

 Navigation

 	
 index

 	
 next |

 	InfraSIM 2.0 documentation

 [image: _images/logo.png]

InfraSIM™

InfraSIM allows you to deploy virtualized infrastructures consisting of simulated servers, storage devices, switches and smart PDUs(Power Distribute Units). You can use it to create development environments that simulate the exact physical environments where your product will eventually be deployed.

The project is a collection of libraries and applications housed at https://github.com/InfraSIM/ and available under
the Apache 2.0 license (or compatible sublicenses for library dependencies). The code for InfraSIM is a combination
of python, shell and C, etc.

InfraSIM™ Overview and quick start video

VIDEO: InfraSIM On YouTube [https://www.youtube.com/channel/UC5WCTcRNSSnw9ahbIQzU2HA]

Contents

	1. Overview

	2. Why InfraSIM?

	3. Installation

	4. Getting started

	5. Configuration

	6. Software Architecture

	7. Features

	8. User Guide

	9. Contributing to InfraSIM

	10. Development Guide

	11. How To

InfraSIM is a Trademark of EMC Corporation.

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	InfraSIM 2.0 documentation

1. Overview

InfraSIM provides the technology to simulate the interface and behavior of hardware devices including compute, storage, networking, and smart PDU(Power Distribute Units).
It leverages the technology of virtualization which enables to simulate a big amount of hardware devices with limited physical resources. And these simulated hardware devices can be configured to construct an @scale infrastructure.

1.1. Data Center element simulating

At single node level, InfraSIM provides:

	Precisely-simulating of bare-metal hardware node: Server, PDU hardware configuration, manufacture information, vendor-specific interfaces and functionalities, etc

	Mechanism for customizing sub-component of node. i.e. Configuration and properties of Drive, NIC and processors; enclosure management subsystem.

	Configuring and manipulating platform firmware - BIOS, POST and BMC - behavior

	Easy way to simulating hardware failure

1.2. Virtual infrastructure powered by InfraSIM

To simulate scale out infrastructure, InfraSIM allows setting up, configuring one heterogeneous hardware infrastructure, with blow advantages, which provides a total solution for CI application development and test.

	Network topology simulation

	Automatic deployment on demand

	Optimized footprint - Large scale deployment on top of limited number of servers

The diagram below illustrates the development concept of the @Scale deployment.

[image: _images/atscaledeploy.png]
[image: _images/space.png]

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	InfraSIM 2.0 documentation

2. Why InfraSIM?

InfraSIM provides effective, economic way to simulate a bare-metal infrastructure on which engineering team can leverage to achieve purpose of:

	Cost saving by simulating a scaled infrastructure with limited hardware materials

	Less dependency on hardware material which is in short of

	Increase automation level and eventually increase development and testing efficiency

	Increase test coverage by leveraging InfraSIM error injection functionality

There’re many existing virtualization technologies like VMWare product, KVM, XEN, etc. They are aiming at provisioning generic virtual machines which contains computing power and storage capacities and networking functionalities. However, they’re not sufficient in many engineering areas because of several missing pieces like:

	Vendor personality: e.g. vendor identification information, SKU information, MFG information. No way to tell it is Cisco switch or brocade one; or tell it is dell server or IBM server;

	Vendor-specific functionality: e.g. Dell Remote Access Controller; Cisco UCS appliance – provided central interface for management

	Rack/Chassis/PDU/PS/Cooling: fundamental building blocks of hardware. Particular software need to be aware of these info and would need to do some analytic and decision-making by checking details and running status of these components.

	Platform FW behavior: VM provided only limited number of adjustable parameters; Limited emulation to FW behaviors.

Virtual machines directly spawn by virtualization technologies are designed in way to be working forever, which might not be totally expected in some situations. There definitely are desires to simulate hardware failures to test robustness/error recovery scheme of software.

So we can conclude easily that current popular virtualization technologies are not designed to precisely simulate hardware and consequently it can’t be directly adopted in dev and validation activities, for software for purpose of infrastructure and hardware management and orchestration, which really have dependencies on detailed hardware properties.

While InfraSIM is really designed to precisely simulate hardware and bare-metal infrastructure in order to maximize the productivity and flexibility of you and your team.

2.1. InfraSIM Use Cases

Currently, InfraSIM has successfully proved that it is capable of not only saving lots of cost of purchasing hardware material for setting up a pure bare-metal environment, but also providing many flexibilities in software developing and testing areas. Here’re 2 cases where InfraSIM is leveraged for software application - RackHD and VMWare software - development and testing.

2.1.1. InfraSIM as test infrastructure of RackHD™

Notes:
RackHD™ is an open source project that provides hardware orchestration and management through RESTful APIs. For more information about RackHD, go to http://rackhd.readthedocs.io.

	
	At scale test

	
	We can validate RackHD functionalities by having it manage and orchestrate a virtual infrastructure with adjustable or big scalability. Then we can evaluate RackHD performance benchmark and ensure its functionalities in an environment with:

	
	Big number of nodes

	Diversity of node type - different type, model, vendors, etc

	Increased complexity of network topology

[image: _images/case_infrasim_rackhd.png]

	
	Telemetry data testing

	InfraSIM allows generating and modifying server sensor readings that we can better test feature of telemetry data of RackHD.

	
	Node provision

	InfraSIM allows customizing node device tree and manipulating FE behavior, we can better test node provision feature, for example, bootstrapping servers and deploying operating systems, hypervisors and applications.

	
	Error injection

	Because InfraSIM is adopting software approach to simulate hardware, both elements and entire infrastructure, it provided more feasibility and easiness to simulate hardware failures to test our software error handing logic.

2.1.2. Running VMWare Virtualization Software inside InfraSIM Virtual server

[image: _images/case_infrasim_vmware.png]

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	InfraSIM 2.0 documentation

3. Installation

For virtual node simulating server or PDU, either bare-metal machine (server, laptop, desktop) or virtual machine can host one. It requires configuring network (either corresponding physical one or virtual one, even mixing physical and virtual network together for hybrid configuration) in order to compose one infrastructure containing virtual servers, PDUs and specified network topology.

Here’s requirement on hardware environment and virtualization environment running InfraSIM:

3.1. Requirement

3.1.1. Pre-requisite

Several mandatory configuration has to be made as below which is required to accommodate InfraSIM virtualization-nesting design. How to install VMWare ESXi describes a example of how to achieve them when installing and configuring VMWare ESXi.

	Virtual InfraSIM servers runs in the best performance if hardware-assisting technology has been enabled on underlying physical machines. These technology includes VT-d feature and AMD-V for processors from Intel and AMD.

Note

Physical machine - enable VT-d in BIOS

	When virtual server is running inside VM, it also requires underlying hypervisor passing down the hardware-virtualization-assisting to virtual machine it spawn.

Note

VMWare ESXi hypervisor - Set “vhv.enable = “TRUE”

Caution

InfraSIM running on VirtualBox will have performance penalty when running specific work load (deploying operating system, running compute-intensive application inside virtual server). This is because VirtualBox doesn’t support simulating a platform which is capable of supporting hardware-virtualization-assisting feature.

	Ensure Promiscuous Mode of virtual switch, virtual network controller has been enabled for underlying hypervisors hosting virtual machines running InfraSIM inside. Here’s example on how to achieve it on top VMWare ESXi

Note

Promiscuous Mode - How to install VMWare ESXi

3.1.2. Resource Requirement

	1 physical CPU or 1 virtual CPU

	4GB memory

	16GB disk space

	1 virtual or physical NIC

3.1.3. Software environment

Ubuntu Linux 64-bit - 16.04 is recommended

3.2. Virtual Server

	Ensure sources.list integrity then install dependency:

sudo apt-get update
sudo apt-get install python-pip libpython-dev libssl-dev

	Upgrade pip and install setuptools:

sudo pip install --upgrade pip
sudo pip install setuptools

	Select either one of below ways to install infrasim:

	install infrasim from source code:

git clone https://github.com/InfraSIM/infrasim-compute.git
cd infrasim-compute
sudo pip install -r requirements.txt

sudo python setup.py install

	install infrasim from python library:

sudo pip install infrasim-compute

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	InfraSIM 2.0 documentation

4. Getting started

This chapter describes how to access virtual server, virtual PDU and virtual infrastructure provided by InfraSIM.

4.1. Quick start of infrasim-compute application

4.1.1. Command interfaces

	Initialization (you need do it once)

sudo infrasim-init

	Start Infrasim Service:

sudo infrasim-main start

Verify your service by VNC and IPMI

	Status and version number check:

sudo infrasim-main status
sudo infrasim-main version

	Stop Infrasim Service:

sudo infrasim-main stop

	Start IPMI Console:

sudo ipmi-console start

	Stop IPMI Console:

sudo ipmi-console stop

4.1.2. Interface to access virtual server

	
	Server graphic UI

	VNC service is available through port 5901. You can see the virtual monitor is already running and listing boot devices of virtual node. Through this booting devices, you can deploy hypervisor or operating system into virtual compute node just like operating on one physical server

[image: _images/vnc.png]

	Virtual BMC

	Install ipmitool on host machine.:

sudo apt-get install ipmitool

IPMI over LAN:

ipmitool -I lanplus -U admin -P admin -H <IP address> sdr list

Note

<IP address> is address of NIC assigned to BMC access in YAML configuration file

IPMI over internal path (vKCS) which requires OS and ipmitool application deployed inside virtual server:

ipmitool sdr list

You can get the command result like the following

 Pwr Unit Status | Not Readable | ns
 IPMI Watchdog | Not Readable | ns
 FP NMI Diag Int | Not Readable | ns
 SMI TimeOut | Not Readable | ns
 System Event Log | Not Readable | ns
 System Event | Not Readable | ns
...

	Serial over LAN

It requires activate SoL through IPMI command and console running IPMI console will becomes serial console of virtual server. After InfraSIM services started, this command is to activate SoL:

sudo ipmitool -I lanplus -U admin -P admin -H localhost sol activate
[SOL Session operational. Use ~? for help]

4.2. Setup an InfraSIM Virtual Server on ESXi

To setup an InfraSIM Server on ESXi, you should have an OVA with necessary environment prepared. You can consult the InfraSIM team to get the image or build one with the packer build image [https://github.com/InfraSIM/tools/blob/master/packer/README.md]. Below are the steps to deploy and run InfraSIM on ESXi:

	Get ESXi environment prepared by following instruction

	Spin up a virtual machine by choosing “Deploy OVF Template”. Specify the URL of the OVA image.

	Map the networks used in the OVA. The networking configured inside OVA is multi-bridge mode:

	[image: _images/networking_bridge_multiple.PNG]

	Modify YAML configuration file as you need. The default configuration for OVA is infrasim.yml [https://github.com/InfraSIM/tools/blob/master/packer/scripts/infrasim.yml]. The path is:

/usr/local/infrasim/etc/infrasim.yml

	Kick off all InfraSIM services.

	Done, enjoy this virtual server!

Note

No need to run infrasim-init because it’s already done during image build.

Configuration for OVA can be refered on Packer OVA Configuration [https://github.com/InfraSIM/tools/blob/master/packer/infrasim-vmware.json]. Below are the major parameters:

Disk Size: 40G
Memory: 8G
Number of CPUs: 2
Number of NICs: 4
Type of NICs: VMXNET 3
NIC0:
 Name: ens160
 networkName: ADMIN
NIC1:
 Name: ens192
 networkName: BMC
NIC2:
 Name: ens224
 networkName: CONTROL
 Promiscuous Mode: on
NIC3:
 Name: ens256
 networkName: DATA
 Promiscuous Mode: on

4.3. Setup an InfraSIM Virtual Server in VirtualBox

Virtualbox is available on multiple platforms. To get an InfraSIM BOX image, refer to packer build image [https://github.com/InfraSIM/tools/blob/master/packer/README.md]

	Install virtualbox on the host.

	Create a directory for the VM and move the BOX image along with Vagrantfile [https://github.com/InfraSIM/tools/blob/master/packer/Vagrantfile] under the directory.

	CD to the directory and run commands:

vagrant box add --name infrasim-compute <YOUR_BOX_IMAGE>
vagrant up
vagrant ssh

	Modify YML configuration if you need.

	Start InfraSIM services. No “infrasim-init” needed.

BOX configuration can be refered on Packer BOX Configuration [https://github.com/InfraSIM/tools/blob/master/packer/infrasim-box.json] and Vagrantfile [https://github.com/InfraSIM/tools/blob/master/packer/Vagrantfile]. The major parameters are:

Disk Size: 40G
Memory: 5G
Number of CPUs: 2
Number of NICs: 4
NIC0:
 Name: enp0s3
 Network Adapter: NAT
NIC1:
 Name: enp0s8
 Network Adapter: Internal Network
NIC2:
 Name: enp0s9
 Network Adapter: Internal Network
 Promiscuous Mode: on
NIC3:
 Name: enp0s10
 Network Adapter: Bridged Adapter
 Promiscuous Mode: on

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	InfraSIM 2.0 documentation

5. Configuration

5.1. Virtual Server Configuration file

There’s one central virtual server configuration file which is /etc/infrasim/infrasim.yml (source code [https://github.com/InfraSIM/infrasim-compute/blob/master/template/infrasim.yml]). All adjustable parameters are defined in this file. This is the only file to modify if you want to customize or make adjustment on the virtual server node. While not all supported options are explicitly listed in this file for purpose of simplicity. However there’s one example configuration file - /etc/infrasim.full.yml.example (source code [https://github.com/InfraSIM/infrasim-compute/blob/master/etc/infrasim.full.yml.example]) - listed all supported parameters and definitions. By referring content in example file, you can modify real file infrasim.yml and then restart infrasim-main service and then new properties will take effect.

Here’s full list of the example configuration file; every single key-value pair is supported to be add/modify in your real-in-use infrasim.yml:

This example virtual server configuration file intends to throughout
list parameters and properties that infrasim-compute virtual server
supports to adjust. In most cases it is fine to use default value
for particuar configuration by skipping putting it into infrasim.yml
configuration file. For anything item you're interested, it is recommended
to look up infomation here first. For example, if you'd like to customize
properties of your drive - either serial number or vender - in below there're
corresponding item to show how to achieve that.

Unique identifier
name: node-0

Node type is mandatory
Node type of your infrasim compute, this will determine the
bmc emulation data and bios binary to use.
Supported compute node names:
quanta_d51
quanta_t41
dell_c6320
dell_r630
dell_r730
dell_r730xd
s2600kp - Rinjin KP
s2600tp - Rinjin TP
s2600wtt - Node of Hydra, Python
type: quanta_d51

compute:
 # n - Network (PXE); c - CD-ROM;
 # d - Drive (bootindex in drive sections controls order of booting HDD)
 boot_order: ncd
 kvm_enabled: true
 numa_control: true
 cpu:
 model: host
 features: +vmx
 quantities: 8
 memory:
 size: 4096
 # Currently the PCI bridge is only designed for megasas storage controller
 # When you create multiple megasas controller, the controllers will be assigned
 # a different pci bus number
 pci_bridge_topology:
 -
 device: i82801b11-bridge
 addr: 0x1e.0x0
 multifunction: on
 -
 device: pci-bridge
 chassis_nr: 0x1
 msi: false
 addr: 0x1
 storage_backend:
 -
 controller:
 type: ahci
 max_drive_per_controller: 6
 drives:
 -
 model: SATADOM
 serial: HUSMM142
 bootindex: 1
 # To boot esxi, please set ignore_msrs to Y
 # sudo -i
 # echo 1 > /sys/module/kvm/parameters/ignore_msrs
 # cat /sys/module/kvm/parameters/ignore_msrs
 file: chassis/node1/esxi6u2-1.qcow2
 -
 vendor: Hitachi
 model: HUSMM0SSD
 serial: 0SV3XMUA
 # To set rotation to 1 (SSD), need some customization
 # on qemu
 # rotation: 1
 # Use RAM-disk to accelerate IO
 file: /dev/ram0
 -
 vendor: Samsung
 model: SM162521
 serial: S0351X2B
 # Create your disk image first
 # e.g. qemu-img create -f qcow2 sda.img 2G
 file: chassis/node1/sda.img
 -
 vendor: Samsung
 model: SM162521
 serial: S0351X3B
 file: chassis/node1/sdb.img
 -
 vendor: Samsung
 model: SM162521
 serial: S0451X2B
 file: chassis/node1/sdc.img
 -
 controller:
 type: megasas-gen2
 use_jbod: true
 use_msi: true
 max_cmds: 1024
 max-sge: 128
 max_drive_per_controller: 1
 drives:
 -
 vendor: HITACHI
 product: HUSMM168XXXXX
 serial: SN0500010351XXX
 rotation: 1
 slot_number: 0
 wwn: 0x50000ccaxxxxxxxx
 file: <path/to/your disk file>

 networks:
 -
 network_mode: bridge
 # Bridge need to be prepared beforehand with brctl
 network_name: br0
 device: vmxnet3
 mac: 00:60:16:9e:a8:e9
 -
 network_mode: nat
 device: e1000
 ipmi:
 interface: bt
 chardev:
 backend: socket
 host: 127.0.0.1
 reconnect: 10
 ioport: 0xca8
 irq: 10
 smbios: chassis/node1/quanta_d51_smbios.bin
 monitor:
 mode: control
 chardev:
 backend: socket
 server: on
 wait: off
 path: <path/to/your/sock file>
 # set vnc display <X>
 vnc_display: 1
bmc:
 interface: br0
 username: admin
 password: admin
 address: <ip address>
 channel: 1
 lancontrol: <path/to/lan control script>
 chassiscontrol: <path/to/chassis control script>
 startcmd: <cmd to be excuted>
 startnow: true
 poweroff_wait: 5
 kill_wait: 5
 historyfru: 20
 config_file: <path/to/your config file>
 emu_file: chassis/node1/quanta_d51.emu
 ipmi_over_lan_port: 623

SSH to this port to visit ipmi-console
ipmi_console_ssh: 9300

Renamed from telnet_listen_port to ipmi_console_port, extracted from bmc
ipmi-console talk with vBMC via this port
ipmi_console_port: 9000

Used by ipmi_sim and qemu
bmc_connection_port: 9100

Used by socat and qemu
serial_port: 9003

Up to infrasim-compute commit ef289c55 [https://github.com/InfraSIM/infrasim-compute/commit/ef289c555f0e079c92e2eb0240153a722eca880a]

	name

This attribute defines nodes name, which is a unique identifier for infrasim-compute instances on the same platform.
More specifically, it is used as workspace [https://github.com/InfraSIM/infrasim-compute/wiki/Compute-Node-Workspace] folder name.

NOT Mandatory

Default: “node-0”

Legal Value: String

	type

This attribute defines supported nodes type in InfraSIM. With this attribute, infrasim-compute will set BMC emulation data for ipmi_sim and BIOS binary for qemu accordingly, you can get corresponding .emu and .bin in /usr/local/etc/infrasim/ by default.

Mandatory

Legal Values:

	“quanta_d51”

	“quanta_t41”

	“dell_c6320”

	“dell_r630”

	“dell_r730”

	“dell_r730xd”

	“s2600kp”, for Rinjin KP

	“s2600tp”, for Rinjin TP

	“s2600wtt”, for Hydra, Python

	compute

This block defines all attributes used by qemu. They will finally be translated to one or more qemu command options. The module infrasim.model.CCompute is handling this translation. This is much like a definition for libvert [https://libvirt.org/], but we may want it to be lite, and compatible with some customized qemu feature in InfraSIM.

	compute:boot_order

This attribute defines boot order for qemu. Will be translated to -boot {boot_order}.

Not Mandatory

Default: “ncd”, means in a order of pxe > cdrom > default.

Legal Value: See -boot in qemu-doc [http://wiki.qemu.org/download/qemu-doc.html].

	compute:kvm_enabled

This attribute enable kvm [http://wiki.qemu.org/Features/KVM] when you announce it as True and your system supports kvm. It will be translated to --enable-kvm. You can check if your system supports kvm by check if /dev/kvm exists.

Not Mandatory

Default: Depends on if /dev/kvm exists.

Boolean Table

	kvm_enabled
	/dev/kvm
	–enable-kvm

	true
	yes
	yes

	true
	no
	no

	false
	yes
	no

	false
	no
	no

	not define
	yes
	yes

	not define
	no
	no

	compute:numa_control

This attribute enable NUMA [https://en.wikipedia.org/wiki/Non-uniform_memory_access] to improve InfraSIM performance by binding to certain physical cpu.
If you have installed numactl and set this attribute to True, you will run qemu in a way like numactl --physcpubind={cpu_list} --localalloc.

Not Mandatory

Default: Disabled

	compute:cpu

This group of attributes set qemu cpu characteristics. The module infrasim.model.CCPU is handling the information.

	compute:cpu:model

This attribute sets qemu cpu model.

Not Mandatory

Default: “host”

Legal Values: See -cpu model in qemu-doc [http://wiki.qemu.org/download/qemu-doc.html].

	compute:cpu:features

This attribute adds or removes cpu flags according to your customization. It will be translated to -cpu Haswell,+vmx for example.

Not Mandatory

Default: “+vmx”

Legal Values: See -cpu model in qemu-doc [http://wiki.qemu.org/download/qemu-doc.html].

	compute:cpu:quantities

This attribute sets virtual cpu numbers in all. With default socket 2, CCPU calculates core per socket. Default set to 1 thread per cores.
It will be translated to -smp {cpus},sockets={sockets},cores={cores},threads=1 for example.

Not Mandatory

Default: 2

Legal Values: See -smp in qemu-doc [http://wiki.qemu.org/download/qemu-doc.html].

	compute:memory

	compute:memory:size

	compute:storage_backend

	compute:storage_backend:-:controller

	compute:storage_backend:-:controller:type

	compute:storage_backend:-:controller:max_drive_per_controller

	compute:storage_backend:-:controller:use_jbod

	compute:storage_backend:-:controller:use_msi

	compute:storage_backend:-:controller:max_cmds

	compute:storage_backend:-:controller:max-sge

	compute:storage_backend:-:controller:drives

	compute:storage_backend:-:controller:drives:-:model

	compute:storage_backend:-:controller:drives:-:serial

	compute:storage_backend:-:controller:drives:-:bootindex

	compute:storage_backend:-:controller:drives:-:file

	compute:storage_backend:-:controller:drives:-:vendor

	compute:storage_backend:-:controller:drives:-:rotation

	compute:networks

	compute:networks:-:network_mode

	compute:networks:-:network_name

	compute:networks:-:device

	compute:networks:-:mac

	compute:ipmi

	compute:ipmi:interface

	compute:ipmi:chardev

	compute:ipmi:chardev:backend

	compute:ipmi:chardev:host

	compute:ipmi:chardev:reconnect

	compute:ipmi:ioport

	compute:ipmi:Irq

	compute:smbios

	compute:monitor

	compute:monitor:mode

	compute:monitor:chardev

	compute:monitor:chardev:backend

	compute:monitor:chardev:server

	compute:monitor:chardev:wait

	compute:monitor:chardev:path

	compute:vnc_display

	bmc

	bmc:interface

	bmc:username

	bmc:password

	bmc:address

	bmc:channel

	bmc:lancontrol

	bmc:chassiscontrol

	bmc:startcmd

	bmc:startnow

	bmc:poweroff_wait

	bmc:historyfru

	bmc:config_file

	bmc:emu_file

	bmc:ipmi_over_lan_port

	ipmi_console_ssh

	ipmi_console_port

	bmc_connection_port

	serial_port

5.2. Networking

	
	Virtual server NAT or host-only mode, this is default mode implemented in infrasim-compute

	
	vCompute is accessible ONLY inside Ubuntu host

	Software running in vCompute can access outside network if connecting Ubuntu host NIC with virtual bridge

	Configuration YAML file can specify which NIC IPMI over LAN traffic flows through

[image: _images/networking_nat.PNG]

	
	Bridge mode - single

	
	Work as virtual switch

	Connect BMC NIC and NICs in virtual compute together

	Configuration YAML file controls how many NICs that virtual compute has and specify bridge they connect to

[image: _images/networking_bridge_single.PNG]

Note

It requires setting up bridge and connect to NIC of underlying host in advance.

Here’s steps for this example:

brctl addr br0
brctl addif br0 eth1
brctl setfd br0 0
brctl sethello < bridge name > 1
brctl stp br0 no
ifup br0

	Bridge mode - multiple

[image: _images/networking_bridge_multiple.PNG]

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	InfraSIM 2.0 documentation

6. Software Architecture

6.1. InfraSIM Components

Below tables demonstrate the simulated hardware elements by InfraSIM.

	Terminology
	Description

	InfraSIM
	
	Use the combination of hardware virtualization and emulation technologies to simulate the interfaces and behaviors of hardware elements in the test domain.

	The simulated hardware elements are called by the ‘vXXX’ term, with the prefix “v” for virtual.

	vCompute
	
	Virtual Compute Node

	The simulation of a physical compute node which includes the core compute subsystem and the standby BMC that control and monitor hardware resources of the compute node.

	vHost
	
	Virtual Host (CPU subsystem)

	The simulation of the core compute subsystem of a compute node.
vHost is the core hardware resources of the compute node that host OS and product applications.

	vBMC
	
	virtual BMC. It contains two concepts depending on the reference context:

	
	The simulated BMC controller of a compute node.

	A wrapping VM image containing virtual BMC and the whole compute node implementation.

	vSwitch
	
	Virtual Switch

	The virtualized control, data, or admin switch.

	vPDU
	
	Virtual Smart PDU

	The simulation of the smart PDU.

InfraSIM uses hypervisor - either VMWare ESXi or VMWare Workstation or KVM or VirtualBox or container(docker) - to host virtual elements of infrastructure. These virtual elements are implemented inside virtual machines and consists of the following components:

	
	vCompute

	The virtual node is used to simulate specific server node. The virtual node component is implemented within a virtual machine running on a hypervisor.

Each virtual node implemented a virtual BMC (vBMC) inside. All BMC functionalities such as sensor data, thresholds, power controls, and boot options are simulated with this module. Both local and remote IPMI command are fully supported by using popular IPMItool.

There’s one nested QEMU VM included, which is capable of simulating CPUs, DIMMs, and other hardware devices.

	
	vPDU

	The vPDU is simulating intelligent PDU which is used to control AC power of other virtual nodes.

	
	vSwitch

	The vSwitch is used to simulate network switches, including the connections to the virtual compute nodes within the virtual infrastructure.

6.2. Virtual Node

The following diagram shows a high-level view of components in the virtual node architecture.

[image: _images/architecture1.png]
vBMC is able to handle IPMI command from either external network or local virtual compute over vKCS interface, it is bridged to an external vSwitch, to be accessible to management network.

vCompute is nested QEMU VM. There are two virtual networks attached: one is connected to the same network as vBMC which allows traffic of DHCP, TFTP, PXE, etc; the other network is used as data network specifically for user work load.

The vNode could be running on most of popular hypervisors such as VMWare ESXi, VMWare Workstation, KVM, VirtualBox, as well as container (docker).

6.3. Virtual PDU

The following diagram shows a high-level view of components in the virtual PDU architecture as well as shows how each component interacts with others.

[image: _images/vpdu_diagram.png]

	SNMP Simulator

The snmp simulator is to simulate SNMP protocol, to respond snmp requests from external sources.
It also supports parsing and responding according to definitions of a vendor-specific MIB data file, if you want to get more details of this simulator, please reference snmpsim [http://snmpsim.sourceforge.net]

	vPDU Service

The vPDU service will handle the messages from snmp simulator over pipe, and then call various control interface to power on, power off, reboot the virtual nodes.

	Control service

The control service is an interface over SSH to configure vPDU such as ip address, simulated data settings, outlet settings etc.

6.4. Virtual Switch

Regarding to vSwitch solution, InfraSIM mainly leverages products from Hypervisor - for example VMWare vSwitch; or from vendor such as Cisco Nexsus 1000v, Arista vEOS.

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	InfraSIM 2.0 documentation

7. Features

7.1. Bare-metal server simulation

Here’s a list of physical servers that InfraSIM has simulation support:

	Dell R730XD, R630 and C6320

	Quanta T41, D51

	Intel S2600KP, S2600TP and S2600WTT

Below list all the functionalities, regarding to how InfraSIM simulates behaviors, properties of those physical server.

7.1.1. Virtual BMC

	Defining channel number and support internal and remote IPMI command

	Virtual BMC is interally accessible (similar with a virtual KCS path) through software applications - typically ipmitool - running inside virtual server

	Virtual BMC supports IPMI over LAN

	Supports ipmitool “-t” option and specify access channel

	FRU, Sensors, SDR, LAN, User

	FRU, Sensor and SDR data - simulating what corresponding physical server is presenting

	Define Chassis/Node relation by customizing, Chassis s/n and Node slot information

	Chassis Control

	Power control and power status monitoring

	Connecting to virtual host to really simulate power control behavior of a physical server

	IPMI master read/write to simulate I2C device

	Define and inject data for IPMI master read/write of particular I2C device

	SEL

	System power up event generating in SEL

	SEL event generating on clear operation

	SEL event generating on sensor reading beyond threshold

	Inject SEL entry based on sensor event

	Inject SEL entry based on OEM-defined format

	Sensor data manipulating and injecting

	Sensor readings dynamically change

	Manually specify sensor (analog type) reading at run time

	Manually specify sensor (discrete type) reading at run time

	Supports changing boot order, activate/de-activate server Serial-Over-Lan

	Specify NIC to transfer data for IPMI over LAN

7.1.2. Virtual network interface controller

	Add, remove NIC for virtual server

	Randomly generating MAC address for each NIC to prevent duplication

	Supports NAT, bridge and MACVTAP modes

7.1.3. Virtual host

	Support booting from PXE, ISO, HDD

	SMBIOS data capturing and injecting

	Define processor, memory properties

7.1.4. Virtual direct-attached storage

	
	Specify drive properties:

	
	SSD or spinning drive

	Serial number

	Physical information

	Enable RAM disk to boost virtual disk drive performance

7.2. Intelligent power distribute unit simulation

InfraSIM has simulation for 2 types of PDU: Panduit PDU and Server Tech PDU. So far it only supports powering control virtual servers running on top of VMWare ESXi. All supported features include:

	SNMP interface for management and control

	Telnet/SSH Service to configure virtual PDU

	Authentication

	Retrieve telemetry data

	Virtual server and outlet binding

	Power control virtual node hosted by ESXi

	Notification / Trap

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	InfraSIM 2.0 documentation

8. User Guide

This chapter will deep to the InfraSIM usage of virtual servers, virtual PDU.

8.1. Customizing virtual Server

All supported virtual server configurations and properties of sub-component in that central configuration file. This sections describes key blocks and fileds in this YAML configuration file:

	Name of server node:

name: node-1

	Node type which specify BMC configurations and behavior (server of specific model from specific vendor) and properties defeined in SMBIOS data. Implementation behind is specifying emulation data for vitual BMC and SMBIOS to load. Then ultimate, those IPMI command and dmidecode running on virtual server will get response exactly the same as what you can get from one physical server. By default it loads emulation data of Quanta D51 type:

type: quanta_d51

	compute - This is one big block which contains several sub-block: storage, network, ipmi

	Storage block is also arranged in an hierarchy way by storage_backend/controller/drives; for every single drive added, InfraSIM allows defining model/serial number/vendor/media/image file:

vendor: Hitachi
model: HUSMM0SSD
serial: 0SV3XMUA
To set rotation to 1 (SSD), need some customization
on qemu
rotation: 1
Use RAM-disk to accelerate IO
file: /dev/ram0

	networks - defining network sub-system of virtual server. As below, 2 vmxnet3 type NICs are populated and connected to virtual switch br0:

-
 network_mode: bridge
 network_name: br0
 device: vmxnet3
-
 network_mode: bridge
 network_name: br0
 device: vmxnet3

Note

Virtual bridge need to be created manually beforehand by using brctl utility

	ipmi - support specifying NIC (from host) attached and BMC credential and emulation data file:

bmc:
 interface: br0
 username: admin
 password: admin
 emu_file: chassis/node1/quanta_d51.emu

8.2. BMC run-time manipulating

InfraSIM implemented one IPMI console which allows manipulating BMC behavior at run time; it can be treated as backdoor of virtual BMC which is particular useful when simulating chassis abnormal conditions and failures. It includes functionalities:

	Update sensor reading with specified value, or cross-threshold value

	Generate dynamicly-changing reading for specific sensor

	Inject SEL entries for the particular sensors

	Inject SEL entries for arbitry defined format

Here’s instructions on how to use InfraSIM IPMI console:

	Start ipmi console service by running command on host console:

sudo ipmi-console start &

	Enter IPMI_SIM by below command. <vbmc_ip> is localhost if you’re run command in host, otherwise it is IP address of NIC specified in configuration file for ipmi to use. Prompt means successfull connection to ipmi console:

ssh <vbmc_ip> -p 9300
IPMI_SIM>

	Enter help to check all the commands supported.:

IPMI_SIM>help

	Below tables show the detail information about each command.

	Commands
	Description

	sensor info
	Get all the sensor information.

	sensor mode set <sensorID> <user>
	Set the sensor mode to the user mode.
Leaves the sensor reading as it currently is until instructed otherwise

	sensor mode set <sensorID> <auto>
	Set the sensor mode to the auto mode.
Changes the sensor reading to a random value between the lnc and unc thresholds every 5 seconds.

	sensor mode set <sensorID> <fault> <lnr | lc | lnc | unc | uc | unr >
	Set the sensor mode to the fault mode.
Changes the sensor reading to a random value to cause a particular type of fault as instructed (lnr, lc, lnc, unc, uc, unr)

lower non-recoverable threshold

lower critical threshold

lower non-critical threshold

upper non-critical threshold

upper critical threshold

upper non-recoverable threshold

	sensor mode get <sensorID>
	Get the current sensor mode.

	sensor value set <sensorID> <value>
	Set the value for a particular sensor..

	sensor value get <sensorID>
	Get the value of a particular sensor.

	sel set <sensorID> <event_id> <’assert’/’deassert’>
	Inject(Assert/Deassert) a sel error.
You can use the sel set command to add a SEL entry for a particular sensor.

	sel get <sensorID>
	Get the sel error for a sensor.
You can use the sel get command to get the available events for a particular sensor.

	Here’s a example on how this console should be used and how it is chaning sensor readings. Let’s prepare 2 terminal consoles: 1 for ipmi console and the other one is just normal console to use ipmitool to check how the manipulation works.

	First lets check processor temperature of virtual server:

sudo ipmitool -I lanplus -U admin -P admin -H localhost sensor get Temp_CPU0
 Locating sensor record...
 Sensor ID : Temp_CPU0 (0xaa)
 Entity ID : 65.1
 Sensor Type (Threshold) : Temperature
 Sensor Reading : 40 (+/- 0) degrees C
 Status : ok
 Lower Non-Recoverable : na
 Lower Critical : na
 Lower Non-Critical : na
 Upper Non-Critical : 89.000
 Upper Critical : 90.000
 Upper Non-Recoverable : na
 Positive Hysteresis : Unspecified
 Negative Hysteresis : Unspecified
 Assertions Enabled : unc+ ucr+
 Deassertions Enabled : unc+ ucr+

	Then let’s peek and poke this sensor reading from 40 degree C to 85 degree C in ipmi console:

IPMI_SIM> sensor value get 0xaa
Temp_CPU0 : 40.000 degrees C
IPMI_SIM>
IPMI_SIM> sensor value set 0xaa 85
Temp_CPU0 : 85.000 degrees C

	Last we can verify processor temerature sensor reading by issuing IPMI command again to check that sensor reading is really changed to 85 degree C:

sudo ipmitool -I lanplus -U admin -P admin -H localhost sensor get Temp_CPU0
 Locating sensor record...
 Sensor ID : Temp_CPU0 (0xaa)
 Entity ID : 65.1
 Sensor Type (Threshold) : Temperature
 Sensor Reading : 85 (+/- 0) degrees C
 Status : ok
 Lower Non-Recoverable : na
 Lower Critical : na
 Lower Non-Critical : na
 Upper Non-Critical : 89.000
 Upper Critical : 90.000
 Upper Non-Recoverable : na
 Positive Hysteresis : Unspecified
 Negative Hysteresis : Unspecified
 Assertions Enabled : unc+ ucr+
 Deassertions Enabled : unc+ ucr+

8.3. vSwitch Setup

You can implement the vSwitch component of InfraSIM by deploying the Cisco Nexus 1000v switch on the ESXi host.

For more information on downloading and using Cisco Nexus 1000v switch, refer to http://www.cisco.com/c/en/us/products/switches/nexus-1000v-switch-vmware-vsphere/index.html.

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	InfraSIM 2.0 documentation

9. Contributing to InfraSIM

Contributions are welcomed and encouraged, in the form of issues and pull requests, but please read the
guidelines in this section before you get involved.

Our project is relatively new, and we do not have many hard and fast rules. As the project grows and more
people get involved, we will add to our guidelines, as needed.

9.1. Communicating with Other Users

We maintain a mailing list at https://groups.google.com/d/forum/infrasim. You can visit the group through the web page or subscribe directly by sending email to infrasim+subscribe@googlegroups.com.

We also have a #infrasim slack channel at https://codecommunity.slack.com/messages/infrasim/. You can receive an invite by requesting one at http://community.emccode.com.

9.2. Submitting Contributions

You can submit coding additions or changes for a repository. It’s recommended that you limit your pull requests to a single issue, keep tests as simple as possible, and make sure your changes don’t break the existing project.

	Fork the repository and clone it locally.

	Use a unique branch to make commits and send pull requests.

	Make sure that the description of the pull request is clear and complete.

	Run your changes against existing tests or, if necessary, create new ones.

After your pull request is received, our core committers give you feedback on your work and might request that you make further changes and resubmit the request. The core committers handle all merges.

If you have questions about the disposition of a request, feel free to email one of our core committers.

	Core Committer Team

	
	Bryan.Fu@emc.com

	Robert.Xia@emc.com

	Mark.Ma@emc.com

	Forrest.Gu@emc.com

Please direct general conversation about how to use InfraSIM or discussion about improvements and features to our mailing list at infrasim@googlegroups.com

9.3. Reporting Issues

To report an issue or ask a question:

	Go to https://github.com/infrasim/infrasim/issues.

	Search the existing issues for your issue. Make sure your issue is not already reported.

	If you have new information to share about an existing issue, add your information to the existing discussion.

	
	If you have a new issue, report it. Include the following information.

	
	Problem Description

	Steps to Reproduce

	Actual Results

	Expected Results

	Additional Information

9.4. Security Issues

If you discover a security issue, please report it in an email to Infrasim_core_committee@emc.com. Do not use the Issues section to describe a security issue.

9.5. Understanding the Repositories

The https://github.com/InfraSIM/InfraSIM repository acts as a single source location to help you
get or build all the pieces to learn about, take advantage of, and contribute to InfraSIM.

9.6. Coding Guidelines

A best practice is to use the same coding style as the rest of the codebase. In general, write clean code and supply meaningful and comprehensive code comments.

9.7. Contributing to the Documentation

You can contribute to the InfraSIM documentation.

	Clone the InfraSIM/docs [https://github.com/InfraSIM/docs] repository.

	Create a branch to make commits and send pull requests.

	Make sure that the description of the pull request is clear and complete.

When your pull requests are merged, your changes are automatically published to the documentation site at http://infrasim.readthedocs.org/en/latest/.

9.8. Community Guidelines

Be respectful and polite to other community members. Make everyone in the community feels welcome.

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	InfraSIM 2.0 documentation

10. Development Guide

10.1. Repositories

The InfraSIM repositories provide you with the code to set up, configure, and test a virtual environment consisting of simulated servers, storage devices, and smart PDUs. A thorough understanding of the individual repositories is essential for contributing to the project.

	Application
	Repository
	Description

	infrasim-compute
	https://github.com/InfraSIM/infrasim-compute
	infrasim-compute repository includes virtual BMC, and virtual host implementation. It simulates common functionalities of bare-metal servers and the properties and behaviors of servers from vendors like Kell, Quanta, etc. It re-implemented all virtual server features in a different way from what idic repo does. Major one is its package is application, instead of virtual machine template like what idic does.

	IDIC
	https://github.com/InfraSIM/idic
	Legacy virtual compute implementation which packages virtual server node into one virtual machine template. Idic repository includes vBMC, vCompute, and vPDU. vBMC is the base OS of virtual BMC. vCompute simulates the common functionalities of a compute node and the behaviors of a generic server and several servers from vendors like Dell, Quanta, etc.

	vpduserv
	https://github.com/InfraSIM/vpduserv
	Simulates the behaviors of the IPI PANDUIT PDU which conforms with vendor and open source specified licenses.

	QEMU
	https://github.com/InfraSIM/qemu
	QEMU is a generic and open source machine emulator and virtualizer, more information please access http://wiki.qemu-project.org/.

	OpenIPMI
	https://github.com/InfraSIM/openipmi
	OpenIPMI library, a library that makes it simple to build complex IPMI management software.

	Test
	https://github.com/InfraSIM/test
	Scripts for InfraSIM automation and integration tests. It includes the test framework(puffer) and many test cases against the features InfraSIM provided.

	Tools
	https://github.com/InfraSIM/tools
	Various tools and scripts to monitor and manage generic and common virtual nodes, virtual rack build.

	vRacksystem
	https://github.com/InfraSIM/vracksystem
	The vRacksystem provides both REST APIs and WebGUI for deploying and configuring vNode/vPDU to compose virtual racks.

	docs
	https://github.com/InfraSIM/docs
	The InfraSIM documentation available at http://InfraSIM.readthedocs.org/en/latest/.

10.2. Development conventions

	Guidelines for merging pull requests

For code changes, we currently use a guideline of lazy consensus [http://www.apache.org/foundation/glossary.html#LazyConsensus] with two positive reviews with at least one of those reviews being one of the core maintainers and no negative votes. And of course, the gates for the pull requests must pass as well (unit tests, functional test etc).

If you put a review up, please be explicit with a vote (+1, -1, or +/-0) so we can distinguish questions asking for information or background from reviews implying that the relevant change should not be merged. Likewise if you put up a change for review as a pull request, a -1 review comment isn’t a reflection on you as a person, instead is a request to make a modification before that pull request should be merged.

	Pull request for a new feature is required to contain corresponding functional test.

10.3. 3rd-party binaries notes

10.3.1. QEMU

InfraSIM leverages QEMU in its implementation. It introduced tested, stable major release from official QEMU repository. There are also additional code changes kept at infrasim/qemu [https://github.com/InfraSIM/qemu] for purpose of better simulating servers.

We always build QEMU on top of Ubuntu 64-bit 16.04 Linux and wrap it into one Debian package. This package is available at InfraSIM QEMU Debian [https://bintray.com/infrasim/deb/qemu]. InfraSIM application will download and install it into system before starting its service.

10.3.2. openipmi

InfraSIM leverages openipmi to simulate BMC properties and behavior. Similarly, there are also additional code changes kept at infrasim/openipmi [https://github.com/InfraSIM/openipmi] for purpose of better simulating servers.

We always build openipmi on top of Ubuntu 64-bit 16.04 Linux and wrap it into one Debian package. This package is available at InfraSIM OpenIpmi Debian [https://bintray.com/infrasim/deb/OpenIpmi]. InfraSIM application will download and install it into system before starting its service.

10.4. Component design notes

	infrasim-compute main components:

	Server node simulation [https://github.com/InfraSIM/infrasim-compute/blob/master/infrasim/model.py]

	IPMI consoles [https://github.com/InfraSIM/infrasim-compute/tree/master/infrasim/ipmicons]

	Server Emulation data [https://github.com/InfraSIM/infrasim-compute/tree/master/data]

	Connection and communication path between modules:

[image: _images/infrasim_module_connection.PNG]

	Class UML diagram of main components

[image: _images/infrasim_classes.png]

10.5. Logging and debugging

Virtual serve application run-time log and error message are store at /var/log/infrasim/<node-name>/{openipmi.log, qemu.log}.

	“openipmi.log” logs the openipmi messages and errors.

	“qemu.log” logs the qemu messages and errors.

Other information need to check and is useful for trouble-shooting:

	InfraSIM virtual server run-time processes and argument list: socat, qemu and ipmi_sim

/usr/bin/socat pty,link=/root/.infrasim/node-0/.pty0,waitslave udp-listen:9003,reuseaddr

qemu-system-x86_64 -vnc :1 -name node-0-node -device sga --enable-kvm -smbios file=/root/.infrasim/node-0/data/quanta_d51_smbios.bin -boot ncd -machine q35,usb=off,vmport=off -chardev socket,id=mon,host=127.0.0.1,port=2345,server,nowait -mon chardev=mon,id=monitor -serial mon:udp:127.0.0.1:9003,nowait -uuid 45429841-fa59-4edb-93fc-adead4c20f55 -chardev socket,id=ipmi0,host=127.0.0.1,port=9002,reconnect=10 -device ipmi-bmc-extern,chardev=ipmi0,id=bmc0 -device isa-ipmi-kcs,bmc=bmc0 -net user -net nic -device ahci,id=sata0 -drive file=/root/.infrasim/sda.img,format=qcow2,if=none,id=drive0,cache=writeback -device ide-hd,bus=sata0.0,drive=drive0 -m 1024 -cpu Haswell,+vmx -smp 2,sockets=2,cores=1,threads=1

/usr/local/bin/ipmi_sim -c /root/.infrasim/node-0/data/vbmc.conf -f /root/.infrasim/node-0/data/quanta_d51.emu -n -s /var/tmp

	Check content of data file in runtime workspace. Refer to content in workspace

10.6. Unit test

Major programming language of InfraSIM is Python. Folder InfraSIM/test/unittest [https://github.com/InfraSIM/infrasim-compute/tree/master/test/unit] contains all Python unit test cases implementation
http://pythontesting.net/framework/unittest/unittest-introduction/ explains what is Python unittest and guildelines of coming up test case.

Entry point of running unittest is InfraSIM/.unittests [https://github.com/InfraSIM/infrasim-compute/blob/master/.unittests]. Execute unit test by running:

cd infrasim-compute/
sudo ./.unittests

10.7. Functional test

Folder InfraSIM/test/functionaltest [https://github.com/InfraSIM/infrasim-compute/tree/master/test/functional] contains all the test cases to test virtual server implementation in functionality wise. Entry point of running functional test is InfraSIM/.functionaltests [https://github.com/InfraSIM/infrasim-compute/blob/master/.functionaltests]. Run below command to execute functional test:

cd infrasim-compute/
sudo ./.functionaltests

10.8. Integration test - under construction

Puffer is test framework developed for InfraSIM integration testing. Source code is in InfraSIM/test [https://github.com/InfraSIM/test]. It is a framework which can be easily extended to test products of different type, for example, standalone or web-based software and firmware. Here’s its block diagram.

[image: _images/puffer_architecture.png]

For any test target specified, those target behavior encapsulation need to be developed and a set of tests cases need to be added on top of encapsulation layer. Write test case described how to work out one test cases against InfraSIM. Below sections introduced all details about setting up buffer and execute InfraSIM testing with it.

10.8.1. Setup environment

Refer to the section 7.1 Physical Servers and ESXi Environment Setup.

Code:

git clone https://github.com/InfraSIM/test.git

Install necessary package:

sudo python test/install/PackageInstall.py

10.8.2. Define environment

You can see a configuration file example in test/configure/stack_example.json.
To test your environment, you must define your environment in a file, and it must be in a valid JSON format.

	Define the overall test environment.

	(Optional) vRackSystem - The test may leverage vRackSystem and have REST talk.

	available_Hypervisor - A list of hypervisors information. If your test has to handle hypervisors, this attribute is a required.

	vRacks - A list of virtual racks you have built.

{
 "vRackSystem": {},
 "available_HyperVisor": [],
 "vRacks": [],
}

	(Optional) Define vRackSystem key information for REST interaction, this definition can be an empty dictionary:

{
 "protocol": "http",
 "ip": "192.168.1.1",
 "port": 8888,
 "username": "admin",
 "password": "admin",
 "root": "/api/v1"
}

	Specify hypervisor information using available_HyperVisor.

For a single definition, here is an example:

{
 "name": "hyper1",
 "type": "ESXi",
 "ip": "192.168.1.2",
 "username": "username",
 "password": "password"
}

	Specify a list of vRacks. Each definition includes:

	name - any name you like.

	hypervisor - The hypervisor you used in above definition. All virtual node, PDU, and switch are deployed on this hypervisor.

	vPDU - A list of virtual PDU definition. The list can be empty.

	vSwitch - A list of virtual switch definition. The list can be empty.

	vNode - A list of virtual node definition. The list can be empty.

They are organized in the following list:

{
 "name": "vRack1",
 "hypervisor": "hyper1",
 "vPDU": [],
 "vSwitch": [],
 "vNode": []
}

	Specify a list of virtual PDUs. For each definition, you need to maintain:

	name - virtual PDU’s name in hypervisor

	datatstore - on which datastore this PDU is deployed.

	community - control community for SNMP access.

	ip - PDU IP

	outlet - A mapping of outlet to corresponding control password.

Example:

{
 "name": "vpdu_1",
 "datastore": "Datastore01",
 "community": "foo",
 "ip": "172.31.128.1",
 "outlet": {
 "1.1": "bar",
 "1.2": "bar",
 "1.3": "bar"
 }
}

	vSwitch is currently not enabled.

	Specify a list of virtual nodes. For each definition, you need to maintain:

	name - The virtual node’s name in hypervisor.

	datastore - The datastore this node is deployed on.

	power - A list of power control connection, each connection defines a specific PDU and outlet, you may have two power control, if this list is empty, node will not be controlled by any PDU.

	network - A definition for connection to virtual switch, currently not used.

	bmc - A definition on how to access virtual BMC of this node, including IP, username and password for ipmi over LAN access.

Example:

{
 "name": "vnode_a_20160126114700",
 "datastore": "Datastore01",
 "power": [
 {"vPDU": "vpdu_1", "outlet": "1.1"},
],
 "network": [],
 "bmc": {
 "ip": "172.31.128.2",
 "username": "admin",
 "password": "admin"
 }
}

Verify every IP is available from your test execution environment!

Verify PDU can access substream hypervisor! (see chapter 7.1.3 vPDU Configuration for detail)

10.8.3. Case Runtime Data

Case Runtime Data used to maintain some specific data for different test objects. These data generally require the user to add and update manually. For example, if you want to test one type of sensor for multiple nodes, you need to add and update sensor ID corresponds to each node.

	Configuration file:

Case Runtime Data is defined in the json file which have same name with case script. If name of case script is T0000_test_HelloWorld.py, the name of runtime data shall be T0000_test_HelloWorld.json.

Here’s an example:

[
 {
 "name_1": "value_1",
 "name_2": "value_2"
 }
]

If your configuration json like above, you can get “value_1” by call self.data[“name_1”] in test case.

Here’s another example:

[
 {
 "node_1": "0x00",
 "node_2": "0x01"
 },
 {
 "node_1": "0x02",
 "node_2": "0x03"
 }
]

If your configuration json has two objects in an array like above, same case shall be run twice for each runtime data.

You will get “0x00” by call self.data[“node_1”] in test case for the first time, and “0x02” for the second time.

	Test Result:

You shall get two separate result and a summary. Case’s final result is the worst result for all execution.

For example, if the case “failed” in first time and “passed” in second time, the final result is still “failed”, the summary will list all run results.

10.8.4. Run test

Trigger test:

cd test
python puffer.py -s infrasim --stack=<your_configuration>

<your_configuration> can be an absolute or related path of your configuration file.
About how to run test, please check readme for detail:

cat README.md

You log file is kept in a folder of log/InfraSIM, each test task is packaged in a folder
with time stamp as it’s folder name.

10.8.5. Write test case

This section introduces how to write test case in puffer.

	Create a test script file

	Test Case Name

The name of test case should follow the same format:

T\d+_[a-z0-9A-Z]+_[a-z0-9A-Z]+

	In puffer, test case name should:

	
	Start with capital letter T and case id

	Followed by the field type and short description about this case with underscores in the interval. Field types defined in class CBaseCase.

Note: The field type for InfraSIM is idic.

	For example, a test case named T123456_idic_CheckPowerStatus:

	
	T is short for test

	123456 for case id

	idic for field type

	check the power status for the short description

	Test Suite

You should put your test case scripts into <puffer_directory>/case/<test_suite>. Each folder under <puffer_directory>/case is a test suite. When you give the suite folder to puffer.py as a parameter, puffer will executes all test case scripts which in the folder, including subfolders.

	Create case runtime data file

Case Runtime Data is used to maintain some specific data for different test objects. These data generally require the user to add and update manually.

The format of case runtime data defined in the json file which have same name and folder with case script. Please see the chapter Case Runtime Data .

	Write test case

	Import CBaseCase

Class CBaseCase defined in <puffer_directory>/case/CBaseCase.py, contains some member functions to help test case running:

from case.CBaseCase import *

	Class Declaration

We declaration each case as subclass of class CBaseCase and the class name is case name. For example, if case name is T123456_idic_CheckPowerStatus, the class name should be same to it.

A test case maybe looks like:

from case.CBaseCase import *

class T000000_firmware_shortdescription(CBaseCase):

 def __init__(self):
 CBaseCase.__init__(self, self.__class__.__name__)

 def config(self):
 CBaseCase.config(self)

 def test(self):
 pass

 def deconfig(self):
 CBaseCase.deconfig(self)

And then, we need to override methods of class CBaseCase, such as config(), test() and deconfig().

	Override config()

This method configuration system to expected status, configuration runtime HWIMO environment and stack environment.

The HWIMO configuration will set logger to save session log into log file and configuration SSH agent and stack configuration will build stack object, configuration stack ABS according to dict, build all nodes and power on.

However, in some case we want to enable some components we need to enable manually in configuration(). For example, if we want to use the ssh inside vbmc, we need enable the bmc_ssh in configuration():

def config(self):
 CBaseCase.config(self)
 self.enable_bmc_ssh()

	Override test()

This method is the main part of the test.

You can:

	Use self.stack to get the stack which build in config().

	Use self.data[] to get case runtime data.

	Use self.monorail to use Monorail API.

	Use self.log() to log the information.

	Use self.result() to save the case result.

For example:

def test(self):
 #get racks from stack and get nodes from rack
 for obj_rack in self.stack.get_rack_list():
 for obj_node in obj_rack.get_node_list():

 #log the information
 self.log('INFO', 'Check node {} of rack {} ...'
 .format(obj_node.get_name(), obj_rack.get_name()))

 #get and match outlet power
 for power_unit in obj_node.power:
 pdu_pwd = power_unit[0].get_outlet_password(power_unit[1])
 power_unit[0].match_outlet_password(power_unit[1], pdu_pwd)

 #virtual node power control
 obj_node.power_on()

 #use case runtime data
 node_name = obj_node.get_name()
 node_lan_channel = self.data[node_name]

 #send command to virtual bmc through ssh
 obj_bmc = obj_node.get_bmc()
 bmc_ssh = obj_bmc.ssh
 ssh_rsp = bmc_ssh.send_command_wait_string(
 str_command = 'ipmitool -I lanplus -H localhost -U {} -P {} lan print {} {}'.format(obj_bmc.get_username(), obj_bmc.get_password(), node_lan_channel, chr(13)),
 wait = '$',
 int_time_out = 3,
 b_with_buff = False)

 #send command to virtual bmc through ipmitool
 ret, ipmi_rsp = obj_node.get_bmc().ipmi.ipmitool_standard_cmd('lan print')

 #if case failed
 if ret != 0:
 self.result(FAIL, 'FAIL_INFORMATION')
 else:
 #if no issue in this run, case pass.
 self.log('INFO', 'PASSED.')

	Override deconfig()

This method deconfig system to expected status, reset REST and SSH sessions, deconfig stack and log handler:

def deconfig(self):
 self.log('INFO', 'Deconfig')
 CBaseCase.deconfig(self)

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	InfraSIM 2.0 documentation

11. How To

11.1. How to install VMWare ESXi on Physical Server

	
	Requirement of physical server

	The physical server must support ESXi 6.0 and it should be allocated at least 3 NIC ports. The first NIC port is used for the admin network connection. The second and third NIC ports are used for control network connection(The second NIC is required. The third NIC is optional). The fourth NIC port is used for data network connection (optional).

Virtual InfraSIM servers runs in the best performance if hardware-assisting technology has been enabled on underlying physical machines. These technology includes VT-d feature and AMD-V for processors from Intel and AMD.

Note

Physical machine - enable VT-d in BIOS

[image: _images/configBIOSpng.png]

	
	Setting Up Network Connections

	You must have IP addresses for the physical servers in the test environment to be used to configure the VMKernal port of ESXi and called as ESXi_Admin_IP.

	Allocate or reserve a static IP address from the Lab admin.

	Connect the server’s admin NIC ports into the Lab network.

	To set up a multiple server environment, connect Port C1 on each server by using an Ethernet switch.

	
	Install ESXi 6.0

	From the VMWare web site, a 60-day free trial version is available after user registration.

	Go to https://my.vmware.com/web/vmware/details?downloadGroup=ESXI600&productId=490&rPId=7539

	Download the VMWare vSphere Hypervisor 6.0 (ESXi6.0) ISO image.

	Install ESXi 6.0 on each physical server.

	Configure the static IP address ESXi_Admin_IP on first NIC port.

	Set the Administrator user name by using the format <User Name>.

	Set the Administrator Password by using the format <Password>.

	
	Installing VMWare vSphere Client (Remote System)

	
	Go to the VMWare web site.

	Download the VMWare vSphere Client.

	Install the client on a remote system that can connect to the physical servers.

	
	Configuring the Virtual Network

	
	Launch the vSphere client and connect to ESXi on the physical server by using ESXi_Admin_IP.

	On the Configuration tab, click Add Networking, to create the Control vSwitch. In the example, the network label is “VM Network 2”.

[image: _images/virtualnetwork1.png]

	Select Virtual Machine

[image: _images/virtualnetwork2.png]

	Select Create a vSphere standard switch > vmnic2.

[image: _images/virtualnetwork3.png]

	In the Network Label field, type port group name on target switch.

[image: _images/virtualnetwork4.png]

	Enable the SSH service on ESXi. To do this, open the Configuration tab and select Security Profile. Then select SSH and click Properties to set the SSH (TSM-SSH) to start and stop manually.

Note

Login to the ESXi server through SSH and echo by issuing the “vhv.enable = “TRUE”“ command to the /etc/vmware/config file. This command enables nested ESXi and other hypervisors in vSphere 5.1 or higher version. This step only needs to be done once by using the command: echo ‘vhv.enable = “TRUE”’ >> /etc/vmware/config.

[image: _images/ssh_ESXi.png]

Note

Set Promiscuous Mode to Accept and tick Override. To do this, open the Configuration tab and select Networking. Then click Properties of the vSwitch, choose port group, edit, security, tick the checkbox to override setting and select Accept.

[image: _images/virtualnetwork5.png]

11.2. How to deploy InfraSIM virtual server on different type of platforms

	There are desires to deploy virtual server on different types of hypervisor like:

	
	VirtualBox [https://www.virtualbox.org/]

	KVM [http://www.linux-kvm.org]

	VMWare product [https://www.vmware.com], both VMWare vSphere or VMWare workstation

2 possible ways to achieve this:

	Create virtual machine image for corresponding hypervisor beforehand and them import that image onto hypervisors - InfraSIM application is ready in operating system running in virtual machines or containers on top of specified hypervisor or platform. These images are: OVA file for VMWare workstation or vSphere; QCOW2 file for KVM/QEMU; BOX or vagrant/VirtualBox, etc. Below listed some steps on how to deploy these template into different systems:

	Spin-up virtual machines running Ubuntu 64-bit 16.04 OS on desired hypervisor and then install infrasim-compute application. You may also leverage Chef or Ansible to deploy multiple virtual server instances into multiple virtual machines.

11.3. How to simulate another server - Under construction

InfraSIM also provided many utilities, interfaces for developers to build one simulation solution for a physical node that has not been supported by infraSIM. This sections walk through steps required to build one simulation for one specific server node.

	To simulate a real hardware server, you have to get the server fru’ data:

$ cd data

Under this directory, you can find “vnode.emu” file. In this file, we keep server fru’ data here, like:

$ mc_add_fru_data 0x20 0x0 0x100 data \
 0x01 0x00 0x01 0x04 0x0f 0x00 0x00 0xeb \
 0x01 0x03 0x17 0x00 0xcd 0x51 0x54 0x46 \
 0x43 0x4a 0x30 0x35 0x31 0x36 0x30 0x31 \

You can use ipmitool to get BMC sensor’s data:

$ ipmitool -U <your-account> -P <your-password> -I lanplus -H <your-BMC-IP> fru read <fru ID> fru.bin

call fru_gen.py script to dump fru.bin to hex format:

$ cp ../../tools/data_generater/fru_gen.py ./
$ python fru_gen.py fru.bin

fru_result will be generated, replace original fru data with the expected one in this file.

	Same as fru, in “vnode.emu” file, we keep server sensors’ data here, like:

$ sensor_add 0x20 0x0 0x01 0x02 0x01
 main_sdr_add 0x20 \
 0x00 0x00 0x51 0x02 0x2a \
 0x20 0x00 0x01 0x15 0x01 0x67 0x40 0x09 0x6f 0x71 0x00 0x71 0x00 0x71 0x00 0xc0 \
 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xcf 0x50 0x77 0x72 0x20 0x55 \
 0x6e 0x69 0x74 0x20 0x53 0x74 0x61 0x74 0x75 0x73
$ sensor_set_value 0x20 0x0 0x01 0x0 0x1

You can use ipmitool to get BMC sensor's data::

$ ipmitool -U <your-account> -P <your-password> -I lanplus -H <your-BMC-IP> sdr dump sensors

The above command will dump your server BMC sensors’ data to the file named: “sensors”
Generally, the sensor file contains binary data, we have to convert it to strings:

$ cp ../../tools/data_generater/sensors_gen.sh ./
$./sensor_gen.sh

After the command, you will get the file named: “all_sdr_sensors”:

Use "all_sdr_sensors" file content to replace "vnode.emu" file of all "sensor_add" sections
 Notice: This step is not necessary for your node unless you want to emulate the real BMC sensors' data.

	SMBIOS data is also needed, which can be got by using the command:

$ dmidecode --dump-bin <your-vnode-name>_smbios.bin

	Build your vnode with real hardware fru, sensors and smbios data.:

$ make <your-vnode-name>

	Enjoy your customized node.

11.4. How to simulate another vPDU - Under construction

InfraSIM provided ServerTech and Panduit PDU simulation initially. InfraSIM also provided many utilities, interfaces for developers to build simulation solution for other physical PDUs. This sections walk through all steps required to build one simulation for other PDU infraSIM doesn’t support yet.

	How to retrieve data from physical PDU

If you want to retrieve PDU MIB data, you should have snmpsim [http://snmpsim.sourceforge.net] installed on your environment.Then run the following command to produce MIB snapshot for the PDU:

snmprec.py --agent-udpv4-endpoint=<PDU IP address>; --start-oid=1.3.6 --output-file=/path/<target snmprec file>; --variation-module=sql --variation-module-options=dbtype:sqlite3,database:/path/<target pdu database file>,dbtable:snmprec

For more details of how to use snmprec.py, please go to section Producing SNMP snapshots [http://snmpsim.sourceforge.net/snapshotting.html] at snmpsim home page for more help.

	How to simulate physical PDU in InfraSIM

Once you retrieved data from physical PDU, the next step is to add a virtual PDU in InfraSIM for this physical server. The following steps will guide you how to do:

	Create a directory named PDU name at idic/vpdu

	Create a directory data at idic/vpdu/<PDU name>/data, and copy the data you get from physical server into data directory.

	Copy .config and Makefile into idic/vpdu/<PDU name>, and update target name in Makefile and .config

	Clone vpduserv [https://github.com/InfraSIM/vpduserv.git], and implement the new pdu logic based on vendor’s PDU spec.

11.5. How to integrate RackHD with InfraSIM

RackHD is an open source project that provides hardware orchestration and management through APIs. For more information about RackHD, go to http://rackhd.readthedocs.io.

The virtual hardware elements(virtual compute node, virtual PDU, virtual Switch) simulated by InfraSIM can be managed by RackHD.

The following picture shows the deployment model for the integration of InfraSIM and RackHD:

[image: _images/connections_RackHD.png]
Please follow up below steps to step the entire environment. After that, RackHD can discover and manage the virtual server and virtual PDU just as the real physical server and PDU.

	
	Please refer RackHD document(http://rackhd.readthedocs.org/en/latest/getting_started.html) to setup the RackHD Server. RackHD server should be configured with as least two networks, “Admin network” and “Control Network”.

	
	“Admin Network” is used to communicate with external servers

	“Control Network” is used to control the virtual servers.

	Deploy virtual compute node and virtual PDU on ESXi with the network connection as in the pictures show. The ESXi show have network connection with the RackHD server.

After you setup the environment successfully, you can get the server information and control the servers by RackHD APIs. More information about how RackHD APIs communicate with the compute server and PDU, Please refer http://rackhd.readthedocs.org/en/latest/rackhd/index.html#rackhd-api

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	InfraSIM 2.0 documentation

Index

 Copyright 2015, EMC.
 Created using Sphinx 1.3.1.

 _images/ssh_ESXi.png
Mardware. Securty profhe SISO =)
Heath Status Serces @ services | = Refresh.
R RIS st Card Daemon =
— frore) L ey
B bl 1 Startautomatica f any ports ave apen, and stop when o pors are dosed
e SN e
o Aavoraconysevcs =
== | B | e |
N e
Software. Direct Cansaleul /s St Restart
=— = (T = =
R e et s ¥ e
R ‘vSghere Web Access Varese I
R
= p—
e enerst
S bt et
[LA ————

_images/space.png

_images/logo.png
NEISIM|

_images/virtualnetwork2.png
Networking hardware can be par itioned to accommodate each service that requires connectivity.

Connection Type.
Network Access. [~ Connection Types

@ Virtual Machine
‘Add a labeled network to handle virtual machine netiwork traffic.
© vMkernel

‘The VMkernel TCP/IP stack handies traffic for the following ESXiservices: vSphere vMotion, ISCSI, NFS,
‘and host management.

_static/infrasim_classes.png
CEMC

_bme
_address Integer
_channel - Integer
_lan_interface : String
_lancontrol_script: Integer
_chassiscontrol_script: Sting
_startcme_script: String
_startnow: Boolean
_powerofi_wait: Integer
_Kill_wait: Integer
_usermame : String
_password String
_emu_file : String
_config_fle : String

_bin' String

_port_iol Integer
_histonytru Integer

sel_type)
set_port_ipmi_console)
set_port_gemu_ipmio
set_sol_evice)
get_config_fleQ
set_config_fleQ
get_emu_file)
se_startemd_script)
get_startemd_script)
set_chassiscontrol_script)
get_shassiscontrol_script0)
set_lancantral_script)
get_lancantral_script)
precheck)
wite_brnc_config)
get_commandiineq

Task

_task_priority Integer
_workspace : Integer
_task_name : String
_log_path : String
_asyneronous : Boolean

set_priority)
get_priority)
set_task_nameQ
get_task_nameq
gt commandine)
set_workspace(
get_workspace(
set_log_path(
set_asyncronous(
get_task_pid)
_task_is_nunning0
rung

terminate)

status)

Caocat

_bin String
_port_serial Integer

_sol_device String

set_port_serial)
set_sol_evice)
precheck)

initg
get_commandiineq

CCompute

_compute
_element_ist: CElement
_enable_om : Boolean
_smhios : String

_bios : String

CNode

_task_list: Task
_node
_node_name
workspace : String

se_numacti)
get_node_name
sel_node_name(
precheck)

__boot_order : String
|__qemu_bin - Integer
_cdrom_flle - String
_vendor_fle : String
_cpu_obj: CCPU
_numact_obj

_monitor : Chonitor
_port_gemu_ipmi - Integer
_port_serial Integer

se_numacti)
set_type)
set_port_gemu_ipmio

CBackendNetwork

|_backend_network_list
_network_ist: Cetwork

precheck)
initg
handle_parms()

Chernory

—_memory
__memory_size :Integer

precheck)
initg
handle_parms()

CCPU

cpu
__type String
_features : String
_auantites : Integer
_socket: Integer

gecpu_quantiiesO
precheck)

inity
handle_parms0

CBatkendstorage

_backend_storage_infa
_controller_list: CStorageContraller
_nci_topology_manager : CPCITapologyMange

set_pei_topology_mar)
precheck)

initg

parms(

CtorageController

_controller_info
__max_diive_per_controller Integer
controller_type : String

_drive_list: CDrive

_use_jbod : Boolean
_sas_address :Integer
_pei_bus_nr Integer

_ptm : CPCITopologyManger
_us_msi: Boolean

_ma_emds : Integer

_mai_sge : Integer

newstr Integer

set_pei_bus_nr)
set_pei_topology_mar)
precheck)

initg

handle_parms()

init_workspace(

initg
startg
stop)
status)

terminate_workspace)

set_port_serial)
set_smbios)
get_smbios)
precheck)

initg
handle_parms()
get_commandiineq

__network_mods : String
_bridge_name : String
_nic_name : String
__mac_address : String
_index: Integer

H set_index()
<etealzer 1 prechecko
! initg

handle_parms()

=<realize=>

=Zrealize=s

i
i
|
|
|

=<realize=>

CElement

_option_list: CElement

precheck(

initg
hanclie_parms()
add_option)
get_optiong

=<realize=>

=<realize=>

_drive
_index: Integer
_vendor: String

CIPMI
CNetwark o
network _intertace
__network_ist __host: String

=<realize=>

=<realize=>

__bme_connection_port: Integer
_chardey_obj

sel_bme_conn_host)
set_bme_conn_port)
precheck)

initg

handle_parms()

<balizex

=<realize=>

=<realize=>

Chionitor

_monitor
_chardey: CCharDey
_mode : String

precheck)
initg
handle_parms()

CCharDev

_chardey
_id: string
_is_server: Boolean
_wait: Boolean
_patn String
__backend_type : String
_reconnect: Integer
_host: string

_port: Integer

CPCIBridge

_serial String
_product: String
_version: String
_bootindex: Integer
_cache : String

__aio: String

_flle - String
_rotation: Integer
__type String
_format: String
_bus_address : Integer
_size Integer
_controller_type : String
__wwn - String
__port_index Integer
__port_wwn - Integer
_scsi_id: Integer
_lun' Integer
_slot_number : Integer

! _mode! - string

CPCTopologyManger

_pei_topology_info
_bridge_list: CPCIBridge
_available_bus_ist

get_available_bus)
precheck)

initg
handle_parms()

set_index()
getindex)
get_contrller_type0
set_contrller_type0
sel_bus)
precheck)

initg
handle_parms0

_bridge_info
_children_bridge_list
_current_bridge_device
_adar

_bus

_parent: CPCIBridge
_can_use_bus : Boolean
_chassis_nr Integer
_msi: Boolean
__mutitunction : Boolean

seL_bus(
get_busQ
get_bus_list)
set_parent)
get_parent)
precheck)

initg
handle_parms()

_images/puffer_architecture.png
i
i

i

! Test Manager
i

I

i

i

: Test Executor

I

I

i

I

:]CﬁSEI

TargetBehavior Monorail InfraSIM Firmware
encapsulation encapsulation encapsulation encapsulation

Control Layer

Test Task

Action Layer |

InfraSIM Firmware

Test Target Test Target

-vPDU - BIOS

- vSwitch -BMC

- vNode
YourTarget _VvBMC

_images/atscaledeploy.png
Virtual Neigborhood

v,

(0ata)

| - compute ode 41

Virtual

VM - Compute Node #1

I Neigborhood

‘ VM -Compute Node #2

PO

]

| i -compute node #3]

L VM - Compute Node #3

Virtual Neigborhood

VM - Compute Node #n

T

| v -compue Node o0

v,

(0ata)

- Select Physical Servers
- CreateVMs

- Provision vCompute/vPDU/VS witch
Images

- Configure N etwork

- Create Neighborhoods

Virtual Neigborhood

vs

h (Data)

| v -compute wode 1

VM -Compute Node #1

| vm-compute wode 2

[-compuanode 42 |

| v -compute wode 42 |

| w-compui o 3]

| m-compunode |

[w-computemode

| - compute Node #n |

| Vi - Compute ode #n |

| vsnomon || [o (conon |

- Compute ode |

‘ W - Compute Node.

| -computenode |

‘ WM - Compute Node

| VM -Compute Node)

l WM - Compute Node.

| WM -Compute Node. ‘

[WM -Compute Node

vSwitch (Control)

vSwitch (Control)

(TR

-

_static/vmworkstation4.png
L . T _______
B B Vew W Tes Hep [B~ | | 0 [O&E 5
Loy x

o 5 vy Computer | (Fomones < |[Dwononsz | Doweksever x| Dowedwes x|
Typeherctoseach v
= 8 My Computer CEN =]
gzma: OU [G8 » Computer » robert (\\cnrdgps\gpstesmshare\personal) Z) » <43 [[Search robert Menrdgpsigrst-. P
oS Organize v Newfolder)
o ke 4 Name N Date modified Type Size
1 Desktop. i backup B/ TIASAM Fil folder
% Downloads b docs LSS AN Fiefoder
6 Recent Plces b mise AT A Fileolder
AAMSH0PM Open Vinualsto.. 1081612K
A Libraries. @ vbmc0de-Lovi 4/30/20153:51PM Open Virtualizatio... 8KB
9 Documents @ vComputeNodeva AAZSH9PM Open Vinuslsto.. 62897 K
& Music
53 Pictres
H Videos
8 Computer
& LocalDisk ()
¥ HOME (\NASCN
5 robert (\\enrdgp:
File pame: - [Bsupponed ies

_static/vmworkstation3.png
192.168.137.0
Enabled 192168,

VMnet Information

() Bridged (connect VMs directly to the external network)
Bridged to: | Automatic

‘Add Network... | [Remove Network

(©) NAT (shared host's IP address with VMs)

Host-only (connect VMs internally in a private network)

.‘ [Automatic Settings... |

[AT settings.

cta host virtual adapter to this network.

virtual adapter name: VMware Network Adapter VMnet2

local DHCP service to distribute IP address to VMs

[rHcp settings... |

SubnetIq] 172.31 .128. 0 Subnetmask: 255 .255 .255 . 0

[) (ol J [oo]|

rep |

_static/up.png

_static/VMware5.png
Disable acceleration for binary transiation

Virtualize Intel VT-x/EPT or AMD-V/RVI

A\ Virtualized VT-x/EPT or AMD-V/RVI will only be used
when VT-x/EPT or AMD-V/RVI is supported on the
aurrent host. Enabling this option will make this VM
incompatble with other VMware products.

(o J [cancel][Heo]

_static/virtualnetwork3.png
Virtual machines reach networks trough upink adapters attached to vSphere standard switches.

‘Select which vSphere standard switch wi hande the network traffic for thi connection. You may also create anew
‘vSphere standard svitch using the undamed network adapters isted below.

@ Createavsphere standard switch <o-d
Intel Corporation 82599EB 10-Gigabit SFI/SFP+ Network Connection
V@ vmnic2 Down None.

@ e Down Nore
© Use vowitcho Speed tworks

Intel Corporation 1350 Gigabit Network Connection

@ o 1000F 0.0.0.1:255.255.255.254
€ Use vControlswitch ed o

Intel Corporation 1350 Giaabit Network Connection
Prevew:

el Vachoa por G,
VM Network3_

_static/VMware2.png
‘Add a Virtual Network n

B—
=

_images/case_infrasim_vmware.png

_images/virtualnetwork1.png
I e
& &
[EBmesoy

& vomcone
& vomeane eting Sarea
& vomaone10

e

— Properis...
Processars
Merery

Storage
Networng
Storage Adapters
Network adepters Standard Swteh vControlSuitch

Advanced settrgs Ve o PG
Pover Managenent WM Network2

20 vitusl machine(s)

Sohwere omcae-t
Ueensed Festres Vo3
Tine Confipraton Vomeasve3
ot and Rautng. Vomctsve4
Autentcatin Servces e
Vit achne Sartup/Shutdoun o
Vit Machne Swapfie Locason Vomctsie7
SeauityPrfie Vo3
Host Cache Contiuraton oy
System Resarce Reservaton Vomctsig-10
Sgent W settngs Vometsie-ii
Advanced settogs vomease-12

9 Management Network E
k0 108234173
fesnizieenAesezez

Nome Torgeto Saus comins - [Clear X

Thoret Tomats [iatedby | Reauested SR < | S Tie TCampietedtme |

[Evaluation Mode: 48 days remaining [roct

_images/vpdu_diagram.png
SNMP Simulator

WiE Data

Handling
users

steinet—>{ Control Service

Administrator

_images/virtualnetwork4.png
Virtual Machines - Connection Settings
Use network labels to identify migration compatile comnections common to two or more hosts.

_static/down-pressed.png

_static/menuconfig.png
Embe: on
Arrow keys navigate the menu. <Enter> selects submenus —-->. Highlighted letters are
notkeys. Pressing <¥> selectes a feature, while <N> will exclude a feature. Press

<Esc><Esc> to exit, <2> for Help, </> for Search. Legend: [*] feature is selected []
feature is excluded

“uild Options —-->
inux Kernel Setup
ibraries >

[*] pen-ssh

[*] usybox
 yhon2.6 >
ompute Simalation
tilities >

DU Simalation

oad an Alternate Configuration File
~ave Configuration to an Alternate File

EBPES <sac> <heln >

_static/configBIOSpng.png
Change Ualues F9
Select » Sub-Menu F10

_static/ajax-loader.gif

_static/VMware9.png
Virtual Machine Settings

Device status
[[] connected

7] Connect at power on

Network connection

Bridged: Connected drectly to the physical network

_static/vpdu_diagram.png
SNMP Simulator

WiE Data

Handling
users

steinet—>{ Control Service

Administrator

_static/down.png

_static/wbserver.png
vCompute vCompute vCompute

vPDU
(VMs)

vCompute

vSwitch (Data) Switch
vSwitc]

(Admin)

_static/networkwithoutrackhd.png
vRackSystem Network without RackHD

evrne §]

VRackSystem Server

DHCPServer isa
must, to assign
VPDU 1P address

QO 192.168.190.xx
10.62.59 xx
DHCP £=22
server,
Physical switch
192.168.190.XX
vmnico
£5Xi HOST
s host
management

netork

—— External Network—
—— Admin Network——

_static/virtualnetwork4.png
Virtual Machines - Connection Settings
Use network labels to identify migration compatile comnections common to two or more hosts.

_static/VMware8.png
Memory

Soecly the amount of meary aocated to this s
machine. The memory size must be a multiple of 4 MB.

4GB

nee

16GB

sce o 9 Maximum recommended memory
468 (Memory swapping may

ee occur beyond this size.)

18 O @ 5156MB
512 MB < ER v
EET

1024M8

128 MB

same Guest OS recommended minimum
e 512MB

16 MB

M8

4MB

i) The virtual machine wil use up to 768 B of this memory for
graphics memory. You can change this amount in the Display
settings page.

Remove

_static/case_infrasim_vmware.png

_static/comment-close.png

_static/comment.png

_static/virtualnetwork1.png
I e
& &
[EBmesoy

& vomcone
& vomeane eting Sarea
& vomaone10

e

— Properis...
Processars
Merery

Storage
Networng
Storage Adapters
Network adepters Standard Swteh vControlSuitch

Advanced settrgs Ve o PG
Pover Managenent WM Network2

20 vitusl machine(s)

Sohwere omcae-t
Ueensed Festres Vo3
Tine Confipraton Vomeasve3
ot and Rautng. Vomctsve4
Autentcatin Servces e
Vit achne Sartup/Shutdoun o
Vit Machne Swapfie Locason Vomctsie7
SeauityPrfie Vo3
Host Cache Contiuraton oy
System Resarce Reservaton Vomctsig-10
Sgent W settngs Vometsie-ii
Advanced settogs vomease-12

9 Management Network E
k0 108234173
fesnizieenAesezez

Nome Torgeto Saus comins - [Clear X

Thoret Tomats [iatedby | Reauested SR < | S Tie TCampietedtme |

[Evaluation Mode: 48 days remaining [roct

_static/networkwithrackhd.png
vRackSystem Network with RackHD

——External Network—» 8

VRacksystem Server
192.168.190.xx
10.62.59.xx

DHCPServer isa
must, to assign
VPDU IP address

DHCP
server,

-

Physical switch
192.168.190.XX

Physical switch

PR gt

ESXi HOST

ESXihost
management
network.

VMkemey
Mangement
Network

5 — eamnetvor—

—— Admin Network——

\Mode/ —— Control Nelwork/

192.168.190xx vPDU

_static/VMware11.png
lonrackgonrack:~$ python OnrackTest.py
>11st

liax| ™ 1 MAC 1 ® ™ | user | password

1) | 554267cce976cc2807d4b3bd | 52:54:be
2) | 554267cces76cc2807deb3be | S2:54:be:

8b | 172.31.128.4
£7 1 172.31.128.5

[P S

MAC 1

02) 00:0c:29:e4:25:80 172.31.128.2
03) 00:0c:29:1d:e7:£7 172.31.128.3
04) 52:54:pe:er:er:£7 172.31.128.5

_static/VMware3.png
192.168.137.0
Enabled 192168,

VMnet Information

() Bridged (connect VMs directly to the external network)
Bridged to: | Automatic

‘Add Network... | [Remove Network

(©) NAT (shared host's IP address with VMs)

Host-only (connect VMs internally in a private network)

.‘ [Automatic Settings... |

[AT settings.

cta host virtual adapter to this network.

virtual adapter name: VMware Network Adapter VMnet2

local DHCP service to distribute IP address to VMs

[rHcp settings... |

SubnetIq] 172.31 .128. 0 Subnetmask: 255 .255 .255 . 0

[) (ol J [oo]|

rep |

_static/plus.png

_static/vmworkstation2.png
‘Add a Virtual Network n

B—
=

_static/vmworkstation5.png
Disable acceleration for binary transiation

Virtualize Intel VT-x/EPT or AMD-V/RVI

A\ Virtualized VT-x/EPT or AMD-V/RVI will only be used
when VT-x/EPT or AMD-V/RVI is supported on the
aurrent host. Enabling this option will make this VM
incompatble with other VMware products.

(o J [cancel][Heo]

_static/VMware1.png
VMnet Information

© Bridged (connect VMs drectly to the external network)
Bridged to: | Automatic

© NAT (shared host's IP address with VMs)

© Host-only (connect VMs intemally in a private network)

(] Connect a host yirtual adapter to this network
Host virtual adapter name: VMware Network Adapter VMnets.
7] Use local DHCP service to distribute IP address to VMs

Subnet[P: 192.168 .139. 0 Subnet mask: 255 .255 .255 . 0

Restore Defauits o |

Cancel

_static/virt-manager.png
Virtual Machine Manager

_static/virtualnetwork2.png
Networking hardware can be par itioned to accommodate each service that requires connectivity.

Connection Type.
Network Access. [~ Connection Types

@ Virtual Machine
‘Add a labeled network to handle virtual machine netiwork traffic.
© vMkernel

‘The VMkernel TCP/IP stack handies traffic for the following ESXiservices: vSphere vMotion, ISCSI, NFS,
‘and host management.

_static/ssh_ESXi.png
Mardware. Securty profhe SISO =)
Heath Status Serces @ services | = Refresh.
R RIS st Card Daemon =
— frore) L ey
B bl 1 Startautomatica f any ports ave apen, and stop when o pors are dosed
e SN e
o Aavoraconysevcs =
== | B | e |
N e
Software. Direct Cansaleul /s St Restart
=— = (T = =
R e et s ¥ e
R ‘vSghere Web Access Varese I
R
= p—
e enerst
S bt et
[LA ————

_static/vmworkstation7.png
Hardware | Options
Device Summary
5 Memory 1GB
[Processors 2

Device status

O

Fl

Connected
Connect at power on

Network connection

Bridged: Connected directly to the physical network
[Replicate physical network connection state

NAT: Used to share the host's IP address.
Host-only: A private network shared with the host

_static/onesxi.png

_static/vmworkstation6.png
SHardDisk (IDE) ~ 64MB
Hard Disk 2 (IDE) 8GB

) co/ovD (1DE) Auto detect

[Floppy Using drive A:
ENetwork Adapter Custom (VMnet2)
[Wpispiay 1 monitor

@ Maximum recommended memory

(Memory swapping may
occur beyond this size.)

6156 MB.

@ Recommended memory
256 MB

‘Guest OS recommended minimum

o J [conced [e]

_static/connnections.png
DHCP
server

192.168.190.0¢
Application

ESXi HOST

—— External Network——
—— Addmin Network——
vhode —— Control Network——

_static/vpdu.png
dware

Health Status
Processors.

Memory

Storage
Networking
Storage Adapters
Network Adapters
‘Advanced Settings
Power Management

Licensed Features
Time Configuration

DNS and Routing

Authentication Services

Virtual Machine Startup/Shutdon
Virtual Machine Swapfie Location
Security Profile

Host Cache Configuration

System Resource Reservation
Agent VM Settings

Advanced Settings

View: |vSphere Standard Switch
Networking

‘Standard Switch: vSwitchd

Virual Machine Port Group.
[VM Network.

1|8 virtual machine(s)
‘application- Y1

VBmTW
Vitcermel Por

O Management Network
vmko : 10.62.34.176
feB0::21e:67ff:fe94:6350

‘Standard Switch: vSwitch1

Virual Machine Por: Group.
1 VM Network 2

1|18 virtual machine(s)
vbmc03ve-1
application- VM
Lo

vbmcO3v8-47

Remove...
Pryscal dapeers
Q. B vmnict 10
0.4
Remove...
Pryscal dapeers
Q. B e
&
&
@
=]

_static/VMware4.png
Fle Eit View WM Tab: Hep | B~ | o | o o [0 =
Lo X | vy computer || Tvbmone1 % |[[Timonsz x| (Fomoksener || Dsroeds x|
Q Typeherctosench v
o ()
TEpen B oren
VbmCO4E-1 () ~[@ + Computer » rober (\enrdgpr\gpstesmshare\personal) Z) » + T4 [[Search robert N\enrigosgpst.. P
| e QO T]
51 Onfack Semer P ——— - 0 0
3 Shared s =
e = Name Onemodfies Type Sae
B Desiaop. i backup B/ TIASAM Fil folder
11 Downioads 0 docs LSS AN Fiefoder
& RecentPlaces U mise IS IALAM Fiefoder
 OnRack Server.ova 4/730/2015410PM Open Vintuslzatio... 1,081,612 KB
A Libraries. @ vbmc0de-Lovi 4/30/20153:51PM Open Virtualizatio... 8KB
Documents “Com ARORIS49PM OpenVituslistio.. 62897K8
puteNode.va
& Masic
5 Picures
H Videos
8 Computer
& LocalDisk ()
5# HOME (\\NASCN
5 robert (\\enrdgp:
Fie gome: - [Ansupponcaties 3
Open Cancel

_static/space.png

_static/VMware6.png
SHardDisk (IDE) ~ 64MB
Hard Disk 2 (IDE) 8GB

) co/ovD (1DE) Auto detect

[Floppy Using drive A:
ENetwork Adapter Custom (VMnet2)
[Wpispiay 1 monitor

@ Maximum recommended memory

(Memory swapping may
occur beyond this size.)

6156 MB.

@ Recommended memory
256 MB

‘Guest OS recommended minimum

o J [conced [e]

_static/minus.png

_static/puffer_architecture.png
i
i

i

! Test Manager
i

I

i

i

: Test Executor

I

I

i

I

:]CﬁSEI

TargetBehavior Monorail InfraSIM Firmware
encapsulation encapsulation encapsulation encapsulation

Control Layer

Test Task

Action Layer |

InfraSIM Firmware

Test Target Test Target

-vPDU - BIOS

- vSwitch -BMC

- vNode
YourTarget _VvBMC

_static/file.png

_static/vrack.png
|

192.168.190.%¢ T vmnico

Virtual Rack hardware
Configuration

—— Control Network ———

ESXi HOST

Dell R630
VM

Dell R630
VM

_static/atscaledeploy.png
Virtual Neigborhood

v,

(0ata)

| - compute ode 41

Virtual

VM - Compute Node #1

I Neigborhood

‘ VM -Compute Node #2

PO

]

| i -compute node #3]

L VM - Compute Node #3

Virtual Neigborhood

VM - Compute Node #n

T

| v -compue Node o0

v,

(0ata)

- Select Physical Servers
- CreateVMs

- Provision vCompute/vPDU/VS witch
Images

- Configure N etwork

- Create Neighborhoods

Virtual Neigborhood

vs

h (Data)

| v -compute wode 1

VM -Compute Node #1

| vm-compute wode 2

[-compuanode 42 |

| v -compute wode 42 |

| w-compui o 3]

| m-compunode |

[w-computemode

| - compute Node #n |

| Vi - Compute ode #n |

| vsnomon || [o (conon |

- Compute ode |

‘ W - Compute Node.

| -computenode |

‘ WM - Compute Node

| VM -Compute Node)

l WM - Compute Node.

| WM -Compute Node. ‘

[WM -Compute Node

vSwitch (Control)

vSwitch (Control)

(TR

-

_images/vnc.png
SeaBI0S (version 015072
Machine UUID 44454c4c-3500-105:

54432)
046-b9cO4f 303832

]
iPXE (http://ipxe.org) 00:03.0 CABO PCIZ.10 PnP PMM+BFF939BO+BFEF39BO CABO

ress F12 for boot menu.
Select boot device:

1. Isi 00:05.0 0:0 Drive QEMU QEMU HARDDISK 2.2.
2. Legacy option rom

3. Floppy [drive Al

4. DUD/CD [atal-0: QEMU DUD-ROM ATAPI-4 DUD/CD]
5. iPXE (PCI O

3.0)

_static/up-pressed.png

_static/vmworkstation1.png
VMnet Information

© Bridged (connect VMs drectly to the external network)
Bridged to: | Automatic

© NAT (shared host's IP address with VMs)

© Host-only (connect VMs intemally in a private network)

(] Connect a host yirtual adapter to this network
Host virtual adapter name: VMware Network Adapter VMnets.
7] Use local DHCP service to distribute IP address to VMs

Subnet[P: 192.168 .139. 0 Subnet mask: 255 .255 .255 . 0

Restore Defauits o |

Cancel

_static/VMware7.png
Hardware | Options
Device Summary
5 Memory 1GB
[Processors 2

Device status

O

Fl

Connected
Connect at power on

Network connection

Bridged: Connected directly to the physical network
[Replicate physical network connection state

NAT: Used to share the host's IP address.
Host-only: A private network shared with the host

_static/virtualnetwork5.png
mtOSh YMware ESXi, 6.0.0, 2494585

Summary | Virtual Machin

Hardware

Health Status
Processors
Memary

View:

[¥Sphere Standerd Swch

Netwarking

Standard Swikch: vSwitchd

Configuration

] et shapn | N Tearig |

f— Policy Exceptions

=

Storage Adspters
Network Adapters
Advanced Settings
Power Management

@

ons | eer pers |

Promiscuous Mode W [accept -

W [accept E

W |accept -

VSwitch0 Properties
WAC Adiress Changes

Forged Transnits:

Configuration
vSuih

Ea
120pons

Software

Licensed Features
Time Configuration

DHS and Rauting

Authentication Services

Virtual Maching Startup/Shutdown
Virtual Machine Swapfile Location
Securty Profile

Host Cache Configuration

g

Toiatur

Torgament Net.

add)

Virtual Machine.
VMotian and 1P

Remove

[~Port Group Propertiss

Network Label W
VLAN DD N

~Effective Polces
Security
Promiscuous Mode:
MAC Address Changes:
Forged Transms:
Traffic Shaping
Average Bandiidth
Peak Bandidth:

Burst Size:

Failover and Load Balancing
Load Baencing:
Hetwork Failre Detection
oty Sutches:
Falback:
active Adapters:
Standby Adspters:
Ursed Adapters:

_static/architecture1.png
Virtual Compute Node Diagram

Container Vi

~

Virtual Compute

Application

KCS

vBMC e Operating System
[rp—
\ Bridge Bridge /
v v
switch | Hypervisor(vSphereKVM)DockerVirtualBox | switch
v v
To Management Network To Data Network

_static/comment-bright.png

_static/connections_RackHD.png
RackHD with InfraSIM

DHCP ;
server | E—

192.168.190.00¢

—— External Network——
—— Addmin Network——
—— Control Network——

192.168.190.xx

S

_static/case_infrasim_rackhd.png
irtual OB Network

vSwitch (Control)

vSwitch
(Admin)

Hypervisor

_images/connections_RackHD.png
RackHD with InfraSIM

DHCP ;
server | E—

192.168.190.00¢

—— External Network——
—— Addmin Network——
—— Control Network——

192.168.190.xx

S

_images/virtualnetwork5.png
mtOSh YMware ESXi, 6.0.0, 2494585

Summary | Virtual Machin

Hardware

Health Status
Processors
Memary

View:

[¥Sphere Standerd Swch

Netwarking

Standard Swikch: vSwitchd

Configuration

] et shapn | N Tearig |

f— Policy Exceptions

=

Storage Adspters
Network Adapters
Advanced Settings
Power Management

@

ons | eer pers |

Promiscuous Mode W [accept -

W [accept E

W |accept -

VSwitch0 Properties
WAC Adiress Changes

Forged Transnits:

Configuration
vSuih

Ea
120pons

Software

Licensed Features
Time Configuration

DHS and Rauting

Authentication Services

Virtual Maching Startup/Shutdown
Virtual Machine Swapfile Location
Securty Profile

Host Cache Configuration

g

Toiatur

Torgament Net.

add)

Virtual Machine.
VMotian and 1P

Remove

[~Port Group Propertiss

Network Label W
VLAN DD N

~Effective Polces
Security
Promiscuous Mode:
MAC Address Changes:
Forged Transms:
Traffic Shaping
Average Bandiidth
Peak Bandidth:

Burst Size:

Failover and Load Balancing
Load Baencing:
Hetwork Failre Detection
oty Sutches:
Falback:
active Adapters:
Standby Adspters:
Ursed Adapters:

_images/case_infrasim_rackhd.png
irtual OB Network

vSwitch (Control)

vSwitch
(Admin)

Hypervisor

_images/architecture1.png
Virtual Compute Node Diagram

Container Vi

~

Virtual Compute

Application

KCS

vBMC e Operating System
[rp—
\ Bridge Bridge /
v v
switch | Hypervisor(vSphereKVM)DockerVirtualBox | switch
v v
To Management Network To Data Network

_static/VMware10.png
Virtual Machine Settings

£)CD/DVD (SATA) Using file \\nrdgps\gpsteamshare\C....

@) sound Card Auto detect
Soisplay Auto detect

Hardware | Options
D s Yy Device status
- Y 18] connected
[Processors 2 Connect at power on
SiHard Disk (SCSI) 50GB
Network connection

Bridged: Connected directly to the physical network
[T Replicate physical network connection state

(o [conce J[e]

_static/theme/img/logo.png
NEISIM|

_static/theme/img/emccode-logo-48x48.png

_static/theme/img/logo - Copy.jpg
InFrasiMm

_static/theme/img/logo-icon.png
i®

_static/deploymodel1.png
Select Physdial Servers

‘Configure Network
Virtual Neigborhood Virtual eigborhood Virtual eigborhood Virtual Neigborhood

ey ey

[e o) o oo)

e =

[comtense o3 [comptenese o2

[et s

st conr

e comr)

_static/vnc.png
SeaBI0S (version 015072
Machine UUID 44454c4c-3500-105:

54432)
046-b9cO4f 303832

]
iPXE (http://ipxe.org) 00:03.0 CABO PCIZ.10 PnP PMM+BFF939BO+BFEF39BO CABO

ress F12 for boot menu.
Select boot device:

1. Isi 00:05.0 0:0 Drive QEMU QEMU HARDDISK 2.2.
2. Legacy option rom

3. Floppy [drive Al

4. DUD/CD [atal-0: QEMU DUD-ROM ATAPI-4 DUD/CD]
5. iPXE (PCI O

3.0)

_static/theme/img/poster.jpg
TN,

bad ¥ {

tpsy/github.com/InfraSIM

NEISIM | ‘

Open Source for

~ Data Center Infrastructure Simulation

_images/configBIOSpng.png
Change Ualues F9
Select » Sub-Menu F10

_images/infrasim_classes.png
CEMC

_bme
_address Integer
_channel - Integer
_lan_interface : String
_lancontrol_script: Integer
_chassiscontrol_script: Sting
_startcme_script: String
_startnow: Boolean
_powerofi_wait: Integer
_Kill_wait: Integer
_usermame : String
_password String
_emu_file : String
_config_fle : String

_bin' String

_port_iol Integer
_histonytru Integer

sel_type)
set_port_ipmi_console)
set_port_gemu_ipmio
set_sol_evice)
get_config_fleQ
set_config_fleQ
get_emu_file)
se_startemd_script)
get_startemd_script)
set_chassiscontrol_script)
get_shassiscontrol_script0)
set_lancantral_script)
get_lancantral_script)
precheck)
wite_brnc_config)
get_commandiineq

Task

_task_priority Integer
_workspace : Integer
_task_name : String
_log_path : String
_asyneronous : Boolean

set_priority)
get_priority)
set_task_nameQ
get_task_nameq
gt commandine)
set_workspace(
get_workspace(
set_log_path(
set_asyncronous(
get_task_pid)
_task_is_nunning0
rung

terminate)

status)

Caocat

_bin String
_port_serial Integer

_sol_device String

set_port_serial)
set_sol_evice)
precheck)

initg
get_commandiineq

CCompute

_compute
_element_ist: CElement
_enable_om : Boolean
_smhios : String

_bios : String

CNode

_task_list: Task
_node
_node_name
workspace : String

se_numacti)
get_node_name
sel_node_name(
precheck)

__boot_order : String
|__qemu_bin - Integer
_cdrom_flle - String
_vendor_fle : String
_cpu_obj: CCPU
_numact_obj

_monitor : Chonitor
_port_gemu_ipmi - Integer
_port_serial Integer

se_numacti)
set_type)
set_port_gemu_ipmio

CBackendNetwork

|_backend_network_list
_network_ist: Cetwork

precheck)
initg
handle_parms()

Chernory

—_memory
__memory_size :Integer

precheck)
initg
handle_parms()

CCPU

cpu
__type String
_features : String
_auantites : Integer
_socket: Integer

gecpu_quantiiesO
precheck)

inity
handle_parms0

CBatkendstorage

_backend_storage_infa
_controller_list: CStorageContraller
_nci_topology_manager : CPCITapologyMange

set_pei_topology_mar)
precheck)

initg

parms(

CtorageController

_controller_info
__max_diive_per_controller Integer
controller_type : String

_drive_list: CDrive

_use_jbod : Boolean
_sas_address :Integer
_pei_bus_nr Integer

_ptm : CPCITopologyManger
_us_msi: Boolean

_ma_emds : Integer

_mai_sge : Integer

newstr Integer

set_pei_bus_nr)
set_pei_topology_mar)
precheck)

initg

handle_parms()

init_workspace(

initg
startg
stop)
status)

terminate_workspace)

set_port_serial)
set_smbios)
get_smbios)
precheck)

initg
handle_parms()
get_commandiineq

__network_mods : String
_bridge_name : String
_nic_name : String
__mac_address : String
_index: Integer

H set_index()
<etealzer 1 prechecko
! initg

handle_parms()

=<realize=>

=Zrealize=s

i
i
|
|
|

=<realize=>

CElement

_option_list: CElement

precheck(

initg
hanclie_parms()
add_option)
get_optiong

=<realize=>

=<realize=>

_drive
_index: Integer
_vendor: String

CIPMI
CNetwark o
network _intertace
__network_ist __host: String

=<realize=>

=<realize=>

__bme_connection_port: Integer
_chardey_obj

sel_bme_conn_host)
set_bme_conn_port)
precheck)

initg

handle_parms()

<balizex

=<realize=>

=<realize=>

Chionitor

_monitor
_chardey: CCharDey
_mode : String

precheck)
initg
handle_parms()

CCharDev

_chardey
_id: string
_is_server: Boolean
_wait: Boolean
_patn String
__backend_type : String
_reconnect: Integer
_host: string

_port: Integer

CPCIBridge

_serial String
_product: String
_version: String
_bootindex: Integer
_cache : String

__aio: String

_flle - String
_rotation: Integer
__type String
_format: String
_bus_address : Integer
_size Integer
_controller_type : String
__wwn - String
__port_index Integer
__port_wwn - Integer
_scsi_id: Integer
_lun' Integer
_slot_number : Integer

! _mode! - string

CPCTopologyManger

_pei_topology_info
_bridge_list: CPCIBridge
_available_bus_ist

get_available_bus)
precheck)

initg
handle_parms()

set_index()
getindex)
get_contrller_type0
set_contrller_type0
sel_bus)
precheck)

initg
handle_parms0

_bridge_info
_children_bridge_list
_current_bridge_device
_adar

_bus

_parent: CPCIBridge
_can_use_bus : Boolean
_chassis_nr Integer
_msi: Boolean
__mutitunction : Boolean

seL_bus(
get_busQ
get_bus_list)
set_parent)
get_parent)
precheck)

initg
handle_parms()

_images/virtualnetwork3.png
Virtual machines reach networks trough upink adapters attached to vSphere standard switches.

‘Select which vSphere standard switch wi hande the network traffic for thi connection. You may also create anew
‘vSphere standard svitch using the undamed network adapters isted below.

@ Createavsphere standard switch <o-d
Intel Corporation 82599EB 10-Gigabit SFI/SFP+ Network Connection
V@ vmnic2 Down None.

@ e Down Nore
© Use vowitcho Speed tworks

Intel Corporation 1350 Gigabit Network Connection

@ o 1000F 0.0.0.1:255.255.255.254
€ Use vControlswitch ed o

Intel Corporation 1350 Giaabit Network Connection
Prevew:

el Vachoa por G,
VM Network3_

_static/theme/img/space.png

_static/theme/img/logo.jpg
InFrasiMm

_static/theme/img/emccode-logo-mono-48x48.png

