

Infrastructure-Components

This is a complete Serverless React App!

Create, Start, and Deploy React Apps easily!:

import * as React from 'react';

import { Route, SinglePageApp } from "infrastructure-components";

export default (
 <SinglePageApp
 stackName = "example"
 buildPath = 'build'
 region='eu-west-1' >

 <Route
 path='/'
 name='Infrastructure-Components'
 render={() => <div>Hello from a React Web App!</div>}/>

 </SinglePageApp>
);

Infrastructure-Components do all the technical configuration for you

Compile and Pack

Infrastructure-Components transpile your Typescript-based React components and bundle them into ready-to-use
packages–without any further configuration required.

	Webpack

	Babel + Loaders

	Typescript

Application

Use state-of-the-art libraries to speed up app development.

	React Router

	ExpressJs

	Styled Components

	React Helmet

	GraphQL

	…

Deploy and Serve

Deploy your application with a single command! Infrastructure-Components create the whole infrastructure stack for you.

	Lambda-Functions

	API-Gateway

	S3

	DynamoDB

	CloudFront

	Route53

	CloudFormation

	…

[image: _images/teaser.png]

Contents

	Getting Started
	Start with an Example

	Install manually

	Apps
	SinglePageApp

	ServiceOrientedApp

	IsomorphicApp

	Components
	Webapp

	Service

	Middleware

	Route

	Environment

	DataLayer

	Entry

	Scripts
	Build

	Run Offline

	Start

	Deploy

	Domain

	Help and Support

Getting Started

Start with an Example

Our GitHub-Repository [https://github.com/infrastructure-components] contains exemplary projects of each supported
architecture topology:

	Single-Page-App [https://github.com/infrastructure-components/singlepage_example]

	Isomorphic App [https://github.com/infrastructure-components/isomorphic_example]

Fork or clone any of these repositories and run npm install.

Install manually

You can install infrastructure-components [https://github.com/infrastructure-components/infrastructure-components]
easily:

npm install --save infrastructure-components

infrastructure-scripts [https://github.com/infrastructure-components/infrastructure-scripts]
provide all the scripts required to build, start, and deploy. This lib contains many libraries that you only
need during development/deployment. Thus, install this library as devDependency:

npm install --save-dev infrastructure-scripts

Infrastructure-components use the Serverless framework [https://serverless.com/] that you need to install globally:

npm install -g serverless

Finally, apps (e.g. single-page-app, isomorphic-app) and components (environment, webapp) can have further dependencies.
Have a look at them in this documentation.

Apps

Apps represent the top-level-components of an infrastructure-components-based project. In your entry-point
source file, e.g. src/index.tsx (yes, you can use typescript with jsx-extension in this file – out of the box),
you need to export an app-component as default, like this:

import * as React from 'react';

import {
 SinglePageApp
} from "infrastructure-components";

export default (
 <SinglePageApp
 stackName = "spa-example"
 buildPath = 'build'
 region='us-east-1' />
);

The app-component determines the architecture of your project at runtime. Each architecture has advantages and may be
suited for certain use-cases.

While a change of the architecture is a breaking change in a traditional project setup, infrastructure-compponents
support this out of the box! If you want to change the architecture of your application, just replace the
top-level-component and you’re done!

Each app-component supports running it offline (on your development machine) and deploying it to the Amazon Web Services
(AWS) cloud with a single command!

Single-Page-App

A Single-Page-App (SPA) is an interactive web application that rewrites the current page rather than loading new pages
from a server. In fact, a SPA consists of a very basic html that simply loads the app`s Javascript-code. Once loaded,
this code creates a user experience that avoids interruption between successive pages and behaves more like a desktop
application than a traditional website.

Single-Page-App provides further details on Infrastructure-Component’s SinglePageApp.

Service-Oriented-App

A Service-Oriented-App (SOA) is an interactive web application just like a Single-Page-App. Additionally, it supports
services. These services run as AWS Lambda function on the server side.

Service-Oriented-App provides further details on Infrastructure-Component’s ServiceOrientedApp.

Isomorphic-App

An Ismorphic-App (aka universal app) is an interactive web application that complements the advantages of a single-page-app
with the ability of server-side-rendering. In an isomorphic setting, the server renders the whole Javascript-code
and returns a full html-file to the browser. As a result, the browser can display the html without any further processing.

An Isomorphic-App downloads the Javascript-code to the browser, too. This enables a dynamic user experience.

Isomorphic-App provides further details on Infrastructure-Component’s IsomorphicApp.

Components

Components complement the top-level-apps of an infrastructure-components-based project. Components are children
(direct or indirect) of the app, like:

<SinglePageApp
 stackName = "example"
 buildPath = 'build'
 region='us-east-1' >

 <Route
 path='/'
 name='Infrastructure-Components'
 render={() => <div>Hello from a React Web App!</div>}/>

</SinglePageApp>

Note: Which components you can use and may depend on the top-level-app.

Webapp

The WebApp-Component is available only in an Isomorphic-App. In this context, it creates a client-app
with a custom html and Javascript code.

See Webapp for more details.

Service

The Service-Components is available in Service-Oriented-App and Isomorphic-App. It specifies a server-side route to
one or many Middleware-components

See Service for more details.

Middleware

The Middleware-Components is available only in an Isomorphic-App or as child of a Service.
In an Isomorphic App context, it specifies a server-side function that runs whenever a user requests a page from the server.

See Middleware for more details.

Route

A Route-Component specifies a custom path (at the domain of your app) that gets served by its render-function. This function
lets you easily render your own React-components.

See Route for more details.

Environment

An Environment-Component defines a runtime environment of your app. With environments you can distinguish your
development-environments from your production-environment. An environment lets you attach a real domain to it, like
www.your-domain.com.

See Environment for more details.

DataLayer

The DataLayer-component adds a NoSQL-database (DynamoDB) to your app. It takes
It takes Entry and Service as children. The DataLayer is available in
a Service-Oriented-App and in an Isomorphic-App.

See DataLayer for more details.

Entry

The Entry-component describes the type of items in your database. The entry must be a child of a DataLayer.

See Entry for more details.

Scripts

The library infrastructure-scripts [https://github.com/infrastructure-components/infrastructure-scripts] provides
the scripts command.

Run it with one of the arguments specified below and the relative path to the file that exports the your app-component,
e.g. src/index.tsx.

Scripts enable you to build, start (offline), deploy, and attach a domain to your
infrastructure-components-based project.

Build

The build-script prepares your project for local start or deployment:

scripts build src/index.tsx

If you prefer using the usual npm run build command for building, simply add the following script to your
package.json file:

"scripts": {
 "build": "scripts build src/index.tsx"
}

The build process adds further scripts to your package.json.
These let you start your software stack offline, start hot development, and deploy it.

Which scripts are created depends on your app-component and its <Environment />- and <WebApp />-components.

Look at the app-components for more details on the created scripts:

	Single-Page-App

	Isomorphic-App

Run Offline

Run scripts {your_stackName} src/index.tsx or npm run {your_stackName} to start your <SinglePageApp /> or
your <WebApp /> within an <IsomorphicApp /> in hot-development-mode.

Wait until the console says that your app is running and open localhost:3000 in your browser.

Changes to your source code become effective immediately in this mode. Just edit your source code and reload your page
in the browser. Note that an <IsomorphicApp /> does not run with a backend (e.g. middlewares) in this mode!

If you want to stop the app, use “ctrl-c” (or whatever command your console-application uses to interrupt a running script).

Start

The script npm run start-{your_environment_name} starts your <IsomorphicApp /> locally (offline).

Open your the url localhost:3000 in a browser and you can see your application in action. Have a look at the console
of your development environment for outputs made on server-side (e.g. middlewares)

Note: Changes at your source code require running npm run build before they become effective in this mode!

Deploy

Once you ran the build script, your package.json will contain
a script for each environment your app contains:

npm run deploy-{your_environment_name}

From here, the scripts create the whole infrastructure stack on your AWS account.
You’ll get back an URL that now serves your app.

Note: This script may take some time to complete!

Domain

Have a look at our tutorial on how to register and prepare a domain within AWS.

If you specified an <Environment/>-component with a ready-to-use-domain
and once you deployed your app, you can initialize the domain with the following command:

npm run domain-{your_environment_name}

Note: You only need to run this command once. But it may take quite some time to complete!

Help and Support

Infrastructure-Components are under active development. If you find a bug or need support of any kind,
please have a look at our Spectrum-Chat [https://spectrum.chat/infrastructure].

Further, we frequently publish descriptions and tutorials on new features on Medium.com [https://medium.com/@fzickert].

Index

Isomorphic-App

Installation

Please follow the general installation instructions: ../installation.

The <IsomorphicApp />-component further requires the serverless-domain-manager and the serverless-offline libraries
as devDependencies:

npm install --save-dev serverless-domain-manager serverless-offline

Further, the <IsomorphicApp />-component requires the following libraries during runtime:

* express
* infrastructure-components
* react
* react-dom
* react-helmet
* react-router
* react-router-dom
* serverless-http
* styled-components

	npm install –save

	express infrastructure-components react react-dom react-helmet react-router react-router-dom serverless-http styled-components

Have a look at our IsomorphicApp-Example [https://github.com/infrastructure-components/isomorphic_example].

Develop

Properties

The SinglePageApp-component requires you to define the following properties:

	stackName the (arbitrary) name of your app, please use only lower case characters and hyphens for the name serves as identifier within AWS

	buildPath the relative path to the folder within your project, where to put the build-resources, e.g. “build”. You may want to add this name to your .gitignore file to keep your repository free from compiled files.

	assetsPath the relative path to the folder where the app stores the bundled Javascript-code at runtime, e.g. “assets”

	region the AWS-region you want your infrastructure to reside after deployment, e.g. ‘us-east-1’

Allowed Children

The IsomorphicApp-component supports the following infrastructure-components as direct children:

	a Webapp lets you specify a client-app with a custom html and Javascript code. The <WebApp/> supports <Route/> components that let you specify custom paths (at the domain of your app) that get served by their render-functions.

	a Middleware lets you specify a server-side function that runs whenever a user requests a page from the server. When you specify it as a direct child of your <IsomorphicApp/> then it applies to all requests made to the server. If you want <Middleware/> to apply to a subset, you can put them as children to <WebApp/> or <Route/>, too!

	an Environment defines a runtime environment of your app.

Example

The following snippet depicts an IsomorphicApp with one WebApp and two routes, a develop- and a production-environment,
and middlewares at different levels:

import * as React from 'react';

import {
 Environment,
 IsomorphicApp,
 Link,
 Route,
 WebApp
} from "infrastructure-components";

export default (
 <IsomorphicApp
 stackName = "my-isomorphic-app"
 buildPath = 'build'
 assetsPath = 'assets'
 region='eu-west-1'>

 <Environment
 name="dev"
 />

 <Environment
 name="prod"
 domain="www.infrastructure-components.com"
 />

 <Middleware
 callback={(req, res, next) => {
 console.log("this is an overall middleware");
 next();
 }}
 />

 <WebApp
 id="main"
 path="*"
 method="GET">

 <Middleware
 callback={(req, res, next) => {
 console.log("this middleware applies to the ClientApp");
 next();
 }}
 />

 <Route
 path='/'
 name='My Serverless Isomorphic React App'
 render={(props) => <div>Hello World</div>}
 >
 <Middleware
 callback={(req, res, next) => {
 console.log("finally, a middleware of the /-route, be careful: this route does not apply when loading assets!");
 next();
 }}/>
 </Route>

 <Route
 path='/test'
 name='My Serverless Isomorphic React App'
 render={(props) => <Link to="/">Back to Home</Link>}
 />

 </WebApp>
 </IsomorphicApp>
);

Build

The library infrastructure-scripts [https://github.com/infrastructure-components/infrastructure-scripts]
provides the scripts command. Run it with the arguments build and the relative path to the file that exports the
<SinglePageApp/> component, e.g. src/index.tsx.

If you prefer using the usual npm run build command for building, simply add the script to your package.json file:

"scripts": {
 "build": "scripts build src/index.tsx"
}

The build process adds further scripts to your package.json. These let you start your single webapps
in hot-development-mode, start the whole software stack offline, and deploy it to AWS.

Run your WebApp in Hot-Development-Mode

When you develop a React-App, you may want to see your changes directly, without the need of triggering the build+start
commands manually every time. Use the script npm run ${webapp-id} with the id you specified in the WebApp-component.
This starts the webpack-hot-middleware. Open your the url localhost:3000 in a browser.

Your changes become effective once you reload the browser-page. Have a look at the output of your console to not miss any error messages.

NOTE: In this mode, the WebApp runs as a Single-Page-App without a backend!

Run Offline

Once you ran the build script, your package.json will contain a start-script for each environment to run the
whole stack offline:

npm run start-{your_environment_name}

Open your the url localhost:3000 in a browser and you can see your application in action. Have a look at the console
of your development environment for outputs made on server-side (e.g. middlewares)

Note: Changes at your source code require running npm run build before they become effective in this mode!

If you want to stop the app, use “ctrl-c” (or whatever command your console-application uses to interrupt a running script).

Deployment Preparations (only one-time)

Deploying your app requires:

	An AWS account that you can create at https://aws.amazon.com

	A technical user (with programmatic access / API-key)

In your AWS-console, open the IAM menu and create a new user with the following policy:

{
 "Statement": [
 {
 "Action": [
 "s3:*",
 "apigateway:*",
 "lambda:*",
 "logs:*",
 "cloudformation:*",
 "cloudfront:*",
 "acm:ListCertificates",
 "route53:ListHostedZones",
 "route53:ListResourceRecordSets",
 "route53:ChangeResourceRecordSets",
 "route53:GetChange",
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:DeleteRolePolicy",
 "iam:GetRole",
 "iam:PassRole",
 "iam:PutRolePolicy",
 "execute-api:ManageConnections",
 "cloudfront:UpdateDistribution"
],
 "Effect": "Allow",
 "Resource": "*"
 }
],
 "Version": "2012-10-17"
}

You’ll get a AWS Key Id and an AWS Secret Key.

3 . Put these into the.env-file in your project root:

AWS_ACCESS_KEY_ID=********************
AWS_SECRET_ACCESS_KEY=***

Deploy

Once you have your credentials at the right place and you ran the build script, your package.json will contain
a script for each environment your app contains:

npm run deploy-{your_environment_name}

From here, the scripts create the whole infrastructure stack on your AWS account.
In the console output, you’ll get back an URL that now serves your app.

Note: deploying an isomorphic app requires some time for it consists of several AWS resources, like: CloudFormation,
Lambda, S3, Api-Gateway, IAM, Route53.

Domain

Have a look at our tutorial on how to register and prepare a domain within AWS.

If you specified an <Environment/>-component with a ready-to-use-domain
and once you deployed your app, you can initialize the domain with the following command:

npm run domain-{your_environment_name}

Note: You only need to run this command once. But it may take quite some time to complete!

Service-Oriented-App

Installation

Please follow the general installation instructions: ../installation.

The ServiceOrientedApp-component further requires the following libraries as devDependencies:

npm install --save-dev infrastructure-scripts \
 serverless-offline \
 serverless-pseudo-parameters \
 serverless-single-page-app-plugin

Further, the <ServiceOrientedApp />-component requires the following libraries during runtime:

npm install --save \
 infrastructure-components \
 @babel/polyfill \
 express \
 isomorphic-fetch \
 react \
 react-dom \
 serverless-http

Have a look at our Service-Oriented-App-Example [https://github.com/infrastructure-components/serviceoriented_example].

Develop

Properties

The ServiceOrientedApp-component requires you to define the following properties:

	stackName the (arbitrary) name of your app, please use only lower case characters and hyphens for the name serves as identifier within AWS

	buildPath the relative path to the folder within your project, where to put the build-resources, e.g. “build”. You may want to add this name to your .gitignore file to keep your repository free from compiled files.

	region the AWS-region you want your infrastructure to reside after deployment, e.g. ‘us-east-1’

Allowed Children

The ServiceOrientedApp-component supports the following infrastructure-components as direct children:

	a Route lets you specify a custom path (at the domain of your app) that gets served by its render-function. You should have at least the home-path-route (“/”) in any meaningful web-application.

	an Environment defines a runtime environment of your app.

	a Service lets you specify a backend service.

Example

The following snippet depicts a Service-Oriented-App with a route, a service, and a develop environment:

import * as React from 'react';
import "@babel/polyfill";
import {
 callService,
 Environment,
 Middleware,
 Route,
 Service,
 ServiceOrientedApp
} from "infrastructure-components";

const SERVICE_ID = "myservice";

async function callMyService () {

 await callService(
 SERVICE_ID,
 { some: "data" },
 (data: any) => {
 console.log("received data: ", data);

 },
 (error) => {
 console.log("error: " , error)
 }
);

}

export default (
 <ServiceOrientedApp
 stackName = "soa-example"
 buildPath = 'build'
 region='eu-west-1'>

 <Environment name="dev"/>

 <Route
 path='/'
 name='My Service-Oriented React App'
 render={()=><div>
 <button onClick={callMyService}>Hello Infrastructure-Components!</button>
 </div>}
 />

 <Service
 id={ SERVICE_ID }
 path="/myservice"
 method="POST">

 <Middleware
 callback={ function (req, res, next) {
 const parsedBody = JSON.parse(req.body);

 console.log("this is the service: ", parsedBody);

 res.status(200).set({
 "Access-Control-Allow-Origin" : "*", // Required for CORS support to work
 }).send("ok");

 }}/>

 </Service>
 </ServiceOrientedApp>);

Build

The library infrastructure-scripts [https://github.com/infrastructure-components/infrastructure-scripts]
provides the scripts command. Run it with the arguments build and the relative path to the file that exports the
<ServiceOrientedApp/> component, e.g. src/index.tsx.

If you prefer using the usual npm run build command for building, simply add the script to your package.json file:

"scripts": {
 "build": "scripts build src/index.tsx"
}

The build process adds further scripts to your package.json. These let you start your software stack offline
in hot-development-mode and deploy it to AWS.

Run Hot-Development

Once you ran the build script, your package.json will contain a script for the hot-development-mode.

Now run scripts {your_stackName} src/index.tsx or npm run {your_stackName} to start your web-app in
hot-development-mode (replace {your_stackName} with the stackName of your ServiceOrientedApp-Component).

Wait until the console says that your app is running and open localhost:3000 in your browser.

You should see your app displaying “Hello from a React Web App!” - or whatever your own component renders.
Changes to your source code become effective immediately in this mode. Just edit your source code and reload your page
in the browser.

In this mode, your services are not available.

If you want to stop the app, use “ctrl-c” (or whatever command your console-application uses to interrupt a running script).

Run Offline

Once you ran the build script, your package.json will contain a start-script for each environment to run the
whole stack offline:

npm run start-{your_environment_name}

Open your the url localhost:3000 in a browser and you can see your application in action. Have a look at the console
of your development environment for outputs made on server-side (e.g. services)

The services run at localhost:3001.

If you want to stop the app, use “ctrl-c” (or whatever command your console-application uses to interrupt a running script).

Deployment Preparations (only one-time)

Deploying your app requires:

	An AWS account that you can create at https://aws.amazon.com

	A technical user (with programmatic access / API-key)

In your AWS-console, open the IAM menu and create a new user with the following policy:

{
 "Statement": [
 {
 "Action": [
 "s3:*",
 "apigateway:*",
 "lambda:*",
 "logs:*",
 "cloudformation:*",
 "cloudfront:*",
 "acm:ListCertificates",
 "route53:ListHostedZones",
 "route53:ListResourceRecordSets",
 "route53:ChangeResourceRecordSets",
 "route53:GetChange",
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:DeleteRolePolicy",
 "iam:GetRole",
 "iam:PassRole",
 "iam:PutRolePolicy",
 "execute-api:ManageConnections",
 "cloudfront:UpdateDistribution"
],
 "Effect": "Allow",
 "Resource": "*"
 }
],
 "Version": "2012-10-17"
}

You’ll get a AWS Key Id and an AWS Secret Key.

3 . Put these into the.env-file in your project root:

AWS_ACCESS_KEY_ID=********************
AWS_SECRET_ACCESS_KEY=***

Deploy

Once you have your credentials at the right place and you ran the build script, your package.json will contain
a script for each environment your app contains:

npm run deploy-{your_environment_name}

From here, the scripts create the whole infrastructure stack on your AWS account.
You’ll get back an URL like https://{your_stackName}-{your_environment_name}.s3.amazonaws.com that now serves your app.

Single-Page-App

Installation

Please follow the general installation instructions: ../installation.

The SinglePageApp-component further requires the serverless-single-page-app-plugin as a devDependency:

npm install --save-dev serverless-single-page-app-plugin

Further, the <SinglePageApp />-component requires the following libraries during runtime:

npm install --save react react-dom

Have a look at our Single-Page-App-Example [https://github.com/infrastructure-components/singlepage_example].

Develop

Properties

The SinglePageApp-component requires you to define the following properties:

	stackName the (arbitrary) name of your app, please use only lower case characters and hyphens for the name serves as identifier within AWS

	buildPath the relative path to the folder within your project, where to put the build-resources, e.g. “build”. You may want to add this name to your .gitignore file to keep your repository free from compiled files.

	region the AWS-region you want your infrastructure to reside after deployment, e.g. ‘us-east-1’

Allowed Children

The SinglePageApp-component supports the following infrastructure-components as direct children:

	a Route lets you specify a custom path (at the domain of your app) that gets served by its render-function. You should have at least the home-path-route (“/”) in any meaningful web-application.

	an Environment defines a runtime environment of your app.

Example

The following snippet depicts a Single-Page-App with two routes, a develop- and a production-environment:

import * as React from 'react';

import {
 SinglePageApp,
 Environment,
 Route
} from "infrastructure-components";

export default (
 <SinglePageApp
 stackName = "example"
 buildPath = 'build'
 region='us-east-1'>

 <Environment
 name="dev"
 />

 <Environment
 name="prod"
 domain="www.infrastructure-components.com"
 certArn="arn:aws:acm:us-east-1:************:certificate/********-****-****-****-************"
 />

 <Route
 path='/'
 name='Infrastructure-Components'
 render={()=> <div>Hello from a React Web App!</div>}
 />

 <Route
 path='/some-page'
 name='Some Page'
 render={()=> <div>This is some page at the path /some-page</div>}
 />

 </SinglePageApp>
);

Build

The library infrastructure-scripts [https://github.com/infrastructure-components/infrastructure-scripts]
provides the scripts command. Run it with the arguments build and the relative path to the file that exports the
<SinglePageApp/> component, e.g. src/index.tsx.

If you prefer using the usual npm run build command for building, simply add the script to your package.json file:

"scripts": {
 "build": "scripts build src/index.tsx"
}

The build process adds further scripts to your package.json. These let you start your software stack offline
in hot-development-mode and deploy it to AWS.

Run Offline

Once you ran the build script, your package.json will contain a script for the hot-development-mode.

Now run scripts {your_stackName} src/index.tsx or npm run {your_stackName} to start your web-app in
hot-development-mode (replace {your_stackName} with the stackName of your SinglePageApp-Component).

Wait until the console says that your app is running and open localhost:3000 in your browser.

You should see your app displaying “Hello from a React Web App!” - or whatever your own component renders.
Changes to your source code become effective immediately in this mode. Just edit your source code and reload your page
in the browser.

If you want to stop the app, use “ctrl-c” (or whatever command your console-application uses to interrupt a running script).

Deployment Preparations (only one-time)

Deploying your app requires:

	An AWS account that you can create at https://aws.amazon.com

	A technical user (with programmatic access / API-key)

In your AWS-console, open the IAM menu and create a new user with the following policy:

{
 "Statement": [
 {
 "Action": [
 "s3:*",
 "apigateway:*",
 "lambda:*",
 "logs:*",
 "cloudformation:*",
 "cloudfront:*",
 "acm:ListCertificates",
 "route53:ListHostedZones",
 "route53:ListResourceRecordSets",
 "route53:ChangeResourceRecordSets",
 "route53:GetChange",
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:DeleteRolePolicy",
 "iam:GetRole",
 "iam:PassRole",
 "iam:PutRolePolicy",
 "execute-api:ManageConnections",
 "cloudfront:UpdateDistribution"
],
 "Effect": "Allow",
 "Resource": "*"
 }
],
 "Version": "2012-10-17"
}

You’ll get a AWS Key Id and an AWS Secret Key.

3 . Put these into the.env-file in your project root:

AWS_ACCESS_KEY_ID=********************
AWS_SECRET_ACCESS_KEY=***

Deploy

Once you have your credentials at the right place and you ran the build script, your package.json will contain
a script for each environment your app contains:

npm run deploy-{your_environment_name}

From here, the scripts create the whole infrastructure stack on your AWS account.
You’ll get back an URL like https://{your_stackName}-{your_environment_name}.s3.amazonaws.com that now serves your app.

Domain

Have a look at our tutorial on how to register and prepare a domain within AWS.

If you specified an <Environment/>-component with a ready-to-use-domain (do not forget to specify the certArn!)
and once you deployed your app, you can initialize the domain with the following command:

npm run domain-{your_environment_name}

Note: The domain-script adds an entry to your .env-file: DOMAIN_{your_environment_name}=TRUE
You must not remove this flag or the connection to the domain might stop working. If you use a git-repository (what
you should do), make sure you add this flag to all the local copies.

Note: You only need to run this command once. But it may take quite some time (an hour) to complete!

Note: Once the script finishes, you can start using your domain. But you’ll notice that the URL redirects to the
URL like https://{your_stackName}-{your_environment_name}.s3.amazonaws.com. This is a temporary redirect (code 307) that
AWS adds automatically. It may a day until AWS removes the redirect. Per AWS documentation
(http://docs.aws.amazon.com/AmazonS3/latest/dev/Redirects.html): Due to the distributed nature of Amazon S3,
requests can be temporarily routed to the wrong facility. This is most likely to occur immediately after
buckets are created or deleted. The redirect should circumvent this problem.

DataLayer

A <DataLayer/>-component adds a DynamoDB database to your app.

Parents

A <DataLayer />-component is supported as a direct child of an apps/soa or of a apps/isomorphic-component.
You can have a single DataLayer in an app.

Properties

The <DataLayer />-component requires you to define the following properties:

	id the unique string that identifies your datalayer.

Allowed Children

The <DataLayer />-component supports the following infrastructure-components as direct children:

	a Service specifies a backend service that has access to the database.

	an Entry describes the type of items in your database.

The <DataLayer /> can have multiple services and entries as children.

Entry

An <Entry/>-component describes a type of items in your database.

Parents

An <Entry />-component is supported as a direct child of a DataLayer.
You can have any number of entries in your datalayer.

Properties

The <Entry />-component requires you to define the following properties:

	id the unique string that identifies your entry.

	primaryKey the name of the first queryable field

	rangeKey the name of the seconf queryable field

	data a Javascript object. each key in this object specifies a data field of the entry. The value specifies the

type of data. Currently, only GraphQLString is supported.

Allowed Children

The <Entry />-component does not support children.

Environment

An <Environment/>-component specifies a runtime environment of your app. With environments you can distinguish your
development-environments from your production-environment.

Parents

An <Environment />-component is supported as a direct child of an app-component, i.e. either
apps/spa or apps/isomorphic.

Properties

The <Environment />-component requires you to define the following properties:

	name is the name of the environment that serves as literal in scripts that work with a certain environment, like deploy. Thus, use short names, with no special characters other than hyphens.

	domain (optional) is a valid domain, including subdomains (e.g. www) and top-level-domain (e.g. com) that this environment should be available at. Note: you need to have this domain registered and setup in your AWS account!

	certArn (optional, required in an Single-Page-App-environment with a domain) specifies the ARN (identifier) of the`certificate that covers your domain, e.g. ``”arn:aws:acm:us-east-1:********:certificate/****-**-**-**-**********”`, not required of an isomorphic app.

	offlinePort (optional) specifies the port number when running your app locally, replaces the port :3000.

You can have multiple environments per app.

Middleware

An apps/isomorphic renders <WebApp />-Components at the server-side and returns the rendered html as response
to the client requesting the url. <Middleware />-components let you add code executed at the server before the html is returned.

The concept of middlewares is taken directly from Express.js [https://expressjs.com/de/].

Middlewares apply in the order of hierarchy and in the order they are defined in your app! This means, middlewares higher
in the hierarchy (at <IsomorphicApp /> level) apply before lower-level middlewares (e.g. <WebApp/>, <Route/>)

Parents

A <Middleware /> component is supported as a direct child of an apps/isomorphic, a Webapp, or
a Route.

Depending on its location, it will have a broader or narrower scope of requests it applies to.

Properties

The <Middleware />-component requires you to define the following properties:

	callback is a function, either (req, res, next) => {} or (err, req, res, next) => {}

This callback is used as an Express.js-Middleware.

The callback has the following arguments:

	req is the request-object received from the client. It contains all the information you may want to work with

	res is the response-object that you can use to return a response to the client, e.g. res.status(200).send('Your Response');. Note: if you respond from within a middleware, following middlewares and any following <Route/>-components will not be called anymore! If you want to provide data to subsequent middlewares, complement the req object with your data.

	next is a function that you can call to hand over to the next middleware.

If you specify a middleware with four arguments, i.e. then the first argument is:

	err an error that has been thrown previously and which you can act on now.

When a middleware throws an error, only subsequent middlewares with error-handling apply. If no error is thrown, middlewares
with an error-handling do not apply.

Route

A <Route/>-component specifies a custom path (at the domain of your app) that gets served by its render-function.
This function lets you easily render your own React-components.

You can regard it as a page of your app/website.

Parents

A <Route />-component is supported as a direct child of an apps/spa or of a <WebApp />-component in an
<IsomorhpicApp />. In both cases, there may be multiple <Route />-components.

Properties

The <Route />-component requires you to define the following properties:

	path the relative path of the route at the domain, e.g. “/” for the root, or “/something”

	name the name is used as the html-title

	render (optional) is a function () => React.node e.g. () => <div>Hi</div> that needs to return a React node to be rendered.

	component (optional) is a React-Element that you specified/imported, e.g. Something, with <Something /> being the rendered element.

You must specify either render or component!

Allowed Children

The <Route />-component supports the following infrastructure-components as direct children:

	a Middleware lets you specify a server-side function that runs whenever a user requests this exact route from the server.

Service

A <Service/>-component specifies a custom path that calls the middlewares you provide as children.
This function lets you easily provide backend functions.

Parents

A <Service />-component is supported as a direct child of an apps/soa or of a apps/isomorphic-component.
You can have any number of services in an app.

Properties

The <Service />-component requires you to define the following properties:

	path the relative path of the service at the domain, e.g. “/” for the root, or “/something”

	id the unique string that identifies your service.

	method the HTTP-method that your service listens to, valid values are: GET, POST, UPDATE, DELETE

Allowed Children

The <Service />-component supports the following infrastructure-components as direct children:

	a Middleware lets you specify a server-side function that runs whenever a user requests this exact route from the server.

Webapp

An apps/isomorphic renders <WebApp />-Components at the server-side and returns the rendered html as response
to the client requesting the url. Further, it provides the whole app as Javascript code for download to enable
a dynamic user experience.

If your application stack needs to serve completely separated applications that come with different html-templates
or different React-components it may make sense to use more than one <WebApp />.

If you simply require different “pages”, using multiple <Route/>-components is the better choice.

Parents

A <WebApp /> component is supported as a direct child of an apps/isomorphic. An <IsomorhpicApp /> can
have multiple WebApp-children. In this case, make sure the regular expression in the property path clearly distinguishes
all the possible paths.

Properties

The WebApp-component requires you to define the following properties:

	id the (arbitrary) name of your webapp, please use only lower case characters and hyphens for the name serves as identifier within AWS

	``path``the relative path of the route, e.g. “/” for the root, or “/something”, or “*” for any. Can be a regular expression.

	method the http-method that this app will work with, e.g. “GET”, “POST”, “PUT”, “DELETE”

Allowed Children

The WebApp-component supports the following infrastructure-components as direct children:

	a Route lets you specify a custom path (at the domain of your app) that gets served by its render-function. You should have at least the home-path-route (“/”) in any meaningful web-application.

	a Middleware lets you specify a server-side function that runs whenever a user requests a page from the server. When you specify it as a direct child of your <WebApp/> then it applies to all routes of this webapp. If you want <Middleware/>``s to apply to a single ``<Route/>, put them as children to ` <Route/>

A <WebApp /> can have multiple <Route/> and <Middleware /> children.

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/teaser.png
* API Gateway

Deploy and Serve.

RouteS3 l

!83

pplication.

o')o

REACT ROUTER

Express.

Compile and Pack.

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Infrastructure-Components

 		
 Getting Started

 		
 Start with an Example

 		
 Install manually

 		
 Apps

 		
 SinglePageApp

 		
 ServiceOrientedApp

 		
 IsomorphicApp

 		
 Components

 		
 Webapp

 		
 Service

 		
 Middleware

 		
 Route

 		
 Environment

 		
 DataLayer

 		
 Entry

 		
 Scripts

 		
 Build

 		
 Run Offline

 		
 Start

 		
 Deploy

 		
 Domain

 		
 Help and Support

_static/up.png

