the hardware device. One device can have many channels, each labeled by an
index.

enabled
Gets/sets the enabled status for the specified APT channel

Type bool

ThorLabsAPT.identify ()
Causes a light on the APT instrument to blink, so that it can be identified.

ThorLabsAPT.channel
Gets the list of channel objects attached to the APT controller.

A specific channel object can then be accessed like one would access a list.
Type tuple of APTChannel

ThorLabsAPT.destination
Gets the destination for the APT controller

Type int

ThorLabsAPT.model_number
Gets the model number for the APT controller

Type str

ThorLabsAPT.n_channels
Gets/sets the number of channels attached to the APT controller

Type int

2.17. ThorLabs 93

http://docs.python.org/library/constants.html#True
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

ThorLabsAPT.name
Gets the name of the APT controller. This is a human readable string containing the model, serial number,
hardware version, and firmware version.

Type str

ThorLabsAPT.serial number
Gets the serial number for the APT controller

Type str

class instruments.thorlabs.APTPiezoStage (filelike)
Class representing a Thorlabs APT piezo stage

class PiezoChannel (apt, idx_chan)
Class representing a single piezo channel within a piezo stage on the Thorlabs APT controller.

change_position_control_mode (closed, smooth=True)
Changes the position control mode of the piezo channel
Parameters
* closed (bool)— True for closed, False for open
e smooth (bool) - True for smooth, False for otherwise. Default is True.

output_position
Gets/sets the output position for the piezo channel.
Type str

position_control_closed
Gets the status if the position control is closed or not.

True means that the position control is closed, False otherwise
Tyep bool

class instruments.thorlabs.APTStrainGaugeReader (filelike)
Class representing a Thorlabs APT strain gauge reader.

Warning: This is not currently implemented

class StrainGaugeChannel (apt, idx_chan)
Class representing a single strain gauge channel attached to a APTSt rainGaugeReader on the Thor-
labs APT controller.

Warning: This is not currently implemented

class instruments.thorlabs.APTMotorController (filelike)
Class representing a Thorlabs APT motor controller

class MotorChannel (apt, idx_chan)
Class representing a single motor attached to a Thorlabs APT motor controller
(APTMotorController).

go_home ()
Instructs the specified motor channel to return to its home position

move (pos, absolute=True)
Instructs the specified motor channel to move to a specific location. The provided position can be
either an absolute or relative position.
Parameters
* pos (Quantity) — The position to move to. Provided value will be converted to
encoder counts.

94 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

* absolute (bool) — Specify if the position is a relative or absolute position. True
means absolute, while False is for a relative move.
Units pos As specified, or assumed to of units encoder counts

set_scale (motor_model)
Sets the scale factors for this motor channel, based on the model of the attached motor and the speci-
fications of the driver of which this is a channel.
Parameters motor_model (st r)— Name of the model of the attached motor, as indicated
in the APT protocol documentation (page 14, v9).

position
Gets the current position of the specified motor channel
Type Quantity

position_encoder
Gets the position of the encoder of the specified motor channel
Type Quantity
Units Encoder counts

scale_factors = (array(l) * dimensionless, array(1) * dimensionless, array(1) * dimensionless)

status_bits
Gets the status bits for the specified motor channel.
Type dict

2.17.3 sc10 Optical Beam Shutter Controller

class instruments.thorlabs.SC10 (filelike)
The SCI10 is a shutter controller, to be used with the Thorlabs SHO5 and SH1. The user manual can be found
here: http://www.thorlabs.com/thorcat/8600/SC10-Manual.pdf

class Mode
Enum containing valid output modes of the SC10

auto = <Mode.auto: 2>
external = <Mode.external: 5>
manual = <Mode.manual: 1>
repeat = <Mode.repeat: 4>
single = <Mode.single: 3>

SC10.default ()
Restores instrument to factory settings.

Returns 1 if successful, zero otherwise.
Return type int

SC10.restore ()
Loads the settings from memory.

Returns 1 if successful, zero otherwise.
Return type int

SC1l0.save ()
Stores the parameters in static memory

Returns 1 if successful, zero otherwise.

2.17. ThorLabs 95

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/stdtypes.html#dict
http://www.thorlabs.com/thorcat/8600/SC10-Manual.pdf
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

Return type int

SC10.save_mode ()
Stores output trigger mode and baud rate settings in memory.

Returns 1 if successful, zero otherwise.
Return type int

SC10.baud_rate
Gets/sets the instrument baud rate.

Valid baud rates are 9600 and 115200.

Type int

SC10.closed
Gets the shutter closed status.

True represents the shutter is closed, and Fa 1 se for the shutter is open.
Return type bool

SC10.enable
Gets/sets the shutter enable status, False for disabled, True if enabled

If output enable is on (T rue), there is a voltage on the output.
Return type bool

SC10.interlock
Gets the interlock tripped status.

Returns True if the interlock is tripped, and Fa 1 se otherwise.
Return type bool

SC10.mode
Gets/sets the output mode of the SC10

Return type SC10.Mode

SC10.name
Gets the name and version number of the device.

Returns Name and verison number of the device
Return type str

SCl0.open_time
Gets/sets the amount of time that the shutter is open, in ms

Units As specified (if a Quantity) or assumed to be of units milliseconds.
Type Quantity

SC10.out_trigger
Gets/sets the out trigger source.

0 trigger out follows shutter output, 1 trigger out follows controller output

Type int

SC10.repeat
Gets/sets the repeat count for repeat mode. Valid range is [1,99] inclusive.

Type int

96

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

SC10.shut_time
Gets/sets the amount of time that the shutter is closed, in ms

Units As specified (if a Quantity) or assumed to be of units milliseconds.
Type Quantity

SCl0.trigger
Gets/sets the trigger source.

0 for internal trigger, 1 for external trigger

Type int

2.17.4 1cc25 Liquid Crystal Controller

class instruments.thorlabs.LCC25 (filelike)
The LCC2S5 is a controller for the thorlabs liquid crystal modules. it can set two voltages and then oscillate
between them at a specific repetition rate.

The user manual can be found here: http://www.thorlabs.com/thorcat/18800/LCC25-Manual.pdf

class Mode
Enum containing valid output modes of the LCC25

normal = <Mode.normal: 0>
voltagel = <Mode.voltagel: 1>
voltage2 = <Mode.voltage2: 2>

LCC25.default ()
Restores instrument to factory settings.

Returns 1 if successful, 0 otherwise
Return type int

LCC25.get_settings (slot)
Gets the current settings to memory.

Returns 1 if successful, zero otherwise.
Parameters slot (int)— Memory slot to use, valid range [1, 4]
Return type int

LCC25.save ()
Stores the parameters in static memory

Returns 1 if successful, zero otherwise.
Return type int

LCC25.set_settings (slot)
Saves the current settings to memory.

Returns 1 if successful, zero otherwise.
Parameters slot (int)— Memory slot to use, valid range [1, 4]

Return type int

2.17. ThorLabs 97

http://docs.python.org/library/functions.html#int
http://www.thorlabs.com/thorcat/18800/LCC25-Manual.pdf
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

LCC25.test_mode ()
Puts the LCC in test mode - meaning it will increment the output voltage from the minimum value to the
maximum value, in increments, waiting for the dwell time

Returns 1 if successful, zero otherwise.
Return type int

LCC25.dwell
Gets/sets the dwell time for voltages for the test mode.

Units As specified (if a Quantity) or assumed to be of units milliseconds.
Return type Quantity

LCC25.enable
Gets/sets the output enable status.

If output enable is on (T rue), there is a voltage on the output.
Return type bool

LCC25.extern
Gets/sets the use of the external TTL modulation.

Value is True for external TTL modulation and F a1 se for internal modulation.
Return type bool

LCC25. frequency
Gets/sets the frequency at which the LCC oscillates between the two voltages.

Units As specified (if a Quantity) or assumed to be of units Hertz.
Return type Quantity

LCC25.increment
Gets/sets the voltage increment for voltages for the test mode.

Units As specified (if a Quantity) or assumed to be of units Volts.
Return type Quantity

LCC25.max_voltage
Gets/sets the maximum voltage value for the test mode. If the maximum voltage is less than the minimum
voltage, nothing happens.

Units As specified (if a Quantity) or assumed to be of units Volts.
Return type Quantity

LCC25.min_voltage
Gets/sets the minimum voltage value for the test mode.

Units As specified (if a Quantity) or assumed to be of units Volts.
Return type Quantity

LCC25.mode
Gets/sets the output mode of the LCC25

Return type 1.CC25.Mode

LCC25.name
Gets the name and version number of the device

Return type str

98

Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

LCC25.remote
Gets/sets front panel lockout status for remote instrument operation.

Value is False for normal operation and True to lock out the front panel buttons.
Return type bool

LCC25.voltagel
Gets/sets the voltage value for output 1.

Units As specified (if a Quantity) or assumed to be of units Volts.
Return type Quantity

LCC25.voltage2
Gets/sets the voltage value for output 2.

Units As specified (if a Quantity) or assumed to be of units Volts.

Return type Quantity

2.17.5 TCc200 Temperature Controller

class instruments.thorlabs.TC200 (filelike)
The TC200 is is a controller for the voltage across a heating element. It can also read in the temperature off of
a thermistor and implements a PID control to keep the temperature at a set value.

The user manual can be found here: http://www.thorlabs.com/thorcat/12500/TC200-Manual.pdf

class Mode
Enum containing valid output modes of the TC200.

cycle = <Mode.cycle: 1>
normal = <Mode.normal: 0>

class TC200.Sensor
Enum containing valid temperature sensor types for the TC200.

ntclOk = <Sensor.ntc10k: ‘ntc10k’>
ptcl00 = <Sensor.ptc100: ‘ptc100’>
ptcl000 = <Sensor.ptc1000: ‘ptc1000’>
th10k = <Sensor.th10k: ‘th10k’>

TC200 .name ()
Gets the name and version number of the device

Returns the name string of the device
Return type str

TC200.beta
Gets/sets the beta value of the thermistor curve.

Value within [2000, 6000]
Returns the gain (in nnn)
Type int

TC200.d
Gets/sets the d-gain. Valid numbers are [0, 250]

2.17. ThorLabs 99

http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/functions.html#bool
http://www.thorlabs.com/thorcat/12500/TC200-Manual.pdf
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int

InstrumentKit Library Documentation, Release 0.1.0

Returns the d-gain (in nnn)

Type int

TC200.degrees
Gets/sets the units of the temperature measurement.

Returns The temperature units (degC/F/K) the TC200 is measuring in
Type UnitTemperature

TC200.enable
Gets/sets the heater enable status.

If output enable is on (True), there is a voltage on the output.

Type bool

TC200.1
Gets/sets the i-gain. Valid numbers are [1,250]

Returns the i-gain (in nnn)
Return type int

TC200.max_power
Gets/sets the maximum power

Returns The maximum power
Units Watts (linear units)
Type Quantity

TC200.max_temperature
Gets/sets the maximum temperature

Returns the maximum temperature (in deg C)
Units As specified or assumed to be degree Celsius. Returns with units degC.
Return type Quantity

TC200 .mode
Gets/sets the output mode of the TC200

Type TC200.Mode

TC200.p
Gets/sets the p-gain. Valid numbers are [1,250].

Returns the p-gain (in nnn)
Return type int

TC200.pid
Gets/sets all three PID values at the same time. See TC200.p, TC200. i, and TC200 . d for individual
restrictions.

If None is specified then the corresponding PID value is not changed.
Returns List of integers of PID values. In order [P, I, D].
Type list ortuple

Return type 1ist

100 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/constants.html#None
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#list

InstrumentKit Library Documentation, Release 0.1.0

TC200.sensor
Gets/sets the current thermistor type. Used for converting resistances to temperatures.

Returns The thermistor type
Type 7C200.Sensor

TC200.status
Gets the the status code of the TC200

Return type int

TC200.temperature
Gets the actual temperature of the sensor

Units As specified (if a Quantity) or assumed to be of units degrees C.
Type Quantityor int

Returns the temperature (in degrees C)

Return type Quantity

TC200.temperature_set
Gets/sets the actual temperature of the sensor

Units As specified (if a Quantity) or assumed to be of units degrees C.
Type Quantityor int
Returns the temperature (in degrees C)

Return type Quantity

2.18 Toptica

2.18.1 TopMode Diode Laser
class instruments.toptica.TopMode (filelike)
Communicates with a Toptica Topmode instrument.
The TopMode is a diode laser with active stabilization, produced by Toptica.

Example usage:

>>> import instruments as ik
>>> tm = ik.toptica.TopMode.open_serial ('/dev/ttyUSBO', 115200)
>>> print (tm.laser[0] .wavelength)

class CharmStatus
Enum containing valid charm statuses for the lasers

failure = <CharmStatus.failure: 3>

in_progress = <CharmStatus.in_progress: 1>
success = <CharmStatus.success: 2>
un_initialized = <CharmStatus.un_initialized: 0>

class TopMode . Laser (parent, idx)
Class representing a laser on the Toptica Topmode.

2.18. Toptica 101

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://www.toptica.com/fileadmin/user_upload/products/Diode_Lasers/Industrial_OEM/Single_Frequency/TopMode/toptica_BR_TopMode.pdf

InstrumentKit Library Documentation, Release 0.1.0

Warning: This class should NOT be manually created by the user. It

is designed to be initialized by the Topmode class.

correction ()
Run the correction against the specified laser

charm_status
Gets the ‘charm status’ of the laser
Returns The ‘charm status’ of the specified laser

Type bool

correction_status
Gets the correction status of the laser
Returns The correction status of the specified laser
Type CharmStatus

current_control_ status
Gets the current control status of the laser
Returns The current control status of the specified laser
Type bool

enable
Gets/sets the enable/disable status of the laser. Value of True is for enabled, and Fa 1 se for disabled.
Returns Enable status of the specified laser
Type bool

first_mode_hop_time
Gets the date and time of the first mode hop
Returns The datetime of the first mode hop for the specified laser
Type datetime

intensity
Gets the intensity of the laser. This property is unitless.
Returns the intensity of the specified laser
Units Unitless
Type float

latest_mode_hop_time
Gets the date and time of the latest mode hop
Returns The datetime of the latest mode hop for the specified laser
Type datetime

lock_start
Gets the date and time of the start of mode-locking
Returns The datetime of start of mode-locking for specified laser
Type datetime

mode_hop
Gets whether the laser has mode-hopped
Returns Mode-hop status of the specified laser

Type bool

model
Gets the model type of the laser
Returns The model of the specified laser
Type str

102 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/datetime.html#module-datetime
http://docs.python.org/library/functions.html#float
http://docs.python.org/library/datetime.html#module-datetime
http://docs.python.org/library/datetime.html#module-datetime
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

on_time
Gets the ‘on time’ value for the laser
Returns The ‘on time’ value for the specified laser
Units Seconds (s)
Type Quantity

production_date
Gets the production date of the laser
Returns The production date of the specified laser
Type str

serial number
Gets the serial number of the laser
Returns The serial number of the specified laser
Type str

tec_status
Gets the TEC status of the laser
Returns The TEC status of the specified laser
Type bool

temperature_control_status
Gets the temperature control status of the laser
Returns The temperature control status of the specified laser
Type bool

wavelength
Gets the wavelength of the laser
Returns The wavelength of the specified laser
Units Nanometers (nm)
Type Quantity

TopMode .display (param)
Sends a display command to the Topmode.

Parameters param (st r)— Parameter that will be sent with a display request
Returns Response to the display request

TopMode . execute (command)
Sends an execute command to the Topmode. This is used to automatically append (exec ¢ + command +)
to your command.

Parameters command (st r)— The command to be executed.

TopMode . reboot ()
Reboots the system (note that the serial connect might have to be re-opened after this)

TopMode .reference (param)
Sends a reference commands to the Topmode. This is effectively a query request. It will append the
required (param-ref * + param +).

Parameters param (st r)— Parameter that should be queried
Returns Response to the reference request
Return type str

TopMode . set (param, value)
Sends a param-set command to the Topmode. This is used to automatically handle appending “param-set!”
and the rest of the param-set message structure to your message.

2.18. Toptica 103

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str

InstrumentKit Library Documentation, Release 0.1.0

Parameters
e param (st r)— Parameter that will be set
* value (str, tuple, 1ist, or bool) — Value that the parameter will be set to

TopMode.current_status
Gets the current controller board health status

Returns False if there has been a failure for the current controller board, True otherwise

Type bool

TopMode .enable
is the laser lasing? :return:

TopMode. fpga_status
Gets the FPGA health status

Returns False if there has been a failure for the FPGA, True otherwise

Type bool

TopMode.interlock
Gets the interlock switch open state

Returns True if interlock switch is open, False otherwise

Type bool

TopMode.laser
Gets a specific Topmode laser object. The desired laser is specified like one would access a list.

For example, the following would print the wavelength from laser 1:

>>> import instruments as ik

>>> import quantities as pqgq

>>> tm = ik.toptica.TopMode.open_serial ('/dev/ttyUSBO', 115200)
>>> print (tm.laser[0] .wavelength)

Return type Laser

TopMode. locked
Gets the key switch lock status
Returns True if key switch is locked, False otherwise

Type bool

TopMode.temperature_status
Gets the temperature controller board health status

Returns False if there has been a failure for the temperature controller board, True otherwise

Type bool

2.19 Yokogawa

2.19.1 Yokogawa7651 Power Supply

class instruments.yokogawa.Yokogawa7651 (filelike)
The Yokogawa 7651 is a single channel DC power supply.

104 Chapter 2. InstrumentKit APl Reference

http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/constants.html#False
http://docs.python.org/library/constants.html#True
http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

Example usage:

>>> import instruments as ik
>>> import quantities as pqgq
>>> inst = ik.yokogawa.Yokogawa7651.open_gpibusb ("/dev/ttyUSBO", 1)
>>> inst.voltage = 10 » pg.V

class Channel (parent, name)
Class representing the only channel on the Yokogawa 7651.

This class inherits from PowerSupplyChannel.

Warning: This class should NOT be manually created by the user. It is designed to be initialized by
the Yokogawa 7651 class.

current
Sets the current of the specified channel. This device has an max setting of 100mA.

Querying the current is not supported by this instrument.
Units As specified (if a Quant ity) or assumed to be of units Amps.
Type Quantity with units Amp

mode
Sets the output mode for the power supply channel. This is either constant voltage or constant current.

Querying the mode is not supported by this instrument.
Type Yokogawa7651.Mode

output
Sets the output status of the specified channel. This either enables or disables the output.

Querying the output status is not supported by this instrument.
Type bool

voltage
Sets the voltage of the specified channel. This device has a voltage range of OV to +30V.

Querying the voltage is not supported by this instrument.
Units As specified (if a Quant ity) or assumed to be of units Volts.
Type Quantity with units Volt

class Yokogawa7651 .Mode
Enum containing valid output modes for the Yokogawa 7651

current = <Mode.current: 5>
voltage = <Mode.voltage: 1>

Yokogawa7651.trigger ()
Triggering function for the Yokogawa 7651.

After changing any parameters of the instrument (for example, output voltage), the device needs to be
triggered before it will update.

Yokogawa7651.channel
Gets the specific power supply channel object. Since the Yokogawa7651 is only equiped with a single
channel, a list with a single element will be returned.

This (single) channel is accessed as a list in the following manner:

2.19. Yokogawa 105

http://docs.python.org/library/functions.html#bool

InstrumentKit Library Documentation, Release 0.1.0

>>> import instruments as ik
>>> yoko = ik.yokogawa.Yokogawa7651.open_gpibusb ('/dev/ttyUSBO', 10)
>>> yoko.channel[0].voltage = 1 # Sets output voltage to 1V

Return type Channel
Yokogawa7651.current
Sets the current. This device has an max setting of 100mA.
Querying the current is not supported by this instrument.
Units As specified (if a Quantity) or assumed to be of units Amps.
Type Quantity with units Amp

Yokogawa7651.voltage
Sets the voltage. This device has a voltage range of OV to +30V.

Querying the voltage is not supported by this instrument.
Units As specified (if a Quantity) or assumed to be of units Volts.

Type Quantity with units Volt

2.20 Configuration File Support

The instruments package provides support for loading instruments from a configuration file, so that instrument
parameters can be abstracted from the software that connects to those instruments. Configuration files recognized by
instruments are YAML files that specify for each instrument a class responsible for loading that instrument, along
with a URI specifying how that instrument is connected.

Configuration files are loaded by the use of the 1oad_instrument s function, documented below.

2.20.1 Functions

instruments.load_instruments (conf_file_name, c