
InfraRed Documentation
Release IR-stable-v1.0.0.0.0-1

yfried

Apr 20, 2017

Contents

1 Contents: 1
1.1 Introduction . 1
1.2 Quickstart . 1

1.2.1 Basic Usage Example . 2
1.3 Setup . 5

1.3.1 Supported distros . 5
1.3.2 Prerequisites . 5
1.3.3 Virtualenv . 6
1.3.4 Installation . 6
1.3.5 Configuration . 6
1.3.6 Private settings . 7
1.3.7 Virthost machine . 7

1.4 Using InfraRed . 9
1.4.1 General workflow . 9
1.4.2 Provisioners . 10
1.4.3 Installers . 13
1.4.4 Testers . 16
1.4.5 Scripts . 17

1.5 Plugins . 18
1.5.1 Add new Plugins . 18
1.5.2 Plugin Input . 18

1.6 Advanced features . 20
1.6.1 Tags . 20
1.6.2 OverCloud Image Update . 21
1.6.3 Custom repositories . 21
1.6.4 Custom/local tempest tester . 22
1.6.5 Scalability . 22
1.6.6 UnderCloud testing . 23
1.6.7 Virthost packages/repo requirements . 24

1.7 Specifications . 25
1.7.1 Plugin Input . 25
1.7.2 Commands and subcommands . 25
1.7.3 Infrared settings structure . 26
1.7.4 Options and Groups . 27

1.8 Contact Us . 36
1.8.1 Team: . 36

i

1.8.2 GitHub: . 36
1.9 Contributors Guide . 36

1.9.1 Sending patches . 36
1.10 Release Notes . 36

1.10.1 v1.1.0 . 36

2 Indices and tables 39

ii

CHAPTER 1

Contents:

Introduction

InfraRed is tool used for automated deployments of various OpenStack environments. It does not try to be focused on
CI use-cases only, it is focused on automation in general. It is written in Python 2.7 and using Ansible as deployment
backend. Python dependencies are handled by pip package manager.

Workflow is divided into 3 separated steps:

1. Provisioning (ir-provisioner tool)

2. Installation (ir-installer tool)

3. Testing (ir-tester tool)

Please see Setup page first or proceed to guide for impatient (Quickstart).

Quickstart

Note: This guide assumes:

• Latest version of Python 2 installed

• Virtualenv is used

• Prerequisites are set-up

• We strongly urge to read all Setup instructions first

• Quickstart is assuming you are use Fedora as main distro for deployment and provisioning (RHEL needs private
adjustments)

Clone InfraRed stable from GitHub:

1

https://www.ansible.com
https://pip.pypa.io/en/stable/
https://www.python.org/downloads/

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

git clone https://github.com/rhosqeauto/InfraRed.git -b stable

Note: This is documentation for stable version. Check in top left corner of this page if your stable branch tag matches
version of documentation. If not true, let us know!

Install from source using pip:

cd InfraRed
pip install --upgrade pip setuptools
pip install .
cp ansible.cfg.example ansible.cfg

Warning: While most topologies will work ‘out of the box’, some topologies (like external ceph, netapp, etc)
requires internal credentials which we cannot upload upstream. Users with access to redhat internal network can
run the following command to download a file contains some credentials & other sensitive data, other user will
have to provide this data explicitly everywhere there is a reference to private variables.

wget --no-check-certificate https://url.corp.redhat.com/infrared-private -O
→˓infrared-private.yml

Basic Usage Example

Provisioning

In this example we’ll use virsh provisioner in order to demonstrate how easy and fast it is to provision machines using
InfraRed. For basic execution, the user should only provide data for the mandatory parameters, this can be done by
two ways:

1. CLI

2. INI File

CLI

To list all parameters (for virsh) and their description, run:

ir-provisioner virsh --help

Notice that the only three mandatory paramters in virsh provisioner are:

• --host-address - the host IP or FQDN to ssh to

• --host-key - the private key file used to authenticate to your host-address server

• --topology-nodes - type and role of nodes you would like to deploy (e.g: controller:3 == 3 VMs that will
act as controllers)

We can now execute the provisioning process by providing those parameters through the CLI:

ir-provisioner virsh --host-address=$HOST --host-key=$HOST_KEY --topology-nodes=
→˓"undercloud:1,controller:1,compute:1" -e @infrared-private.yml

2 Chapter 1. Contents:

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Note: The value of the topology-nodes option is a comma-separated string in a “type:amount” format. Please
check the settings/topology dir for a complete list of the available types. (In the example above, three nodes will be
provisioned: 1 undercloud, 1 controller & 1 compute)

That is it, the machines are now provisioned and accessible.

Note: You can also use the auto-generated ssh config file to easily access the machines

ssh -F ansible.ssh.config controller-0

INI File

Unlike with CLI, here a new configuration file (INI based) will be created. This file contains all the default & manda-
tory parameters in a section of its own (named ‘virsh’ in our case), so the user can easily replace all mandatory
parameters. When the file is ready, it should be provided as an input for the ‘–from-file’ option.

Generate INI file for virsh provisioner:

ir-provisioner virsh --generate-conf-file virsh_prov.ini

Review the config file and edit as required:

Listing 1.1: virsh_prov.ini

[virsh]
host-key = Required argument. Edit with any value, OR override with CLI: --host-key=
→˓<option>
host-address = Required argument. Edit with any value, OR override with CLI: --host-
→˓address=<option>
topology-nodes = Required argument. Edit with one of the allowed values OR override
→˓with CLI: --topology-nodes=<option>
topology-network = default.yml
host-user = root

Note: host-key, host-address and topology-nodes don’t have default values. All arguments can be
edited in file or overridden directly from CLI.

Note: Do not use double quotes or apostrophes for the string values in the configuration ini file. Infrared will NOT
remove those quotation marks that surround the values.

Edit mandatory parameters values in the INI file:

[virsh]
host-key = ~/.ssh/id_rsa
host-address = my.host.address
topology-nodes = undercloud:1,controller:1,compute:1
topology-network = default.yml
host-user = root

1.2. Quickstart 3

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Execute provisioning using the newly created INI file:

ir-provisioner virsh --from-file=virsh_prov.ini -e @infrared-private.yml

Note: You can always overwrite parameters from INI file with parameters from CLI

ir-provisioner virsh --from-file=virsh_prov.ini --topology-nodes="undercloud:1,
→˓controller:1,compute:1,ceph:1" -e @infrared-private.yml

Done. Quick & Easy!

Warning: Users without access to redhat internal network will have to provide a url to a guest image using the
“–image-url” option

Installing

Now let’s demonstrate the installation process by deploy an OpenStack environment using redhat OSPD (OpenStack
Director) on the nodes we have provisioned in the previous stage (The deployment in this case will be ‘virthost’ type,
see how to setup Virthost machine).

Just like in the provisioning stage, here also the user should take care of the mandatory parameters (by CLI or INI file)
in order to be able to start the installation process. Lets provide the mandatory parameter (deployment-files)
and choose to work with RHOS version 8, this time using the CLI only:

ir-installer ospd --deployment-files=$PWD/settings/installer/ospd/deployment/virt --
→˓product-version=8 --product-core-version=8 -e @infrared-private.yml

Note: Please notice that the deployment-file parameters requires a full path of the deployment files dir.

Done.

OSPD Quickstart

InfraRed provides a quick solution to deploy OSPD with a pre-configured undercloud from latest build for testing/POC.

1. Provision: No undercloud node should be provisioned in the provisioning stage.

ir-provisioner virsh --host-address=$HOST --host-key=$HOST_KEY --topology-nodes=
→˓"controller:1,compute:1" -e @infrared-private.yml

2. Install: InfraRed will notice that no UC is provided and will build one from a snapshot of an installed UC from
latest available build.

ir-installer ospd --deployment-files=$PWD/settings/installer/ospd/deployment/virt --
→˓product-version=9 --product-core-version=9 -e @infrared-private.yml

For detailed information on the usage of the various installers, provisioners & tester continue to Using InfraRed

4 Chapter 1. Contents:

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Setup

Supported distros

Currently supported distros are:

• Fedora 22, 23

• RHEL 7.2 (best effort only, deprecated)

• RHEL 7.3

Warning: Python 2.7 and virtualenv are required.

Prerequisites

Warning: Sudo or root access is needed to install prerequisities!

General requirements:

sudo dnf/yum install git gcc libffi-devel openssl-devel sshpass

Note: Dependencies explained:

• git - version control of this project

• gcc - used for compilation of C backends for various libraries

• libffi-devel - required by cffi

• openssl-devel - required by cryptography

• sshpass - required by wait_for ansible module

Closed Virtualenv is required to create clean python environment separated from system:

sudo dnf/yum install python-virtualenv

Ansible requires python binding for SELinux:

sudo dnf/yum install libselinux-python

otherwise it won’t be able to run modules with copy/file/template functions!

Note: libselinux-python is in Prerequisites but doesn’t have a pip package. It must be installed on system level.

Warning: Ansible requires also libselinux-python installed on all nodes using copy/file/template functions.
Without this step all such tasks will fail!

1.3. Setup 5

http://cffi.readthedocs.io/en/latest/
http://cryptography.readthedocs.io/en/latest/
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.ansible.com/ansible/intro_installation.html#managed-node-requirements

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Virtualenv

InfraRed shares many dependencies with other OpenStack products and projects. Therefore there’s a high probability
of conflicts with python dependencies, which would result either with InfraRed failure, or worse, with breaking de-
pendencies for other OpenStack products. When working from source, it is recommended to use python virtualenv to
avoid corrupting the system packages:

virtualenv .venv
source .venv/bin/activate

Warning: It is mandatory that latest pip is used (especially in when working with RHEL)!

pip install --upgrade pip setuptools

Note: On Fedora 23 with EPEL repository enabled, RHBZ#1103566 also requires:

dnf install redhat-rpm-config

Installation

Clone stable branch from Github repository:

git clone https://github.com/rhosqeauto/InfraRed.git -b stable

Install InfraRed from source:

cd InfraRed
pip install .

Note: For development work it’s better to install in editable mode and work with master branch

git checkout master
pip install -e .

Configuration

Note: InfraRed only requires explicit configuraion file when non-default values are used.

InfraRed will look for infrared.cfg in the following order:

1. Environment variable: $IR_CONFIG=/my/config/infrared.cfg

2. In working directory: ./infrared.cfg

3. In user home directory: ~/.infrared.cfg

4. In system settings: /etc/infrared/infrared.cfg

6 Chapter 1. Contents:

http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://bugzilla.redhat.com/show_bug.cgi?id=1103566

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

If no configuration file is supplied, InfraRed will load default values as listed in ‘‘infrared.cfg.example

Set up ansible config if it was not configured already:

cp ansible.cfg.example ansible.cfg

Additional settings

In InfraRed configuration file, you can adjust where ansible looks for directories and entry/cleanup playbooks:

Listing 1.2: infrared.cfg.example

InfraRed configuration file
===========================

[defaults]
settings = settings
modules = library
roles = roles
playbooks = playbooks

[provisioner]
main_playbook = provision.yml
cleanup_playbook = cleanup.yml

[installer]
main_playbook = install.yml
cleanup_playbook = cleanup.yml

[tester]
main_playbook = test.yml
cleanup_playbook = cleanup.yml

Private settings

Infrared allows user to define several folders to store settings and spec files. This can be used, for example, to store
public and private settings separately. To define additional settings folders edit the settings option in the Infrared
configuration file:

[defaults]
settings = settings:private_settings
...

Note: InfraRed tool must be tied to infrastructure at certain level, therefore requires part of configuration not shared
publicly. It is assumed this part will be located in private settings.

For more questions please contact us.

Virthost machine

Virthost machine is the target machine where InfraRed’s virsh provisioner will create virtual machines and networks
(using libvirt) to emulate baremetal infrastructure.

1.3. Setup 7

http://docs.ansible.com/ansible/intro_configuration.html

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

As such there are few specific requirements it has to meet.

Generally, It needs to have enough memory and disk storage to hold multiple decent VMs (each with GBytes of
RAM and dozens of GB of disk). Also for acceptable responsiveness (speed of deployment/testing) just <4 threads
or low GHz CPU is not a recommended choice (if you have old and weaker CPU than current mid-high end mobile
phone CPU you may suffer performance wise - and so more timeouts during deployment or in tests).

Especially, for Ironic (TripleO) to control them, those libvirt VMs need to be bootable/controllable for iPXE provi-
sioning. And also extra user has to exist, which can ssh in the virthost and control (restart...) libvirt VMs.

Note: InfraRed is currently attempting to configure or validate all (most) of this but it’s scattered across all pro-
visiner/installer steps. Due to nature of installers such as OSPd and current InfraRed structure it may not be 100% safe
for rerunning (failure in previous run may prevent following one from succeeding in these preparation steps). We are
currently working on a more idempotent approach which should resolve the above issues (if present).

What user has to provide:

• have machine with sudoer user ssh access and enough resources, as minimum requirements for one VM are:

– VCPU: 2|4|8

– RAM: 8|16

– HDD: 40GB+

– in practice disk may be smaller, as they are thin provisioned, as long as you don’t force writing all the data
(aka Tempest with rhel-guest instead of cirros etc)

• tested is just RHEL-7.3 as OS, with also CentOS expected to work

– may work with other distributions (best-effort/limited support)

• yum repositories has to be preconfigured by user (foreman/...) before using InfraRed so it can install depen-
dencies

– esp. for InfraRed to handle ipxe-roms-qemu it requires either RHEL-7.3-server channel, or (depre-
cated) RHEL-7.2 with OSP<10 channels (10+ is 7.3)

What InfraRed takes care of:

• ipxe-roms-qemu package of at least version 2016xxyy needs to be installed

• other basic packages installed

– libvirt, libguestfs{-tools,-xfs}, qemu-kvm, wget, virt-install

– virt-manager, xorg-x11-apps, xauth, virt-viewer possibly for debugging (or multiple ssh
tunnels can be used)

• virtualization support (VT-x/AMD-V)

– ideally with nested=1 support

• stack user created with polkit privileges for org.libvirt.unix.manage

• ssh key with which InfraRed can authenticate (created and) added for root and stack user, atm they are handled
differently/separately:

– for root the infared/id_rsa.pub gets added to authorized_keys

– for stack infrared/id_rsa_undercloud.pub is added to authorized_keys, created/added later
during installation

8 Chapter 1. Contents:

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Using InfraRed

General workflow

InfraRed framework is divided into three logically separated stages (tools):

• ir-provisioner

• ir-installer

• ir-tester

You can get general usage information with the --help option:

ir-<stage> --help

Output will display supported options you can pass to ir-<stage>, as well as available positional arguments for
current stage (e.g. for provisioner these are foreman, virsh, openstack, ...):

Also, you can invoke help for specific positional arguments (supported provisioners, in this case):

ir-<stage> virsh --help

Note: Positional arguments are generated dynamically from spec files - order and amount might change in time.

Note: Stages are physically separated, you can execute them in mixed (but meaningful) order. Example:

ir-provisioner virsh
ir-installer ospd
ir-tester tempest
ir-installer ospd --scale
ir-tester tempest

Currently, executing different sub-commands of the same stage (i.e. ir-provisioner beaker and then
ir-provisioner virsh) is possible but the user must save the created inventory files (hosts-provisioner)
between exectuions as they will overwrite each other

Passing parameters

Note: By nature of the project, many configurable details like passwords, keys, certifcates, etc... cannot be stored in a
public GitHub repo. We keep a private repo for internal Red Hat users that mirrors the settings tree. Using the
Multi-settings feature in infrared.cfg file, InfraRed will search those directories for files missing from the public
settings directory.

InfraRed expects that selected workflow (playbook and roles) will be provided with all mandatory parameters. There
are several ways to do it:

• Use separate private configuration directory

• Include standalone file(s) containing additional (private) settings as explicit input file(s) (-i or --input pa-
rameters), for example:

1.4. Using InfraRed 9

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

ir-<stage> --input private.yml

Listing 1.3: private.yml

private:

provisioner:
beaker:
base_url: "https://beaker_instance_url/"
username: "..."
password: "..."

...

• Use command line ir-<stage> --param1 --param2 ...

Note: Best practice is store infrastructure-specific configuration file(s) in private repository and fetch such file(s)
before deployment.

Provisioners

For list of supported provisioners invoke:

$ ir-provisioner [<prov_name>] --help|-h

Beaker

Entry point:

playbooks/provisioner/beaker/main.yml

Beaker provisioner is designed to work with instances of Beaker project at least version 22.3. It is based custom
ansible module built on top of

library/beaker_provisioner.py

script. While Beaker can support working with Kerberos, the usage is still limited, therefore authentication is done
using XML-RPC API with credentials for dedicated user.

See appropriate value of ssh_pass for your beaker_username in Website -> Account -> Preferences -> Root
Password if you didn’t setup one. For proper XML-RPC calls cert_file must be provided.

Also, for each run you will need to set proper node-specific values:

...
Beaker system:

--fqdn FQDN Fully qualified domain name of a system
--distro-tree DISTRO-TREE Distro Tree ID Default value: 71576

...

Foreman

Entry point:

10 Chapter 1. Contents:

https://beaker-project.org

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

playbooks/provisioner/foreman/main.yml

Warning: Currently, Foreman provisioning supports only the ability to rebuild hosts (without the option change
the operating system):

ir-provisioner [...] foreman [...]

Foreman provisioner is designed to work with instances of Foreman project at least version 1.6.3. It is based custom
ansible module built on top of

library/foreman_provisioner.py

Foreman provisioner expects that provisioned node has configured relevant puppet recipies to provide basic SSH
access after provisioning is done.

To get more details on how to provision hosts using Foreman:

$ ir-provisioner foreman --help

Openstack

Entry point:

playbooks/provisioner/openstack/main.yml

Provisioner is designed to work with existing instances of OpenStack. It is based on native ansible’s cloud modules.
Workflow can be separated into following stages:

• Create network infrastructure

• Create instance of virtual machine and connect to network infrastructure

• Wait until instance is booted and reachable using SSH

Note: Openstack provisioner is tested against Kilo version.

InfraRed interacts with cloud using os-client-config library. This library expects properly configured cloud.yml file in
filesystem, however it is possible to position this file in InfraRed’s directory.

Listing 1.4: clouds.yml

clouds:
cloud_name:

auth_url: http://openstack_instance:5000/v2.0
username: <username>
password: <password>
project_name: <project_name>

cloud_name can be then referenced with --cloud parameter provided to ir-provisioner:

ir-provisioner ... --cloud cloud_name ...

1.4. Using InfraRed 11

https://theforeman.org
http://docs.ansible.com/ansible/list_of_cloud_modules.html#openstack
http://docs.openstack.org/developer/os-client-config

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Note: You can also ommit the cloud parameter, then InfraRed expects you alredy sourced keystonerc of targeted
cloud:

source keystonerc
ir-provisioner openstack ...

Last important parameter is --dns which must be set to point to local DNS server in your infrastructure.

Virsh

Entry point:

playbooks/provisioner/virsh/main.yml

Virsh provisioner is explicitly designed to be used for setup of virtual OpenStack environments. Such environments
are used to emulate production environment of OpenStack director instances on one baremetal machine. It requires
prepared baremetal host to be reachable through SSH initially. Topology created using virsh provisioner is called
“virthost”.

First, Libvirt and KVM environment is installed and configured to provide virtualized environment. Then, virtual
machines are created for all requested nodes. These VM’s are used in OSPd installer as undercloud, overcloud and
auxiliary nodes.

Please see Quickstart guide where usage is demonstrated.

Cleanup

virsh cleanup will discover virsh nodes and networks on the host and delete them as well as their matching disks. To
avoid cleanup of specific nodes/networks use extra vars ignore_virsh_nodes and ignore_virsh_nets:

ir-provisioner [...] virsh [...] --cleanup \
--host-address=example1.redhat.com \
--host-key=~/.ssh/id_rsa \
--extra-vars ignore_virsh_nodes=MY-NODE-0 \
--extra-vars ignore_virsh_nets=MY-PERSISTENT-NETWORK

By default, cleanup will only ignore default network (automatically created by libvirt). Overriding the
ignore_virsh_nets variable will delete this network unless explicitly specified

Warning: Arguments like images and topology are required by cleanup even though they are never used.
This will be fixed in future versions.

Warning: Cleanup won’t install libvirt packages and requirements. If libvirtd service is unavailable, cleanup be
skipped

Network layout

Baremetal machine used as host for such setup is called Virthost. The whole deployment is designed to work within
boundaries of this machine and (except public/natted traffic) shouldn’t reach beyond. Following layout is part of

12 Chapter 1. Contents:

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

default setup defined in default.yml. User can also provide his own network layout (example network-sample.yml).

Virthost
|
+--------+ nic0 - public IP
|
+--------+ nic1 - not managed
|

... Libvirt VM's
| |

------+--------+ data bridge (ctlplane, 192.0.2/24) +------+ data
→˓(nic0)

| | |
libvirt --+--------+ management bridge (nat, dhcp, 172.16.0/24) +------+
→˓managementnt (nic1)

| | |
------+--------+ external bridge (nat, dhcp, 10.0.0/24) +------+ external

→˓(nic2)

On virthost, there are 3 new bridges created with libvirt - data, management and external. Most important is data
network which does not have dhcp and nat enabled. This network is used as ctlplane for OSP director deployments
(OSPd installer). Other (usually physical) interfaces are not used (nic0, nic1, ...) except for public/natted traffic.
External network is used for SSH forwarding so client (or ansible) can access dynamically created nodes.

Virsh provisioner workflow:

1. Setup libvirt and kvm environment

2. Setup libvirt networks

3. Download base image for undercloud (--image)

4. Create desired amount of images and integrate to libvirt

5. Define virtual machines with requested parameters (--topology-nodes)

6. Start virtual machines

Environments prepared such way are usually used as basic virtual infrastructure for OSPd installer.

Note: Virsh provisioner has currently idempotency issues, therefore ir-provisioner virsh ...
--cleanup must be run before reprovisioning every time.

Custom images

If you need to provide your own prepared images for virsh provisioner, you can use handy feature overriding “im-
port_url” option:

ir-provisioner ... \
-e topology.nodes.<node name>.disks.disk1.import_url=http://.../image.qcow2 ... \
...

Installers

For list of supported installers invoke:

1.4. Using InfraRed 13

https://github.com/rhosqeauto/InfraRed/blob/master/settings/provisioner/virsh/topology/network/default.yml
https://github.com/rhosqeauto/InfraRed/blob/master/settings/provisioner/virsh/topology/network/network.sample.yml

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

$ ir-installer [<installer_name>] --help|-h

Packstack

Entry point:

playbooks/installer/packstack/main.yml

Infrared allows to use Packstack installer to install OpenStack:

$ ir-installer --inventory hosts packstack --product-version=8

Required arguments are:

• --product-version - the product version to install

Settings structure

The path for the main settings file for packstack installer:

settings/installer/packstack/packstack.yml

This file provides defaults settings and default configuration options for various packstack answer files. Additional
answer options can be added using the the following approaches:

• Using a non default config argument value:

$... --config=basic_neutron.yml

• Using the extra-vars flags:

$... --product-version=8 --extra-vars=installer.config.CONFIG_DEBUG_MODE=no

• Network based answer file options can be selected whether by choosing network backend or by modyfing config
with –extra-vars:

$... --product-version=8 --network=neutron.yml --netwrok-variant=neutron_gre.yml

$... --product-version=8 --network=neutron.yml --netwrok-variant=neutron_gre.yml
→˓\

--extra-vars=installer.network.config.CONFIG_NEUTRON_USE_NAMESPACES=n

Both installer.network.config.* and installer.config.* options will be merged into one config and used as the answer
file for Packstack.

OpenStack director

Entry point:

playbooks/installer/ospd/main.yml

OSPd deployment in general consists of following steps:

• Undercloud deployment

14 Chapter 1. Contents:

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

• Virthost tweaks

• Image management

• Introspection

• Flavor setup

• Overcloud deployment

You can find full documentation at Red Hat OpenStack director.

There are 2 OSPd deployment types currently supported. The API is the same but different input is required and
different assumptions are made for each deployment type:

• Baremetal (BM)

Normal deployment of openstack where all nodes are physical hosts.

Users need to provide:

– --deployment-files - directory with various files and templates, describing the OverCloud
(such as instackenv.json).

– --undercloud-config - undercloud.conf file. If not provided, the sample configuration
file will be used.

– --instackenv-file - instackenv.json file.

Both paths must be absolute paths:

ir-installer ospd [...] --deployment-files=/absolute/path/to/templates/directory
→˓[...] --undercloud-config=/home/myuser/undercloud.conf

The details of such directory can be found under settings tree

• Virthost (VH)

Using virsh provisioner, deploy openstack on virtual machines hosted on a single hypervisor (aka Virthost).

This is a common use-case for POC, development and testing, where hardware is limited. OSPD requires special
customization to be nested on OpenStack clouds, so using local virsh VMs is a common solution.

Expects the following network deployment (created by the virsh provisioner):

nic1 - data

– Referred to as “ctlplane” by OSPd documentation

– Does not have dhcp and nat enabled (OSPd will later take dhcp/nat ownership for this network)

– Used by OSPD to handle dhcp and pxe boot for overcloud nodes

– Later used as primary interface for ssh by InraRed (Ansible)

– Data between compute nodes and Ceph storage (if exists)

nic2 - management

– Internal API for the overcloud services (services run REST queries against these interfaces (for exam-
ple Neutron/Nova communication and neutron-server/neutron-agent communication))

– Tenant network with tunnels (vxlan/gre/vlan) for internal data between OverCloud nodes. Examples:

* VM (on compute-0) to VM (on compute-1)

* VM (on compute-1) to Neutron Router (on Controller-3)

nic3 - external

1.4. Using InfraRed 15

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform/
http://docs.openstack.org/developer/tripleo-docs/installation/installing.html#installing-the-undercloud
http://docs.openstack.org/developer/tripleo-docs/installation/installing.html#installing-the-undercloud
http://docs.openstack.org/developer/tripleo-docs/environments/baremetal.html?highlight=instackenv#instackenv-json
https://github.com/rhosqeauto/InfraRed/tree/master/settings/installer/ospd/deployment/example
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux_OpenStack_Platform/7/html/Director_Installation_and_Usage/

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

– public API for the overcloud services (OC users run REST queries against these interfaces)

– The testers (i.e. Tempest) use this network to execute commands against the OverCloud API

– Routes external traffic for nested VMs outside of the overcloud (connects to neutron external network
and br-ex bridge...)

– The testers (i.e. Tempest) use this network to ssh to the VMs (cirros) nested in the OverCloud

To build a Virthost deployment, use the preset deployment-files provided in settings:

ir-installer ospd --deployment-files=$PWD/settings/installer/ospd/deployment/virt
→˓[...]

InfraRed will generate undercloud.conf and instackenv.json configuration files if not provided ex-
plicitly. See Quickstart guide for more details.

Hostnames

To simplify node management, InfraRed uses shorter names than the default names OSPD gives the OverCloud nodes.
For example, instead of overcloud-cephstorage-0 the node will be called ceph-0. The full conversion
details are here.

A user can provide customized HostnameMap using --overcloud-hostname argument:

ir-installer [...] ospd [...] --overcloud-hostname=special_hostnames.yml [...]

Listing 1.5: special_hostnames.yml

HostnameMap:
ceph-0: my_main_ceph_node
ceph-1: another_storage_node
controller-2: SPECIAL_MACHINE
compute-0: BIG_HYPERVISOR

Note that the default naming template is the one described above and not the one in the tripleo documentation
(overcloud-novacompute-0).

Note: The naming convention and customization can be completely overridden if the --deployment-files
input contains a file called hostnames.yml following the tripleo guidlines

Testers

Note: Inventory file (hosts) should have tester group with 1 node in it. In ospd this is usually the undercloud.
In packstack this is usually a dedicated node.

For list of supported testers invoke:

$ ir-tester --help

16 Chapter 1. Contents:

https://github.com/rhosqeauto/InfraRed/blob/master/roles/installer/ospd/overcloud/hostname/vars/main.yml
http://docs.openstack.org/developer/tripleo-docs/advanced_deployment/node_placement.html?highlight=hostnameformat#custom-hostnames
http://docs.openstack.org/developer/tripleo-docs/advanced_deployment/node_placement.html

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Tempest

Note: InfraRed uses a python script to configure Tempest. Currently that script is only available in Red Hat’s Tempest
fork, so InfraRed will clone that repo as well in order to use that script.

Use --tests to provide a list of test sets to execute. Each test set is defined in settings tree And will be executed
separately.

To import Tempest Plugins from external repos, tests files should contain plugins dict. InfraRed will clone those
plugins from source and install them. Tempest will be able to discover and execute tests from those repos as well.

Listing 1.6: settings/tester/tempest/tests/neutron.yml

name: neutron
test_regex: "^neutron.tests.tempest"
whitelist: []
blacklist: []
plugins:

neutron:
repo: "https://github.com/openstack/neutron.git"

Scripts

Archive

This script will create a portable package which can be used to access an environment deployed by InfraRed from any
machine. The archive script archives the relevant SSH & inventory files using tar. One can later use those files from
anywhere in order to SSH and run playbook against the inventory hosts.

To get the full details on how to use the archive script invoke:

$ ir-archive --help

Basic usage of archive script:

$ ir-archive

Note: Unless supplying paths to all relevant files, please run this script from the InfraRed project dir

This creates a new tar file (IR-Archive-[date/suffix].tar) containing the files mentioned above while de-referencing
local absolute paths of the SSH keys so they can be accessed from anywhere.

Usage examples:

• Untar the archive file:

tar -xvf IR-Archive-2016-07-11_10-31-28.tar

Note: Make sure to extract the files into the InfraRed project dir

• Use the SSH config file to access your provisioned nodes:

1.4. Using InfraRed 17

https://github.com/redhat-openstack/tempest
https://github.com/redhat-openstack/tempest
https://github.com/rhosqeauto/InfraRed/tree/master/settings/tester/tempest/tests

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

ssh -F ansible.ssh.config.2016-07-11_10-31-28 controller-0

• Execute ansible Ad-Hoc command / Run playbook against the nodes in the archived inventory file:

ansible -i hosts-2016-07-11_10-31-28 all -m setup

• Use the archived files with InfraRed:

mv ansible.ssh.config.2016-07-11_10-31-28 ansible.ssh.config
ir-installer --inventory hosts-2016-07-11_10-31-28 ospd ...

Plugins

Plugins are essentially Ansible projects that use InfraRed to expose a predifined UI

Add new Plugins

There are two steps that should be done when adding a new plugin to InfraRed:

1. Creating a specification file: InfraRed uses ArgParse wrapper module called ‘clg’ in order to create a parser
that based on spec file (YAML format file) containing the plugin options. The spec file should be named as
the new plugin name with ‘.spec’ extension and located inside the plugin dir under the InfraRed ‘setting’
dir. For more details on how to use this module, please see the Specifications documentation.

2. Creating settings files. Settings files are files containing data which defines how the end result of the playbook
execution will be looked like. Settings file are file in YAML format, end with ”.yml” extension. Those
files located under the plugin’s dir which itself located under the ‘settings’ dir in the InfraRed project’s dir.
The end result of the playbook execution is based on the data created by merging of several settings files
together with other values, all are received by the user. When adding a new plugin, there is a need to create
those settings files containing the needed data for the playbook execution.

Plugin Input

External setting trees

InfraRed builds settings tree (YAML dict-like structures) that are later passed to Ansible as varibales. This tree can
be built upon pre-existing YAML files (with -i/--input) , or be overridden post creation by other pre-existing files
and/or sets of key-value arguments.

The merging priority order is:

1. Input files

2. Settings dir based options

3. Extra Vars

InfraRed input arguments

InfraRed extends the clg and argpars packages with the following types that need to be defined in .spec files:

• Value: String values absolute path. For the argument name is “arg-name” and of subparser “SUBCOMMAND”
of command “COMMAND”, the default

18 Chapter 1. Contents:

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

• YamlFile: Expects path to YAML files. Will search for files in one of the configured settings directories before
trying to resolve absolute path. If the argument name is “arg-name” and of subparser “SUBCOMMAND” of
command “COMMAND”, the default search path would be:

{settings_dir1,...,settings_dirN}/COMMAND/SUBCOMMAND/arg/name/arg_value

• Topology: Provisioners allow to dynamically define the provisioned nodes topology. InfraRed provides several
‘mini’ YAML files to describe different roles: controller, compute, undercloud, etc... These ‘mini’
files are then merged into one topology file according to the provided --topology-nodes argument value.

The --topology-nodes argument can have the following format:

– --topology-nodes-controller:1,compute:1

– --topology-nodes-controller:1

– --topology-nodes-controller:3,compute:1,undercloud:1

InfraRed will read dynamic topology by following the next steps:

1. Split the topology value with ‘,’.

2. Split each node with ‘:’ and get pair (role, number). For every pair look for the topology folder
(configured in the infrared.cfg file) for the appropriate mini file (controller.yml, compute.yml,
etc). Load the role the defined number of times into the settings.

Note: The default search path for topology files is {settings_dir(s)}/provivisioner/
topology. Users can add their own topology roles there and reference them on runtime

These arguments will accept input from sources in the following priority order:

1. Command line arguments: ir-provision virsh --host-address=some.host.com
--host-user=root

2. Environment variables: HOST_ADRRESS=earth.example.com ir-provision virsh
--host-user=root

3. Predefined arguments in ini file specified using --from-file option:

ir-provision virsh --host-address=some.host.com --from-file=user.ini

cat user.ini
[virsh]
host-user=root
host-key=mkey.pm

Note: Do not use double quotes or apostrophes for the string values in the configuration ini file. Infrared
will NOT remove those quotation marks that surround the values.

1. Defaults defined in .spec file for each argument.

Note: The sample ini file with the default values can be generated with: ir-povision virsh
--generate-conf-file=virsh.ini. Generated file will contain all the default arguments values
defined in the spec file.

Arguments of the above types will be automatically injected into settings YAML tree in a nested dict from.

1.5. Plugins 19

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Example: The input for ir-COMMAND and argument --arg-name=arg-value maps to:

COMMAND:
arg:

name: "arg-value"

“arg-value” can be a simple string or be resolved into a more advanced dictionary depending on the argument type in
.spec file

Extra-Vars

Set/overwrite settings in the output file using the ‘-e/–extra-vars’ option. There are 2 ways of doing so:

1. Specific settings: (key-value form) -e provisioner.site.user-a_user

2. Path to a settings file: (starts with @) -e @path/to/a/settings_file.yml

The -e/--extra-vars can be used more than once.

Advanced features

Tags

Advanced usage sometimes requires partial execution of the ospd playbook. This can be achieved with Ansible tags

List the available tags of the ospd playbooks:

ir-installer [...] ospd [...] --ansible-args list-tags

Execute only the desired tags. For example, this will only install the UnderCloud and download OverCloud images:

ir-installer [...] ospd [...] --ansible-args "tags=undercloud,images"

Breakpoints

Commonly used tags:

undercloud Install the UnderCloud.

images Download OverCloud images and upload them to UnderCloud’s Glance service.

introspection Create instackenv.json file and perform introspection on OverCloud nodes with Ironic.

tagging Tag Ironic nodes with OverCloud properties.

overcloud_init Generate heat-templates from user provided deployement-files and from input data. Create
the overcloud_deploy.sh accordingly.

overcloud_deploy Execute overcloud_deploy.sh script

overcloud Do overcloud_init and overcloud_deploy.

inventory_update Update Ansible inventory and SSH tunneling with new OverCloud nodes details (user, password,
keys, etc...)

Common use case of tags is to stop after a certain stage is completed. To do this, Ansible requires a list of all the tags
up to, and including the last desired stage. Therefore, in order to stop after UnderCloud is ready:

20 Chapter 1. Contents:

http://docs.ansible.com/ansible/playbooks_tags.html

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

ir-installer [...] ospd [...] --ansible-args --ansible-args tags="init,dump_facts,
→˓undercloud"

Or, in as a bash script, to stop after $BREAKPOINT:

FULL_TAG_LIST=init,dump_facts,undercloud,virthost,images,introspection,tagging,
→˓overcloud,inventory_update
LEADING=`echo $FULL_TAG_LIST | awk -F$BREAKPOINT '{print $1}'`
ir-installer [...] ospd [...] --ansible-args --ansible-args tags=${LEADING}$
→˓{BREAKPOINT}

OverCloud Image Update

OSPD creates the OverCloud nodes from images. These images should be recreated on any new core build. However,
this is not always the case. To updates that image’s packages (after download and before deploying the Overcloud), to
match RH-OSP core bits build, set --images-update to yes:

ir-installer [...] ospd [...] --images-update=yes

Note: This might take a while and sometimes hangs. Probably due to old libguestfs packages in RHEL 7.2. For a
more detailed console output of that task, set --images-update to verbose.

Custom repositories

Infrared allows to add custom repositories to the UnderCloud when you’re running OSPD, after installing the default
repositories of the OSPD release. This can be done passing through --extra-vars with the following key:

• ospd.extra_repos.from_url which will download a repo file to /etc/yum.repos.d

1. Using ospd.extra_repos.from_url:

Create a yaml file:

Listing 1.7: repos.yml

installer:

extra_repos:
from_url:

- http://yoururl.com/repofile1.repo
- http://yoururl.com/repofile2.repo

Run ir-installer:

ir-installer --extra-vars=@repos.yml ospd

1. Using ospd.extra_repos.from_config

Using this option enables you to set specific options for each repository:

1.6. Advanced features 21

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Listing 1.8: repos.yml

installer:

extra_repos:
from_config:

- { name: my_repo1, file: my_repo1.file, description: my
→˓repo1, base_url: http://myurl.com/my_repo1, enabled: 0, gpg_check: 0 }

- { name: my_repo2, file: my_repo2.file, description: my
→˓repo2, base_url: http://myurl.com/my_repo2, enabled: 0, gpg_check: 0 }
...

Note: As you can see, ospd.extra_repos.explicity support some of the options found in
yum_repository module (name, file, description, base_url, enabled and gpg_check). For more in-
formation about this module, visit Ansible yum_repository documentation.

Run ir-installer:

ir-installer -e @repos.yml ospd

Custom/local tempest tester

You might have a specific version of tempest to test locally in a particular directory, and you want to use it. Infrared
allows you to use this instead of the default git repository. To do so, all you need to do is pass the key tester.local_dir
as extra-vars to ir-tester:

Run ir-tester:

ir-tester tempest --extra-vars tester.local_dir-/patch/for/your/tempest

Scalability

Infrared allows to perform scale tests on different services.

Currently supported services for tests:

• compute

• ceph-storage

• swift-storage

1. To scale compute service:

Deployment should have at least 3 compute nodes.

Run ansible playbook:

ansible-playbook -vvvv -i hosts -e @install.yml playbooks/installer/ospd/
→˓post_install/scale_compute.yml

It will scale compute nodes down to 1 and after that scale compute node back to 3.

2. To scale ceph-storage service:

22 Chapter 1. Contents:

https://docs.ansible.com/ansible/yum_repository_module.html

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Deployment should have at least 3 ceph-storage nodes.

Run ansible playbook:

ansible-playbook -vvvv -i hosts -e @install.yml playbooks/installer/ospd/
→˓post_install/ceph_compute.yml

It will scale compute nodes down to 1 and after that scale compute node back to 3.

3. To scale swift-storage service:

Deployment should have at least 3 swift-storage nodes.

Run ansible playbook:

ansible-playbook -vvvv -i hosts -e @install.yml playbooks/installer/ospd/
→˓post_install/swift_compute.yml

Note: Swift has a parameter called min_part_hours which configures amount of time that
should be passed between two rebalance processes. In real production environment this parameter is
used to reduce network load. During the deployment of swift cluster for further scale testing we set
it to 0 to decrease amount of time for scale.

UnderCloud testing

Usually, all tempest tests are run from the UnderCloud, against OverCloud, while you might want test UnderCloud
services (e.g. ironic). The following cookbook uses InfraRed to run Tempest tests against the UnderCloud.

1. We want an explicit “tester” node to avoid running tests on the same node as the UnderCloud. Use
“ironic” node instead of “undercloud”. It’s the same but doesn’t have the role of “tester”. Rename
“controller” node into “test-vm” to avoid misunderstanding and update it’s parameters to match with
“baremetal” flavor.:

ir-provisioner -d virsh -v -o provision.yml \
--topology-nodes=ironic:1,controller:1,tester:1 \
--host-address=$HOST \
--host-key=$HOME/.ssh/rhos-jenkins/id_rsa \
--image=$IMAGE \
-e @private.yml \
-e provisioner.topology.nodes.controller.cpu=1 \
-e provisioner.topology.nodes.controller.disks.disk1.size=41G \
-e provisioner.topology.nodes.controller.memory=4096 \
-e provisioner.topology.nodes.controller.name=test-vm

2. As we don’t want the full OSPD installation, we will use explicit Tags to do only certain parts:

• Undercloud - will install UnderCloud

• Images - installs or builds OverCloud images

• Ironic - performs all required actions before introspection (including assignment of the kernel and
ramdisk)

• Virthost - enables “virthost” specific tasks in case of “virsh” provisioning:

ir-installer --debug ospd -v --inventory hosts \
-e @provision.yml \
-e @private.yml \

1.6. Advanced features 23

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

-o install.yml \
--deployment-files=$PWD/settings/installer/ospd/deployment/virt \
--product-version=10 \
--product-core-version=10 \
--ansible-args="tags=undercloud,images,virthost,ironic"

3. We want prepare environment for ironic tests:

• update baremetal flavor with cpu_arch

• create initial tempest.conf file using predefined template

• enable ironic inspector

• enable fake and pxe_ssh drivers in ironic

• make desired neutron network shared

• install rhos-release repos into “tester” node

• configure data network on “tester” node:

ansible-playbook -vvvv -i hosts -e @install.yml \
playbooks/installer/ospd/post_install/add_nodes_to_ironic_list.yml \
-e net_name=ctlplane \
-e driver_type=pxe_ssh \
-e rc_file_name=stackrc

4. Finally run the Ironic tempest plugin tests:: Run ir-tester:

ir-tester --debug tempest -v \
-e @install.yml \
--tests=ironic_inspector \
-o test.yml

Virthost packages/repo requirements

Virsh

UEFI mode related binaries

According to usage UEFI with QEMU there is only one way to get the UEFI mode boot working with VMs, that often
requires by Ironic team due to lack of hardware or impossibility to automate mode switching on baremetal nodes.

1. Add repo with OVMF binaries:

yum-config-manager --add-repo http://www.kraxel.org/repos/firmware.repo

2. Install OVMF binaries:

yum install -y edk2.git-ovmf-x64

3. Update QEMU config adding the following to the end of the /etc/libvirt/qemu.conf file:

nvram = [
"/usr/share/edk2.git/ovmf-x64/OVMF_CODE-pure-efi.fd:/usr/share/edk2.git/ovmf-

→˓x64/OVMF_VARS-pure-efi.fd"
]

24 Chapter 1. Contents:

https://github.com/openstack/ironic-inspector/tree/master/ironic_inspector/test/inspector_tempest_plugin
https://fedoraproject.org/wiki/Using_UEFI_with_QEMU

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

4. Restart libvirt service:

systemctl restart libvirtd

Specifications

InfraRed “drives” Ansible through a Plugin’s playbooks (and roles) in the following manner:

ir-XXXer YYYer [...]

Where XXX is the command (provision, install, or test), and YYY is the plugin subcommand (virsh, ospd,
openstack, tempest, etc...)

• Each command executes a matching playbook (at playbooks/XXX.yml) with a generated set of extra vars
as plugin input.

• That “top” playbook calls (via “include”) to the subcommand‘s playbook at playbooks/XXXer/YYY.yml

Plugin Input

InfraRed exposes several types of arguments via it’s CLI to accept user-input before execution. It generates a python-
dict input and merges it with a dict of defaults defined in YAML format.

If the subcommand is called YYY, InfraRed will search for its input definitions in settings trees in a directory called
YYY.

Infrared uses special files (in YAML format) to describe plugin CLI interface. These files are called specifications
(spec’s) and have .spec extension.

The main idea of specification is to describe:

• all the possible options we can pass to the plugin

• any default values for the options

• required and optional options

• limitation for certain options, like choosing option value from the predefined list of allowed values

Infrared parses and merges all the spec files under the settings folders and pass all the defined options to the argparse
module which is then used for cli options parsing.

Specification parser is derived from ‘clg’ module homepage.

Commands and subcommands

Infrared uses the positional arguments (subcommands) to extend functionality for the ir-* cli commands.

ir-provisioner [..] openstack [...]
^---------^ ^-------^

command subcommand

For example, the provisioner command aggregates several subcommands which define specific provisioners like virsh,
openstack, beaker, foreman, etc.

The command specification files are stored under the settings/<command_name>/ folders.

Command specification should start from the root of the spec file without any additional keywords:

1.7. Specifications 25

http://docs.ansible.com/ansible/playbooks_variables.html#passing-variables-on-the-command-line
http://clg.readthedocs.org/en/latest/

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

options: [....]
groups: [....]

All the subcommand specifications files are stored under the settings/<command_name>/
<subcommand_name> folders.

Subcommands can be defined with the subparsers keyword followed by the subcommand name:

subparsers:

virsh:
options:
[....]
groups:
[....]

It’s recommended to define subcommands in the seprate .spec file.

Infrared settings structure

[settings]
|
+-> [installer]
| |
| +-> [ospd]
| | |
| | +-> ospd.spec
| | |
| | +-> ospd.yml
| |
| +-> [packstack]
| | |
| | +-> packstack.spec
| | |
| | +-> packstack.yml
| |
| +-> installer.spec
|
+-> [provisioner]
| |
| +-> [....]
| |
| +-> provisioner.spec
| |
| +-> provisioner.yml
|
+-> base.spec

The base.spec file contains:

• groups and options common for all the commands

• reusable groups (shared_groups)

The command specification files installer/installer.spec and provisioner/provisioner.spec contain:

26 Chapter 1. Contents:

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

• specific options and groups for a given command. For example, by default ir-provisioner command has
the –debug flag to debug information into console.

The subcommand specification files installer/ospd/ospd.spec and installer/ospd/packstack.spec contain:

• subcommand name and description

• specific options and groups for a given subcommand

The subcommand default files installer/ospd/ospd.yml and installer/ospd/packstack.yml contain:

• A set of extra vars in YAML format which the subcommand will use as the skeleton for its input

Options and Groups

An option can be defined with an options keyword followed by the dict of options. Every key in that dict is an
option name, and value is another dict of option parameters.

options:

debug:
help: Run InfraRed in DEBUG mode
short: d
action: store_true

verbose:
help: Control Ansible verbosity level
short: v
action: count
default: 0

Infrared transforms that to the CLI tool with the following arguments:

ir-command [-h] [-d] [-v]

optional arguments:
-h, --help show this help message and exit
-d, --debug Run InfraRed in DEBUG mode
-v, --verbose Control Ansible verbosity level

Options configuration

Every option in the specification can have the following keywords:

• short (infrared)

• help (argparse)

• required (argparse)

• default (argparse)

• choices (argparse)

• action (argparse)

• nargs (argparse)

1.7. Specifications 27

http://docs.ansible.com/ansible/playbooks_variables.html#passing-variables-on-the-command-line

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

• const (argparse)

• type (argparse)

• silent (infrared)

• required_when (infrared)

short

This section must contain a single letter defining the short name (beginning with a single dash) of the current option.

help

argparse link: https://docs.python.org/dev/library/argparse.html#help

A brief description of what the argument does.

required

argparse link: https://docs.python.org/dev/library/argparse.html#required

Whether or not the command-line option may be omitted.

type

argparse link: https://docs.python.org/dev/library/argparse.html#type

The type to which the command-line argument should be converted.

There are two groups of type supported by Infrared:

• control types: all the builtin types such as ‘str’, ‘int’ and other. Option with these types are used to control
Infrared behavior and will not be put into the generated settings files. For example, ir-provisioner command
has ‘debug’ control option.

• settings types (Value types): Value, YamlFile, Topology and other types. Options with these types
will be put by Infrared into the settings files.

If type is not specified, Infrared will treat such option as ‘str’ control option.

Settings types

• Value

• YamlFile

• ListOfYamls

• Topology

• DictValue

28 Chapter 1. Contents:

https://docs.python.org/dev/library/argparse.html#help
https://docs.python.org/dev/library/argparse.html#required
https://docs.python.org/dev/library/argparse.html#type

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Value

Simple value which will be put into the command settings. For example if for ‘provisioner’ command and the ‘virsh’
subcommand with options:

subparsers:

virsh:
options:

host-address:
type: Value
help: 'Address/FQDN of the BM hypervisor'
required: yes

Calling the ‘ir-provisioner’ cli tool:

ir-provisioner virsh --host-address myhost.domain.com

will produce the folloiwng settings in YAML format:

provisioner

host:
address: myhost.domain.com

This settings tree is passed to Ansible as extra-vars.

YamlFile

Loads the content of the specified YAML file into the settings. For the option named ‘arg-name’ Infrared will look for
YAML file into the following locations:

1. <settings folder>/<command name>/<subcommand name>/arg/name/<file_name>

2. <settings folder>/<command name>/arg/name/<file_name>

3. ./arg/name/<file_name>

For example, the ‘provisioner’ command and virsh ‘subcommand’ has the YamlFile option:

subparsers:

virsh:
options:

topology-network:
type: YamlFile

....

Command call:

ir-provisioner virsh --topology-network=default.yml

Infrared will look for default.yml in the following locations:

1. settings/provisioner/virsh/topology/network/default.yml

2. settings/provisioner/topology/network/default.yml

3. ./topology/network/default.yml

1.7. Specifications 29

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Content of the default.yml will be put into the settings file:

provisioner:

topology:
network:

content of the default.yml will go there
key1: value
key2: value
....

Topology

Topology type is used to describe what nodes (vm’s) should be provisioned by the provisioner.

Topology value should be the list of nodes names and the number of nodes: <node name>:<node number>,
<node2 name>:<node2 number>,.... For example:

ir-provisioner virsh --topology-nodes=undercloud:1,controller:2,compute:3
ir-provisioner virsh --topology-nodes=controller:3

Every node name maps to the appropriate YAML file (undercloud.yml. controller.yml, controller.yml) that should be
stored in one the following locations:

1. <settings folder>/<command name>/<subcommand name>/arg/name/<file_name>

2. <settings folder>/<command name>/arg/name/<file_name>

3. <settings folder>/<command name>/topology/<file_name>

4. ./arg/name/<file_name>

All the YAML files will be loaded into the settings under the node name key. ‘Amount’ key will be adjusted.

For example, for undercloud:1,controller:2,compute:3 value with option name topology-nodes
the settings file will be:

provisioner:

topology:
nodes:

undercloud:
content of the undercloud.yml will go there
amount: 1

controller:
content of the controller.yml will go there
amount: 2

compute:
content of the compute.yml will go there
amount: 3

ListOfYamls

Specifies the list of YAML files to load into the settings.

Option value should be the comma separated string of files to load with or without yml extension. Single element in
list is also accepted.

30 Chapter 1. Contents:

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Values examples:

• item1,item2,item3

• item1.yml

Search locations are the same as for the YamlFile type.

For example, for network,compute,volume value with option name tests, command tester and subcom-
mand tempest, the settings file will be:

tester:

tests:
network:

content of the network.yml will go there

compute:
content of the compute.yml will go there

volume:
content of the volume.yml will go there

DictValue

Specifies the value which should be interpreted as a dictionary value in the settings.

DictValue should be specified in the format: option1=value1;option2=value;option3=value3

Consider the following example on how to add the DictValue option into a spec.

subparsers:

virsh:
options:

my-dict-option:
type: DictValue
help: 'Sample dict'

Calling the cli tool:

ir-provisioner virsh --my-dict-option=option1=value1;key2=value2

will produce the following dict tree in YAML format:

provisioner

my:
dict:

options:
option1: value1
key2: value2

This settings tree is passed to Ansible as extra-vars.

1.7. Specifications 31

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Types extension

Settings types can be extended by adding user class to the clg.COMPLEX_TYPES dictionary. Complex types
should implement the clg.ComplexType interface:

import clg
from datetime import datetime

class DateValue(ComplexType):

def resolve(self, value):
try:

return datetime.strptime(value, '%d/%m/%Y')
except Exception as err:

raise clg.argparse.ArgumentTypeError(err)

COMPLEX_TYPES['DateValue'] = DateValue

proceed with clg usage
...

YAML configuration is then can look like:

options:

date:
help: Date value
type: DateValue

...

Control types can be extended by adding callable objects which accept one argument (value) to the clg.TYPES
dictionary.

default

argparse link: https://docs.python.org/dev/library/argparse.html#default

The value produced if the argument is absent from the command line.

choices

argparse link: https://docs.python.org/dev/library/argparse.html#choices

A container of the allowable values for the argument.

action

argparse link: https://docs.python.org/dev/library/argparse.html#action

The basic type of action to be taken when this argument is encountered at the command line.

Infrared provides two actions which allows to read options from INI files and generate simple configuration files.

32 Chapter 1. Contents:

https://docs.python.org/dev/library/argparse.html#default
https://docs.python.org/dev/library/argparse.html#choices
https://docs.python.org/dev/library/argparse.html#action

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

options:

from-file:
action: read-config
help: reads arguments from file.

generate-conf-file:
action: generate-config
help: generate configuration file with default values

nargs

argparse link: https://docs.python.org/dev/library/argparse.html#nargs

The number of command-line arguments that should be consumed.

const

argparse link: https://docs.python.org/dev/library/argparse.html#const

Value in the resulted Namespace if the option is not set in the command-line (None by default).

silent

Specifies which required arguments should become no longer required when this option is set.

options:

image:
type: YamlFile
help: 'The image to use for nodes provisioning. Check the "sample.yml.example

→˓" for example.'
required: yes

...
cleanup:

action: store_true
help: Clean given system instead of running playbooks on a new one.
silent:

- "image"
...

In that example the image will no longer be required when cleanup option is set.

required_when

Specifies condition when options should became required.

Condition should be specified in form <option_name> == <value>.

options:

images-task:
type: Value
choices: [import, build, rpm]

1.7. Specifications 33

https://docs.python.org/dev/library/argparse.html#nargs
https://docs.python.org/dev/library/argparse.html#const

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

default: rpm

images-url:
type: Value
help: Specifies the import image url. Required only when images task is

→˓'import'
required_when: "images-task == import"

Groups

If options belong to one area or connected somehow, they can be grouped:

groups:

- title: Hypervisor
options:

host-address:
type: Value
help: 'Address/FQDN of the BM hypervisor'
required: yes

host-user:
type: Value
help: 'User to SSH to the host with'
default: root

host-key:
type: Value
help: "User's SSH key"
required: yes

Shared groups

Shared groups allow to include predefined options groups into different commands or subcommands

Shared groups should be defined in the settings/base.spec file or in the command spec file:

shared_groups:

- title: Inventory hosts options
options:

inventory:
help: Inventory file
type: str
default: hosts

- title: Common options
options:

dry-run:
action: store_true
help: Only generate settings, skip the playbook execution stage

input:
action: append
type: str
short: i
help: Input settings file to be loaded before the merging of user args

34 Chapter 1. Contents:

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

Shared group can be included into the command spec file with the include_groups directive:

include_groups: ["Debug Options"]

For a subcommand the include_groups should be defined under the subparsers section:

subparsers:

virsh:
include_groups: ["Ansible options", "Inventory options", "Common options",

→˓"Configuration file options"]

Options sources

Infrared is not limited with the CLI options only. We can pass arguments to the plugin using the following approaches:

• through the CLI options

• through INI files using the --from-file argument or any other argument with action: read-config
attribute in specification

• through environment variables

Infrared resolves option value in the next order:

1. If option value is provided by CLI, use that value.

2. Else use value from INI file if it is defined there.

3. Else use environment variable (with the same name as an option name, but capitalized and ‘-‘ replaced
with ‘_’ (for example, ‘arg-name’ will be transformed to ARG_NAME env variable).

4. Else use value specified by the default keyword in the spec file.

5. If default value is not specified, option will not be defined.

Consider the following subcommand specification as an example:

subparsers:

testcommand:
groups:

- title: common options
options:

from-file:
action: read-config
help: reads arguments from file.

- title: test options
options:

option1:
type: Value

option2:
type: Value

option3:
type: Value

The INI file with the settings:

1.7. Specifications 35

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

[testcommand]
option1=ini_value1
option2=ini_value2

Invoke subcommand with the following options:

OPTION2=env_value2 OPTION3=env_value3 ir-somecomand testcommand --from-file=test.ini -
→˓-option1=cli_value1

This will produce the follwing arguments:

• option1 = cli_value1

• option2 = ini_value2

• option3 = env_value3

Contact Us

Team:

Tal Kammer tkammer@redhat.com
Yair Fried yfried@redhat.com

GitHub:

Issues are tracked via GitHub. For any concern, please create a new issue.

Contributors Guide

Sending patches

Changes to project are accepted via review.gerrithub.io. For that you need to be member of our group rhosqeauto-core
on gerrithub, ask any of the current members about it.

You can use git-review (dnf/yum/pip install). To initalize in the directory of InfraRed execute git review -s.
Every patch needs to have Change-Id in commit message (git review -s installs post-commit hook to automatically
add one).

For some more info about git review usage, read GerritHub Intro and OpenStack Infra Manual.

Release Notes

v1.1.0

New Features

• Added support for OSPD on Bare-Metal machines (documentation pending).

• Move to GerritHub

36 Chapter 1. Contents:

mailto:tkammer@redhat.com
mailto:yfried@redhat.com
https://github.com/rhosqeauto/InfraRed/issues
https://github.com/rhosqeauto/InfraRed/issues/new
https://review.gerrithub.io/#/q/project:rhosqeauto/InfraRed
https://review.gerrithub.io/Documentation/intro-quick.html#_the_life_and_times_of_a_change
http://docs.openstack.org/infra/manual/developers.html

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

• Improve Documentaion

• Unit-Testing via tox

• OSPD

– Internal Swift storage backend

– Older OverCloud versions with New UnderCloud (OSP-d #8 and above). For example: Deploy Over-
Cloud of OSP #7 with OPS-d #8 UnderCloud

• Scale

– Internal Ceph

– Internal Swift

– Compute

• Collect logs - ansible playbook to grab required data and logs from all nodes post run. Allows to debug the setup
even after it was destroyed:

ansible-playbook -i hosts -e @SETTINGS_YAML_FILE playbooks/collect-logs.yml

Jobs can now ship logs to Logstash cluster

• Help for arguments of type YamlFileArgumet lists available files from default locations.

• Reprovision via Foreman and IPMI

• Reprovision and reserve via Beaker

• Configure multiple settings trees. Will look for file arguments in multiple settings directories as listed in
infrared.cfg

• Generate better config files:

– Put all the required arguments to the generated config ini file

– If default value is not provided - put the placeholder for that parameter in ini file

– Resolve only current spec arguments.

– Infrared allows to use ir-* command in two steps:

ir-* –generate-conf-file=file.ini ir-* –from-file=file.ini

• Use existing image snapshots with virsh provisioner (faster than building the images)

• openstack provisioner accepts private DNS server address.

• Add Ansible tags to ospd workflow so advanced users can ivoke partial ospd tasks (undercloud,
introspection, overcloud, etc...)

• Add Tempest tester:

ir-tester tempest –help

• Customized hostnames for controller nodes

• Adds support for OSP #10

• OSPD post-install actions no longer invoked during ir-installer ospd run. Need to be explictly invoked
via advanced Ansible call:

ansible-playbook -i hosts -e @SETTINGS_YAML_FILE playbooks/installer/ospd/post_
→˓install/ACTION.yml

1.10. Release Notes 37

InfraRed Documentation, Release IR-stable-v1.0.0.0.0-1

• Configure fencing of overcloud nodes (virsh only) with post-install playbook.

• Invetory files created for each invocation (hosts-provisioner and hosts-installer are created, in-
stead of overwriting the same hosts-$USER file.)

Bug Fixes

• SSH to OverCloud nodes: OSPD reprovisions OverCloud machines with new addresses and credentials. Final
stage of install uses built-in openstack module to get OverCloud info from UnderCloud (nova list) and
recreate invetory and ssh config files.

• Version conflicts:

– pin Babel

– Removed configure module

– Blacklist Ansible 2.1.0

– pin shade

• Default config file is up to date

• Packstack:

– Added All-In-One (aio.yml) topology support

– Fixed network tasks on controller (No longer support dedicated network nodes)

• Collect Logs: Avoid archiving virsh machines on virthost node.

• Improve lookup: No longer fails when there are multiple visits to the same key in the lookup

• Faster lookup with unittest.

• virsh provisioner no longer fails if sshpass is not installed

• Remove “sample” files from genertad config files.

• Resolve ~ (expanduser) on extra-vars file input (--extra-vars @~/my/file)

• Informative failure message for bad topology syntax

• Single default inventory file for all ir-* tools

• Beaker - Proper Ansible failure message when ca_cert file is missing

• Remove empty placeholer file for rhos-8.0 workarounds

• openstack provisioner no longer registers the same IP address for instances of the same node

• Fix internal ceph backend: glance image-create no longer fails with ceph backend

• Fix merging lists in inpute files.

• rhos-release should pin latest version

• Verify that overcloudrc file is created after overcloud deployment succeeds

• Install python-virtualenv on the undercloud (required for shade)

• Add ipv6 support for virsh external network

• Cast the string value of product to int

38 Chapter 1. Contents:

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

39

	Contents:
	Introduction
	Quickstart
	Basic Usage Example

	Setup
	Supported distros
	Prerequisites
	Virtualenv
	Installation
	Configuration
	Private settings
	Virthost machine

	Using InfraRed
	General workflow
	Provisioners
	Installers
	Testers
	Scripts

	Plugins
	Add new Plugins
	Plugin Input

	Advanced features
	Tags
	OverCloud Image Update
	Custom repositories
	Custom/local tempest tester
	Scalability
	UnderCloud testing
	Virthost packages/repo requirements

	Specifications
	Plugin Input
	Commands and subcommands
	Infrared settings structure
	Options and Groups

	Contact Us
	Team:
	GitHub:

	Contributors Guide
	Sending patches

	Release Notes
	v1.1.0

	Indices and tables

